
Discriminating Between
Supraventricular and
Ventricular Tachycardias
from EGM Onset Analysis
Support Vector Preprocessing and Incremental Learning
Approaches for Increased Sensitivity and Specificity of ICDs

Automatic implantable cardioverter
defibrillators (ICDs) have supposed a

great advance in arrhythmia treatment in
the last two decades [1]. The automatic
tasks carried out by these devices include
1) the continuous monitoring of the heart
rate; 2) the detection and the classifica-
tion of the cardiac arrhythmia; and 3) the
delivering of an appropriate, severity-in-
creasing therapy (cardiac pacing, cardio-
version, and defibrillation).

The usual cardiac activation pattern is
known as sinus rhythm (SR), and cardiac
arrhythmias stem from alterations of it.
According to their anatomical origin, fast
arrhythmias or tachyarrhythmias are clas-
sified into two groups: a) supraventricular
tachycardias (SVTs), originated in the
atria, and b) ventricular tachyarrhythmias,
originated in the ventricles. The former
can be either ventricular tachycardia (VT),
whose electric pattern has a well-defined
shape, or ventricular fibrillation (VF),
which represents a more random and inef-
fective activation. The most dangerous
tachyarrhythmias are VF and fast VT; in
these cases there is no effective muscular
pumping, thus causing sudden cardiac
death, and immediate delivering of ther-
apy is required. Nevertheless, SVTs rarely
imply acute hemodynamic damage, so
they do not require shock delivery. Apart
from battery lifetime shortening and dete-
rioration of the patient’s quality of life, in-
appropriate therapy can even start a new
VT or VF episode.

Due to the limited lifetime of the ICD
batteries, the discrimination algorithms
should demand quite low computational

burden. The most commonly imple-
mented algorithms are the Heart Rate
Criterion [2], the QRS Width Criterion
[3], and the Correlation Waveform Anal-
ysis [4]. While VF detection cycle rank is
commonly accepted as appropriate, there
is an overlapping between SVT and VT
cycle ranks, and estimations of the num-
ber of inappropriate shocks (i.e., deliv-
ered to SVT) spread between 10 and 30%
[5, 6].

In this article we hypothesize that the
analysis of the ventricular electrogram
onset (EGM onset) can discriminate be-
tween SVT and VT to obtain a simulta-
neous increase in sensit ivity and
specificity. We will discuss our analysis
of EGMs obtained during SVT and VT to-
gether with their preceding SRs in 38 SVT
and 68 VT far field records from 16 pa-
tients. The algorithmic implementation
and the preprocessing tasks were per-
formed through the support vector
method (SVM), avoiding the overfitting
by means of the statistical bootstrap
resampling. To improve the safety for an
individual patient, two new methods of in-
cremental learning, based on the SVM,
will be proposed and tested on an inde-
pendent set of spontaneous arrhythmia
episodes.

Analyzing Changes in
Ventricular EGM Onset

The analysis of the initial changes in
the ventricular EGMs has been recently
proposed as an alternative arrhythmia dis-
crimination criterion [7], given that it does
not suffer from the drawbacks of the Heart
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Rate, the QRS Width, or the Correlation
Waveform Analysis algorithms. The clin-
ical hypothesis is as follows:

During any supraventricular origi-
nated rhythm both ventricles are depolar-
ized through the conduction-specific
His-Purkinje system, whose conduction
speed is high (4 m/s); however, the electric
impulse for a ventricular originated depo-
larization travels initially through the
myocardial cells, whose conduction speed
is slower (1 m/s). Then, we hypothesize that
changes in the ventricular EGM onset can
differentiate between SVT and VT.

Changes in the waveform are found by
calculating the EGM first derivative. Fig-
ure 1 shows the anatomical elements in-
volved in the hypothesis, and Fig. 2
depicts an SR, an SVT, and a VT example
record, with the f i rs t -der ivat ive
superposed beats on the right, next to each
corresponding record; the noisy activity
preceding the beat onset has been previ-
ously removed. Note how EGM is a sud-
den activation in both SR and SVT beats
but an initially less energetic activation in
VT beats.

Once the criterion has been stated, two
main questions arise:

� How can the criterion be imple-
mented into an efficient algorithm?

� How must it be adjusted for a single
patient?

To date, there is no statistical model
for the cardiac impulse propagation that
could be detailed enough to allow simula-
tion research. Moreover, the assembling
of ICD-stored EGMs is a difficult task be-
cause of the need for correct labeling, thus
only small databases are available. A ro-
bust approach coping with both problems
is the SVM, which is a sample-based
learning procedure assuming no a priori
statistical distribution from the data. De-
spite the stated robustness of the SVM
when dealing with extremely small train-
ing sets, it is not yet an overfitting-free
learning procedure, especially when addi-
tional free parameters must be previously
determined in nonlinear machines. Under
these circumstances, nonparametric boot-
strap resampling will be proposed here to
increase the generalization capabilities of
the SVM classifiers. On the other hand,
the adaptation of the learning scheme to a
single patient is carried out through incre-
mental learning (IL) schemes, which con-
sist of finding a trade-off between the
relevance of the population and the indi-
vidual available episodes. The SVM and

the bootstrap resampling allow the design
of useful IL algorithms.

Statistical Learning Analysis

The Support Vector Method
The SVM was first proposed to obtain

maximum margin separating hyperplanes
in classification problems, but in a short
time it has grown to a more general learn-
ing theory, and it has been applied to real
data problems such as handwritten char-
acter identification or three-dimensional
(3-D) object recognition [8, 9]. A compre-
hensive description of this method can be
found in [10].

A set of observed and labeled data is

V x x x= {( , ),( , ), ,( , )}1 1 2 2y y yl lK (1)

where x Rn
i ∈ and yi ∈ + −{ , }1 1 . A nonlin-

ear transformationφ ( )xi to a generally un-
known, higher-dimensional space Rm

where a separating hyperplane is given
by:

( ( ) )φ ⋅ + =x wi b 0. (2)

We want to find the minimum of:
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whereξ i represent the losses; || ||w 2 can be
shown to be the inverse of the class dis-
tance (and it will be called margin); C rep-
resents a trade-off between margin and
losses; and ( )⋅ expresses the dot product in
Rm. By the Lagrange Theorem, Eq. (3)
can be rewritten into:

L C

y b

P i i
i

l

i
i

l

i i

= + −

φ ⋅ + − +

=

=

∑

∑

1

2

1

2

1

1

|| ||

( {( ( ) ) }

w

x w

µ ξ

α ξ i)
(6)

which is minimized with respect to w, ,b iξ
and maximized with respect to α µi i, ,
constrained to:

α µi i i l, , , ,≥ =0 1 K . (7)

January/February 2002 IEEE ENGINEERING IN MEDICINE AND BIOLOGY 17

AV Node

His-Purkinje System

Sinus Node

1. Anatomical elements involved in the
ventricular depolarization.
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2. Examples of SR, SVT, and VT, together with their superposed EGM first derivative.



The solution is a linear combination of
the training data, where the samples with
α i ≠ 0 are called the support vectors. The
classification function is built as a func-
tion of the support vectors, as depicted in
Fig. 3. Nonlinear classifiers are obtained
by taking the dot product in kernel-gener-
ated spaces. This product uses kernels sat-
isfying the Mercer conditions; that is,
semi-defined positive kernels [10]. The
problem consists then in maximizing:

L
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d ii
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i j i j i ji j
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=
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α α
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constrained to:

C i≥ ≥α 0; α ii

l
iy=∑ =1 0 (9)

and the general classifier function is:
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Some common kernels are linear, with
K( , ) ( )x y x y= ⋅ ; polynomial , with
K d( , ) ( )x y x y= ⋅ ; and radial basis func-
tions (RBFs), with
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Note that one or more free parameters
must be previously settled in the nonlinear
kernels (polynomial degree d, width σ),
together with the trade-off parameter C.
This is usually done by cross validation,
but, when working with small data sets, a
dramatic reduction in the size of the train-
ing set arises, leading to poor generaliza-
tion capabilities.

Bootstrap Resampling
We propose below an algorithm to ad-

just the free parameters in nonlinear

SVM, based on the bootstrap resampling
techniques [11], which preserves the size
of the training data set. A depend-
ence-estimation process between the pairs
of data in a classification problem, where
the data are drawn from a joint distribu-
tion p y( , )x , is:

p y

y y yl l

( , )

{( , ),( , ), ,( , )}.

x

V x x x

→
= 1 1 2 2 K

(11)
The estimated SVM coefficients over the
data set are:

$ ( , )α θ= s V (12)

where s(,) symbolizes the SVM estima-
tion process and θ represents a previously
settled value of an SVM free parameter.
The empirical risk is defined as the train-
ing error fraction for the current coeffi-
cients:

$ ( $ , )R temp = α V (13)

where t(,) represents the empirical risk es-
timation process. A bootstrap resample is
a data subset drawn from the training set
following their empirical distribution;
i.e., it consists of sampling with replace-
ment of the observed pairs of data:

$( , )

{( , ),( , ), ,( , )}.

*

* * * * * *
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y y yl l

x V

x x x

→ =

1 1 2 2 K

(14)

Consequently, V* will contain ele-
ments of V appearing none, one, or sev-
eral times. The resampling is repeated for
b B=1,..., times. A partition of V in terms
of the resample V*( )b is

V V V= ( ( ), ( ))* *
in outb b (15)

with Vin
* ( )b the subset of pairs included in

the resample b and Vout
* ( )b the subset of

nonincluded pairs. The SVM coefficients
for each resample will be given by:

$ ( ) ( ( ), )* *α θb s bin= V . (16)

The empirical risk estimation over this
population is known as its bootstrap repli-
cation:

$ ( ) ( $ ( ) , ( ))* * *R b t b bemp in= α V (17)

and, through the B resamples histogram, it
approximates the empirical risk density
function. However, further advantage can
be taken from:

$ ( ) ( $ ( ) , ( ))* * *R b t b b= α Vout , (18)

which is a better approximation to the ac-
tual (i.e., whole and not only empirical)

risk. A nonbiased estimate of the actual
risk will be obtained by simply taking the
replication average. This average esti-
mate can be achieved for a set of values of
the SVM free parameter, allowing deter-
mination of the most suitable value to
train the SVM with the whole training set.
A good range for B is typically 200 to 500
resamples.

Above we have assumed that θ repre-
sents either the trade-off C or the kernel
parameter. This result only holds assum-
ing they are mutually independent. None-
theless, this will not be true in general. A
good heuristic approach is to start with an
intermediate value of C to give an initial
guess of the kernel parameter, then esti-
mate C again, and continue from one to
another until a stable pair of parameters is
obtained.

Patients
Two different databases were assem-

bled for the analysis, one of them (which
we will refer to as Base C) for control
(training) and the other (Base D) for vali-
dation.

Base C: Control Episodes
Twenty-six patients, with a third-gen-

eration ICD (Micro-Jewel 7221 and 7223,
Medtronic), were included in this study.
In these patients, monomorphic VT
EGMs were obtained during an
electrophysiologic study performed three
days after the implant in the postabsorp-
tive state. The EGM source between the
subpectoral can and the defibrillation coil
in the left ventricle was programmed, as it
was previously shown to be the most ap-
propriate electrode configuration for the
criterion. The ICD pacing capabilities
were used to induce monomorphic VT.
The EGMs were stored in the ICD during
induced sustained monomorphic VTs and
during its preceding SRs. In order to ob-
tain a group of SVTs, a treadmill test
(modified Bruce protocol) was performed
in the postabsorptive state, at least four
days after the implantation procedure, if
no contraindication was present. At least
two therapy zones were programmed. The
VT zone detection was activated at the
peak of exercise if no angina,
hypotension, or intense dyspnea were
present. The detection interval was pro-
grammed 20 ms longer than the cycle
length present at this particular moment.
The EGMs recorded during VT, sinus
tachycardia, and SR were downloaded in
a computer system (A/D conversion: 128
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3. A simple 2-D classification example
with nonlinear SVM; the support vec-
tors appear as rounded.



Hz, 8 bits per sample, range ±7.5 mV). In
this group, spontaneous tachycardias
stored in the device during the follow-up
were included if the EGM morphology of
the recurrence was identical to either the
induced VT morphology or the exer-
cise-induced SVT morphology. A total of
38 SVT episodes (493 ± 54 ms) and 68 VT
episodes (314 ± 49 ms) were analyzed.
The EGM duration during SR was 90 ± 24
ms, with  a range of (60, 144) ms.

Base D: Spontaneous Episodes
An independent group of spontaneous

tachycardias from 54 patients with a dou-
ble-chamber ICD (Micro-Jewel 7271,
Medtronic) was assembled. We only ad-
mitted data from this type of device in or-
der to reduce the diagnostic error during
arrhythmia classification. Let V(A) de-
note the time for the ventricular (atrial)
EGM; a VT was diagnosed when there
was: a) V-A dissociation; b) irregular
atrial rhythm, even if this was faster than a
regular ventricular rhythm; or c) V-A as-
sociation with a V-A < A-V. This allowed
us to label 299 SVTs (498 ± 61 ms) and
1088 VTs (390 ± 81 ms) episodes.

The number of available episodes is
high enough to be considered as signifi-
cant in a clinical study. However, learn-
ing machines are usually trained with a
far greater number of data in order to
avoid the overfitting, hence the necessity
of a regularization procedure in order to
extend the SVM capabilities to clinical
studies.

Algorithmic Implementation
Three issues arise when designing the

algorithmic implementation of the ven-
tricular EGM onset criterion, namely:
where to measure (depending on time in-
terval and bandwidth), which features to
measure, and which preprocessing to use
in order to enhance the differences in the
onset.

EGM Time-Frequency Analysis
The work hypothesis in the EGM onset

criterion points to the analysis of the fre-
quency components during the onset time.
However, the EGM onset extends during
a dramatically short time interval, about
40-80 ms, which for a 128-Hz sampled
signal means just about ten time samples.
This will lead to frequency indeter-
mination, according to the uncertainty
principle of the time-frequency analysis
[12].

Qualitatively, Fig. 4 shows the com-
parison between two spectrograms, one
from a SR beat and another from a VT
beat. Both have been obtained in 110-ms
segments, 90% overlapping, with an AR
modeling on each segment; the model or-
der was determined according to the
Akaike Criterion [13]. In both cases, the
R-wave appears nearby 300 ms. Note that

for the SR beat the activation is a sudden,
marked wall, occupying all the band-
width, with a short duration of the previ-
ous activity. However, the VT beat shows
a less energetic wall, with minor high-fre-
quency content and lasting a shorter
period of time; furthermore, the wideband
activation is preceded by a longer low-fre-
quency transient.
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4. Time-frequency analysis for (a) an SR beat and (b) a VT beat.



Working in the time-frequency do-
main leads to a much higher input feature
space. As all the information will be con-
tained in the onset samples, it is preferable
to separately analyze both domains’ influ-
ence; i.e., to try to determine the time in-
terval where the greater differences
between SVT and VT arise, and to look
for the most suitable frequency band to
process.

Methods
The optimum time interval was deter-

mined by examining all the possible time
subwindows inside the 86 ms previous to

the R-wave of the EGM (Fig. 5), as this
value was previously shown to contain the
onset in every episode. The minimum
time subwindow allowed was 20 ms
(three samples). For each subwindow
length and its generated feature space, a
nonlinear (RBF) SVM classifier was
built; the trade-off parameter was fixed to
a moderate value in each case, C =100,
while the value of σ was individually ad-
justed with bootstrap resampling. The ad-
equacy of each subwindow was
quantified by the bootstrap estimates of
actual sensitivity, specificity, and ma-
chine complexity (or number of support
vectors). For notation, the R-wave was
considered to take place at 0 ms.

The optimum band was assessed in a
similar way. The feature space was given
by the samples in the 86 ms previous to the
R-wave; the EGMs were previously fil-
tered by a bandpass FIR filter, order 32,
and each possible sub-band (in the range
from 0 to 45 Hz, step 5 Hz, minimum
bandwidth 10 Hz) was analyzed by means
of the SVM classifier performance as de-
scribed above.

Results
Tables 1 and 2 show the results for the

time interval and for the band analysis, re-
spectively. In Table 1, sensitivity in-
creases for initial times before −31 ms and
for final times reaching 0 ms; specificity
increases for initial times before −39 ms
and remarkably for final times between
−16 and −47 ms; and the number of sup-
port vectors decreases for initial times be-
fore −55 ms and for final times after −8
ms. In Table 2, sensitivity increases when
the (15,30) Hz band is included; specific-
ity increases when the (0,35) Hz band is
included; and the number of support vec-
tors decreases when the (0,20) Hz band is
included.

A higher specificity in (− 86,−16) ms is
reasonably due to the presence of ventric-
ular potentials during wide QRS, VT epi-
sodes. A higher sensitivity for ranges
beginning soon enough (before −39 ms)
and including the R-wave might be due in
part to the fact that the SVM extracts the
features in the time interval where the dif-
ferences are less evident. On the other
hand, a higher sensitivity in the (15,30) Hz
band points to an evident concentration
of the VT episodes in this band. How-
ever, a higher specificity can be achieved
including practically the whole band, as
SVT EGMs contain information in low
frequency.
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5. Determination of the time interval for
the analysis of the EGM onset.

Table 1. Observation Subwindows for the Ventricular EGM Onset: (a)
Bootstrap Averaged Sensitivity; (b) Bootstrap Averaged Specificity; (c)
Bootstrap Averaged Percentage of Support Vectors (complexity). Start

and End Window Time Are Expressed in ms.

− 70 85

− 62 88 83

− 55 93 91 76

− 47 91 89 83 80

− 39 90 89 86 87 88

− 31 88 87 83 82 84 90

− 23 90 88 84 86 83 84 86

− 16 88 90 87 86 86 88 80 89

− 8 91 89 89 88 89 85 85 85 83

0 91 92 92 90 92 90 91 90 76 82

End/Start –86 –78 –70 –62 –55 –47 –39 –31 –23 –16

(a)

− 70 92

− 62 95 93

− 55 96 93 93

− 47 97 96 87 84

− 39 99 95 91 92 93

− 31 97 97 98 99 97 94

− 23 98 98 97 96 94 93 87

− 16 97 93 94 95 94 94 89 81

− 8 96 95 96 95 94 94 91 83 75

0 94 95 92 93 92 90 87 79 75 75

End/Start –86 –78 –70 –62 –55 –47 –39 –31 –23 –16

(b)

− 70 44

− 62 41 50

− 55 41 45 49

− 47 46 48 52 51

− 39 52 54 52 50 47

− 31 45 47 48 48 51 48

− 23 51 41 41 44 44 50 53

− 16 39 40 40 41 44 50 58 62

− 8 41 39 41 40 43 48 52 61 66

0 40 41 41 39 41 44 48 57 65 67

End/Start –86 –78 –70 –62 –55 –47 –39 –31 –23 –16

(c)



Conclusions
A (− 80,0) ms time interval and all the

band should be considered for the analysis
of the ventricular EGM onset.

Featuring the EGM Onset
The first approaches to the ventricular

EGM onset analysis were developed us-
ing a group of electrophysiologic parame-
ters, chosen according to the clinical
knowledge, and related to the beginning
of the ventricular activation time (To) over
the EGM first derivative. Figure 6 repre-
sents these parameters: first peak ampli-
tude (A1); time interval from To to the first
peak (T1); maximum amplitude (Amax);
time interval from To to the maximum am-
plitude (Tmax); averaged energies during
the initial 20, 30, 40, and 50 ms (E20, E30,
E40, and E50). This approach has two
main problems: first, the automatic deter-
mination of the fiducial point To is not an
easy task, especially in fast VT where the
ending repolarization interferes with the
following initial depolarization; second,
any heuristic featuring will probably lead
to a loss of information. Both issues were
studied as described below.

Methods
The To for all the EGMs was automati-

cally settled (see Appendix A); then, three
different featuring methods of the EGM
first derivative were established:

� automatic To detection and measure-
ment of the electrophysiological pa-
rameters during tachycardia and its
preceding SR;

� automatic To detection and featuring
by the time samples in the following
80 ms; and

� R-wave detection and featuring by the
time samples in the preceding 80 ms.

For each input space, a nonlinear
(RBF) SVM classifier was designed (C =
100 for all of them,σ individually adjusted
with bootstrap resampling).

Results
Table 3 shows the sensitivity, specific-

ity, and complexity for each SVM detec-
tor. Classifier 1 needs a high number of
support vectors. Classifier 2 shows the
best performance in all the scores. Classi-
fier 3 presents a similar specificity but a
reduced sensitivity.

Conclusions
Heuristic featuring leads to informa-

tion loss, and sample-based featuring is
more appropriate. Previous To detection

enhances the classification capabilities,
but at the expense of a dramatically high
computational burden (see Appendix A
for details). Nevertheless, the perfor-
mance of the R-wave-based scheme is not
much lower than the optimal, and it is
computationally simpler. A carefully de-
signed preprocessing could allow us to
adopt this more attractive scheme. This
topic is the subject of the next section.

Enhancing by Preprocessing
Preprocessing can be a determining is-

sue. We will focus here on the following
steps.

� Our work hypothesis suggests the ob-
servation of changes through the EGM
first derivative; still this corresponds to
a rough high-pass filtering and it has to
be shown that this does not degrade the
algorithm performance.

� A previous discriminant analysis
upon the electrophysiological fea-
tures revealed the onset energies as

significant, so that rectification could
benefit the classification.

� Although R-wave synchronization
has been used, synchronization with
the maximum of the first derivative is
also possible. This maximum will be
denoted as the M d wave.

� Inter-patient variability could be re-
duced by normalization with the SR
maximum.

Methods
The averaged samples in the 80 ms

previous to the synchronization wave
were used as the feature space of an RBF
SVM. Starting from a basic preprocessing
scheme, where the EGM first derivative
was obtained and R-wave synchroniza-
tion was used, one preprocessing block
was changed each time; rectification in-
corporation, first derivative removal, M d
synchronization, and SR normalization
lead in each case to a different feature
space and to a different SVM classifier (C
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Table 2. Band Analysis: (a) Bootstrap Averaged Sensitivity; (b) Bootstrap
Averaged Specificity; (c) Bootstrap Averaged Percentage of Support

Vectors (Complexity). Start and End Window Time Are Expressed in ms.
10 83

15 89 84

20 89 91 96

25 89 91 90 90

30 91 90 92 89 85

35 92 94 88 88 90 86

40 89 91 90 94 92 89 83

45 94 90 93 90 84 93 84 92

End/Start 0 5 10 15 20 25 30 35

(a)

10 88

15 92 74

20 93 93 87

25 93 94 87 94

30 96 96 89 95 89

35 99 92 87 96 81 73

40 94 93 86 94 86 81 77

45 98 93 85 93 87 73 83 67

End/Start 0 5 10 15 20 25 30 35

(b)

10 45

15 48 62

20 42 54 46

25 41 49 50 38

30 39 48 54 35 38

35 41 50 50 34 41 47

40 39 48 54 36 41 49 65

45 41 48 55 35 40 47 65 55

End/Start 0 5 10 15 20 25 30 35

(c)



= 200) for all of them, individual σ for
bootstrap tuning).

Results
Table 4 shows the sensitivity, the spec-

ificity, and the complexity for each classi-
fier: neither rectifying nor the first
derivative yield any advantage; M d syn-
chronization worsens all the classification
rates, probably due to the higher instabil-
ity of this fiducial point; finally, the SR
normalization increases the complexity of
the related SVM.

Conclusions
Nonlinear filters, such as the SVM, are

robust when facing changes in the feature
space that do not imply information can-
cellation. On the other hand, information
distortion (like unstable synchronization)
can deteriorate the classifier performance.

Final Scheme
The algorithmic implementation in a

set of patients is closed with the proposal
of an automatic discrimination system,
which is depicted in Fig. 7. The EGM goes
through the next stages:

1) Noise filtering: cascade of a low-pass
(45 Hz) and a notch (50 Hz) FIR 32.

2) Segmentation: includes a conven-
tional beat detector, and it extracts the 80
ms previous to the R-wave to be used as
the feature vector.

3) SR record: periodically stores the
SR feature vector.

4) Commuter: allows to switch off the
system (when the rate criterion is not as-
sessed) and to switch on the periodic SR
storing or the transmission of the
arrhythmic beat.

5) Trained SVM classifier.
The optimum pair of values that mini-

mize the error rate was iteratively ad-
justed by bootstrap resampling (C =10,
σ = 5). For this pair, empirical and
bootstrap sensitivity, specificity and com-
plexity were obtained for both the Base C
(training) and the Base D (independent)
data sets. The result is shown in Table 5.
For the training set, there is both a high
sensitivity and a high specificity, and all
the SVT are correctly classified. For the
independent data set, the output of the pre-
viously trained classifier agreed with the
results in the training set in terms of speci-
ficity, but not in sensitivity. This was later
observed to be due, in general, to new VT
episodes showing a very different mor-
phology from the Base C observations.

Therefore, the learning procedure has cor-
rectly extracted the features in Base C, but
it cannot generalize wisely when facing
not previously observed VTs. Problems
solved to the date with SVM have limited
feature spaces, such as the handwritten al-
phabet or the handwritten digits, whereas
the VTs with different anatomical origins
cannot be considered as a limited set.

One possible solution to this drawback
comes from the IL proposal discussed in
the next section.

Incremental Learning
In the process of analyzing some diag-

nostic by way of a given feature, the first
step, or analysis step, is to show this fea-
ture being predictive enough in a popula-
tion set. The next one, or synthesis step, is
to apply the criterion to a particular patient
diagnostic, which can take further advan-
tage of the patient’s available informa-
tion. This is a common operation in
today’s ICDs, where the cardiologist must
program an algorithm by determining
some patient-dependent thresholds. An
incremental learning procedure is the
process of establishing a trade-off be-
tween the population-available informa-
t ion and the pat ient-avai lable
information. Two main aspects to cope
with are storing the population informa-
tion in an effective, nonredundant way,
and stating a population-individual
trade-off criterion.

The first issue can be resolved within a
SVM framework; the support vectors of
the population classification represent the
information in terms of the most critical,
uncertain episodes. For the trade-off crite-
rion, two models are proposed in this
work: margin trade-off and cost trade-off.
The first, still general, approach to the
SVM cost function (in a Bayesian sense)
can be found in [14].

Margin Learning
Let there be two feature vector sets in a

classification problem. One of them rep-
resents the population boundary and con-
tains the N p support vectors of an SVM
trained on a bigger set:

{( , ), ,( , )}x x1 1
P P

Np
P

Np
Py yK . (19)

The other includes the Ni feature vectors
observed to the date in the patient:

{( , ), ,( , )}x x1 1
I I

Ni
I

Ni
Iy yK . (20)

The relative importance of each subset
in an SVM classifier can be controlled
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ture the EGM onset.

Table 3. Bootstrap Average ± Standard Deviation for the
Proposed EGM Onset Featuring Schemes.

Sensitivity Specificity % Support Vectors

Detector #1 79 ± 13 94 ± 7 89 ± 4

Detector #2 87 ± 12 97 ± 5 23 ± 4

Detector #3 79 ± 14 96 ± 6 36 ± 6

Table 4. Bootstrap Average ± Standard Deviation for the
Proposed Preprocessing Schemes.

Sensitivity Specificity % Support Vectors

Basic 90 ± 7 91 ± 10 56 ± 4

Rectifying 91 ± 7 90 ± 9 52 ± 47

Md synchro 84 ± 7 76 ± 11 78 ± 4

No derivative 91 ± 6 93 ± 8 41 ± 4

SR normalize 89 ± 7 93 ± 8 99 ± 7



through the subset margin; a higher mar-
gin for a subset will lead to a higher num-
ber of support vectors in the classifier.
Assuming that the margin M o is de-
creased in one subset and increased in the
same scale in the other subset, the prob-
lem corresponds to maximize:

1

2
2

1
|| ||w +

=

+

∑C k
k

Np Ni

ξ
(21)

constrained to:

y b M i Npi
P

i
P

i
P

o(( ) ) , , ,w x⋅ + − − =1 1ξ K

(22)

y b M j Nij
I

j
I

j
I

o(( ) ) , , ,w x⋅ + − + =1 1ξ K

(23)

ξk k Ni Np≥ = ⋅⋅⋅ +0 1, , , . (24)

An equivalent problem is to maximize:

L M y y K

M

d k o k l k l k lk l

Ni Np

i
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o
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,α α α

α
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2

1

11 x x

)

( )

i

Np
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I

oj

Ni
M

=

=

∑
∑− +

1

1 1α

(25)
constrained to:

αkk

Np Ni
ky=

+∑ =1 0 (26)

C k≥ ≥α 0. (27)

The margin parameter M o cannot be
analytically calculated. Instead, it must be
settled a priori. Nevertheless, it can be ad-
justed as an SVM free parameter by just
minimizing the actual risk bootstrap esti-
mation for the patient rate error:

$ ( ) ( ( ), ( ))* * *R b b bI exI= ϕ α V (28)

where VexI b* ( ) represents the patient fea-
ture vectors, which are from resample b.

Cost Learning
Another possible approach to the SVM

incremental learning consists of assigning
a different cost to the population and to the
individual feature vector losses. Let Co be
the trade-off parameter for the popula-
tion-trained SVM. The problem now is to
minimize:

1

2
2

1 1
|| ||w + +

= =
∑ ∑C C C Co P i

P

i

Np

o I i
I

j

Ni

ξ ξ
(29)

constrained to:

y b i Npi
P

i
P

i
P(( ) ) , , ,w x⋅ + ≥ − =1 1ξ K

(30)

y b j Nij
I

j
I

j
I(( ) ) , , ,w x⋅ + ≥ − =1 1ξ K

(31)

ξk k Ni Np≥ = ⋅⋅⋅ +0 1, , , . (32)

where C p is the population loss cost and
C i the individual loss cost. Supposing the
normalization conditionC Cp i =1, the ra-
tio:

C

C
p

i (33)

specifies the behavior of the algorithm.
The problem is equivalent to maximize:

L y y Kd k k l k l k lk l

Ni Np

kk

Ni Np

( ) ( , ),α α α

α

=−

−

=
+

=
+

∑
∑

1

2 1

1

x x

(34)
constrained to Eq. (26) and:

C Cp o i≥ ≥α 0 (35)

C Ci o i≥ ≥α 0. (36)

As in the preceding case, the cost ratio
can be determined with bootstrap
resampling on a set of SVM classifiers
with different ratios.

A Single-Patient Case Study
Methods

An RBF SVM population classifier
was built as described in the preceding
section, on Base C, giving 35 support
vectors (from 106 vectors); from these,
22 were saturated coefficients (8 SVTs
and 14 VTs) and 13 were nonsaturated
coefficients (5 SVTs and 8 VTs). A pa-
tient from Base D was selected, with a
total of 257 episodes (77 SVTs, 180
VTs). About a 10% of the episodes were
randomly selected (8 SVTs, 18 VTs),
leaving apart the rest as a test set. The
two SVM IL proposed methods were
evaluated: a) margin learning, with Mo
in (−1.5,1.5), discretized with resolu-
tion ∆M o = 01. ; and b) cost learning, with
a Cp/Ci ratio of (10−3,103), logarithmic
scaling. Four different SVM soft out-
puts were represented for all of the pa-
tient episodes: a) conventional SVM
and training set consisting of just the
populational support vectors; b) con-
ventional learning and training set con-
sisting of the populational support
vector plus observed (10%) individual
episodes; and c) and d) margin and cost
IL, as just described.
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Table 5. Final Scheme Classification Rates (Sensitivity, Specificity, and
Complexity-Percentage of Support Vectors) in: (a) Control Set (Base C);

(b) Validation Set (Base D).

Base C Sen Spe % Nsv

Empirical 94.1 100 33

Bootstrap 91 ± 6 94 ± 7 41 ± 4

(a)

Base D Sen Spe

Empirical 76 94

(b)



Results
Figure 8 depicts the bootstrap esti-

mated sensitivity, specificity, and com-
plexity for both schemes. With margin
learning, the optimum value takes place at
about Mo = − 0.75 (sensitivity = 100%,
specificity = 90%), whereas the range for
cost learning is wider, 10−3 < Cp/Ci <

10−1 (sensitivity = 100%, specificity =
96%). Figure 9 shows the soft outputs for
the mentioned SVM classifiers.

Discussion
Both margins point to the individual

episodes being more significant than
populational information in this case (Mo

< 0 and Cp/Ci < < 1). This can be due to a
high enough number of available patient
episodes. Nevertheless, cost learning of-
fers a better performance, as it could be
seen in the soft outputs.

Conclusions
The analysis of changes in the ventric-

ular EGM onset has been shown to accu-
rately discriminate between SVT and VT
in patients with ICD with high sensitivity
and specificity performance. Simple pre-
processing can enhance the performance
of a nonlinear SVM classifier. The result-
ing algorithmic implementation has a
low computational burden, meeting the
requirements of present ICDs. Bootstrap
resampling has been employed in order
to avoid the overfitting of sample-based
learning with a nonlinear SVM, making
it an efficient analysis tool in a clinical
data study. Two new methods of IL have
been proposed for the patient-implemen-
tation of the algorithm, allowing an in-
crease in the ventricular onset algorithm
performance.

The proposed algorithm should be an-
alyzed in more extensive data base sets. A
special emphasis should be put on SVT
episodes with presence of bundle branch
block, as they usually cause morphologi-
cal algorithms (such as the correlation
waveform analysis and the width crite-
rion) to fail. With respect to the algorith-
mic implementation, the fact that the
criterion is enclosed into a black-box sta-
tistical model makes it unattractive for a
medical professional, as long as the nature
of the problem remains in the SVM for-
mula. This subject will be studied in the
companion article also in this issue [16].
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Appendix
Automatic EGM Onset Detector
A wide variety of methods have been

suggested to automatically determine the
QRS onset and offset timing. The ventric-
ular EGM onset criterion initially seemed
to need accurate knowledge of the
QRS-onset time To, but neither thresh-
old-based proceedings or slope consider-
ations were accurate enough for SR, SVT,

and VT beats simultaneously, due to the
uncertainty in the determination of To in
the fast rhythms where the ending ventric-
ular repolarization interferes with the fol-
lowing initial depolarization. Therefore, a
learning machine accomplishing this task
was designed.

Methods
The proposed To detector was based on

a sliding window applied to the EGM re-
cord; it was required to discriminate be-
tween To crossing the middle point of the
window (high output-level target) and To
either in any other position or its absence
in the window (low output-level target),
as depicted in Fig. 10. A 400-ms (51-sam-
ple) window was employed, since it was
known to be long enough to determine To
for an expert observer. The SR, SVT, and
VT records were normalized in power and
low-pass filtered (45 Hz). Each record
window was considered as a training vec-
tor, yielding a total of 78.964 feature vec-
tors (for all of the records in Base C).
Onset smoothing was achieved by also
considering as EGM onset the segments

preceding and following the To segments.
A nonlinear (RBF) SVM classifier was
built with the large training set optimiza-
tion procedure introduced in [15]. The
value of the RBF width σ was settled heu-
ristically to σ = 7. The resulting To detec-
tor was tested on a new set of
spontaneous, ICD-recorded episodes
from 12 patients (12 SR, 18 SVTs, and 55
VTs). However, the resulting computa-
tional burden was extremely high. An out-
put example for an SVT episode is
depicted in Fig. 11, and Table 6 shows the
results of all the validation episodes. Note
the averaged precision in the true
positives (12.7 ms) being near the time
resolution (7.8 ms).

Then, it is possible to build a high-pre-
cision QRS-onset detector with decision
capabilities comparable to an expert hu-
man observer. It can cope with different
kinds of rhythms (SR, SVTs, VTs). How-
ever, the computational burden of the de-
tector is very high, due to 3.896 (9.8%)
segments remaining as support vectors,
and it is not suitable for ICD implementa-
tion. We need as much as 51 sums plus
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one product per kernel evaluation, 3.896
kernel evaluation per segment, and 128
segments per second; near 26 × 106 oper-
ations per second. Clearly, it is desirable
to have a reduction in the number of sup-
port vectors.

Although it can still be used as an auto-
matic onset detector for this qualitative
study, further work should be carried on to
reduce the complexity. Nevertheless, this
is still an interesting proceeding to detect
fiducial points in ECG analysis systems.
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soft output. Bottom: To sequences as determined by a human expert assessment
(white circles) and by the automatic detector (black circles). The x-axes represent
the sample number.

Table 6. Percentage of  True Positives (Tp), False Positives (Fp) and False
Negatives (Fn) for the Automatic EGM Onset Detector

(Mean ±  std on the Record Detection Averages).

Tp Fp Fn

SR 100 ± 0 0 ± 0 0 ± 0

SVT 98.0 ± 0.0 0.02 ± 0.04 0 ± 0

VT 91.5 ± 15.4 8.1 ± 15.7 3.6 ± 1.8
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