

©2009 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author's copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

Syntax Trees Visualization in Language Processing Courses

Francisco J. Almeida‐Martínez, Jaime Urquiza‐Fuentes

2009 Ninth IEEE International Conference on Advanced Learning Technologies, 597‐601

DOI: http://dx.doi.org/10.1109/ICALT.2009.158

Syntax Trees Visualization in Language Processing Courses

Francisco J. Almeida-Martínez, Jaime Urquiza-Fuentes
LITE - Laboratory of Information Technologies in Education, Rey Juan Carlos University, Spain

{francisco.almeida,jaime.urquiza}@urjc.es

Abstract

This paper describes the educational tool VAST. We

designed VAST to be used in compiler and language
processing courses. The current version allows
generating and visualizing syntax trees and their
construction process. The main advantages of VAST
follow: it is designed to be as independent from the
parser generator as possible, it allows students to
visualize the behaviour of parsers they develop, and it
has an interface designed to easily handle huge syntax
trees. We describe different ways of using VAST in
educational settings as well as a usability evaluation.

1. Introduction

Language Processors (LP) and Compilers are often
perceived by students as some of the most complex
subjects. Typical topics covered by these subjects are:
the scanning and parsing phases, syntax directed
translation and, if the subject is compilers, symbol
tables, semantic analysis, and intermediate and object
code generation. The scanning and parsing phases are
clearly based on formal languages theory. Syntax
directed translation and its use in compilers —semantic
analysis and intermediate code generation— do not
have such a clear binding with formal languages
theory, but they require a clear understanding of the
underlying syntax structure.

Automatic parser generators have assisted in
reducing the complexity of LP design. These tools are
used in educational contexts, but they are professional
tools rather than educational tools. Acquiring expertise
in these tools is an additional advantage, but they are
not easy to learn. Thus, the complexity of LP courses is
increased by the use of these tools. Furthermore, there
exist many parser generators, but they have not an
homogeneous way to specify a LP, the most notable
differences being the notation and organization of
syntactic and lexical specifications.

The scanning phase exhibits a close relationship
between the theoretical foundations and its
corresponding generation tools. Consequently, its
learning curve is smooth. The case of the parsing phase
is different. The relationship between the theoretical
foundations –stack automaton and context free

grammars– and its corresponding generation tools –
that associate actions to grammar rules– seems to be
close again. However, there are other topics in the
subject, closely related to syntax but without specific
support from generator tools, e.g. the error recovery
process or the syntax trees (ST). The former require the
assistance of an expert on the tool; the latter is not
supported by these tools. Notice that the understanding
of STs generated and their building process is very
important for the most complex part of the subject,
namely syntax directed translation.

In this paper we present VAST, an educational
system designed to visualize STs. With VAST,
students are capable to watch the ST generated by their
own parsers, filling a gap between theory and practice
of LP design. This is not a novel approach, but existing
solutions are partial or too specific. VAST solves this
problem from a more sound and generic approach.

The rest of the article is structured as follows. In the
section 2 we describe related work. In section 3 we
explain the implementation of VAST. Then, we show
the different visualizations generated by VAST in
section 4. In sections 5 and 6 we describe its
educational use and a usability evaluation. Finally, we
state our conclusions and future work in the section 7.

2. Related work

As we have previously mentioned, there exist tools
focused on filling the gap between theory and practice
of syntax analysis, but they do it in a partial or too
particular way. We survey these tools in this section.

On one side of the gap we have found the
educational tool JFlap [16]. This tool represents a valid
approach for the theoretical foundations, even its
design has a clear educational aim. However, this
system does not allow the students to generate their
own parsers.
On the other side of the gap, we have found tools that
visualize the matching process from a more practical
point of view. We have found nine tools. Four of them
[2,7,14,18] do not allow to generate the parser.

2009 Ninth IEEE International Conference on Advanced Learning Technologies

978-0-7695-3711-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICALT.2009.158

597

Figure 1. Structure and use of VAST

Another tool, VCOCO [15], allows to generate user
specified parsers, it uses the tool COCO/R [12]. But it
represents a debug approach for experts rather than an
educational tool for students.

The last four tools [3,6,8,9] give more elaborated
visualizations and allow to generate user specified
parsers. Only one of them, CUPV, does not visualize
the ST. However, all of them are highly dependent
from an own notation or the generation system used.
This approach restricts its educational use because the
parser and the visualization system are totally
dependent.

There is not any tool that covers all the parsing
algorithms and visualizes all the dimensions –
algorithmic behavior and ST–, therefore it is possible
that a teacher has to use more than one, switching
between different notations, organizations and
visualizations. In this context, the students have to
learn how to use different tools: specification notation,
construction process, interpretation of output messages
–conflict reports, transitions matrix or items sets–.
Furthermore, the teacher has to dedicate time to
become familiar with the different environments, and
to plan their integration in the course. This could make
more difficult their use in educational environments
[13].

Finally, we have not found any tool covering the
sintactic error recovery. We think that this topic is
complex enough to require some visual support.

Therefore, we will focus our efforts on filling the
gap between theory and practice. We will visualize the
ST and its building process with a visual interface
specially designed for this task. We will keep as
independent as possible the parser specification and the
ST visualization.

3. The implementation of VAST

Our main concern for the implementation of VAST
was to separate the ST visualization and its building
process. To this aim, VAST offers an API, VASTapi
designed to be used when the parser is building the ST,
and a graphical interface, VASTview to visualize the

ST generated. VASTapi translates grammar rule
application events to XML-based information that will
be displayed by VASTview. This structure ensures a
high degree of independence between VAST and the
parser generator used. See Figure 1 for a schematic
view of the design of VAST and its use.

4. Working with VAST

In this section, we explain the basic use of VAST.
First, the user has to annotate her/his parser
specification using methods from VASTapi. Once the
parser has been generated, its execution will produce
the information used by VASTview to visualize the ST
and animate its construction process.

4.1. Generating the visualizations with VAST

The main aim of VAST is to allow the generation
and manipulation of the ST independently from the
parser generator. Due to the API calls, the execution of
the parser generates an intermediate XML based
representation of the ST. This XML information is the
data source of VASTview.

VASTapi require some information to work
properly, this information must be provided by the
user. API calls are inserted as part of the typical actions
associated to grammar rules. The information needed
by the API is just the grammar rule applied –using the
method addProduction– and the axiom, reduction
or derivation, with the setRoot method. Now
VASTapi can build the XML intermediate
representation of the ST that will be visualized by
VASTview.

4.1. Visualizing the ST with VASTview

The graphical representation of the ST is the
hierarchical structure resulting from the grammar rules
application, which is a tree. We allow to give different
representations to terminal nodes (T), non-terminal
nodes (NT) and error nodes. The T nodes are the leaves
of the tree, the NT nodes are internal ones, and error
nodes represent a place where the parser has recovered
from a syntactic error. The error nodes only appear if
the user has included error recovery inside the parser
specification. With the visualization of the error nodes,
the user can see the exact error recovery place and the
amount of the input stream correctly processed.

We have designed VAST thinking about parsers
designed by students. Probably, the ST produced by
these parsers are big and without any fixed structure
(symmetry, with or height). Therefore, we have
developed VASTview, a graphical interface specially

598

designed to cope with such trees. This interface is
made up of a global view and a detailed view of the
ST, together with zoom actions, sub-tree aggregation
and animation of the construction process of the ST,
see the Figure 2.

The global and detailed views allow the user to
easily manipulate the ST. The global view shows the
whole ST highlighting its visible part in detailed view.
The detailed view facilitates give the students a closer
inspection of the ST with zooming, aggregating and
scrolling, all of them synchronized with the global
view. Zooming actions on the detailed view allow the
students to focus their attention on specific parts of the
ST adjusting the desired level of detail. Sub-tree
aggregation –by means of expand/collapse actions–
allow the students to maintain a representation of the
ST where only interesting parts of it are visible.
Finally, scrolling allows students to watch every node
in the tree changing the portion of the tree visible in the
detailed view. Scrolling can be performed with the
scroll bars of the detailed view and directly moving the
highlighted area in the global view.

4.1. Animating the construction of the ST

We animate the construction process of the ST
using the different intermediate stages. The animation
of the construction process help students to see how
the input stream is matched by means of shifts –
terminal node creation– and reductions –connection of
existing nodes with a new non-terminal node–,
together with the error recovery. Playing an animation
is as easy as using typical VCR controls, together with
a slide bar allowing fast location of specific stages of
the matching process.

The ST changes its shape, area and contents during
its construction process. Thus the interface could adapt
to each stage using a best-fit policy changing the
location of the nodes and other properties of the
graphical representation. We have decided to maintain
these properties unless the student changes them. All
the nodes keep their location from their creation to the
end of the process. This prevents students from
distracting, e.g. while searching for the new location of
existing nodes.

5. Educational use of VAST

VAST allows users –teachers and students– to view
and manipulate a ST and its construction process.
From the teacher’s point of view, VAST can be used as
a

Figure 2. The VASTview interface

demonstration tool for classroom sessions.

Due to its independence from the parser generator,
it can be used with all typical parsers in the curricula,
brute force, top-down or bottom-up. Thus, the effort
dedicated by the teacher to learn how to build
visualizations with VAST is applicable to all the
course. Also, graphical representations and the
interface of ST is the same during the course,
preventing the students from learning new ones for
each different parsing technique, which is the current
situation.

From the students’ point of view, in addition to see
the behavior of parsers developed by the teacher, they
can develop their own visualizations and test the
behavior of their own developed parsers. In a related
field, literature about algorithm visualization with
educational aims [4] has shown that active use of
visualizations by students improves their learning
process. Thus, visualizations become a part of the
student educational experience rather than the main
element of this experience. The following section
describes an evaluation of VAST in this context.

6. Evaluation of VAST

VAST has passed both an heuristic and an informal
observational evaluation. Before conducting an
educational evaluation, we want to formally test the
usability of VAST. In this section we describe this
evaluation, but a detailed report is available at [1].

6.1. Subjects, tasks and experimental method

59 students took part in the evaluation; the
participation was incentive-based. They were enrolled
in a languages processors course. As the educational
design is made up of active tasks with visualization
technologies we surveyed the subjects’ learning styles,
they were mostly active/sensing/visual learners.

The tasks were three exercises about LL(1) parsing
where the solution had to be an electronic document
with the result of the exercise, together with

599

visualizations and textual explanations supporting that
result. The first exercise asked the students to modify a
given grammar of arithmetic expressions so the
operators precedence is changed. The second exercise
asked students to produce the typical LL(1) syntax
errors, namely starting symbols and expected
terminals. The third exercise asked students about the
panic mode error recovery strategy, they were given
how the error recovery must occur and were asked to
produce the associated syntax error situation.

We designed this evaluation as a controlled
experiment plus an observational study [10]. Also, as
we are testing an educational tool we have used some
features of true experimental educational studies [11].
We divided students in two balanced groups using a
knowledge test. Thus, we decided to use two different
visualization tools VAST (the treatment group) and
ANTLRWorks (the control group). ANTLRWorks is a
visualization extension of the well-known parser
generator ANTLR (http://www.antlr.org/). Each group
solved the same tasks using the assigned tool. After
completing the tasks, we surveyed the students’
opinion with a questionnaire. The aspects considered in
this questionnaire were: ease of use, learning
improvement, quality of the tools, students’
satisfaction and personal opinion.

The main aim of this evaluation is not a comparison
between VAST and ANTLRWorks. We want to test
the usability of VAST, but also we investigate useful
features of a professional tool like ANTLRWorks in an
educational context.

6.2. Results of the evaluation

During the experiment, instructors observed how
the students worked with the tools. Due to some
problems with the computers of the lab eleven students
abandoned the evaluation. Instructors observed that
students in treatment group were enthusiastic with
VASTview, but got some confused with the variety of
windows simultaneously open: VASTview, editor for
grammar and input stream and console. Students in the
control group liked the grammar editor of
ANTLRWorks but got confused with some
compulsory selections –line ending platform, starting
rule– and the difference between the interpreter and the
debugger.

We compared students’ opinions about
ANTLRWorks and VAST using the Mann-Whitney
test. Most of them were quite similar (p>.05) and
around 4 (in a five values likert scale). We just
detected differences in opinion about the support for
learning the stack behavior, the ease of use and the
students’ satisfaction, see Table 1 for details.

Table 1. The analysis of students’ opinion

Student’s
opinion

ANTLR
Works

VASTapi/
VASTview

Significant
differences

Learn stack 2.38 3.46 (view) U=163.5, p<.05
Ease of use 4.36 3.15 (api) U=92.5, p<.05
Satisfaction 4.09 3.45 (api) U=138.5, p<.05

7. Conclusions and future work

We have presented the educational tool VAST,
aimed at the visualization of syntax trees. We have
identified a large gap existing between concepts taught
in theory and generation tools used in practice. We feel
that this gap can be filled by the visualization of STs
and their construction process. Moreover, visualization
of STs may assist in learning/teaching syntax directed
translation. We have surveyed relevant, related tools.
Tools that allow users to generate their own parsers
either demand high expertise or are tightly coupled to a
given environment. Actually, every tool has its own
way to specify the parser, report errors or show
transition tables.

We have created VAST to solve these problems.
Visualizing a ST and its construction process is almost
independent from the parser generator adopted. Thus, a
teacher can choose a parser generator based on her/his
own criteria –parsing algorithm, specification format–
and then use VAST to visualize STs. We want to
highlight that VAST was developed so that two parts
are isolated: the generation API (VASTapi) and the
visual interface (VASTview). VASTapi was designed
to build STs, its output being an XML file. VASTview
interprets such an XML file to visualize the ST and its
construction process. Therefore we have two
independence levels: one between the parser generator
and VASTapi, and the other between VASTapi and
VASTview. At the moment we have developed
VASTapi with Java, so we are not totally independent
from the parser generator. However, just porting our
API to other language will enable to use VAST in
other development environments.

We have evaluated the usability of VAST in a real-
use environment. Results for the visualization
interface, VASTview, are positive. In general, the
students are satisfied with VASTview, also they think
that: it is easy to use, it supports them in the learning
process and it has a good quality. Also we observed
that students liked the visualization and animation
capabilities of VASTview. ANTLRWorks obtained
similar results. But we observed that students got
confused because of some professional features as
choosing the end of line platform and the starting
grammar rule, or having two different visualization
tools –the interpreter and the debugger–.

Students’ opinion about VASTapi is two-fold. On
the one hand, students think that the API is quite

600

simple. On the other hand, the grades for ease of use
and students’ satisfaction are worse than those for
VASTview and ANTLRWorks.

Our future lines of work are based on these results.
They give us hints about how a syntax tree
visualization tool with educational aims should be
designed. On the one hand, the visualization interface
is suitable for students avoiding advanced professional
features. But it should incorporate other features as the
grammar specification, textual explanations of the
different actions performed and advanced navigation
through the parsing process, allowing students to select
pieces of the input stream and showing the
corresponding state in the parsing process.

On the other hand, we have detected that the
generation process of visualizations is made up of
many separate steps: grammar edition, grammar
annotation, parser generation, parser compilation, input
stream edition, parser execution and visualization.
Although they should not be a problem for the
teachers, their integration will improve the interaction
of students with the tool. Thus we plan a global
integration based on two functional integrations:
annotation-generation-compilation and execution-
visualization. The former will automatically annotate
grammar specifications, generate the parser source
code and compile it. The later will allow students to
edit the input stream, execute the parser and visualize
the ST using the same interface. Thus, parser
visualizations will adapt to the typical parser
development process of specification, generation and
execution.

Automatic annotation will be reached with specific
developments for each parser generator. From the
students’ point of view, making the annotation step
transparent to students is much more important than
loosing parser generator independence. From the
teachers’ point of view, we keep independent from the
parser generator, because they can still annotate
manually parser specifications. Finally, we will extend
VAST to support visualization of syntax directed
translation concepts.

8. Acknowledgements

This project is supported by project TIN2008-
04103/TSI of the Spanish Ministry of Science and
Innovation.

9. References

[1] F.J. Almeida-Martínez, and J. Urquiza-Fuentes
“Teaching LL(1) parsers with VAST – A usability
evaluation”, DLSI-I Technical Report 2009-01, Dept. Of

Computer Science Languages and Systems, Rey Juan Carlos
University, Spain, 2009, pp. 1-14.
http://www.dlsi1.etsii.urjc.es/doc/DLSI1-URJC_2009-01.pdf
[2] Andrews, K., Henry, R.R, and Yamamoto, W.K.: “Design
and implementation of the UW illustrated compiler'';
SIGPLAN Not. 23, 7 (June 1988), 105-114.
[3] Bovet, J.:“ANTLRWorks: The ANTLR GUI
development environment''. (2009)
http://www.antlr.org/works/index.html
[4] Hundhausen, C., Douglas, S. and Stasko, J.: A meta-study
of algorithm visualization effectiveness''; J. of Vis. Lang. and
Comp. 13, 3 (June 2002), 259-290.
[5] Hudson, S., Flannery, F. and Ananian, C.S.: “Cup LALR
parser generator for java''. (2008)
http://www2.cs.tum.edu/projects/cup/
 [6] Kaplan, A. and Shoup, D.: “CUPV a visualization tool
for generated parsers''; SIGCSE Bull 32, 1 (March 2000), 11-
15.
[7] Khuri, S. and Sugono, Y.: “Animating parsing
algorithms''; SIGCSE Bull. 30, 1 (March 1998), 232-
[8] Lovato, M.E. and Kleyn, M.F.: “Parser visualizations for
developing grammars with Yacc''; SIGCSE Bull 27, 1 (March
1995), 345-349.
[9] Mernik, M. and Zumer, V.: “An educational tool for
teaching compiler construction''; IEEE T. Educ. 46, 1 (Feb
2003), 61-68.
[10] O. Kulyk, R. Kosara, J. Urquiza-Fuentes & I. Wassinki
“Human-Centered Aspects”. In: A. Kerren, A. Ebert & J.
Meyer (eds.) Human-Centered Visualization Environments.
Springer-Verlag, Germany, 2007, pp. 13-75.
[11]. L. Cohen, L. Manion and K. Morrison Research
Methods in Education. Routledge Falmer, USA, 2001.
[12] Mössenböck, H.: “A generator for production quality
compilers''; Proc. Intl. W. Compiler Compilers CC'90, Lec.
Notes Comp. Sci. 477, Springer-Verlag, New York (1990).
[13] Naps, T., Rößling, G., Almstrum, V., Dann, W.,
Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,
McNally, M., Rodger, S. and Velázquez-Iturbide, J.: “Iticse
2002 working group report: Exploring the role of
visualization and engagement in computer science
education''; SIGCSE Bull. 35, 2 (June 2002), 131-152.
[14] Resler, D.: “VisiCLANG–a visible compiler for
CLANG''; SIGPLAN Not. 25, 8 (August 1990), 120-123.
[15] Resler, R.D. and Deaver, D.~M.: “VCOCO: a
visualization tool for teaching compilers''; SIGCSE Bull. 30,
3 (September 1998), 199-202.
[16] Rodger, S.: “Learning automata and formal languages
interactively with JFLAP''; SIGCSE Bull. 38, 3 (September
2006), 360-360.
 [18] Vegdahl, S.R.: “Using visualization tools to teach
compiler design''; J. Comput. Small Coll. 16, 2 (January
2001), 72-83.

601

