
UNIVERSIDAD REY JUAN CARLOS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE
TELECOMUNICACIÓN

A statistical examination of the properties and
evolution of libre software

Doctoral Thesis

Israel Herraiz Tabernero
Ingeniero Industrial

Madrid, 2008

Thesis submitted to the Departamento de Sistemas Telemáticos y
Computación in partial fulfillment of the requirements for the degree of

Doctor europeus of Philosophy in Computer Science

Escuela Técnica Superior de Ingeniería de Telecomunicación
Universidad Rey Juan Carlos

Madrid, Spain

DOCTORAL THESIS

A statistical examination of the properties and evolution of
libre software

Author:
Israel Herraiz Tabernero

Ingeniero Industrial - Industrial Engineer

Codirector:
Jesús M. González Barahona

Doctor Ingenierio de Telecomunicación - Doctor Telecommunication Engineer

Codirector:
Gregorio Robles Martínez

Doctor Ingenierio de Telecomunicación - Doctor Telecommunication Engineer

Madrid, Spain, 2008

October 24th, 2008

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SU-
PERVISION BY Israel Herraiz Tabernero ENTITLED A statistical examination of the proper-
ties and evolution of libre software BE ACCEPTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF Doctor Europeus of Philosophy in Computer Sci-
ence.

Dr. Jesús M. González Barahona Dr. Gregorio Robles Martínez
Thesis Codirector Thesis Codirector

The committee named to evaluate the Thesis above indicated, made up of the fol-
lowing doctors

Prof. Dr. Manuel Hermenegildo Prof. Dr. Kevin Crowston
Universidad Politécnica de Madrid Syracuse University
Spain USA
President Member

Dr. Diomidis Spinellis Dr. Tom Mens
Athens Univ. of Economics University of Mons -Hainaut
and Business, Greece Belgium
Member Member

Dr. Luis López Fernández
Universidad Rey Juan Carlos
Spain
Secretary

has decided to grant the qualification of

Madrid (Spain), October 24th , 2008.

The secretary of the committee.

A copy of this thesis, and of all the data
sources and tools needed to

replicate this thesis, are available
in the following persistent address

http://purl.org/net/who/iht/phd

More information about empirical research
of libre software may be found at the
Libresoft Research Group homepage

http://libresoft.es

(c) 2008 Israel Herraiz Tabernero
This work is licensed under the

Creative Commons Attribution-ShareAlike 3.0 License.
To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to

Creative Commons,
543 Howard Street, 5th Floor, San Francisco,

California, 94105, USA.

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

Attributed to Richard P. Feynman

ACKNOWLEDGEMENTS

Four years ago I sent an email to the advisors of this doctoral thesis, because I felt
like I wanted to put together two of the passions of my life: to do research, and to write
free / open source software.

At that time, I did not know that a single email was going to change my life, to
change me, as it has done. It is not only that I have managed to do research while
writing some pieces of software, and above all, managed to do so while being paid for
it. It is that I have managed to realize that you can really do in your life whatever you
convince yourself to do.

How ironic, my mother always told me that when I was a kid. However I never did
what I wanted to do, but what I had to do. After getting my master degree I followed
that path of duty, and found a good job. How ironic, that good job made me quite
unhappy. I refused to accept that life was only that. After so much effort to do the right
things, willing to learn whatever I was told to learn, willing to discover the secrets of
life, it turned out that the only thing that I found is that following the path indicated by
others will not make you happy. Doing the right things is not the right thing to do.

After all, my mother was right. She always told me to follow the path that made
happy, to work hard to achievemy dreams, regardless the opinion of other people about
those dreams. For that, I am eternally grateful.

I would like also to thank Jesús, who gave me this opportunity (and many others).
More than an advisor, he has been a mentor. Every time I face a new problem, I think
“what would Jesús do in a situation like this?” I do not want to forget Gregorio. He
also has given me (too) many opportunities during these four years, and has been an
example about what is working with passion.

This thesis is not my main discovery in these four years. Many (many) people have
helped me to discover what love is, and that in the end, as Bill Hicks used to say to
finish his shows, life is reduced to a choice between fear and love. The first one who
made discover this was my brother, Aitor. His approach to life is an example for me.
Thanks to him, now I know that those who love you will always be there, willing to
help you, with no reproach. The rest have simply decided to feel fear.

Actually, I did not completely understand that until I met Rocío. I chased her during
eleven days from Porto to Santiago, through cornfields and vineyards. Wanting to dis-
cover her, I ended discovering more of myself. With her, I finally realized that you can
achieve whatever you want, as long as you want it enough, and that after all the truly
important things are just a few, and most of us already have them (although we are not
aware of it).

I am also very grateful to two special friends: Carlos, who I met in primary school,
and Fran, with whom I shared many experiences. Carlos taught me what curiosity is,
and Fran what freedom is. After a couple of decades, they have managed to shape their
lives as they actually are, and for that, they have set an example to me.

Many other people influenced me during these four years. All my friends at Libre-
soft with whom I am lucky to work (Teo, Juanjo, Luis, Dani, Carlos, Santi, Roberto A.,
Roberto C., Juanlu, Gato, Álvaro N., Álvaro del C., Antonio, Miquel, Ernesto, Isabel,
Raquel, Liliana, Gato Jr., Paco, Felipe, Verónica, Alicia, Diego and a lot more I am prob-
ably forgetting –sorry). All the people I have met in the university. All the people with
whom I have shared a flat (Manolo, Juan, José Pablo, Anna, Yanina). All the profes-
sors that have supervised me in Milton Keynes (thanks Juan, Andrea), Victoria (thanks
Daniel) and Athens (thanks Diomidis); working with them was a real challenge. All the
people I have met in Spain and abroad. And last but not least, all the people that I have
forgotten to include here. I would include here my complete list of friends in Facebook,
but I hate those acknowledgements sections with endless list of names and just a couple
of sentences.

Four years of research, of discovery, of studying how software is developed. And
after that, rather than how software evolves, I probably have understood better how
people evolve.

Thanks to all of you!

Israel Herraiz
September 2008

ABSTRACT

How and why does software evolve? This question has been under study since
almost 40 years ago, and it is still a subject of controversy. After many years of empirical
research, Meir M. Lehman formulated the laws of software evolution, which were a first
attempt to characterize the dynamics of the evolution of software systems.

With the raising of the libre (free / open source) software development phenomenon,
some cases that do not fulfill those laws have appeared. Are Lehman’s laws valid in the
case of libre software development? Is it possible to desing an universal theory for
software evolution? And if it is, how?

This thesis is a large-scale empirical study that uses a statistical approach to analyze
the properties and evolution of libre software. The studied properties are size and com-
plexity. For that study, we have used a set of thousands of software systems, extracted
using the packages system of FreeBSD. The evolution study was done using another set
of thousands of software projects hosted in SourceForge.net.

With the first set, we measured different size and complexity metrics of the source
code of the packages in FreeBSD, and calculated the correlations among the different
metrics. We also estimated the distribution function of those properties.

Regarding the second set, we obtained the daily series of number of changes. We
applied Time Series Analysis to estimate the kind of process that drives software evolu-
tion. We used ARIMA (Auto Regressive IntegratedMoving Average) models to forecast
evolution.

The results show that a small subset of basic size metrics are enough to characterize
a software system. Furthermore, the shape of the distribution of those metrics suggests
that the Random Forest File Model could be used to simulate the evolution of a software
product.

Using Time Series Analysis (TSA), we have found that software evolution is a short
memory process. That implies that statistical models of evolution based on TSA are a
better option than regression models for forecasting purposes.

Finally, the shape of the distribution of size is the same, regardless of the level of
aggregation used to measure it (file, module, software project, etc). That is an evidence
of self-similarity in software, and could be an explanation of the fast growth patterns
observed in some libre software projects.

Another remarkable contribution of this thesis is that it shows how to perform an
empirical study at a large scale, using publicly available data sources. Thanks to this,
all the results are repeatable and verifiable by third parties. Therefore, the conclusions
of this thesis can be the beginning of a theory of software evolution that is based on
empirical findings verified in thousands of software systems.

RESUMEN1

¿Cómo evoluciona el software? ¿Y por qué? Esta cuestión ha sido objeto de inves-
tigación desde hace casi 40 años, y sigue siendo una pregunta controvertida. Después
de varios años de investigación empírica, Meir M. Lehman formuló las leyes de evolución
del software, que eran una primera aproximación al problema de la caracterización de la
evolución del software.

Con la aparición del fenómeno de desarrollo de software libre, se encontraron al-
gunos casos cuya evolución no se regía por esas leyes. ¿Son válidas las leyes de Lehman
para el caso del software libre? ¿Es posible obtener una teoría de evolución del software
que sea verdaderamente universal? Y si lo es, ¿cómo?

Esta tesis es un estudio empírico realizado a una escala masiva, que emplea un en-
foque estadístico para estudiar las propiedades y la evolución del software libre. Hemos
seleccionado una muestra de miles de proyectos de software, obtenidos gracias al sis-
tema de paquetes de FreeBSD, con el fin demedir su tamaño y complejidad. Para el caso
de la evolución, escogimos otra muestra de miles de proyectos que estaban alojados en
SourceForge.net.

Con la primera muestra, medimos diferentes métricas de tamaño y complejidad del
código fuente de los paquetes que contiene el sistema FreeBSD, y calculamos las cor-
relaciones entre las diferentes métricas. También estimamos la distribución estadística
de esas métricas.

Con la segunda muestra, obtuvimos las series temporales del número diario de cam-
bios. Aplicamos análisis de series temporales para estimar el tipo de proceso que go-
bierna la evolución del software. Usamos modelos ARIMA para predecir el compor-
tamiento de algunos sistemas de esa muestra.

Los resultados muestran que es posible caracterizar un sistema de software usando
métricas básicas de tamaño. Además, la forma de la distribución de tamaño sugiere
que se podría emplear el modelo Random Forest File Model para simular la evolución del
software.

Mediante el empleo de análisis de series temporales, hemos encontrado que la evolu-
ción del software es un proceso de memoria corta. Esto implica que para obtener mode-
los estadísticos de la evolución, es mucho mejor usar modelos ARIMA que modelos de
regresión.

Finalmente, la forma de la distribución de tamaño es la misma, cualquiera que sea le
nivel de agregación usado para medir tamaño (fichero, paquete, etc). Esto muestra que
el software es auto-similar, y podría ser una explicación a los patrones de crecimiento
súper-lineales que se han observado en algunos proyectos de software libre.

1En el apéndice E se puede encontrar un resumen suficiente en castellano que cumple con los requisi-
tos del artículo 24 del capítulo V de la “Normativa para la Admisión del Proyecto de Tesis y Presentación
de la Tesis Doctoral” para las tesis que sean presentadas en otros idiomas diferentes del español, como es
el caso de ésta.

Otra contribución de esta tesis es que muestra como realizar un estudio empírico a
escala masiva, usando fuentes de datos públicas. Gracias a esto, todos los resultados
obtenidos en esta tesis son repetibles y verificables por parte de terceros. Por tanto, las
conclusiones de esta tesis pueden ser el comienzo de una teoría de evolución del soft-
ware que se base en resultados empíricos que se han verificado en miles de proyectos
de software.

CONTENTS

1 Motivation 1
1.1 Introduction . 1
1.2 Why libre software? . 4

1.2.1 What is libre software? . 4
1.2.2 Open software repositories . 5

1.3 Overview of this thesis . 8
1.3.1 Goals and research questions . 8
1.3.2 Main contributions . 9
1.3.3 General structure . 10

2 State of the art 13
2.1 Introduction . 13
2.2 Software evolution . 14

2.2.1 The nature of programs and their evolutionary behavior 15
2.2.2 Law of continuing change . 17
2.2.3 Law of increasing entropy/complexity 20
2.2.4 The third law and the notion of feedback 21
2.2.5 The fourth and fifth laws . 22
2.2.6 Law of continuing growth . 22
2.2.7 Law of declining quality . 22
2.2.8 Law of feedback system . 23
2.2.9 Principle of software uncertainty . 23

2.3 Empirical studies of software evolution . 23
2.3.1 Laws of software evolution . 24
2.3.2 FEAST and the nineties view . 26
2.3.3 Libre software and software evolution 27
2.3.4 The importance of metrics for validation studies 30
2.3.5 Towards large scale investigations 31
2.3.6 The statistical properties of the size of software 33

2.4 Modelling evolution . 35

I

2.4.1 Physical models . 36
2.4.2 Statistical models . 37
2.4.3 Self-Organized Criticality and the sand pile model 38
2.4.4 The Maintenance Guidance Model 39

2.5 Summary . 40

3 Methodology 43
3.1 Introduction . 43
3.2 Correlation analysis . 44

3.2.1 Data sources . 45
3.2.2 Validation of the sample . 46
3.2.3 Selected metrics . 48
3.2.4 Statistical analysis . 51

3.3 The dynamics of software evolution . 53
3.3.1 Data sources . 53
3.3.2 Statistical analysis . 56

3.4 Forecasting software evolution . 59
3.4.1 Data sources . 59
3.4.2 Statistical analysis . 62

4 Results 65
4.1 Introduction . 65
4.2 First question: Comparability of different metrics 65

4.2.1 Overall correlation . 66
4.2.2 Comparability discriminating by package size 67
4.2.3 Comparability discriminating by field of application 68
4.2.4 Summary . 69

4.3 Second question: How many metrics to characterize software? 69
4.3.1 Correlation for the overall sample 70
4.3.2 Correlation discriminating by file type 71
4.3.3 Correlation discriminating by package size 72
4.3.4 Correlation discriminating by field of application 76
4.3.5 Analysis of Halstead’s level . 77
4.3.6 Summary . 77

4.4 Third question: The shape of the distribution of the size of software 78
4.4.1 Summary . 79

4.5 Fourth question: Self-similarity in software 81
4.5.1 Header and non-header files . 81
4.5.2 Shape at more aggregated levels . 83
4.5.3 Summary . 85

4.6 Fifth question: The dynamics of software evolution 85
4.6.1 Sensitivity analysis . 88
4.6.2 Summary . 90

II

4.7 Sixth question: Forecasting software evolution 90
4.7.1 Fitting ARIMA models . 91
4.7.2 Accuracy of the models . 92
4.7.3 Summary . 94

5 Conclusions and further work 97
5.1 Summary of results . 97

5.1.1 Correlation of metrics . 97
5.1.2 Software attributes . 98
5.1.3 Statistical properties of software . 98
5.1.4 Short memory dynamics and ARIMA models 100
5.1.5 Practical implications . 100

5.2 Further work . 101
5.2.1 The Random Forest File Model applied to the case of software

evolution . 101
5.2.2 Self-similarity influence on the evolutionary patterns of software . 103
5.2.3 Determinism and evolution . 103

5.3 Conclusions . 105

A The double Pareto distribution 107

B Additional results 111

C Time Series Analysis functions and models 117
C.1 Autocorrelation Coefficients Function . 117
C.2 ARIMA models . 118
C.3 Long and short memory processes . 118

D Patterns to identify automated files 119

E Resumen en español 121
E.1 Antecedentes . 121
E.2 Objetivos . 122
E.3 Metodología . 123

E.3.1 Estudio de las propiedades del software 123
E.3.2 Estudio de la evolución del software 125

E.4 Conclusiones . 126

Bibliography 129

III

IV

LIST OF FIGURES

1.1 Stages in the life cycle of a traditional software project. The evolution
stage starts right after the release of the first operation version of the pro-
gram. The evolution stage uses to take longer than the development one,
and accounts for most of the cost of the software project. 3

1.2 Growth of the release of Debian GNU/Linux: it has doubled its size with
each new release. The vertical axis shows the size of the distribution in
millions of SLOC. The horizontal axis shows the date of each release.
Each bar corresponds to one of the releases of Debian (with the label
above the bar). Adapted from [RGBM+08]. 6

2.1 Diagram of the evolution of the laws of software evolution. The laws
have increased from three to eight laws. In their latest form, the notion of
feedback is the key concept. The term E-type has been introduced in the
text of the laws, to remark that the laws are only applicable to that kind
of software. 24

2.2 Growth in SLOC (lines of code removing blank and comment lines) of
the Linux kernel. Each color is one of the branches of Linux. The overall
growth follows a quadratic equation. Reproduced from [RAGBH05]. . . . 28

2.3 Growth of smaller, core subsystems of Linux. Some of these subsystems
are growing linearly. In general, when looking at the subsystems level,
the growth of each subsystem is linear. The sum of many linear segments
with different starting points gives the overall quadratic shape. Repro-
duced from [RAGBH05]. 29

2.4 Number of case studies in empirical studies on software evolution, over
the years since the original study by Lehman in 1969. Vertical axis shows
the number of case studies, in logarithmic scale. Horizontal axis shows
the year of the study. This graph shows only some selected papers, based
on the works reviewed in this chapter and in those included in the survey
[KCM07]. This thesis (2008) analyzes 12,010 case studies, that were ob-
tained from a previous study [HGBR07b] that analyzed 13,116 case stud-
ies . 32

V

3.1 Sample graph that represents the flow of a program. The cyclomatic com-
plexity is the number of regions in the graph. Any graph has at least one
region (the surrounding region). So the minimum value of the cyclomatic
complexity is 1. In the graph shown in this figure, the value of the cyclo-
matic complexity is 5. 50

3.2 Breakdown process. The statistical analysis was repeated in subsamples
of the overall sample, to test the sensitivity of the results with three dif-
ferent parameters: filetype, package size and field of application. This
process helps to determine if the results are due to aggregation effects
and therefore are not significant. 52

3.3 Autocorrelation coefficients in a time series. The coefficients are calcu-
lated correlating the series against the same series but shifted one posi-
tion. If the series has n elements, there are n− 1 coefficients. In the plot,
each circle represents a point in the series. The plot shows how the series
is progressively shifted one position, and how each coefficient is obtain-
ing by linear correlations of the original series and its shiftings. 57

3.4 Theoretical profiles of the autocorrelation coefficients of long term and
short term processes. This diagram shows the mathematical relationship
among the coefficients and the time lags. 58

4.1 Scatter plot of SLOC vs Number of modules. (a) Linear scale. (b) Loga-
rithmic scale. The linear trend is clear in the case of logarithmic scale, but
not in the case of linear scale. 67

4.2 Correlation coefficient against package size. The distribution of packages
was divided in four quantiles, and the correlations were performed us-
ing all the packages belonging to each interval. This procedure ensured
that the number of points for each correlation was constant. The correla-
tions were made in logarithmic scale, of all the metrics against number of
modules. For instance, the circles correspond to the correlation of SLOC
against number of modules. The correlation is only significant for large
packages, probably because of aggregation effects. 68

4.3 Scatter plot of SLOC against Halstead’s level. (a) Linear scale. (b) Loga-
rithmic scale. 71

4.4 Correlation coefficient (SLOC vsMcCabe, logarithmic correlation) against
package size. The size of the packages was divided in nine intervals
(deciles), and the correlation coefficient was calculated using all the files
belonging to the packages contained in each decile (this is, across pack-
ages). Horizontal axis in logarithmic scale. 73

VI

4.5 Scatter plot of the correlation coefficient of SLOC vs CYCLO for each
package, against the size of the package in SLOC. Each point represents
a package. We have then 6, 556 points in this plot. The correlation was
logarithmic. Although the results are very dispersed, we can observe that
most of the points concentrate on values of around r = 0.80. Horizontal
axis in logarithmic scale. 74

4.6 Smoothing of the correlation coefficient of SLOC vs CYCLO for each
package, against the size of the package in SLOC. The correlation was
logarithmic. Horizontal axis in logarithmic scale. 75

4.7 Smoothing of the correlation coefficients of SLOC vs all the Halstead’s
metrics for each package, against the size of the package in SLOC. The
correlationwas logarithmic. Horizontal axis in logarithmic scale. It seems
that the correlation of SLOC vs Halstead’s level is not stable with the size
of the package. Therefore in spite of the high coefficient when correlated
globally, we cannot conclude that there is indeed a correlation between
the two variables. 75

4.8 Normality test for the final sample (SLOC metric). Tails deviate from
normality, but the main body of the sample is very close to a normal
distribution. The test is done in logarithmic scale. 79

4.9 Complementary cumulative distribution function for the SLOC sample.
(a) Lower tail (SLOC < 10). (b) Upper tail (SLOC > 3000). The upper
tail is a straight line, indicating that the upper values follow a power law
distribution. 80

4.10 Complementary cumulative distribution function for the SLOC sample,
compared against a lognormal distribution with the samemean and stan-
dard deviation, and against a power law distribution with α = 3.34. The
high tail of the sample deviate from the lognormal, and it is close to a
power law distribution (straight line). 80

4.11 Normality test for the logarithm cyclomatic complexity of header files.
Low tail deviate from normality and the main body is lognormal as in
the case of SLOC. Very high values also deviate from normality. 82

4.12 Complementary cumulative distribution function for the cyclomatic com-
plexity of header files, and comparison against a lognormal with the same
mean and standard deviation, and against a power law distribution with
α = 2.44. The sample is not fitted by a power law neither by a lognormal. 82

4.13 Normality test of the logarithm of package size. The main body of the
distribution is normal, and the tails deviate from normality. 83

4.14 Complementary cumulative distribution function of the size of the ports
(software packages). The empirical CCDF is compared against a log-
normal distribution, with the same mean and standard deviation, and
against a power law distribution with α = 2.97. The body of the sample
matches the lognormal distribution, but the tail is better described by a
power law. 84

VII

4.15 Complementary cumulative distribution function of the size of the sec-
tions (or fields of applications). The empirical CCDF is compared against
a lognormal distribution, with the same mean and standard deviation,
and against a power law distribution with α = 3.14. The body of the sam-
ple matches the lognormal distribution, but the tail is better described by
a power law. 84

4.16 Boxplot of the set of Pearson correlation coefficients, for number of com-
mits, and for number of MRs. This graphs shows that most of the cases
(surrounded by the main box in the plot) are around high values (∼ 0.85)
of the coefficient. In other words, most of the projects appear to be short
term processes. 87

4.17 Estimation of the probability density function of the set of Pearson cor-
relation coefficients for number of commits and number of MRs. There
is a group of projects with coefficients very close to 1, and another group
symmetrically distributed around a value of approximately 0.85. Both
groups would correspond to short term processes. Long term processes,
located in the left tail, are a minority. 87

4.18 Sensitivity analysis. The plots show the values of each one of the prop-
erties shown of the projects (vertical axis), compared against the Pearson
correlation coefficient for the number of changes series (horizontal axis).
Short term projects present values close to 1. The vertical axis of some
of the plots are in logarithmic scale. The plots show that there is no pat-
tern when dividing the projects in more homogeneous groups. For all
the ranges of the Pearson coefficients, we find projects with values of the
properties in a wide range. In the same way, for all the ranges in each one
of the properties, we can find projects with a wide range of values of the
Pearson coefficients. 89

4.19 Plots of SLOC over time (daily series) for NetBSD, FreeBSD and Post-
greSQL. 91

4.20 Autocorrelation (left) and partial autocorrelation (right) coefficients for
the first ten lags of the difference of the FreeBSD series (no smoothing
applied). 92

4.21 Original series and smoothed series for FreeBSD 93
4.22 Autocorrelation (left) and partial autocorrelation (right) coefficients for

the first ten lags of the smoothed FreeBSD series (first difference). 93

5.1 Self similarity in software. The size of source code files, the size of soft-
ware packages, and the size of sections have all the same statistical dis-
tribution. 99

5.2 Events tree. This tree represents all the possible events that may happen
in a software evolution project. The top node is the initial situation. In
each step, a decision is taken, and that implies to follow a particular path. 104

VIII

5.3 Events tree for a short memory process. The density of connections is
much higher, and so early decisions do not discard possible future sce-
narios. 104

A.1 Complementary cumulative distribution function of a double Pareto. The
plot shows two straight tails, corresponding to power law distributions
with scaling parameter α and β, and a lognormal body that connects the
two tails. 109

B.1 Complementary cumulative distribution function for the sample of all
(header and non header) files. This plot shows the distribution plots for
all the metrics. The legend is the same for all the plots. The plots show a
lognormal and a power law fitted to the two extremes of the data. 113

B.2 Complementary cumulative distribution function for the sample of header
files. This plot shows the distribution plots for all the metrics. The legend
is the same for all the plots. The plots show a lognormal and a power law
fitted to the two extremes of the data. 114

B.3 Complementary cumulative distribution function for the sample of non-
header files. This plot shows the distribution plots for all the metrics.
The legend is the same for all the plots. The plots show a lognormal and
a power law fitted to the two extremes of the data. 116

IX

X

LIST OF TABLES

2.1 Empirical validation of Program Evolution Dynamics in the seventies
and eighties. Organization types are: Computer Manufacturer (CM), Fi-
nancial Institution (FI) and Software House (SH). System types are: Op-
erating System (OS), Banking System (BS), Transaction OS (TOS), Appli-
cations (APP) and Stock Control (SC). Size given in number of modules.
Reproduced from [Pir88]. 15

2.2 Laws of software evolution in 1974 (called laws of Program Evolution
Dynamics by that time). These laws were based only on the empirical
findings using OS/360 as case study. Reference: [Leh85b], which is a
reprinted edition of [Leh74]. 16

2.3 Laws of software evolution in 1978 (called laws of Program Evolution by
that time). Reference: [Leh85c], which is a reprinted edition of [Leh78]. . . 17

2.4 The last three laws were changed in 1980, that remained unchanged in
the book published in 1985 [LB85]. Reference: [Leh80]. 18

2.5 Laws of software evolution, reformulated in 1996 [Leh96] and empirically
revalidated in 1997 [LRW+97]. This form remained in the book published
in 2006 [MFRP06]. This can be considered the current formulation of the
set of the Lehman’s laws. 19

2.6 Analogy between the sand pile model and the evolution of a software
system. Reproduced from [Wu06]. 39

2.7 Classification of empirical studies on software evolution 42

3.1 Summary of the validation process of the sample 47
3.2 Selected metrics to measure size and complexity. 51
3.3 Statistical properties of the sample of 3821 projects. # Devs. are num-

ber of developers. SF.net age indicates the number of months that the
project has existed in SF.net. CVS age indicates the number of months
that have elapsed between the first and the last commits in the CVS repos-
itory. SLOCmeasures size in Source Lines of Code (it excludes blank and
comment lines). #MRs is number of modification requests. 56

XI

3.4 Criteria to select the values of p and q in an ARIMA model. ACF means
autocorrelation function. PACF means partial autocorrelation function.
Reproduced from [SS06]. 62

4.1 Coefficient of correlation of the number of modules against the rest of
metrics. Correlations performed in logarithmic scale. 66

4.2 Summary of the correlation coefficients calculated for all the fields of ap-
plication. All the correlations were made against the number of modules
and in logarithmic scale. The last column is the overall coefficient calcu-
lated for all the packages as a single sample. 69

4.3 Descriptive statistics of the sample of files. The table shows the mean,
standard deviation and quantiles (minimum, first, median, third andmax-
imum) for the different metrics using all the files of the sample. 70

4.4 Correlation among the logarithm of all the metrics. This sample includes
both header and non-header files. 72

4.5 Correlation coefficients of SLOC against the rest of complexity metrics for
the header and non-header files. 72

4.6 Summary of correlation coefficients calculated by field of application.
Correlations against SLOC. The last column shows the correlation co-
efficient computed for the whole sample, without any classification (by
filetype, by package size, etc). 76

4.7 Statistical properties of the set of Pearson correlation coefficients. The val-
ues range from very low (∼ 0.3, corresponding to long term processes) to
very high (∼ 0.99, corresponding to short term processes). With only this
information, we cannot quantify how many projects could be classified
in each category (short or long term). 86

4.8 Quantiles (in %) of the sample of Pearson correlation coefficients, for
number of commits, and number of MRs. Less than 40% of the projects
present a value lower than ∼ 0.8. 88

4.9 Mean squared relative errors (MSRE) and standard deviation of the squared
relative errors (Sd. dev.) for the time series and regression models. 94

B.1 Parameters of the double Pareto distribution, for all the metrics using the
overall sample. The first column shows the mean of the lognormal part
(x̄). The second column shows the standard deviation of the lognormal
part (s). The third column shows the value of the transition point from
lognormal to power law (xmin). The fourth column shows the value of
the power law exponent (α). 112

XII

B.2 Parameters of the double Pareto distribution, for all the metrics using the
sample of header files. The first column shows the mean of the lognormal
part (x̄). The second column shows the standard deviation of the lognor-
mal part (s). The third column shows the value of the transition point
from lognormal to power law (xmin). The fourth column shows the value
of the power law exponent (α). 112

B.3 Parameters of the double Pareto distribution, for all the metrics using
the sample of non-header files. The first column shows the mean of the
lognormal part (x̄). The second column shows the standard deviation of
the lognormal part (s). The third column shows the value of the transition
point from lognormal to power law (xmin). The fourth column shows the
value of the power law exponent (α). 115

XIII

XIV

CHAPTER

ONE

Motivation

How and why does software evolve? This question has been under study since almost
40 years ago, and it is still a subject of controversy. After many years of empirical re-
search, Meir M. Lehman formulated the laws of software evolution, which were a first
attempt to characterize the dynamics of the evolution of software systems.

With the raising of the libre (free / open source) software development phenomenon,
some cases that do not fulfill those laws have appeared. Are Lehman’s laws still valid
in the case of libre software development? Is it possible to design an universal theory
for software evolution? And if it is, how?

This chapter analyzes the goals of software evolution as a field of research, and how
the increasing availability of libre software repositories can help to achieve those goals.
Finally, this chapter presents an overview of this thesis, and of its contributions.

1.1 Introduction

Computing is one themost sophisticated technologies that the human being has created.
A computer can do any task that can be expressed as an algorithm. Although this may
have some limitations (some believe that many tasks cannot be expressed as algorithms
[Pen99]), computing and software development have provided the tools that nowadays
are used to solve many of our problems.

Together with the raising of computing and software development, the discipline of
Software Engineering was born. In 1968, the NATO Scientific Committee organized the
first conference on Software Engineering [NR69]. This new discipline aimed (and still
aims) to provide the techniques to build software in an effective way, in an environ-
ment where computers were gaining more importance. Just like any other engineering,
Software Engineering tries to define the standard practices, methods and data neces-
sary to build software (that was for instance the exact topic of one the working papers
presented in that conference [Ran69]).

1

2 MOTIVATION

The discipline has evolved, and nowadays it is a recognized field. There are uni-
versity degrees in the topic, both at the Master and PhD level; even a body of knowledge
has been defined [BDA+99]. Many books explain how software must be built, and how
programming teams must be organized to accomplish their duties in the most effective
way (for instance [Som06]).

Interestingly, in the last years a different way of building software has emerged: libre
(free / open source) software1. Libre software is usually developed in communities,
distributed all over the world, communicating through the Internet. In many cases, the
members of the development teams do not even havemet in person. Those people come
from different cultures, speak different languages, work in different time zones, do not
write requirements but take them as implicit, and yet they manage to deliver quality
products that are comparable to those developed in industrial environments.

Meir M. Lehman is the pioneer in software evolution studies. He identified the phe-
nomenon as early as 1969 in an internal report, while working for IBM. The whole story
on how software evolution was identified may be found in the seminal book on soft-
ware evolution [LB85], published in 1985. In that book (as well as in some other previ-
ous publications), the Lehman’s laws of software evolution were formulated. These laws
were one of the first steps towards a theory for software evolution. They have been
reformulated to keep them updated to the new software development environments
[Leh74, Leh78, Leh96].

Software evolution refers to the phenomenon of software change and growth. The
environment where software has to work changes over time, and software itself must
adapt to this changing environment. Of course, software does not change by itself, but
because of the action of development and maintenance teams. In traditional environ-
ments, software evolution is considered to start right after the first operational release.
Hence the life cycle of software has two main stages: development and evolution (see
figure 1.1). Most of the effort and costs are usually devoted to the evolution stage.

In the case of libre software, there is not clear distinction between two stages in a
project. In those environments, software is usually released early with a minimal func-
tionality, to gain attention and to build a community around the project to drive it. It
is the principle known as release early, release often [Ray98]. According to this principle,
libre software is released as soon as it reaches some minimal functionality, and new ver-
sions are released often. This cycle is driven by a software community, that collaborates
in the maintenance of the software products, and in the development of new function-
ality providing feedback.

Therefore, the evolutionary pattern is different to the classical scheme described by
Lehman. In libre software,development and evolution happen at the same time. This
shift in the evolutionary behavior might explain why some libre software projects ap-
pear to be evolving in a different way to the Lehman’s predictions. This controversial

1Thorough this thesis I will use the term libre software to refer both to free software (as defined by the
Free Software Foundation) and open source software (as defined by the Open Source Initiative). The term
is reviewed in section 1.2.1

1.1 INTRODUCTION 3

Figure 1.1: Stages in the life cycle of a traditional software project. The evolution stage starts
right after the release of the first operation version of the program. The evolution stage uses to
take longer than the development one, and accounts for most of the cost of the software project.

topic has been subject of research in recent years. Godfrey and Tu [GT00] highlighted
that the Linux kernel (probably the most famous libre software project) was growing at
a superlinear rate. This result was against Lehman’s predictions, that state that software
grows at a declining rate because complexity increases with time. That work raised the
question of whether or not Lehman’s laws were valid for the case of libre software.

Around the validity of the Lehman’s laws for libre software evolution, many other
questions have appeared. One of these questions is about the metrics used to study evo-
lution. Are studies that use different metrics comparable? How many and which met-
rics can be used to characterize software evolution? In the case of the works mentioned
above, the work by Godfrey and Tu used different metrics that the original works by
Lehman. Can we conclude that the laws of software evolution are not valid for Linux,
using different metrics?

Another question is about modelling software evolution. In the case of libre soft-
ware, it is usually developed in communities, where many different actors interact, with
complex patterns. In a typical libre software project, we can find users, casual contrib-
utors, defect reporters, developers, etc. Most of them behave according to their own
interests. In those communities, project management is usually distributed, and deci-
sions are difficult to impose. There are not hierarchies, or at least no an only hierarchy
accepted by all the actors. Therefore, developers (or any other kind of actor in general)
can not be compelled to do particular tasks, even if those tasks are urgent. Furthermore,
there is a lack of written requirements, and in general, very few documentation about
the different processes that take part in the community.

However, despite this apparent lack of planning, these communities achieve to de-
velop quality products that fulfill the demands of users. Forecasting the evolution of
these projects can be useful for management purposes. Not only for the community
itself, but also for third parties like companies interested in getting involved in the com-
munity. Unfortunately, under such scenario of complex interactions, forecasting and
modelling can be a risky business.

4 MOTIVATION

The study of the dynamics of software evolution, this is, of the mechanisms that
drive software evolution, is one of the approaches to reduce the risk inherent to fore-
casting and modelling software evolution. Which are the principles that drive software
evolution? Lehman attempted to summarize those principles in the form of the laws
of software evolution. However, as previously mentioned, those laws seem not to be
valid in the case of libre software. Which are the principles and processes that generate
those software products? If we determine the kind of dynamics of software evolution,
we could obtain better models for forecasting and managing libre software projects.

Finally, there is an additional question regarding software complexity. The laws
of software evolution predict that the growth rate of a project must decrease because
complexity increases with time. This makes it more difficult to make changes, and the
resulting effect is a slower growth. However, in the previously mentioned case [GT00],
the growth rate increased with time. Is the complexity of these conflicting cases grow-
ing? Are the metrics used by Lehman actually measuring complexity?

1.2 Why libre software?

Libre software is becoming mainstream. It is attracting an increasing attention in the
research field, and it is gaining user share. The number of projects and the size of code
written under the scope of libre software projects have been rapidly increasing during
the nineties and the first part of twenty-first century. As an example, see figure 1.2, that
shows the growth in number of packages of the different releases of Debian. A side
effect of this increasing activity in the libre software community is that a large amount
of data and software repositories have been made available for research purposes.

1.2.1 What is libre software?

In this thesis I use the term libre software to refer both to what is commonly known as
free software and open source. A software is said to be libre (free / open source) if it fulfills
the following four requirements [Sta02]:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and adapt it to your needs. Access
to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor.

• The freedom to improve the program, and release your improvements to the pub-
lic, so that the whole community benefits. Access to the source code is a precondi-
tion for this.

The term free software was originally coined in 1984 by Richard M. Stallman [Sta02].
In the English language, free has two meanings: free as in freedom and free as gratis.

1.2 WHY LIBRE SOFTWARE? 5

This led to some confusion, because it was usual to think of free software as merely
software that costed nothing. As shown above, free software does not refer to price,
and it can be free of charge or not.

Some people thought that the association between “free software” and “software
free of charge” made it difficult to spread free software within companies. In 1998, those
people created a new term: open source [Per99]. It tried to emphasize the availability of
the source code, which is something that most of the companies would find attractive.
There has been a lot of discussion around the two terms. For instance, Richard Stallman
has repeatedly stated that free software is a better name than open source [Sta02].

Some other terms are lately becoming popular within the research community: FOSS
(sometimes written as F/OSS) and FLOSS. FOSS is an acronym for Free and Open
Source Software. FLOSS is another acronym, this time for Free, Libre and Open Source
Software.

The term libre software originated in Europe. Gonzalez-Barahona makes a deep re-
view of the origin of the term [GB04]. This term has been used in some research projects
funded by the European Comission, such as CALIBRE2. However, in the last years, it
seems that the popularity of other terms like FLOSS is increasing.

Although nowadays all the terms and acronyms mentioned above are becoming
popular, I consider that the term libre software gives a clearer idea of what is free and
open source software. I use the term for that reason, and also to avoid the exclusive use
of free software or open source software terms.

1.2.2 Open software repositories

Nowadays, the number of libre software projects may be estimated in the order of
100, 000. This number has beenmostly reached in a time span of about ten years. We can
use the growth of the Debian GNU/Linux distribution as an estimation of the overall
growth of libre software. The size and growth of Debian has been studied and reported
[RGBM+08]. Figure 1.2 shows the sizes of the releases of Debian over time. The vertical
axis shows the size in Source Lines of Code (basically, it is lines of code removing blank
lines and comment lines, see section 3.2.3 for a definition of this metric). The horizontal
axis corresponds to the date when each version of Debian was released. Each bar cor-
responds to a release of Debian. The plot includes only the most modern versions of
Debian because the packages corresponding to earlier versions could not be obtained.

We can observe that during the last years of the nineties (release 2.0) and the first
years of the twenty first century (release 2.2), Debian doubled its size. It doubled again
between the releases 2.2 and 3.0, and again between 3.0 and 3.1. This means that, during
nine years, the size of the software included in Debian has doubled approximately every
three years. If we take Debian as a proxy of the overall community, that means that the
libre software that was being developed in those years was doubling every three years.

2http://calibre.ie

6 MOTIVATION

Figure 1.2: Growth of the release of Debian GNU/Linux: it has doubled its size with each new
release. The vertical axis shows the size of the distribution in millions of SLOC. The horizontal
axis shows the date of each release. Each bar corresponds to one of the releases of Debian (with
the label above the bar). Adapted from [RGBM+08].

As said before, libre software projects are usually developed in communities, using
several kinds of repositories to support the development process. The fast growth of the
libre software community has produced a large set of those repositories that can be used
for research purposes. A comprehensive review of the repositories and the kind of data
that are usually available in libre software projects can be found in the Gregorio Robles’
PhD thesis [Rob06]. Summarizing, the main kinds of repositories are the following:

• Source code releases

Libre software projects offer their products as software releases, usually in source
code form. Those releases include all the source code necessary to build the sys-
tem, as well as user documentation, and sometimes documentation intended for
development.

Distributions package that source code. They sometimes also apply patches. There-
fore when studying source code that comes from distributions, it may differ from
the original code written by the project.

• Source code management systems
In libre software projects, many people work at the same time in the same code
base. Source code management (SCM) systems are used to coordinate the work
between all the actors in the community.

SCM systems track all the changes (as well as some meta-information, like the
author of the change, the date and time, etc) andmake it possible tomerge changes
to the same entity coming from different people.

1.2 WHY LIBRE SOFTWARE? 7

From a research point of view, using the control version system a researcher can
retrieve the code base as it was at any moment in the history of the project. Fur-
thermore, all the meta-information can be used to study the development process.
The meta-information makes it possible to know, for every change in the code
base, who made the change, where, when, and probably why (because all the
changes are accompanied with a little text message explaining the change).

• Issue tracking systems
Issue tracking systems allow users to inform of the defects that they find, and to
request enhancements. If they have technical skills, and given that the source code
is available, they can provide solutions to the defects in form of patches.

Developers also participate in this system, both reporting bugs and fixing them.
Both users and developers can discuss about all the reported issues, because each
bug report can have comments attached to it.

• Mailing list archives
Mailing lists are the main communication channel used in libre software commu-
nities. Lists are usually organized by intended audience. At least, it is usually to
find a list for developers and another one for users.

Anyone may subscribe to a mailing list to receive messages sent to the list. Some
lists require prior subscription to be able of sending messages. All the messages
that are sent to the lists are stored in archives, that contain the complete history
of the list. Sometimes, a subscription to the list may be required to access them.
Those archives make it possible to track all the public communications among
developers and users, to study the development process.

• Other communication tools
The above mentioned repositories are the most usual, and the most used for re-
search purposes as well. However, several other types of repositories and com-
munications may be found in a community.

For instance, logs of Internet Relay Chat (IRC) channels, where users and devel-
opers communicate in live discussions (contrarily to mailing lists, that are asyn-
chronous), or forums, usually intended only for users and not for developers.

Other source suitable for research is package information, which includes for ex-
ample information regarding the dependencies required to build or run each pack-
age.

All the sources mentioned above were intended for communication and develop-
ment purposes. But all the information is publicly available for anyone. This makes
it possible to use that information for research purposes. Considering the size of the
population of libre software projects (in the order of 100, 000), if empirical studies can
be automated, the results could be obtained for a large set of case studies.

8 MOTIVATION

In other words, the statistical approach originally proposed by Lehman [Leh74] is
now possible thanks to the popularization and the growth of the libre software commu-
nity. Perhaps because of this fact, the discipline of Mining Software Repositories (MSR)
has gained importance in the last years. This discipline empirically studies the infor-
mation that software repositories contain, to extract knowledge that can be applied to
improve the software development process.

Two examples that take advantage of the availability of thousands of open software
repositories available for research are the FLOSSMole and the FLOSSMetrics projects.
FLOSSMole is gathering information about all the projects hosted in well-known forges
(web-based integrated development environments that use to offer hosting for libre
software projects free of charge). FLOSSMetrics is gathering metrics for thousands of
libre software projects at finer grained levels; those metrics are obtained directly from
the repositories of the projects.

1.3 Overview of this thesis

Software evolution, a mature discipline, has faced the appearance of a new way of or-
ganizing software development teams, and of a new culture of software development
in distributed environments where software is shipped as soon as possible, even if it is
not yet ready for users.

The original intention of Lehman was (and still is) to design a theory of software
evolution. As I will show in section 2.2.4, Lehman predicted one of the approaches that
can be used for the quest of such theory: statistics and time series analysis. Fortunately,
the raising of libre software has made available thousands of repositories to study the
evolutionary behavior of software. Indeed, in this thesis I study the static properties of
two samples of 12, 010 and 6, 556 libre software projects and the evolutionary profile of
another 3, 821 libre software projects, using a statistical approach. The main goal is to
address the questions previously mentioned in this chapter.

1.3.1 Goals and research questions

The main goal of this thesis is the following:

To study the evolution and properties of a statistically significant amount
of libre software projects, by means of empirical studies and using a statisti-
cal approach, to determine whether or not some commonalities do exist, that
could be used to formulate a universal theory of software evolution.

This thesis is based on repeatable observations about the properties of software and
about the dynamics of software evolution, which could eventually be transformed into
laws, that could be explained by a hypothetical theory of software evolution. In other
words, it studies the evolution and properties of software, using an empirical approach

1.3 OVERVIEW OF THIS THESIS 9

and statistical techniques, to extract patterns and commonalities in a statistically signif-
icant set of case studies.

Besides this main topic, thanks to the methodology and the information contained
in the datasets studied in this thesis, I will answer the following questions as well:

1. Are the laws of software evolution valid for the case of libre software?
Some studies [GT00, RAGBH05] seem to be in conflict with the predictions of the
laws of software evolution [LB85]. But those studies use different metrics than the
original studies by Lehman. In this thesis I use two approaches to answer to this
research question: first I analyze the works done by Lehman during the seventies
and eighties (most of them republished in a book in 1985 [LB85]), and secondly
I use an empirical approach to determine whether different size and complexity
metrics are comparable or not.

2. Linking with the previous question, I solve the question of which metrics should
be used to characterize the size and complexity of a software system (bounded to
the case of the C programming language).

3. Next question is about the statistical distribution of software size and complexity.
The shape of the statistical distribution of size and complexity can give informa-
tion about the kind of generative processes that drive software evolution. That
information can be used to design models of software evolution.

4. Linked with the above question, I will determine whether or not the statistical dis-
tribution of size changes with the scale of the measurements. This is, whether the
distribution is the samemeasuring the size of software at different levels of granu-
larity (file, module, project). That also provides information about the generative
processes that drive software evolution.

5. Next question is about the dynamics of software evolution. I have used time se-
ries analysis to analyze which kind of dynamics is driving software evolution. In
particular, to determine whether it is a long or short range correlated process.

6. Linked with the previous question, I will show how to use that information to
obtain accurate models of the evolution of a software product.

1.3.2 Main contributions

The main contributions of this thesis can be summarized as follows:

• It is the first empirical study performed on a large dataset: two samples of 12, 010
and 6, 556 software projects for the properties of source code, and another one of
3, 821 projects for the time series analysis. This makes it possible for the first time
to use the statistical approach suggested by Lehman in 1974 [Leh74].

10 MOTIVATION

• It shows that different size metrics are highly correlated. Therefore, studies us-
ing those metrics are comparable. In particular, all the studies using SLOC are
comparable with the classical studies done by Lehman [LB85].

• For the case of the C programming language, it shows that traditional complexity
metrics are highly correlated with very simple size metrics (like lines of code).

• It shows that the statistical distribution of software size is a double Pareto. The the-
oretical models of processes that generate that kind of distributions can be adapted
to simulate software evolution.

• It finds evidences of self-similarity in software. The shape of the statistical distri-
bution of software size is the same regardless of the level of granularity used to
measure size (file, module, project).

• It uses time series analysis to determine what kind of dynamics (short or long
memory) is driving the evolution of software. The finding of a short memory
dynamics made it possible to successfully apply ARIMA (Auto-Regressive, Inte-
grated, Moving-Average) models to forecast the evolution of software projects.
My proposal of using an ARIMA model won the 2007 MSR Challenge on predict-
ing the evolution of Eclipse [HGBR07a].

1.3.3 General structure

This first chapter has shown the main research questions addressed in this thesis. Most
of them arise from the conflict between the empirical studies of the evolution of libre
sofwtare [GT00, RAGBH05] and the classical works by Lehman [LB85]. Those works are
reviewed in chapter 2, that describes the state of the art. Besides the mentionedworks, it
reviews the empirical studies done in the scope of software evolution modelling. It also
reviews the scale of empirical studies since the first studies in the sixties and seventies.
Because of the availability of libre software repositories, this scale has been increasing
in the last years.

After reviewing the state of the art, chapter 3 shows themethodology followed to ob-
tain the results of this thesis. I have performed three different studies: correlation anal-
ysis of size and complexity metrics, empirical study of the dynamics of software evo-
lution using time series analysis, and statistical modelling of evolution, also using time
series analysis. For the three studies, the methodology can be divided in two stages:
data collection and statistical analysis. Some details (like the full equations for the dou-
ble Pareto distribution) about the statistical analysis are shown in the appendixes

The next chapter includes the results using the procedures described in the previous
chapter. However, given the size of the samples used in this thesis, some additional
results are shown in the appendixes.

Finally, chapter 5 includes the conclusions and further work of this thesis. Because of
the correlation found in the previous chapter, I recommend to use only SLOC to study

1.3 OVERVIEW OF THIS THESIS 11

the evolution of software written in C language. I have also found that the distribution
of software size is a double Pareto. That implies that the generative process for software
evolution could be described using the Random Forest File Model [Mit04b]. As further
work, I recommend to use that model to simulate the evolution of software systems.
That distribution appears at different scales, which is in evidence of self-similarity. Re-
garding the dynamics, as shown above, it is a short range correlated process.

12 MOTIVATION

CHAPTER

TWO

State of the art

2.1 Introduction

This thesis is fundamentally an empirical study of the properties of software and its
evolution, within the realm of libre software. In this chapter, I review the empirical
research about software evolution. I classify the works in three main categories: laws of
software evolution, empirical studies on evolution, and modelling studies. In the first
category, I include the classical works done by Lehman and colleagues that led to the
publication of the seminal book on software evolution in 1985. In the second category,
I include all the empirical studies that have tried to validate (or invalidate) those laws.
Finally, in the third category I include those studies that have tried to obtain a model for
the evolution of software by using different approaches, that I have labeled as statistical,
physical and blended. Statistical models cannot explain why software evolves, but can
help to manage, forecast and control a software system. Physical models, in the other
hand, try to explain why software evolves, but to date no physical model has been
proved to be accurate enough when tested against real data. In the last years some
authors have tried a blended (both statistical and physical) approach: based on the
statistical properties of software, some models that explain why software evolves have
been derived.

This chapter also reviews the evolution of studies themselves. This is, the topic and
scale of research works in the field have changed over the years. For example, recent
studies are done at a larger scale than early studies.

Finally, I also review works about properties of software. During the years, larger
datasets have become available, and some authors have tried a survey approach to char-
acterize properties of software. This resembles thework done by Knuth in 1971 [Knu71].
By that time, FORTRAN was a very popular programming language. Different FOR-
TRAN compilers were available in the market, which were supposed to be designed
for the most typical case. However, no one had studied which was the most typical case.
Knuth made a survey of FORTRAN programs, and studied the properties of the source

13

14 STATE OF THE ART

code (basically, the kind of statements used, and the frequency of each statement). By
analyzing “what programmers really do” at a large scale, he found outwhich statements
and structures were the most common. With that information, the design of compilers
could be improved. Following a similar approach, the studies presented here are fo-
cused in the distribution of size and complexity in software, and in the implications
that those distributions have for software evolution modelling.

The rest of the chapter is as follows. Section 2.2 is a thorough review of the pioneer-
ing work by Lehman et al., that supposed the first steps of software evolution as a field
of research. Section 2.3 reviews some empirical studies that have tried to validate (or in-
validate) the laws of software evolution. This section also reviews some other empirical
works, that although not having the validation of the laws as main goal, provide some
insightful conclusions for the validation of the laws (for instance, whether studies that
use different metrics may be compared or not). It also reviews how they have changed
over time, and how their scale have increased thanks to the availability of large and
public software datasets. Section 2.4 reviews the papers that try to obtain a model for
software evolution, using the three approaches previously mentioned. Finally, the last
section includes a classification of the main studies presented in the chapter, and some
conclusions about how their relationship with this thesis.

2.2 Software evolution

Meir M. Lehman is the pioneer in software evolution studies. In 1969, he performed
an empirical study within IBM, in order to improve the programming effectiveness of
the company. Although the internal report (initially confidential, but later published as
[Leh85a]) had no impact, it was one of the first empirical studies on software develop-
ment, and a pioneer work on software evolution.

The findings of that work led to the stating of the principles of Program Evolution
Dynamics, as it was called at that time. The first study was only based on the case
of the OS/360 operating system. In the second International Conference on Software
Engineering, in 1976, a new paper with more empirical support for those principles
was presented [LP76] (republished as [LP85]). In the late seventies and early eighties,
the new discipline of Program Evolution Dynamics and its principles were empirically
validated with other software projects (see table 2.1).

Those works led to the publication of the seminal book on software evolution [LB85]
(although the field was not yet called software evolution at that time). However, the
laws of software evolution were stated more than 10 years before the publication of that
book. Before entering into details, it is interesting to remark that the laws have evolved
themselves. They were first stated in 1974, as part of the inaugural lecture of Lehman
as professor of the Imperical College [Leh74] (republished as [Leh85b]). The text of
the laws at that time is shown in table 2.2. By that time, the laws were based only in
the empirical findings using OS/360 as case study. Later, in 1978, two more laws were
added (see table 2.3). Both are boundary conditions for the third law. The last three laws

2.2 SOFTWARE EVOLUTION 15

System Type Org. Period of
analysis

Size Releases Users

OS/360 OS CM 1966–1975 1152–5300 21 Very many

DOS OS CM 8 years 438–2142 31 Very many

EXECUTIVE BS FI 1973–1978 657–967 12 2 sites

OMEGA TOS CM 1972–1974 335–388 9 Many

BD APP FI 1973–1977 42–66 — Few

CCSS SC SH 1972–1979 971–1483 58 Few

VME/B OS CM 1975–1982 1728–3239 10 Many

Table 2.1: Empirical validation of Program Evolution Dynamics in the seventies and eighties.
Organization types are: Computer Manufacturer (CM), Financial Institution (FI) and Software
House (SH). System types are: Operating System (OS), Banking System (BS), Transaction OS
(TOS), Applications (APP) and Stock Control (SC). Size given in number of modules. Repro-
duced from [Pir88].

were modified in 1980 (see table 2.4), and finally, in 1996, three more laws were added
(see table 2.5). This time, the concept of E-type software was introduced in the text of
the laws (although the concept itself dates back to 1980 [Leh80]). That concept is part of
the SPE classification scheme that Lehman proposed for the kinds of software to which
his laws could be applied. Until the proposal of this scheme, the laws were supposed
to be valid for large programs. However, Lehman found some difficulties in empirically
defining if a particular programwas large or non-large, and decided to further elaborate
the concept.

2.2.1 The nature of programs and their evolutionary behavior

When the laws of software evolution were first published, Lehman argued that they
were only applicable to large programs. Many of the facts contained in the laws were
consequences of having large programming teams, with more than one managerial
level, with some history that could be studied to test the laws, and with a large base
of users that could provide feedback to the programming process.

The physical size of the code (for example, the number of lines of code) can be a
proxy measure for the largeness of the software system. Large programming teams are
supposed to produce large systems. Or, from another point of view, one does not need a
large team to produce a small (in the physical sense) system. However, it was not clear
which values could be considered as large and which ones could not.

For this reason, Lehman decided to change the field of applicability of his laws, and
formulated the SPE scheme to classify programs [Leh80].

In his original conception, the scheme defined three classes of programs:

16 STATE OF THE ART

I Law of continuing change
A system that is used undergoes continuing change until it
becomes more economical to replace it by a new or restruc-
tured system.

II Law of increasing entropy
The entropy of a system increases with time unless specific
work is executed to maintain or reduce it.

III Law of statistically smooth growth
Growth trend measures of global system attributes may
appear stochastic locally in time and space but are self-
regulating and statistically smooth.

Table 2.2: Laws of software evolution in 1974 (called laws of Program Evolution Dynamics by
that time). These laws were based only on the empirical findings using OS/360 as case study.
Reference: [Leh85b], which is a reprinted edition of [Leh74].

• S-type programs are derivable from a specification, and can be formally proven
correct or not.

• P-type programs attempt to solve problems that can be formally formulated, but
that are not affordable from a computational point of view. Therefore the program
must be based on heuristics or approximations to the theoretical problem.

• E-type programs are reflections of human processes. This kind of programs at-
tempt to solve an activity that involves people.

The evolution phenomenon refers to E-type software. Lehman explicitly introduced
the term in the latest form of the laws of software evolution (see table 2.5 on page 19).

The E stands for evolutionary. This kind of software is a model of human activity
and organization. Because the ways people interact and behave change, this type of
software has to change to stay synchronized with the new environment. Section 2.2.2
shows in more detail this evolutionary process.

Unlike E-type, S-type software does not show an evolutionary behavior. Once the
program is written, it is either correct or not. If it is not correct, it will not be released
and therefore will not reach the evolution stage. However, if it is correct, it is finished,
never reaching the evolution stage. Because the specification of this type of programs
is a mathematical concept, the problem that the program solves will remain the same
regardless of changes in the environment.

The original definition of P-type was a little ambiguous: programs that mechanize
a human or societal activity. Many times, programs that appeared to be P-type showed
characteristics proper of either E-type or S-type software. Indeed, Lehman himself
stopped using the P category. To overcome this ambiguity, in 2006 a new scheme was
proposed, under the name SPE+ [CHLW06]. This time, the P-type software referred to

2.2 SOFTWARE EVOLUTION 17

I Law of continuing change
A program that is used undergoes continuing change or be-
comes progressively less useful. The change process con-
tinues until it is judged more cost effective to replace the
system with a recreated version.

II Law of increasing complexity
As a large program is continuously changed, its complex-
ity, which reflects deteriorating structure, increases unless
work is done to maintain or reduce it.

III Law of statistically regular growth
Measures of global project and system attributes are cycli-
cally self-regulating with statistically determinable trends
and variances.

IV Law of invariant work rate
The global activity rate in a large programming project is
invariant.

V Law of incremented growth limit
For reliable, planned evolution, a large program undergo-
ing change must me made available for regular user execu-
tion (released) at maximum intervals determined by its net
growth. That is, the system develops a characteristic av-
erage increment of safe growth which, if exceeded, causes
quality and usage problems, with time and cost over-runs.

Table 2.3: Laws of software evolution in 1978 (called laws of Program Evolution by that time).
Reference: [Leh85c], which is a reprinted edition of [Leh78].

paradigm based software. In essence, this kind of software is similar to S-type software.
The only difference is that in this case user satisfaction depends on the system main-
taining consistency with a single paradigm over the program lifetime. But in essence,
the concept has remained the same, and the definition given above still applies in the
scope of the new SPE+ scheme.

Summarizing, only E-type software shows an evolutionary behavior. This thesis will
deal with E-type software, and the rest of discussions and considerations are always
referred to this type of software.

2.2.2 Law of continuing change

The first law is the basic principle of software evolution. Why software evolves? Soft-
ware is not an isolated agent. It works in an environment that changes. In order to
keep software coupled to its environment, it needs to change too. From other point of

18 STATE OF THE ART

III The Fundamental Law of Program Evolution
Program evolution is subject to a dynamics which makes
the programming process, and hence measures of global
project and system attributes, self-regulating with statisti-
cally determinable trends and variances.

IV Conservation of Organizational Stability (Invariant Work Rate)
During the active life of a program the global activity rate
in the associated programming project is statistically invari-
ant.

V Conservation of Familiarity (Perceived Complexity)
During the active life of a program the release content
(changes, additions, deletions) of the successive releases of
an evolving program is statically invariant.

Table 2.4: The last three laws were changed in 1980, that remained unchanged in the book
published in 1985 [LB85]. Reference: [Leh80].

view, software is just a model of some portion of the reality. As that reality changes,
software has to change too. Otherwise it will become useless after some time. This law
has persisted in the later revisions of the laws (see tables 2.2, 2.3 and 2.5).

Although this law could seem straightforward, it is a basic principle of software
development and evolution. Software is a tool intended to serve humans. Although
there is software that interacts directly with other software rather than with humans, in
the end, all the software is intended to interact with and help humans1. In other words,
software is just a reflection of human processes in the technical sphere (or a model of
reality, to use the same terms than above). People communicate, write documents, listen
to music, work together in organizations, etc. And software helps and serves people to
do those tasks.

People change. Human processes change. And software, which is a reflection of
those processes, must be changed to keep it synchronized with the reality that it is
modelling. Summarizing, the first law of software evolution is a fundamental princi-
ple inherent to software. It has remained in the same form since its original publication
in 19742, which evidences its robustness (all the other have changed since their original
conception).

1For clarification, we insist that the discussion on the laws refers only to the concept E-type software
presented in the previous section

2Although in its latest form, the concept of E-type software has been introduced in the text of the law.

2.2 SOFTWARE EVOLUTION 19

I Law of Continuing Change
An E-type system must be continually adapted, else it be-
comes progressively less satisfactory in use

II Law of Increasing Complexity
As an E-type is changed its complexity increases and be-
comes more difficult to evolve unless work is done to main-
tain or reduce the complexity.

III Law of Self Regulation
Global E-type system evolution is feedback regulated.

IV Law of Conservation of Organizational Stability
The work rate of an organization evolving an E-type soft-
ware system trends to be constant over the operational life-
time of that system or phases of that lifetime.

V Law of Conservation of Familiarity
In general, the incremental growth (growth rate trend) of
E-type systems is constrained by the need to maintain fa-
miliarity.

VI Law of Continuing Growth
The functional capability of E-type systems must be con-
tinually enhanced to maintain user satisfaction over system
lifetime.

VII Law of Declining Quality
Unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an E-
type system will appear to be declining.

VIII Law of Feedback System
E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems.

Table 2.5: Laws of software evolution, reformulated in 1996 [Leh96] and empirically revalidated
in 1997 [LRW+97]. This form remained in the book published in 2006 [MFRP06]. This can be
considered the current formulation of the set of the Lehman’s laws.

20 STATE OF THE ART

2.2.3 Law of increasing entropy/complexity

The second law of software evolution says that unless control actions are taken, the
complexity of the produced software will increase. This is because of the first law, the
continuing change process deteriorate the system, and makes complexity increase.

It is interesting to remark that at its first publication (table 2.2 on page 16), Lehman
used the term entropy rather than complexity. Besides that change, the law has persisted
over the years3. In its latest form, Lehman added that in addition to showing an increas-
ing complexity, the system becomes more difficult to evolve.

It seems that Lehman was wondering about what the meanings of entropy and com-
plexity were. About this issue, Pirzada remarks that “the other significant change has
been the replacement of the term entropy by complexity to reflect the research being con-
ducted into program complexity at the time” [Pir88]. In his 1974 lecture, Lehman ex-
plains that the second law considers complexity regarding the structure of the system
(it would be today called architecture). Thus, he distinguishes between three levels of
complexity: internal, intrinsic and external. Internal is about the structural attributes of
the code. Intrinsic is about the dependences between different parts of the program4.
Finally, external complexity is a measure on how easy is to understand the code pro-
vided that there is documentation available. Belady reviewed the main papers on com-
plexity at the time and provides an overview of the research that was conducted on
the topic during the seventies [Bel79] (reprinted as [Bel85]). In any case, the interplay
between complexity and entropy has been object of intense research [Har92, Dvo94,
KSW95, Roc96].

The main idea behind this law is that with frequent changes come disorder, and
with disorder the system is more difficult to comprehend and hence to change. In
Lehman’s terms, the changes degrade the structure of the system, making the system
more difficult to maintain. This increasing difficulty to change means that the system
becomes more complex, although it does not necessarily mean that syntactic complexity
increases. For instance, the additional difficulty may be caused by the degradation of
the conceptual consistency of a design [Dvo94].

It has been proposed to use the semantic entropy as another dimension of the complex-
ity of software [EGWEH02]. Traditionally, complexity has been measured using syntac-
tic metrics (for instance, the well known McCabe’s cyclomatic complexity [McC76]). In
the opinion of Etzkorn et al. [EGWEH02], complexity has two aspects: code complexity
and implementation domain complexity. Classical metrics measure only the code com-
plexity. The implementation domain complexity is related to the semantic content of
the code. For instance, a code with obscure variable and function names will be more
difficult to understand, and therefore more complex. The mentioned work argues that

3Again, in its latest form, the concept of E-Type software is used, and the text has changed too, but the
meaning of the law is the same.

4A large program has a defined task, that is divided in many subtasks. The intrinsic complexity is
related to the relationships and the extent of those subtasks

2.2 SOFTWARE EVOLUTION 21

“a complexity metric that provides a code complexity analysis [. . .] by the use of a
syntactical analysis alone will never provide a complete view of complexity.”

2.2.4 The third law and the notion of feedback

This law has kept changing over the years (see tables 2.2, 2.3, 2.4 and 2.5), although the
rationale behind its conception has remained the same. In its original publication, it
states that the growth of software systems is statistically smooth. In other words, that
statistics may be used in order to model and represent the software process for purposes
of planning, forecasting and improving.

When working at IBM, Lehman gained access to a subset of metrics regarding the
evolution of OS/360: the size of the system (in number of modules), the number of
modules added, removed and changed, the releases dates, the amount of manpower
and machine time used and costs involved in each release.

When he plotted these variables over time, the plots resulted to be apparently stochas-
tic. However, when averaged, the variables could be classified in two groups: some of
them grew with a smooth profile, and some others showed some kind of conservation
(either remained constant, or with a repeating sequence). These findings suggested that
the dynamics of software evolution was feedback driven.

In his lecture in 1974 [Leh74], where Lehman describes the data to which he gained
access in IBM), he already suggested to use regression techniques, autocorrelation plots
and time series analysis for the study of software evolution. Although the term feedback
was not introduced in this law until 1996 [Leh96], the idea of software evolution being a
feedback driven process already appeared in its original conception. Actually, this law
occupied most of the discussion in the 1974 lecture.

In its current formulation, the notion of feedback is explicitly mentioned, and the
text is much simpler, just remarking that evolution is feedback driven. In the latest
form of the laws, the feedback dynamics was converted into a law itself, and the third
law only mentions that evolution is self-regulated. This self-regulation is made through
a feedback process.

But feedback is not the only effect behind the empirical findings. Software evolu-
tion is statistically smooth because its trend does not greatly vary in the history of the
system. Besides feedback, Lehman introduced two more effects in his paper in 1978
[Leh78] (reprinted as [Leh85c]): inertial and momentum effects. The net result of this
three effects is that “for maximum cost-effectiveness, management consideration and
judgement should include the entire history of the project with the current state hav-
ing the strongest, but not exclusive, influence” [Leh78] (extracted from the reprinted
edition [Leh85c]). In other words, as early as 1978, Lehman found out that software
evolution is a short memory process, although some longer term effects may have an
influence in the evolution (for instance, periodical events with large periods).

22 STATE OF THE ART

2.2.5 The fourth and fifth laws

The laws reviewed so far can be considered general. The fourth and fifth laws can be
understood as boundary conditions for the third law, corresponding to the software
development teams and environments usual at the time.

The fourth law states that the work rate remains invariant over the lifetime of the
project. In other words, and using the terms of the third law, there is a statistically
invariant trend in the activity rate of the project. That invariance is probably due to the
feedback process governing the evolution of the system. The fourth law is a boundary
condition of the third law, corresponding to the environment where Lehman obtained
the empirical evidences that led to the formulation of the laws.

Regarding the fifth law, the case is more interesting. In its original publication(see
table 2.3 on page 17), the law states that there is a safe growth rate, and that the interval
between releases should be kept as long as possible (so the growth rate is kept under
control). In other words, this law is a release when ready principle.

This law has later changed the release when ready principle by the invariance of the
content of the releases (table 2.4 on page 18), or in its latest form by the constraints in
the growth rate of a project (table 2.5 on page 19).

2.2.6 Law of continuing growth

This law appeared in the latest form of the laws of software evolution (table 2.5 on
page 19). It establishes that among all the types of changes that will take place (as
predicted by the first law), one corresponds to increasing functionality.

Originally Lehman attributed this need for an increasing functionality to missing
requirements in the original specification of the system. Because of time, budget and
other constraints, not all the requirements can be included in the initial specification.
After some time, users ask for those discarded requirements to be implemented, which
causes the continuing growth.

2.2.7 Law of declining quality

This law was also introduced in 1996 (table 2.5 on page 19). Here quality is referred to
user satisfaction. Unless work is done to avoid it, as time passes, users satisfaction will
decline.

The first law establishes that software will suffer continuous changes during its life-
time. Those changes degrade the architecture of the program, increasing the difficulty
to make new changes (second law). At the same time, users will request new features,
and the functionality of the system will grow (sixth law). This will happen in an en-
vironment of increasing complexity and constrained growth (fifth law). Users request
new features because their original requirements were not originally included in the
system.

2.3 EMPIRICAL STUDIES OF SOFTWARE EVOLUTION 23

This scenario clearly leads to a decreasing user satisfaction (and hence quality), un-
less a strategy is taken to avoid it. Therefore, we can consider this law a corollary of the
others.

2.2.8 Law of feedback system

Lehman found that evolution was driven by a feedback dynamics in his early studies
during the seventies. It was already mentioned for instance in the original publication
of the laws [Leh74]. However, until 1996 he did not decide to include this notion as a
law itself [Leh96]. The text of the law is very simple, stating that the software evolution
is a multi-level, multi-loop and multi-agent feedback system.

Lehman derived this law observing the organizations that built the software that
he used as case studies for his empirical work. For instance, it was usual that many
managerial levels were implied in the project. This, and the apparent conservation of
some quantities (already mentioned in subsection 2.2.4) led to the stating of this law.

2.2.9 Principle of software uncertainty

Summarizing, the field of software evolution has kept evolving since its birth in the late
sixties and early seventies (see figure 2.1). The first publication contained three laws,
about the changing nature of software, its increasing entropy because of change, and
the smooth evolution trend that makes it possible to use statistics to study evolution.

The summary of the global idea behind the theoretical framework that Lehman has
shaped over the years is condensed on the software uncertainty principle, that states, in
Lehman’s own words [Asp93]:

No E-type program can ever be relied upon to be correct.

In other words, software is never finished, and keeps evolving in order to fix defects
introduced in the previous programming activities, and to take into account new de-
mands of users. As software is a model of the world, and the world changes, the only
fate of software is to change or to die.

2.3 Empirical studies of software evolution

In the previous chapter, I have reviewed the theoretical concepts of software evolution,
and I have mentioned some works that faced those theoretical predictions against the
facts provided by empirical studies.

In this section, I discuss and summarize some of the attempts to empirically validate
the laws of software evolution. The main approach has been statistics-based, although
the actual statistical tests vary in the different works. I also include a review of how
these empirical studies have changed because of the availability of larger datasets.

24 STATE OF THE ART

Figure 2.1: Diagram of the evolution of the laws of software evolution. The laws have increased
from three to eight laws. In their latest form, the notion of feedback is the key concept. The term
E-type has been introduced in the text of the laws, to remark that the laws are only applicable to
that kind of software.

2.3.1 Laws of software evolution

The first work to address the issue of the validity of the Lehman’s laws of software
evolution using a statistical approach was the PhD thesis by Pirzada [Pir88]. In that
thesis, he studies the evolution of some commercial flavors of UNIX. At the time of
the study, there were some concerns about the evolvability of those versions of UNIX.
Pirzada applied the methods proposed by Lehman et al. [LB85]. His dissertation was
not only a study on the evolution problems of UNIX, but also a critical evaluation of the
validity of the predictions of the laws of software evolution.

The versions of UNIX under study were divided in three branches (or streams, in the
terminology used by Pirzada): research, academic, and supported and commercial. The
versions of Unix that were part of each stream are the following:

• Research stream
The original Unix version created by Ken Thompson and Dennis Ritchie in Bell
Labs. Pirzada studied 9 versions of this flavor of Unix, released between 1971 and
1987.

• Academic stream
In this stream, Pirzada included the version of Unix developed in the University
of California at Berkeley, by the Computer Systems Research Group (CSRG). The
last release considered by Pirzada, 4.3 BSD, appeared in 1986.

2.3 EMPIRICAL STUDIES OF SOFTWARE EVOLUTION 25

• Supported and commercial stream
In this stream, Pirzada includes the versions of UNIX developed by the Unix Sup-
port Group (USG), a small team created by the Switching Control Center System,
an internal department of Bell Systems.

The conclusions of Pirzada were very clear: only the supported and commercial
streamwas evolving according to the laws of software evolution (mainly, slowing down
because of increasing complexity). More interestingly, the academic and research streams
were growing rapidly, accelerating in some cases (BSD). Their complexity was not grow-
ing through the different releases. The conclusion by Pirzada was that processes in
strongly commercial environments are more constrained, and much more likely to ex-
hibit structural deterioration. In other words, software developed in intensive commer-
cial environments is more likely to evolve conforming to the original formulation of the
laws of software evolution.

One of the main conclusions of Pirzada is that only software developed in commer-
cial environments fulfills the third, fourth and fifth laws (as formulated at the time, see
table 2.4 on page 18).

Regarding the third law (see section 2.2.4 on page 21), which states that software is
a feedback driven process, statistically smooth and predictable, Pirzada defends that is
not valid for the research and academic streams, and so that only software developed
in commercial environments can be studied using a statistical approach. He even sug-
gested a new text for the law taking in account this. The conclusions of this thesis do
not agree with the new law proposed by Pirzada: I will show how Time Series Anal-
ysis can be used to forecast the evolution of software projects because their evolution
dynamics is a short memory process (at least, bounded to the case studies considered in
this thesis).

Regarding the second law (see section 2.2.3 on page 20, and table 2.3 for the formu-
lation at that time), again Pirzada finds evidences conforming to this law only for the
commercial stream. But what is even more interesting is that the increase in complexity
is verified only after the commercialization of the products. The conclusion of his thesis
is that the commercial pressures enforce constraints to the growth of software and fos-
ter deterioration of the system. Pirzada dedicates a whole chapter in the thesis (entitled
Under pressure) to explain why this behavior is verified only in products that experiment
a commercialization process.

However, this work was not the first one to highlight some controversy about the
universality of the laws of software evolution. Pirzada reports about some works that
had previously validated the laws of software evolution using an empirical and statisti-
cal approach. From all the works cited by Pirzada ([Cho80, BT79, Kit82, Law82]), I could
access only to a paper by Lawrence [Law82]. That work is a statistical validation of the
Lehman laws using the case studies reported by Pirzada (see table 2.1 on page 15).
Those case studies had been used in previous empirical studies [Cho80, BT79, Kit82],
but Lawrence used different statistical tests, concluding that the third, fourth and fifth
laws were not fulfilled. First and second laws were valid though.

26 STATE OF THE ART

2.3.2 FEAST and the nineties view

The software evolution field continued to be focused on the issue of the validity of
Lehman’s laws during the nineties. At that time, Lehman leaded the Feedback, Evolu-
tion and Software Technology (FEAST) research project (1996-1998, extended 1999-2001),
funded by the Engineering and Physical Sciences Research Council of the United King-
dom. Themain goal of the project was to show that software evolution was a multi-loop
feedback process. As a side effect, the project intended to remark that software evolu-
tion was a subject of research in its own right.

The results of that project were summarized in a paper by Lehman and Fernández-
Ramil [LR02]. The studies done under the scope of the FEAST project provided support
for the laws of software evolution, either empirically or indirectly. However, some con-
flicting cases reported in the literature were mentioned: the case of the OS 360/370
defense system (reported in the same publication), and the work by Godfrey and Tu on
the growth of Linux [GT00].

The report on FEAST also recognized that for the first time during the study of soft-
ware evolution, the systematization and formalization of the field appeared possible.

There were many other independent studies that verified the laws of software evo-
lution. For instance, the study by Anton and Potts [AP01, AP03], that establishes that
software evolution is a case of punctuated equilibrium: instead of a gradual change, evo-
lution occurs in discrete bursts, where bunches of features are introduced at the same
time. According to [LR02], that mechanism supports the laws of software evolution.
More recently, a similar mechanism has been proposed by Wu [Wu06, WHH07] (we
will review these works later in this chapter).

Other work supporting the conclusions of Lehman and coworkers is [Aoy02], that
suggests that evolution should be studied in stages. This is, the life cycle of a soft-
ware project goes through different stages, and the evolutionary behavior of a project
is different in each stage [RB00]. This view goes beyond the traditional distinction be-
tween the development and the maintenance or evolution stages: the software life cycle
contains five stages (development, evolution, servicing, phase out and close down). In
other words, the evolution stage is composed of four stages. In each one of those stages
different activities are performed and different tools are used. This is reflected in a dif-
ferent evolutionary behavior for each stage. This model of staged software evolution has
been adapted for the case of libre software [CGBHR07]. Indeed, the evolutionary be-
havior of libre software has been empirically proved to be different in each stage of its
life cycle [CM07].

The nineties supposed a renewed interest in the study of software evolution. The
classical work by Lehman was revisited, and many studies backed up the predictions of
the laws of software evolution. However, the field of software evolution evolved itself,
in order to face the shift in the programming practices.

In 1994, the invited keynote of the International Conference on Software Mainte-
nance was titled Dimensions of Software Evolution [Per94] (later revised and republished
as [Per06]). The main conclusion of that paper was that evolution depended not only

2.3 EMPIRICAL STUDIES OF SOFTWARE EVOLUTION 27

on the age, size or stage of the project, but also on the nature of the environment. This is
interesting, because all the research on the validity of the laws have been related to the
nature of the environment where each study took place. For instance, the case of libre
software is directly related to the nature of the environment where software is devel-
oped.

These works led to the reformulation of the laws of software evolution in 1996
[Leh96] (the current formulation of the laws remains the same since then). This last
formulation of the laws was revalidated by Lehman et al. [LRW+97], finding empirical
support for all the laws but the fifth (conservation of familiarity, a boundary condition
for the law of feedback) and the seventh (declining quality). Other studies at the time
found empirical support for the laws of software evolution too [GJKT97], although by
that time there was a lack of empirical studies in the field of software evolution [KS99].

However, soon some new works started to remark that some of the Lehman’s laws
of software evolution seemed not to be valid for the case of libre software [GT00, GT01].
Those works started a prolific line of research, about the differences between software
development in open and distributed communities and within industrial and closed
environments.

Summarizing, for software evolution, the nineties decade saw:

• The empirical validation of Lehman’s laws, and their reformulation, to keep them
synchronizedwith the new software development tools and practices [Leh96, LRW+97].

• The suggestion of using segmentation to study each one of the stages of the evo-
lution of software projects [RB00].

• The suggestion of new mechanisms (for instance, punctuated equilibrium) that
could serve as a base for a theory of software evolution [AP01].

• At the end of the nineties, the re-arising of the validity of the laws as a topic of
research, that was first addressed in the eighties [Law82, Pir88] but had not previ-
ously attracted attention during this decade [GT00].

• The highlight of the lack of empirical studies on software evolution [KS99].

2.3.3 Libre software and software evolution

The paper by Godfrey and Tu started a new line of research, about the evolution of libre
software projects [GT00]. They studied the case of the Linux kernel, and found that
Linux was growing according to a quadratic curve. In a later work, they found that
some time later Linux was still growing with that fast pattern [GT01].

The methodology used by Godfrey and Tu was based on the measurements of the
lines of code of all the releases of Linux. They studied the evolution both at the global
level and at the subsystem level, as it had been suggested by Gall et al. [GJKT97].
Among other evidences, they found that cloning could be a possible explanation of
the fast growth.

28 STATE OF THE ART

 0

 500000

 1000000

 1500000

 2000000

 2500000

 3000000

 3500000

 4000000

 4500000

1990 1992 1994 1996 1998 2000 2002 2004 2006

1.0
1.1
1.2
1.3
2.0
2.1
2.2
2.3
2.4
2.5
2.6

Figure 2.2: Growth in SLOC (lines of code removing blank and comment lines) of the Linux
kernel. Each color is one of the branches of Linux. The overall growth follows a quadratic
equation. Reproduced from [RAGBH05].

Five years later, Linux was still growing with a quadratic pattern [RAGBH05]. How-
ever, this time the coefficient of the quadratic term had increased. In that study, Robles
et al. repeated the subsystem studied performed by Godfrey and Tu [GT00]. Using that
methodology, they found that most of the subsystems were growing with a linear pro-
file, and that the quadratic profile of the overall growth was the result of the addition of
many linear segments.

In other words, rather than a quadratic curve, the growth profile was a polyline
formed by all the linear segments of each one of the subsystems. Figure 2.2 shows
the overall growth curve for Linux, as of 2005. The curve was found to be quadratic.
However, as said above, the quadratic shape was the result of adding many linear seg-
ments, with different starting points. Each linear segment corresponded to a subsystem
of Linux, or to a stage in the evolution of a subsystem (see figure 2.3 on the facing page).
When going deeper in the tree structure of Linux, each subsystem had a linear growth,
or at least, were formed by linear segments.

This quadratic curve (or more precisely, polyline of the subsystems’ segments) was
one of the topics of one of the first massive studies on the evolution of libre software
[Koc05]. In that paper, 8, 621 projects from SourceForge.net were studied. For them, the
quadratic profile was found to model the data better than the linear one.

The same topic was addressed in [HRGB+06]. In that paper, the case studies were
13 large projects obtained from the largest packages of the Debian GNU/Linux distri-

2.3 EMPIRICAL STUDIES OF SOFTWARE EVOLUTION 29

 0

 5000

 10000

 15000

 20000

1990 1992 1994 1996 1998 2000 2002 2004 2006

init
ipc

kernel
lib

mm

Figure 2.3: Growth of smaller, core subsystems of Linux. Some of these subsystems are growing
linearly. In general, when looking at the subsystems level, the growth of each subsystem is linear.
The sum of many linear segments with different starting points gives the overall quadratic shape.
Reproduced from [RAGBH05].

bution. The predominant profile was quadratic, although some of the cases were linear
and some other sublinear (verifying this case the behavior expected according to the
laws of software evolution).

These findings suppose that libre software is growing faster than predicted by the
laws of software evolution, and hence that those laws are not fulfilled in the case of
libre software. However, these affirmations have not always been found to be vali-
dated [PSE04].

Fernández-Ramil et al. [FRLWC08] summarize the main works on the topics men-
tioned above, and on the empirical studies of the validity of the Lehman’s laws for the
case of libre software. Based on those works, an analysis of the validation or invalida-
tion of the laws done so far for the case of libre software is provided. Summarizing, not
all the laws find empirical support, but none of them has been empirically invalidated
to date.

However, the most recent empirical studies on evolution and libre software have
shifted from the issue of the validity of the laws of software evolution, to the topic
of modelling evolution. For instance, Capiluppi et al. wrote a series of papers in 2004
[CMR04b, CR04, CMR04a] where we can observe this shifting in the topics. In the first of
the cited papers [CMR04b], Capiluppi et al. study how a libre software project evolves,
measuring its size using different units. As well as metrics traditionally used in these

30 STATE OF THE ART

studies, they add the depth and width of the tree of source code of the project. The con-
clusions are that the project is growing with a linear trend. However, the depth of the
tree remains constant over the time, and it only grows in width. Although not explic-
itly mentioned, the conclusions match the results expected using the laws of software
evolution. In this paper, there is no special emphasis in trying to obtain a model for the
evolution.

The next paper in the series [CR04] is a study of the evolution of size, complexity
(using the McCabe and Halstead’s complexity metrics) and activity rates at different
levels of granularity (directories, files and functions). The conclusions of that work are
the same than in the previously mentioned paper, but this time for both case studies.
The results were consistent with Lehman laws.

But the most interesting paper in that series is the third one [CMR04a]. In that paper
a set of 25 libre software projects was studied, using a methodology similar to the two
previously mentioned papers. The goal was different, though. The previous papers
were in the line of testing whether or not the case studies were evolving according to
some hypothesis, formulated taking account Lehman’s predictions. This time, the aim
was to try to predict and model the evolution of those projects, based on the common-
alities and patterns found in the 25 projects. In other words, that paper clearly shows
the shift in the topics of the empirical studies of the evolution if libre software, towards
trying to obtain patterns, commonalities and models of the evolution.

2.3.4 The importance of metrics for validation studies

In the first empirical studies on software evolution made by Lehman, Belady and oth-
ers, they had no direct access to the source code and the change records. They gained
access only to some datasets provided by the companies proprietary of the systems, that
contained only a few metrics. For instance, in the original work by Lehman in 1969 (re-
published as [Leh85a]), he had only the following data: size of the system in number
of modules, number of modules added, removed and changed in each release, releases
dates, information on manpower and machine time used and costs involved in each
release. Having only an unique point of data for each release, he decided to use the
release number as pseudo-unit of time, that he called Release Sequence Number (RSN).
He decided to use number of modules as the base unit for size as well.

These units have persisted in later revisions of the work by Lehman and others
[Leh96, LRW+97, RL00, LRS01]. Empirical studies about the evolution of libre soft-
ware have used Source Lines of Code (SLOC)5 as size metric [GT00, RAGBH05]. These
works started the controversy about the validity of the Lehman’s laws for the case of
libre software. However, the metrics (both for time and size) were different. Godfrey
uses SLOC as size metric, Lehman number of modules. The data used by Godfrey was
obtained over natural time, and the data used by Lehman over RSN.

5Basically, SLOC is number of text lines of a source code file, removing blank and comment lines.
Section 3.2.3 on page 48 reviews that and other size and complexity metrics.

2.3 EMPIRICAL STUDIES OF SOFTWARE EVOLUTION 31

Lehman qualified the study by Godfrey [GT00] as an anomaly [LRS01], and argued
that the studies were not comparable because of the metrics.

In a previous work [LPR98], Lehman had talked about the suitability of lines of code
as a size metric for evolution studies:

A lower level metric, lines of code (locs, or equivalently klocs) much beloved
by industry, does not have semantic integrity in the context of system func-
tionality. Moreover, even where programming style directives are laid down
in an organisation, the numbers of locs produced to implement a given func-
tion are very much a matter of individual programmer taste and habit.

We addressed this problem on metrics in an empirical study done before the studies
shown in this thesis [HRGB+06]. In 13 large libre software projects, the evolutionary
profiles and growth curves were the same regardless the metrics used (number of files
or SLOCs). There were high correlations among number of files (or modules, in the
terminology used by Lehman) and number of SLOCs. In this thesis, we have extended
that study to a sample of 6, 556 projects, and added some complexity metrics. The same
conclusions hold, as we will show in the next chapters (there is a preliminary version of
the results already published [HGBR07b]).

Regarding time units, although there has not been too much specific research on the
topic, some studies recommend to use natural time rather than RSN when natural time
data are available [BKS07].

2.3.5 Towards large scale investigations

If we observe the empirical works presented in this chapter, there is a certain trend to
increase the number of case studies used in empirical studies of software evolution. As I
already showed in chapter 1, the increasing availability of software repositories, thanks
to the growth of the libre software community, has influenced the size of the empirical
studies on software evolution.

If the first of the studies (in 1969 by Lehman, republished as [Leh85a]) considered
only one case study, this thesis (2008) uses three samples of 12, 010, 6, 556 and 3, 821
case studies (for different kinds of analysis).

Between those two points, there have been many empirical studies that varied in
the number of considered case studies. In 2007, Kagdi et al. [KCM07] made a thorough
survey of the different approaches used to mine software repositories for software evo-
lution studies. Based on that work, and on the works reviewed in this chapter, we have
represented the evolution of the number of case studies in empirical works on software
evolution (see figure 2.4). The graph shows only some selected case studies, that we
consider representative of the size of the empirical studies performed by that date. The
vertical axis shows the number of case studies in logarithmic scale. One of the curves in-
cludes only selected papers on software evolution. The other one includes two relevant

32 STATE OF THE ART

Figure 2.4: Number of case studies in empirical studies on software evolution, over the years
since the original study by Lehman in 1969. Vertical axis shows the number of case studies,
in logarithmic scale. Horizontal axis shows the year of the study. This graph shows only some
selected papers, based on the works reviewed in this chapter and in those included in the survey
[KCM07]. This thesis (2008) analyzes 12,010 case studies, that were obtained from a previous
study [HGBR07b] that analyzed 13,116 case studies .

empirical studies that were made at a large scale, although the topic is not software evo-
lution. The first of those works is a paper written by Knuth in 1971 [Knu71], that studied
400 FORTRAN programs with the goal of improving the design of FORTRAN compil-
ers. The other study [CMS07] studies 1, 132 bytecode programs (originally written in
Java), with the goal of helping in the development of future programming languages
and in the implementation of compilers. We only mention those works because they
are relevant as empirical studies done at a large scale, but we insist in that they are not
software evolution studies.

The first point in the software evolution curve corresponds to the original study by
Lehman in 1969. The last point corresponds to this thesis. The first cited work [Law82]
is a validation of the laws of software evolution using a statistical approach. The paper
analyzed 8 case studies, that were industrial projects coming from different domains.
Pirzada reviewed that work in his PhD thesis [Pir88], and extended some of the infor-
mation about the case studies (see table 2.1 on page 15).

The second work is a highly influential paper for the field of empirical studies of
software evolution [KS99]. It includes a review of all the relevant literature in the topic,
classifying the works according to the statistical approach used to study the evolution of
software. The paper tests some techniques, among them time series analysis. That was

2.3 EMPIRICAL STUDIES OF SOFTWARE EVOLUTION 33

done in a set of 23 proprietary systems. One of the main conclusions was the highlight
of the lack of empirical studies for software evolution.

By those dates, and during the following years, many papers studied sets of software
systems of similar sizes. But in 2003, Capiluppi et al. [CLM03] performed one of the
first large scale empirical studies, by studying 397 libre software projects, that were
obtained from Freshmeat.net (a well known web site that compiles information about
libre software projects). The authors gathered different properties of each project, at
different moments of time, and analyzed the relationships among the properties, and
how the properties changed over time. Although not exactly an empirical study of
software evolution, it is a relevant example of massive empirical studies.

The next paper has already been reviewed in this chapter [Koc05]. The analysis was
performed in a set of 8, 621 projects, obtained from SourceForge.net (that contains in
total over 100, 000 projects).

The next paper showed in the mentioned figure analyzes 13, 116 projects that were
obtained using the packages system of FreeBSD, an operating system that includes
many packages with source code from third parties [HGBR07b]. The conclusions of
the paper were mainly two: size and complexity metrics are highly correlated (tested
only for the case of the C language), and the statistical distribution of size and com-
plexity is a double Pareto. That paper corresponds to an early version of the work and
conclusions presented in this thesis.

2.3.6 The statistical properties of the size of software

The availability of large datasets about software development makes it possible to use
a survey approach to find out which are the usual dimensions and structure of software.

Traditionally, the kind of questions that empirical studies try to solve is how we can
design and build better software, with less defects, consuming less resources. However,
if we do not know which are the usual properties of software, it can be hard to judge
the quality of a particular program, because we do not have anything to compare with.

This kind of studies is not new ,though. In 1977, Clark and Green studied the use of
list structures in programs written in Lisp [CG77], and found that the pointers to atoms6

followed a Zipf’s law (a power law distribution, with a particular value of the values
of the parameters of the distribution). The study was static, just looking at source code
and not trying to run the programs to test their efficiency.

One of the classical papers in computer science is also an empirical study of this kind:
the study of FORTRAN programs by Knuth in 1971 [Knu71]. In that paper, he tried to
find “what programmers really do”, using a survey of randomly selected FORTRAN
programs, with the goal of helping in the design of FORTRAN compilers. The point
was that compilers are designed for the most typical case, but the most typical case
could not be known without studying actual FORTRAN programs in a large scale.

6In Lips, atoms are immutable and unique lists. If two atoms in a program have beenwritten in exactly
the same way, they represent the same object and both point to that object.

34 STATE OF THE ART

More recent studies have found power laws and other kind distributions in soft-
ware. For instance, Baxter et al. studied a set of 56 applications written in Java, and cal-
culated 17 metrics for each application [BFN+06]. Some of the metrics were distributed
as a power law, while some others were not. However, the results were not consistent
through the different case studies. Some of the metrics were distributed like power laws
in some case studies, and with other shapes in the rest of applications.

Louridas et al. found power laws in the network of dependencies between soft-
ware packages (Java programs, FreeBSD ports, etc) [LSV08]. In their conclusions, they
suggest that power laws might not be the only distribution that could be fitted to the
empirical data. They also give some practical advice for software reuse, quality assur-
ance, library design and runtimemodule loading optimization, based on their empirical
findings.

Power laws seem to have gained attraction in the last years. As remarked by Fab-
rikant et al. [FKP02], it has been maybe too much attraction:

Power laws [. . .] have been termed “the signature of human activity” [. . .].
They are certainly the product of one particular kind of human activity: look-
ing for power laws.

Mitzenmacher [Mit05] proposes a research agenda for studying power laws. This
kind of empirical studies can be classified in five types of investigations: observe, in-
terpret, model, validate, and control. So far, there have been papers on the first three
topics (observe, interpret and model), but not on the rest of them. In Mitzenmacher’s
opinion, at this moment “observing a power law in itself no longer seems sufficient for
publication in networks.”

In any case, for the particular case of software, there are still very few works ob-
serving power laws (or any other type of distribution). This kind of distributions has
deep implications for empirical research. For example, as highlighted by Baxter et al.
[BFN+06], power law distributions have infinite mean and variance. Therefore, when
studying a sample of software projects, its mean and variance cannot be used as an
estimator of the mean and variance of the population.

Power laws are not the only distributions found in software. When studying empir-
ical data, it is easy to misidentify it as a power law, when it is actually a lognormal dis-
tribution, or any other type of distribution with a large tail [Dow05]. In the case of soft-
ware, both power law and lognormal distributions have been found [CMPS07, AH06].
Concas et al. [CMPS07] argue that the presence of those distributions of software de-
notes that the programming activity cannot be simply modeled as a random addition
of independent increments but exhibits strong organic dependencies on what has been
already developed.

The misidentification of power law and lognormal distributions is the topic of pa-
per by Mitzenmacher [Mit04a]. He explains that there is a debate about whether file-
systems are better explained using power law or lognormal distributions. Because of
that debate, he investigated on the issue and discovered that it has repeated many times

2.4 MODELLING EVOLUTION 35

in the past in other fields (economy, biology, etc). In order to provide arguments for the
file-systems case, he presents the properties of each kind of distribution, and the gener-
ative processes for both distributions.

In this respect, there has been an intense research on the statistical distribution of
file-systems size. In 2001, Downey [Dow01] presented empirical data that showed that
the distribution was lognormal, contrarily to previous research that had been shown
that it was a power law distribution. He also presented a model that explained why
these distributions appear in file-systems. This model shares some similarities with the
processes that occur in a source code tree while the system is evolving. It has some lim-
itations though. For instance, it assumes that the tree starts with a single file, new files
are always created by copying or modifying existing files and files cannot be deleted.

However, in 2004 Mitzenmacher [Mit04b] presented a new analysis for the size of
file-systems, and obtained that they are bettermodelled using a double Pareto distribution.
This kind of distribution has a Pareto tail, but a body close to lognormal. The Pareto tails
may be present at the extremes values (both low and high). Based on the appareance of
that distribution, Mitzenmacher proposes a generalization of the Downey’s model, that
he calls the Recursive Forest File Model (RFFM). This model overcomes the limitations of
the Downey’s model. For instance, it allows the addition and deletion of files, and the
starting number of files and their structure are arbitrary. The RFFM also shares many
similarities with the evolution of a source code tree, and with the typical operation of a
version control system. Because it has not the limitations of the Downey’s model, the
RFFM could be used to simulate the behavior of version control systems in real projects.
We discuss about the suitability of this model for software evolution simulations in
section 5.2.1.

All the works presented in this section use a statistical approach, with the goal of
obtaining the shape of the distributions of typical parameters like size. They are the link
between the empirical works that try to validate the laws of software evolution, and the
works that try to obtain a model for software evolution. In the next section, among
other studies, I review some of the works that have based on the statistical properties of
software to obtain a model of software evolution.

2.4 Modelling evolution

In recent years, empirical studies on software evolution have shifted from trying to val-
idate Lehman’s laws, to the attempt of obtaining a model for software evolution. There
are three main approaches when trying to obtain a model for software evolution: sta-
tistical, physical and blended. The statistical approach cannot provide explanatory mod-
els, this is, those models can tell us how a software project will evolve in the future,
but not why. The physical approach aims to obtain explanatory models. However, to
our knowledge, although there are some proposals of physical models, none of them
have been tested to be accurate enough in a wide range of cases. Finally, the blended
approach tries to obtain models for evolution based on the statistical properties of soft-

36 STATE OF THE ART

ware. I describe in this section two models of this kind: the Sand Pile Model, and the
Maintenance Guidance Model.

2.4.1 Physical models

The first model for software evolution was proposed by Belady and Lehman in 1971
[BL71] (republished as [BL85]). That paper presents a macromodel for evolution, taking
into account the empirical findings of Lehman in 1969 [Leh85a]. The model reproduced
the same kind of curves than the empirical studies, and was obtained based on theo-
retical considerations on the programming process. All the results were obtained at an
aggregated level. Some hints were provided to be considered for a hypothetical micro
model.

In 1974, Lehman included an overview of some macro models similar to that men-
tioned above [Leh74] (republished as [Leh85b]). All the models included in the lecture
were obtained using the physical approach. However, in the same lecture Lehman sug-
gested to use statistics and time series analysis to analyze the empirical results that he
obtained in 1969.

Several papers addressed this topic during the seventies (for instance [BL76]). One
of those papers [Woo80] was included in the book edited in 1985 [LB85]. In that paper,
Woodside presents a model that was much more thorough than the previous ones. It
is also a macro model. In essence, it tries to balance between progressive work and anti-
regressive work. Progressive work corresponds to tasks done towards increasing the
functionality of the system. Anti-regressive work corresponds to tasks done to keep
complexity under control. Based on the balance equations, the model provides values
for parameters at the global level (for instance, number of modules).

Other macro models similar to the first ones are those proposed by Turski [Tur96,
Tur02]. The first model was described using difference equations, and the parameters
of the model were discrete values [Tur96]. Later, the model was generalized to contin-
uous variables and differential equations [Tur02]. The model by Turski is based on two
assumptions, which derive from the Lehman’s laws:

• The growth of the system is inversely proportional to the system’s complexity

• The complexity of the system is proportional to the square of the size of the system

Other physical models have tried to mimic natural processes. For instance, Robles et
al. presents a model based on the stigmergy concept [RMGB05]. It assumes that commu-
nication between individuals happens trough stimuli caused by changes in the environ-
ment, and not by directly exchanging information. The model has been used to find out
how developers join projects, and how the work by those developers affects the overall
evolution of the project.

Other model similar to the first attempts made by Lehman and Belady [BL71] is the
model proposed by Antoniades et al. [ASAB02, ASS+04]. It tries to describe all the pro-
cesses found in a typical libre software project using differential equations. The output

2.4 MODELLING EVOLUTION 37

of the model is the future values of some parameters of the project, at different levels
of granularity. A similar model by Dalle and David tries to simulate how resources are
allocated in open source software projects [DD03], using a reward mechanism that is
driven by reputation of software developers within the community.

2.4.2 Statistical models

The two assumptions made by Turski for his models [Tur96, Tur02] imply that the
growth rate must decrease over time. First Godfrey and Tu [GT00], and later Robles
et al. [RAGBH05] found case studies where the growth rate was increasing instead of
decreasing. The authors of those works argued that those case studies did not fulfill
some of the Lehman’s laws. In other words, the models proposed by Turski could not
be used for those case studies.

The authors that found those cases applied linear regression to obtain simple models
of the evolution of those cases. Linear regression is the most common technique in the
literature to obtain statistical models of the evolution of software [GT00, RAGBH05,
Koc05, FNPAQ00].

Other statistical technique used to model evolution is principal component analysis.
For instance, Peng et al. [PLM07] obtain models for the evolution of some operating
systems using that technique.

But in our opinion the most suitable statistical technique to study the evolution of
software is time series analysis. This idea is not new. Lehman was the first to suggest it
[Leh74]. In the eighties, Chong Hok Yuen suggested the same approach [Cho85, Cho87,
Cho88]. For instance, in [Cho88], Chong Hok Yuen used an ARIMA (a kind of model
for time series) model to forecast the maintenance stage of a software project, using a
sampling period of one month.

However, in a influential paper in 1999, Kemerer and Slaughter showed that using
ARIMA models to predict the monthly number of changes did not provide accurate
results [KS99]. They argued that the parameter under study was very noisy and close
to a random variable, and therefore the model did not provide good results.

ARIMAmodels have been used in some other papers [ACPM01, CCPV01] with bet-
ter results. In the case of [CCPV01], the authors applied time series analysis to predict
the evolution of the Linux kernel. They took a small subset of all the releases of Linux,
and tried to predict the size of future releases. The results were mostly satisfactory,
but for some releases the model gave results with large relative errors. In [ACPM01],
the authors tracked down the evolution of some clones found in the sources of Linux,
and used time series analysis to model the evolution of each clone, again with mostly
satisfactory results.

The suitability of time series analysis for the study of software evolution was the
topic of a paper by Fuentetaja and Bagert [FB02]. Although it did not provide any
particular model, it argued that the statistical tools can be used to obtain valuable infor-
mation regarding the evolution of a software project.

38 STATE OF THE ART

More recently, Dalle et al. [DDdB06] have applied signal processing techniques to
gather information from the time series obtained from versioning systems of libre soft-
ware projects. They were inspired by a previous work [HWH05], which applied time
series analysis concepts to visualize historical information from software projects.

2.4.3 Self-Organized Criticality and the sand pile model

The previous sections have differentiated among physical and statistical models. How-
ever, there have been some proposals that could be labeled as physical (following our
criterion mentioned above), but that we have been formulated based on statistical con-
siderations. I label this category as blended models.

In this and the sections, I present a model that explains software evolution as a Self-
Organized Criticality (SOC) dynamics, and the Maintenance Guidance Model, based on
the fact that the statistical distribution of changes is asymmetrical.

In his PhD thesis, Wu shows that software evolution follows a punctuated equilib-
rium [Wu06], and that the dynamics of evolution is Self-Organized Criticality [WHH07].
This means that evolution happens in bursts, and it is not a gradual process.

The empirical findings that support these affirmations are the following:

• Power law distributions for the size of the system (in number of developers, and
number of commits to the version control system).

• Long range correlations in time series of changes.

If both points are fulfilled, the dynamics is said to be Self-Organized Criticality.
There are physical models that explain that kind of dynamics in some natural phe-
nomenons. For instance, one of the phenomenons that follows a SOC dynamics is a
running sand pile, whose model was initially proposed by Bak, Tang and Wiesenfedld
[BTW88], and that has been adapted to the case of software evolution by Wu.

If a sand pile is formed from scratch, dropping grains of sand over a flat surface, one
at a time, the sandpile grows as a set of smaller piles, and the slope increases gradually.
However, at a certain moment, and in certain places of the pile, the slope will reach a
critical value, and if more sand is added, the pile will slide. If this behavior is repeated
over time, the slope of the sand will reach those critical values several times and in
several places. This dynamic behavior is call Self-Organized criticality: when the pile
reaches a critical state, it reorganizes and its shape changes. The different values of the
size of the pile distribute according to a power law, and the time series of the values of
the slope shows a long range correlation.

The model has four parameters that may be used to explain the dynamics of the
sand pile: driving force, response, system state and relaxing force. Table 2.6 shows the
analogy of these parameters made by Wu for the case of software evolution.

Like in the case of a running sand pile, a software system is continuously changing,
under the influence of diverse driving forces. Some changes are reactive: they are re-
sponses to the requests made by users, or to the defects discovered in the system. In

2.4 MODELLING EVOLUTION 39

Parameter Sandpile Model Software system

Driving force Sand drop Change request

Response Sand slide Change propagation

System state Gradient profile Release / iteration plan

Relaxing force Gravity Stakeholder demands

Table 2.6: Analogy between the sand pile model and the evolution of a software system. Repro-
duced from [Wu06].

Wu’s analogy, a change request is similar to a sand drop in a pile. The change itself (the
consequence of the request) is mapped to a slide in the pile.

In the case of the sand pile, gravity acts as a regulating force, that once the critical
value has reached in a place, forces the pile to slide and lowers the value of the slope
in that part of the pile. Wu identifies the stakeholders demands as this relaxing force in
the case of software. For the case of the system state, in the case of the pile, it is a matrix
that contains the maximum values of the gradients that can be reached in each part of
the pile. Wu identifies this system state with the release plan of a software system.

Using this analogy between parameters, and given that the appropriate values for
each parameter are known, the sand pile model [BTW88] may be used to simulate the
evolution of a software system.

However, this can be done at the overall level. According to Wu, the propagation
of changes may be difficult to predict in this case of dynamics. For instance, we could
predict how many changes occur in a system, but not where those changes will occur.

Although thismodel is backed upwith empirical findings in 11 libre software projects,
no simulation or validation of the accuracy of the model with real cases have been done
yet.

2.4.4 The Maintenance Guidance Model

Another example of a blended model is the Maintenance Guidance Model (MGM), pro-
posed by Capiluppi and Fernández-Ramil [CFR07]. It is based on two assumptions:

• The distribution of accumulated changes is asymmetrical. This means that most
of the changes are concentrated in specific parts of the code base.

• Developers prioritize the parts of the code base where they make anti-regressive
effort taking in account the number of changes in the past and the complexity of
that part (function, file, etc).

The first assumption is backed up by many empirical works, some of them by the
authors of the model themselves [CFR05]. The second assumption is based on the sec-
ond law of software evolution, which states that complexity will increase unless effort

40 STATE OF THE ART

is dedicated to keep it under control. The kind of activities performed to reduce com-
plexity is denominated anti-regressive effort.

Based on these two assumptions, the authors argue that those functions that have
sufferedmore changes in the past are more likely to be changed in the future. Given two
functions of the same complexity, if developers reduce the complexity of the function
that suffer more changes, the impact in the overall productivity will be higher, because
it is assumed that after reducing complexity the function will need less changes. This
argument is labeled by the authors as the change-rate criterion for anti-regressive work.

The authors use different metrics to measure complexity. In their opinion, complex-
ity has three dimensions: functional, structural and coupling. For each one of those
dimensions, the authors use the following metrics:

• Functional: Lines of code

• Structural: McCabe’s cyclomatic complexity

• Coupling: Fan-in and Fan-out

The base entity used in the study is functions. Thus, they measure all the metrics
at the function level, and determine all the changes that each function suffers in all its
history.

After measuring all the metrics (complexity and number of changes), the functions
are ordered by complexity, and then by accumulated changes. This sorted list contains
the candidates to be changed in the next release. This is because of the previously men-
tioned change-rate criterion.

These results are compared against the actual history of changes of eight libre soft-
ware projects. The accuracy of the model is overall good. However, this accuracy de-
pends on the complexity metric used in the sorting step. In some case studies, some
metrics perform better than others, and the same metric does not produce good results
for all the cases.

The authors mention that one limitation to apply this model is the computational
time for the coupling analysis, that limits live application to a version control repository.
In my opinion, another limitation is that the model considers the whole number of past
changes for each function. If for some reason, a function becomes stable and do not
suffer more changes, it will remain high in the sorted list because all the changes made
time ago.

2.5 Summary

To summarize the state of the art on empirical studies and software evolution, we in-
clude here a classification of most of the research papers reviewed in this chapter. We
focus here only on the papers that are empirical studies of software evolution.

2.5 SUMMARY 41

We classify the papers according to the main topic (validation, modelling or other),
and to the scale of the study. Table 2.7 on the next page shows the classification. It only
includes some selected paper, that we have considered relevant.

The first phenomenon that we can identify by looking at that table is that in re-
cent years, the field has gained more attention. This is probably because of the pop-
ularization of libre software. That kind of systems seem to be evolving in different
ways. That issue has stimulated empirical research on the evolution of libre software
([GT00, GT01, RAGBH05, Koc05, HRGB+06, Wu06]). This is one of the questions that I
address in this thesis. I test whether the classical studies by Lehman can be compared
with the modern studies on libre software. If they can be compared, then their conclu-
sions, this is, that Lehman’s laws are not valid for the case of libre software, are valid.

Another phenomenon that we can observe is that the scale of the studies has in-
creased over the years. As also shown in figure 2.4 on page 32, the first empirical studies
were based on very few cases ([Leh74], [Law82]). Nowadays, the increasing availability
of libre software repositories, has made much easier to do empirical studies at a large
scale ([CLM03, Koc05, HGBR07b]). In the seventies, when the study of software evo-
lution started, it was quite difficult to access to data about the evolution of software
systems in a large scale. There were some studies at a large scale though. For instance,
the paper by Knuth in 1971 [Knu71] that studies 400 FORTRAN programs. It is not fo-
cused on evolution, but it only studies the properties of the source code. The main goal
was to improve the design of compilers.

Because of this last point, in this thesis I have studied a large set of case studies. This
makes it possible to ensure statistical significance, and to apply the approaches initially
suggested by Lehman [Leh74]. Among the approaches that he suggested, we find time
series analysis, that I use to study the dynamics of software evolution, and to determine
whether previous findings on the topic [Wu06, WHH07] remain valid in the sample that
I use.

Last, we can observe that in the last years, the topic has shifted from validation
([GT00, RAGBH05, Koc05]) tomodelling ([Wu06,WHH07, HGBR07b, CGBHR07, CFR07]).
I also address that question in this thesis. I study the statistical properties of software, to
test whether previous empirical findings hold for the set of case studies that I use. Fur-
thermore, based on those properties, I propose to apply some models that have been
proved valid in other fields that share the same statistical properties [Mit04b].

42 STATE OF THE ART

E
p
och

Top
ic

#
case

stu
d
ies

V
alid

ation
Statistical
m
od

el
P
hysical

m
od

el
B
lend

ed
O
ther

1−
5

5−
15

>
15

70s-80s

[P
ir88],

[L
aw

82]
[L
eh74],

[C
ho88]

[B
L
71],

[L
eh74],

[B
L
76],

[W
oo80]

[P
ir88],

[L
eh74]

[L
eh74]

[L
aw

82]

90s

[L
R
02],

[L
R
W

+
97],

[G
JK

T
97],

[A
P
01]

[K
S99]

[Tu
r96]

[A
P
01],

[K
S99]

[R
B
00]

[K
S99]

L
ib
re

softw
are

[G
T
00],

[G
T
01],

[C
M
R
04b],

[R
A
G
B
H
05],

[K
oc05],

[H
R
G
B

+
06]

[C
M
R
04a],

[G
T
00],

[R
A
G
B
H
05],

[K
oc05],

[H
R
G
B

+
06],

[C
L
M
03],

[P
L
M
07],

[A
C
P
M
01],

[C
C
P
V
01]

[Tu
r02],

[R
M
G
B
05],

[A
SA

B
02],

[A
SS

+
04]

[W
H
H
07],

[W
u
06],

[C
FR

07],
[H

G
B
R
07b]

[C
G
B
H
R
07]

[G
T
00],

[G
T
01],

[P
L
M
07],

[C
FR

07]

[H
R
G
B

+
06],

[C
M
R
04a],

[W
u
06],

[W
H
H
07]

[R
A
G
B
H
05]

[K
oc05],

[C
L
M
03],

[H
G
B
R
07b]

T
a
b
le

2
.7
:
C
lassifi

cation
of
em

pirical
stu

dies
on

softw
are

evolu
tion

CHAPTER

THREE

Methodology

3.1 Introduction

This chapter describes the methodology used to answer the different research questions
raised in chapter 1. For each one of those questions, the methodology has two main
stages: collection of data, and analysis. For the first stage, collection of data, I have
used exclusively public data sources, to ensure the reproducibility of this work. For the
second stage, as mentioned above, I have used a statistical approach, using different
techniques.

More in detail, we can classify those research questions in three groups, classifying
by the different techniques used to address them:

• Questions addressed using a correlation analysis:

– Are the laws of software evolution valid for the case of libre software?

– Which and how many metrics should be used to characterize a software
product?

– Which is the shape of the statistical distribution of the size of software?

– How does that shape vary with the scale of the metric?

• Questions addressed studying the dynamics of evolution using time series analy-
sis:

– Which kind of dynamics is driving software evolution?

• Questions addressed obtainingmodels for the evolution based on time series anal-
ysis:

– How can we use that information about the dynamics to model and forecast
software evolution?

43

44 METHODOLOGY

For the first group, I have used a sample of thousands of software products obtained
using the FreeBSD packages system. I measured different size and complexity met-
rics, and correlated them to answer some of the research questions mentioned above:
Are studies using different metrics comparable? Which are the metrics that we need to
characterize the size and complexity of a system? I used the same dataset to determine
which are statistical properties of the size of software (shape of the statistical distribu-
tion, how it varies with different metrics, etc).

For the second group, I have used a set of software projects obtained from the
FLOSSMole and CVSAnalY-SF datasets. That is because the dataset mentioned in the
previous paragraph lacked the historical information needed to perform a time series
analysis.

For the third group, I have used other three different case studies. That is because
I needed to have a deep knowledge of the case studies, to overcome possible flaws for
the models that I obtain. In any case, although this analysis has not been done at a large
scale (contrarily to the two mentioned above), it addresses the question about how to
obtain accurate statistical models for the evolution of software.

The rest of this chapter is as follows. Section 3.2 describes the correlation analysis,
the procedures used to obtain the sample for it, and the different metrics considered for
this study. Section 3.3 describes how I have applied time series analysis to determine
which kind of dynamics drives software evolution, including the procedure followed to
gather the sample with historical information. Finally, section 3.4 shows how to apply
time series analysis to forecast software evolution, based on the information determined
by the methods shown in section 3.3.

3.2 Correlation analysis

In section 1.3.1, among others, I raised the following research questions: Are the laws
of software evolution valid for the case of libre software? Are different empirical stud-
ies comparable if they are using different metrics? Which attributes better describe a
software product? Which are the statistical properties of those attributes?

To address those questions, I have used a correlation analysis, that I have performed
over a sample of thousand of software products obtained using the FreeBSD packages
system. For all those products I measured size and complexity, using different metrics.
Among all the possible, I have selected those metrics that are commonly found in the
empirical works of software evolution. This approachwill make it possible to determine
whether or not the metrics used in those studies are comparable, and thus it will make
it possible to determine if it is possible compare studies that use different metrics.

This section describes in more detail those two issues: collection of case studies and
their metrics, and correlation analysis.

3.2 CORRELATION ANALYSIS 45

3.2.1 Data sources

The data sources used to obtain the sample for this study must fulfill the requirement
of being public, automatically downloadable, and include a large number of software
products. Furthermore, the source must be unbiased in the sense that it must contain
different domains of application. An additional requirement is that the products in-
cluded in the source must be libre software.

All these requirements are related to the main goal of this thesis, shown in section
1.3.1. I need to obtain a statistically significant amount of case studies, this is, a large
number of software products, which can only be studied in an effective way by means
of automatic methods. The results of my study must be repeatable by anyone, which
needs the data to be public. Furthermore, the scope of this thesis is bounded to the case
of libre software.

From the different alternatives, software distributions and packages repositories are
one that fulfills all these requirements One of the most well known software distribu-
tions is FreeBSD, which as Linux can be considered a flavor of Unix.

I decided to use FreeBSD as source of all the software packages to be studied be-
cause it fulfills all the requirements mentioned, although some of the software packages
included in FreeBSD can not be redistributed, and therefore are not libre. However, all
those packages were excluded from this study.

In FreeBSD argot, software packages are called ports. Ports include source code for
applications or libraries. They contain, among other files, a makefile, which is able to
download the source code from the original web or FTP site, to apply patches developed
by the porters of FreeBSD (if any), to compile, and to install it into a live system. It
includes the following files

• Makefile

It includes information about the site where the source code can be downloaded
from, and about how and where the program will be installed in the system.

• distinfo

It contains checksums for the files that the port downloads. With those checksums,
the ports system check the integrity of the downloaded files.

• pkg-descr

It contains a description of the program.

• pkg-plist

It includes a list of the files that will be installed.

Sections are another property of ports. They mark where the port is stored within
the hierarchy of the tree of ports. Moreover, sections give information about the domain
of application to which the port belongs.

I have used the Makefile and the distinfo files to obtain the source code. The
Makefile contains two variables called MASTER_SITE and MASTER_SITE_SUBDIR. Together

46 METHODOLOGY

with the list of files included in distinfo, the package system can build a URL that is
used to download the sources of the program from the original site. This is done using
make fetch in the directory where the port files are stored. The sources are typically
stored in the /usr/ports/distfiles/ directory.

I invoked the command in a FreeBSD 6.2-RELEASE system, running on an AMD64
platform. At the time of the study (May 29th 2007), the collection contained 16, 253
ports. From that collection, I included in the sample only 12, 108. After uncompressing
all the sources corresponding to those 12, 108 ports, I obtained a set of 1, 446, 209 files.
Those ports were classified in 62 different sections.

3.2.2 Validation of the sample

Of the total number of files, 591, 821 were written in the C programming language (be-
ing 202, 968 header files, and the rest 388, 853 non-header files). Only 6, 665 of the 12, 108
ports contained source code written in C. Those ports written in C belonged to 60 sec-
tions. These statistics are summarized in the first column of table 3.1, which shows the
basic properties of the sample after each one of the validation steps.

For a correlation analysis to be significant, the sample must fulfill some require-
ments. The first requirement is that every point that is going to be part of the correlation
must be independently generated. For the case of source code files, the first obvious fil-
ter is to remove items that have not been independently generated. I also removed all
the version of each port but the last, because the files that are part of different versions
of the same port are likely to be statistically dependent.

Besides repeated files, I also removed all the files that were generated by other tools
and not written by people. I also found problems trying to measure some of the files,
and decided to remove them from the sample.

More details about these validation steps are given below. A summary of the con-
tents of the sample after each step is shown in table 3.1. Full details about the statistical
properties of the sample are given in table 4.3.

Repeated files

It is obvious that duplicated files have not been independently generated. I used the
MD5 hash function to identify them.

FreeBSD contains several different versions of the same programs and libraries. For
instance, different versions of the programming language Python are included because
of compatibility issues. I considered the latest version of each port and I discarded the
rest. The source code of different versions was actually different in most of the cases.
However, those files have not been independently generated. It is quite likely that the
files in the newer versions are based on the files in the previous versions, and although
not exactly duplicated, newer files will contain chunks of source code that comes from
older versions.

3.2 CORRELATION ANALYSIS 47

Retrieved
sample

Non-
repeated

Non-
automated

Final
sample

All pro-
gramming
languages

Files 1, 446, 209 1, 109, 697 − −
Ports 12, 108 12, 010 − −

Categories 62 61 − −

Only C
source
code

Files 591, 821 459, 372 449, 707 447, 612
Headers 202, 968 158, 826 154, 161 152, 937

Non-Headers 388, 853 300, 510 295, 546 294, 675
Ports 6, 665 6, 587 6, 556 6, 556

Categories 60 60 60 60

Table 3.1: Summary of the validation process of the sample

I found 336, 512 files that were either duplicated or belonging to different versions of
the same port. After removing those files, the sample contained 1, 109, 697 files, belong-
ing to 12, 010 ports distributed in 61 categories. From that sample, I extracted all those
files written in C. The set contained 459, 372 files written in C, being 158, 862 header files
and 300, 510 non-header files.

Automatically generated files

In the libre software world, the use of lexical analyzers is very popular. Those tools
usually return C code. I decided to remove those files, because I wanted to select source
code written by humans.

To identify automated files I used regular expression matching, using the first 50
lines of the files. Flex and similar tools include a comment at the beginning of the files,
that indicates the file was generated by another tool. I used 19 different patterns, shown
in appendix D.

With this procedure I identified 9, 665 files that were automatically generated. Af-
ter removing them, the sample contained 449, 707 files, being 154, 164 header files and
295, 546 non-header files. The resulting files belonged to 6, 556 ports, distributed in 60
categories.

Unparseable files and dummy headers

The measurement tools that I used could not correctly measure 2, 013 files. I also found
82 files with 0 SLOC. After inspection of those 82 files, most of them were header files
that contained comments that explained that those dummy header files were necessary
to fix the compilation process in some platforms. I removed all of them from the sample.

Therefore, the final sample contained 447, 612 files, being 152, 397 header files, and
294, 675 non-header files. The files belonged to 6, 556 ports distributed in 60 categories.

48 METHODOLOGY

3.2.3 Selected metrics

Size and complexity can be measured using many different metrics. Some of the metrics
are computed using language dependent algorithms. Therefore, in order to measure
them, the most representative languages must be selected.

Although C is not the most popular programming language nowadays, it is the most
used in libre software systems. As a matter of fact, the 4.0 release (the latest at the time
of writing this) of the Debian GNU/Linux distribution contains 145.2 millions of SLOC
written in C out of a total size 288 millions [RGBM+08]. This is 51.3% of the source code.
Therefore, more than half of Debian is written in C. In the case of the version of FreeBSD
studied in this chapter, it contains 141 millions of SLOC out of 281, which amounts to
50.4% of the source code.

We can consider FreeBSD (or Debian) as a proxy of the overall libre software. If a
software system is popular enough, it gets included in FreeBSD. Assuming that, the
sizes found in the collection of software are lower bounds for the real sizes correspond-
ing to the whole collection of libre software.

Therefore I can assume that about half of the code present in the most popular sys-
tems of the libre software community is written in C language, and I can bound this
study only to that language without losing representativeness. Focusing in the case of
the C programming language, I have collected the following metrics:

Source Lines of Code (SLOC)

I use the definition given by Conte [Con86]:

A line of code is any line of program text that is not a comment or blank
line, regardless of the number of statements or fragments of statements on
the line. This specifically includes all lines containing program headers, dec-
larations, and executable and non-executable statements

This metric was used in the first studies that highlighted that libre software was not
evolving as the Lehman’s laws predicted [GT00].

Lines of Code (LOC)

I measured the number of lines of a source code file, including comments, blank lines,
etc. I used the Unix tool wc to measure this metric.

Number of C functions

I counted the number of functions inside each file. To count functions, I used the tool
exuberant-ctags, combined with wc.

3.2 CORRELATION ANALYSIS 49

McCabe’s cyclomatic complexity

I use the definition given byMcCabe [McC76], which indicates the number of regions in
a graph. For a graph G with n vertices, e edges, and p exit points (e.g., function returns
in the case of C), the complexity v is defined as follows:

v(G) = e− n + 2p (3.1)

Figure 3.1 contains a sample graph, that may represent the different execution paths of
a program. Any graph has at least one region (the surrounding region). Therefore, the
minimum value of the cyclomatic complexity of a program is 1. Any program can be
easily represented as a graph, with simple rules such as representing IF statements by
bifurcation points, or closed loops corresponding to regions, etc.

The rationale behind the metric is that all the edges that delimit a region form a
circuit that must be tested. The more regions a program has, the more testing it will
need, and the more complex the program is.

Because of that, for the case of the C programming language, this metric is defined
at the function level. To obtain its value at the file level, I calculated the cyclomatic
complexity for every function within each file, and aggregated those values to obtain
the complexity at the file level.

Halstead’s Software Science metrics

I used the definitions given by Kan [Kan03]. I have measured four metrics: length,
volume, level and mental discriminations. These metrics are based on the redundancy
of operands and operators in a program.

For the case of C, operators are string constants and variable names, and operands
are symbols (like +,-,++,–), the * indirection, the sizeof operator, preprocessor con-
stants, statements (like if, while), storage class specifiers (like static, extern), type
specifiers (like int, char) and structures specifiers (struct and union).

The metrics are obtained by counting the number of distinct operators n1, number
of distinct operands n2, total number of operators N1, and total number of operands N2.
The length L of a program is the total number of operators and operands:

L = N1 + N2 (3.2)

The volume V of a program is defined as

V = N · log2(n1 + n2) (3.3)

The level lv of a program is defined as:

lv =
2
n1

n2
N2

(3.4)

The inverse of this metric is sometimes mentioned as difficulty.

50 METHODOLOGY

Figure 3.1: Sample graph that represents the flow of a program. The cyclomatic complexity is
the number of regions in the graph. Any graph has at least one region (the surrounding region).
So the minimum value of the cyclomatic complexity is 1. In the graph shown in this figure, the
value of the cyclomatic complexity is 5.

The effort E that a programmer needs to invest to comprehend the program is de-
fined as

E =
V

lv
(3.5)

This metric is sometimes denominated number of mental discriminations that a developer
must do to understand a program.

All the mentioned metrics have been collected at the file level1. The statistical analy-
sis described here has been done at two levels: file level and aggregated level. The rea-
son is that the controversial studies mentioned in the research question about the com-
parability of software evolution studies (mainly the classical works by Lehman sum-
marized in the 1985 book [LB85], and the paper by Godfrey and Tu about the growth
of Linux [GT00]) are done at aggregated levels. Lehman uses number of files (or mod-
ules, in the terminology that he uses), and Godfrey number of aggregated SLOC (at the
project level).

Table 3.2 shows the selected metrics, and the symbols to denominate each metric in
the rest of this thesis. I have used the following tools to measure those metrics:

• SlocCount
SlocCount is an integrated set of tools to measure SLOC for a myriad of pro-
gramming languages. Besides measuring SLOC, the tool uses some heuristics
to identify the programming language that a file is written in. Furthermore, it
contains heuristics to determine if a file is of automated origin or has been writ-
ten by a human. Those heuristics resulted to be insufficient though, and I had

1With the exceptions mentioned in the case of the McCabe’s cyclomatic complexity

3.2 CORRELATION ANALYSIS 51

Attribute Metrics

Size
Source Lines of Code (SLOC), Lines of Code (LOC), Number of C
functions (FUNCS)

Complexity
McCabe’s cyclomatic complexity (CYCLO) Halstead’s length
(HLENG), Halstead’s volume (HVOLU) Halstead’s level (HLEVE),
Halstead’s mental discriminations (HMD)

Table 3.2: Selected metrics to measure size and complexity.

to extend them for this study. SlocCount is libre software can be obtained at
http://www.dwheeler.com/sloccount/.

• Libresoft’s CMetrics
CMetrics is a set of tools to measure different complexity metrics for C source code
files. Among those metrics, we can find all the complexity metrics shown above.
CMetrics is libre software and can be obtained at http://tools.libresoft.es/cmetrics/.

• Unix’s wc and exuberant-ctags

In order to measure lines of code, I used the wc command, that measures the
number of lines in a text file. To measure the number of functions I used the
exuberant-ctags. That tool support many different programming languages and
can extract different entities from source code files. I used it to extract the func-
tions from C source code files, and then I counted the number of functions using
wc (exuberant-ctags write the name of each function in a separated line, and wc

can count the number of lines). Both tools are available in any typical installation
of FreeBSD (the system used for this study).

3.2.4 Statistical analysis

The correlation analysis was done at the file level, pairwise. This is, for each file I ob-
tained eight values corresponding to each one of the metrics. I took each file as an
independent point, and performed a correlation analysis for each pair of metrics.

This procedure was done with the whole sample. To test the sensitivity of the cor-
relations to different properties of the sample, I repeated the analysis using only some
subsamples. The overall sample is heterogeneous, including packageswith very diverse
application domains, both header and non-header files, etc. I split the overall sample
in more homogeneous and smaller subsamples. Figure 3.2 illustrates this breakdown
process. The classification criteria that I used are the following:

• Type of file
I divided the final sample in two subsamples, one containing exclusively header
files and the other one non header files. I analyzed how the correlations varied in
each subsample when compared to the overall correlation coefficients.

52 METHODOLOGY

Figure 3.2: Breakdown process. The statistical analysis was repeated in subsamples of the overall
sample, to test the sensitivity of the results with three different parameters: filetype, package size
and field of application. This process helps to determine if the results are due to aggregation
effects and therefore are not significant.

• Package size
The breakdown by package size was done in two different ways:

– Across packages. The range of package sizes was divided in eleven intervals,
and the files in each interval formed each one of the subsamples. I analyzed
how the correlation coefficient varied in each interval.

– Within packages. I calculated the correlation coefficient using the files in each
package. I analyzed later how the correlation coefficient was related to the
package size, to find out if it varies with that parameter.

• Field of application
There were 60 different categories in the sample. I divided the sample in 60 sub-
samples, one for each category. Then the correlation analysis was done for each
one of those subsamples, to determine how the correlation varied with the cate-
gory.

Finally, I did the analysis for the aggregated attributes at the package level. This is,
for each package, I calculated the properties for the package as the addition of all the
files included in that package, and I repeated the same analysis using those aggregated
values. This provided an additional metric: number of files in the package, which is
the same used in the classical studies of software evolution (see chapter 2). Lehman has
argued that aggregated attributes (like number of files) should be used instead of low
level metrics (like SLOC) [LPR98]. This issue is described in detail in section 2.3.4. I

3.3 THE DYNAMICS OF SOFTWARE EVOLUTION 53

repeated the same analysis with the additional metric of number of files, to determine if
there was any relationship between number of files and the rest of metrics, and empir-
ically test the problem highlighted by Lehman, which is one of the research questions
that I mentioned in section 1.3.1.

3.3 The dynamics of software evolution

In 1974, Lehman proposed to use a statistical approach to study the evolution of soft-
ware [Leh74]. He specifically mentioned time series analysis as one of the techniques to
be applied to the case of software evolution. Based on that, one of the research questions
addressed in this thesis is about how to apply a statistical approach to study software
evolution, and in particular, about how to use time series analysis to obtain a statisti-
cal model for evolution. The methodology used to address both questions is shown in
this and the following sections. This section shows how to characterize the dynamics
of software evolution using time series analysis. To obtain a model for evolution using
time series analysis, we need to know which kind of process we are trying to model.
This is, depending on the statistical properties of the evolution of software, the terms
and parameters of the model will be different. Therefore next section will show how
to use that information to obtain a statistical model of software evolution, using again
time series analysis.

In order to obtainmeaningful results, this approach requires the sample to be statisti-
cally significant. In the analysis shown in section 3.2, I have shown how to use the ports
system of FreeBSD to obtain a large sample of software systems. However, that sample
lacks historical information. Software evolution studies (and time series analysis) need
historical information. Therefore, I used a different sample in this case. I obtained a sta-
tistically significant sample, with enough historical information, using the FLOSSMole
[HCC06] and CVSAnalY-SF datasets.

3.3.1 Data sources

As in the case of correlation analysis, I obtained the sample from a public data source
that exclusively contains libre software. The size of the sample should large be enough
to be statistically significant. Moreover, for time series analysis, the sources must con-
tain historical information, and the period covered has to be long enough to apply time
series analysis.

In section 1.2.2, I described the data sources available in a typical libre software
project. From all of them, source code management systems are the most interesting
for time series analysis, because they contain the whole history of changes for a soft-
ware project. Each record contains who made the change, when, where (in the source
code tree), and probably why (in a comment).

The problem is to obtain a large amount of control version repositories. To overcome
this difficulty, we used a forge. Forges are sites that offer hosting for libre projects, and

54 METHODOLOGY

provide the most usual tools that are necessary for the development processes. The
most popular in the libre software community is SourceForge.net (SF.net).

All the libre software projects hosted in SF.net share a common structure. So it is
easy to extract information in an automatic way. Because of that, it has become popular
in the research community as well. In particular, the FLOSSMole research project was
launched to mine information in SF.net (and other forges), and to offer the datasets to
the research community.

FLOSSMole parses the web pages of SF.net, and creates a database including infor-
mation regarding all the projects hosted in this site. The information is meta-data such
as the licenses, number of developers, number of releases, etc. It is starting to gather
some other data, such as mailing lists information, but it still lacks change records.

The FLOSSMole database was used by our research group to create a database con-
taining the whole change history for all the projects that have a CVS repository. The
CVSAnalY-SF dataset 2 contains a register for each commit in the CVS repository of all
of the projects. Each register contains who made the change, the date of the change, the
path of the file affected by the change, and the log text written by the developer to give
some information about the change.

Selection criteria

Many of the projects hosted in SF.net are pet projects with very low activity. Many of
those remain inactive for long periods of time, in some cases forever. That is mainly
because they do not manage to attract new people to the project. Therefore, the size of
the community around of those projects is very small.3

The CVSAnalY-SF dataset contains change records for 29, 839 projects, as of June
2006 (the latest available version at the time of writing this). But it is likely that not all of
those projects are active, and if they are active, they can be too young as to be of interest
for this study.

To distinguish whether a project was active or not, I used the criterion proposed by
Capiluppi and Michlmayr [CM07]. These authors propose that projects with very few
developers are probably still in an early stage in their history. Their research has shown
that the behaviors of projects at different stages of evolution are different. They find
three stages in the evolution of projects. The transition from one phase to another is
gained when it achieves to attract more developers. The first phase in the history of
the project is called by Capiluppi and Michlmayr the cathedral phase. The next phase is
a transition phase to the third, that is called the bazaar phase. These labels are used to
match the terms used by Raymond in his paper about the different dynamics of propri-
etary and libre software [Ray98].

Summarizing, and using the terminology of the mentioned paper, I wanted to select
all those projects likely to be in the bazaar phase. The empirical criterion that I used

2Available at http://libresoft.es/Results/CVSAnalY_SF
3In fact, more than 82% of the projects stored in the FLOSSMole database as of June 2007 include 2 or

less developers.

3.3 THE DYNAMICS OF SOFTWARE EVOLUTION 55

was to select all the projects with at least 3 developers. I used the value stored in the
database of FLOSSMole, explained in the previous section and shown in table 3.3.

The second requirement is having at least one year of history. I wanted to compare
my results to those reported by Wu [Wu06, WHH07], who studies a year of changes
extracted from the whole history of the projects. Therefore, I selected only projects with
at least 12 months of history in the CVS repository.

Properties of the sample

After applying the different selection criteria described above, the sample contained
3, 821 projects. For each one of those projects, I obtained the daily number of changes,
considering only source code files. I identified changes corresponding to source code
thanks to the information contained in the LibreSoft’s dataset. The tool used to obtain
that dataset, CVSAnalY, identifies the kind of file that was changed in each commit, and
marks that change in the database with a determined type (documentation, images,
translation files, source code, etc). Thus, for each one of the 3, 821 projects I had a time
series of the daily number of changes.

I also obtained the modification requests (MRs). In CVS, commits are done at the file
level. If a change affects different files, it will appear as more than one commit in the
CVS repository. In other words, a change or modification request in the sources tree will
appear in the version control repository as more than one change, because of the limi-
tations of CVS. To reconstruct the modification requests, I used the algorithm described
by Germán [Ger04].

Table 3.3 shows the properties of the sample of selected projects. The number of
developers was obtained using the FLOSSMole database. The project page in SF.net
contains a field indicating the number of developers that work in the project. That field
is increased each time a new developer joins the project. It is not related to the activity
in the CVS. Although joining a project is a requisite to get access to the CVS, being a
developer in the project in SF.net does not imply any participation in the CVS. In other
words, that number is an upper bound for the actual number of developers working in
the CVS.

Regarding the values labeled as SF.net age and CVS age, those columns indicate the
age of the projects in months. The first value is the number of months that the project
has been stored in SF.net. The second value is the difference in months between the
dates of the last and first commit in the CVS. Because not all the projects start to use
CVS right from the beginning, SF.net age is an upper bound for CVS age. The age of the
projects was measured using the CVS age. Thus, I removed from the sample all those
projects with less than one year of CVS age.

The next two columns (SLOC and number of files) indicate the size of the project
in SLOC and the number of source code files. Those values were obtained using Sloc-
Count. The source code measured corresponds to the latest checkout available in the
CVS repositories in February 2008. The change data obtained from the CVSAnalY-SF

56 METHODOLOGY

Devs. SF.net age CVS age SLOC # Files # Changes # MRs

Min. 3 29 12 10 1 2 1
Max. 354 92 91 12, 028, 586 44, 174 126, 354 34, 480
Mean 8 64 33 72, 903 374 2, 417 619
Median 5 64 29 21, 168 142 850 206
Sd. dev. 12 17 17 341, 354 1, 165 5, 626 1, 477

Table 3.3: Statistical properties of the sample of 3821 projects. # Devs. are number of developers.
SF.net age indicates the number of months that the project has existed in SF.net. CVS age
indicates the number of months that have elapsed between the first and the last commits in the
CVS repository. SLOC measures size in Source Lines of Code (it excludes blank and comment
lines). #MRs is number of modification requests.

dataset was recorded in June 2006. The last two columns indicate the number of com-
mits that have occurred in the CVS repository, and the number of modification requests.

3.3.2 Statistical analysis

The first question when applying time series analysis to software evolution, is to deter-
mine which kind of dynamics drives software evolution. That will help to choose the
appropriate model for software evolution.

One of themain properties of time series is the autocorrelation coefficients. These are
the linear correlation coefficient among the time series and the series itself, but shifted
one position to the future. Thus, we may obtain up to n − 1 coefficients, where n is
the number of lags of the series. For instance, if the time series was collected daily,
each day will be a lag. Figure 3.3 shows a diagram that explains how the coefficients
are calculated. For instance, r(1) is calculated correlating the original series against
the series shifted one position, r(2) is the same but the series is shifted two positions.
Following this procedure iteratively, we obtain n− 1 coefficients, being n the number of
points of the original time series (also called lags, as mentioned above).

The autocorrelation coefficients function (ACF) measure the linear predictability of
the series, using only values of the past of the same series. What is more important, the
shape of the plot of the autocorrelation coefficients gives us information about the kind
of dynamics of the process that we are studying. The shape of the plot can also be used
to calculate the parameters of a time series model.

Figure 3.4 shows the theoretical profiles for two extreme case of dynamics: short
memory, and long memory processes. Long memory processes present a slow decay
of the autocorrelation coefficients. Equation 3.6 shows the relationship among autocor-
relation coefficients r(k) and time lags k for an ideal long term process.

log r(k) ∼ C + (2d− 1) log k (3.6)

3.3 THE DYNAMICS OF SOFTWARE EVOLUTION 57

Figure 3.3: Autocorrelation coefficients in a time series. The coefficients are calculated correlat-
ing the series against the same series but shifted one position. If the series has n elements, there
are n− 1 coefficients. In the plot, each circle represents a point in the series. The plot shows how
the series is progressively shifted one position, and how each coefficient is obtaining by linear
correlations of the original series and its shiftings.

being C a constant and d one of the parameters of the model of the process (it is related
to the memory of the process).

A process is said to be long memory (or long term, or long autocorrelated) when
0 < d < 0.5. The ideal long memory process presents a linear profile in the logarithmic
plot of autocorrelation coefficients against time lags, having the slope a particular value
in the interval shown above.

In the other hand, short memory processes present a fast decay of the coefficients,
being the ideal process a linear relationship among the coefficients and the lags4. Equa-
tion 3.7 shows the linear relationship among autocorrelation coefficients r(k) and time
lags k for an ideal short memory process.

r(k) ∼ C (1− ǫ · k) (3.7)

where ǫ and C are constants.
The typical example of a short memory process is the stock market, where the value

of the index today depends at most on values of the index during the last days, but
very old results of the index do not affect its current value. A real process would be
somewhere among those extreme profiles.

Another similar function is the partial autocorrelation coefficients function (PACF).
That function does not provide information about the kind of process, but it is needed
to obtain the parameters for a time series model5.

4Actually, that linear profile correspond to a particular type, denominated ARIMA integrated pro-
cesses, which I will review in the next section.

5Appendix C gives more details about the functions and equations described in the last paragraphs.

58 METHODOLOGY

Figure 3.4: Theoretical profiles of the autocorrelation coefficients of long term and short term
processes. This diagram shows the mathematical relationship among the coefficients and the time
lags.

If the empirical data contains noise, the ACF and PACF do not show a clear pattern,
and we cannot apply the analysis shown in this section. In order to remove the noise
of the samples, I applied kernel smoothing, as described by Shumway and Stoffer [SS06].
This kernel smoothing filter makes the series smoother by introducing some autocorrela-
tion in the data. After the smoothing process, the pattern of the ACF and PACF is more
clear. If too much smoothing is done, the data will artificially show a pattern due to
the autocorrelation added to the data. In the chapter 4, I discuss the influence of the
smoothing process in the validity of the results.

Summarizing, I obtained the daily time series of changes and modification requests
for all the 3, 821 projects of the sample. I obtained the ACF plots for each one of those
projects, and I applied kernel smoothing when necessary to obtain a clear pattern for the
ACF plot. After those steps, I matched the plot against the two extreme cases described
above, to find out whether each project was driven by a short or longmemory dynamics.

To determine this last issue, I computed a linear correlation of the autocorrelation
coefficients against the time lag. If the ACF plot is linear, the process is driven by a
short memory dynamics. Otherwise, it is not. Thus, I obtained a set of 3, 821 linear
correlation coefficients. I calculated an estimation of the density probability function, to
quantify how many of the projects could be considered driven by a short memory, and
how many by a long memory.

3.4 FORECASTING SOFTWARE EVOLUTION 59

3.4 Forecasting software evolution

Last section has shown how to use time series analysis to characterize the kind of dy-
namics that drives software evolution. That information is useful to obtain a statistical
model of the evolution of a software system. I show in this section how to obtain those
models, using time series analysis.

The sample used for this analysis is different that the sample used in the previous
section. The reason is that the requirements for the sample are different. While in the
previous section the goal was to obtain a sample broad enough to get statistical signif-
icance, in this section the goal is to obtain more detailed information about each case
study, because that information is fundamental to obtain proper models for their evo-
lution. For instance, as I show later in this section, I have removed some files from
the projects that I have chosen as case studies, because those files could not be actually
considered part of the systems.

Right after describing the selection criteria and procedure for the sample, I show
how to apply time series analysis to obtain a predictive model for the evolution of the
system.

3.4.1 Data sources

As in the previous sections, the main requirement for the data source for this analysis is
that all the data must be publicly available, and that the software systems must be libre.
In the case of modelling, there are two additional requirements. First, the case studies
must have enough historical information for the fitting procedure of the model. Second,
the case studies must provide contextual information, to get a deep insight in each one
of them, to detect anomalies that could be flaws for the models.

The parameter that I forecasted is size. Therefore, an additional requirement is to
have access to the source code of the project, over its whole history, and with the proper
resolution. This is, to forecast the daily series of size, we need to know the size of the
system at each day since the beginning of the project.

Because of all these requirements, I could not reuse all the cases that I used in the
previous section. I decided to use three case studies that fulfilled all the requirements
previously mentioned, as well as that I knew with some degree of detail. In particular,
all the cases that I finally selected offered their control version repositories (CVS in all
the cases) to be mirrored, what greatly simplified the task of obtaining the daily series
of source code size.

The three case studies that I selected were:

• FreeBSD kernel
This system has been already described in section 3.2.1. But the focus is different
here: I am interested in the development and evolution of the FreeBSD kernel.
From the CVS repository, I selected the module src/sys, and all the commits that
were in the main trunk of the repository.

60 METHODOLOGY

• NetBSD kernel
NetBSD is another flavor of the BSD family of operating systems. It was the second
libre software BSD variant to be formally released, after 386BSD, and continues
to be actively developed. From the CVS repository of this project, I selected the
module src/sys, and all the commits that were in the main trunk of the repository.

• PostgreSQL database management system
PostgreSQL is an object-oriented relational database management system. Its ori-
gins are in 1970s in the University of California at Berkeley, in the Ingres project.
Not much code of Ingres remain nowadays in PostgreSQL though. From the CVS
repository I selected the src module, and all the commits within that module in
the main trunk.

Data collection

I used the softChange tool [GH06] to analyze the CVS repositories of the projects, and
to obtain a database with all the changes history of the project. A change stored in CVS
(a revision, in the CVS argot) can be understood as a point of change. Every time a
change is committed to the CVS, a new revision is created. The database obtained using
softChange contained a table with all the information needed to identify the revision. In
particular, from this database I read the revision identification tag, the filename, a flag to
determine whether or not the revision is in the main trunk, a flag to determine whether
or not the file was removed in that revision, and the date and time for that revision.

With the filename and the revision identification tag, I could obtain the original file
from the CVS. With the help of the flags, I could retrieve only files in the main trunk
(avoiding the files in parallel branches) and avoid revisions where the files were deleted.
Finally, the date and time allowed me to sort all the revisions in a chronological order.

With all the information, I could reconstruct the characteristics of the source code of
the software product just as it was at the moment of each revision. For the case studies
mentioned above, I did that for all the files written in the C programming language,
ignoring header files. I only considered all those files that were in the main trunk of the
repositories. This information is at the revision level. This is, it lacks date and time as to
sort the different versions in a chronological fashion.

I could convert that data into natural time with the following procedure. For each
one of the files, I retrieved all the revisions for every day. If a file had more than one
revision in the given day, I retrieved only the last one (given by the hour filed). I built
a tree of the sources, initially empty. Then I applied the same changes to this tree than
those that were made to real source code tree. Every leaf in this tree were not files, but
meta-data containing the size of the file and the information needed to identify the file
(revision id and file path). Therefore, for every day, I had a tree containing the sources
of the project as they were in the considered day. Hence, instead of the actual files, I
had the values of their size. For every day I aggregated the values of all the files. With

3.4 FORECASTING SOFTWARE EVOLUTION 61

this procedure, I obtained a time series with the daily size of each one of the three case
studies.

Furthermore, using this approach the time resolution is arbitrary. I selected one day
as the period for the time series. But I could obtain time series with a resolution as short
as one hour, or as wide as one year. This revision approach allows to obtain time series
of metrics with an arbitrary period, avoiding to measure each version of the file more
than once.

The other typical procedure to measure size over time consists of taking snapshots
at certain moments of the history, and measure them. However, by measuring snap-
shots we would measure many times all the files that have not changed, which is very
inefficient. If the period is small, the amount of repeated measurements would be large.
Moreover, the period of the snapshots will be the minimum period for the time series,
so loosing resolution in the study of the evolution. By measuring revisions, we only
measure the points of change of the files, and we do not loose any resolution in the time
series.

Therefore, using the procedures explained in the last paragraphs, I obtained a daily
time series of the size of each one of the three case studies. I used those series (and their
properties) to obtain a predictive model for the evolution of the three systems.

Data filtering

I observed some odd jumps in some of the series, and decided to explore further to
find out the reason of those sudden changes. In particular, for FreeBSD I observed
“steps” in the growth curve on May 28th 2000, on May 29th 2001, and on December
12th 2005. The first jump (May 28th 2000) corresponded to the addition of the module
sys/dev/acpica. The second jump (May 29th 2001) corresponded to the removal of the
module sys/contrib/dev/acpica/Subsystem, that was old code for ACPI support in
FreeBSD and was no longer being used. The third jump (December 12th 2005) corre-
sponded to the addition of the XFS filesystem (limited to read-only support). However,
after careful inspection of all these jumps, it seemed that everything was the result of
the development process itself. Therefore, I decided not to remove any of the modules
from the case study.

However, I did remove some modules in the case of PostgreSQL. In the CVS repos-
itory of the project, during some time, two files were removed and added many times.
One developer was removing them, claiming that those files were produced by the build
system. The other developer added the files each time she made new changes to that
module. The files affected were src/interfaces/ecpg/preproc/preproc.c (with 2, 758
SLOC in its latest version) and src/interfaces/ecpg/preproc/pgc.c (with 16, 473 SLOC
in its latest version). These two files were not written by humans, but were the output
of the YACC parser generator. Because of that reason, I decided to remove those two
files from the sample.

Also in PostgreSQL, I found that the src/interfaces/odbc module was spun off at
some point. That module began being part of the repository of PostgreSQL, but the

62 METHODOLOGY

q = 0 p = 0 p 6= 0 q 6= 0

ACF Tails off q significant Tails off
coefficients

PACF p significant Tails off Tails off
coefficients

Table 3.4: Criteria to select the values of p and q in an ARIMA model. ACF means autocorre-
lation function. PACF means partial autocorrelation function. Reproduced from [SS06].

development team was completely different. After some time, that team decided to
move to their own repository, causing a big negative gap in the growth curve of the
PostgreSQL’s CVS repository. Therefore, I decided to remove that module from this
study.

3.4.2 Statistical analysis

Because of internal autocorrelation, time series can be predicted based on past values.
The degree of internal autocorrelation in the data is measured by the autocorrelation
coefficients and the partial autocorrelation coefficients.

If the process that we want to forecast is driven by a short memory dynamics, we can
use ARIMA (Auto-Regressive, Integrated, Moving-Average) models6. ARIMA models
are linear combinations of past values of the series, weighted by some coefficients. To
obtain those coefficients we need to identify three different parameters: p, d and q.
A seasonal component can be added to the model. For instance, if we would know
that any of the projects is releasing a new version with a stable period (for instance, a
new release every six months), we could aggregate that information to the model, so
increasing the goodness of the prediction. However, I have not tried to add a seasonal
component to the models in the present study.

The values for the parameters are obtained using the Box-Jenkins method [MWH98].
The first requirement to apply this method is that the data needs to be stationary. The
number of differences that must be applied to the data is the value of the parameter d.
If the series are close to linear, then stationary data can be obtained applying the first
difference (d = 1).

In order to obtain the values of p and q, we must inspect the plot of the autocorrela-
tion and partial autocorrelation coefficients. The criteria to choose the values of p and q
are explained in table 3.4. To apply those criteria, we have to plot both the autocorrela-
tion coefficients function, and the partial autocorrelation functions. With the values of
the parameters, we can now fit the ARIMA model, and use it to forecast future values
of the time series.

In chapter 4, I show the autocorrelation and partial autocorrelation plots, and how
to select the values of the parameters of the model (p, d and q) based on empirical data.

6Appendix C contains more information about the equations and properties of ARIMA models

3.4 FORECASTING SOFTWARE EVOLUTION 63

Then I fit an ARIMA model using a training set, and test its goodness against a test set.
Appendix C provides more details about the equations, parameters and coefficients of
an ARIMA model.

64 METHODOLOGY

CHAPTER

FOUR

Results

4.1 Introduction

This thesis addresses six research questions that were shown in section 1.3.1. I recall
here those questions:

1. Are the laws of software evolution valid for the case of libre software?

2. How many metrics do we need to characterize a software product?

3. Which is the shape of the statistical distribution of the size of software?

4. Which are the properties of that distribution? Is there any pattern or commonality
in its properties?

5. What kind of dynamics drives software evolution?

6. How can we accurately forecast the evolution of software?

In this chapter, I show the results obtained after applying the methodology shown
in chapter 3. The next sections show those results, in the same order that the above list
of questions.

4.2 First question: Comparability of different metrics

In section 2.3.4, I highlighted one research question that has not yet been addressed in
the literature: the comparability of empirical studies of software evolution that use dif-
ferent metrics. In particular, some works [GT00, RAGBH05] have found that the Linux
kernel was evolving at a super-linear rate. The laws of software evolution [Leh85a,
Leh96, LRW+97] say that the growth rate of a software system decreases over time be-
cause of increasing complexity. Therefore, there is a conflict between those two studies.

65

66 RESULTS

SLOC LOC FUNCS CYCLO HLENG HVOLU HLEVE HMD

0.88 0.89 0.90 0.87 0.87 0.85 0.94 0.77

Table 4.1: Coefficient of correlation of the number of modules against the rest of metrics. Corre-
lations performed in logarithmic scale.

The main question behind that conflict is whether or not the laws of software evolution
can be applied to the case of libre software.

Lehman labeled the study by Godfrey as an anomaly [LRS01], and said that in any
case the studies are not comparable, because the size and time units used by Godfrey
are different to those used by Lehman. Godfrey uses SLOC, and Lehman number of
files.

4.2.1 Overall correlation

To calculate the overall correlation coefficient at the package level, I took each package
as a single point for the correlation analysis. This is, for each one of the 6, 556 pack-
ages, I obtained the value for each one the metrics by aggregating the values of the files
contained in that package. I decided to calculate the values of the packages by aggre-
gation because the studies with I want to compare to, calculate the values of the overall
attributes using the same procedure.

Figure 4.1 shows the scatter plot of SLOC vs Number of modules both in linear
(left) and logarithmic scale (right). As that figure suggests, there is a linear trend in the
logarithmic plot. Therefore, the correlations will be performed in logarithmic scale. The
same behavior is observedwhen plotting number of modules against the rest of metrics.
This is a consequence of the shape of the statistical distribution of software size, which
is very close to a normal distribution. This makes it possible to apply the correlation
analysis, and to obtain a measure of the significance of the correlation coefficient. All
the correlations were computed using the least square methods, and I calculated the
Pearson coefficient. I discarded other options, like Spearman’s rank correlation, because
of the properties of the sample: we have exact measurements of the metrics, and not
only ranks.

Therefore, using that sample, I have correlated the number of SLOC, LOC, FUNCS,
CYCLO, HLENG, HVOLU, HLEVE and HMD against the number of files in logarith-
mic scale, for the set of 6, 556 ports written in C. The level of significance for all the
correlation coefficients shown in this section is p < 2.2 · 10−16 (in other words, all the
correlation coefficients are significant). Table 4.1 shows the Pearson coefficients of those
correlations. For all the metrics, the correlation coefficient is quite high (only for the
case of Halstead’s Mental Discriminations, the coefficient is under 0.80). Therefore, at a
first glance, all the metrics are highly correlated with number of modules.

The correlations can be biased because of aggregation effects. In order to test the
sensitivity of the results with some of the properties of the sample, I divided the overall

4.2 FIRST QUESTION: COMPARABILITY OF DIFFERENT METRICS 67

0 2000 4000

0
40

00
00

10
00

00
0

(a)

Files

S
LO

C

1 5 50 500

1e
+

00
1e

+
02

1e
+

04
1e

+
06

(b)

Files
S

LO
C

Figure 4.1: Scatter plot of SLOC vs Number of modules. (a) Linear scale. (b) Logarithmic scale.
The linear trend is clear in the case of logarithmic scale, but not in the case of linear scale.

sample in smaller and more homogeneous groups. I have divided the groups using the
following properties: package size and field of application, which are discussed in the
next subsections.

4.2.2 Comparability discriminating by package size

In order to test the sensitivity of the correlations with the size of the packages, I repeated
the correlations, but with subsamples obtained by discriminating by package size.

Thus, I divided the distribution of packages in four subsamples. The size limits for
each subsample were obtained by calculating the four quantiles of the distribution of
the size of the packages. So we ensured that all the subsamples contained the same
number of elements.

The correlations were then computed taking all the packages in each subsample,
thus obtaining four correlation coefficients. We performed the correlations of number
of modules against the rest of metrics. Figure 4.2 shows the results. There is a curve
for each correlation, and each curve contains four points, one for each subsample. The
size in the horizontal axis is in logarithmic scale, because the difference in the size of the
packages is of several orders of magnitude.

As figure 4.2 shows, for small packages, correlations are poor. However, if we take
the subsample of the largest packages, correlations are high. Taking into account that
the number of points for each correlation is the same (about 1600 points), I cannot assign
this poor value to an insufficient number of points in the sample. Therefore, the corre-
lations are only significant for large packages (> 5, 000 files). For the particular case of
SLOC, we can consider that the correlations of this metric with number of modules is

68 RESULTS

10 20 50 100 200 500 1000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Package size (num. files)

r

SLOC
LOC
FUNC

CYCLO
HLENG
HVOLU

HLEVE
HMD

Figure 4.2: Correlation coefficient against package size. The distribution of packages was divided
in four quantiles, and the correlations were performed using all the packages belonging to each
interval. This procedure ensured that the number of points for each correlation was constant.
The correlations were made in logarithmic scale, of all the metrics against number of modules.
For instance, the circles correspond to the correlation of SLOC against number of modules. The
correlation is only significant for large packages, probably because of aggregation effects.

significant for packages containing more than 200 files. There is the exception of the
correlation of the number of files with Halstead’s level, that is apparently stable.

4.2.3 Comparability discriminating by field of application

In this section, I have divided the whole sample in subsamples, each corresponding to
a different field of application. The breakdown process is the same one described in
section 3.2.4.

The argument to divide the sample using this criterion is that different fields of ap-
plication may present different characteristics, and so correlations that are fulfilled in a
global sample or in a given field, may not appear in other fields.

I divided the overall sample in 60 subsamples. In each subsample, I calculated the
correlation among the number of modules and the rest of size and complexity metrics.
The values for each package were obtained by aggregating the values of each individual
file. The correlations were performed in logarithmic scale. Therefore, I obtained 60
correlation coefficients for each pair of metrics. Table 4.2 contains the summary statistics
for the 60 correlation coefficients. It shows the correlations for each pair of metrics in
each row. For instance, the first row shows the summary statistics of the 60 coefficients
obtained when correlating SLOC against number of modules in all the subsamples. The
last column shows the overall coefficient, obtained using the whole sample (it is the
same coefficient shown in table 4.1).

4.3 SECOND QUESTION: HOW MANY METRICS TO CHARACTERIZE SOFTWARE? 69

Min. Max. Mean Median Sd. dev. Overall

SLOC 0.78 1.00 0.88 0.89 0.05 0.88
LOC 0.79 1.00 0.89 0.90 0.04 0.89

FUNCS 0.80 1.00 0.90 0.90 0.04 0.90
CYCLO 0.77 1.00 0.88 0.88 0.05 0.87
HLENG 0.79 1.00 0.88 0.88 0.05 0.87
HVOLU 0.77 1.00 0.94 0.94 0.04 0.85
HLEVE 0.76 1.00 0.86 0.86 0.06 0.94
HMD 0.60 1.00 0.78 0.77 0.08 0.77

Table 4.2: Summary of the correlation coefficients calculated for all the fields of application. All
the correlations were made against the number of modules and in logarithmic scale. The last
column is the overall coefficient calculated for all the packages as a single sample.

As that table shows, all the correlations are stable in all the fields of applications.
Although there is some variability, the standard deviation is very low, and the mean
and the median are very close to the overall coefficient. Therefore these correlations do
not depend on the field of application.

4.2.4 Summary

The question addressed here is the comparability of studies that use SLOCs and number
of files. Based on the results obtained with a sample of 6, 556 software systems written
in C, we conclude that:

Empirical studies that use SLOC or number of files are comparable, for large
software projects (> 200 files), and regardless the field of application of the
project.

Applied to the case of the controversy between the studies by Godfrey [GT00] and
Lehman [Leh85a], both studies are comparable. Therefore, the laws of software evolu-
tion are not valid for the case of Linux (and other cases that use SLOC as size metric
instead of number of files).

4.3 Second question: How many metrics to character-

ize software?

The second research question was about the attributes of software. The two main static
attributes of software are size and complexity. But there are many more metrics that can
be used to quantify those attributes.

70 RESULTS

Metric Mean Median Std. dev. Min. 1st qnt. 3rd qnt. Max.
SLOC 294 86 829 1 26 284 162, 248
LOC 418 144 1, 011 1 56 414 162, 744
FUNCS 8 2 20 0 0 8 2, 253
CYCLO 46 7 123 1 1 40 9, 289
HLENG 1, 798 449 8, 520 2 125 1, 576 2, 255, 154
HVOLU 15, 692 2, 917 108, 234 2 678 11, 756 36, 116, 196
HLEVE 0.0739 0.0284 0.173 ∼ 0 0.0111 0.0769 2.000
HMD 3.67 · 106 1.01 · 105 3.89 · 107 1 9, 508 1.03 · 106 2.15 · 109

Table 4.3: Descriptive statistics of the sample of files. The table shows the mean, standard
deviation and quantiles (minimum, first, median, third and maximum) for the different metrics
using all the files of the sample.

Table 4.3 shows some basic statistical properties of the sample used to address this
question. The differences between the mean and the median for all the metrics evi-
dence that each one of the variables to be correlated are not normally distributed. The
correlation analysis requires all the variables to be normally distributed.

The correlations shown in this section are calculated at the file level, because I think
that this is the minimum unit that ensure independence between the items of the sam-
ple. In the previous section, I have calculated the correlations aggregating files in order
to compare with studies that used the same procedure. However, this aggregation pro-
cess introduces dependence between the items in the sample. At the file level, if we en-
sure that files have been independently generated (for example, removing duplicated
files), we can affirm that there exist statistical independence between the items of the
sample

4.3.1 Correlation for the overall sample

I answer the question of how many metrics (and which ones) using a correlation analy-
sis, over the sample described in section 3.2, and with the metrics described in the same
section. The results shown here are bounded to the case of the C programming lan-
guage, and also to the case of libre software. The correlation analysis was performed at
the file level, assuming that all the files have been independently generated. Therefore,
for the correlation I had 447, 612 points (one for each one of the files), with a set of 8
values for each point (one for each one of the metrics considered). For all the correlation
coefficients shown in this section, p < 2.2 · 10−16.

The first step is to choose the kind of correlation. I plotted the data in a scatter plot,
both in linear and logarithmic scales (see figure 4.3). In linear scale, the relationship is
clearly non-linear. In logarithmic scale, although dispersed, the relationship is close to
a linear equation. Figure 4.3 shows only Halstead’s level versus SLOC, but the same
behavior is verified with any other pair of metrics. Because of this, I decided to do all

4.3 SECOND QUESTION: HOW MANY METRICS TO CHARACTERIZE SOFTWARE? 71

0.0 0.5 1.0 1.5 2.0

0
50

00
15

00
0

(a)

Halstead’s level

S
LO

C

1e−04 1e−02 1e+00

1
10

10
0

10
00

(b)

Halstead’s level
S

LO
C

Figure 4.3: Scatter plot of SLOC against Halstead’s level. (a) Linear scale. (b) Logarithmic scale.

the correlations in logarithmic scale. As in the case of the previous section, I applied the
least square method, and I calculated the Pearson coefficient.

Table 4.4 shows the Pearson correlation coefficients among the logarithm of all the
metrics. If we focus in the first column, we can see that SLOC is highly correlated with
the rest of the metrics. The correlation with the number of functions is not so high
(r < 0.8). In general, the number of functions presents lower coefficients than the rest
of the metrics, except with cyclomatic complexity.

Summarizing, all the complexity metrics are highly correlated with LOC or SLOC.
The rest of the metrics are highly correlated as well (the minimum correlation coefficient
is 0.72 between the number of functions and Halstead’s volume). This means that any
of the metrics is providing as much information as any other, and we need only one of
them (for instance, SLOC) to characterize the software system.

4.3.2 Correlation discriminating by file type

Table 4.4 shows the correlation for thewhole sample of files. All of them arewritten in C,
and the sample contains both header and non-header files. I repeated the analysis using
two subsamples, obtained by separating header files (152, 937 files) from non-header
files (294, 675 files) .

Table 4.5 shows the results. It only shows the correlation coefficients of SLOC against
the rest of complexity metrics. The correlation coefficients for non-header files are a
little higher than for the whole sample. For header files, they are lower. The difference is
quite notable for the case of cyclomatic complexity, which does not show any significant
correlation.

72 RESULTS

SLOC LOC CYCLO HLENG HVOLU HLEVE HMD FUNCS

SLOC 1.00 0.96 0.82 0.97 0.97 −0.87 0.95 0.76
LOC 0.96 1.00 0.79 0.94 0.93 −0.84 0.92 0.74

CYCLO 0.82 0.79 1.00 0.80 0.79 −0.86 0.84 0.89
HLENG 0.97 0.94 0.80 1.00 1.00 −0.90 0.99 0.73
HVOLU 0.97 0.93 0.79 1.00 1.00 −0.90 0.98 0.72
HLEVE −0.87 −0.84 −0.86 −0.90 −0.90 1.00 −0.96 −0.77
HMD 0.95 0.92 0.84 0.99 0.98 −0.96 1.00 0.76

FUNCS 0.76 0.74 0.89 0.73 0.72 −0.77 0.76 1.00

Table 4.4: Correlation among the logarithm of all the metrics. This sample includes both header
and non-header files.

CYCLO HLENG HVOLU HLEVE HMD

Header 0.35 0.92 0.92 −0.71 0.89
Non-header 0.91 0.98 0.97 −0.90 0.96

Table 4.5: Correlation coefficients of SLOC against the rest of complexity metrics for the header
and non-header files.

This difference is obviously due to the nature of header files. They usually lack loop
structures, and branching of the flow of the program. Header files are flat, containing
declarations of variables, functions, etc. Therefore, regardless the size of the file, the
cyclomatic complexity value is low.

Summarizing, the main conclusion is that for header files the high correlations be-
tween size and cyclomatic complexity are not verified. Halstead’s science metrics are
highly correlated both for header and non-header files.

4.3.3 Correlation discriminating by package size

In this section, I explore how the correlation coefficient among SLOC and the set of
complexity metrics varies with the size of the package. I performed the correlations in
two different ways:

• Across packages
I divided the set of packages in nine intervals, being the frontier between intervals
the values of the deciles of the sample of the sizes of the packages. Then I took all
the files belonging to the packages in each interval and I calculated the correlation
coefficients using those files.

• Within each package
I computed the correlation coefficient using the sample of files contained in each
package, and then I plotted the correlation coefficient for each package against its

4.3 SECOND QUESTION: HOW MANY METRICS TO CHARACTERIZE SOFTWARE? 73

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Package size (SLOC)

r
S

LO
C

 v
s

C
Y

C
LO

Figure 4.4: Correlation coefficient (SLOC vs McCabe, logarithmic correlation) against package
size. The size of the packages was divided in nine intervals (deciles), and the correlation coeffi-
cient was calculated using all the files belonging to the packages contained in each decile (this is,
across packages). Horizontal axis in logarithmic scale.

size. I obtained a very dispersed scatter plot, so I summarized the data using a
smoother.

Correlation across packages

As shown in the previous chapter, the files contained in the sample under study be-
longed to 6, 556 different packages. I measured the size of each one of these packages,
then I calculated the deciles for this sample. This process split the sample in nine inter-
vals. For all the packages in each interval, I took all the files contained in those packages
as a sample, and calculated the correlation coefficients in logarithmic scale. I calculated
the correlations for SLOC against the rest of complexity metrics.

Figure 4.4 shows the results for the correlations across packages, for the case of the
SLOC against cyclomatic complexity. The correlation coefficient is quite stable when the
size varies. The rest of correlation coefficients shows the same behavior. Therefore the
size of the package does not affect the strength of the correlation. The high correlation
coefficients obtained with the whole sample are not because of aggregation effects (at
least, of aggregation at a global level, because we are aggregating packages belonging
to the same interval).

Correlation within packages

In this case I took all files in each package, and I used them as sample to calculate the
correlations. Therefore, we had a correlation coefficient for each package. In this case,
of course, the results are much more scattered. Figure 4.5 shows the scatter plot of

74 RESULTS

1e+02 1e+03 1e+04 1e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size (SLOC)

r
S

LO
C

 v
s

C
Y

C
LO

Figure 4.5: Scatter plot of the correlation coefficient of SLOC vs CYCLO for each package,
against the size of the package in SLOC. Each point represents a package. We have then 6, 556
points in this plot. The correlation was logarithmic. Although the results are very dispersed, we
can observe that most of the points concentrate on values of around r = 0.80. Horizontal axis in
logarithmic scale.

the correlation coefficient of SLOC against cyclomatic complexity. The correlation was
logarithmic. In this case, there is great variation in the value of the correlation coefficient
for each package, but we can observe a main trend in the graph.

In order to extract the trend of the data shown in figure 4.5, I used the lowess smoother
[Cle81]. Figure 4.6 shows the results. This time, the trend is much clearer. The results
are similar to those shown in figure 4.4. However, in the case of correlations within
packages, the correlation coefficient falls for large packages. For the case of small pack-
ages the results are not very significant, because those packages contain very few files to
be enough to perform a correlation using them. In any case, the correlation coefficient
is not heavily affected by the size of the package. I can conclude then again that the
strength of the correlation of SLOC and CYCLO using the whole sample is not because
of any aggregation effect.

I repeated the same procedure for the rest of the correlations of SLOC against the
rest of complexity metrics, in logarithmic scale. All the metrics but Halstead’s level
showed also stable. In the case of Halstead’s level, for large packages the correlation is
poor. That could indicate that the high correlation coefficients obtained when using the
whole sample are because of aggregation effects. In other words, I cannot affirm that
there is indeed a correlation among SLOC and Halstead’s level. Figure 4.7 shows the
results for these metrics. Again, the figure shows only the main trend obtained using
lowess.

4.3 SECOND QUESTION: HOW MANY METRICS TO CHARACTERIZE SOFTWARE? 75

1e+02 1e+03 1e+04 1e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size (SLOC)

r
S

LO
C

 v
s

C
Y

C
LO

Figure 4.6: Smoothing of the correlation coefficient of SLOC vs CYCLO for each package, against
the size of the package in SLOC. The correlation was logarithmic. Horizontal axis in logarithmic
scale.

1e+02 1e+03 1e+04 1e+05 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size (SLOC)

r

r SLOC vs HLENG
r SLOC vs HVOLU
r SLOC vs HLEVE
r SLOC vs HMD

Figure 4.7: Smoothing of the correlation coefficients of SLOC vs all the Halstead’s metrics for
each package, against the size of the package in SLOC. The correlation was logarithmic. Hor-
izontal axis in logarithmic scale. It seems that the correlation of SLOC vs Halstead’s level is
not stable with the size of the package. Therefore in spite of the high coefficient when correlated
globally, we cannot conclude that there is indeed a correlation between the two variables.

76 RESULTS

Min Max Mean Median Sd. dev. Overall

CYCLO 0.66 0.99 0.84 0.85 0.05 0.82
HLENG 0.88 1.00 0.97 0.97 0.02 0.97
HVOLU 0.86 1.00 0.97 0.97 0.02 0.97
HLEVE −0.99 −0.38 −0.57 −0.56 0.10 −0.87
HMD 0.87 1.00 0.95 0.96 0.02 0.95

Table 4.6: Summary of correlation coefficients calculated by field of application. Correlations
against SLOC. The last column shows the correlation coefficient computed for the whole sample,
without any classification (by filetype, by package size, etc).

4.3.4 Correlation discriminating by field of application

Different field of applications have a different programming culture, and they address
problems with different levels of complexity. For example, the code of an operating
system may not show the same characteristics that an end-user application such as web
browser. Because of that, the results obtained in the previous sections may greatly vary
depending on the field of application.

The overall sample in this case was obtained from software packages classified in 60
different categories. Examples of these categories are net, devel, games, www, sysutils,
databases, etc. Therefore, it is a rich sample of many different field of applications.

In order to measure the sensitivity of the results to the field of application, I repeated
the correlations for the files contained in each one of the categories. So I obtained 60
correlation coefficients for each pair of metrics. I computed the correlations among the
logarithm of the metrics. The results are summarized in table 4.6. All the correlations in
that table are made against SLOC. For instance, the first row contains the linear correla-
tion coefficients of SLOC vs CYCLO. Because there are 60 values, that table shows only
a summary of the main statistics of this set of 60 coefficients.

As that table shows, the behavior is quite stable for all the pairs of metrics, except for
SLOC vs Halstead’s level (I discuss this case below). For instance, the overall coefficient
shown in table 4.4 is quite similar to the mean and median values of the coefficients
obtained by discriminating by field of application.

The case of SLOC vs Halstead’s level (HLEVE row in table 4.6) deserves more at-
tention. In the previous section, I showed that the logarithmic correlation of SLOC vs
Halstead’s level was sensitive to the size of the package. When the package size reaches
certain value, the correlation coefficient drops, indicating no relationship among the
two metrics. The coefficient presents a mean value of −0.57 and a median of −0.56, in
spite of the overall coefficient of −0.87 and a maximum value of −0.99 (and some other
values of ∼ −0.80).

The correlation coefficient of SLOC vs Halstead’s level is quite sensible to the field of
application. This would indicate that, as it happened in the previous section, the good
overall coefficient is due to aggregation effects. Therefore I cannot affirm then that there
is indeed a correlation among SLOC and Halstead’s level.

4.3 SECOND QUESTION: HOW MANY METRICS TO CHARACTERIZE SOFTWARE? 77

4.3.5 Analysis of Halstead’s level

Let me analyze this exception in more detail. Halstead’s level definition was shown in
equation 3.4, in section 3.2.3. I reproduce here that equation:

lv =
2
n1

n2
N2

(4.1)

In that equation n1 is the number of distinct operands, n2 is the number of distinct
operators, and N2 is the total number of operators. The definition of operand and oper-
ators was given in the mentioned section1. Higher Halstead’s levels imply less difficult
programs. Actually, the inverse of level is denominated sometimes as difficulty. The n2

N2
elementmeasures the inverse of the average number of operators used in the code (com-
pared against the number of different operators used). Using the above definition, the
more operators are used in the code, the more difficult is to comprehend the program.
In other words, the difficulty of the program is directly proportional to the redundancy
of statements.

The other element 2
n1

measures the inverse of the number of operands. The more
times operands are used (regardless they are defined as new or reused as instantiations),
the more difficult the program will be.

I think that the average number of operators in a source code file must be probably
independent of the size, and it has to be more related for instance to the programming
language.

I have not measured other data that could help to relate the value of Halstead’s level
to the actual complexity of the file (like number of hours spent while writing the file, or
number of defects that the file contained).

4.3.6 Summary

In this section, the second research question has been discussed: how many metrics
do we have to use to characterize software? For answering it, I considered the two
main static attributes of software: size and complexity, measured using eight different
metrics.

For an overall sample of libre software written in C, all the metrics are highly cor-
related. Therefore, in principle, from that set of eight metrics, we only need one to
characterize software. However, when correlating Halstead’s level against the rest of
metrics, using more homogeneous samples (filtering the overall sample by package size
or by field of application), I found many cases where the correlation was not verified.
Therefore, we can use SLOC and Halstead’s level to characterize a software system.

For header files, the correlation of SLOC vs McCabe’s cyclomatic complexity is very
poor for header files. Therefore, we should use McCabe’s cyclomatic complexity as well
as any of the rest of the metrics.

1In a nutshell, operators are statements, and operands are variable definitions and instantiations.

78 RESULTS

4.4 Third question: The shape of the distribution of the

size of software

The third question is about the shape of the statistical distribution of the size of software.
The size of the sample used for the previous analysis allows us to obtain an estimation
of the statistical properties of software. The shape of the distribution is important, be-
cause it helps to determine which parameters of the distribution better describe it. For
instance, if the distribution is normal, we can use the mean and the standard deviation.
Furthermore, the shape of the distribution provides information about the process that
generated that distribution.

Table 4.3 on page 70 shows the main statistical properties (mean, median, etc) for the
case of the sample of software written in C. The difference between the median and the
mean, indicates that the density function is right skewed. To explore this issue, I show
here the shape of the distribution of the SLOC metric, and considering the complete
sample of 12, 010 packages (this includes packages written in different programming
languages). I have tested that the shape of the distribution does not change considering
only packages written in C, and all the software packages.

After plotting an histogram of the sample and an estimation of the probability den-
sity function, I could not find a particular statistical distribution for this result. How-
ever, after repeating the procedure of estimating the density function using the loga-
rithm of the values of the metrics, all the cases were apparently close to a normal distri-
bution. I decided to explore further to try to find out whether or not the sample matched
with a particular statistical distribution.

Figure 4.8 shows a normality test for the logarithm of the SLOC metric. That test
compares the quantile of the sample with the quantiles of a theoretical normal distri-
bution. If the sample were extracted from a normal distribution, the scatter plot of the
quantiles would be a straight line. In the case of figure 4.8, it shows that only in a certain
range the sample follows a straight line. In particular, tails (lower and upper) deviate
from normality.

I could not figure out the shape of the distribution for the tails using only the quantile-
quantile plot. In order to find out the profile of the tails, we can use the complementary
cumulative distribution function (CCDF) plot. Figure 4.8 shows that the tails start to de-
viate from normality for values higher than 3, 000 SLOC (∼ 7− 8 in logarithmic scale),
and lower than 10 SLOC (∼ 2 in logarithmic scale). Figure 4.9 shows the plot CCDF of
the tails (left side for the lower tail, right side for the upper tail).

The upper tail follows a power law distribution, because its complementary cumu-
lative distribution function is close to a straight line. The lower tail seems not to be a
power law distribution (neither a normal distribution as shown in figure 4.8).

If we look at the whole plot of the complementary distribution function, we can
observe this combination of a lognormal body with a power law tail. Figure 4.10 shows
that plot. It shows the CCDF of the sample of SLOC, a lognormal density function
with the same mean and standard deviation than our sample, and a power law density

4.4 THIRD QUESTION: THE SHAPE OF THE DISTRIBUTION OF THE SIZE OF SOFTWARE 79

−4 −2 0 2 4

0
2

4
6

8
10

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.8: Normality test for the final sample (SLOC metric). Tails deviate from normality, but
the main body of the sample is very close to a normal distribution. The test is done in logarithmic
scale.

function estimated for the upper tail (SLOC> 3000) using the methods proposed by
Clauset et al. [CSN07]. Themain bodymatches well the lognormal, the tail of the sample
deviate from the lognormal and it is well fitted by a power law2.

That profile (lognormal body, power law tail) has been identified before [Mit04b]. It
is called a double Pareto distribution. In that distribution, the tails for low or high values
follow power law distributions, while the body follows a lognormal distribution3.

4.4.1 Summary

This third question is about which is the shape of the statistical distribution of the size
of software. In the previous sections I found that all the metrics were highly correlated
when using the overall sample. For that same sample, I showed the main statistical
properties. Those properties are only estimators of the actual properties of the whole
population.

But more important than the actual values of the mean, the median or any other
property, is the shape and parameters of the distribution. Software size and complexity
is distributed like a double Pareto distribution, which has a lognormal body and power
law tails. In this particular case, the power law tails do not have a heavy influence.
Therefore, we can approximate the population by a lognormal, and use the mean and
standard deviation of the lognormal as estimators of the whole population. This allows

2Appendix B includes plots and tables for the rest of metrics, and for header and non-header files.
3Appendix A shows a description of this distribution and some of its properties.

80 RESULTS

1 2 3 4 6

0.
92

0.
94

0.
96

0.
98

1.
00

(a)

SLOC

P
[X

>
x]

5e+03 5e+04

1e
−

06
1e

−
04

1e
−

02

(b)

SLOC

P
[X

>
x]

Figure 4.9: Complementary cumulative distribution function for the SLOC sample. (a) Lower
tail (SLOC < 10). (b) Upper tail (SLOC > 3000). The upper tail is a straight line, indicating
that the upper values follow a power law distribution.

1 100 10000

1e
−

04
1e

−
02

1e
+

00

SLOC

P
[X

>
x]

Sample
Lognormal
Power law

Figure 4.10: Complementary cumulative distribution function for the SLOC sample, compared
against a lognormal distribution with the same mean and standard deviation, and against a
power law distribution with α = 3.34. The high tail of the sample deviate from the lognormal,
and it is close to a power law distribution (straight line).

4.5 FOURTH QUESTION: SELF-SIMILARITY IN SOFTWARE 81

for some affirmations. For instance, for the case of files written in C, table 4.3 shows
that half of the files has less than 144 lines of code (86 SLOC). Only 25% of the files have
more than 414 lines of code (284 SLOC).

4.5 Fourth question: Self-similarity in software

The fourth question is about patterns in the attributes of software. In the previous sec-
tion I have found that software size is distributed like a double Pareto. In this section, I
show whether this distribution appears using other metrics, for the whole sample and
also for more coherent subsamples (using the same breakdown criteria shown in the
previous sections).

4.5.1 Header and non-header files

In section 4.3, I found that the cyclomatic complexity of header files was not highly
correlated with size (unlike the rest of complexity metrics). Because of that, I looked at
the statistical distribution of all the metrics of both header and non-header files.

Considering the SLOC metric, when plotting the quantile-quantile normality plot,
and the complementary cumulative distribution function, the shapes of the plots are
the same that those shown in figures 4.8 and 4.9, both for the case of header and non-
header files.

Figure 4.11 shows the quantile-quantile normality test for the logarithm of the cyclo-
matic complexity of the sample of header files. Again, we have the same behavior that
with SLOC, but this time the low end tail seems to be more heavy; that is because a lot
of header files have very low values for complexity (1 in linear scale, 0 in logarithmic
scale). Figure 4.12 shows the complementary cumulative distribution function (CCDF)
of the sample, compared against a lognormal with the same mean and standard devi-
ation that the lognormal part of the sample, and a power law distribution fitted using
the procedure proposed by Clauset et al. [CSN07]. As that plot shows, the CCDF does
not match a lognormal. A pure power law distribution would be a straight line in that
plot, but the sample is clearly not a straight line. Therefore, the CCDF of the sample
falls between the extreme cases of power law and lognormal. However, this time, the
power law character is stronger than in the rest of cases. In the case of non-header files,
the behavior is exactly the same than with the overall sample.

Therefore, the distribution of size both for header and non-header files is similar
than in the case of the overall sample. However, the distribution of complexity for
header files seems to have a different shape, much closer to a power law distribution
than in the case of non-header files.

82 RESULTS

−4 −2 0 2 4

0
1

2
3

4
5

6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.11: Normality test for the logarithm cyclomatic complexity of header files. Low tail
deviate from normality and the main body is lognormal as in the case of SLOC. Very high values
also deviate from normality.

1 5 10 50 500 5000

1e
−

05
1e

−
03

1e
−

01

CYCLO

P
[X

>
x]

Sample
Lognormal
Power law

Figure 4.12: Complementary cumulative distribution function for the cyclomatic complexity of
header files, and comparison against a lognormal with the same mean and standard deviation,
and against a power law distribution with α = 2.44. The sample is not fitted by a power law
neither by a lognormal.

4.5 FOURTH QUESTION: SELF-SIMILARITY IN SOFTWARE 83

−4 −2 0 2 4

0
5

10
15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.13: Normality test of the logarithm of package size. The main body of the distribution
is normal, and the tails deviate from normality.

4.5.2 Shape at more aggregated levels

As shown in table 3.1 on page 47, the sample had 12, 010 unique software packages,
this is, packages that were not different versions of the same package. Although in
all the previous analysis included in this section I have focused in the case of the C
programming language, we measured the number of SLOC for all the files in all the
packages. Hence, we can represent the distribution of size using all of them.

Figure 4.13 contains a normality test of the logarithm of the size of software pack-
ages. As in the previous cases, the sample is very close to a lognormal distribution,
although the tails of the sample seem to deviate from the lognormal.

In order to find out the distribution that matches the shape of the tails, we can use
the complementary cumulative distribution function. Figure 4.14 shows it compared
against the CCDF of a lognormal distribution of the samemean and standard deviation,
and a power law distribution estimated using the method proposed by Clauset et al.
[CSN07].

If we aggregate one more level, and represent the size of sections (as aggregated
number of SLOC), we obtain the same kind of distribution. Figure 4.15 shows the CCDF
of the size of sections, compared against the CCDF of a lognormal with the same mean
and standard deviation, and a power law distribution estimated using the methods
proposed by Clauset et al. [CSN07]. The figure shows again how much the tail deviates
from the lognormal, indicating the same shape than in all the previous cases.

The same kind of distributions appears if I use number of elements instead of num-
ber of SLOC. For ports, the elements that compound them are files, and for sections the
elements are ports. If I repeat the analysis using the number of files to measure the size

84 RESULTS

1e+00 1e+02 1e+04 1e+06

5e
−

04
5e

−
03

5e
−

02
5e

−
01

SLOC

P
[X

>
x]

Sample
Lognormal
Power law

Figure 4.14: Complementary cumulative distribution function of the size of the ports (software
packages). The empirical CCDF is compared against a lognormal distribution, with the same
mean and standard deviation, and against a power law distribution with α = 2.97. The body of
the sample matches the lognormal distribution, but the tail is better described by a power law.

1e+03 1e+05 1e+07

0
.0

2
0
.0

5
0
.2

0
0
.5

0

SLOC

P
[X

>
x
]

Sample

Lognormal

Power law

Figure 4.15: Complementary cumulative distribution function of the size of the sections (or
fields of applications). The empirical CCDF is compared against a lognormal distribution, with
the same mean and standard deviation, and against a power law distribution with α = 3.14. The
body of the sample matches the lognormal distribution, but the tail is better described by a power
law.

4.6 FIFTH QUESTION: THE DYNAMICS OF SOFTWARE EVOLUTION 85

of packages, and the number of packages to measure the number of sections, we obtain
the same type of distribution. Similarly, if I consider only those packages that contain
files written in C, the same results are obtained.

Summarizing, the same distribution of size is found at different levels of granularity.
If I measure the size of the sections, I obtain a double Pareto distribution. If we zoom in,
and measure the size of ports, the same distribution appear. Zooming in again, I obtain
once more the same distribution for the size of files.

4.5.3 Summary

This section has shown how the double Pareto distribution appears at other levels of
granularity, and that the shape of the distribution of size of header files is different,
much closer to a power law distribution.

The previous section showed how that distribution appears when measuring the
size of files. In this section, I have shown that if I measure the size of packages, either
using SLOC or number of files within each package, that parameter is distributed like a
double Pareto. If I measure the number of domains of application, or sections in the ports
argot, either using SLOC, number of files or number of packages within each section,
that parameter is distributed like a double Pareto as well.

This means that the same shape is observed at different levels of granularity. In other
words, software is self-similar in this respect.

4.6 Fifth question: The dynamics of software evolution

In this section I present the analysis of the dynamics of software evolution, showing
how to apply time series analysis to analyze software evolution. The main goal is to
answer the question of whether evolution is a short memory or a long memory process.

For this analysis, I have used a sample of 3, 821 projects. The properties of the
projects and the method used to retrieve the data were described in section 3.3. For
each project I had a time series of the daily number of commits, and another time series
of the daily number of modification requests (MRs).

For each one of the projects, I computed the autocorrelation coefficients function
(ACF) of each time series, obtaining 3, 821 profile plots like the shown in section 3.3.2.

I correlated the autocorrelation coefficients against the time lag, obtaining the Pear-
son coefficient for each project. The Pearson coefficient measures the linear correlation
between two variables, with a value within the interval [−1, 1]. The closer its absolute
value is to 1, the stronger the linear relationship is. In other words, if two variables do
not have a linear relationship, the absolute value of the Pearson coefficient would be
much lower than 1.

If the process is close to an ideal short term process, the Pearson coefficient should
be close to 1. On the other hand, if the process is not short term, the coefficient should
indicate no linear relationship among the parameters.

86 RESULTS

Minimum Maximum Mean Median Sd. dev.

Commits 0.3235 0.9998 0.8429 0.8534 0.1238
MRs 0.2886 0.9998 0.8268 0.8374 0.1214

Table 4.7: Statistical properties of the set of Pearson correlation coefficients. The values range
from very low (∼ 0.3, corresponding to long term processes) to very high (∼ 0.99, corresponding
to short term processes). With only this information, we cannot quantify how many projects
could be classified in each category (short or long term).

I repeated the mentioned procedure for the 3, 821 projects. The result was two sets
3, 821 Pearson coefficients (one for number of commits, and another one for number of
modification requests). As shown in table 4.7, the values of the coefficients ranged from
∼ 0.3 to ∼ 0.99. For all the correlation coefficients, 2.2 · 10−16

< p < 0.38 (the highest p
values correspond to the lowest Pearson coefficients).

At a first glance, it seems that the values are distributed around high values (this is
for instance r > 0.8), which would indicate that the processes under study are closer to
a short term process than to a long term one.

To quantify how many projects could be classified as short term or long term, I es-
timated the probability density function of the distribution of coefficients, plotted the
boxplot and calculated the quantiles of the sample.

Figure 4.16 shows the boxplot, for both number of commits and number of MRs.
The results are quite clear. Focusing on the low values, the boxplot indicates that the
values below 0.5 (approximately) may be considered outliers. Most of the values are in
the range between 0.75 and 0.95, and the median is around 0.85. Summarizing, most of
the projects present a high Pearson coefficient, suggesting a strong linear relationship
(both for the case of number of commits, and number of MRs). This would indicate that
most of the projects are evolving like short range correlated processes.

Figure 4.17 shows the estimation of the probability density function. There is a group
of projects with very high values, and another group around a value of approximately
0.85 (this is, a group around the value of the mean or the median). Regarding the
low end of the distribution (this would represent long term correlated projects), those
projects are only a minority. This behavior is verified both with the number of commits,
and with the number of MRs.

Amore accurate statistical tool to quantify the number of projects is the estimation of
the quantiles of the sample. Table 4.8 contains the quantiles for the Pearson coefficients.
For instance, only 40% of the projects present a correlation coefficient lower than 0.80
(0.8178 for number of commits, 0.8036 for number of MRs), and only 20% lower than
0.7394 for number of changes, or 0.7248 for number of MRs. In other words, 80% of the
projects have a coefficient greater than ∼ 0.72.

According to the results shown in that table, and taking into account the statistical
analysis performed on the Pearson coefficients, most of the projects are governed by a
short memory dynamics. There are only a few projects that present a profile that would

4.6 FIFTH QUESTION: THE DYNAMICS OF SOFTWARE EVOLUTION 87

Commits MRs

0
.3

0
.5

0
.7

0
.9

Figure 4.16: Boxplot of the set of Pearson correlation coefficients, for number of commits, and
for number of MRs. This graphs shows that most of the cases (surrounded by the main box in
the plot) are around high values (∼ 0.85) of the coefficient. In other words, most of the projects
appear to be short term processes.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4

Pearson coefficient

D
e
n
s
it
y

Commits

MRs

Figure 4.17: Estimation of the probability density function of the set of Pearson correlation coef-
ficients for number of commits and number of MRs. There is a group of projects with coefficients
very close to 1, and another group symmetrically distributed around a value of approximately
0.85. Both groups would correspond to short term processes. Long term processes, located in the
left tail, are a minority.

88 RESULTS

0 20 40 60 80 100

Commits 0.3235 0.7394 0.8178 0.8906 0.9783 0.9998
MRs 0.2886 0.7248 0.8036 0.8705 0.9464 0.9998

Table 4.8: Quantiles (in %) of the sample of Pearson correlation coefficients, for number of
commits, and number of MRs. Less than 40% of the projects present a value lower than ∼ 0.8.

indicate a long memory dynamics. This behavior is verified both measuring activity as
the number of commits, and as the number of MRs.

4.6.1 Sensitivity analysis

The projects in the sample under study are very heterogeneous. For instance, the size
of the project varies in a wide range, as well as the number of developers, age, or any
other parameter. It could happen for instance that the number of developers or the size
of the project influences how it evolves.

In order to find out if the results are sensitive to some of the properties of the project,
I performed a brief sensitivity analysis.

I considered all the factors that are shown in table 3.3 on page 56. I plotted the values
of each one of those properties against the value of the Pearson coefficient calculated in
the previous section. Thus, I can determine if there are patterns when the projects are
clustered in homogeneous groups (for instance, I could find that small projects evolve
like short term processes, but large projects do not).

Figure 4.18 shows the results of the sensitivity analysis, only for the case of number
of commits (the plots with the Pearson coefficients of number of MRs are very similar).
That figure contains six plots. Each plot compares the value of one of the properties
shown in table 3.3 against the value of the Pearson correlation coefficient (for the case
of number of commits). Each point corresponds to a project. Some of the plots have
their vertical axis in logarithmic scale. This is because the kind of distribution of that
property. For instance, size is distributed following a Pareto-like distribution (there are
a few projects that are very large compared to the rest). That kind of data does not
show well in linear scale, as only some isolated points appear in a side of the plot, and
a set of points grouped in a small area in the other. In order to make the plots clearer, I
selected the logarithmic vertical axis for those properties. The horizontal axis is in linear
scale, and shows the Pearson correlation coefficient. Values of the coefficient close to 1
correspond to short term processes. Values lower than 0.7 may be considered long term
processes.

At a first glance, there is no any clear pattern in the data. In other words, in spite of
the heterogeneity of the projects, the character of the process (short or long term) is not
related to any of the properties.

4.6 FIFTH QUESTION: THE DYNAMICS OF SOFTWARE EVOLUTION 89

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5
1
0

2
0

5
0

1
0
0

2
0
0

Developers

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

SF.net age (months)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2
0

4
0

6
0

8
0

CVS age (months)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

1
e
+

0
7

Size (SLOC)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Files

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
e
+

0
1

1
e
+

0
2

1
e
+

0
3

1
e
+

0
4

1
e
+

0
5

Changes

Figure 4.18: Sensitivity analysis. The plots show the values of each one of the properties shown
of the projects (vertical axis), compared against the Pearson correlation coefficient for the number
of changes series (horizontal axis). Short term projects present values close to 1. The vertical axis
of some of the plots are in logarithmic scale. The plots show that there is no pattern when dividing
the projects in more homogeneous groups. For all the ranges of the Pearson coefficients, we find
projects with values of the properties in a wide range. In the same way, for all the ranges in each
one of the properties, we can find projects with a wide range of values of the Pearson coefficients.

90 RESULTS

For instance, focusing in the case of size, in the range of the Pearson coefficient from
0.9 to 1.0, there are small, medium and large projects. If I focus in a range of size, I also
find projects with a wide range of values of the Pearson coefficient.

This behavior is verified with the rest of properties too. However, the amount of
dispersion is different for each property. For instance, the dispersion of the points for
the case of CVS age is larger than the dispersion for the case of size. This is probably
because the statistical distributions of those two properties are different. In other words,
in the case of size, there are only a few points for very large and very small projects in
the plots, but that is because indeed there are only a few projects with those values in
the sample.

4.6.2 Summary

After analyzing the shape of the profiles of the time series, the main result is that at
least 80% of the projects can be considered short term processes. There are two different
groups of short memory projects, that are statistically different. However, I could not
identify which were the members of each group. Regarding those projects evolving
like long term processes, I have not found a group with that characteristic. The long
term evolving projects are a marginality compared to the population of the rest of the
projects.

The results were not sensitive to any other properties of the projects (like age, size,
number of developers, etc). Therefore, although the projects under study do not form a
homogeneous group, the short term evolution dynamics is present in projects with very
different properties, suggesting that this dynamics may be an universal property.

4.7 Sixth question: Forecasting software evolution

In this section, I present the results of fitting and modelling evolution using ARIMA
models. I show how to obtain the parameters the ARIMA models to forecast the near
future of a software system, by applying the Box-Jenkins method. ARIMA models are
accurate to predict short memory processes, with linear profiles of the ACF plot. As
shown in the previous section, software evolution is of that kind. Therefore, ARIMA
models are a good option to obtain a statistical model of software evolution.

As it was shown in section 3.4, for the modelling analysis we used three case studies:
FreeBSD, NetBSD and PostgreSQL. I measured the size in SLOC for all of them, using
the CVS repositories.

Figure 4.19 shows the growth curves for all the case studies. Those curves are very
close to linear. When correlating SLOC against number of days of lifetime, the Pear-
son correlation coefficients are r = 0.9949 for FreeBSD, r = 0.9972 for NetBSD and
r = 0.9944 for PostgreSQL (significance test: p < 2.2 · 10−16 for the three cases). With
these Pearson coefficients, regression models could be fitted, and I would probably ob-
tain accurate results for predictions in the near future of the systems. However, as I

4.7 SIXTH QUESTION: FORECASTING SOFTWARE EVOLUTION 91

 50000

 100000

 150000

 200000

 250000

 300000

03/1999 03/2002 03/2005

S
LO

C

PostgreSQL

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

03/1997 03/2001 03/2005

S
LO

C
FreeBSD

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

03/1997 03/2001 03/2005

S
LO

C

NetBSD

Figure 4.19: Plots of SLOC over time (daily series) for NetBSD, FreeBSD and PostgreSQL.

show at the end of this section, even with those good correlation coefficients, the time
series model performs better than the regression model when predicting the last year of
history of the three case studies.

4.7.1 Fitting ARIMA models

The first step to fit anARIMAmodel for a time series, is to identify the values of the three
parameters of the model: p, d and q4. As the linear regression coefficients suggest, the
series were close to be linear. Therefore, I selected d = 1 to get stationary data. To select
p and q, I needed to plot the autocorrelation and partial autocorrelation functions. When
I tried to do so with the original data (this is, without any filtering), I did not obtain a
clear pattern and I could not apply the criteria described in table 3.4 on page 62.

For instance, figure 4.20 shows the autocorrelation and partial autocorrelation coef-
ficients for the first difference of the FreeBSD series; the coefficients are shown for the
first ten lags, this is, it shows the internal autocorrelation among the last ten points of
the series. The number of lags is not important, as long as enough lags are shown to find
out the exact pattern of the plots. In the case of the autocorrelation coefficients function,
only the first coefficient is significant, and after that lag, all coefficients suddenly drop
to zero. In the case of the partial autocorrelation coefficients, all coefficients are very

4The p parameter here is different to the p statistical that we have used through this chapter to show
the significance level of the Pearson correlation coefficients. We have chosen not to change the symbol,
because the usage of p for both parameters is very common in the scientific literature

92 RESULTS

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

2 4 6 8 10

−
0.

03
−

0.
01

0.
01

0.
03

Lag

P
ar

tia
l A

C
F

Figure 4.20: Autocorrelation (left) and partial autocorrelation (right) coefficients for the first ten
lags of the difference of the FreeBSD series (no smoothing applied).

low, and all of them should be discarded attending to the criteria shown in table 3.4.
Therefore, figure 4.20 shows that noise is reducing the internal autocorrelation of the
series.

I needed therefore to filter the original series to remove the noise. Figure 4.21 shows
the first difference of the FreeBSD series before and after applying a kernel smoothing
process (the process was described in the previous chapter in section 3.3.2). The plot
in the top of that figure is the original data, the plot in the middle is the smoothed
series, applying a bandwidth of 10. The plot in the bottom is the smoothed series, with
a bandwidth of 50. Smoothing removes some noise from the series, and the trend in
the data appears now much clearer. I applied smoothing with a bandwidth of 50 to the
series of the three case studies.

After the smoothing process, the pattern in the autocorrelation and partial autocor-
relation functions was much clearer. Figure 4.22 shows those plots. According to table
3.4, I would choose p = 9 and q = 0, because the autocorrelation function slowly tails
off to zero, and the partial autocorrelation function drops to zero after 9 lags.

In the case of NetBSD, the pattern was the same with 6 significant lags in the partial
autocorrelation coefficients. Therefore q = 0 and p = 6. In the case of PostgreSQL, the
pattern was the same with q = 0 and p = 7.

4.7.2 Accuracy of the models

To test the goodness of the obtained models, I split the series in two sets: the training
set and the test set. The training set was built with all series but the last year. The last

4.7 SIXTH QUESTION: FORECASTING SOFTWARE EVOLUTION 93

a) No smoothing

Time

0 1000 2000 3000 4000 5000

−
20

00
0

80
00

0

b) Bandwidth=10

Time

0 1000 2000 3000 4000 5000

0
10

00
0

c) Bandwidth=50

Time

0 1000 2000 3000 4000 5000

−
50

0
15

00

Figure 4.21: Original series and smoothed series for FreeBSD

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0

Lag

P
ar

tia
l A

C
F

Figure 4.22: Autocorrelation (left) and partial autocorrelation (right) coefficients for the first ten
lags of the smoothed FreeBSD series (first difference).

94 RESULTS

ARIMA Regression
Case study MSRE Sd. dev. MSRE Sd. dev.

FreeBSD 3.93 3.28 16.89 14.82
NetBSD 1.80 1.28 15.94 8.65

PostgreSQL 1.48 1.86 6.86 4.75

Table 4.9: Mean squared relative errors (MSRE) and standard deviation of the squared relative
errors (Sd. dev.) for the time series and regression models.

year was the test set5. The values obtained from the model were the first difference of
the forecasted series. I made the inverse operation of the first difference, and I added
the value of the actual series at the beginning of the test interval. Then I compared these
forecasted values with the actual values.

After fitting the time series model using the training set, I predicted the next year,
and I compared the forecasted values against the actual values contained in the test set.
Table 4.9 contains the mean squared relative errors (MSRE) for the three case studies,
both for the time series (ARIMA) and for the regression models.

I repeated the same procedure with a linear model obtained by statistical regression
using least squares. I correlated SLOC against number of the days of lifetime, for all
the data but the last year (this is, I used the training set for least squares regression).
Then I compared the last year forecasted with the regression model against the actual
values (the test set). For the case of PostgreSQL the Pearson correlation coefficient with
the training set was r = 0.9945 for FreeBSD, r = 0.9973 for NetBSD and r = 0.9928 for
PostgreSQL (significance test: p < 2.2 · 10−16 for the three cases). Table 4.9 also shows
the mean squared relative errors for this model.

When comparing themean squared relative errors for bothmodels, we can easily see
that the time series model is more accurate than the regression one. Therefore the time
series based ARIMA models can predict the growth in the next year of a project with
lower error than regression models. It is remarkable that even with the high correlation
coefficients obtained with linear models, the ARIMA models performed better than the
regression models.

4.7.3 Summary

In this section, I have shown the results of fitting time series models to predict the evo-
lution of software systems. I used the Box-Jenkins method to fit ARIMA models, to the
daily time series of size, for the cases of FreeBSD, NetBSD and PostgreSQL.

The growth curves of the three case studies resulted to be very close to linear. Be-
cause of that, I decided to compare the accuracy of the ARIMA models with linear re-
gression models. To do so, I split the series in two sets: training and test. The training

5The test sets contained 321 days for FreeBSD, 326 days for NetBSD and 361 days for PostgreSQL. The
number of days is almost one year for all the cases.

4.7 SIXTH QUESTION: FORECASTING SOFTWARE EVOLUTION 95

set contained all the data but the last year. After fitting the models, I calculated their
accuracy comparing against the test set (this is, comparing with the actual last year of
the case studies).

The ARIMA models had a memory of approximately one week for the three case
studies. In spite of this short memory, the models could predict the next year of history
with less than 4% of mean squared relative error in the case of FreeBSD, and less than
2% for the cases of NetBSD and PostgreSQL. For the same cases, the accuracy linear
regression models, measured as MSRE, was∼ 16% for FreeBSD and NetBSD, and∼ 7%
for PostgreSQL (with Pearson coefficients over 0.99 for the three regression models).

96 RESULTS

CHAPTER

FIVE

Conclusions and further work

5.1 Summary of results

In chapter 4, I have presented the results obtained in this thesis. The first result shows
that size and complexity metrics are highly correlated, both at the file and at the prod-
uct level. Therefore, all the metrics are providing the same information from a statistical
point of view. The next result shows that the statistical distribution of the size of soft-
ware is a double Pareto. That distribution appears at different levels of granularity (file,
product and domain of application), which is an evidence of self-similarity in software.
The next result shows that the dynamics of software evolution is a short range correlated
process, what implies that ARIMA models are suitable for the statistical modelling of
software evolution.

I analyze these results, and their theoretical and practical implications, in the next
sections.

5.1.1 Correlation of metrics

In chapter 2 (section 2.3.4), I highlighted the conflict between some empirical studies of
libre software with the classical works in software evolution. Basically, Lehman argued
that the conflicting studies were not comparable because of the size metrics used, claim-
ing that number of modules (this is, source code files) were a superior metric than lines
of code.

The results of this thesis show that number of files is highly correlatedwith the rest of
the metrics of size and complexity, and in particular, with SLOC (that is the metric used
by the conflicting studies). In other words, from a statistical point of view, both SLOC
and number of files are providing the same information. Considering that those studies
obtained statistical models of software evolution, and that the conclusions were based
on those models, I affirm that the studies by Godfrey et al. [GT00] (and other conflict-

97

98 CONCLUSIONS AND FURTHER WORK

ing works using SLOC [RAGBH05]) and Lehman [LB85] are comparable. Therefore,
the Lehman laws are not valid for the cases studied in the mentioned works

5.1.2 Software attributes

The two main attributes that can be used to characterize a software product are size and
complexity. The result discussed in the previous paragraphs shows that, for the case
of the C programming language, all the size and complexity metrics considered in this
thesis are highly correlated. This has been verified with different samples: an overall
sample using all the files available in the sample, and subsamples that formed more
homogeneous groups (dividing by file type, package size and field of application).

This result does not mean that the studied complexity metrics are not actually mea-
suring complexity, but that those metrics have, from a statistical point of view, the same
predictive power that other metrics like SLOC or LOC. Therefore, when constructing
models which contain size or complexity terms (for instance, defect prediction models
based on the attributes of source code), I recommend to use simple metrics like LOC or
SLOC.

I have found two exceptions though. The first one regards to the Halstead’s level
metric. In some of the subsamples, that was the only metric not correlated with the rest.
The second exception is header files. In that kind of files, cyclomatic complexity is not
correlated with the rest of metrics. This is probably because of the nature of that kind of
files. Header files are flat, neither containing bifurcations (like if statements) nor loops.
Therefore, the cyclomatic complexity keeps low regardless the size of the header file.

As a practical conclusion, for software evolution studies, I recommend to measure
Halstead’s level as well as SLOC, and not to measure any other of the metrics studied
here, because they have been shown to be highly correlated. In the case of header files, I
recommend not to measure cyclomatic complexity, because of the nature of that kind of
files. The correlations are verified regardless the size of the files, the size of the software
systems to whom the file belongs, the domain of application of the system, and the
nature of the file. Therefore, we suggest that the correlations that I have found is an
universal property of software written in C.

5.1.3 Statistical properties of software

Much research has been devoted to the issue of the statistical distributions found in soft-
ware systems, and more specifically, to the presence of power laws in the distribution
of some of the properties of software systems. From all the works that were reviewed
in chapter 2, I highlighted the work by Wu in his PhD Thesis [Wu06] (see section 2.4.3).
He found power laws in the distribution of the size of the system (measured as number
of developers, and number of commits), and long range correlations in the time series
of number of changes.

5.1 SUMMARY OF RESULTS 99

Figure 5.1: Self similarity in software. The size of source code files, the size of software packages,
and the size of sections have all the same statistical distribution.

In this thesis, I have estimated the statistical distributions of size and complexity us-
ing a large sample of software products. I have found that the distributions are double
Pareto. This is in fact a family of distributions, originally proposed by Reed and Jor-
gensen [RJ04], that has been proved useful for modelling size distributions in a wide
range of phenomenons (incomes and earnings, human settlement sizes, oil-field vol-
umes, particle sizes). Mitzenmacher [Mit04b] found this distribution in file systems,
using the size of files. He proposed a model (the Random Forest File Model) to explain
and simulate the process that generates this distribution in file systems. In section 5.2, I
review the Random Forest File Model, and provide guidelines to adapt it to the case
of software evolution (although I leave that task for further work).

The same distribution appears regardless the level of aggregation used. Figure 5.1
shows this. If we measure the size of source code files, the distribution of size is double
Pareto. If we measure the size of software packages (using number of files that each
package contains), the distribution of that parameter is also double Pareto. If we mea-
sure the size of sections (using the number of packages that each section contains), the
distribution of that parameter is again double Pareto

Therefore, regardless the level of aggregation (or scale) used, the distribution of size
has the same shape. In other words, I have found that there is self-similarity in soft-
ware. Self-similarity is commonly found in natural structures. Self-similar structures
can evolve in size through some orders of magnitude. As it was highlighted in the fist
chapters, libre software has been growing at high rates in the last years (Linux is grow-
ing with a super-linear profile, the Debian GNU/Linux double its size in half of the

100 CONCLUSIONS AND FURTHER WORK

time compared to previous releases). With such an evolutionary pattern in size, it is
natural to obtain self-similar geometries. Other geometries would not support such a
fast evolution. Clearly, this is a topic that deserves further research.

5.1.4 Short memory dynamics and ARIMA models

In his PhD thesis, Wu found power laws distribution in the size of changes, and long
range correlations in the time series of changes [Wu06]. The first finding (power laws
in the size of changes) is an evidence of self-similarity. The second finding (long range
correlations in time series), together with self-similarity in size, are evidences of self-
organized criticality in the system (a review of these concepts is given in section 2.4.3).

As shown above, I have verified the first finding, although using a different ap-
proach. However, I could not verify the second finding. As shown in the previous
chapter, in a sample of 3, 821 projects, I have found a short range correlated evolution
dynamics. This has been verified using the time series of the number of commits and
the number of modification requests (with a period in the series of one day). There-
fore, this finding would contradict that software evolution is driven by a self-organized
criticality dynamics.

To manage, forecast and control software evolution, I propose to use ARIMA mod-
els. That kind of models are short memory: only values in the near past of the time
series are influencing the current value of the series. In the previous chapter, I have
shown that ARIMA models can predict with accuracy the evolution of software sys-
tems. In the cases shown in the Results chapter, I had three systems, with linear profiles
(r > 0.99). With those highly linear profiles, ARIMA models performed much better
than linear regression models. The models had approximately a memory of one week.
Another proof of the accuracy of this kind of models is that the winner of the MSR Chal-
lenge 2007 was an ARIMAmodel [HGBR07a]. The challenge consisted in predicting the
number of changes in the CVS repository of Eclipse during the three months right after
the deadline for submissions.

Summarizing, software evolution is driven by a short memory dynamics, and be-
cause of that, ARIMA models are a good option to forecast, manage and control soft-
ware evolution.

5.1.5 Practical implications

The results obtained in this thesis have practical implications about software measure-
ment and about empirical studies of software evolution. In more detail, those implica-
tions are the following:

• For the case of libre softwarewritten in C language, the conclusions of an empirical
study on software evolution should be the same regardless the size metric used.
This supposes that studies using different size metrics are comparable.

5.2 FURTHER WORK 101

• Again whenmeasuring C source code, in order to characterize a software product,
bounded to the case of libre software, only Halstead’s level is not highly correlated
with size metrics. I recommend therefore to measure only SLOC and Halstead’s
level.

• The size of software is distributed like a double Pareto distribution. Because of
this, the Mitzenmacher’s Random Forest File Model (RFFM) can be used to simulate
the evolution of a software product.

• The shape of the statistical distribution of the size of software is the same, regard-
less of the scale used (file, module, project). That is an evidence of self-similarity
in software, which implies that the RFFM can be used to simulate evolution at
different levels of granularity.

• Software evolution is driven by a shortmemory dynamics. Because of this, ARIMA
models can be used to obtain accurate statistical models of the evolution of soft-
ware systems.

I remark that some of the conclusions are bounded to the case of libre software writ-
ten in C language because the sample used for the studies only contained products
fulfilling those characteristics. However, at a first glance, there is no reason to think that
the first three points shown above (comparability of studies, correlation of metrics and
statistical distribution) are specific to the case of libre software.

5.2 Further work

The results and implications of this thesis have raised new research questions, that de-
serve further research. The statistical distribution of the size of software can be used
to determine which kind of processes have generated the software product. In other
words, it can be used to obtain models that simulate the behavior of the software prod-
uct. This kind of models can be the base for a theory of software evolution. Of great
interest is also that I have found self-similarity in software. This fact can be an expla-
nation of the fast growth of some libre software projects, and it is clear that a theory for
software evolution should take this finding in account. Finally, another fact that influ-
ences the design of this theory is that software evolution is driven by a short memory
dynamics.

Although in this section I discuss all these topics in more detail, I leave them as open
questions for further research.

5.2.1 The Random Forest File Model applied to the case of soft-

ware evolution

I can not determine why the distribution of the size of software is a double Pareto, but
that finding can be used to design models to simulate the evolution of software. For the

102 CONCLUSIONS AND FURTHER WORK

more general case of file-systems, Mitzenmacher also found double Pareto distributions,
and he proposed a model that could be used to simulate the dynamics of a file-system:
the Random Forest File Model (RFFM) [Mit04b]. The purpose of this model was helping
to manage file systems, in order to find out when more capacity is needed. However,
that model is very close to the concepts found in software evolution. Because of that,
the model could be adapted to simulate the dynamical behavior of a software product.

The nature of the model is probabilistic. For instance, two runs of the model over the
same case study will produce two different results. Hence, instead of obtaining an only
future scenario for the project, many future scenarios can be obtained. If the model is
run several times, we could obtain a portfolio of scenarios, with a probability assigned
to each of them.

Besides producing double Pareto size distributions, the model has another interest-
ing property: the average depth of the source code trees generated by the model keeps
bounded by a constant. This has been found in libre software systems before [CMR04b].

The RFFM shares some analogies with the Maintenance Guidance Model (MGM),
that was reviewed in section 2.4.4. The MGM [CFR07] considers that developers choose
the parts where they want to work on based on the previous activity of those parts. In
particular, the parameter that the MGM considers is number of previous changes. If the
number of changes is equal, the MGM considers that developers prioritize those parts
with higher complexity, because the rewards of the work will be higher.

The MGM is like a deterministic version of the RFFM. There are two interesting
points about this relationship between the MGM and the RFFM:

• The MGM has been empirically validated, and has performed well when com-
pared against the real history of libre software systems.

• Although based on the statistical properties of the distribution of changes, the
MGM has been obtained by reasoning how developers choose where to work on
in a software system. It is interesting that this model has resulted to be so similar
to a purely statistics-based model like the RFFM.

Summarizing, the following facts suggest that the RFFM could be a good candidate
to simulate the evolution of a software system, at the file level:

• Software size is distributed like a double Pareto. The size of the source code trees
generated by the RFFM, are distributed like a double Pareto.

• The depth of the generated trees is bounded by a constant. This property has been
found in empirical studies of some libre software systems [CMR04b].

• The RFFM shares many commonalities with the MGM, that has been empirically
validated against real cases [CFR07]. The RFFM is obtained exclusively using sta-
tistical considerations. However, the MGM is based on assumptions on how de-
velopers work, that were deduced partially using the Lehman’s laws of software
evolution.

5.2 FURTHER WORK 103

5.2.2 Self-similarity influence on the evolutionary patterns of soft-

ware

In section 1.2, I talked about the fast growth of libre software, and the influence of that
fact in research. To recall what I showed there, the Linux kernel is growing at a super-
linear rate, this is, its growth rate increases with time. The superlinearity increases with
time as well. I also mentioned the case of Debian GNU/Linux. In 2002, Debian released
the version 3.0 of the system, that contained 100 millions of SLOC. The initial release of
Debian was in 1993. Therefore, the libre software community wrote at least 100 millions
of SLOC, in about 10 years. The next release of Debian, version 3.1, was launched in
2005, three years after the previous release. The size of this new release was 200 mil-
lions of SLOC. Therefore, in only three years, the libre software community had written
at least as many code as in all the previous years.

Debian and Linux continue to be under active development, and the projects do not
seem to show any symptom of exhaustion. How can these software projects maintain
their coherence while growing so fast? In natural phenomena, self-similar structures
allow growth in size and complexity without loosing coherence. In software systems, I
have observed that there is self-similarity in some of their properties.

Therefore, I have both findings: fast growth while maintaining coherence, and self-
similarity. Whether the self-similarity of software is a consequence of its fast growth, or
the other way around, remains as an open question.

5.2.3 Determinism and evolution

If software evolution is driven by a short memory dynamics, that would imply that
software evolution is a non-deterministic process. In this section, I present what this
means for the software development and maintenance processes.

Figure 5.2 represents a tree of all the possible events that may happen in a software
project. The vertical dimension represents time. The top node is the initial situation of
the project. At each step, a decision must be taken. That decision open some paths, and
discard some others. After some steps, the consecutive decisions has driven the project
to a particular situation, while it has discarded some other situations.

For instance, in the case of the figure, after 5 steps the project can end in a set of 4
different situations. Let us suppose that in the first decision the project follows the path
on the right. With the events tree shown in the figure that would discard the situations
P1, P2 and P3. In other words, once a decision is taken, that influences the future of the
project, making it impossible to reach the states P1, P2 or P3. That is because there are
not too many connections or paths between the nodes. The tree shown in figure 5.2 is
a typical tree for a long memory process. Decisions taken long time ago have a heavy
influence on what is going on today in the project.

Consider now the tree shown in figure 5.3. This time the tree has a much higher
density of connections. Decision taken in the first step do not discard any possible future
scenarios after some steps. For instance, after 5 steps there are 6 possible scenarios. Early

104 CONCLUSIONS AND FURTHER WORK

Figure 5.2: Events tree. This tree represents all the possible events that may happen in a software
evolution project. The top node is the initial situation. In each step, a decision is taken, and that
implies to follow a particular path.

Figure 5.3: Events tree for a short memory process. The density of connections is much higher,
and so early decisions do not discard possible future scenarios.

5.3 CONCLUSIONS 105

decisions do not discard any of those situations, and only recent events influence which
scenario will finally take place. This tree corresponds to a short memory process.

However, I have not investigated the development process in order to find out if the
dynamics is like the long memory tree shown in figure 5.2 or like the short memory tree
shown in figure 5.3. I intend to do so as further research.

In any case, this finding does not imply that there are not long term effects in soft-
ware evolution. For instance, there are periodical events. In some sense, a model for
software evolution should be like a model for weather forecasting. Weather today can
be predicted based on weather in the last days, but also in the season of the year. For
instance, if it is summer and today is sunny, it is likely that tomorrow will be sunny
(short term effect), and it is very unlikely that will snow because it is summer (periodi-
cal effect). However, we can not say if next week will be sunny, because the memory of
the process is very short as to make predictions with that time window.

I leave the investigation of periodical events, and the development of a model like
the one described above, as further research.

5.3 Conclusions

This thesis is an empirical study of the evolution and properties of software, bounded to
the case of libre software. It is completely based on publicly available data sources. The
analyses performed in this thesis are based on statistical techniques, and in particular,
on time series analysis for the study of software evolution.

It addresses some questions that have been subject of controversy in the research
community. The classical theories for software evolution [LB85] were faced with the
born of libre software development, and soon many conflicting cases started to appear
[GT00, RAGBH05]. However, the methodologies used in the conflicting cases were not
exactly the same that in the classical studies on software evolution. The comparability
of those studies with the classical works was discussed in the literature [LRS01].

These works fostered the research on the topic of software evolution and libre soft-
ware, and some proposals for the dynamics of libre software have appeared [Wu06,
WHH07]. In particular, it has been proposed that the mechanisms of the evolution of
libre software are a Self-Organized Criticality (SOC), because there is self-similarity in
software, and its evolution is a long range correlated process.

Thanks to the availability of large public datasets, I have been able of verifying the
mentioned discrepancies in a large number of case studies. I have found that, for the
case of libre software written in language C, software evolution studies can be com-
pared even if they use different metrics. For the same cases, most of the size and com-
plexity metrics are highly correlated, which implies that statistical models using those
attributes can be simplified. I have found that the dynamics of software evolution is not
SOC, because although I have found self-similarity, I have determined that the evolu-
tion of libre software is a short range correlated process.

106 CONCLUSIONS AND FURTHER WORK

While addressing those questions, I have also determined that the distribution of
the size of software is a double Pareto. There is self-similarity in software because this
distribution appears at different scales (file, package and field of application levels).

To address the first questions (comparability of studies, correlation of metrics), I
measured the size and complexity of a sample of 6, 556 products obtained using the
FreeBSD ports (or packages) system. I performed a correlation analysis over that sam-
ple of files, and over some subsets of more homogeneous groups (discriminating by
file type, package size and field of application). Using another sample of 12, 010 prod-
ucts also obtained from FreeBSD, I calculated some statistical properties, and found the
double Pareto distribution.

For the rest of questions (kind of dynamics), I have used a sample of 3, 821 projects
obtained using the FLOSSMole and CVSAnaly-SF datasets. I obtained the time series
of daily number of changes (both in number of commits and in number of modification
requests). I applied time series analysis to determine that those series were short range
correlated. Because of that, I have shown that ARIMA models (a kind of models typ-
ical in time series analysis) perform better than regression models to forecast software
evolution.

All the results of this thesis are easily verifiable, because all the databases and tools
used to obtain them are publicly available. That should also help to verify if the conclu-
sions of this thesis hold for other case studies.

The approach used in this thesis has been to perform a statistical analysis on a large
dataset, to determine whether I could find patterns and commonalities among the dif-
ferent case studies under consideration. It might seem a novel approach, because it is
possible thanks to the availability of thousands of software projects (and datasets for
research like FLOSSMole) in the libre software community. However, as early as 1974,
Lehman suggested to use this approach [Leh74]. He even suggested to apply time se-
ries analysis to the case of software evolution. Unfortunately, that approach could not
be done at that time because of the lack of databases and indexes of software projects.

In any case, to my knowledge, and despite the suggestions by Lehman, this statis-
tical approach has not been addressed at such a large scale to date. The problem with
small scale empirical studies is that it is difficult to determine whether or not the con-
clusions hold for other cases, which causes the kind of controversies like the one about
the evolution of libre software. Large scale studies ensure statistical significance, and
what is more important, statistically significant findings can be considered universal
properties. Thus, I propose that all the findings reviewed and discussed in this thesis
are universal properties of software (or at least, of libre software for some findings, and
for the same kind of software written in C language for others).

A theory for software evolution should be designed considering these universal (or
statistically significant) findings as starting points. That should help to avoid future
controversies about the validity of some laws to some particular case, and it also should
help to develop the necessary scientific basis for Software Engineering.

APPENDIX

A

The double Pareto distribution

This appendix briefly describes the properties and equations of the double Pareto dis-
tribution. This distribution is a combination of one or two power law tails, and a log-
normal body.

The power law distribution has a cumulative distribution function as follows:

Pr[X > x] =
(x

k

)−α
(A.1)

with α > 0, k > 0 and X ≥ k, and where k is a constant, and α is the scaling parameter
(or exponent) of the power law.

The density function of a power law distribution is:

f (x) = αkαx−α−1 (A.2)

Both the density function and the cumulative distribution function appear as straight
lines in logarithmic scale. For more information about the power law distribution, its
shape, and how to fit a power law to empirical data, I recommend the paper by Clauset
et al. [CSN07].

The lognormal distribution appears when the logarithm of a variable is normally
distributed. This is, if X is lognormal, then Y = log(X) is normal. Therefore, the density
function and the cumulative distribution function will be the same that in the case of
normal distribution (with a variable substitution).

The density function is therefore

f (y) =
1√
2πσy

exp− (ln y− µ)2

2σ2 (A.3)

with y = log(x), and where µ is the mean of the distribution and σ the standard devia-
tion.

107

108 THE DOUBLE PARETO DISTRIBUTION

The cumulative distribution function is

Pr[Y > y] =
∫ ∞

z=y

1√
2πσz

exp− (ln z− µ)2

2σ2 dz (A.4)

The double Pareto distribution can be constructed using the above equations. The
density function for the high values end is as follows:

f1(x) = αx−α−1A(α, ν, τ)φ

(

log x− ν − ατ2

τ

)

(A.5)

While the low values tail has a density function as follows:

f2(x) = βxβ−1A(−β, ν, τ)φc

(

log x− ν + βτ2

τ

)

(A.6)

In the above equations φ is the cumulative distribution function of the standard nor-
mal distribution, φc is the complementary of φ, and

A(θ, ν, τ) = exp
(

θν + α2τ2

2

)

(A.7)

The density function of the double Pareto can be written then as follows:

f (x) =
β

α + β
f1(x) +

α

α + β
f2(x) (A.8)

The cumulative distribution function is as follows:

Pr[X > x] = φ

(

log x− ν

τ

)

−

− β

α + β
x−αA(α, ν, τ)φ

(

log x− ν − ατ2

2

)

+ (A.9)

+
α

α + β
xβA(−β, ν, τ)φc

(

log x− ν + βτ2

2

)

In this thesis, I use the complementary cumulative distribution function (CCDF) in
logarithmic scale to determine whether an empirical distribution is a double Pareto or
not. The CCDF of a double Pareto has two straight tails, corresponding to the power law
parts, and a lognormal body that connect the two tails. In some cases, the low values tail
can be modelled using a lognormal, because the difference between a lognormal and a

109

Figure A.1: Complementary cumulative distribution function of a double Pareto. The plot shows
two straight tails, corresponding to power law distributions with scaling parameter α and β, and
a lognormal body that connects the two tails.

power law in that region is very small. Appendix B includes some plots that show how
that tail is very close to a lognormal in some of the cases (for instance, the case of the
HLEVE metric in figure B.1).

Figure A.1 shows the ideal case of a CCDF of a double Pareto distribution. The
low value tail (power law with scaling parameter β) changes to a lognormal body in
the point x1. The lognormal body changes to a straight tail (power law with scaling
parameter α) in the point x2. In this thesis, I have fitted the empirical data to a lognormal
for all the values below x2, and to a power law for the values greater than x2. Appendix
B includes some tables with the parameters of the lognormal body and the power law
tail (in those tables, xmin corresponds to the value x2 shown in figure A.1).

The double Pareto distribution was first described by Reed and Jorgensen [RJ04].
Mitzenmacher based on that distribution to obtain a model of the dynamics of file-
systems, and includes a description of the properties of this distribution [Mit04b].

110 THE DOUBLE PARETO DISTRIBUTION

APPENDIX

B

Additional results

In chapter 4, I have shown some statistical properties of the sample of source code, and
that the size of those source code files can be described using a double Pareto distribu-
tion. In this chapter, I show some additional results about those properties.

Figure 4.10 has shown that the empirical data can be described using a lognormal
distribution for the lower values, and a power law for the higher values. In this chapter,
I have fitted the same type of distributions to all the metrics, for three different samples:
all the files, only header files, and only non-header files.

Figure B.1 shows the results for the sample of all the source code files. The plot
shows the empirical data, the lognormal distribution with the same mean and standard
deviation that the sample, and a power law fitted using the procedure suggested by
Clauset et al. [CSN07]. Some of the plots (HVOLU, HLEVE) seems to have a clear power
law tail for the low values, as well as the power law for the high values tail. However,
the lognormal distribution also fitted well in that region. Therefore, it is difficult to
determine if that region is indeed a power law or a lognormal distribution. In any case,
all the cases fit well with the combination of a lognormal for low values and a power
law for high values. Table B.1 shows the values of the parameters of the double Pareto
distribution, for all the metrics. It includes the mean (x̄) and standard deviation (s) for
the lognormal part (this is, the mean and standard deviation of the logarithm of the
metric), the transition point where the lognormal and power law ends connect (xmin),
and the power law exponent (α).

Figure B.2 shows the same plots for the sample of only header files. For some of the
metrics (for instance, FUNCS), the power law character of the data seems to have more
influence than the lognormal part. Again, the Halstead’s metrics seem to present the
lower power tail more clearly than the rest of metrics. In any case, all the metrics seem
to fit well to a combination of a lognormal and a power law distributions. Table B.2
shows the parameters of the double Pareto distribution for all the metrics.

Finally, figure B.3 shows the cumulative distribution function plot for all the met-
rics, for the case of non-header files. This sample is very similar to the overall sample
shown in figure B.1. Again, the Halstead’s software science metrics seem to present two

111

112 ADDITIONAL RESULTS

Metric x̄ s xmin α

SLOC 4.445 1.637 3251 3.34
LOC 5.044 1.404 5394 3.50
FUNCS 1.257 1.240 83 3.36
CYCLO 2.088 1.930 580 3.33
HLENG 6.075 1.759 5465 2.58
HVOLU 7.903 2.016 57369 2.72
HLEVE −3.496 1.271 .010133 2.52
HMD 11.399 3.204 43.091 · 106 2.27

Table B.1: Parameters of the double Pareto distribution, for all the metrics using the overall
sample. The first column shows the mean of the lognormal part (x̄). The second column shows the
standard deviation of the lognormal part (s). The third column shows the value of the transition
point from lognormal to power law (xmin). The fourth column shows the value of the power law
exponent (α).

Metric x̄ s xmin α

SLOC 3.415 1.355 803 2.57
LOC 4.281 1.127 797 2.71
FUNCS 0.0888 0.429 7 2.17
CYCLO 0.243 0.762 49 2.44
HLENG 5.008 1.505 19651 2.91
HVOLU 6.707 1.782 6836 2.04
HLEVE −2.459 0.953 .100 2.46
HMD 9.166 2.607 1.237 · 106 1.77

Table B.2: Parameters of the double Pareto distribution, for all the metrics using the sample of
header files. The first column shows the mean of the lognormal part (x̄). The second column
shows the standard deviation of the lognormal part (s). The third column shows the value of the
transition point from lognormal to power law (xmin). The fourth column shows the value of the
power law exponent (α).

113

1 100 10000

1e
−

05
1e

−
01

SLOC

P
[X

>
x]

1 100 10000

1e
−

05
1e

−
01

LOC

P
[X

>
x]

1 5 50 500

1e
−

05
1e

−
01

FUNCS

P
[X

>
x]

1 10 100 1000 10000

1e
−

05
1e

−
01

CYCLO

P
[X

>
x]

1e+01 1e+03 1e+05

1e
−

05
1e

−
01

HLENG

P
[X

>
x]

1e+01 1e+03 1e+05 1e+07

1e
−

05
1e

−
01

HVOLU

P
[X

>
x]

1e−05 1e−03 1e−01

0.
00

2
0.

05
0

1.
00

0

HLEVE

P
[X

>
x]

1e+00 1e+04 1e+08

1e
−

04
1e

−
01

HMD

P
[X

>
x]

Sample
Lognormal
Power law

Figure B.1: Complementary cumulative distribution function for the sample of all (header and
non header) files. This plot shows the distribution plots for all the metrics. The legend is the
same for all the plots. The plots show a lognormal and a power law fitted to the two extremes of
the data.

114 ADDITIONAL RESULTS

1 100 10000

1e
−

05
1e

−
01

SLOC

P
[X

>
x]

1 100 10000

1e
−

05
1e

−
01

LOC

P
[X

>
x]

1 5 50 500

1e
−

05
1e

−
02

FUNCS

P
[X

>
x]

1 5 50 500 5000

1e
−

05
1e

−
02

CYCLO

P
[X

>
x]

1e+01 1e+03 1e+05

1e
−

05
1e

−
01

HLENG

P
[X

>
x]

1e+01 1e+03 1e+05 1e+07

1e
−

05
1e

−
01

HVOLU

P
[X

>
x]

1e−04 1e−03 1e−02 1e−01 1e+00

0.
00

5
0.

10
0

HLEVE

P
[X

>
x]

1e+00 1e+04 1e+08

1e
−

04
1e

−
01

HMD

P
[X

>
x]

Sample
Lognormal
Power law

Figure B.2: Complementary cumulative distribution function for the sample of header files. This
plot shows the distribution plots for all the metrics. The legend is the same for all the plots. The
plots show a lognormal and a power law fitted to the two extremes of the data.

115

Metric x̄ s xmin α

SLOC 4.979 1.510 1221 3.00
LOC 5.451 1.354 1697 3.40
FUNCS 2.072 0.932 40 3.02
CYCLO 3.046 1.644 580 3.33
HLENG 6.629 1.621 7818 2.72
HVOLU 8.524 1.844 18723 2.92
HLEVE −4.034 1.065 .083 2.46
HMD 12.557 2.853 58.580 · 106 2.41

Table B.3: Parameters of the double Pareto distribution, for all the metrics using the sample of
non-header files. The first column shows the mean of the lognormal part (x̄). The second column
shows the standard deviation of the lognormal part (s). The third column shows the value of the
transition point from lognormal to power law (xmin). The fourth column shows the value of the
power law exponent (α).

power law tails, although the low values tail can be also described using a lognormal
distribution. Table B.3 shows the parameters of the double Pareto distribution for all
the plots.

Summarizing, the distribution of the size and complexity of source code files is a
double Pareto. Some metrics seem to present two power law tails connected by a log-
normal body, while others present only power law tails for high values. In any case, the
low values power law tails can be also described using a lognormal distribution. The
distribution appears both for header and non header files.

116 ADDITIONAL RESULTS

1 100 10000

1e
−

05
1e

−
01

SLOC

P
[X

>
x]

1e+01 1e+03 1e+05

1e
−

05
1e

−
01

LOC

P
[X

>
x]

2 5 10 50 200 1000

1e
−

05
1e

−
01

FUNCS

P
[X

>
x]

1 10 100 1000 10000

1e
−

05
1e

−
01

CYCLO

P
[X

>
x]

1e+01 1e+03 1e+05

1e
−

05
1e

−
01

HLENG

P
[X

>
x]

1e+01 1e+03 1e+05 1e+07

1e
−

05
1e

−
01

HVOLU

P
[X

>
x]

1e−05 1e−03 1e−01

5e
−

04
5e

−
02

HLEVE

P
[X

>
x]

1e+00 1e+04 1e+08

1e
−

04
1e

−
01

HMD

P
[X

>
x]

Sample
Lognormal
Power law

Figure B.3: Complementary cumulative distribution function for the sample of non-header files.
This plot shows the distribution plots for all the metrics. The legend is the same for all the plots.
The plots show a lognormal and a power law fitted to the two extremes of the data.

APPENDIX

C

Time Series Analysis functions and models

This appendix develops some of the time series analysis concepts that I have used dur-
ing this thesis. For full details about the functions and concepts shown here, I refer to
[SS06] and [MWH98].

C.1 Autocorrelation Coefficients Function

Let xt be a time series of values {xt1, xt2, . . . , xtn}. The mean function x̄ is defined as
follows:

x̄ =
1
n

n

∑
t=1

xt (C.1)

The autocovariance function γ is defined as follows:

γ(k) = n−1
n−k

∑
t=1

(xt+k − x̄)(xt − k̄) (C.2)

with γ(k) = γ(−k) and k ∈ [0, n− 1]
The autocorrelation function (ACF) r is defined as follows:

r(k) =
γ(k)

γ(0)
(C.3)

This function fulfills the property −1 ≤ r(k) ≤ 1.
If xt is white noise, r(h) is normally distributed, with µ = 0 and σ = 1√

n
. This

property can be used to discard coefficients that are not significant. For instance, if the
value of r(h) falls within the following interval, the hypothesis of the coefficient being
null is true with a 95% significance (p = 0.05):

−2√
n
≤ r(k) ≤ 2√

n
(C.4)

117

118 TIME SERIES ANALYSIS FUNCTIONS AND MODELS

C.2 ARIMA models

This section shows the equations of an ARIMA model. Those are the equations that
have been used in this thesis to forecast the evolution of software projects.

Let us define the backshift operator B as follows

Bi
xt = xt−i (C.5)

We can make algebraic operations with B. For instance:

xt − xt−1 = ▽xt = (1− B)xt (C.6)

An ARIMA model has two linear components, as shown in the following equation:

▽dxt

(

1−
p

∑
i=1

φiB
i

)

= ǫ(t)

(

1−
q

∑
j=1

θjB
j

)

(C.7)

where d, p and q are the parameters of the model (see Results chapter for details about
how these parameters are obtained), φ and θ are the coefficients that are obtained by
fitting procedures, and ǫ are the estimation errors (with ǫ(1) = 0).

C.3 Long and short memory processes

Another formula for the autocorrelation coefficient is the following:

r(k) =
Γ(k + d)Γ(1− d)

Γ(k− d + 1)Γ(d)
(C.8)

where Γ is the gamma mathematical function.
In a long memory process, that equation is proportional to k2d−1. In other words

log r(k) ∼ C + (2d− 1) log k (C.9)

where C is a constant and k is the time lag.
If 0 < d < 0.5, then

+∞

∑
−∞

| r(k) |= ∞ (C.10)

and hence the long memory qualification.
For short memory processes1, the ACF is proportional to k.
Therefore, those two properties can be used to distinguish among long and short

memory processes.

1Actually, for integrated ARIMA processes, that are a subset of all the short memory processes

APPENDIX

D

Patterns to identify automated files

The patterns shown in this appendix have been in part obtained from the SlocCount,
that identifies automated files using only the first 15 lines of the file. I have added some
patterns, and extended the number of lines to 50, because after manual inspection I
found some files that SlocCount could not identify as automated, but that were clearly
the output of other tools. The lookup was case insensitive.

1. generated automatically

2. automatically generated

3. generated by

4. a lexical scanner generated by flex

5. this is a generated file

6. generated with the.*utility

7. do not edit

8. autogenerated

9. machine generated

10. produced by

11. automatically written

12. created automatically

13. automatically created

14. codepage for

119

120 PATTERNS TO IDENTIFY AUTOMATED FILES

15. mapping table

16. generated from

17. conversion table

18. generated with

19. scanner table

APPENDIX

E

Resumen en español

E.1 Antecedentes

Esta tesis consiste en el estudio empírico de una muestra muy grande de proyectos de
software libre, con el fin de estudiar sus propiedades y su evolución.

La evolución de software es un campo que comenzó hace 40 años, con el trabajo de
Meir M. Lehman. En 1969, mientras Lehman trabajaba en IBM, estudió los procesos
de desarrollo dentro de la compañía, y extrajo algunas conclusiones usando diversas
medidas tomadas de proyectos internos en IBM. Aunque inicialmente el informe era
confidencial, los resultados acabaron publicándose en 1985, en el primer libro dedicado
específicamente a la evolución de software [LB85]. En ese libro, Lehman enunció las
leyes de evolución de software,

El estudio de Lehman se inició porque en aquella época existía preocupación acerca
del rendimiento de los proyectos de desarrollo de software. Muchas veces esos proyec-
tos no terminaban en el plazo estimado, y excedían los costes inicialmente previstos.

Para evitar estos problemas, Lehman hizo varias sugerencias, algunas de ellas re-
sumidas en sus leyes. Sin embargo, los entornos donde se desarrolla software han cam-
biado mucho desde aquella época. Aunque Lehman ha cambiado el texto de las leyes
en varias ocasiones para mantener su validez con las nuevas prácticas de desarrollo de
software, en los últimos años han ido apareciendo casos donde esas leyes no se validan.

En particular, la aparición del fenómeno del software libre ha supuesto un modo de
desarrollar software y gestionar proyectos de software que difiere mucho de las prácti-
cas tradicionales usadas en la industria.

Los proyectos de software libre suelen distribuir versiones de los programas tan
pronto como sea posible, y muchas veces se ofrecen al público con una mínima fun-
cionalidad. El objetivo es mostrar un prototipo de lo que el proyecto intenta desarrollar,
para ganar momento y atraer a nuevos desarrolladores al proyecto. Esta estrategia se
conoce como release early, release often, y fue explicado por primera vez por Eric S. Ray-
mond [Ray98].

121

122 RESUMEN EN ESPAÑOL

Esta estrategia es diferente en proyectos de software en la industria, donde el soft-
ware no se distribuye hasta que no esté listo y comprobado, y una vez puesto a disposi-
ción del público, los cambios en la funcionalidad son mínimos y las tareas de desarrollo
son principalmente de mantenimiento.

Quizás por este motivo han aparecido artículos de investigación señalando que las
leyes de Lehman no son válidas para algunos proyectos de software libre. El primero de
estos artículos fue escrito por Godfrey y Tu [GT00]. En ese artículo se estudiaba el caso
del kernel de Linux, y se hallaba que su curva de crecimiento era súper-lineal. En otras
palabras, su crecimiento se estaba acelerando con el tiempo. Esto contraviene las leyes
de Lehman, porque esas leyes dicen que el crecimiento de un proyecto de software se
frena debido al incremento en la complejidad.

Este trabajo estimuló la publicación de artículos similares, que intentaban invalidar
las leyes de Lehman. En cualquier caso, en nuestra opinión ésa no es la cuestión fun-
damental a la hora de estudiar la evolución del software. Es obvio que para un entorno
completamente diferente al que Lehman tenía acceso para sus estudios, el resultado
de aplicar los mismos métodos serán diferentes. Lehman intentaba buscar evidencias
empíricas para justificar una teoría de evolución de software, y sus leyes condensaron
cierto conocimiento que había sido validado en varios casos diferentes. Por tanto, en
nuestra opinión, la verdadera cuestión que debe guiar a los estudios de evolución es
si es posible obtener una teoría de evolución de software que sea universal, y que esté
basada en evidencias científicas. Ése es el propósito de esta tesis.

En esta tesis nos ceñiremos al caso de software libre. El motivo principal es práctico.
Existen cientos de miles de proyectos de software libre. La mayoría de ellos ofrecen sus
repositorios (sistemas de control de versiones, código fuente, listas de correo, sistemas
de seguimiento de fallos) disponibles públicamente, lo que permite que se puedan es-
tudiar e incluso en ocasiones replicar.

Este último punto es muy importante, ya que permite replicar los resultados por
terceros, de manera independiente. Es habitual en los artículos de investigación sobre
Ingeniería del Software que los datos usados en el artículo se mantienen bajo secreto,
imposibilitando la verificación imparcial por parte de terceros. Si pretendemos buscar
las bases de una teoría de evolución de software, no podemos hacerlo sobre datos que
se mantienen en secreto y sobre resultados que no se pueden verificar y validar (o in-
validar).

E.2 Objetivos

El objetivo principal de esta tesis es estudiar una muestra masiva de proyectos de soft-
ware libre, midiendo algunas de sus propiedades (tamaño, complejidad) y las carac-
terísticas de su evolución.

Para acometer esta tarea hemos empleado un enfoque estadístico. De otro modo,
dada la magnitud de la información manejada en esta tesis, no hubiera sido posible
llevar a cabo los estudios que se describen en las próximas secciones.

E.3 METODOLOGÍA 123

Por tanto, podemos resumir el objetivo principal de esta tesis en el siguiente párrafo:

Estudiar la evolución y propiedades de unamuestra masiva de proyectos
de software libre, usando un enfoque empírico y estadístico, para buscar
patrones que pudieran usarse como base para enunciar una teoría universal
de la evolución del software.

Entre las contribuciones principales de esta tesis, nosotros destacamos las dos sigu-
ientes:

• Es un estudio empírico realizado en una escala masiva, usando fuentes de datos
públicamente disponibles, y bases de datos de investigación (FLOSSMole, CVS-
AnalY dataset). Este hecho facilita la verificación de este trabajo por terceros.
Además, todas las bases de datos y scripts usados en esta tesis se han distribuido
de manera pública, con el fin de facilitar estas verificaciones. Se pueden obtener
en http://gsyc.es/∼herraiz/phd/.

• Usa un enfoque estadístico para estudiar las propiedades y evolución del software.
En particular, aplica análisis de series temporales para el estudio de la evolución
de software.

Estas dos contribuciones han hecho posible por primera vez la visión original de
Lehman [Leh74] de que la evolución de software debería ser estudiada de manera em-
pírica, usando tantos casos de estudio como fuera posible, y empleando los métodos
estadísticos adecuados (en particular, análisis de series temporales).

E.3 Metodología

La metodología empleada en esta tesis se divide en dos líneas principales:

• Estudio de las propiedades del software

• Estudio de la evolución del software

En cada una de las líneas, la metodología se divide en dos partes: recolección de
datos, y análisis. Detallamos a continuación cada parte para cada una de las dos líneas.

E.3.1 Estudio de las propiedades del software

Recolección de datos

Para este estudio usamos una muestra de 12, 108 paquetes de software incluidos en el
sistema operativo FreeBSD. Este sistema operativo contiene miles de paquetes de soft-
ware, que son mantenidos por desarrolladores del proyecto. Se encargan de gestionar
las dependencias, asegurarse que el software se puede compilar en el sistema, etc.

124 RESUMEN EN ESPAÑOL

El sistema de paquetes contienemeta-información, que se puede emplear para obtener
datos sobre miles de sistemas de software. En particular, nosotros usamos el sistema
FreeBSD para obtener el código fuente de todos los paquetes, medir sus propiedades
(tamaño, complejidad), y clasificarlos por campo de aplicación (gracias al atributo section
incluido en los paquetes de FreeBSD).

De todos los paquetes, sólo medimos complejidad para los programas escritos en
C. El lenguaje de programación C es el mayoritario en el mundo del software libre (el
51% del código en FreeBSD estaba escrito en C, y los porcentajes son similares en otras
distribuciones de software libre [RGBM+08]). Por tanto, esa muestra es suficientemente
representativa.

Por tanto, para los paquetes escritos en C teníamos métricas de tamaño y comple-
jidad, y sólo métricas de tamaño para el resto. Tras diversos procesos de filtrado, el
conjunto contenía más de 1 millón de ficheros, de los que 447, 000 estaban escritos en C.

Análisis

Usando esa muestra de ficheros, realizamos dos análisis principales: calcular las cor-
relaciones entre las métricas, y calcular las distribuciones estadísticas de las diferentes
métricas.

Como cada fichero es generado de manera independiente, nosotros usamos los va-
lores de las diferentes métricas de cada fichero como puntos para las correlaciones. Así,
calculamos las diferentes correlaciones entre todas las métricas, a nivel de fichero.

Estas correlaciones se realizaron usando la muestra completa de ficheros. Sin em-
bargo, esta muestra es heterogénea. Por ejemplo, contiene tanto ficheros de cabecera
como ficheros de código fuente. Así que repetimos el análisis, dividiendo la muestra
en grupos más pequeños y homogéneos. Usamos tres criterios para obtener grupos
homogéneos:

• Tamaño del paquete

• Tipo de fichero (cabecera, código fuente)

• Campo de aplicación

Luego repetimos las correlaciones usando sólo cada uno de estos grupos que habíamos
obtenido.

En cuanto a las distribuciones de tamaño, calculamos las distribuciones para lamues-
tra general, y para cada uno de los grupos anteriores. Además, calculamos también las
distribuciones a nivel de paquete, y a nivel de campo de aplicación. La métrica usada
a nivel de paquete fue el número de ficheros contenido en cada paquete, y la métrica
a nivel de campo de aplicación fue de número de paquetes incluido en cada campo de
aplicación. Luego, intentamos caracterizar a qué distribución teórica correspondían las
distribuciones obtenidas.

E.3 METODOLOGÍA 125

E.3.2 Estudio de la evolución del software

Recolección de datos

Para este análisis, se empleó una muestra de 3, 821 proyectos de software, obtenidos de
las bases de datos de FLOSSMole [HCC06] y CVSAnalY dataset1.

De todos los proyectos contenidos en esas bases de datos, nosotros seleccionamos
los que cumplían con los siguientes criterios:

• Tener al menos 3 desarrolladores registrados.

• Tener al menos 1 año de historia en el sistema de control de versiones.

• Tener un repositorio de control de versiones.

La razón es que busćabamos proyectos con historia suficiente como para estudiar su
evolución, y a la vez intentábamos descartar proyectos pequeños y abandonados.

Sobre el repositorio de control de versiones, era fundamental porque de lo contrario
no hubiéramos podido obtener los datos necesarios para el análisis. La base de datos de
CVSAnalY sólo contenía proyectos con repositorios CVS.

Una vez que seleccionamos esos proyectos, usando la base de datos de CVSAnalY,
medimos el número diario de cambios ocurrido en cada uno de los proyectos. Esto se
hizo usando dos métricas:

• Número de commits, tal y como los devuelve el sistema de control de versiones
CVS.

• Número demodification requests, usando el algoritmo propuesto por DanielM. Ger-
man [Ger04].

La diferencia entre las dos métricas estriba en el modo de funcionamiento de CVS.
Cada vez que se necesita hacer un cambio, ese cambio puede afectar a varios ficheros.
Sin embargo, una vez que el cambio se registra en el CVS, cada fichero se registra por
separado, y en vez de un único cambio aparecen varios cambios en el sistema. Para
comprobar si existía alguna diferencia entre usar un parámetro u otro, nosotros decidi-
mos medir los dos.

Análisis

Una vez obtenidos esos datos, intentamos caracterizar el perfil evolutivo de esos proyec-
tos usando análisis de series temporales. En particular, calculamos la función de auto-
correlación para cada proyecto, y calculamos si esa función correspondía a un proceso
de memoria corta o de memoria larga. Esto se repitió con las dos métricas mencionadas
anteriormente.

1Disponible de manera pública en http://libresoft.es/Results/CVSAnalY_SF

126 RESUMEN EN ESPAÑOL

Una vez obtenida la función de autocorrelación, usamos modelos ARIMA (Auto-
Regresivos, Integrados, y de Media movible) para predecir la evolución de tres casos de
estudio.

E.4 Conclusiones

Una vez realizados todos los análisis explicados en la sección anterior, nosotros obtuvi-
mos los siguientes resultados:

• Todas las métricas de tamaño y complejidad resultaron estar altamente correla-
cionadas, con las siguientes excepciones:

– Ficheros de cabecera. En este caso, la complejidad ciclomática no está rela-
cionada con ninguna otra métrica.

– Nivel de Halstead. Esta métrica mostró correlaciones pobres cuando se repi-
tió la correlación con grupos más homogéneos.

• Todas las métricas de tamaño y complejidad siguen una distribución de doble
Pareto.

• La misma distribución de tamaño aparece a las escalas de paquete y campo de
aplicación.

• La dinámica de la evolución de software es un proceso de memoria corta (del
orden de días). Algunos proyectos tienen memorias largas, pero se les puede con-
siderar marginales respecto a la mayoría de proyectos estudiados.

• Debido al punto anterior, los modelos ARIMAmuestran un poder predictivo mu-
cho mayor que modelos de regresión.

Estos resultados tiene varias implicaciones:

• Para medir las propiedades de un programa escrito en C, basta con medir el
número de líneas de código, y el nivel de Halstead.

• Como la distribución de tamaño es doble Pareto, se podría emplear el Random
Forest File Model [Mit04b] para simular la evolución de un proyecto de software.

• Una teoría de evolución de software debería tener en cuenta que la forma de la
distribución de tamaño es la misma a diferentes escalas.

• Además, debería tener en cuenta que los eventos que ocurren hoy en un proyecto
de software están influenciados por los eventos recientes, y que los eventos que
ocurrieron hace mucho tiempo (más de varias semanas), no tiene ya ninguna in-
fluencia en el proyecto.

E.4 CONCLUSIONES 127

Como trabajo futuro de esta tesis queda validar la idoneidad de usar elRandom Forest
File Model adaptado al caso de evolución de software, y extender este estudio a otros
casos de estudio, con el fin de comprobar si las distribuciones de tamaño son lasmismas,
y si la dinámica es también de memoria corta. De verificarse en muchos más casos
de estudio, podrían ser los patrones necesarios para enunciar una teoría universal de
evolución de software.

128 RESUMEN EN ESPAÑOL

BIBLIOGRAPHY

[ACPM01] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones evo-
lution through time series. In Proceedings of the International Conference on
Software Maintenance, pages 273–280, Florence, Italy, 2001. IEEE Computer
Society.

[AH06] Mina Askari and Ric Holt. Information theoretic evaluation of change pre-
diction models for large-scale software. In Proceedings of the International
Workshop on Mining Software Repositories, pages 126–132, New York, NY,
USA, 2006. ACM.

[Aoy02] Mikio Aoyama. Metrics and analysis of software architecture evolution
with discontinuity. In Proceedings of the International Workshop on Principles
of Software Evolution, pages 103–107, New York, NY, USA, 2002. ACM.

[AP01] Annie I. Antón and Colin Potts. Functional paleontology: system evo-
lution as the user sees it. In Proceedings of the International Conference on
Software Engineering, pages 421–430, Washington, DC, USA, 2001. IEEE
Computer Society.

[AP03] Annie I. Antón and Colin Potts. Functional paleontology: The evolution
of user-visible system services. IEEE Transactions on Software Engeneering,
29(2):151–166, 2003.

[ASAB02] I.P. Antoniades, I. Stamelos, L. Angelis, and GL Bleris. A novel simula-
tion model for the development process of open source software projects.
Software Process Improvement and Practice, 7(3-4):173–188, 2002.

[Asp93] William Aspray. Meir M. Lehman, Electrical Engineer, an oral history.
IEEE History Center, 1993. Rutgers University, New Brunswick, NJ, USA.

[ASS+04] I.P. Antoniades, I. Samoladas, I. Stamelos, L. Aggelis, and G. L. Bleris.
Dynamical simulation models of the open source development process.
In Stefan Koch, editor, Free/Open Source Software Development, pages 174–
202. Idea Group Publishing, Hershey, PA, 2004.

129

130 BIBLIOGRAPHY

[BDA+99] P. Bourque, R. Dupuis, A. Abran, JW Moore, and L. Tripp. The guide to
the Software Engineering Body of Knowledge. IEEE Software, 16(6):35–44,
1999.

[Bel79] L.A . Belady. On software complexity. In Proceedings of the Workshop on
Quantitative Software Models for Reliability, pages 90–94, Kiamesha Lake,
NY, USA, 1979. IEEE Computer Society.

[Bel85] L. A. Belady. Program Evolution. Processes of Software Change., chapter On
software complexity, pages 331–338. Academic Press Professional, Inc.,
San Diego, CA, USA, 1985.

[BFN+06] Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden Smith,
Matt Visser, Hayden Melton, and Ewan Tempero. Understanding the
shape of java software. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages
397–412, New York, NY, USA, 2006. ACM.

[BKS07] E.J. Barry, C.F. Kemerer, and S.A. Slaughter. How software process au-
tomation affects software evolution: a longitudinal empirical analysis.
Journal of Software Maintenance and Evolution: Research and Practice, 19(1):1–
31, 2007.

[BL71] L. A. Belady and M. M. Lehman. Programming system dynamics or the
metadynamics of systems in maintenance and growth. Research Report
RC3546, IBM, 1971.

[BL76] L.A. Belady and M.M. Lehman. A model of large program development.
IBM Systems Journal, 15(3):225–252, 1976.

[BL85] L.A. Belady and M. M. Lehman. Program Evolution. Processes of Software
Change., chapter Programming system dynamics or the meta-dynamics of
systems in maintenance and growth, pages 99–122. Academic Press Pro-
fessional, Inc., San Diego, CA, USA, 1985.

[BT79] G. Benyon-Tinker. Complexity measures in an evolving large system. In
Proceedings of the Workshop on Quantitative Software Models for Reliability,
pages 117–127, Kiamesha Lake, NY, USA, 1979. IEEE Computer Society.

[BTW88] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Physical
Review A, 38(1):364–374, 1988.

[CCPV01] Francesco Caprio, Gerardo Casazza, Massimiliano Di Penta, and Umberto
Villano. Measuring and predicting the Linux kernel evolution. In Proceed-
ings of the International Workshop of Empirical Studies on Software Mainte-
nance, Florence, Italy, 2001.

BIBLIOGRAPHY 131

[CFR05] A. Capiluppi, A.E. Faria, and J.F. Ramil. Exploring the relationship be-
tween cumulative change and complexity in an Open Source system. In
Proceedings of the European Conference on Software Maintenance and Reengi-
neering, pages 21–29. IEEE Computer Society, 2005.

[CFR07] A. Capiluppi and J. Fernandez-Ramil. A model to predict anti-regressive
effort in Open Source Software. In Proceedings of the International Conference
on Software Maintenance, pages 194–203. IEEE Computer Society, 2007.

[CG77] Douglas W. Clark and C. Cordell Green. An empirical study of list struc-
ture in Lisp. Communications of the ACM, 20(2):78–87, 1977.

[CGBHR07] Andrea Capiluppi, Jesús M. González-Barahona, Israel Herraiz, and Gre-
gorio Robles. Adapting the "staged model for software evolution" to
free/libre/open source software. In IWPSE ’07: Ninth international work-
shop on Principles of software evolution, pages 79–82, New York, NY, USA,
2007. ACM.

[CHLW06] Stephen Cook, Rachel Harrison, Meir M. Lehman, and PaulWernick. Evo-
lution in software systems: foundations of the SPE classification scheme.
Journal of Software Maintenance and Evolution: Research and Practice, 18(1):1–
35, 2006.

[Cho80] C.K.S. Chong Hok Yuen. A Phenomenology of ProgramMaintenance and Evo-
lution. PhD thesis, Imperial College, London, 1980.

[Cho85] C.K.S. Chong Hok Yuen. An empirical approach to the study of errors
in large software under maintenance. In Proceedings of the International
Conference on Software Maintenance, pages 96–105. IEEE Computer Society,
1985.

[Cho87] C.K.S. Chong Hok Yuen. A statistical rationale for evolution dynamics
concepts. In Proceedings of the International Conference on Software Mainte-
nance, pages 156–164. IEEE Computer Society, 1987.

[Cho88] C.K.S. Chong Hok Yuen. On analyzing maintenance process data at the
global and detailed levels. In Proceedings of the International Conference on
Software Maintenance, pages 248–255, Atlanta, GA, USA, 1988. IEEE Com-
puter Society.

[Cle81] William S. Cleveland. LOWESS: A program for smoothing scatterplots
by robust locally weighted regression. The American Statistician, 35(1):54,
February 1981.

132 BIBLIOGRAPHY

[CLM03] Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. Characteristics
of Open Source projects. In Proceedings of the European Conference on Soft-
ware Maintenance and Reengineering, pages 317–327. IEEE Computer Soci-
ety, 2003.

[CM07] Andrea Capiluppi and Martin Michlmayr. Open Source development, adop-
tion and innovation, chapter From the Cathedral to the Bazaar: An Empir-
ical Study of the Lifecycle of Volunteer Community Projects, pages 31–
44. IFIP: International Federation for Information Processing. Springer
Boston, 2007.

[CMPS07] Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra. Power-
laws in a large object-oriented software system. IEEE Transactions on Soft-
ware Engineering, 33(10):687–708, 2007.

[CMR04a] Andrea Capiluppi, Maurizio Morisio, and Juan F. Ramil. The evolution
of source folder structure in actively evolved Open Source systems. In
Proceedings of the International Symposium on Software Metrics, pages 2–13.
IEEE Computer Society, 2004.

[CMR04b] Andrea Capiluppi, Maurizio Morisio, and Juan F. Ramil. Structural evolu-
tion of an Open Source system: a case study. In Proceedings of the Interna-
tional Workshop on Program Comprehension, pages 172–183, Bari, Italy, 2004.
IEEE Computer Society.

[CMS07] Christian Collberg, Ginger Myles, and Michael Stepp. An empirical study
of Java bytecode programs. Software Practice and Experience, 37(6):581–641,
2007.

[Con86] Samuel D. Conte. Software Engineering Metrics and Models (Ben-
jamin/Cummings series in software engineering). Benjamin-Cummings Pub
Co, 1986.

[CR04] Andrea Capiluppi and Juan F. Ramil. Studying the evolution of Open
Source systems at different levels of granularity: two case studies. In
Proceedings of the International Workshop on Principles of Software Evolution,
pages 113–118. IEEE Computer Society, 2004.

[CSN07] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data, 2007.

[DD03] Jean-Michel Dalle and Paul A. David. The allocation of software devel-
opment resources in Open Source production mode. Technical report,
SIEPR Policy paper No. 02-027, SIEPR, Stanford, USA, 2003.
http://siepr.stanford.edu/papers/pdf/02-27.pdf.

BIBLIOGRAPHY 133

[DDdB06] Jean-Michell Dalle, Laurent Daudet, andMatthisj den Besten. Mining CVS
signals. In Proceedings of the Workshop on Public Data about Software Devel-
opment, pages 12–21, Como, Italy, 2006.

[Dow01] Allen B. Downey. The structural cause of file size distributions. In Pro-
ceedings of International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pages 361–370, Cincinnati, OH,
USA, 2001. IEEE Computer Society.

[Dow05] Allen B. Downey. Lognormal and Pareto distributions in the Internet.
Computer Communications, 28(7):709–801, 2005.

[Dvo94] Joseph Dvorak. Conceptual entropy and its effect on class hierarchies.
IEEE Computer, 27(6):59–63, 1994.

[EGWEH02] Letha H. Etzkorn, Sampson Gholston, and Jr. William E. Hughes. A se-
mantic entropy metric. Journal of Software Maintenance and Evolution: Re-
search and Practice, 14(4):293–310, 2002.

[FB02] Eduardo Fuentetaja and Donald J. Bagert. Software Evolution from a
Time-Series perspective. In Proceedings of the International Conference on
Software Maintenance, pages 226–229. IEEE Computer Society, 2002.

[FKP02] Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou.
Heuristically optimized trade-offs: A new paradigm for power laws in
the Internet. In Proceedings of the International Colloquium on Automata,
Languages and Programming, pages 110–122, London, UK, 2002. Springer-
Verlag.

[FNPAQ00] Anna R. Fasolino, Domenico Natale, Alessio Poli, and Alessandro
Alberigi-Quaranta. Metrics in the development and maintenance of soft-
ware: an application in a large scale environment. Journal of Software Main-
tence: Research and Practice, 12:343–355, 2000.

[FRLWC08] Juan Fernandez-Ramil, Angela Lozano, Michel Wermelinger, and Andrea
Capiluppi. Software Evolution, chapter Empirical Studies of Open Source
Evolution, pages 263–288. Springer, 2008.

[GB04] Jesus M. Gonzalez-Barahona. Quo vadis, libre software?, 2004.
http://sinetgy.org/∼jgb/articulos/libre-software-origin/.

[Ger04] Daniel M. German. Mining CVS repositories, the softchange experience.
In Proceedings of the International Workshop on Mining Software Repositories,
pages 17–21, Edinburg, Scotland, UK, 2004.

134 BIBLIOGRAPHY

[GH06] Daniel M. German and Abraham Hindle. Visualizing the evolution of
software using softChange. International Journal of Software Engineering and
Knowledge Engineering, 16(1):5–21, 2006.

[GJKT97] Harald Gall, Mehdi Jazayeri, René Klösch, and Georg Trausmuth. Soft-
ware evolution observations based on product release history. In Proceed-
ings of the International Conference on Software Maintenance, pages 160–170.
IEEE Computer Society, 1997.

[GT00] Michael W. Godfrey and Quiang Tu. Evolution in Open Source software:
A case study. In Proceedings of the International Conference on Software Main-
tenance, pages 131–142, San Jose, California, 2000.

[GT01] Michael Godfrey and Qiang Tu. Growth, evolution, and structural change
in open source software. In Proceedings of the International Workshop on
Principles of Software Evolution, pages 103–106, Vienna, Austria, 2001.

[Har92] Warren Harrison. An entropy-based measure of software complexity.
IEEE Transactions on Software Engineering, 18(11):1025–1029, 1992.

[HCC06] James Howison, Megan Conklin, and Kevin Crowston. FLOSSMole: a
collaborative repository for FLOSS research data and analyses. Inter-
national Journal of Information Technology and Web Engineering, 1(3):17–26,
July-September 2006.

[HGBR07a] Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles. Fore-
casting the number of changes in Eclipse using time series analysis. In Pro-
ceedings of the International Workshop on Mining Software Repositories, pages
32–33, Minneapolis, MN, USA, 2007. IEEE Computer Society.

[HGBR07b] Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles. To-
wards a theoretical model for software growth. In International Workshop
onMining Software Repositories, pages 21–30, Minneapolis, MN, USA, 2007.
IEEE Computer Society.

[HRGB+06] Israel Herraiz, Gregorio Robles, Jesus M. Gonzalez-Barahona, Andrea
Capiluppi, and Juan F. Ramil. Comparison between SLOCs and num-
ber of files as size metrics for software evolution analysis. In Proceedings
of the European Conference on Software Maintenance and Reengineering, pages
203–210, Bari, Italy, 2006. IEEE Computer Society.

[HWH05] Ahmed E. Hassan, JingweiWu, and Richard C. Holt. Visualizing historical
data using spectrographs. In Proceedings of the International Symposium on
Software Metrics, Como, Italy, 2005. IEEE Computer Society.

BIBLIOGRAPHY 135

[Kan03] Stephen H. Kan. Metrics and Models in Software Quality Engineering (2nd
Edition). Addison-Wesley Professional, September 2003.

[KCM07] H. Kagdi, M.L. Collard, and J.I. Maletic. A survey and taxonomy of ap-
proaches for mining software repositories in the context of software evo-
lution. Journal of Software Maintenance and Evolution: Research and Practice,
19(2):77–131, 2007.

[Kit82] B. Kitchenham. System evolution dynamics of VME/B. ICL Technical Jour-
nal, 3:43–57, 1982.

[Knu71] Donald E. Knuth. An empirical study of FORTRAN programs. Software
Practice and Experience, 1(2):105–133, 1971.

[Koc05] Stefan Koch. Evolution of Open Source Software systems - a large-scale
investigation. In Proceedings of the International Conference on Open Source
Systems, Genova, Italy, July 2005.

[KS99] C. F. Kemerer and S. Slaughter. An empirical approach to studying soft-
ware evolution. IEEE Transactions on Software Engineering, 25(4):493–509,
1999.

[KSW95] K. Kim, Y. Shin, and C. Wu. Complexity measures for object-oriented
program based on the entropy. In Proceedings of the Asia Pacific Software
Engineering Conference, pages 127–135, Washington, DC, USA, 1995. IEEE
Computer Society.

[Law82] M. J. Lawrence. An examination of evolution dynamics. In Proceedings of
the International Conference on Software Engineering, pages 188–196, Tokyo,
Japan, 1982. IEEE Computer Society Press.

[LB85] M. M. Lehman and L. A. Belady, editors. Program evolution. Processes of
software change. Academic Press Professional, Inc., San Diego, CA, USA,
1985.

[Leh74] M. M. Lehman. Programs, Cities, Students: Limits to Growth?, 1974. In-
augural lecture, Imperial College of Science and Technology, University of
London.

[Leh78] M. M. Lehman. Laws of Program Evolution-Rules and Tools for Program-
ming Management. In Proceedings of Infotech State of the Art Conference,
Why Software Projects Fail, 1978.

[Leh80] M. M. Lehman. Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

136 BIBLIOGRAPHY

[Leh85a] M. M. Lehman. Program Evolution. Processes of Software Change., chapter
The Programming Process, pages 39–84. Academic Press Professional,
Inc., San Diego, CA, USA, 1985.

[Leh85b] M. M. Lehman. Program Evolution. Processes of Software Change., chapter
Programs, Cities, Students: Limits to Growth?, pages 133–164. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[Leh85c] M. M. Lehman. Program Evolution. Processes of Software Change., chapter
Laws of Program Evolution-Rules and Tools for Programming Manage-
ment, pages 247–274. Academic Press Professional, Inc., San Diego, CA,
USA, 1985.

[Leh96] M. M. Lehman. Laws of software evolution revisited. In Proceedings of the
European Workshop on Software Process Technology, pages 108–124, London,
UK, 1996. Springer-Verlag.

[LP76] M. M. Lehman and F. N. Parr. Program Evolution and its impact on Soft-
ware Engineering. In Proceedings of the International Conference on Software
Engineering, pages 350–357, Los Alamitos, CA, USA, 1976. IEEE Computer
Society Press.

[LP85] M. M. Lehman and F. N. Parr. Program Evolution. Processes of Software
Change., chapter Program Evolution and its impact on Software Engineer-
ing, pages 201–220. Academic Press Professional, Inc., San Diego, CA,
USA, 1985.

[LPR98] Manny M. Lehman, Dewayne E. Perry, and Juan F. Ramil. Implications of
evolution metrics on software maintenance. In Proceedings of International
Conference on SoftwareMaintenance, pages 208–217. IEEEComputer Society,
1998.

[LR02] M.M. Lehman and J.F. Ramil. An overview of some lessons learnt in
FEAST. In Proceedings of the Workshop on Empirical Studies of Software Main-
tenance, 2002.

[LRS01] Manny M. Lehman, Juan F. Ramil, and U. Sandler. An approach to mod-
elling long-term growth trends in software systems. In Internation Con-
ference on Software Maintenance, pages 219–228, Florence, Italy, 2001. IEEE
Computer Society.

[LRW+97] Manny M. Lehman, Juan F. Ramil, P D. Wernick, D E. Perry, and W M.
Turski. Metrics and laws of software evolution - the nineties view. In
Proceedings of the International Symposium on Software Metrics, 1997.

BIBLIOGRAPHY 137

[LSV08] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power
laws in software. ACM Transactions on Software Engineering and Methodol-
ogy, 2008. To appear.

[McC76] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, 1976.

[MFRP06] Nazim H. Madhavji, Juan Fernandez-Ramil, and Dewayne E. Perry, edi-
tors. Software Evolution and Feedback. Theory and Practice. Wiley, 2006.

[Mit04a] Michael Mitzenmacher. A brief history of generative models for power
law and lognormal distributions. Internet Mathematics, 1(2):226–251, 2004.

[Mit04b] Michael Mitzenmacher. Dynamic models for file sizes and double Pareto
distributions. Internet Mathematics, 1(3):305–333, 2004.

[Mit05] Michael Mitzenmacher. Editorial: The future of power law research. In-
ternet Mathematics, 2(4):525–534, 2005.

[MWH98] Spyros G. Makridakis, Steven C.Wheelwright, and Rob J. Hyndman. Fore-
casting: Methods and Applications. John Wiley & Sons, Ltd., January 1998.

[NR69] Peter Naur and Brian Randell, editors. Software Engineering. Report on
a conference sponsored by the NATO Scientific Committee, Brussels, January
1969. NATO Scientific Committee. Conference celebrated in 1968. Pro-
ceedings published as a report in 1969.

[Pen99] Roger Penrose. The Emperor’s New Mind. Oxford University Press, 1999.

[Per94] Dewayne E. Perry. Dimensions of software evolution. In Proceedings of the
International Conference on Software Maintenance, pages 296–303, Washing-
ton, DC, USA, 1994. IEEE Computer Society.

[Per99] Bruce Perens. The open source definition. In Chris DiBona, Sam Ock-
man, and Mark Stone, editors, Open Sources: Voices from the Open Source
Revolution. O’Reilly and Associates, Cambridge, Massachusetts, 1999.

[Per06] Dewayne E. Perry. Software Evolution and Feedback. Theory and Practice,
chapter A nontraditional view of the dimensions of software evolution,
pages 41–51. Wiley, 2006.

[Pir88] Shamin S. Pirzada. A staistical examination of the evolution of the UNIX sys-
tem. PhD thesis, Imperial College. University of London., 1988.

[PLM07] Yi Peng, Fu Li, and Ali Mili. Modeling the evolution of operating systems:
An empirical study. Journal of Systems and Software, 80(1):1–15, 2007.

138 BIBLIOGRAPHY

[PSE04] J. W. Paulson, Giancarlo Succi, and A. Eberlein. An empirical study of
open-source and closed-source software products. IEEE Transactions on
Software Engineering, 30(4), April 2004.

[RAGBH05] Gregorio Robles, Juan Jose Amor, Jesus M. Gonzalez-Barahona, and Israel
Herraiz. Evolution and growth in large libre software projects. In Proceed-
ings of the International Workshop on Principles in Software Evolution, pages
165–174, Lisbon, Portugal, September 2005.

[Ran69] Brian Randell. Towards a methodology of computing system design. In
Peter Naur and Brian Randell, editors, Software Engineering, pages 204–
208, Garlisch, Germany, 1969. NATO Scientific Committee. Conference
celebrated in 1968. Proceedings published as a report in 1969.

[Ray98] Eric S. Raymond. The cathedral and the bazaar. First Monday, 3(3), March
1998.
http://www.firstmonday.dk/issues/issue3_3/raymond/.

[RB00] V.T. Rajlich and K.H. Bennett. A staged model for the software life cycle.
IEEE Computer, 33(7):66–71, Jul 2000.

[RGBM+08] Gregorio Robles, Jesus M. Gonzalez-Barahona, Martin Michlmayr,
Juan Jose Amor, and Daniel M. German. Macro-level software evolution:
A case study of a large software compilation. Empirical Software Engineer-
ing, 2008. To appear.

[RJ04] W.J. Reed and M. Jorgensen. The Double Pareto-Lognormal Distribu-
tion. A New Parametric Model for Size Distributions. Communications in
Statistics-Theory and Methods, 33(8):1733–1753, 2004.

[RL00] Juan F. Ramil andMeir M. Lehman. Metrics of software evolution as effort
predictors - a case study. In Proceedings of the International Conference on
Software Maintenance, pages 163–172. IEEE Computer Society, 2000.

[RMGB05] Gregorio Robles, Juan Julian Merelo, and Jesus M. Gonzalez-Barahona.
Self-organized development in libre software: a model based on the stig-
mergy concept. In Proceedings of the International Workshop on Software Pro-
cess Simulation and Modeling, St.Louis, Missouri, USA, 2005.

[Rob06] Gregorio Robles. Empirical Software Engineering Research on Libre Software:
Data Sources, Methodologies and Results. PhD thesis, Universidad Rey Juan
Carlos, 2006.

[Roc96] Jose Luis Roca. An entropy-based method for computing software struc-
tural complexity. Microelectronics and Reliability, 36(5):609–620, May 1996.

BIBLIOGRAPHY 139

[Som06] I. Sommerville. Software Engineering. Addison Wesley Publishing Com-
pany, 2006.

[SS06] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Applica-
tions. With R Examples. Springer Texts in Statistics. Springer, 2006.

[Sta02] R.M. Stallman. Free Software, Free Society: Selected Essays of Richard M. Stall-
man. Gnu Press, 2002.

[Tur96] Wladyslaw M. Turski. Reference model for smooth growth of software
systems. IEEE Transactions on Software Engineering, 22(8):599–600, 1996.

[Tur02] W. M. Turski. The reference model for smooth growth of software systems
revisited. IEEE Transactions on Software Engineering, 28(8):814–815, 2002.

[WHH07] Jingwei Wu, Richard Holt, and Ahmed E. Hassan. Empirical evidence
for SOC dynamics in software evolution. In Proceedings of the International
Conference on SoftwareMaintenance, pages 244–254. IEEEComputer Society,
2007.

[Woo80] C.MurrayWoodside. Amathematical model for the evolution of software.
Journal of Systems and Software, 1:337–345, 1980.

[Wu06] Jingwei Wu. Open Source Software evolution and its dynamics. PhD thesis,
University of Waterloo, 2006.

140 BIBLIOGRAPHY

