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Abstract

Perinatal hypoxia is a severe condition that may harm
fetus organs permanently. When the fetus brain is partially
deprived from oxygen, the control of the fetal heart rate
(FHR) is affected. We hypothesized that advanced pro-
cessing of the FHR can reveal whether the fetus is under
perinatal hypoxia.

We analyzed FHR morphology with normalized com-
pression distance (NCD) that compares two arbitrary se-
quences and outputs their dissimilarity. This parameter-
free measure exploits linear and non-linear relations in
the data and allows the comparison of sequences of dif-
ferent sizes. It was applied to raw FHR sequences and to
a set of statistics computed from them (e.g. moments on 5
minutes signal windows). We classified the cases from the
NCD dissimilarity matrix by using a simple nearest neigh-
bor classifier and leave-one-out cross-validation.

Best results in a database with 26 FHR recordings (13
controls and 13 cases) were provided by the central mo-
ment of order 3 calculated over sliding windows of 5 min-
utes on the interval from 4 to 3 hours to delivery. The re-
sulting accuracy was 0.88 with sensitivity 0.92 and speci-
ficity 0.85.

1. Introduction

Perinatal hypoxia is caused by the lack of oxygena-
tion at tissues and might cause serious sequels, such
as brain or adrenal hemorrhage, necrotizing enterocoli-
tis, delayed neurological development, mental handicap,
seizures (West syndrome), or cerebral palsy [1]. The sever-
ity of the hypoxia is commonly quantified using the Apgar
Score [2]. An score lower than 7 at five minutes after de-
livery is considered pathological, and gas analysis of um-
bilical cord is performed for confirmation, where a low pH
gives evidence of metabolic acidosis.

Continuous electronic fetal monitoring, or Cardiotocog-
raphy (CTG) consists in simultaneous evaluation of the Fe-

tal Heart Rate (FHR) and the uterine activity [3, 4]. After
CTG generalization, the gynecologists value basal FHR,
its accelerations and decelerations in relation to uterine
contractions, and beat-to-beat FHR variability [5]. The
following signal types are considered clearly pathologi-
cal: late decelerations, whose minimum has a delay of at
least 30 seconds with respect to the peak of contractions;
sustained bradycardia; low variability (less than 5 beats);
and a “sine”-rhythm, which is characterized by a long-
term variability but almost no variability in the short-term.
However, visual interpretation of CTG has not shown ad-
vantages over intermittent auscultation in low-risk preg-
nancies [6]. In addition, visual interpretation of CTG has
low specificity, and requires confirmation by invasive pH
determination of scalp blood of the fetus, which is not al-
ways feasible [7]. Scalp blood pH values ≤ 7.20 are con-
sidered as risk of perinatal hypoxia. Therefore, gynecol-
ogists, by balancing the risk of hypoxia, indicate Cesare-
ans, forceps and vacuum extraction more often than neces-
sary [7].

Automatic analysis of CTG have also been proposed.
For instance, it has been shown that automatic ST analysis
combined with CTG increases the ability of obstetricians
to identify hypoxia [8]. A system-identification approach
to model FHR and uterine activity as an input-output sys-
tem reported around 50% sensitivity, with 7.5% of false
positives, 1h and 40 minutes before delivery [9]. Other
non-invasive approaches have been proposed to comple-
ment CTG, such as Doppler velocimetry and pulse oxime-
try [10].

In this paper we analyze the readily available FHR to
determine whether the fetus is suffering hypoxia. We de-
cide using a nearest neighbor (NN) classifier using as dis-
tance a general information theory measure, the normal-
ized compression distance (NCD) [11], related to Kol-
mogorov Complexity and mutual information [12]. This
technique was successfully used for clustering the fetuses
of a multicentre study with the aim of identifying the ab-
normal ones [13]. This paper builds up on that work and, as



NCD is only an approximation of the Kolmogorov Com-
plexity, we compare the performance of NCD applied to
raw series with its performance when applied to series of
moments obtained from 5-minute sliding-windows.

2. Methods

This section reviews the methodology followed in this
paper. Namely, we detail NCD, a generic dissimilarity
measure for sequences, the statistical moments, and the
classification procedure.

2.1. Normalized compression distance

In FHR classification, a typical approach is to extract
several features from the time series and use them as in-
put to the classifier [14]. We follow a different approach
in this paper, and instead of extracting features, we use the
dissimilarities of each time series with the ones in the train-
ing set as the input to our classifier. This type of learning is
termed dissimilarity learning [15]. We select a dissimilar-
ity measure that is based on the mutual information among
the sequences, which (theoretically) includes any kind of
relations among the sequences.

The Kolmogorov complexity, K(s), of a sequence s is
the length of the shortest binary program that produces s
on an universal Turing machine [11]. K(s) can be seen as
the information of the sequence (or the information needed
to generate it) [16]; K(s|t) is the length of the shortest
program to produce s if t is given as an input; and K(s, t)
is the length of the shortest program that generates s, t,
and allows to separate them. Unfortunately, Kolmogorov
Complexity is not computable.

NCD is a practical dissimilarity measure for se-
quences [11]. Given two sequences si, sj , the NCD(si, sj)
is defined as:

NCD(si, sj) =
C(si, sj)−min{C(si), C(sj)}

max{C(si), C(sj)}
, (1)

where C(·) is the compression length in bits given by the
selected compressor C (C(si) and C(si, sj) are, respec-
tively, the number of bits needed to compress si and the
concatenation of si and sj). C provides a computable
approximation of the Kolmogorov Complexity. This nor-
malized measure has a simple interpretation: the lower its
value, the more similar the sequences (their high mutual
information simplifies compressor task, which requires
fewer bits). The normalization term in the denominator
of (1) enables the comparison between sequences of dif-
ferent sizes.

2.2. Statistical Moments

Statistical moments have a handful of advantages for
time series. Moments are easy to compute and robust to
signal loses, as we can just ignore unknown parts (no in-
terpolation is needed as in frequency-related statistics). In
addition, moments have low computational burden.

The raw moment of order n is defined as

Mn(s) =
1

L

L∑
k=1

s[k]n , (2)

where s[k] is the k-th element of the sequence s. Central
moments are defined as:

µn(s) =
1

L

L∑
k=1

(s[k]−M1(s))n . (3)

2.3. Classification and evaluation

Cross-validation is a common approach to estimate the
expected accuracy when the number of instances available
is low. In this paper we follow a leave-one-out cross-
validation approach to evaluate performance of the differ-
ent alternatives. The classification is done by a NN classi-
fier which decides the label of the test series as the one that
has closer NCD distance to it.

NCD dissimilarity is not necessarily symmetric. There-
fore, in order to use it with the NN classifier, we tried two
flavors of NCD dissimilarity measure: type min, which
uses the minimum compression size of the concatenation
of the sequences, i.e., min{NCD(si, sj),NCD(sj , si)}; or
type mean, which uses their mean, i.e., 0.5(NCD(si, sj) +
NCD(sj , si)).

3. Experiments

We first describe the database used in the experiments.
Then, we examine the performance of NCD + NN on the
raw FHR time series. Finally, we examine the perfor-
mance of NCD + NN on the series that result of computing
the moments on 5-minute sliding windows extracted from
FHR series.

3.1. Data description

FHR records1 were acquired with a Philips cardiotoco-
graph for a total of 32 recordings, 15 controls and 17 cases
(only 13 controls and 13 cases had signal in the 4 ↔ 3
hours to delivery interval) . A case was declared whether:
1) the PH of the umbilical artery was ≤ 7.05; or 2) the

1Data are available from the website: http://sites.google.
com/site/hufahypoxia.
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APGAR score 5 minutes after delivery was ≤ 7 and a re-
animation type III or greater was required.

Records have considerable variability both in start/ending
times and pauses as labor duration vary. In addition, the
cardiotocograph may be disconnected at any time for a
number of reasons. Also, the signal is lost sometimes as
the fetus and mother move. The cardiotocograph provides
three signal qualities (lost, medium and high). We decide
to consider the window between 4 to 1 hours before birth
for our analysis, even though not all patients have signal
along all this window. This window selection establishes a
trade-off among number of patients and early detection of
hypoxia.

3.2. Raw data analysis

We analyzed the raw sequences to investigate the attain-
able accuracy without any preprocessing step and without
using prior knowledge about FHR signals and useful pa-
rameters. Our aim was to evaluate the ability of NCD to
extract information on the series. We considered four time
intervals: 1) 4 to 3 hours to delivery (13 cases and 13 con-
trols in the database); 2) 3 to 2 hours to delivery (13 cases
and 14 controls); 3) 2 to 1 hours to delivery (15 cases and
16 controls); and 4) 4 to 1 hours to delivery (15 cases and
16 controls). In addition, we analyzed three types of se-
quences: a) only high quality signal; b) high and medium
qualities signal; c) including all signal qualities. The final
sequences were the raw sequences with the non-considered
qualities removed. NCD was computed using the software
of their authors [17]. We tried three different compressor
architectures (zip, bzip2 and lzma).

Best results are summarized in Table 1, where we see
that high quality signal and the interval from 4 to 3 hours
before delivery were the best for predictions. In addition,
we see for the same time interval that prediction using all
the signal is better than using only high and medium qual-
ities, which shows that taking into account lost signals,
which may occur when the fetus moves, might increase
prediction accuracy.

3.3. Moments on sliding windows

In this experiment we first classified the sequences us-
ing statistical moments. We considered raw and central
moments of orders n = {1, 2, . . . , 10}. We standardized
the moments applying the n-th root and making them zero-
mean, unit-variance. We tried NN and Support Vector Ma-
chines (SVM) as classifiers. We trained classifiers with all
moments as input and using backward selection for select-
ing best moments. Parameter tuning and feature selection
were done inside the cross-validation loop. Best result was
provided by a SVM with radial basis function kernel and
backward selection, which gave an accuracy of 0.69 (18

Table 1. NCD and NN classifier best results for raw sig-
nals. Interval expresses the signal interval in hours to de-
livery. Acc, Sen and Spe stand for accuracy, sensitivity
and specificity, respectively. Matrix shows the matrix type
used in the computations.

Interval Acc. Sen. Spe. Compressor Matrix

Only high signal quality
4↔ 3 0.73 0.69 0.77 zip min
3↔ 2 0.63 0.57 0.69 bzip2 min
2↔ 1 0.58 0.75 0.40 lzma sum
4↔ 1 0.66 0.82 0.47 zip min

High and medium signal qualities
4↔ 3 0.58 0.62 0.54 zip min
3↔ 2 0.56 0.79 0.31 bzip2 min
2↔ 1 0.55 1.0 0.07 lzma sum
4↔ 1 0.56 0.59 0.53 lzma min

All signal qualities
4↔ 3 0.66 0.77 0.54 zip min
3↔ 2 0.56 0.14 1.0 lzma min
2↔ 1 0.53 0.76 0.27 lzma min
4↔ 1 0.59 0.59 0.60 zip min

out of 26) with high quality signal in the 4 ↔ 3 hours to
delivery interval.

As the combinations of statistical moments for FHR
classification described above reported worse accuracies
than NCD on the raw signals, we tried NCD to empower
simple moments on sliding windows, e.g., instead of using
the mean of the whole signal as a descriptor, we created a
sequence with the means obtained in the sliding windows.
We computed all the sequences for raw and central mo-
ments of orders n = {1, 2, . . . , 10}. The sequences were
later applied the transformation s̄i = n

√
si/An, where An

was the maximum value of the sequences in all patients
for each moment. Then, NCD pairwise distances were ob-
tained for s̄i and accuracies were estimated using leave-
one-out cross-validation with a nearest neighbor classifier.

Best results were obtained with high and medium signal
qualities and 5 minutes windows with 2 minutes-overlap.
These results are summarized in Table 2. The best pre-
dictive interval was the 4 to 3 hours to delivery. The best
accuracy for individual moments gave an accuracy of 0.88
(23 out of 26), a sensitivity of 0.92 (12 out of 13) and a
specificity of 0.85 (11 out of 13).

4. Conclusion

The NCD analysis of the readily available FHR traces
might help obstetricians when deciding about fetuses hy-
poxia. We showed how to apply NCD to raw signals and



Table 2. NCD and NN classifier best results for moments
in 5-minute sliding-windows signals. M indicates the sta-
tistical moment used.

Int. Acc. Sen. Spe. M Comp. Matrix
4↔ 3 0.88 0.92 0.85 µ3 lzma min
3↔ 2 0.70 0.64 0.77 µ2 bzip2 min
2↔ 1 0.77 0.81 0.73 M4 zip sum
4↔ 1 0.81 0.82 0.80 M4 lzma sum

how to use it to analyze sequences derived from them, for
example, sequences of statistical moments computed on
sliding windows. 88% accuracy 3 hours before delivery
is a promising result because we are identifying stressed
fetuses which were not considered suspicious of hypoxia
at that labor stage. In addition, the methods proposed are
simple to understand, simple to apply and generally ap-
plicable to other time series classification problems. As
future work, a further study with more patients should be
performed to open the application of these techniques to
the industry.
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