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Abstract—In this work we present a Wireless Sensor Network
(WSN) system designed for the on-board determination of human
gait entropy. The usage of nonlinear entropy-based metrics
has proven to be a useful tool for analyzing the complexity
of biological systems. The final goal of entropy calculation in
this type of biological system is to identify possible causes of
future injuries (in order to improve aging) and the early injury
detection (ideal for elite athletes). Existing systems for human gait
analysis are limited to traditional data gathering, e.g. continuous
measurement and wireless transmission to a Data Fusion Center
(DFC), due to the computational burden of entropy calculation.
In addition, actual systems are likely to interfere the natural
movement due to their cumbersome nature. The WSN presented
here uses four sensor nodes, located in both ankles and hip
sides, and are equipped with triaxial accelerometers. We propose
the use of low-complexity algorithms in order to perform on-
board entropy determination prior to wireless transmission. The
proposed system can be used to reliably determine long-term
human gait entropy.

Index Terms—Wireless Sensor Networks, Body Area Networks,
Entropy, Wearable Sensors, Human Gait.

I. INTRODUCTION

Usually, biological systems of interest are too complex to be
finely characterized from one or two-dimensional signals. To
this end, the usage of nonlinear metrics as simplified markers
of complexity (or lack thereof) in biological signals dates from
a few decades back (ECGs, EEGs, ...). They have been mainly
used to tackle the nature of self-organized complexity that
arises from competitive interactions. The main idea behind
their use is that physiological measures, both complex and
with many characteristic times present, tend to turn into a
collection of a few regular patterns as disease presents itself.

In the last decade, the analysis of human gait dynamics
through nonlinear metrics related to entropy has gained mo-
mentum from the seminal work of Costa et al. [1]. Up to
that date, previous studies using fractal measures [2] indicated
that fluctuations of human gait cycle of free walking healthy
individuals do not represent independent or uncorrelated ran-
dom noise. A power law characterizing the appearance of
long-range correlations emerges in such analysis of the stride
interval. Thus, the duration of such interval cannot be seen
as a Markov process in which it depends on the immediate
anterior stride duration, but also on distant intervals. Therefore,
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Fig. 1. Wireless Sensor Network system setting.

complex dynamics are present in the human gait though the
characterization of its meaning is still elusive.

The use of entropy in the analysis of human gait is sensible
from the point of view that characteristic time intervals in a
series are closely related to the entropy of the system that
originated it [3]. Apart from the Detrended Fluctuation Anal-
ysis (DFA) work mentioned above [2], entropy-related metrics
have been mainly used in human gait time-series. Approximate
Entropy (ApEn) [4] and Sample Entropy (SampEn) [5] are
extensively used measures in human gait analysis. They are
both based on the Kolmogorov complexity and, therefore,
they amount to finding the number of different consecutive
patterns (of increasing length) and their abundance, in the
stride interval time-series. This poses the first difficulty as
it involves solving a NP-complete problem with exponential
computational complexity [6]. Furthermore, as identical pat-
terns are highly unlikely to arise, both measures are highly
dependent on the relaxation made in the definition of patterns
similarity. Further refinements led to the development of the
Multiscale Entropy [1] that has been able to explicitly capture
the long-range correlations of the stride duration.

Up to now, the complexity of human gait has been mainly
limited to uniaxial (in the direction of advance) accelerometric
measurements [2], [1]. However, static triaxial measurements
in balance boards have shown that equilibrium complexity
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is a critical marker of healthiness [7]. As equilibrium plays
a crucial role in the determination of the human gait, it
seems reasonable to apply the entropy analysis of human gait,
not only in the direction of advance but in the three spatial
dimensions. Previous attempts at estimating the complexity of
stride intervals in both legs and with triaxial accelerometers
were limited to the gathering of the time-series in both ankles,
and then by extrapolation of the measured data to infer
behaviour of hip movement [8].

In this work we propose the use of a Wireless Sensor
Network (WSN) setup in order to measure the stride interval
time-series of running individuals with triaxial accelerometers
in both hip and ankles. The proposed setup is done in order
to avoid traditional interference of the movement due to
the cumbersome nature of the measuring apparatus. The full
accelerometric time-series is continuously transmitted to a
Data Fusion Center (DFC) and the processing of the twelve
time-series is performed offline. We observe that, although
the WSN is appropriate and accurate for metronomic running
(treadmill running), it is inadequate for free running (athletics
track running). This is shown to be due to the unreliability
of the wireless channel, with far worse characteristics in the
latter case. Therefore, it is desirable to compress and protect
the time-series in the node (before transmission) or to process
it in order to obtain the stride duration time-series, much
less cumbersome to transmit. Ideally, it should be possible
to further process the stride duration time-series to obtain the
entropy measure of choice. However, the complexity of such
calculation prevents it from being performed in “lightweight”
processors such as those in the WSN nodes.

The main result of this work is the use of low-complexity
entropy measures [9] in the analysis of the human gait biolog-
ical systems. These entropies are computed using the strides
interval time-series and can be calculated in real time (RT) in
the WSN nodes as the subject is running, thus allowing their
meaningful estimation in free running conditions. Comparison
in terms of computational complexity and performance is done
with SampEn for actual time-series obtained from a single
individual for a treadmill running setting.

We present the setting of the WSN network for human gait
complexity estimation in Section II and the definitions of the
used entropy measures in Section III. We then explain the
experiments and the measurements obtained and the entropy
analysis in Section IV. Finally we make some concluding
remarks in Section V.

II. SYSTEM SETTING

In this section we summarize the system requirements
for the WSN and present the detailed network configuration
used in the experiments. The configuration used satisfies the
requirements and gives the chance of circumventing the cases
where the radio channel has poor characteristics.

A. Requirements

First, as the goal is the analysis of the human gait, the main
condition is that the WSN has to gather accelerometric data

with a sufficiently high sampling frequency (ě 50 Hz), in
order to capture all the signal variations.

The WSN has to consist of 4 sensor nodes, each located
in a specific human body position. There are two sensor
nodes for each of the sinister and dexter (left and right)
portions, positioned at ankle and hip height. The approximate
sensors node positions are plotted in the left side of Figure 1
using as reference the body silhouette, the accelerometer axis
orientation is in the upper right side of the same figure.

Once measured, data packets are formed and sent towards
the DFC. In addition, the network topology is not set in
advance, however the DFC has to be located inside the
coverage range of at least one of the sensor nodes. Naturally,
the complete WSN has to cause minimal inconvenience to the
individual.

B. Network configuration
The devices selected for the WSN deployment are the

SunSPOT1 mote and the SunSPOT Base Station (BS) for the
sensor node and the DFC, respectively. As WSN nodes in
general, the SunSPOT motes have limited memory long-term
measurement storage on board and an offline processing is
not possible, so a sense-and-transmit policy is used. Moreover,
the only way to recover the data stored in a mote is through
the wireless channel, so a error-free transmission of the
acceleration data is highly unlikely.

Due to the limited bandwidth, and to enable the maximum
sample frequency, two sub-networks are considered: 1) for the
ankles and 2) for the hip. Each sub-network uses a different
wireless sub-channel, sufficiently separated in the spectrum so
that there is no interference between the two sub-networks.
In Figure 1 the ankles and the hip sub-networks are indicated
with blue and red colors, respectively.

An additional node, acting as relay for the ankles sub-
network, is proposed for free running experiments performed
in the athletics track. This decision was made during the
prototyping stage of the work as the ankle sub-network radio
channel showed very poor propagation conditions due to the
node height. By situating the relay node at shoulder height,
we ensure the best possible wireless channel for the ankle
sub-network.

Regarding the transmissions, the client-server model is
chosen, being the sensor nodes and the BS the clients and
the server, respectively. The communication between the sen-
sor nodes and the BS is unicast, to take advantage of the
ACK/retry mechanism of the radiogram protocol available for
the SunSPOT devices.

In order to enable the run-time manipulation of the BS’s
radio properties, the SunSPOT BS mode is set to “dedicated”.
The transmit power is set to the maximum power available for
SunSPOT devices, namely 0 dBm, for coverage throughout
the athletics track. The choice made as to the transmit power
determines the radio channel that are available. For example,
for radio channel 26 the maximum power is -3 dBm due to
regulations, so it cannot be used in our WSN.

1http://www.sunspotworld.com/
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TABLE I
TRANSMISSION CONFIGURATION FOR THE SUNSPOT DEVICES.

Ankles sub-network Hip sub-network
Transmission mode Unicast Unicast

Wireless channel 25 11
PANID 4 3

Transmit power [dBm] 0 0
Samples / Packet 3 3

The samples obtained from the triaxial accelerometer part
of the SunSPOT devices consist of three values, one for
each axis. The original data type is DOUBLE, meaning 64-
bit. However, to gain efficiency in transmission and, since
an adequate resolution should be kept, data is converted to
FLOAT, a 32-bit type. Therefore, for each sample an amount
of 20 Bytes have to be transmitted; a 64-bit LONG value is
considered for the timestamp.

An additional extent for transmission efficiency is the data
encapsulation, meaning that each packet contains three sam-
ples, meaning that has 60 Bytes size. With this size we ensure
no fragmentation and that the whole packet is transmitted
in the interval between two consecutive timestamps. Table I
summarizes the transmission configuration.

III. LOW-COMPLEXITY SPARSITY-BASED ENTROPY
MEASURES

In a recent work by some of the authors, the proposal of two
low-complexity measures of entropy have been made [9]. The
authors present the properties that sensible sparsity measures
have to attain and what are their counterparts with respect
to entropy measures. They propose two measures that satisfy
some or all of the criteria. These measures are

hpmfpxq “

〈
1b

||1b||1
,

ppxq

||ppxq||8

〉
(1)

and

hipmfpxq “

〈
KN

||1N ||1
,
xÒ

||x||8

〉
(2)

where x “ pxiq P RN is a r.v. signal with probability mass
function (pmf) ppxq, 1N is a vector of all ones with length
N , || ¨ ||p denotes the p-norm of a given vector and b is the
number of bins used in the histogram method. In Eq. (2), KN

is related to Φpxq “ expp´n2{2q, n P t´b{2, . . . , b{2u as the
inverse of sorted Φ (increasing order). Also xÒ is the vector
of sorted individual realizations of x s.t. xÒ

1 ď ¨ ¨ ¨ ď xÒ

N .
What these two simple measures aim to evaluate is the

similarity of either the pmf of x or x itself to a given pmf
or corresponding vector r.v.. In hpmfpxq it is the similarity of
the pmf of x with the pmf of the most uncertain signal i.e.,
the pmf of a uniform r.v. is measured. In the case of hipmfpxq,
it is the similarity of sorted x with a sorted realization of a
standard normal r.v. of the same length, which is the natural
reference signal for entropy.

The complexity of a signal determines its compressibility
under a given basis transformation. In [9] Pastor et. al have
established that the sparsity of a signal under such transforma-
tion can be related to the two measures presented above. The
first hpmf is directly related to the changes in the occurrence

probability with the uncertainty of the signal. As it may be
of use to work directly with signal x instead of its pmf, the
second measure hipmf is defined. It is directly related to the
sparsity of the signal but with a relaxation of the compared
signal as Φ is used as an approximation to the delta function
δ, the sparsest of the signals.

The computational complexity of these measures is ex-
tremely low (compared to the exponential complexity of ApEn
or SampEn computation with N increasing) as Eq. (1) can
be rewritten in a much simpler form as 〈1N , ppxq〉 “ N ,
||1b||1 “ b and ||ppxq||8 “ nmax:

hpmf “
N

b ¨ nmax
(3)

where nmax is just the number of elements in the largest
bin in the histogram of x. The most involved computation
in the aforementioned measures is the sorting of the x and
Φ histograms. Therefore, these measures are ideally suited for
on-board processing of the complexity of physiological signals
in lightweight wireless sensor nodes.

IV. EXPERIMENTS AND RESULTS

This section is dedicated to the analysis of the acceleromet-
ric data collected in the experiments performed. Firstly, we
compare time-series gathered from both treadmill and athletics
track experiments in order to show the significant influence
of the wireless channel in this WSN. Next, we focus on
the periodical signal shape and analyze it so that the stride
interval time-series presence becomes clear. Following, the
entropy metrics proposed in this work are applied to the stride
interval time-series and compared with the SampEn. Finally,
a comparison between the traditional data gathering and the
on-board processing proposed in this work is made, in order
to show the tradeoffs for the nodes and network resources in
both cases.

A. Treadmill vs. athletics track experiments

The WSN proposed in this work allows accelerometric
data gathering for both treadmill and athletics track setting,
from the radio coverage and node memory point of view.
However, the major drawback for the athletics track setting
is the wireless channel due to i.e. the obstacles in the form of
athletics equipment present in the track (e.g. high jump and
pole vault mattress metal covers) that are bound to further
degrade the quality of the signal.

In Figure 2 two accelerometric time-series collected for
the same node location and accelerometer axis and for both
metronomic and free running experiments are plotted. It can
be clearly observed the effect of the channel on the signal, in
the form of packet losses, thus causing irrecoverable damage
to the waveform.

In this work, in order to establish a baseline for the entropy
metrics proposed, we further analyze only the treadmill data.
Thereby, most of the damage caused by the channel is avoided.
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Fig. 2. Acceleration data gathered by the WSN for the X axis of the left
ankle during experiments for the treadmill (upper graph) and the athletics
track (lower graph). Data loss is evident in the latter case.

B. Stride interval time-series

Once the dataset is selected, the next step is stride detection
in order to compute the stride interval time-series. In Figure 3
temporal slices of the accelerometric time-series for all WSN
node locations and axis are plotted.

In order to obtain the stride interval time-series, the data
peaks were detected using a thresholding method applied to
windowed data. In Figure 3 the peaks detected for each of the
12 accelerometric time-series are with red dots. The wanted
time-series are the intervals between each two consecutive
peaks.

C. Entropy results

In this section we analyze the results obtained by computing
hpmf and hipmf vs. a traditional entropy measure of physi-
ological complexity such as SampEn with measures from a
single individual in a treadmill running for approximately a 10
minute period. In Fig. 4 we can observe the online computation
of hpmf (dashed blue line) and hipmf (dash-dotted red line) and
the offline computation (as the whole time series is necessary)
of SampEn (solid black) with parameter m “ 2 for the four
nodes and three axes. We can observe the evolution of the
proposed measures as time advances. If we focus on axes X
(up-and-down movement, Fig. 4.a) and Z (outwards left-and-
right movement, Fig. 4.c), we may observe similar trends for
the wireless node hip pairs as well as those for the ankles.
Similar comparison with the SampEn won’t reveal the same
trends in pairs. We observe that SampEn may be inconclusive
for comparison in the same axes and nodes. However if we
focus on axis Y (front-and-back movement, Fig. 4.b), we
may see an inversion in the behavior of trends with respect
to wireless node pairs. Left hip hpmf and hipmf exhibit the
same trend as the right ankle and, accordingly, left ankle’s
complexity measure trends to those in the right hip. Close
examination of the Y time series by an experienced physician
revealed evidences of hip rotation to compensate for a slight
difference in leg lengths as the data gathering progressed, i.e.,
as the individual becomes stressed and tired. Hip rotation may

TABLE II
TRADITIONAL DATA GATHERING VS. ON-BOARD PROCESSING

REQUIREMENTS.
On-board processing Data gathering

Memory OpSq OpMq
Packet size OpMq OpMq

Packet rate Op 1
MK

q Op 1
MTs

q

Packets for N measurements Op Nm
MK

q Op Nm
MTs

q

be cause for future injuries, mainly located in calf muscles. In
comparison, examination of SampEn revealed none of these
symptoms. This former fact is unsurprising as it is widely
accepted that, for SampEn to be a meaningful measure of
physiological complexity, time series of at least N “ 2000
samples are needed.

Therefore, it is shown that hpmf and hipmf are able to reveal
physiological complexity decrease (or increase) in RT and for
short-time series. In comparison, computationally cumbersome
measures of physiological complexity such as SampEn are
unable to be used in RT, for short time intervals for this
purpose.

D. On-board data processing vs. traditional data gathering

In order to show the benefits of the on-board data process-
ing, in this section we compare both procedures considering,
for example, the memory required or the amount of data
packets related to the same measurements sent towards the
BS.

Let Fs be the sample frequency, Ts “ 1
Fs

and, Nm be the to-
tal amount of measurement instants during entire experiment.
The data encapsulation is considered by the parameter M ,
which indicates how many measurement instants are included
in the same packet, each measurement being identified by a
timestamp. Together with the timestamps, the corresponding
samples and the on-board computed entropies are transmitted,
each for the respective procedure. For the on-board processing,
S is the amount of states in the system (histogram bins) and K
is the sliding window size. The values used in the comparison
are: Fs “ 50 Hz, Ts “ 20 ms, Nm “ 90.000 measurements,
M “ 3 timestamps/packet, S “ 100 states, K “ 10.000
measurements.

The parameters taken into consideration for the comparison
are: 1) memory storage, 2) packet size, 3) packet transmission
rate and, 4) total amount of packets sent for N measurements
instants.

As an exact calculation of these parameters is complicated
due to the impact of variables such as auxiliary data used in the
SunSPOT application, an approximation is shown in Table II.

Using the previously defined values, it can be seen that on-
board processing uses about two orders of magnitude more
memory than a raw storage-and-forward strategy. On the other
hand, the packet rate and the total amount of packets sent is
lessened in about six orders of magnitude, with the resulting
reduction in accesses to the wireless channel, one of the major
sources of energy consumption in WSN.

In conclusion, we consider that the benefits of the on-board
processing overcome its disadvantages in terms of energy
efficiency. Undergoing research is directed toward a WSN
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Fig. 3. Acceleration data gathered by the WSN for all positions and axis in the treadmill experiment and their respective peaks (red dots) identifying the
strides, detected in the post processing.
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Fig. 4. Entropies calculated using the stride duration time-series for the treadmill experiment for all positions and axis. Black line is for SampEn, computed
with constant N “ 625 values. Dashed blue line is for hpmf and dash-dotted red line is for hipmf .

deployment using the entropy calculation proposed in this
work as on-board efficient processing for similar network
configuration as in Figure 1.

V. CONCLUSIONS

In this work we have presented a WSN system designed
for the determination of human gait entropy. In order to make
the system useful in free running conditions the calculation
of the complexity of human gait with entropy metrics is
performed on-board as opposed to traditional data gathering.
To avoid computational burdens a new set of low-complexity
entropy metrics have been proposed. We have shown that these
metrics are able to capture key characteristics of human gait
complexity. We have been able to identify possible causes
for future injuries (i.e. hip rotation) with short length time-
series of stride interval. We have also shown that the on-board
proposed method overcomes the limitations of the wireless
channel as a much lower transmission rate is needed. The
present system will be shortly used to carry out extensive
measurements on both healthy and injured individuals for
further analysis.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Inmaculada Mora-Jiménez
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