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Differential conductance in atomic-scale metallic contacts
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Abstract

We present exact free-electron calculations of the differential conductance of narrow necks connecting two three-
dimensional electron gases. As the voltage increases, the initial quantized values of the conductance evolve into higher or
lower noninteger multiples of 2e2/h. The contribution of electron tunneling through a region around the constriction is
analyzed in terms of a simple model. We show that tunneling can change significatively the shape of the conduc-
tance—voltage characteristics. ( 1998 Elsevier Science B.V. All rights reserved.

PACS: 61.16.Ch; 62.20.Fe; 73.40.Cg

1. Introduction

In the last few years, the physics of atomic-scale
metallic contacts have been extensively investigated
both from the experimental [1—6] and theoretical
point of view [6—10]. However, the interpretation
of the experimental results is still controversial [6].
Most of this work has been focused on the conduc-
tance at zero voltage. Very recently, it has been
shown that differential conductance at high voltage
should show a very interesting nonlinear behavior
[11] similar to that observed for point contacts in
two-dimensional electron gases (2DEG). In the
2DEG case the smearing of the quantized conduc-
tance plateaus from integer multiple of 2e2/h to
half-integer values was predicted by Glazman and

Khaetskii [12] and observed experimentally by
Patel et al. [13]. In atomic-scale contacts the theory
[11] predicts a more complicated pattern due to
the degeneracy of the transversal modes in the
contact.

Some efforts have been done to measure the
differential conductance G in atomic-scale contacts
[3—5], with results that coincide in a systematic
increase of the differential conductance with the
voltage. In these experiments the applied voltages
do not exceed a few hundreds mV, which, for
metals, is a small percent of the Fermi energy E

F
. In

this work, we will discuss the nonlinear G charac-
teristics in this range of relatively low voltages. We
will also analyze the contribution of the electron
transmission through the tunneling region around
the constriction. This contribution to the conduc-
tance was not taken into account in previous
approaches [11]. As we will see, tunneling effects
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Fig. 1. Schematic representation of a W—N—W constriction in
a three-dimensional electron gas. The potential energy profile
along the contact is also sketched.

can change significantly the G—» characteristics,
mainly in nonelongated contacts.

2. Hard-wall exact calculation

Following Pascual et al. [11] we will assume the
simple wide—narrow—wide (W—N—W) geometry
sketched in Fig. 1. The narrow constriction is char-
acterized by its length ¸ and its circular section A

N
.

The wide leads have a section A
W

. We assume that
the voltage drops »/2 between the reservoirs and
the constriction, while the potential remains con-
stant inside the constriction itself (see Fig. 1)
[11,12,14—16].

Assuming that the conduction is still ballistic for
finite », the zero-temperature conductance can be
obtained from [11,12,14,15,17]
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is the electron Fermi energy and ¹
w
(e, »)

is the transmission probability of an incoming elec-
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In the low voltage regime (e»@E
F
) we can as-

sume [15,18] that t(e, ») defined in Eq. (1) depends
only on the energy difference between the incoming
electrons and the bottom of the electrostatic confin-
ing potential, i.e. t(e, »)+t(e#1
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where G(E),G(E, »"0). Notice that the absence
of a linear term in the conductance is associated to
our assumption of a symmetric potential drop.

The transmission probabilities ¹
w
(e, 0) are cal-

culated by solving the Schrödinger equation with
hard-wall boundary conditions (i.e. the electron
wave function is taken to be zero at the wall bound-
aries). This is done by a mode-matching technique
together with a generalized scattering matrix ap-
proach [19]. In Fig. 2a we have plotted a typical
staircase conductance—voltage (G—») character-
istics (Eq. (2)) for different sections A

N
(Fig. 2b

shows the same results projected on the G—»
plane). The constriction length is ¸K0.6j

F
, which

is a typical interatomic distance (for example, the
atomic radius for Au is +1.7 A_ while E

F
+5.5 eV

and j
F
+5.2 A_ ). Finite size effects induced by the

wide leads manifest themselves as small kinks in the
G—» curves. They appear as e» becomes of the
order of the energy level spacing between transver-
sal modes in the wide leads.

The analysis of the curvature ((L2G/L(E)2)D
E/EF

) of
the G—» characteristics (see Eq. (3)) reveals a com-
plicated oscillatory pattern (Fig. 2c) precursor of the
smearing of the conductance plateaus observed at
higher voltage [11]. The hard-wall condition in-
hibits the possibility of electron tunneling through
the region around the constriction. Tunneling ef-
fects, however, could modify the predicted behavior.

3. Tunneling conductance

The exact quantum mechanical calculation for
more realistic potentials is a difficult problem. Since
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Fig. 2. (a) Differential conductance G/G
0

versus voltage for dif-
ferent contact cross sections A

N
. (b) Same curves as in (a) projec-

ted over the G—» plane, showing their non-linear behavior.
(c) Curvature of the G—» characteristics for different areas of the
constriction A

N
. The shadowed zones are those with positive

curvature.

we are interested in a qualitative order-of-magni-
tude estimation of the tunneling effect, we will as-
sume as a first approximation, that the current
associated with the electron tunneling adds in par-
allel to that flowing through the constriction.
The total conductance G

T
will then be given

by G
T
+G#G

56/
. The tunneling conductance

G
56/

can be estimated from a simple mean barrier
approximation (MBA) [20,21]. At low voltages,
we can approximate the exact transmission prob-
abilities ¹

w
(e, ») by those of a square barrier

with an effective work function /M !e»/2, where
/M includes the image potential effects [20,21]:
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If the number of states in the wide leads is large
enough, t(e, »)"+

w
¹
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(e, ») can be written as an
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where A
T
"A

W
!A

N
is the total tunneling area.

Since, within this approach, t(e, »)+t(e#e»/2),
the tunneling contribution is also given by
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where, now, the two terms can be integrated exactly
in terms of elementary functions. Assuming
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which, except for the constant factor (16/M E
F
/

(/M #E
F
)), is the same result obtained by Simmons

within the current mean barrier approximation
(CMBA) [20,21]. The quadratic term is simply
given by
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4. Results and discussion

The electron tunneling has two main effects on
the conductance—voltage characteristics. First, it

A. Garcı&a-Martı&n et al. / Ultramicroscopy 73 (1998) 199—203 201



Fig. 3. Traces of the nonlinear term of the differential conduc-
tance with (filled symbols) and without (open symbols) tunnel-
ing. Inset: schematic view of the contact.

Fig. 4. Normalized differential conductance d(log I)/d(log »)
versus the contact area A

N
. The insets show the projection

over the conductance—area plane (a) without tunneling,
(b) A

T
"19j2

F
, (c) A

T
"66j2

F
.

increases the conductance at zero voltage leading,
in general, to nonquantized conductance values.
On the other hand, the nonlinear oscillating behav-
ior of the conductance can be strongly modified by
the, always positive, quadratic term of the tunnel-
ing contribution. For a typical Au work function
/"5.37 eV and taking into account image poten-
tial effects as disscused by Simmons [20] and Mis-
kovsky et al. [21], we find an effective barrier /M as
small as 1.1 eV, i.e. /M +0.2E

F
. In Fig. 3 we have

plotted G
N—L

"(G
T
(E

F
, »)!G

T
(E

F
, 0)) for three

different sections of the narrow constriction A
N

cor-
responding to the first conductance plateau in the
hard-wall calculation. For tunneling areas of the
order or larger than A

T
+19j2

F
the nonlinear con-

ductance G
N—L

becomes positive. At the same time,
the conductance at zero voltage changes from
+G

0
to +1.5G

0
.

This effect of the tunnel on the G—» character-
istics can be also seen in plots of the normalized
differential conductance d(log I)/d(log ») versus e»
for different values of A

N
. This quantity is com-

monly used in scanning tunneling microscopy STM
spectroscopy experiments. In Fig. 4 we have plot-
ted these curves for the same parameters in Fig. 3,
without tunneling (Fig. 4a), and with different

tunneling areas, A
T
"19j2

F
(Fig. 4b) and A

T
"66j2

F
(Fig. 4c). In absence of tunneling (Fig. 4a) d(log I)/
d(log ») oscillates around 1 due to the oscillations
of (L2G(E)/L(E)2)D

E/EF
discussed above. However,

as the tunnel area increases from A
T
"0 to

A
T
"66j

F
, the quadratic (positive) contribution of

the tunneling current increases and, for certain A
T
,

tunneling becomes the dominant contribution to
the nonlinear conductance. We see how tunneling
modifies these curves decreasing the range of the
oscillations and leading to values that are always
greater than unity.

From the results above, we can conclude that
tunneling areas of the order of +8]8 atoms
(+19j2

F
) are enough to remove the predicted de-

crease of the conductance for a single-atom point
contact [11]. If a single-atom contact were made
by an STM tip, this would imply radius of the order
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of +40 A_ (see inset in Fig. 3). The existence of
larger tunneling areas could explain the systematic
increase of the differential conductance observed in
some experiments [4,5]. Only in the case of very
sharp contacts a conductance decrease would be
observable.

In conclusion, we have studied the behavior of
the differential conductance and the normalized
differential conductance of a ballistic constriction.
We have shown that tunneling can change signifi-
cantly the qualitative behavior of the G—» charac-
teristics of atomic-scale metallic contacts. Tunneling
effects must be taken into account in any systematic
experimental and theoretical study of the conduc-
tance of atomic-scale contacts.
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