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a b s t r a c t 

Providing computers with the ability to process handwriting is both important and challenging, since 

many difficulties (e.g., different writing styles, alphabets, languages, etc.) need to be overcome for ad- 

dressing a variety of problems (text recognition, signature verification, writer identification, word spot- 

ting, etc.). This paper reviews the growing literature on off-line handwritten document analysis over the 

last thirty years. A sample of 5389 articles is examined using bibliometric techniques. Using bibliomet- 

ric techniques, this paper identifies (i) the most influential articles in the area, (ii) the most productive 

authors and their collaboration networks, (iii) the countries and institutions that have led research on 

the topic, (iv) the journals and conferences that have published most papers, and (v) the most relevant 

research topics (and their related tasks and methodologies) and their evolution over the years. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Document image analysis deals with the automated extraction of 

nformation [1] from documents. It has important applications in 

umerous domains. According to their data source, document anal- 

sis systems are typically classified into on-line , where data are col- 

ected dynamically during the writing through some device (e.g., a 

ablet), and off-line , where data are gathered statically from docu- 

ent page images after a scanning process [2] . Besides, documents 

ay include printed, handwritten and graphical elements. 

This paper reviews the research literature on a type of doc- 

ment analysis called off-line handwritten , which is particularly 

hallenging because it works with data that do not contain any 

ynamic information that usually helps on-line systems to pro- 

ess information [3] (e.g., writing velocity, pen liftings and pauses, 

riting pressure changes, sequence ordering of strokes, etc.). Also, 

andwritten text has much more variability than the printed one 

4] ; there is interpersonal variability because the same person’s 

riting often accommodates different situations, and interpersonal 

ariability due to the writing styles of people. 
∗ Corresponding author. 
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Our review encompasses, among others, the following off-line 

andwritten topics: Handwritten Text Recognition (HTR), Signature 

erification (SV), Writer Identification (WI), Word Spotting (WS), In- 

ormation Retrieval (IR), and Script Identification (SI). HTR [2] deals 

ith the transcription of a handwritten input (paper documents, 

hotos, etc.) into its symbolic representation. This problem often 

t is focused on Handwritten Characters Recognition (HCR), Hand- 

ritten Numeral Recognition (HNR), Handwritten Word Recognition 

HWR), and/or Handwritten Sentence/text line Recognition (HSR). SV 

5] decides whether a signature is genuine or a forgery. WI [6] tries 

o find the authorship of the document from a known list of au- 

hors. In this case, the authentication process is made by analyzing 

andwritten text. WS [7] creates keywords to index documents in 

epositories, while IR [8] looks for a specific element (e.g., key- 

ords) as a result of a query in a repository search. Finally, SI 

9] determines the alphabet(s) in which a text is written. 

Since 1990, much research has been published on off-line hand- 

ritten document analysis. To assist practitioners and researchers 

n finding the most prominent articles, authors, research trends, 

nd near-future challenges, this paper examines a total of 5389 

rticles published from 1990 to December 2020. For such pur- 

ose, two bibliometric techniques were used: performance anal- 

sis and science mapping. Performance analysis [10] measures im- 

act by counting citations; it can be applied to estimate the perfor- 
under the CC BY-NC-ND license 
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Fig. 1. Query used to retrieve from Elsevier Scopus the publication sample this article analyzes. 

Fig. 2. TN roles according to the strategic diagram quadrants. 
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ance of authors, institutions, articles, journals, etc. Science map- 

ing [11] identifies the most researched topics, related tasks and 

ethodologies, measuring their influence over time using graph 

heory and clustering algorithms. In particular, this paper answers 

he following research questions: 

1. What articles are the most influential? 

2. Which authors and institutions have relevant research on off- 

line handwritten document analysis? 

3. Which journals and conferences have published the largest 

number of articles? 

4. Which problems have been the most studied on off-line hand- 

written document analysis? 

5. What techniques have been used to face those problems? 

6. How has the interest in the main research topics evolved over 

the years? Where will research be focused on the short-term 

future? 

The rest of this paper is organized as follows. Section 2 summa- 

izes related work. Section 3 describes the methodology we have 

ollowed for our bibliometric analysis. Section 4 reports and dis- 

usses the achieved results. Finally, some concluding remarks are 

rovided in Section 5 . 

. Related work 

As far as we know, this paper is the first attempt to provide 

 global bibliometric overview of off-line handwritten document 

nalysis. No previous work has considered so many articles, nor 

as approached the study using bibliometric techniques. This sec- 

ion summarizes other review articles that targeted more specific 

copes. 
2 
First, we should highlight the classic reviews published by Mori 

t al. [12] , Plamondon and Srihari [2] , Arica and Yarman-Vural [13] ,

inciarelli [14] , Koerich et al. [15] , Bunke [16] , and Rehman and

aba [17] . 

Document analysis systems are often structured in five stages: 

re-processing, segmentation, feature extraction, modeling, and 

ost-processing [2] . Several reviews are specifically focused on 

ome of these stages. For example, [18] covers literature on pre- 

rocessing, [19] on segmentation, [20] on feature extraction, and 

21] modeling techniques. 

WI is a very close problem to handwriting recognition, and 

ome articles review both [2] . Others are focused on WI and writer 

erification [22] . 

In SV, some influential reviews are Plamondon and Lorette 

23] and Impedovo and Pirlo [24] . 

WS and IR have been reviewed by Giotis et al. [25] and Doer- 

ann et al. [8] , respectively. 

Several studies are script-specific , such as Arabic [26] , Indian 

27] , and Chinese [28] . As SI is also an important task in multi-

anguage systems, some authors have reviewed this particular 

roblem [9] . 

. Materials and methods 

This section explains how bibliographic data was retrieved and 

rocessed. Moreover, it describes the two bibliometric techniques 

sed in this paper: performance analysis and science mapping. 

.1. Bibliometric workflow 

To perform our analysis systematically, we followed the work- 

ow recommended by Cobo et al. [29] , PRISMA [30] , and Börner 

t al. [31] , which is structured in three phases: 

1. Data retrieval . As pointed by Wohlin et al. [32] , gathering the 

whole population of articles that fall into the scope of a biblio- 

metric analysis is unrealistic. Consequently, we sought the more 

pragmatic goal of getting an unbiased publication sample rep- 

resenting the population satisfactorily. 

Several studies [33,34] have shown that Clarivate Analytics- 

Web of Science (WoS) and Elsevier Scopus provide the highest- 

quality bibliographic data for longitudinal analyses. Hence, we 

checked the WoS and Scopus coverture for our analysis scope, 

finding that Scopus roughly provides a superset of the biblio- 

graphic records given by WoS, including some more documents 

published in conference proceedings. It is worth noting that 

citation counts vary considerably among databases, so mixing 

records from different databases produces inconsistent counts 

[34,35] . Therefore, we decided to use Scopus as the only data 

source for our sample. 

A database query was refined iteratively until a conve- 

nient balance between completeness and absence of false 

positives was accomplished. Fig. 1 shows the final query. 

Line 2 looks for documents whose title includes handwrit- 

ing documents ( hand-writ ∗, handwrit ∗, etc.). The trun- 

cation symbol ∗ captures all possible endings a word may 
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Table 1 

Citation classics (the h -index is 93). 

Paper Journal/Conf. #Cit Topic 

Plamondon and Srihari [2] . On-line and off-line handwriting recognition: A comprehensive survey (2000) IEEE T Pattern Anal 1749 HTR, SV, Survey 

Xu et al. [45] . Methods of combining multiple classifiers and their applications to handwriting recognition 

(1992) 

IEEE T Syst Man Cyb 1655 HNR 

Hull [46] . A database for handwritten text recognition research (1994) IEEE T Pattern Anal 1029 HTR, Database 

Graves et al. [4] . A novel connectionist system for unconstrained handwriting recognition (2009) IEEE T Pattern Anal 982 HWR 

Marti and Bunke [47] . The IAM-database: An English sentence database for offline handwriting recognition 

(2003) 

Int J Doc Anal Recog 588 HTR, Database 

Graves and Schmidhuber [48] . Offline handwriting recognition with multidimensional recurrent neural 

networks (2009) 

NeurIPS 522 HWR 

Huang and Suen [49] . A method of combining multiple experts for the recognition of unconstrained 

handwritten numerals (1995) 

IEEE T Pattern Anal 418 HNR 

Liu et al. [50] . Handwritten digit recognition: Benchmarking of state-of-the-art techniques (2003) Pattern Recogn 401 HNR 

Lorigo and Govindaraju [26] . Offline Arabic handwriting recognition: A survey (2006) IEEE T Pattern Anal 342 HTR, Survey 

Marti and Bunke [51] . Using a statistical language model to improve the performance of an HMM-based 

cursive handwriting recognition system (2001) 

Int J Pattern Recogn 314 HSR 

Suen et al. [52] . Computer recognition of unconstrained handwritten numerals (1992) Proc IEEE 300 HNR 

Arica and Yarman-Vural [13] . An overview of character recognition focused on off-line handwriting (2001) IEEE T Syst Man Cy C 291 HCR, Survey 

Said et al . [53] . Personal identification based on handwriting (2000) Pattern Recogn 246 WI 

Pham et al. [54] . Dropout improves recurrent neural networks for handwriting recognition (2014) ICFHR 239 HWR 

Liu et al. [55] . Handwritten digit recognition: Investigation of normalization and feature extraction 

techniques (2004) 

Pattern Recogn 226 HNR 

Bhattacharya and Chaudhuri [56] . Handwritten numeral databases of Indian scripts and multistage 

recognition of mixed numerals (2009) 

IEEE T Pattern Anal 210 HNR, Database 

Kimura et al . [57] . Handwritten numerical recognition based on multiple algorithms (1991) Pattern Recogn 203 HNR 

Vinciarelli et al . [58] . Offline recognition of unconstrained handwritten texts using HMMs and statistical 

language models (2004) 

IEEE T Pattern Anal 201 HWR 

Lauer et al . [59] . A trainable feature extractor for handwritten digit recognition (2007) Pattern Recogn 194 HNR 

Kim and Govindaraju [60] . A lexicon driven approach to handwritten word recognition for real-time 

applications (1997) 

IEEE T Pattern Anal 189 HWR 

Fischer et al . [61] . Lexicon-free handwritten word spotting using character HMMs (2012) Pattern Recogn Lett 186 WS 

Madhvanath and Govindaraju [62] . The role of holistic paradigms in handwritten word recognition (2001) IEEE T Pattern Anal 177 HWR 

Kato [63] . A handwritten character recognition system using directional element feature and asymmetric 

mahalanobis distance (1999) 

IEEE T Pattern Anal 177 HCR 

Manmatha et al . [64] . Word spotting: a new approach to indexing handwriting (1996) CVPR 176 WS 

El-Yacoubi et al . [65] . An HMM-based approach for off-line unconstrained handwritten word modeling and 

recognition (1999) 

IEEE T Pattern Anal 173 HWR 

Chen et al . [66] . Offline handwritten word recognition using a hidden Markov model type stochastic 

network (1994) 

IEEE T Pattern Anal 173 HWR 

Senior and Robinson [67] . An off-line cursive handwriting recognition system (1998) IEEE T Pattern Anal 172 HWR 

Liu et al. [68] . Online and offline handwritten Chinese character recognition: Benchmarking on new 

databases (2013) 

Pattern Recogn 169 HCR 

España-Boquera et al . [69] . Improving offline handwritten text recognition with hybrid HMM/ANN models 

(2011) 

IEEE T Pattern Anal 168 HWR 

Oliveira et al. [70] . Automatic recognition of handwritten numerical strings: A Recognition and Verification 

strategy (2002) 

IEEE T Pattern Anal 165 HNR 

Zhong et al . [71] . High performance offline handwritten Chinese character recognition using GoogLeNet and 

directional feature maps (2015) 

ICDAR 158 HCR 

Lavrenko et al . [72] . Holistic Word Recognition for Handwritten Historical Documents (2004) DIAL 155 HWR 

Marti and Bunke [73] . A full English sentence database for off-line handwriting recognition (1999) ICDAR 154 HTR, Database 

Zheng and Doermann [74] . Machine printed text and handwriting identification in noisy document images 

(2004) 

IEEE T Pattern Anal 142 WI 

Plötz and Fink [21] . Markov models for offline handwriting recognition: A survey (2009) Int J Doc Anal Recog 141 HWR, Survey 

Adankon and Cheriet [75] . Model selection for the LS-SVM. Application to handwriting recognition (2009) Pattern Recogn 140 HNR 

Fukushima and Wake [76] . Handwritten Alphanumeric Character Recognition by the Neocognitron (1991) IEEE T Neural Netwo 140 HCR 

Louloudis et al . [77] . Text line and word segmentation of handwritten documents (2009) Pattern Recogn 138 HWR 

Rodríghez-Serrano and Perronnin [78] .Handwritten word-spotting using hidden Markov models and universal 

vocabularies (2009) 

Pattern Recogn 136 WS 

C.L Liu et al . [79] . Lexicon-driven segmentation and recognition of handwritten character strings for 

Japanese address reading (2002) 

IEEE T Pattern Anal 134 HSR 

Ha and Bunke [80] . Off-line, handwritten numeral recognition by perturbation method (1997) IEEE T Pattern Anal 133 HNR 

Zhang et al . [81] . Online and offline handwritten Chinese character recognition: A comprehensive study and 

new benchmark (2017) 

Pattern Recogn 132 HCR 

Li et al . [82] . Script-independent text line segmentation in freestyle handwritten documents (2008) IEEE T Pattern Anal 132 HSR 

Jain and Zongker [83] . Representation and recognition of handwritten digits using deformable templates 

(1997) 

IEEE T Pattern Ana 132 HNR 

Shi et al . [84] . Handwritten numeral recognition using gradient and curvature of gray scale image (2002) Pattern Recogn 130 HNR 

Chacko et al . [85] . Handwritten character recognition using wavelet energy and extreme learning machine 

(2012) 

Int J Mach Learn Cyb 126 HCR 

Kimura et al . [86] . Improvement of handwritten Japanese character recognition using weighted direction 

code histogram (1997) 

Pattern Recogn 126 HCR 

Hildebrant and Liu [87] . Optical recognition of handwritten Chinese characters: Advances since 1980 (1993) Pattern Recogn 126 HCR, Survey 

Lu and Shridhar [88] . Character segmentation in handwritten words - An overview (1996) Pattern Recogn 124 HWR, Survey 

Wunsch and Laine [89] . Wavelet descriptors for multiresolution recognition of handprinted characters (1995) Pattern Recogn 123 HCR 

( continued on next page ) 
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Table 1 ( continued ) 

Paper Journal/Conf. #Cit Topic 

El-Hajj et al . [90] . Arabic handwriting recognition using baseline dependant features and hidden Markov 

modeling (2005) 

ICDAR 122 HWR 

Lee [91] . Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural 

network (1996) 

IEEE T Pattern Anal 122 HNR 

Yamada et al . [92] . A nonlinear normalization method for handprinted kanji character recognition-line 

density equalization (1990) 

Pattern Recogn 121 HCR 

Koerich et al . [15] . Large vocabulary off-line handwriting recognition: A survey (2003) Pattern Anal Appl 119 HWR, Survey 

Pal et al . [93] . Handwritten numeral recognition of six popular Indian scripts (2007) ICDAR 118 HNR 

Bunke et al . [16] . Recognition of cursive roman handwriting - past, present and future (2003) ICDAR 118 HTR, Survey 

Chen and Wang [94] . Segmentation of single- or multiple-touching handwritten numeral string using 

background and foreground analysis (2000) 

IEEE T Pattern Anal 118 HNR 

Guerbai et al . [95] . The effective use of the one-class SVM classifier for handwritten signature verification 

based on writer-independent parameters (2015) 

Pattern Recogn 117 SV 

Mohamed and Gader [96] . Handwritten word recognition using segmentation-free hidden Markov modeling 

and segmentation-based dynamic programming techniques (1996) 

IEEE T Pattern Anal 117 HWR 

Liu et al . [97] . ICDAR 2011 Chinese handwriting recognition competition (2011) ICDAR 113 HTR 

Al-HajjMohamad et al . [98] . Combining slanted-frame classifiers for improved HMM-based Arabic 

handwriting recognition (2009) 

IEEE T Pattern Anal 113 HWR 

Liu and Nakagawa [99] . Evaluation of prototype learning algorithms for nearest-neighbor classifier in 

application to handwritten character recognition (2001) 

Pattern Recogn 112 HCR 

Arica and Yarman-Vural [100] . Optical character recognition for cursive handwriting (2002) IEEE T Pattern Anal 111 HWR 

Knerr et al . [101] . Handwritten Digit Recognition by Neural Networks with Single-Layer Training (1992) IEEE T Neural 

Networks 

111 HNR 

Pal and Datta [102] . Segmentation of Bangla unconstrained handwritten text (2003) ICDAR 109 HTR 

Cao et al . [103] . Recognition of handwritten numerals with multiple features and multistage classifiers 

(1995) 

Pattern Recogn 108 HNR 

Papavassiliou et al . [104] . Handwritten document image segmentation into text lines and words (2010) Pattern Recogn 106 HSR 

Sudholt and Fink [105] . PHOCNet: A deep convolutional neural network for word spotting in handwritten 

documents (2016) 

ICFHR 106 WS 

Yin and Liu [106] . Handwritten Chinese text line segmentation by clustering with distance metric learning 

(2009) 

Pattern Recogn 106 HTR 

Liu [107] . Normalization-cooperated gradient feature extraction for handwritten character recognition 

(2007) 

IEEE T Pattern Anal 105 HCR 

Revow et al . [108] . Using generative models for handwritten digit recognition (1996) IEEE T Pattern Anal 105 HNR 

Pechwitz and Maergner [109] . HMM based approach for handwritten Arabic word recognition using the 

IFN/ENIT-database (2003) 

ICDAR 104 HWR 

Heutte et al . [110] .A structural/statistical feature based vector for handwritten character recognition (1998) Pattern Recogn 104 HCR 

Salah et al . [111] . A selective attention-based method for visual pattern recognition with application to 

handwritten digit recognition and face recognition (2002) 

IEEE T Pattern Anal 102 HNR 

Wang et al . [112] . Handwritten Chinese text recognition by integrating multiple contexts (2012) IEEE T Pattern Anal 101 HTR 

Stamatopoulos et al . [113] . ICDAR 2013 handwriting segmentation contest (2013) ICDAR 100 HTR 

Yin et al., [114] . ICDAR 2013 Chinese handwriting recognition competition (2013) ICDAR 100 HCR 

Su et al . [115] . Off-line recognition of realistic Chinese handwriting using segmentation-free strategy (2009) Pattern Recogn 100 HSR 

He et al . [116] . Writer identification of Chinese handwriting documents using hidden Markov tree model 

(2008) 

Pattern Recogn 100 WI 

Su et al . [117] . Corpus-based HIT-MW database for offline recognition of general-purpose Chinese 

handwritten text (2007) 

Int J Doc Anal Recog 100 HTR, Database 

Seni and Cohen [118] . External word segmentation of off-line handwritten text lines (1994) Pattern Recogn 99 HWR 

Si Wei Lu et al . [119] . Hierarchical attributed graph representation and recognition of handwritten chinese 

characters (1991) 

Pattern Recogn 99 HCR 

Hafemann et al . [120] . Learning features for offline handwritten signature verification using deep 

convolutional neural networks (2017) 

Pattern Recogn 98 SV 

Toselli et al . [121] . Integrated handwriting recognition and interpretation using finite-state models (2003) Int J Pattern Recogn 98 HSR 

Oliveira et al . [122] . A methodology for feature selection using multiobjective genetic algorithms for 

handwritten digit string recognition (2003) 

Int J Pattern Recogn 98 HNR 

Dehghan et al . [123] . Handwritten Farsi(Arabic) word recognition: A holistic approach using discrete HMM 

(2001) 

Pattern Recogn 98 HWR 

Gader et al . [124] . Handwritten word recognition with character and inter-character neural networks (1997) IEEE T syst Man Cyb 

B 

98 HWR 

Van Breukelen et al . [125] . Handwritten digit recognition by combined classifier (1998) Kybernetika 96 HNR 

Favata and Srikantan [126] . A multiple feature/resolution approach to handprinted digit and character 

recognition (1996) 

Int J Imag syst Tech 96 HCR 

Chi et al . [127] . Handwritten numeral recognition using self-organizing maps and fuzzy rules (1995) Pattern Recogn 95 HNR 

H. Liu and Ding . [128] . Handwritten character recognition using gradient feature and quadratic classifier 

with multiple discrimination schemes (2005) 

ICDAR 94 HCR 

Liu et al. [129] . Discriminative learning quadratic discriminant function for handwriting recognition (2004) IEEE T Neural 

Networks 

93 HNR 

Al-Ohali et al . [130] . Databases for recognition of handwritten Arabic cheques (2003) Pattern Recogn 93 HTR, Database 
have (e.g., handwrit ∗ means any word that starts with 

handwrit ). Lines 3 and 4 look for problems related to 

them ( recognition or verification or spotting or 

identification or analysis or segmentation ). Line 5 

filters false positives. Lines 7 and 8 limit the subject area to 
4 
computer science ( ’’COMP’’ ), engineering ( ’’ENGI’’ ), and 

mathematics ( ’’MATH’’ ). 
The query was executed on Scopus on 19 December 2020. Af- 

ter filtering articles published between 1990 and 2020, 5389 

records articles focused on off-line handwriting were achieved. 
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2. Data cleaning and standardization . Bibliographic data some- 

times involves typographical errors and ambiguities that need 

to be corrected [11,29,36] . For instance, in our sample, “Á. 

Sánchez”, “A. Sanchez”, and “A. Sánchez” are slightly differ- 

ent versions of the same author’s name. Moreover, as we will 

see in Section 3.3 , our analysis is built upon a bibliometric 

technique that processes keywords. Unfortunately, neither most 

journals/conferences impose a set of standardized keywords, 

nor there is a thesaurus specific for “off-line handwritten docu- 

ment analysis”. Accordingly, keywords were manually standard- 

ized. For example, in the context of our study, the following 

keywords: “NN”, “Neural network classifier”, “ANN”, etc. cor- 

respond to the same concept, and thus they were grouped as 

“NN”. It is true that grouping keywords by hand needs a thor- 

ough knowledge of the research area under analysis. To mit- 

igate this subjectivity, keyword normalization was undertaken 

consensually. A public repository accompanying this paper pro- 

vides all the details of our analysis (see Section 3.4 ). In par- 

ticular, the repository reports the standardization of the author 

names and keywords exhaustively. 

To perform the longitudinal analysis of the research area, the 

paper sample was divided into six sub-periods of approxi- 

mately five years each: 1990–1994, 1995–1999, 20 0 0–20 04, 

20 05–20 09, 2010–2014, and 2015–2020, respectively. Moreover, 

1726 documents did not include any keyword at all, and thus 

they were discarded for this analysis. 

3. Data analysis . Using well-established bibliometric procedures, 

performance analysis and science mapping [37] , the standardized 

data are analyzed. 

.2. Performance analysis 

Research performance is typically measured through citation 

nalysis [10] , being the h -index the most commonly accepted ci- 

ation analysis indicator [38] . This index can quantify the produc- 

ivity of various bibliographic aspects: authors, journals, research 

reas, etc. For instance, the h -index of a research area is defined 

s follows [39] : A research area has index h whenever h of the n

apers framed into the area have at least h citations each, and the 

emaining n − h papers have less than or equal to h citations each. 

.3. Science mapping 

The following sections explain the methods we used to identify 

he key research topics, tasks and methodologies, and their evolv- 

ng relevancy over time. These methods analyze the standardized 

eywords of all papers in the sample and are supported by the 

pen-source software SciMAT 1 [29] . 

.3.1. Thematic network identification 

The essential topics, tasks and methodologies, of a research area 

an be identified by building a co-occurrence graph, whose nodes 

efer to keywords, and whose edges are referred to equivalence in- 

ex values [40] . The equivalence index between two keywords a 

nd b is e ab = c 2 
ab 

/c a c b , where c i is the number of documents that

nclude the keyword i , and c ab is the number of documents that 

ontain both a and b. The range of e ab goes from zero, when there

s no document including both a and b, to one, when a and b co- 

ccur in all documents. 

Then, the most relevant topics, tasks and methodologies arise 

s clusters, known as Thematic Networks (TNs), of highly tied key- 

ords according to their equivalence index (i.e., TNs are groups of 

tandardized keywords that frequently appear together in the pa- 

ers). In particular, we identify the clusters with the simple centers ’ 
1 https://sci2s.ugr.es/scimat/ 

e  

c

5 
lgorithm [40] , which has been applied successfully to numerous 

ibliometric analyses, e.g., [29,36,41] . 

.3.2. Strategic diagrams and maps of conceptual evolution 

The development of a research area can be examined by per- 

orming a longitudinal analysis as follows. First, the document 

ample is divided into periods, and the TNs for those periods are 

dentified. Then, the role each network plays in a period is de- 

ermined by Callon’s centrality and density measures [40] , which 

re based on the equivalence index. Specifically, on one hand 

entrality calculates the degree of interaction of a theme with 

he rest of them as 10 · ∑ 

a ∈ network ,b / ∈ network e ab . On the other hand 

ensity quantifies the network internal coherence as 100 
# network 

·
 

a,b∈ network e ab . 

Strategic diagrams [29] are helpful for visualizing network roles 

y placing the themes according to their normalized centrality and 

ensity. These normalized versions are obtained as rank (c t ) /n and 

ank (d t ) /n , where rank (c t ) and rank (d t ) are the positions of the

heme t in the centrality and density rankings sorted in ascending 

rder, respectively; rank (c t ) and rank (d t ) are then divided by the 

otal number of themes n to normalize their values into the inter- 

al [0 , 1] . Fig. 2 shows the roles a TN may play according to the

uadrant where it is placed in the strategic diagram. The theme 

ovement across the quadrants over successive periods of years 

an be used to recognize the emergence and growth of research 

ines, and to forecast their short-term evolution [42] . 

Also, the comparison of each period keywords can reveal 

hether the number of researched topics, tasks and methodolo- 

ies, increases (i.e., new words are incorporated), decreases (old 

ords become obsolete), or remains stable. Following Sternitzke 

nd Bergmann [43] recommendations, we use the inclusion index 

o track the evolution between two consecutive periods with key- 

ord sets K and L : inclusion index KL = 

#(K∩ L ) 
min (# K, # L ) 

. 

.4. Material 

Following Open Science good practices, this paper ma- 

erial is publicly available at: https://github.com/rheradio/ 

ffline- handwritten- doc- analysis 

In particular, our repository provides: 

1. The raw paper sample gathered from Scopus that this article 

analyzes. 

2. The keywords’ normalization. 

3. The author names’ standardization. 

4. The SciMAT database we built to perform the bibliometric anal- 

ysis. 

5. A website reporting the results of our science mapping analysis 

exhaustively. 

. Results and discussion 

This section outlines the most relevant results of our analy- 

is. For a complete report, please check the repository linked in 

ection 3.4 . 

.1. Most influential papers 

This subsection identifies the most relevant papers for the 

hole period 1999–2020. To do so, we use the citation classic con- 

ept, which was coined by Garfield [44] to refer to the most im- 

acting papers of a research area according to their number of ci- 

ations. 

In particular, we use the formal definition given by Martinez 

t al. [131] , which is based on the Hirsch index [39] : “the citation

lassics, also called the h-core , of a research area whose h -index is 

https://sci2s.ugr.es/scimat/
https://github.com/rheradio/offline-handwritten-doc-analysis
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Table 2 

Hot papers: top 5 cited articles in 2020, 2019, and 2018. 

Paper Journal/Conf. #Cit Topic 

Ghosh et al. [132] . Graphology based handwritten character analysis for human behaviour identification 

(2020) 

CAAI T Intell Technol 35 Behaviour 

identification 

Ahlawat et al. [133] . Improved handwritten digit recognition using convolutional neural networks (2020) Sensors 19 HNR 

Zhao and Liu [134] . Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition 

(2020) 

Granul Comput 18 HNR 

Jiang and Zhang [135] . Edge-SiamNet and Edge-TripleNet: New deep learning models for handwritten 

numeral recognition (2020) 

IEICE T Inf Syst 18 HNR 

Malakar et al. [136] . A GA based hierarchical feature selection approach for handwritten word recognition 

(2020) 

Neural Comput Appl 16 HWR 

Diaz-Cabrera et al. [137] . A perspective analysis of handwritten signature technology (2019) ACM Comput Surv 64 SV 

Cilia et al. [138] . A ranking-based feature selection approach for handwritten character recognition (2019) Pattern Recogn Lett 44 HCR, Feature 

Selection 

De Stefano et al. [139] Handwriting analysis to support neurodegenerative diseases diagnosis: A review 

(2019) 

Pattern Recogn Lett 31 Neurodegenerative 

diseases 

Baldominos et al. [140] . A survey of handwritten character recognition with MNIST and EMNIST (2019) Appl Sci 27 HCR 

He and Schomaker [141] . Deep adaptive learning for writer identification based on single handwritten word 

images (2019) 

Patter Recogn 24 WI 

Hafemann et al. [142] . Offline handwritten signature verification - Literature review (2018) IPTA 65 SV, Survey 

Baldominos et al. [143] . Evolutionary convolutional neural networks: An application to handwriting 

recognition (2018) 

Neurocomputing 57 HNR 

Pramanik and Bag [144] . Shape decomposition-based handwritten compound character recognition for 

Bangla OCR (2018) 

J Vis Commun Image 

R 

53 HCR 

Kulkarni and Rajendran [145] . Spiking neural networks for handwritten digit recognition-Supervised learning 

and network optimization (2018) 

Neural Networks 49 HNR 

Sueiras et al. [146] . Offline continuous handwriting recognition using sequence to sequence neural networks 

(2018) 

Neurocomputing 46 HWR 
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 are the top h cited papers”. In our paper sample, the h -index is

3 (there are 93 citation classics). Table 1 lists those top 93 cita- 

ion classics. Columns stand for the paper title, publication source, 

umber of citations, and central topic(s) of the paper. 

As recent papers seldom have enough time to accumulate cita- 

ions to compete with older articles, Clarivate WoS proposes rec- 

gnizing as hot papers those with a number of citations beyond a 

iven threshold. Accordingly, Table 2 shows the hot papers for the 

ast three years, i.e., the top 5 cited articles per year. 

.2. Most prolific authors 

A total of 8044 researchers have co-authored the 5389 papers 

hat this article analyzes. Most of them are occasional authors; e.g., 

9.87% have published a single paper. Only 7.13% of the researchers 

ave published five or more papers. Such authorship distribution 

s coherent with a fundamental law in bibliometrics called Lotka’s 

aw [147] , which states that the number of authors with n pa- 

ers was habitually inversely proportional to n 2 . In our case, 5621 

esearchers published only one paper; therefore, Lotka’s law pre- 

icts that the number of authors that published n papers should 

e 5621 /n 2 . 

The graph in Fig. 3 depicts the collaboration patterns between 

he most productive researchers. Nodes represent the top 2.29% 

f authors, who have published at least ten papers; node areas 

re proportional to the number of published papers. There is an 

dge between two nodes if the corresponding researchers have co- 

uthored one or more papers; the width of an edge connecting 

uthors i and j is proportional to the equivalence index e i j (this 

ndex was introduced in Section 3.3.1 ). Finally, the graph is colored 

ccording to the groups of collaborating authors identified with the 

eiden algorithm [148] . 

.3. Most prolific journals 

Fig. 4 shows the journals that have published the largest num- 

er of papers, standing out Pattern Recognition, Pattern Recogni- 

ion Letters, IEEE Transactions on Pattern Analysis & Machine Intel- 

igence , and International Journal on Document Analysis and Recog- 
6 
ition (which is specialized in document analysis). Likewise, Fig. 5 

hows the most prolific conferences. Fig. 5 shows the most pro- 

ific conferences, including (i) those focused on off-line handwrit- 

ng document analysis, such as the International Conference on Doc- 

ment Analysis Recognition (ICDAR) and the International Conference 

n Frontiers of Handwriting Recognition (ICFHR), and (ii) others with 

 more general thematic, such as the International Conference on 

attern Recognition (ICPR) or the International Joint Conference on 

eural Networks (IJCNN). 

.4. Longitudinal analysis 

Fig. 6 represents the number of published papers per year. 

ome significant developments have accelerated the upswing 

rend, such as the introduction of deep learning in 2006 [149] , 

he 2009 NIPS Workshop on Deep Learning for Speech Recogni- 

ion [150] , and the popularization of inexpensive GPUs from 2012 

nwards [151] . To analyze the temporal evolution of the area, we 

ave divided the document sample into six periods of five years. 

.4.1. Most prolific research institutions and countries 

Fig. 7 shows (i) the number of papers that researchers of each 

ountry have published, and (ii) the institutions to which re- 

earchers publishing the highest number of papers belong. 

From 1990 to 1999, most research is concentrated in a few 

ountries. USA, Japan, and Taiwan led the investigation, with 

0.57%, 11.33%, and 8.13% of all published papers, respectively. In 

he next decade, from 20 0 0 to 2019, research spread around the 

orld. China and India emerged as global powers; in fact, the most 

rolific countries of that decade were China (18.41% of all pub- 

ished papers), USA (10.72%), and India (9.91%). Finally, in the last 

ecade, India and China have consolidated their leadership with 

8.80% and 17.42% of the articles; USA, Spain, and France follow 

hem in the ranking with 6.01%, 5.33%, and 5.14% of the papers, 

espectively. 

.4.2. Thematic networks 

As explained in Section 3.3 , the science mapping technique that 

e have used to identify the most researched topics is based on 
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Fig. 3. Collaboration networks of the authors with ten or more papers. 

Fig. 4. Most prolific journals (1990–2020). 

a

t

t

n

o

i

p

b

t

p

n

d

r

t

l

C

S

n

i

V

s

nalyzing the relations between paper keywords. Fig. 8 represents 

he number of keywords evolution over time. Each node shows 

he number of keywords in a given period. Arrows connecting two 

odes depict the number of shared keywords between two peri- 

ds; the inclusion index is denoted in parentheses. Upper incom- 

ng arrows represent how many new keywords were added in a 

eriod, and upper outcoming arrows account for the keywords that 

ecame obsolete. For instance, the second period goes from 1995 

o 1999; it comprises 74 keywords, 42 of them coming from the 

revious period. Out of these 74 keywords, 59 were used in the 

ext period, and 15 were discarded. According to the inclusion in- 
7 
ex, 80% of this period’s keywords were still used in the third pe- 

iod. 

Using the simple centers’ algorithm, sixteen TNs were iden- 

ified. Some of them are related to document analysis prob- 

ems: Character Recognition, Text Recognition, Numeral Recognition, 

hinese Character Recognition, Word Spotting, Writer Identification, 

ignature Verification, Script Identification , and Historical Text Recog- 

ition ( Historical Documents ). Others refer to approaches for deal- 

ng with these problems: Hidden Markov models (HMMs), Support 

ector Machine (SVM), Deep Neural Networks (DNNs), Ensemble Clas- 

ification , and Attention Mechanism ; and the last ones are related to 
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Fig. 5. Most prolific conferences (1990–2020). 

Fig. 6. Number of publications per year. 

Fig. 7. Most prolific countries and organizations. The scale of the maps is related to the data volume in each period of time. 
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mportant tasks in the resolution of these problems ( Segmentation, 

eature Extraction Classification ). Fig. 9 and the strategic diagrams 

n Fig. 10 provide the field evolution overview, which will be dis- 

ussed in detail in the subsequent Sections 4.4.3 –4.4.8 . 

In Figs. 9 and 10 , each node represents a TN, being its size pro-

ortional to the number of papers using some of the keywords 
8 
he network contains. Edges in Fig. 9 account for conceptual re- 

ations between TNs; a solid line connecting two TNs T and T ′ de- 

icts a strong relationship, meaning that both TNs share a keyword 

hat is central to some of them. A dashed line indicates the exis- 

ence of some shared keywords between T and T ′ , which is not 

entral neither for T nor T ′ . For example, between the first and 
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Fig. 8. Number of keywords per period. 

Fig. 9. TNs’ conceptual linking between periods. 

Fig. 10. Strategic diagrams per period. 
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econd periods, (i) there is a solid line between Character Recogni- 

ion and Numeral Recognition , because both themes share the key- 

ord Numeral Recognition , which is central for the second one; and 

ii) there is a dashed line between Character Recognition and Chi- 

ese Character Recognition because they share the non-central key- 

ords Graph and Preprocessing (the keywords composing each TN 
9 
nd their interrelationships are provided in the repository linked 

n Section 3.4 ). Edge width is proportional to the inclusion index. 

As explained in Section 3.3.2 , the TN flow across the quadrants 

f successive strategic diagrams helps to recognize the emergence 

nd growth of research lines and to forecast their short-term evo- 

ution. For example, according to Fig. 10 , from 2005 to 2009 to 
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Fig. 11. Thematic networks for Period 1: 1990–1994. 
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010–2020, HMM has increased both its centrality and its number 

f papers. Accordingly, it has become increasingly important, and 

t is reasonable to expect that, in the short-term future, the top- 

cs, tasks, and methodologies represented by the TN will be kept 

elevant. In contrast, Fig. 10 shows that Chinese Character Recogni- 

ion has lost its centrality but increased its density from 2005 to 

009 to 2010–2014 period, evolving from being a traversal TN to a 

ighly developed one. 

The following subsections analyze the TNs in each period. For 

very network, a table summarizes the network’s keywords, its 

umber of articles, h-index, and the top 10 cited papers. This way, 

he relevancy a network has in a given period is quantified in 

erms of quantity (#papers) and quality ( h -index). It is worth not- 

ng that a document may include keywords belonging to different 

Ns. 

.4.3. Period 1: 1990–1994 

As Fig. 10 shows, two TNs are identified from 1990 to 1994: 

he motor network Character Recognition and the isolated one Text 

ecognition . Fig. 11 depicts the keywords’ relationship for both TNs. 

ach node represents a standardized keyword (see Section 3.1 ) 

hose size depends on the number of articles that include it. An 

dge links two nodes if two or more articles contain the corre- 

ponding keywords. The edge thickness depends on the equiva- 

ence index that normalizes the number of articles where the key- 

ords co-occur (see Section 3.3.1 ). It is worth noting that the sim- 

le centers’ algorithm automatically labels the TN according to the 

ost central keyword, i.e., to the keyword that is strongest con- 

ected to the other ones [40] . In Fig. 11 , the most central keywords

oincide with the most included in the articles, but this is not al- 

ays the case. Also, a paper is considered to belong to the network 

f it contains at least one of the TN’s keywords [29] (accordingly, 

ot all articles in a TN necessarily include the keyword that gives 

ts name). 

Table 3 summarizes these networks’ keywords and their top ten 

ited papers. The first column shows the central keywords that 

ive names to the TNs; clicking on them, a browser will take you 

o a detailed TN description in our repository (see Section 3.4 ). The 

ast column follows the notation [ reference ] # citations , e.g., [52] 300 

eans that [52] has been cited 300 times since its publication. On 

he one hand, HNR, Arabic and Japanese scripts were considered. 

dditionally, they were closely related to HCR problems. A highly 

nfluential paper on this TN and period is presented by Suen et al. 

52] , which combines four different heuristic methods proposed 

y experts for the unconstrained HNR problem. This technique is 

lso known as ensemble classification. The authors demonstrated 

hat the combination or consensus among the HNR methods tends 

o compensate for the weaknesses of individual algorithms while 
10 
reserving their strengths. Therefore, ensemble classification be- 

ame important in this and the following periods. Focusing on the 

eywords related to some methodology, Template Matching, De- 

ision Trees, and Ensemble Classification were some of the most 

sed strategies to solve these problems. Also, in these years, Neural 

etworks (NNs), in general, and the Multi-Layer Perceptron (MLP), 

n particular, started to be important since new optimization al- 

orithms were developed and more effective training was possi- 

le. On the other hand, the Text Recognition TN encompassed the 

ost studied tasks, which were Segmentation and Feature Extrac- 

ion. Note that the keyword Text Recognition includes the key- 

ords related to handwriting recognition that were not specific on 

ny script or scope, such as characters, words, etc. Therefore, the 

eywords related to it are also generic. Concerning this second TN, 

he most cited paper was written by Hull [46] . It described an im- 

ge database with thousands of city names, ZIP codes, and other 

ypes of words extracted from scanned post mail handwritten text 

nd targeted towards general text recognition. The database was 

ivided into explicit training and testing sets. The included words 

resented a high variability concerning writers and writing styles. 

any of the applications and algorithms for HTR in that period 

ere oriented towards postal address interpretation [152] . 

.4.4. Period 2: 1995–1999 

In this period, there were four TNs: the motor network Charac- 

er recognition , the isolated network Word Spotting , and the traver- 

al networks Chinese Character Recognition and Numeral Recognition . 

ig. 12 and Table 4 summarize the keywords of these networks, 

howing that other motor TNs related to HCR were Character Seg- 

entation, HWR, and Japanese text recognition. To solve these 

roblems, HMMs were added to the previous motor methodolo- 

ies. The first word recognition systems were based on character 

ecognition and their subsequent concatenation. For that, HMMs 

ere one of the most used ones. Therefore, it is natural that all 

hese keywords appear together in this period. Moreover, the im- 

ortance of these problems and techniques grew in the scientific 

ommunity, as it is shown by the increase of its h-index. Chi- 

ese Character Recognition appears as its own TN, including related 

echniques as directional features and graph-based methodologies. 

umeral Recognition was related to structural and ensemble clas- 

ification, segmentation, clustering, fuzzy logic, K-Nearest Neigh- 

our (KNN), and Genetic Algorithms (GA). Indeed, as HNR prob- 

ems focused on isolated digits started to be solved, most numer- 

cal string recognition problems tried to segment digits to classify 

hem. Then, digit string recognition was achieved by concatenating 

he previous results. Some of the most cited articles in this period 

elonged to this TN. The work by Huang and Suen [49] proposed 

 multiple classification approach for recognizing unconstrained 
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Table 3 

TNs’ performance for Period 1: 1990–1994. 

TN Network’s keywords #papers h-index Top 10 papers 

Character Recognition Character Recognition, 

Statistical Model, 

Graph, Decision Tree, 

MLP, NN, Numeral 

Recognition, 

Preprocessing, Arabic 

Text Recognition, 

Template Matching, 

Japanese Text 

Recognition, Ensemble 

Classification 

44 22 [52] 300 [57] 203 

[66] 173 [87] 126 

[92] 121 [119] 99 

[152] 80 [153] 78 

[154] 71 [155] 51 

Text Recognition Text Recognition, 

Segmentation, Feature 

Extraction 

14 11 [46] 1029 [118] 99 

[152] 80 [156] 72 

[157] 49 [158] 42 

[159] 38 [160] 34 

[161] 19 [162] 18 

Fig. 12. Thematic networks for Period 2: 1995–1999. 
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andwriting numerals. Kim and Govindaraju [60] demonstrated the 

mportance of using a lexicon for ranking the lexicon entries when 

atching them to word images in word recognition tasks suitable 

o real-time applications. Finally, Jain and Zongker [83] introduced 

he representation and usage of deformable templates to compute 

he deformation needed when comparing handwritten digit pat- 

erns for their recognition at a relatively low computational cost. 

ord Spotting was a new and very studied problem related to IR 

nd HTR. Indeed, WS and IR were complementary tasks since WS 

ries to get keywords, and IR asks for specific keywords on doc- 

ments. Moreover, HTR and WS share many common methodolo- 

ies to address them. Also, a capital work was the gradient-based 

earning to train convolutional neural networks (CNNs) proposed 

y LeCun et al. [163] . Although this article is not devoted to hand-

ritten documents (and for this reason, their literature is outside 

he sample), it was fundamental in computer vision studies, lead- 

ng to a great development in many applications such as document 

nalysis. 
11 
.4.5. Period 3: 20 0 0–20 04 

Fig. 13 and Table 5 summarize four TNs identified in this pe- 

iod. HMM was a motor and a highly studied TN. Indeed, in this 

eriod, the importance of word and sentence recognition prob- 

ems, solved by HMMs approaches, increased. Besides, word recog- 

ition for large vocabulary problems was studied, especially using 

anguage models and dictionaries or lexicons to improve the re- 

ults. Two relevant papers in the network correspond to the same 

uthors Marti and Bunke ( [51] , and [47] , respectively). Their first 

aper [51] described a solution that combines HMMs with statis- 

ical language models. The proposed solution avoids segmenting 

 text line into its constituent words and also incorporates lin- 

uistic knowledge into the recognition process. Their second pa- 

er [47] introduced the IAM database of English sentences for off- 

ine handwriting recognition. This database has been (and still it 

s) a fundamental benchmark for training and testing many algo- 

ithms aiming to recognize handwriting text under multiple vari- 

bilities and also for performing WI. Meanwhile, Character Recog- 

http://CharacterRecognition
http://TextRecognition
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Table 4 

TNs’ performance for Period 2: 1995–1999. 

TN Network’s keywords #papers h-index Top 10 papers 

Character Recognition Character Recognition, 

Structural Features, 

Statistical Model, MLP, 

Character 

Segmentation, Feature 

Extraction, NN, 

Classification, HMM, 

Word Recognition, 

Template Matching, 

Japanese Text 

Recognition 

162 37 [60] 189 [64] 176 

[65] 173 [67] 172 

[80] 133 [83] 132 

[86] 126 [88] 124 

[89] 123 [91] 122 

Word Spotting Word Spotting, 

Information Retrieval, 

Text Recognition 

27 14 [49] 418 [64] 176 

[73] 154 [164] 69 

[165] 46 [166] 43 

[167] 35 [168] 32 

[169] 31 [170] 29 

Chinese Character Recognition 

Chinese Character 

Recognition, 

Directional Feature, 

Preprocessing, Graph 

41 15 [63] 177 [65] 173 

[67] 172 [83] 132 

[86] 126 [171] 77 

[172] 66 [173] 63 

[174] 49 [175] 48 

Numeral Recognition Numeral Recognition, 

Ensemble 

Classification, 

Structural 

Classification, 

Segmentation, GA, 

Clustering, Fuzzy Logic, 

KNN, Feature Selection 

86 31 [49] 418 [60] 189 

[65] 173 [80] 133 

[83] 132 [91] 122 

[103] 108 [127] 95 

[176] 78 [171] 77 
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ition , which was a motor and traversal TN, shows that HCR prob- 

ems were studied using classical and new approaches (as self- 

rganizing maps, SOMs). Methodologies such as principal compo- 

ent analysis (PCA), active shape models, SVM and GA were related 

o Chinese Character Recognition , which is based on a very different 

cript compared to Roman (or Latin) or Arabic texts. In this TN, 

he work of C-L. Liu et al. [50] stands out, where state-of-the-art 

n HNR was benchmarked with their work, which combines dif- 

erent features as chain code and gradient features, with several 

lassifiers as KNN, NN, and vector classifiers, among others. Other 

ery studied but isolated topics were WI and SV, as they appear on 

he Writer Identification TN. Focusing on their impact through the 

aper production, the importance of the TNs Character Recognition 

nd Chinese Character Recognition were increased. Finally, in this 

eriod, the most cited paper was a survey by Plamondon and Sri- 

ari [2] about on-line and off-line handwriting recognition, where 

he main algorithms that have appeared to date for character and 

ord recognition stages were summarized, as well as the applica- 

ion fields of this technology (e.g., writer authentication, WS or SV, 

mong others). 

.4.6. Period 4: 20 05–20 09 

The fourth period was characterized by four TNs: Feature Extrac- 

ion, HMM, Chinese Character Recognition , and Writer Identification . 

ig. 14 and Table 6 summarize the most relevant research themes 

rom each of these networks. 

As it is shown in the Feature Extraction TN, SVM was one of 

he most importat methodologies to solve document analysis prob- 

ems. In this period, the use of a specific model of SVM, called 

east Squares SVM (LS-SVM), targeted to handwriting recognition 

roblem, was presented by Adankon and Cheriet [75] , who demon- 

trated that this model improved the generalization performance 

ith respect to other previous proposals. This network includes In- 

ian text recognition for the first time. The most important article 

ocusing on this alphabet was due to Bhattacharya and Chaudhuri 

56] , who proposed the combination of multiresolution represen- 

ations and MLPs for the recognition of unconstrained handwrit- 
12 
en numerals of Indian scripts. In their solution, input numerals 

ass through three MLP classifiers corresponding to three coarse- 

o-fine resolution levels in a cascaded composition. These authors 

lso provided a large database for experimentation. Chinese and 

rabic scripts were also very important. One of the most influential 

urveys for Arabic script was published by Lorigo et al. [26] . Jointly 

ith SVM, PCA and NN were some of the most studied methodolo- 

ies related to those problems. HMM s were again a TN, but their 

mportance decreased. Other methodologies related to HMMs were 

tatistical models, ensemble classification, models based on graphs, 

nd recurrent neural networks (RNNs). RNNs often replaced HMMs 

n word and sentence recognition. Indeed, the most influential pa- 

er in this period (with nearly 10 0 0 cites) corresponds to the topic 

unconstrained handwriting recognition,” and it was written by 

raves et al. [4] . While previous systems for this task relied on 

MMs with their known limitations, [4] proposed a new type of 

NNs, that include long-range bidirectional dependencies, which 

ere suitable for text sequence labeling in situations where data 

ere difficult to segment. Both Feature Extraction and HMM were 

otor TNs (although HMM was also close to isolated and traver- 

al topics). Chinese Character Recognition appeared as a traversal TN 

hat included Elastic Mesh, GA, Fuzzy Logic and Wavelet transform 

s some of the main related methodologies. Writer Identification 

as an isolated and very studied TN, which was tightly related to 

cript Identification, Signature Verification, and the Segmentation 

ask. 

.4.7. Period 5: 2010–2014 

Since 2010, the problems and methodologies studied in docu- 

ent analysis increased considerably as the number of correspond- 

ng TNs. Specifically, there were eight TNs in this period: Char- 

cter Recognition and HMM as motor networks, Segmentation and 

umeral Recognition as traversal networks, Script Identification and 

hinese Character Recognition as isolated networks, Signature Veri- 

cation as emerging and traversal TN, and Historical Documents as 

n emerging network. Fig. 15 and Table 7 summarize the most rel- 

vant research themes in these TNs. Character Recognition network 

http://CharacterRecognition
http://WordSpotting
http://ChineseCharacterRecognition
http://NumeralRecognition
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Fig. 13. Thematic networks for Period 3: 20 0 0–20 04. 

Table 5 

TNs’ performance for Period 3: 20 0 0–20 04. 

TN Network’s keywords #papers h-index Top 10 papers 

Character Recognition Character Recognition, 

Graph, SOM, Text 

Recognition, Feature 

Extraction, 

Segmentation, NN, 

Numeral Recognition, 

Classification, Template 

Matching, Fuzzy Logic, 

Structural Features 

191 38 [2] 1749 [47] 588 

[50] 401 [51] 314 

[13] 291 [55] 226 

[62] 177 [70] 165 

[79] 134 [84] 130 

HMM HMM, Sentence 

Recognition, 

Dictionary, Large 

Vocabulary, Feature 

Selection, 

Preprocessing, Word 

Recognition, Arabic 

Text Recognition, 

Language Model, 

Ensemble 

Classification, 

Synthetic Data, 

N-grams 

93 28 [47] 588 [51] 314 

[13] 291 [55] 226 

[58] 201 [74] 142 

[79] 134 [15] 119 

[16] 118 [94] 118 

Chinese Character Recognition 

Chinese Character 

Recognition, PCA, 

Character 

Segmentation, Active 

Shape Model, SVM, GA, 

Wavelet, Supervised 

Learning, 

Postprocessing, 

Statistical Model 

88 22 [50] 401 [70] 165 

[74] 142 [79] 134 

[99] 112 [129] 83 

[177] 85 [178] 74 

[179] 66 [180] 59 

Writer Identification Writer Identification, 

Signature Verification, 

Mathematical 

Transform, Texture 

Features 

23 10 [2] 1749 [53] 246 

[74] 142 [181] 56 

[182] 45 [183] 29 

[184] 29 [185] 16 

[186] 15 [187] 11 

13 
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Fig. 14. Thematic networks for Period 4: 20 05–20 09. 

Table 6 

TNs’ performance for Period 4: 20 05–20 09. 

TN Network’s keywords #papers h-index Top 10 papers 

Feature Extraction Feature Extraction, Indian Text 

Recognition,Mathematical Transform, PCA, 

SVM, Character Recognition, NN, Numeral 

Recognition, Classification, Preprocessing, 

Arabic Text Recognition, KNN 

297 34 [26] 342 [56] 210 

[59] 194 [75] 140 

[77] 138 [78] 136 

[98] 113 [107] 105 

[115] 100 [116] 100 

Chinese Character Segmentation Chinese Character Segmentation, Elastic Mesh, 

Feature Reduction, Character Segmentation, 

GA, Wavelet, Fuzzy Logic, Structural 

Features,Post-processing, Bank Check 

Recognition 

122 19 [59] 194 [116] 100 

[188] 79 [189] 70 

[190] 65 [191] 61 

[192] 60 [193] 52 

[194] 47 [195] 43 

HMM HMM, Sentence Recognition, Moments, 

Dictionary, Text Recognition, Chinese Text 

Recognition, Word Recognition, RNN, 

Language Model, Ensemble Classification, 

Statistical Model, Graph 

198 27 [4] 982 [21] 141 

[78] 136 [82] 132 

[98] 113 [106] 106 

[115] 100 [116] 100 

[117] 100 [188] 79 

[196] 62 

Writer Identification Writer Identification, Signature Verification, 

Verification, Script Identification, 

Segmentation, Texture Features 

86 17 [115] 100 [116] 100 

[197] 92 [198] 51 

[199] 43 [200] 40 

[201] 36 [202] 34 

[203] 31 [204] 30 
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as more related to Arabic and Indian text recognition and solved 

ith NN, SVM, KNN, and wavelet approaches (among others). Note 

hat the number of Indian text recognition works grew during this 

eriod and, for that, the scope and methodologies of this research 

ecame very important to the community. 

The Segmentation TN is mainly related to text line segmenta- 

ion, Chinese text and mathematical formula recognition. Those 

roblems were often solved with GA, SOM, and dynamic program- 

ing. HMMs increased their impact. In addition to the problems 

ddressed in the previous periods, music recognition, WS and Ro- 

an text recognition appear now related to this TN. These prob- 

ems were also often addressed with NN architectures as bayesian 
14 
etworks, RNN and deep belief neural networks (DBNNs), jointly 

ith Gaussian mixture models (GMMs). The Numeral Recogni- 

ion TN was composed of traversal methodologies as PCA, field- 

rogrammable gate array (FPGA), and chain codes, and deep learn- 

ng methodologies as MLP, DNN and autoencoders. Script Identifi- 

ation shows that this TN was very related with multi-script prob- 

ems. Historical Documents was related to language models prob- 

ems. Finally, some highly studied topics and methodologies were 

hinese character recognition, independent component analysis 

ICA) and CNN, as these keywords appear together in the Chinese 

haracter Recognition TN. As the TNs shows, this period was charac- 

erized by a high increase in applying deep neural architectures to 

http://FeatureExtraction
http://ChineseCharacterSegmentation
http://HMM
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Fig. 15. Thematic networks for Period 5: 2010–2014. 

Table 7 

TNs’ performance for Period 5: 2010–2014. 

TN Network’s keywords #papers h-index Top 10 papers 

Character Recognition Character Recognition, Statistical Model, 

Mathematical Transform, Zonning, Feature Extraction, 

NN, SVM, Preprocessing, Arabic Text Recognition, 

KNN, Wavelet, Indian Text Recognition 

632 35 [69] 168 [85] 126 

[97] 113 [104] 106 

[114] 100 [205] 86 

[206] 85 [207] 84 

[208] 80 [209] 79 

HMM HMM, Sentence Recognition, Bayesian Network, 

Viterbi Algorithm, DBNN, Word Spotting, Word 

Recognition, RNN, Clustering, Music Recognition, 

Roman Script, GMM 

219 29 [54] 239 [61] 186 

[69] 168 [104] 106 

[205] 86 [206] 85 

[210] 83 [211] 82 

[212] 75 [213] 75 

Segmentation Segmentation, SOM, Character Segmentation, Text 

Line Segmentation, Text Recognition, Chinese Text 

Recognition, GA, Math Recognition, Dynamic 

Programming, Structural Features, Postprocessing, 

Projection Features 

386 33 [54] 239 [61] 186 

[69] 168 [97] 113 

[104] 106 [112] 101 

[113] 100 [114] 100 

[214] 86 [206] 85 

Numeral Recognition Numeral Recognition, Voting, PCA, DNN, 

Classification, Chain Code, Statistical Feature, MLP, 

Moments, FPGA, Autoencoder, Affine Transformation 

231 21 [69] 168 [207] 84 

[211] 82 [208] 80 

[215] 75 [216] 54 

[217] 41 [218] 40 

[219] 38 [220] 36 

Script Identification Script Identification, Ensemble Classification, 

Multi-scripts, Texture Features 

51 14 [221] 53 [222] 30 

[223] 29 [224] 28 

[225] 23 [226] 23 

[227] 22 [228] 22 

[229] 18 [230] 18 

Chinese Character Recognition 

Chinese Character Recognition, ICA, CNN 57 14 [68] 169 [209] 79 

[231] 46 [218] 40 

[232] 31 [233] 25 

[234] 24 [235] 18 

[236] 18 [237] 18 

Historical Documents Historical Documents, Language Model, Morphology 

Operator 

57 12 [112] 101 [238] 44 

[239] 39 [240] 33 

[241] 24 [242] 22 

[243] 22 [244] 21 

[245] x 19 [246] 14 

Signature Verification Signature Verification, Writer Identification, Feature 

Selection, Graph, Curvelet Transform, Feature 

Reduction, Verification 

131 18 [214] 86 [247] 80 

[215] 75 [248] 56 

[221] 53 [249] 49 

[250] 48 [240] 33 

[251] 24 [252] 23 

15 
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Fig. 16. Thematic networks for Period 6: 2015–2020. 

Table 8 

TNs’ performance for Period 6: 2015–2020. 

TN Network’s keywords #papers h-index Top 10 papers 

DNN DNN, Text Recognition, Character Recognition, 

CNN, Numeral Recognition, RNN, Transfer 

Learning, Indian Text Recognition, Data 

Augmentation, Dropout, DCNN, DBNN 

1158 30 [71] 158 [81] 132 

[105] 106 [120] 98 

[253] 82 [254] 70 

[255] 68 [256] 68 

[257] 66 [258] 65 

SVM SVM, Texture Features, Decision Tree, PCA, 

Feature Extraction, NN, Classification, 

Signature Verification, Arabic Text 

Recognition, KNN, HOG, Statistical Model, 

Texture Features 

906 23 [95] 117 [120] 98 

[253] 82 [259] 73 

[257] 66 [260] 58 

[261] 58 [262] 54 

[263] 53 [264] 51 

Segmentation Segmentation, Histogram, Character 

Segmentation, Text Line Segmentation, Word 

Spotting, Preprocessing, Word Recognition, 

Math Recognition, Historical Documents, 

Sliding Window, FCNN, Projection Features 

455 18 [95] 117 [105] 106 

[265] 52 [266] 46 

[267] 45 [268] 35 

[144] 34 [269] 27 

[270] 26 [271] 25 

Ensemble Classification Ensemble Classification, Moments, ResNet, 

Chinese Character Recognition, Chinese Text 

Recognition, Feature Selection, GA, Script 

Identification, Fuzzy Logic, Structural Features, 

Mathematical Transform, Graph 

379 20 [71] 158 [81] 132 

[259] 73 [255] 68 

[257] 66 [143] 44 

[272] 42 [273] 35 

[138] 34 [274] 33 

HMM HMM, Embedding,Tibetan Text Recognition, 

Language Model, Music Recognition, Roman 

Text Recognition, Multi-Script Recognition, 

N-Grams, Sentence Recognition, Bayesian 

Network 

165 14 [257] 66 [265] 52 

[275] 52 [267] 45 

[269] 27 [276] 25 

[277] 20 [278] 19 

[279] 18 [280] 18 

Attention Mechanism Attention Mechanism, End-to-end, Seq2Seq 20 7 [266] 46 [146] 31 

[281] 22 [282] 14 

[283] 12 [284] 9 
[285] 7 [286] 6 
[287] 5 [288] 3 

Writer Identification Writer Identification, Siamese Network, 

Verification, Template Matching, Wavelet, 

Forensics, SIFT, Autoencoder 

155 12 [261] 58 [275] 52 

[289] 29 [290] 29 

[28] 23 [281] 22 

[141] 17 [291] 16 

[292] 15 [293] 14 

16 
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TR. In this context, the most cited work was published by Pham 

t al. [54] , who used dropout in recurrent networks (RNNs) with 

ong Short-Term Memory (LSTM) cells in unconstrained handwrit- 

ng recognition. This dropout is carefully introduced in the network 

o that the power of RNN in modeling sequences is preserved. 

ther relevant works in this period continued using HMMs, as a 

ell-established modeling and recognition paradigm for automatic 

ff-line handwriting recognition, and the IAM database, as the ma- 

or benchmark for the experiments. The work by España-Boquera 

t al. [69] proposed a hybrid HMM/Artificial Neural Network (ANN) 

odel, where the structural part of the off-line text image was 

odeled with an HMM and an MLP-ANN is used to estimate the 

mission probabilities. This solution was applied to off-line hand- 

ritten text lines from the IAM database. Fischer et al. [61] devel- 

ped a WS system (without pre-segmenting text lines into words) 

lso based on (character) HMM and using the off-line IAM dataset 

or experiments. 

.4.8. Period 6: 2015–2020 

This last period has been characterized by the increasing num- 

er of problems and methodologies in the area. Especially, deep 

earning approaches were widely applied to most of the problems 

elated to document analysis. There were seven TNs: DNN, SVM , 

nd Segmentation as motor TN, Ensemble Classification as traversal 

ne, HMM and Writer Identification as declining TNs, and Attention 

echanism as very studied one. Fig. 16 and Table 8 summarize the 

ain research themes for these networks. DNN was the main mo- 

or TN and was related to text recognition. Specifically, it included 

eep learning architectures as RNN, DBNN, and Deep Convolutional 

eural Networks (DCNNs). The SVM TN shows that some of the 

ost used methodologies in SV and Arabic text recognition were 

VM PCA, KNN, and HOG. 

Segmentation was related to most of the problems of the pre- 

ious periods, but also to the WS problem, sliding window, and 

ully Connected Neural Networks (FCNNs). In this case, sliding 

indows and FCNNs were often used in holistic or segmentation- 

ree approaches. The network HMM shows that Tibetan text, Ro- 

an text, multi-script, and music recognition problems, as well 

s language model, were often solved with Bayesian networks 

nd n-grams methodologies. The Writer Identification TN shows 

hat WI, forensic applications, and verification problems, as well 

s wavelets, template matching, autoencoders, and siamese NN 

ethodologies were declining topics. Finally, Attention Mechanism 

as been a highly developed TN, which relates attention mecha- 

isms, as seq2seq, with end-to-end systems. The vast majority of 

odels proposed for HTR problems were based on several types 

f DNNs, especially different types of CNNs. Zhong et al. [71] suc- 

essfully applied GoogleNet to the handwritten Chinese charac- 

er recognition problem. The work by Hafemann et al. [120] on 

riter-independent off-line handwritten signature verification (in 

he presence of skilled forgeries) uses CNNs to address the diffi- 

ulty of obtaining good features to distinguish genuine signatures 

rom forgeries regardless of the writer. Finally, it is worth men- 

ioning the work by Sudholt and Fink [105] on WS in handwrit- 

en documents using a Pyramidal Histogram of Characters (PHOC) 

NN-type architecture. This PHOC representation was able to out- 

erform state-of-the-art results for different WS datasets. 

. Conclusions and future research 

The following points summarize the main conclusions that can 

e drawn from our analysis: 

• For the last thirty years, the literature on off-line handwritten 

document analysis has grown steadily. 
17 
• Japanese, Chinese, Arabic, and Roman scripts were the most 

studied ones in the first years. Publications on Indian scripts 

have grown notably for the last years. 
• Character and numeral recognition have been the most studied 

text recognition problems. Since 1995 and 20 0 0, word and sen- 

tence recognition, respectively, have also attracted attention. 
• WS, WI, SV, and historical text recognition have been investi- 

gated recurrently. 
• Other less studied topics related to text recognition are music 

recognition, mathematical formula recognition, forensic appli- 

cations, and other verification problems. 
• Text segmentation and classification have been crucial to tackle 

text recognition. In particular, the combination of several clas- 

sification models to solve the issues has stood out. Besides, re- 

searchers have dealt with the feature extraction task consider- 

ably, as many keywords in the TNs show. 
• HMMs, SVMs, and NNs have been motor methodologies over 

the years. Within the NNs, the DNNs and their variants such 

as RNNs, DCNNs, FCNNs have set the trend in research for the 

last six years. Nevertheless, the methodologies used have been 

many and varied. 

Also, as mentioned in Section 3.3.2 , looking at the last periods’ 

otor TNs and the most recent published works, some short-term 

uture trends can be figured out: 

• Text recognition problems seem to lead the document analysis 

research. Within this field, HCR has been in a motor TN for last 

thirty years. 
• Since 20 0 0, Segmentation has become increasingly important as 

an integral step in HTR, and in the short-term future, it will 

probably keep being a relevant topic. Moreover, other topics 

included in this TN, such as HWR, WS, Historical documents 

recognition, and techniques as FCNN and sliding window, will 

probably be relevant in the next years. 
• SVM and its related topics became traversal topics, but in the 

last fifteen years it has exhibited high centrality and density, 

increasing its importance on the research field. Also, its number 

of papers has increased. 
• DNNs appeared strongly in 2015–2020, showing the highest 

density, centrality, and number of papers of all topics. So, it is 

expected that deep learning keeps being an essential research 

theme in the short term. 
• The importance of a problem or a technique in a specific pe- 

riod depends on the script to be recognized. For example, HCR 

has been deeper studied in Chinese, Arabic, or Roman (or Latin) 

scripts since 1990, and in the 20 0 0s word recognition prob- 

lems were more important. However, handwriting recognition 

for Indian scripts started later (over 2005), and HCR problems 

became very important between 2010 and 2014. In the same 

way, a methodology that was very important in a period and 

could seem out of use could be fundamental in future periods 

as other scripts could use it to solve the problem. 
• Many recent articles are focused on an end-to-end approach 

that includes localization plus transcription. Other handwriting 

text recognition models are based on sequence-to-sequence and 

attention mechanisms, as it is shown in the Attention Mecha- 

nism TN. In this last approach, classical attention mechanisms 

are replaced by transformers. Additionally, multi-script systems 

have become very popular, especially in Indian text recognition, 

where many alphabets coexist. 
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