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Abstract

Though alternans phenomena in the cardiac repolariza-

tion phase has been shown to be related to arrhythmgene-

sis, a definitive estimation method from the T wave of ECG

recordings is not yet available. We propose a statistical

signal processing scheme which compares the T-wave mor-

phology of even and odd beats by using a running matched

filter, in order to increase the signal to noise ratio of the es-

timation. Given that previously proposed hypothesis tests

for alternans detection rely on the knowledge of noise sta-

tistical distribution, we also analyzed the usefulness of a

nonparametric bootstrap test. Data set composed of 100

ECG recordings included in the Challenge Database were

used. Principal Component Analysis was previously made

for multilead recordings. Subsequent preprocessing for

each available lead consisted of conventional baseline re-

moving, filtering, R-wave detection, exclusion of too noisy

segments, T-wave segmentation, and template generation

for even and odd beats. The difference between the tem-

plate and a given beat was obtained by minimizing the

absolute error of their comparison with a windowed cir-

cular shift. A paired bootstrap resampling test was made

for deciding whether the averaged differences between the

template and the T-waves were significant compared to the

noise level.

1. Introduction

T wave alternans (TWA) that can be observed in the
Electrocardiogram (ECG) under adequate conditions have
been defined as a beat-to-beat consistent fluctuation in the
repolarization morphology [1]. TWA have been shown to
be related to cardiac instability and increased arrhythmo-
genicity, and more, clinical studies suggest that there is a
patent relationship between large amplitude microscopic
(microvolt level) TWA and the risk of sudden cardiac ar-
rest [2]. Therefore, TWA represents a strong marker of

cardiac electrical instability and have the potential for ar-
rhythmic risk stratification [3].

Though a number of methods have been proposed to
detect and estimate the TWA, there is no definite method
available to date, mostly due to the difficulties in the defi-
nition a gold standard that allows the comparison and val-
idation of the proposed algorithms [1].

Many of the detection and estimation schemes in the lit-
erature present two characteristics which can be analyzed
for improving the available algorithms. First, several pro-
cedures look for the most patent difference in amplitude
between even and odd beats at a given time instant in the
T wave, but TWA can be present in any part of the T-wave
morphology, so that comparisons should be better made in
terms of all the T-wave duration. Second, hypothesis tests
have been proposed to detect the actual presence of TWA,
which rely on a pre-assumed statistical shape of the noise,
but to our knowledge, no nonparametric statistical test has
been proposed, which can be robust in situations when the
statistical characteristics of noise distribution are not the
pre-assumed ones.

We propose here a statistical signal processing scheme
which aims to exploit both issues. Comparisons between
T wave and (even and odd) templates are made using an
amplitude matched filter scheme with circular shift, which
yields the minimum error attainable in the comparison
with independence of their relative time shifting. Also, a
nonparametric paired bootstrap test is used to obtain the
relative magnitude of the TWA and its significance differ-
ence with respect to the noise level.

The paper is structured as follows. In the next section,
the processing blocks of the TWA detection and estima-
tion scheme are described, with emphasis in the proposed
matched filter and in the nonparametric paired bootstrap
test, and simple application examples are used to illustrate
each block. Next, results on the Challenge Data Base are
presented. Finally, conclusions are drawn.
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Figure 1. Example of T wave segmentation. (a) Seg-
mented T waves for three leads in case 9 in the data base.
(b) Segmented T waves after windowing (Tukey), time
normalization with respect to preceding RR.

2. TWA detection and estimation scheme

Preprocessing. The first processing block consisted on
a preprocessing stage, in which ECG from a single lead
are separately analyzed. Baseline noise was removed from
each ECG by using a median filter together with spline
interpolation (sliding window of 700 ms), and high fre-
quency noise could be filtered out with a 32 th order low-
pass filter. R-wave detection was performed by using an
adaptive threshold on a lead which had been previously
checked to be not distorted by too high level of noise, and
these R-wave time instants were subsequently used for all
the leads in each recording. In order to make orthogonal
the available leads, a Principal Component Analysis was
made on the available leads of each recording.

T Wave Segmentation. Each T wave was segmented by
taking the signal between the R wave from the preceding
stage and to 70% of the preceding cycle length, to ensure
that all the T wave was included in the segment to be an-
alyzed. Each segment was windowed using a Tukey win-
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Figure 2. Example of T wave templates for even and odd
beats (case 9 in the data base). Note that the differences be-
tween even and odd prototypes are not the same magnitude
in all (orthogonalized leads).
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Figure 3. Example of mean absolute error between the
template and the segmented T wave in terms of the circular
shift (relative temporal position) between both.

dow (ratio of taper to constant section 0.35), in order to
minimize the possible distortion due to lasting R wave and
to the end of the T wave. Also, each segment was normal-
ized in time to the previous RR interval, and reinterpolated
to 50 samples up to 50% of the time to RR horizontal axis.
Figure 1 shows an example of T wave segmentation, win-
dowing, and signal reinterpolation, in three orthogonalized
leads from recording 9 in the data base.

Templates and Amplitude-Matched Filter. T wave tem-
plates were separately generated for even and odd beats
for each lead (see Fig. 2), and the difference between the
template and a given beat was obtained by minimizing the
absolute error of their windowed circular shift compari-
son. Figure 3 shows an example of the mean absolute er-
ror obtained in terms of the relative time shift between the
template and the tested beat. We will denote by ∆ee,o

n the
mean absolute error obtained by circular shift comparison
between T wave at beat n and for the even,odd templates.

Accordingly, two separate error sequences were ob-
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Figure 4. Examples of error sequences for correct and
crossed alignment. In the upper and middle panels, there
is a clear presence of TWA, which can be observed in the
dissociation between both sequences. In the lower panel,
the presence of TWA is not clear.

tained for each T wave series, corresponding to: (1) the
errors of each T wave with respect to the correct template
in terms of its relative position in the series (i.e., even beats
with respect to even template and odd beats with respect to
odd template); and (2) the errors of each T wave with re-
spect to the incorrect template (i.e, even beats with respect
to odd template and viceversa). These two series (for beat
n) will be denoted as

Ecorrect
n =

{

∆ee
n for n even

∆eo
n for n odd

(1)

Ecross
n =

{

∆ee
n for n odd

∆eo
n for n even

(2)

Figure 4 shows examples for three leads on recording
9. In the upper and middle panels, there is a clear disso-
ciation of both sequences, hence indicating that there is a
marked difference between using the appropriate template
for even/odd beats and not doing so. In the lower panel,
there is no visible difference between both error series, and
hence the presence of TWA in this lead is less clear.

Bootstrap Resampling Paired Test. A possible nonpara-
metric test for checking for statistically significant differ-
ences between both error series could be to check if the
confidence interval of the error difference series,

∆en = Ecorrect
n − Ecross

n (3)

overlaps the zero level. Note that we are implicitly making
a paired comparison between both error series, and hence,
any statistical test that we build on ∆en series will be a
paired test. This approach, shown in Fig. 5, yields no clear
statistical cut-off test, as far as all the histograms are wide

and all of them overlap zero. This effect is mostly due to
the high variance of series ∆en, which precludes the use
of the observed samples as simple criterion.

In order to overcome this limitation, and to have a non-
parametric hypothesis test for comparison, bootstrap re-
sampling can be made for estimating the averaged value
of ∆en series, denoted by ∆̄en, by sampling with replace-
ment of the series samples and then estimating the aver-
aged value for the replicated series [4]. In this case, the his-
tograms of the resampled average will be narrower, given
that they are referred now to the standard error of the es-
timation of the averaged, and hence, deciding whether the
estimated averaged TWA is significantly different from the
noise level can be achieved in each lead by using a statis-
tical test on the confidence interval of the resampled aver-
aged value. Figure 5 shows that, for the previous example,
histograms are much narrower, and significant differences
can be detected by checking that the confidence interval
does not overlap zero. This can be checked for differ-
ent magnitudes of the alternan phenomena in the different
leads. Also note the difference in the histogram widths,
which points to a different noise level being present in dif-
ferent leads.

Full Recording Estimation and Detection of TWA. The
estimation of TWA can be done in each lead by taking
the averaged value of error series in that particular lead,
which will be denoted as ∆̄ei

n for ith available lead in the
recording. Given that Principal Component Analysis has
been previously made, the estimated TWA magnitude can
be readily obtained by using the Euclidean estimate of the
averaged in all leads, this is,

A =

√

√

√

√

I
∑

i=1

(∆̄ei
n)2 (4)

The relative contribution of each orthogonalized lead to the
original lead set in the recording can be taken into account
by using the corresponding eigenvalues λ i, and hence, the
eigenvalue corrected TWA estimate is

Aλ =

√

√

√

√

I
∑

i=1

λi(∆̄ei
n)2 (5)

Finally, the overall detection probability Pd for each
recording can be expressed as the sum of detected pres-
ence of alternans in the available leads normalized by the
number of leads. In the example in Fig. 5, the 95% confi-
dence interval does not overlap zero in 10 of 12 leads, and
hence, Pd = 5/6.

3. Results

We tested the proposed estimation and detection algo-
rithm on the 100 ECG recordings included in the 2008
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Figure 5. Histograms of ∆en. (a) Using the observed se-
ries, the high noise level makes the histograms wide. (b)
Using ∆̄en (from nonparametric bootstraping) makes pos-
sible the use of confidence interval.

Challenge data base, in which the presence of alternans
was not known. Figure 6 shows the outputs obtained from
the algorithm, sorted by the magnitude of A estimated
TWA magnitude. It can be seen that the outputs are simi-
lar among them, which can be confirmed by scatter plots in
Fig. 7. Specifically, there is a highly linear relationship be-
tween the (log-transformed) estimated and the eigenvalue
corrected output, as well as a slightly lower linear relation-
ship between the (log-transformed) estimated and the Pd

in each recording.

4. Conclusions

An amplitude-matched filter and nonparametric boot-
strap resampling have been proposed for developing
schemes for TWA estimation and detection. Further work
will be devoted to clinically validating the approach.
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Figure 6. TWA estimation and detection output for the
data base. Values are sorted with respect to TWA magni-
tude as estimated by A statistic.

−4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

log(A)

lo
g

(A
λ
)

−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(A)

P
d

(a) (b)

Figure 7. Scatter plots for (log) estimated TWA magni-
tude, (log) magnitude corrected by eigenvalues, and P d.

Acknowledgements

This work has been partly supported by Research Grant
TEC2007-68096-C02-TCM from Spanish Government.

References

[1] Martínez JP, Olmos S. Methodological Principles of T Wave
Alternans Analysis: A Unified Framework. IEEE Trans
Biomed Eng 2005;52(4):599–613.

[2] Watanabe MA, Fenton FH, ans Harold M. Hastings SJE,
Karma A. Mechanisms for Discordant Alternans. Jour Card
Electrophys 2001;12(2):196–206.

[3] Nearing BD, Verrier RL. Modified Moving Average Analysis
of T-wave Alternans to Predict Ventricular Fibrillation with
High Accuracy. Jour App Physiol 2002;92:541–549.

[4] Efron B, Tibshirani R. An Introduction to the Bootstrap, vol-
ume 57. Chapman&Hall, 1998.

Address for correspondence:

José Luis Rojo-Álvarez
B-004, Universidad Rey Juan Carlos
Camino del Molino s/n, 28947-Fuenlabrada, Madrid (Spain)
E-mail to joseluis.rojo@urjc.es

620

Authorized licensed use limited to: Univ Rey Juan Carlos. Downloaded on June 9, 2009 at 11:31 from IEEE Xplore.  Restrictions apply.


