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Abstract

Peak systolic elastance (Epmq.) has been established
as a quantitative measurement of left ventricular (LV)
global systolic chamber function. However, a mea-
surement of Epq. is not possible in everyday clini-
cal practice, due to the need of sophisticated catheter-
ization procedures. Given that color-Doppler M-mode
(CDMM )echocardiogram image represents the blood ve-
locity, and given that fundamental hemodynamic magni-
tudes are related by complex physical laws, we hypothe-
size that E,qo can be estimated noninvasively by adequate
post-processing of CDMM. We propose to use Support Vec-
tor Machines (SVM) for building a model based on CDMM
velocity image. In an animal model (9 healthy pigs), sev-
eral interventions were performed to obtain a range in
FErnax wider than basal values. CDMM images were ac-
quired, together with E,, .. from catheters. Intraclass cor-
relation coefficient for the combined independent test sets
was 0.81 with the linear kernel and, surprisingly, lower
(0.67) with the Gaussian kernel. In conclusion, the nonin-
vasive estimation of Epq, can be successfully addressed
by using SVM regression on CDMM images.

1. Introduction

Ventricular function in the patient with heart disease is
often evaluated by means of a wide number of catheter-
provided hemodynamic indices, which are extremely in-
formative for the clinician. At the left ventricular (LV)
chamber integration level, mathematical and physical ba-
sis have been well established for using peak systolic elas-
tance (Epq2) as quantitative measurement of LV global
systolic chamber function [1] . However, a direct measure-
ment of E,,,, is not possible in everyday clinical practice,
due to the need of sophisticated catheterization procedures.
Also, because it is fully noninvasive, portable, and rela-
tively inexpensive, Doppler echocardiography is the most
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generalized technique used in patients to assess cardiovas-
cular function. Nevertheless, many aspects of LV physi-
ology can not be directly measured using this technique,
and a number of aspects of ventricular physiology are ap-
proximated indirectly from measurements of flow veloci-
ties with Doppler.

The present study proposes a different approach. Given
that color Doppler M-mode (CDMM) echocardiogram im-
age represents the blood velocity, and given that fundamen-
tal hemodynamic magnitudes (flow, pressure, volume) are
related by (complex) physical laws, we hypothesize that
FEpqz can be estimated noninvasively by adequate, possi-
bly nonlinear, post-processing of CDMM images.

The emerging use of Support Vector Machines (SVM)
in learning from samples applications [2] is a promising
tool for this purpose, due to several well-proven proper-
ties. SVM work well for high-dimensional input spaces (as
those given by raw images or gene expression); they have
a single minimum; large scale algorithms are continuously
being developed; and they exhibit excellent generalization
performance. We propose to use a regression version of
SVM algorithm. According to the incomplete knowledge
about the underlying noise distribution, the e-Huber cost is
considered here, as described in [3], for providing with a
robust estimation approach.

The outline of the paper is as follows. First, the SVM re-
gressor is briefly reviewed. Then, the animal model is de-
scribed and the experiments with simultaneously acquired
hemodynamical measurements of E,,,, and CDMM ve-
locity images are presented. Finally, conclusions and fu-
ture research are drawn.

2, SVM regression

We propose to use SVM regression [2] for exploring
the possibility of modeling the functional relationship be-
tween the velocity field, as recorded noninvasively in the
CDMM image, and the value of the simultaneously in-
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vasively measured hemodynamical index E,,,;. Let x”
denote a V-dimensional vector containing a CDMM im-
age. Assume that there exists a possibly nonlinear transfor-
mation of the velocity vector into a higher dimensionality
space, p(x¥) : RY — §,, where §, is known as feature
space. A linear regression operator can be found there,
given by w € F,. Assume that a set of measured obser-
vations {y;,xV}, with ¢ = 1,..., N, is available. Under
these assumptions, the regression model is

Y =< W, 0(x!) > +b, + ¢; M

where b, is the intercept, and e; represent the model errors
or residuals.

The SVM methodology [2] allows us to use different
cost functions of the residuals. A suitable robust cost func-
tion, that has been proposed for time series and regression-
like problems, is the e-Huber cost [3], given by

0, le;| < e
LP(ei) = { & (Jei] —€)?, e<lel <ec @
C(leil —e) = 37C?, lei| > ec
where e, = ¢ + yC. This cost function has been shown

to be useful in the presence of non-Gaussian perturbations,
and it can be adapted to different kinds of noise. The SVM
algorithm consists of minimizing the e-Huber cost when it
is regularized with the Lo norm of the regression vector,
this is, we minimize
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constrained to

e+ & (3)

e+&; “)

and to &;,& > 0, where & and & (in the following, de-

noted jointly as 51(*)) are the slack variables that account
for the excess of the residuals over insensitivity €, and

yi— < W,(,O(X;)) > 7b7’

<
—yit < w,o(x}) > +b, <

11 (Is) is the set of samples for which ¢ < 51(*) < ec

€™ > ec). By following the usual SVM formulation
methodology, Lagrangian functional Lpp can be written
down [2, 3], and by making zero its gradient with respect
to the primal variables, we obtain

W= (i — ) o(x) ®)
i=1
N

0 = > (ai—0a)) (6)
i=1

where o, o denote the Lagrange multipliers that corre-
spond to (3), (4), respectively. Matrix notation is intro-

duced iny = [y1,....yn]T a® = [{7,...,aIT

L]
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and V (i, j) =< ¢(x7'), ¢(x]) >, and then, the dual prob-
lem consists of maximizing

1

5 (@=a) (V4D (a—a’)+

(N
+la—a)y—e(at+a)"1
with respect to al(-*), and constrained to (6) and to 0 <
ag*) < C. After this quadratic programming (QP) prob-
lem is solved, and according to (1), (5), (6), the estimated
output for a new observation x can be easily shown to be
given by § = Zi\il n < @(xV),p(x") > +b,, where
n; = (a; — o). This solution has an sparse expression
for an adequate choice of € > 0, as it only depends of the
observations with 7; # 0, and hence they are called the
support vectors, which contain all the information that is
necessary for the model.

To avoid the explicit calculation of dot products in fea-
ture spaces, Mercer’s kernel are used, which are bivariate
functions K () equivalent to calculating a dot product in
a possibly infinite dimensional feature space [2], this is,
K(x,y) =< ¢(x),¢(y) >. Examples of widely used
Mercer’s kernels are the following:

o The linear kernel, given by K (x,y) =< x,y >. In this
case, the regression function has a linear form that can be

calculated explicitly as 8 = Ef\;l X5
o The Gaussian kernel, given by
where o is the width parameter.

Therefore, we can use in this model a Mercer’s kernel,
and the final solution of SVM regressor can be readily ex-
pressed as

Cx =yl

K)o (153

N
§=> mK(x},x")+b, ®)
i=1
In general, two kinds of free parameters must be chosen:
cost function free parameters {~, C, ¢}, and kernel free pa-
rameters {0,d}. A possible method for setting them is a
sequential search of the appropriate value for each, basing
on bootstrap bias-corrected training error, as proposed in
[4], and this is the approach followed in this work.

3. Experiments and results

Observations were available from an animal model
database. The methodological details of the animal ex-
periments used for the present study have been reported
elsewhere [5]. In brief, the CDMM velocity images and si-
multaneous hemodynamical measurements of E,,,, were
available in 9 animals (pigs). For each acquired beat,
CDMM images were first aligned, in order to bound the re-
gion of interest (ROI) both in the spatial domain (between
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Figure 1. Predicted values of E,,,, with linear kernel. (a)
Noninvasive prediction for each observation (continuous)
and catheter measurement (dashed). Vertical lines repre-
sent observations from different animals. (b) Noninvasive
prediction vs catheter measurement.

the apex of the left ventricle and the outflow tract) and in
the temporal domain (from the beginning to the end of sys-
tole). Each ROI was first interpolated using bivariate tensor
product splines, and then downsampled to a grid of 24 x 24
pixels, which was an initial trade-off between a moderate
computational burden required and a minimally acceptable
representation of the velocity field in the image.

Given that intra-subject measurements are expected to
be strongly dependent, we considered the following train-
ing and test strategy. All the available measurements in all
but one pig were considered for training, and the measure-
ments for the pig out were used as independent test set;
this procedure was repeated for the 9 available pigs. Table
1 shows the number of observations in each train and test
set for each of the nine leave-one-pig-out regressor.

The linear and the RBF kernels were explored. For each
regressor, the required free parameters were adjusted in the
training set. Searched free parameters were cost function
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parameters {-, C, €}, as well as kernel parameter o for the
RBF kernel. Free parameters were adjusted for providing
the minimum bootstrap mean squared error, by following a
procedure similar to that proposed in [4], and using B=10
resamples. In order to measure the agreement between
hemodynamical measurements of E,,,, and the measure-
ments provided by SVM-SR, intraclass correlation coeffi-
cient (R;.) was used as merit figure for each regressor.

Table 2 shows the R, values when estimating E,y,q,, for
each regressor, as well as for the whole set of the indepen-
dent outputs. The highest performance (R;. = 0.81) was
achieved by the linear kernel, and surprisingly, the RBF
kernel did not improve the approximation performance, as
opposite to what one should expect, given the underlying
nonlinear relationships among variables. Figure 1 depicts
the predicted E,,,, for each observation, as provided by
its own independently trained machine. Though the accu-
racy in the prediction was limited, a visible good trend to
follow the actual output value could be observed.

Because the linear kernel exhibited a higher prediction
accuracy, we explored the least squares solution for com-
parison purposes, but extremely poor performance was ob-
tained (mean R;. = 0.16). This proved that the problem
can not be trivially solved by any linear coefficient fitting,
and that the SVM approach exhibited very good regular-
ization properties. Also, in order to determine if an in-
crease in the detail of the image representation could im-
prove the performance, resolutions of 2° x 2% and 26 x 26
were explored, with no significant improvement (R;. =
0.80,0.79).

Finally, the averaged coefficients for the nine regressors
were obtained, as represented in Fig. 2. There was a clear
coherence among the coefficients obtained for each of the
leave-one-pig-out regressor, so that the variance for each
model was reduced (not shown). Given that velocities leav-
ing the apex are codified as negative, and viceversa, we can
observe that positive coefficients correspond to a index de-
crease, and these are at the beginning of the systole along
all the spatial domain and at the end of the systole close to
the outflow tract and close to the apex. The rest of the coef-
ficients are negative, and accordingly, they will contribute
to the index increase.

4. Conclusions

An innovative approach has been presented for char-
acterizing noninvasively and quantitatively the left ven-

Table 1. Number of training (middle) and test (down) ob-
servations for each regressor (up).
L #L [ #2 [ #3 [ #4 [ #5 [ #6 [ #7 [ # [ #9 |

247 | 253 | 276 | 255 | 251 | 234 | 243 | 236 | 253
34 28 5 26 30 47 38 45 28
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Table 2. Values of R;. for each SVM regressor from ve-
locity (V), with d = 4 (linear and Gaussian kernel).

I | Vlin [ V Gauss |

#1037 | 067
2 [ 058 | 041
#3 [ 054 0.16
#4 [ 061 | 036
#5 083 | 072
#6 || 030 | 053
#7 075 | 045
#8 [ 055 | 034
#9 [ 076 | 032

[Towl | 081 | 067 |

tricular function. Instead of either an (often unavailable)
physical description based approach or an indirect nonin-
vasive parameter, the possibility of approximating the im-
plicit physical description between the CDMM images and
a given cardiac index through learning form examples has
been proposed. The accuracy obtained in the estimation,
though acceptable for a first approach, needs to be im-
proved. We could observe that the sequential search of the
three-four free parameters sometimes became suboptimal,
which could be the cause for RBF kernel not outperform-
ing the linear kernel. Other conventional search strategies
were explored, without success. As an exhaustive search
is not currently feasible for medium and large scale prob-
lems, a better free parameter search strategy will surely im-
prove the accuracy of SVM. Another interesting technical
direction is the exploration of other appropriate Mercer’s
kernels, that can deal more efficiently with increased detail
in the input space. Without doubt, the inclusion of more
images in more animals will improve the performance.

Acknowledgements

This work has been partially supported by a re-
search grant from the Fondo de Investigaciéon Sanitaria
(PI031220) of Instituto Carlos III, Madrid, Spain, and by
a research grant from Sociedad Espafiola de Cardiologia,
2003. Dr. R. Yotti is supported by BEFI BF03-00031 of
the Instituto Carlos III.

References

[1]1 Burkhoff D, Mirsky I, Suga H. Assessment of systolic and
diastolic ventricular properties via pressure-volume analysis:
a guide for clinical, translational, and basic researchers. Am
J Physiol Heart Circ Physiol 2005;289(2):H501-12.

[2] Vapnik V. The Nature of Statistical I.earning Theory. New
York: Springer—Verlag, 1995.

[3] Rojo—Alvarez J, Martinez-Ramén M, Figueiras-Vidal A, de-

0.2 0.4 0.6 0.8 1
Normalized ejection time

(a)

04 0.6 08

Norma.lized ejectit;n time
(b)

Figure 2. Linear SVM coefficients representation. (a) Ex-
ample of centered Doppler M-mode image. (b) Map of
averaged coefficients for E,,,, regressor.

Prado Cumplido M, Artés-Rodriguez A. Support vector
method for ARMA system identification. IEEE Trans Sig
Proc 2004;(1):155-64.

[4] Rojo—Alvarez J, Arenal-Maiz A, Artés-Rodriguez A. Dis-
criminating between supraventricular and ventricular tachy-
cardias from EGM onset analysis. IEEE Eng Med Biol 2002;
21:16-26.

[5] Yotti R, Bermejo J, Desco M, Antoranz J, Rojo-Alvarez JL,
Cortina C, Allue C, Rodriguez-Abella H, Moreno M, Gar-
cia Fernandez M. Doppler-derived ejection intraventricular
pressure gradients provide a reliable assessment of left ven-
tricular systolic chamber function. Circulation 2005;In press.

Address for correspondence:

José Luis Rojo-Alvarez (jlrojo@tsc.uc3m.es)
Department of Signal Theory and Communications
4.2.A.2, Universidad Carlos III de Madrid

Av Universidad 30, 28911 Leganés (Madrid), Spain

Authorized licensed use limited to: Univ Rey Juan Carlos. Downloaded on June 10, 2009 at 04:50 from IEEE Xplore. Restrictions apply.



