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ABSTRACT 
A new method for low-complexity Multiuser Detection (MUD) 
based in the Fast Subspace Decomposition (FSD) is pro- 
posed. The use of FSD allows the estimation of the number 
of users along with the multiuser detection on line. This 
leads to a fast multiuser estimation-detection scheme with 
ultra-low complexity. Furthermore, the method is proved 
to be strongly consistent and blind. This is applied here to 
the MMSE. Results included show MMSE performance at 
a fraction of the computational cost reported until now. The 
use for UMTS-TDD receivers is also proposed. 

1. INTRODUCTION 

The implementation of advanced Multiuser Detectors in prac- 
tical hardware devices has been scarce [ 11 and even testimo- 
nial despite the well known advantages of this Signal Pro- 
cessing technique. The main reason has been the complex- 
ity involved in such detectors, even in the simplest of them, 
i.e., linear multiuser detector. Although some attempts have 
been made to develop low complexity multiuser detectors 
[2] this is still a ground waiting for major advances. The 
authors propose here a new scheme for multiuser detection 
of low comlexity based in the subspace formulation of the 
decorrelating and MMSE detectors and, mainly, in the Fast 
Subspace Decomposition technique introduced by Xu and 
Kailath [3]. 

2. SIGNAL MODEL 

where 2M t 1 is the number of data symbols per user per 
frame, T is the symbol interval, A k ,  T k ,  b k ( i )  and Sk(t), 
respectively, the received amplitude, the delay, symbol and 
spreading sequence of the kth user. The spreading sequences 
are of the form 

N - 1  

Sdt) = ,$11,(t - jTc) (3) 
j = O  

where N is the spreading gain, p! E (-1, +1} and 11, is a 
normalized chip waveform of duration T,, where KTc = T .  
Without 101,s of generality, let us simplify further our model 
by considexing a synchronous system, in which 7 k  = 0, k = 
1 . . . K .  It is then sufficient to consider the received sig- 
nal during lone symbol interval. The received signal model 
yields 

K 

r(t) = A k b k s k ( t )  i- on(t), t E [O, T ]  (4) 

At the receiver, chip-matched filtering followed by chip rate 
sampling yields an N-vector of output samples within a 
symbol intwval T 

k= 1 

K 

Let us consider a baseband direct sequence CDMA ensem- 
ble of K users. The received signal can be modeled as 

r(t) = S( t )  + an(t) (l) 

where n(t) is white Gaussian noise with unit power spectral 
density, and S(t)  is the superposition of the data signals of 

3. SUBlSPACE DECOMPOSITION AND LINEAR 
MULTIUSER DETECTORS 

Let us denaote S = [SI . . .SKI  and A = diag(Af,. . . , A & ) .  
The autocorrelation matrix of the received signal r is then 
given by 

A A .  

the K users, given by K 
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By performing the eigendecomposition of the matrix C ,  we 
get 

where A, = diag(X1, . . . , X k )  contains the K largest eigen- 
values in descending order, and U, = [u1 . . . UK] the cor- 
responding eigenvectors; A, = a 2 1 ~ - ~  , the multiply de- 
fined noise eigenvalue, and U, = [ u K + ~  . . . UN] contains 
the N - K orthonormal eigenvectors that span the noise 
subspace. 

3.1. Decorrelating Detector 

Based on this subspace decomposition we can reformulate 
[2] the (non-trivial) linear multiuser detectors. A linear mul- 
tiuser detector for demodulating the Ic-th user data bit in (5) 
is in the form of a correlator followed by a hard limiter 

&k = sgn (wTr) (9) 

where Wk E RN. The decorrelating detector is the unique 
signal d E range (U,) that minimizes 

subject to the constraint wTsl = 1. Some algebra over this 
argument along with the aid of the subspace decomposition 
and yields the expression of the decorrelating detector in 
function of the signal subspace parameters for the user of 
interest 

3.2. MMSE Detector 

In an analogous form, the Minimum Mean Square Error de- 
tector (MMSE) results from the minimization of the MSE, 
defined by 

(12) MSE(w1) = E { (Albl - wrr)2} 

also subject to the constraint wTs1 = 1. Its expression in 
terms of signal subspace parameters is 

A 

As previously argued [2], both detectors, in terms of the sig- 
nal subspace can be estimated from the received signal only 
with the prior knowledge of the signature waveform and 
timing of the user of interest, thus obtaining them blindly. 

3.3. Signal to Interference Ratio 

A measure of how good a detector is performing is the so 
called Signal to Interference Ratio (SIR). In terms of the 
signal subspace this measure can be expressed as: 

where wtec or wYMSE is used to obtain the respective SIRS. 

4. FAST SUBSPACE DECOMPOSITION 

Previous attempts to formulate low-complexity subspace- 
based multiuser detectors have made use of techniques that 
are rather expensive in terms of floating point operations. 
We propose to profit from robust and fast algorithms that 
have been developed with this purpose in mind. This meth- 
ods, called Krylov Subspace (KS) methods [5][6], have been 
constructed as "black-box" algorithms whith the sole pur- 
pose of solving linear systems such as Ax = b. The Fast 
Subspace Decomposition [3][4] uses one particular KS method 
called the Lanczos algorithm that exploits the structure of 
the correlation matrix C ,  i.e. the simmetry and positive- 
definiteness of C .  The Rayleigh-Ritz procedure is used 
to extract approximate eigenvalues of C .  These Rayleigh- 
Ritz eigenvalues are asymptotically equivalent to the actual 
eigenvalues [3][5]. 

4.1. The Rayleigh-Ritz approximation and the Lanczos 
algorithm 

The Lanczos algorithm is as follows 

Given C Symmetric; 

ql = f (unit - norm) 

P1 = o  
while Pj # 0 

z = c e  

z = z - ajqJ - pj-1e-1 
aj = q;z 

%+l = z l &  
Compute eigenvalues and eigenvectors 

end 

The Lanczos algorithm is iterative and runs for m steps; it 
is used to construct a matrix T, from C with simple opera- 
tions. The construction of an orthonormal basis ql, . . . , q, 
is the goal of the Lanczos algorithm. This basis forms a 
set of orthonormal basis for the Krylov subspace defined to 
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be K m  e span { f ,  C f , .  . . , Cm-’f}. With this basis, the 
matrix Qm = [ql . . . q,] can be used to form 

1 
A QECQ, = T, = 

Pm-2 a m - 1  Pm-1 

1 Pm-1 a m  J 
This T, is real and tridiagonal and needs not to be con- 
structed by the multiplication of the matrices Qm and C as 
the {ai,,8i}zl quantities are obtained in each step of the 
Lanczos algorithm, further reducing the complexity of the 
algorithm. The eigenvalues of T,, are quite easily ex- 
tracted due to its structure. These are the Rayleigh-Ritz (RR) 
eigenvalues that are used to approximate the eigenvalues of 
C. 

4.2. Estimation of the number of signals 

The FSD algorithm completes the Lanczos algorithm by us- 
ing the RR eigenvalues in each Lanczos step to compute a 
low-complexity statistic to determine the number of signals. 
This statistic is 

where d = 0,1, . . . , m - 2. Under the hypothesis that the 
signal subspace is ddimensional, it can be shown that ‘ p ~  is 
asymptotically x2 distributed with (1/2)(M-d)(M-d+1) 
degrees of freedom if C is real and with (A4 - d)2 - 1 de- 
grees of freedom if C is complex. Thus, the algorithm to 
make a strongly consistent decision about the number of sig- 
nals is to compute the statistic p ~ ,  and accept d as the num- 
ber of signals if ‘ p ~  < yc(N). Here, y is the value where 
the x2 cumulative distribution function reaches a high value, 
say 0.99 and the function c(N) must satisfy that 

lim c(N)/N = 0 lim c(N) / log logN = 00 
N4CU N-CCl 

say c(N) = m. The computation of ‘p takes no ad- 
ditional complexity as it can be calculated in advance and 
implemented as a look-up table. 

4.3. Stability and Complexity of the Lanczos Algorithm 

The stability of the iterations of the Lanczos algorithm is 
complete in an infinite precision environment. With round- 
off errors the Paige’s Theorem applies [ 5 ] .  Given the fol- 
lowing eigendecomposition 

T, = VTAV 

if we extract the eigenvectors of C Y k , i  = QkVi we can 
construct 

This means that the component YZ,qk+l of thc com- 
puted Lanczcls qk+l in the direction of the RR vector Yk,, = 
QkV, is proportional to the reciprocal of PkIV,(k)l, which 
is the error bound on the corresponding RR eigenvalue 0%. 
Thus, when 0, converges and its error bound goes to zero, 
the Lanczos vector q k + l  acquires a large component in the 
direction of ithe RR vector Yk, , .  Thus the RR vectors be- 
come linearly dependent. This can be corrected by a Gram- 
Schmidt procedure in each Lanczos iteration that renormal- 
izes the Lanczos vectors as the RR vectors converga. This 
procedure increases the complexity of the Lanczos algo- 
rithm from ( 3 ( K N )  to O(K2N). This can be corrected 
by computing the errors of the converging eigenvalues and 
orthogonalizing only the eigenvectors that need it. This re- 
sults in a marginal increase in the complexity in the algo- 
rithm. This IS called the Selective Orthogonalization (SO) 
Lanczos. 

5. RESULTS 

We have imlplemented a Blind Adaptive Krylov Subspace 
Multiuser Detector (BAKS) with a SO Lanczos algorithm in 
its core. The users in the CDMA system have been a;signed 
Gold codes of 31 chips. In the figure 1 the convergence of 
the SO Lanczos algorithm can be checked. K = 30 users 
have been used for this test. It can be seen that the conver- 
gence is sure at 32 Lanczos steps. The actual eigenvalues 
can be compared at the end of the Lanczos iterations. They 
are represenfed as circles. The selected eigenvectors for re- 
orthogonalization can be seen for the same examplc: in fig- 
ure 2. As thle Lanczos procedures evolves, the eigenvalues 
in both extremes of the spectrum are the first to converge 
(see figure l(a)). Thus, the corresponding eigenvectors are 
the firsts to lose orthogonality, thus needing reorthogonal- 
ization. This can be seen in figure 2. As the whole spec- 
trum converges to its actual eigenvalues, the correspond- 
ing eigenvectors in the next Lanczos steps need reorthog- 
onalization. This can also be observed and supporting the 
hypothesis that further Lanczos steps that K + 2 are not 
needed to assure convergence. Furthermore, the nuinber of 
eigenvectors being reorthogonalized to convergence are but 
a fraction of the total computed Lanczos eigenvectors. 

In the fallowing experiment, a simulation of 6 CDMA 
users is done. We have a SNR for the user of intermt after 
despreading of 20 dB and AE/Af uniformly distributed in 
the interval [0,30] dB for IC = 2, . . . , 30. A total aof 8000 
samples are considered. At t = 3000, two users exit the 
channel and at t = 6000, they reenter. The BAKS-MMSE 
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algorithm is checked against the PASTd-MMSE algorithm 
introduced in [2]. The PASTd-MMSE algorithm is fed with 
the results of a SVD of the signal subspace during the first 
100 samples, each time the conditions change, i.e. t = 0, 
t = 3000 and t = 6000. The PASTd-MMSE is equally 
fed with the exact number of users actually present in the 
channel. These measures are taken in order to obtain a min- 
imally competitive behavior form the PASTd-MMSE algo- 
rithm. Figure 3 represents the SIR for the user of interest 
and for the BAKS-MMSE detector. The data plotted here 
are the average over 20 simulations. The performance of 
the Matched Filter is plotted for reference. Although the 
BAKS-MMSE continually estimates the number of users 
and needs not to be initialized with "good" estimates, both 
its convergence and its dynamical behaviour are well be- 
yond reach of the PASTd-MMSE algorithm. 
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Fig. 3. Time Averaged SIR for the user of interest. The 
continuous line represents the results of the BAKS-MMSE 
algorithm, the dashed line, that of the PASTd-MMSE and 
the dotted line is the output SIR of the Matched Filter. 

Minimum Output Energy (MOE) [2] multiuser detector, this 
shows that the BAKS-MMSE detector is preferable to other 
detectors for its implementation in actual receivers, i.e. UMTS- 
TDD receivers. 
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