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ABSTRACT

We consider minimizing average transmit-power with finite-rate feed-
back for coherent communications in a wireless sensor network (WSN),
where sensors communicate with a fusion center (FC) using adaptive
modulation and coding over a wireless fading channel. By view-
ing the coherent WSN setup as a distributed space-time multi-input
single-output (MISO) system, we develop beamforming and resource
allocation strategies and design optimal quantizers when the sensors
only have available quantized (Q-) channel state information at the
transmitters (CSIT) through a finite-rate feedback channel. Numeri-
cal results reveal that our novel design based on Q-CSIT yields sig-
nificant power savings even for a small number of feedback bits.

Index Terms— Minimum energy control, Quantization, MISO
systems, Optimization methods, Multisensor systems.

1. INTRODUCTION

A wireless sensor network (WSN) comprises a large number of spa-
tially distributed signal processing devices (nodes), each with a non-
rechargeable battery and thus limited computing and communication
capabilities [1]. A main objective of current WSN research is to de-
sign power-efficient devices and algorithms to support different as-
pects of network operations (see e.g., [6], [9]). The WSN in these
works includes a fusion center (FC) with which sensors are linked.

When these links are fading, communication performance across
the WSN coverage area is severely degraded. A well-known ap-
proach to mitigate the adverse effects of fading relies on transmis-
sions adapting to channel state information (CSI). In practice, CSI
at transmitters (CSIT) is typically acquired through a limited-rate
feedback channel from the receiver, and thus, only quantized (Q-)
CSIT is available [3]. This finite-rate feedback model is pragmati-
cally affordable and is robust to channel estimation errors, feedback
delay and jamming [?]. Adaptive transmissions and/or beamforming
based on Q-CSIT have been optimized for multi-input multi-output
(MIMO) systems to maximize rate or receive-signal-to-noise-ratio
(SNR) [5], or in multi-user systems to optimize power-efficiency [6].

This paper deals with a distributed multi-input single-output (MISO)
communication system in the power-limited regime of a WSN where
sensor transmissions arrive coherently at the FC [7]. Based on Q-
CSIT (i.e. when the sensors only have quantized knowledge of their
links with the FC) the sensors’ average transmit-power is minimized
subject to average rate and BER constraints. Specifically, we derive
the corresponding optimal adaptive modulation, power loading and
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Fig. 1. System model.

beamforming strategies as well as optimal channel quantizers needed
to form the required Q-CSIT.1

2. MODELING PRELIMINARIES

We consider a WSN setup where M sensors wish to communicate
an information message (say the value of a random variable they
track or information they relay) to the FC; see Fig. 1. We assume
that: (as1): the information is common to all sensors and arrives
coherently at the FC. With {hm}M

m=1 denoting block fading channel
coefficients between sensors and the FC, we further assume that:
(as2): {hm}M

m=1 are independent2 and identically distributed (i.i.d.)
according to a complex Gaussian distribution with zero mean and
unit variance, i.e., hm ∼ CN (0, 1); and each block fading channel
is ergodic; and, (as3): the FC feeds back to the sensors the CSI
indicated by B bits per channel realization, without error and with

1Notation: We use boldface lower-case letters to denote column vectors,
T to denote transposition, † conjugate, H conjugate transposition, and ‖ · ‖
the Euclidean norm. For a random variable x, fx(x) will denote its proba-
bility density function (PDF), and Fx(x) its cumulative distribution function
(CDF). Furthermore, CN (µ, σ2) will denote the complex-Gaussian distribu-
tion with mean µ and variance σ2, dxe the minimum integer≥ x, and Ex[·]
the expectation operator over x.

2The extension to correlated channels is possible but is left for future
research.



negligible delay3.
Given a pool of adaptive modulation and coding (AMC) pairs,

we suppose that each sensor supports a finite number L of AMC
modes indexed by l ∈ {1, . . . , L}, with each mode having constel-
lation size Ml and transmission rate rl := log2(Ml). To guarantee
quality of service, the rates {rl}L

l=1 must be delivered with a pre-
scribed BER ε0. To mitigate the effects of fading, the sensors co-
ordinate their transmission strategy. Using a given AMC mode, the
mth sensor transmits the common symbol s multiplied by a com-
plex steering weight wm. Let w := [w1, . . . , wM ]T denote the
distributed beamforming vector and h := [h1, . . . , hM ]T the fading
MISO channel. The received symbol y at the FC can be expressed
as

y = wT hs + v :=
√

PuT hs + v (1)

where
√

P := ‖w‖, u := w/‖w‖, and v denotes the additive com-
plex Gaussian noise with zero mean and variance N0. Notice that
both the phase and the modulus of w can be tuned to effect not only
distributed beamforming but also power allocation per fading state
h. Let c denote the B-bit Q-CSI codeword that the FC feeds back
to the sensors per (as3). Based on c = c(h), the sensors adapt their
transmit-parameters to one of N = 2B prescribed modes specify-
ing the transmission rate r = r(c), transmit-power P = P (c) and
beamforming vector u = u(c).

3. SOLUTION BASED ON Q-CSIT

Our goal in this section is to optimally design the channel quantizer
which yields c(h) as well as adapt r = r(c), P = P (c), and u =
u(c), so that the total average power transmitted by all sensors is
minimized subject to average rate and BER requirements.

In the context of collocated space-time MISO communications,
the power and beamformer adaptation to maximize the capacity can
be solved separately without loss of optimality (w.l.o.o.) [8]. Extend-
ing this result to our distributed power minimization set-up allows
splitting the original problem into two separate subproblems.

This way, per fading realization, the FC quantizes h to find sep-
arately the optimal u according to a quantizer Qu(·), and the op-
timal AMC mode and P according to a different quantizer Qt(·).
Concatenating the beamforming vector index cu = Qu(h) with the
transmission mode index ct = Qt(h), the FC feeds back the B-
bit Q-CSI codeword c = [cu; ct], where B = Bu + Bt, Bu :=
length(cu), and Bt := length(ct). Using c, the sensors will adapt
r = r(ct), P = P (ct), and u = u(cu) to minimize their total
average transmit-power.

3.1. Optimal Distributed Beamformer

With only Bu bits available, the beamforming vector u is chosen
from a finite set U := {ui}Nu

i=1, where Nu = 2Bu . Since ‖u‖ = 1,
to minimize power we can select u to maximize the receive-SNR in
(1) per channel realization h for any fixed r(ct) and P (ct). The op-
timal4 beamforming vector minimizing the transmit-power is clearly

u∗(h) = arg max
ui∈U

γ(h) = arg max
ui∈U

˛̨
˛uT

i h
˛̨
˛
2

(2)

where γ(h) represents the receive-SNR in (1). Optimal codebooks
U have been designed for collocated MISO systems [5, 10]. Under

3This can be easily guaranteed with sufficiently strong error control codes,
since the feedback channel has typically low rate.

4Henceforth, x∗ will denote the optimal value of x.

various criteria, optimal codebooks minimize chordal distance be-

tween unitary codewords, dch(ui,uj) :=
`
1− |uT

i uj |2
´ 1

2 (see [5]).
Therefore, the optimization in (2) can be expressed as

u∗(h) = arg min
ui∈U

dch

“
ui,

h
‖h‖

”
, (3)

and the optimal codebook U∗ as

U∗ = max
{ui}Nu

i=1

min
∀i6=j

dch(ui,uj). (4)

For arbitrary beamformer sizes M and codebook sizes Nu > M ,
numerically solutions of (4) are available; see, [4]. With the optimal
codebook U∗ available to both the FC and the sensors, the Q-CSI
and optimal beamforming vector are then determined as

cu = Qu(h) := argi min
ui∈U∗


dch

„
ui,

h

‖h‖
«ff

(5)

u∗(h) = ucu . (6)

3.1.1. Statistical Description of the Equivalent Scalar Channel

Defining g := ‖h‖2Es/N0 and z := min
ui∈U

d2
ch(ui,h/‖h‖) we can

write the receive-SNR in (1) for u = u∗(h) as

γ(h) = Pg[1− dch(u∗(h),h/‖h‖)] = Pg[1− z] := P g̃, (7)

where g can be interpreted as the scalar channel gain when the opti-
mum beamformer corresponds to u∗(h) = h†/‖h‖ (i.e., Nu = ∞);
z as the receive-SNR loss due to quantization; and g̃ := g(1− z) as
the instantaneous scalar channel gain when quantization via (5) and
(6) is implemented.

Assuming, without loss of generality that Es/N0 = ḡ = 1,
per (as2), g adheres to a chi-squared distribution with PDF fg(g) =`
gM−1 exp(−g)

´
/
`
ḡMΓ(M)

´
where Γ(b, x) :=

R∞
x

tb−1e−tdt
is the incomplete Gamma function and Γ(b) := Γ(b, 0). On the
other hand, based on the union bound, the CDF of z, can be upper-
bounded tightly as: Fz(z)F̃z(z) where F̃z(z) = NuzM−1 if 0 ≤
z ≤ zmax, F̃z(z) = 1 if z ≥ zmax, and zmax := N

−1/(M−1)
u

(see [10]).
Because g and z are independent [c.f. (as2)], using the approx-

imation Fz(z) ' F̃z(z), we can obtain the CDF of g̃ as Fg̃(x) =
Pr{g(1− z) < x}

Fg̃(x) =
R x

1−zmax
g=0

R zmax
z=max(0,1−x/g)

fz(z)dzfg(g)dg

=
R x

g=0

R zmax
z=0

fz(z)dzfg(g)dg+
R x

1−zmax
g=x

R zmax
z=1−x/g

fz(z)dzfg(g)dg = 1− Γ(M,x/(1−zmax))
Γ(M)

−N exp(−x)
“
1− Γ(M,xzmax/(1−zmax))

Γ(M)

”
.(8)

The PDF of g̃ can be in turn obtained as fg̃(g̃) = ∂Fg̃(g̃)/∂g̃.

3.2. Optimal Rate and Power and Allocation

It follows readily that once u∗(h) is determined via (5) and (6),
the MISO channel (1) is fully characterized by an equivalent scalar
channel with power gain g̃. This implies that solving for the op-
timal r∗(h) and P ∗(h) is equivalent to finding the optimal r∗(g̃)
and P ∗(g̃). Notice that since h (and thus g̃) varies from one real-
ization to the next, rate and power will be adapted across time in
order to minimize the average transmit-power under an average rate
constraint.



We order the AMC modes such that rl < rl+1 ∀l > 1 and let
the first mode represent the inactive mode with zero rate and power
(r1 = 0). When only finite-rate feedback is available, the FC needs
to quantize g̃ using a finite number of regions. In this case, identify-
ing each quantization region with an AMC mode selection emerges
as a natural framework. We will consider L different quantization
regions {Rl := [τ̃l, τ̃l+1)}L

l=1, with τ̃1 = 0 and τ̃L+1 = ∞, and we
associate with them the vector of thresholds τ̃ := [τ̃1, . . . , τ̃L+1]

T .
The lth transmission mode is characterized by the rate-power pair
(rl, P̃l) in the quantization regionRl. While rl is fixed for the given
AMC mode, we will select the fixed P̃l to satisfy the BER require-
ment. Clearly, the average BER ε̃Q

l for the regionRl can be obtained
as the expected number of erroneous bits divided by the expected
number of transmitted bits; i.e.,

ε̃Q
l (τ̃l, τ̃l+1, P̃l, rl) := Eg̃∈[τ̃l,τ̃l+1)

h
rlε(g̃, P̃l, rl)

i
/Eg̃∈[τ̃l,τ̃l+1) [rl].

(9)
where ε(·) denotes the instantaneous BER function as a function of
the channel gain g̃, the loaded power P̃l and the transmit-rate rl. To
satisfy the BER requirement ε0, we need to set ε̃Q

l (τ̃l, τ̃l+1, P̃l, rl) =
ε0, substituting the latter into (9) yields

fε(τ̃l, τ̃l+1, P̃l, rl, ε0) :=
R τ̃l+1

τ̃l
ε(g̃, P̃l, rl)fg̃(g̃)dg̃

−ε0
R τ̃l+1

τ̃l
fg̃(g̃)dg̃ = 0 , (10)

it is worth mentioning that fε can be analytically found for many
modulations schemes. Based on the latter, P̃l can be found by a one-
dimensional search over fε. If we define this solution as P̃l(τ̃l, τ̃l+1, rl, ε0),
and considering that lth AMC mode will be chosen if g ∈ [τl, τl+1),
the rate and power allocation ∀g̃ can be expressed as

r̃(g̃) = rl; if g̃ ∈ [τ̃l, τ̃l+1) (11)

P̃ (g̃, ε0) =

(
0, g̃ ∈ [τ̃1, τ̃2)

P̃l(τ̃l, τ̃l+1, rl, ε0), g̃ ∈ [τ̃l, τ̃l+1), l > 1.
(12)

3.2.1. Constrained Power Minimization

Eq. (11) and (12) imply that to find the optimal rate and power allo-
cations, we only need to search for the optimal τ̃ ∗ which solves the
following constrained minimization problem:
8
>>>><
>>>>:

min
τ̃

P̄ , where P̄ :=

LX

l=1

P̃l(τ̃l, τ̃l+1, rl, ε0)
R τ̃l+1

τ̃l
fg̃(g̃)dg̃

subject to : C1.

LX

l=1

rl

R τ̃l+1
τ̃l

fg̃(g̃)dg̃ ≥ r0

(13)

where both transmit-power in the objective as well as transmit-rate
in C1 are averaged over all channel regions (quantization states).
Notice that the loaded power does not vary with the channel gain, but
only with the region index. In fact,

R τ̃l+1
τ̃l

fg̃(g̃)dg̃ = Fg̃(τ̃∗l+1) −
Fg̃(τ̃∗l ) can be interpreted either as the probability of falling into the
lth quantization region or as the probability of selecting the lth AMC
mode.

Next we use the Karush-Kuhn-Tucker (KKT) conditions to find
τ̃∗l . If λ̃ denote the Lagrange multiplier associated with to the rate
constraint C1 the KKT condition at the optimal τ̃∗l dictates

∂L(λ̃∗,τ̃∗)
∂τl

= fg̃(τ̃∗l )
h
P̃l−1(τ̃

∗
l−1, τ̃

∗
l , rl−1, ε0)− λ̃∗rl−1 (14)

−P̃l(τ̃
∗
l , τ̃∗l+1, rl, ε0) + λ̃∗rl

i
+

∂P̃l−1
∂τ̃l

(τ̃∗l−1, τ̃
∗
l , rl−1, ε0)

× R τ̃∗l
τ̃∗

l−1
fg̃(g̃)dg̃ + ∂P̃l

∂τ̃l
(τ̃∗l , τ̃∗l+1, rl, ε0)

R τ̃∗l+1
τ̃∗

l
fg̃(g̃)dg̃ = 0.

Since P̃l(τ̃
∗
l−1, τ̃

∗
l , rl−1, ε0) is an implicit function, to calcu-

late ∂P̃l
∂τl

we rely on the implicit differentiation theorem: dfε =
∂fε
∂x

dx + ∂fε
∂y

∂y
∂x

dx = 0, which yields ∂y
∂x

= −∂fε/∂x
∂fε/∂y

. Therefore,

∀l ∈ {2, . . . , L} and ∀i ∈ {1, . . . , L} we have ∂P̃i
∂τ̃l

(τ̃i, τ̃i+1, ri, ε0)

=

8
>>>><
>>>>:

− [−ε(τ̃l,P̃i,rl)+ε0]fg̃(τ̃l)
R τ̃i+1
τ̃i

[∂ε(g̃,P̃i,rl)/∂P ]fg̃(g̃)dg̃
, i = l;

[−ε(τ̃l,P̃i,rl−1)+ε0]fg̃(τ̃l)
R τ̃i+1

τ̃i
[∂ε(g̃,P̃i,rl−1)/∂P ]fg̃(g̃)dg̃

, i = l − 1;

0, otherwise.

(15)

Notice that calculating the optimal τ̃∗l here depends not only on
λ̃∗ but also on the previous τ̃∗l−1 and the next τ̃∗l+1. This prevents
one from obtaining a closed-form expression for τ̃∗l . Therefore can
be obtained numerically through a two-dimensional search which is
computationally affordable.

Algorith 1: Off-line Power-Efficient Quantization
[S1.0] Let δ denote the small tolerance, ε small step size, and τ̃max

L >
0 the maximum value for the highest quantization threshold (e.g., a
value bringing the probability of the highest region close to 0).
[S1.1] Initialize λ̃ as a small positive number and τ̃L = τ̃max

L ; then
calculate {τ̃l}L

l=2 via solving (14). If C2 is not satisfied for some τl,
τl = τl+1. If the obtained solution is feasible, go to (S3.2); other-
wise decrease τ̃L = τ̃L − ε and repeat (S3.1).
[S1.2] Based on the closed-form in (8), calculate the average rate
r̄ =

PL
l=1(Fg̃(τ̃l+1)−Fg̃(τ̃l))rl. Check C1 and if |r̄− r0|/r0 < δ

then stop; otherwise, calculate5 4λ̃ := (r̄ − r0)c, update the multi-
plier λ̃ = λ̃ +4λ̃, and go back to [S1.1].

Notice that the main computational complexity burden in Algo-
rithm 1 pertains to the calculation of the optimal thresholds in step
1, which requires a two-dimensional search. Once the optimal λ̃∗ as
well as {τ̃∗l }L

l=2 are calculated, the optimal quantizer Qt(·) can be
readily determined as

ct = Qt(h) := arg
i


g

»
1−min

u∈U
d2

ch(u,h/‖h‖)
–
∈ [τ̃i, τ̃i+1)

ff
.

(16)
Then using the AMC mode index ct, the optimal rate and power
allocation are obtained via (11) and (12).

3.3. On-line Feedback and Adaptation of Transmitters

Based on the optimal beamforming and resource allocation policy,
we outline next the on-line algorithm executed by the FC and the
sensors per channel realization.

Algorithm 2: For each channel realization h:
[S2.1] The FC obtains cu = Qu(h) and ct = Qt(h) using, re-
spectively, (5) and (16), and broadcasts the aggregate codeword c =
[cu; ct] to the sensors.
[S2.2] Each sensor m transmits according to the mth entry of the
optimal beamforming vector indexed by cu, and loads the optimal
power and rate allocation indexed by ct.

Notice that the the quantized optimal beamforming and resource
allocation configurations must be revealed to both the FC and sen-
sors during the training phase. In step [S2.2] the optimal transmit-
power P̃ct is calculated at the sensors by solving (10).

5Parameter c in the calculation of 4λ is an adaptive penalty parameter
that can be updated (per iteration) depending on convergence requirements.
This proposed updating for λ is based on the method of multipliers [2].



Table 1. Average transmit-power (in dBW ) for (P, I, Q, and S)-CSIT
schemes. (Reference case: M = 4, r0 = 2.5, ε0 = 10−3, L = 4,
rl = [0, 1, 3, 5], Nu = 16, Es/N0 = 1; in other CASES, only one
indicated parameter is changed w.r.t. the reference case.)

CASE P-CSIT Q-CSIT S-CSIT Open-loop
Reference Case 8.6 10.7 13.8 30.5

r0 = 1.75 6.0 7.7 11.8 28.4
r0 = 3.0 10.3 12.6 15.2 31.8
M = 6 5.0 6.9 11.2 28.7

Es/N0 = 3 3.9 5.9 9.1 25.7
ε0 = 10−4 10.1 12.1 16.7 33.4

L = 6 8.5 9.8 13.8 30.5
rl = [0, 1, 2.6, 4] 8.7 10.5 13.2 29.9

4. SIMULATIONS

In this section, we present numerical results of the transmit-power
consumed by the sensors based Q-CSIT. The system parameters are
selected to satisfy Es/N0 = 1. The simple cases tested include
four sensors with fading links adhering to (as1). Unless otherwise
specified, we suppose that each sensor supports L = 4 AMC modes
implementing M-QAM modulations with transmission rates: rl =
0, 1, 3, 5 bits/symbol. In all simulations, we set the BER require-
ment to ε0 = 10−3 and the codebook of beamforming vector has
size Nu = 16.

For variable rate requirements, Table 1 lists the average transmit-
power in dBW for our Q-CSIT design. For comparison and illustra-
tion purposes we consider three additional CSIT scenarios: (i) per-
fect (P-) CSIT (the sensors implement optimal spatial beamforming
and power and rate allocation based on perfect deterministic knowl-
edge of h, clearly the design based on P-CSIT is a benchmark for our
Q-CSIT design); (ii) spatial (S-) CSIT (the sensors implement opti-
mal spatial beamforming based on the perfect h/‖h‖ but do not im-
plement temporal power allocation across time); and (iii) open-loop
system (with no feedback, the sensors transmit with homogeneous
rate, power and beamformer). From Table 1, we have the following
interesting observations: (i) Q-CSIT strategy can achieve power ef-
ficiency close to the benchmark P-CSIT based one (only 1 ∼ 3dB
loss); (ii) Q-CSIT based strategy clearly outperforms the optimal S-
CSIT scheme although the latter requires P-CSIT of h while the for-
mer only require of few bits of feedback (this is basically due to the
fact S-CSIT scheme does not exploit the temporal diversity of fad-
ing channel); and, (iii) power consumed by the open-loop design is
20 ∼ 25 dB higher than that of our closed-loop Q-CSIT design (this
certifies that as expected, CSIT can largely reduce power require-
ments, and thus considerably increase the lifespan of the WSN).

The previous results correspond to the case where the required
feedback to form the Q-CSIT codeword is B = dlog2(4)+log2(16)e =
6 bits per channel realization. Results in Table 2 gauges how sensi-
tive is the power performance with respect to (w.r.t.) the number of
feedback bits affects the performance. The main conclusion of the
listed results is that our Q-CSIT does not require a high number of
feedback bits to perform close to the P-CSIT benchmark, moreover
we also see how the first and second increments of L and Nu bring
the largest power savings and how when L = Nu = ∞, Q-CSIT=P-
CSIT.

Table 2. Average transmit-power (in dBW ) as (L, Nu) varies.
(L, Nu) (1,16) (2,16) (4,16) (4,4) (4,512) (∞,∞)
P-CSIT 9.8 9.4 8.6 8.6 8.6 8.3
Q-CSIT 14.2 11.7 10.7 11.7 9.6 8.3

5. CONCLUSIONS

In a WSN entailing coherent sensor communications with a fusion
center, we minimized the average transmit-power subject to average
rate and BER requirements when quantized (Q-) CSIT is available
though a limited rate feedback link. We separated the main design
in two subproblems: (i) spatial quantization and beamforming, and
(ii) rate/power quantization and allocation. By exploiting the par-
allelism between the coherent WSN setup and a distributed MISO
system, we relied on non-linear programming tools to solve the pro-
grams at hand and derived the corresponding power-efficient channel
quantization and adaptive transmission policies. Numerical results
confirmed that our Q-CSIT based solution attain power efficiency
surprisingly close to the benchmark based on perfect CSIT based
benchmark, outperform schemes which only exploits spatial diver-
sity and offer significant power savings relative to open loop systems
that do not exploit CSIT
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