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ABSTRACT

The efficiency of multi-access communications over wireless
fading links benefits from channel-adaptive allocation of the
available bandwidtl) and power resources. Different from most
existing approaches that allocate resources based on perfect
channel state information (P-CSI), this work optimizes chan­
nel scheduling and resource allocation over orthogonal fad­
ing channels when user terminals and the scheduler rely on
quantized channel state information (Q-CSI). The novel uni­
fying approach optimizes an average transmit-performance
criterion subject to average quality of service requirements.
The resultant optimal policy per fading realization either al­
locates the entire channel to a single (winner) user, or, to a
small group of winner users whose percentage of shared re­
sources is found by solving a linear program. Both alterna­
tives become possible by smoothing the allocation scheme.
The smooth policy is asymptotically optimal and incurs re­
duced computational complexity.

1. INTRODUCTION

The importance of channel-adaptive allocation of bandwidth
and power resources in wireless multi-access connections over
fading links has been well documented from both informa­
tion theoretic and practical communication perspectives. Per
fading realization, parameters including rate, power and per­
centages of time frames (or system subcarriers) are adjusted
across users to optimize utility measures ofperformance quan­
tified by bit error rate (BER), weighted sum-rate or power ef­
ficiency, under quality of service (QoS) constraints such as
prescribed BER, delay, maximum power or minimum rate re­
quirements. To carry out such constrained optimization tasks,
most existing approaches assume that perfect CSI (P-CSI) is
available wherever needed [3], [5], [6]. However, it is well
appreciated that errors in estimating the channel, feedback
delay, and the asymmetry between forward and reverse links
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render acquisition of deterministically perfect CSI at trans­
mitters (P-CSIT) impossible in most wireless scenarios [2].
This has motivated scheduling and resource allocation schemes
based on perfect CSI at the receivers (P-CSIR) but only quan­
tized (Q-) CSIT that can be pragmatically obtained through
finite-rate feedback from the receiver; see e.g., [4].

This work goes one step further to pursue optimal schedul­
ing and resource allocation for orthogonal multi-access trans­
missions over fading links when only Q-CSI is available both
at receiver(s) and transmitter(s). The unifying approach min­
imizes an average power cost (or in a dual formulation max­
imizes utility functions of average rates) subject to average
QoS constraints on rate (respectively power) related constraints.
This setup is particularly suited for systems where the receiver
does not have accurate channel estimates (e.g., when differ­
ential (de-)modulation is employed), or, in sensor networks
where scheduling and resource allocation are decided at the
fusion center which can only acquire Q-CSI sent by the sen­
sors.

The rest of the paper is organized as follows. After mod­
elling preliminaries, the general problem is formulated in Sec­
tion 2, and the optimal solution is characterized in Section 3.
A smooth policy that reduces complexity and guarantees as­
ymptotic optimality is developed in Section 4, followed by
numerical tests described in Section 5. Concluding remarks
are offered in Section 6. 1

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider a wireless network with M user terminals, indexed
by m E {I, ... ,M}, transmitting over K flat-fading orthog­
onal channels, indexed by k E {I, ... , K}, to a common

1Notation: Boldface upper (lower) case letters are used for matrix (col­
umn vectors); (.)1' denotes transpose; [']k,l the (k, l)th entry of a matrix,
and [']k the (k)th column (entry) of a matrix (vector); . stands for entrywise
matrix product and also to denote differentiation; 1 and 0 are the all-one
and all-zero matrices. Calligraphic letters are used for sets with IXI denot­
ing cardinality of the set X. For a random scalar (matrix) variable x (X),
the univariate (multivariate) probability density function (pdt) is denoted by
Ix (x) (respectively Ix (X)) and its cumulative distribution function (cdt)
by Fx(x) (respectively F(x) (X)). Finally, ;\ denotes the "and" logic op­
erator, x* the optimal value of variable x; and, I{-} the indicator function
(I{x} = 1 if x is true and zero otherwise).
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destination, e.g., base station or access point. Zero-mean ad­
ditive white Gaussian noise (AWGN) with unit variance is
assumed at the receiver. With 9m,k denoting the kth chan­
nel's instantaneous gain (magnitude square of the fading co­
efficient) between the mth user and the destination, the over­
all channel is described by the M x N matrix G for which
[G]m,k :== 9m,k. The range of values each 9m,k takes is di­
vided into non-overlapping regions; and instead of 9rr",k it­
self, destination and transmitters have available only the bi­
nary codeword indexing the region gm,k falls into. With jm,k
representing the corresponding region index, the M x N ma­
trix J with entries [J]m,k :== jm,k constitutes the Q-CSI of
the overall system. Since 9m,k is random, jm,k is also a dis­
crete random variable; and likewise J is random taking matrix
values from the set:1 with finite cardinality 1:11.

As in [4] or [6], users at the outset can be scheduled to ac­
cess simultaneously but orthogonally (in time or frequency)
any of the K channels. The channel scheduling policy is de­
scribed by the matrix W whose nonnegative entry [W]m,k
corresponds to the percentage of the kth channel scheduled
for the mth user. Clearly, it holds that L~=l [W]m,k E [0, 1]
Vk. The system power and rate resources are collected in the
K x M matrices P and R. Each of the corresponding en­
tries [P]m,k and [R]m,k represent, respectively, the nominal
power and rate the mth user terminal would be allocated if
it were the only terminal scheduled to transmit over the kth
channel. Since scheduling and allocation are to be adapted
based on Q-CSI, matrices W, P and R will be dependent on
J and each can take at most 1:11 different values. Under BER
or capacity constraints, rate and power variables are coupled.
This power-rate coupling will be represented by the function
1 (respectively 1-1 for the rate-power coupling) and will re­
late [P]m,k with [R]m,k over the same Q-CSI region R. (We
will write 1 R( [J] rn, k) to exemplify this dependence.)

2.1. Problem Formulation

Given the Q-CSI matrix J and prescribed QoS requirements,
the goal is to find W(J), P(J) and R(J) so that the over­
all average weighted performance is optimized. (Overall here
refers to performance of all users and weighted refers to dif­
ferent user priorities effected through the weight vector J.L :==
[ILl, ... , ILM]T with nonnegative entries.) Depending on de­
sirable objectives, the problem can be formulated either as
constrained utility maximization of the average weighted sum­
rate subject to average power constraints; or, as a constrained
minimization of the average weighted power subject to aver­
age rate constraints. Although focus will be placed here on
power minimization, both problems can be tackled in parallel
by dual substitutions; namely, after interchanging the roles of

Rand 1 R([J]rn,k) by P and lR~[J]rn,k)' respectively.
Specifically, the weighted average transmit-power will be

minimized subject to individual minimum average rate con­
straints collected in the vector f :== [Tl' ... ,TM ]T. Per Q-CSI
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realization J, the overall weighted transmit-power is given
by L~=l [J.L]m L~=l ([P(J)]m,k[W(J)]m,k); while the mth
user's transmit-rate is ~~=l ([R(J)]m,k[W(J)]m,k)' Using
the probability mass function Pr{J}, these expressions can
be used to obtain the average transmit-power and transmit­
rate. For a given channel quantizer, i.e., with R fixed, and
the fading pdf assumed known, Pr{J} can be obtained as
Pr{J} == JR(J) fG(G)dG. Since lR([J]rn,k) links R with
P, it suffices to optimize only over one of them. Note also
that the binomial [R(J)]m,k[W(J)]m,k is not jointly convex
with respect to (w.r.t.) R(J) and W(J). For this reason,
we will instead consider the auxiliary variable [R(J)]m,k :==
[R(J)]m,k[W(J)]m,k and seek allocation and scheduling ma­
trices solving the following optimization problem:

minR(J)~O,W(J)~O ~ (L::~=l[JLJm L::~=l
'VJE.:J

TR([JI=,k) U~Wli:::,:) [W(J)]m,k) Pr{J}

s. to: ~ (L::~=dii(J)Jm,k) Pr{J} ~ [r]m, "1m
'VJE:J

L~=l[W(J)]m,k ::; 1, Vk, VJ .
(1)

If 1 R([J]rn,k) is a convex function, then problem (1) is con­
vex. Throughout this paper it will be assumed that:
(as) The power-rate function 1 R([J]rn,k) is strictly convex.
Note that (as) holds generally true for orthogonal access but
not when multiuser interference is present. For example, if
QoS requirements impose a maximum instantaneous BER Emax

and symbols are drawn from QAM constellations, then Emax ==

0.2 exp(-9:~k([J]m,k)Pm,k/ (2Trn
,k -1)), where g:~k ([J]m,k)

:== min9rn,k {gm,k E R([J]m,k)}; see [4]. Hence, 1 R([J]rn,k)

can be written as lR([J]rn,k) (x) == ((2 X -1) In(0.2 /f-max ))/

g:~k([J]m,k),which is certainly convex.
Since R is involved in specifying Pr{J} and T R([J]rn,k)'

the choice of R affects the optimum allocation. Selecting
the quantization regions to optimize (1) is thus of interest but
goes beyond the scope of this paper. Near-optimal channel
quantizers for orthogonal frequency-division multiple access
(OFDMA) can be found in [4].

3. OPTIMUM RESOURCE ALLOCATION

In this section, the optimum W, P and R matrices will be
characterized as a function of J and the optimum multipli­
ers of the constrained optimization problem in (1). As with
other algorithms relying on ensemble fading statistics, the
main burden is associated with finding the optimum multi­
pliers - a task carried out off-line. Once those are available,
the on-line scheme per fading realization is very simple.

Let ,\R denote the M x 1 vector formed by the Lagrange
multipliers corresponding to each rate constraint. Applying
the Karush-Kuhn-Tucker (KKT) conditions [1] to (1), the fol-
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2Proofs of all propositions are omitted due to space limitation s.

lowing can be proved2 (recall xdenotes derivative of x).

[R*(J)] 1'-1 ([AR*]m)m,k = R([J]m,k) [/L]m· (3)

Proposition 2 The optimum scheduling W* (J) satisfies:
(i) If[W*(J)]m,k > 0, then m E M(J, k).
(ii) lfIM(J, k)1 > 0, then LmEM(J,k)[W*(J)]m,k = 1.
(iii) lfIM(J, k)1 = 0, then [W*(J)]m,k = 0 Vm.

The optimum scheduling and rate allocation scheme of the
previous section requires the calculation of the optimum mul­
tiplier vector AR*. Since the rate constraints in (1) are al-

4. OPTIMAL LAGRANGE MULTIPLIERS

L~=I[Wtie(J)]m,k = 1, V(J, k): IM(J, k)1 > 1.
(6)

Note that in the optimization process, only the J for which
a tie occurs are considered and for those only the non-zero
entries of W tie (J) are optimized.

Among all schedules minimizing the Lagrangian when a
tie occurs (second constraint), the optimal one for the primal
problem is the one for which the average rate constraints are
satisfied with equality. It is worth noticing that although (6)
applies in general to any scheduling scheme for orthogonal
multi-access ystems, neither [3], [5] (P-CSIR and P-CSIT)
nor [4] (P-CSIR and Q-CSIT) consider (6). This is because
based on P-CSIR, the set of fading realizations G for which
a tie occurs has Lebesgue measure zero. Therefore, any ar­
bitrary channel scheduling among tied users is equally opti­
mum. Indeed, the contribution of any specific G to the av­
erage performance when integrated over the channel pdf is
zero. But when dealing with Q-CSI, neither the probability of
a Q-CSI realization J nor the contribution to the average cost
are negligible. And this precisely necessitates solving (6) to
obtain the optimum schedule. Intuitively, as the number of re­
gions and channels increases sharing a channel becomes less
likely, which in tum brings the solution closer to the P-CSI
case and the effect of neglecting (6) becomes less harmful.

a "tie". The main difficulty with a tie is that Proposition 2­
(iii) does not specify how the channel should be split among
winner users because any arbitrary allocation minimizes £.
On the other hand, only a subset (for most realizations one)
of them is the actual solution to the original primal prob­
lem. To find the optimum schedule in this case, let first de­
fine the matrix of single-winner access as [Wone(J)]m k :=
[W(J)*]rn,k in (5) for all (J, k) so that IM(J, k)1 = 1', and
[Wone(J)]m,k := 0 otherwise; the matrix of multiple-winner
access as [Wtie(J)]m,k = 0 if IM(J, k)1 ~ lor if IM(J, k)1
> 1 but m ¢ IM(J, k)l, and [Wtie(J)]m,k E [0,1] other­
wise; the set of multiple-winner scheduling matrices as Wtie
:= {Wtie(J) I VJ; the average single-winner transmit-rate

vector as [ronelm := L:VJ (L:~=l[R*(J)lm,k[Wone(J)lm,k)
Pr{J}; and rtie := r - rone. Using these definitions, the op­
timum schedule Wtie(J) for all (J, k) so that IM(J, k)1 > 1,
can be found as the solution of the following linear program:

minwtie (J) EWtie L:VJ (L:~=1 L:~=l[JLlm
YR([J]m,k) ([R*(J)]rn,k) [Wtie(J)]rn,k) Pr{J}

s. to: L:VJ (L:~=l[R*(J)lm,k[Wtie(J)]m,k) Pr{J}

= [rtie]m, Vm,

(4)

[/L]m Y R([J]m,k) ([R*(J)]m,k)

[AR*]m [R* (J)]m,k

[CW(J)]m,k

To find the optimum W, define first the functional

Since [CW(J)]m,k is a function of the channel quantizer, fad­
ing realization, priority weight and Lagrange multiplier, for
most CSI realizations the costs corresponding to different users
m are distinct and the emerging winner is unique.
Case 2 (Multiple winners): The event of having different users
attaining the minimum cost will be henceforth referred to as

In words, the optimal scheduler assigns the channel only
to user(s) with minimum negative cost, in most cases to a sin­
gle user. This can be viewed as a greedy policy because only
one user with minimum cost is selected to transmit per Q-CSI
realization, while others defer. Note that with P-CSIR, the
optimum scheduling over orthogonal channels is also greedy,
whether based on P-CSIT [5] or Q-CSIT [4]).
Case 1 (Single winner): When the minimum cost is attained
by only one user, W* in Proposition 2 can be written using
the indicator function, as

[W* (J)]m,k = I{rnEM(J,k)} . (5)

which represents the cost of scheduling channel k to user m
when the Q-CSI is J, i.e., the cost of selecting [W(J)]m,k =
1. (This cost emerges also in the unconstrained Lagrangian of
(1), call it £.) With 1\ denoting the "and" operator, define also
vector [CW(J,AR))]k := minm{[Cw (J,AR))]m,k}~=I'

and the set M(J, k) := {m : [Cw(J, AR))]m,k = [cw*(J,
AR))]k 1\ ([cw(J, AR))]k < O)}. Based on these notational
conventions, it can be shown that:

Proposition 1 The optimum rate allocation is given by:
(i) [R*(J)]m,k = 0, if either [W*(J)]m,k = 0 or [AR*]m <

Yn([J]m,k) U~··\11r::,:);
(ii) otherwise, the optimum rate allocation is

[R*(J)]m,k = YR([J]m,k) C~;~m ) [W*(J)]m,k (2)

where Tn~[J]m,k) denotes the inverse function ofTR([J]m,k)'

Given the relationship of the auxiliary R with R, the optimum
transmit-rate can be obtained as
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ways active, the KKT conditions imply that when ,\R == ,\R*

those constraints are satisfied as equality. As ,\R* cannot be
obtained analytically from this condition, numerical search is
needed to find ,\R*. This is possible through the dual function
[cf. (1)]3

D(,\R) :== _ inf £(,\R, R(J), W(J))
R(J)~O,W(J)~O

== £(AR, R*(J, ,\R) . W*(J, ,\R), W*(J, ,\R)) (7)

Proposition 4 IfDs(,\R) :== £(,\R, R*(J, ,\R).ws(J, ,\R),
WS(J, ,\R)) and [as D(,\R)]m :== [r]m - LVJ LVk [R*(J,
,\R)]m,k [WS(J, ,\R)]m,k Pr{J} denote smooth versions of
the dual function and its subgradient, then:
(i) For all ,\R, it holds that DS (,\R) < D(,\R) + K c; and
(ii) [as D(,\R)]m is Lipschitz continuous.

Proposition 4 guarantees that aDs (,\R) is a Lipschitz contin­
uous (I(c)-subgradient of D(AR ) [1, Sec. 6.3.2].

which is concave. Based on (7), the dual problem of (1) is

3Throughout this section, dependence on AR will be made explicit wher­
ever it contributes to clarity.

which is inspired by the quadratic c-smoothing of [7]. Note
that [WS(J, ,\R)]m,k schedules channel k to users m whose
cost is not minimum but c-close to the minimum.

41n practice, the gap w.r.t. D(AR.) is much smaller than 2e. This holds
because WS(J, .\R) 1= W*(J, AR ) only if IMS(J, k)1 > 1, which is a
rare event; hence, on average, the bound in Proposition 4-(i) is very loose.

To test the algorithms developed, we simulated uncorrelated
complex Gaussian fading channels per user and quantized
uniformly each channel gain 9rn,k to 5 regions. Symbols were
drawn from QAM constellations and the corresponding BER
was approximated as O.2exp (-gm,kPm,k/(2Tm ,k - 1)).
Test Case 1 (Convergence comparison): A time-division mul­
tiple access (TDMA) system was simulated with K == 32
channels to serve M == 4 users with minimum rate require­
ments r == [10.5, 18, 25, 31] while ensuring instantaneous
BER not exceeding 10-3 with SNR=6dB at the access point.
Figure 1 depicts average individual rates versus iterations with
stepsize {3 == 10-3 for: (i) the optimal channel allocation
developed in Section 3; and (ii) the allocation based on the
smooth scheduling policy developed in Section 4. The trajec­
tories confirm that while optimal scheduling does not always

Algorithm 1 (Sl.O) Initialization: set vectors 61 , 62 to small
positive values; ,\R(O) == d1, and the iteration index i == 1.
(Sl.l) Resource allocation update: per Q-CSI realization J,
use ,\RCi-l) to obtain R(J)(i) and p(J)(i) based on (3) and
Y R([J]m,k); and WS(J)(i) using (9).

(Sl.2) Dual update: use (Sl.l) to find 8s D(,\R(i-l)). Stop if
lasD(,\RCi-l))1 < (}2,0 update ,\R(i) as in Proposition 5, and
set i == i + 1; otherwise, go to (Sl.l).

Due to the average formulation in (1), Algorithm 1 entails
computing the average rate and power which require the chan­
nel pdf. It must be run off line only when channel statistics
or the users' QoS requirements change. Once,\R is known,
the (c-) optimum allocation per J is found online using (3),

Y R([J]m,k) and (9).

s. NUMERICAL EXAMPLES

Proposition 5 (i) For a sufficiently small stepsize {3, the it­
eration ,\R(i) == ,\R(i-l) + {38sD(ARCi- 1

)) converges, i.e.,

AR(i) ~ ,\Rs; and

(ii) The dual function satisfies ID(ARs)-D(,\R*)1 < 2Kc.

Proposition 5 implies that the 2Kc-optimal value of ,\R

can be found by implementing the following algorithm4:

(8)

Thanks to convexity, the duality gap is zero and the value of
,\R optimizing (8) can be used to find the optimum primal so­
lution. A major challenge in obtaining AR* using subgradient
iterations (gradient iterations are impossible because D (,\R)
is non-differentiable w.r.t. [,\R]m) is that the mth entry of the
subgradient vector [8D(,\R)]m :== [r]m - L:VJ L:vk[R*(J,
,\R)]m,k [W* (J, ,\R)]m,k Pr{J} is not Lipschitz continuous
because W*(J, ,\R) in (7) is discontinuous for some ,\R. Our
approach to repairing Lipschitz continuity is to smooth the
scheduling function. Smoothing ensures continuity or differ­
entiability and has been successfully applied to different op­
timization problems; see e.g., [7].

Since scheduling discontinuities appear in the transition
from a tie to a single-user, the idea is to relax the condition for
scheduling the kth channel only when m E M (J, k). This is
possible through the setMS(J, k) :== {m : ([Cw(J, ,\R)]m,k
-[cw*(J, AR)]k < c) /\ ([cw*(J, ,\R)]k < O)}, where c
is a small positive number. Based on M S(J , k), consider the
following suboptimal but smooth scheduling matrix

Properties (i)-(Ui) of WS are similar to those of W* stated in
Proposition 2, while (iv) ensures continuity. Based on Propo­
sition 3, the following result can be established.

Proposition 3 The smooth scheduler WS (J, ,\R) satisfies:
(i) If[WS(J, ,\R)]m,k > 0, then m E MS(J, k) and [Cw(J,
,\R)]m,k < [cw*(J,,\R)]k + c.
(ii) lfIMS(J, k)1 > 0, L:mEM8(J,k) [WS(J, AR)]rn,k == 1.

(iii) IfIM(J, k)1 == 0, then [WS(J, ,\R)]m,k == 0 \1m.
(iv) [WS(J, ,\R)]m,k is a continuous function of ,\R.
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Fig. 1. Average transmit-rates in bits per channel use. Opti­
mal non-smooth policy (top) and smooth policy (bottom).

satisfy the constraints and rate allocation hovers around its
optimum, the smooth policy converges in a finite number of
iterations with negligible loss in performance. (Behavior of
transmit-powers is similar to that for transmit-rates.)
Test Case 2 (Performance comparison): An OFDMA sys­
tem was simulated here with K == 32 subcarriers to serve
M == 3 users with f == [30,30,30] and average BER=10-3

per user channel generated as before to have eight exponen­
tially decaying gains. Figure 2 compares the overall aver­
age transmit-power for different SNR values. Results for five
different resource allocation (RA) policies are depicted: (i)
the benchmark allocation obtained when P-CSI is available
(RA1); (ii) the optimum Q-CSIT based policy (with P-CSIR)
of [4] (RA2); (iii) the smooth policy developed with the opti­
mum channel quantizer of [4] (RA3); (iv) this paper's smooth
policy with a random quantizer (RA4); and (v) a policy based
on Q-CSI which adapts R but fixes the channel scheduling
matrix W. Interestingly, if the quantizer is optimum the novel
scheme (RA3) performs very close to the optimum P-CSIT
and Q-CSIT one, while the penalty of using suboptimum quan­
tization in (RA4) is about 3dB. Finally, it is worth stressing
the significant power savings of RA3 and RA4 relative to a
suboptimumlheuristic scheme (RA5).

6. CONCLUDING SUMMARY

This paper developed optimal scheduling and resource alloca­
tion policies for orthogonal multi-access transmissions over
fading channels when both transmitter(s) and receiver(s) have
to rely only on quantized CSI. The differences relative to their
counterparts based on perfect CSI at the receiver(s), show up
in channel scheduling. For most channel realizations the opti­
mum scheduling amounts to a single user (winner) accessing
the channel, while for a smaller set of realizations a few users
share the resources. Optimal allocation in the sharing case is
obtained as the solution of a linear program. The resultant on-

370

Fig. 2. Comparison of various resource allocation schemes
on the basis of average transmit-power [dB].

line iterations hover around the optimum allocation and solv­
ing the linear program increases complexity relative to the
single winner-takes-all case. Albeit suboptimum, a smooth
scheduler was found to mitigate these challenges at reduced
complexity and asymptotically optimal performance.
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