
Design and development of Smart Contracts
for E-government through Value and Business Process Modeling

Cristian Gómez, Francisco J. Pérez-Blanco, Juan Manuel Vara, Valeria De Castro, Esperanza Marcos
Kybele Research Group, Universidad Rey Juan Carlos, Madrid, Spain

{cristian.gomez, francisco.perez, juanmanuel.vara, valeria.decastro, esperanza.marcos}@urjc.es

Abstract

Administrations are constantly making great
efforts to cope with the right of citizens to high-
quality e-Government services. Since the advent of
blockchain and smart contracts, they are trying to
incorporate these technologies into their service
offerings, which results in a complex task due to their
nature and their inherent complexity. On the other
hand, business and business process modeling
facilitates the understanding and agreement between
the different parties involved in the design of e-
government services. All this given, this work
introduces a model-based proposal to ease the
integration of smart contracts into e-government
services.

1. Introduction
Many of the economic efforts of governments in

the last years are oriented towards the
implementation or improvement of their digital
platforms [29]. These platforms, which are
collectively referred as “electronic government” or
“e-government” are actually the result of the deeper
introduction of Information and Communication
Technologies (ICT) in society [12].

On the other hand, one of the most thrilling
advances of ICT in the last years is probably the
conception of the blockchain and the advent of smart
contracts. These digital contracts are similar in nature
to physically drafted contracts, with the advantage
that they allow automatic verification of the
conditions agreed in a transaction, without requiring
the intervention of a third party acting as
intermediary [8].

Due to the advantages offered by this technology,
many governments have considered the re-designing
of their services to integrate blockchain technologies
in the processes that make up their services [19].
However, given the incipient nature of this

technology, these initiatives have encountered several
problems such as: collection of legal aspects,
security, ease of implementation in specific contexts,
etc. [8][12][19], which together with those inherent to
the (re-)designing of e-government services [13][14]
result in a complex scenario.

Regarding the later, Business Process Modeling
Notation (BPMN), as a kind of lingua franca for
process modeling, has proven to be satisfactorily
used for e-government service designing purposes
[5]. We firmly believe not only process, but also
organizational and value models can be used as well
to facilitate the understanding between the different
stakeholders involved in the designing of e-
government services and thereby, serve as a basis to
build consistent, realistic, and effective e-government
services integrating blockchain technologies.

All this given, this work introduces a
methodological and technical proposal to facilitate
the design and development of smart-contract based
services in the context of e-government. To that end,
a model-based domain specific language (DSL) for
the development of Solidity smart contracts has been
developed and the relationships between smart
contracts and value and BPMN models have been
identified. We consider that the ability to semi-
automatically explode these relationships by means
of model-based technological bridges would facilitate
the integration of smart contracts in the e-services
offered by government administrations. Finally,
model-based technological bridges will be built
between business and business process modeling
notations and smart contracts models exploiting these
relationships through techniques based on Model
Driven Engineering [18]. To that end, we will
integrate the newly-developed DSL into modeling
toolkit for Service Design [21] that supports different
business and business process modeling notations,
namely Canvas Business Model [20], e3value [10],
Service Blueprint [25], Process Chain Network
(PCN) [24] and BPMN [3].

Proceedings of the 54th Hawaii International Conference on System Sciences | 2021

Page 2069
URI: https://hdl.handle.net/10125/70867
978-0-9981331-4-0
(CC BY-NC-ND 4.0)

The rest of this paper is organized as follows:
Section 2 discusses briefly the use of smart contracts
in the context of e-government. Section 3 introduces
the methodological proposal to introduce smart
contracts in the design of e-government services.
Section 4 presents the technological solution
supporting such proposal, while Section 5 uses a case
study case to illustrate the relevance of the proposal.
Finally, Section 6 summarizes relevant related works
and Section 7 concludes by providing directions for
further work.

2. Adopting blockchain and smart
contracts in e-government

Numerous governments have used different
digital tools to facilitate both the government
administrations and citizens dealing with the
processes that make up the services offered [12]. On
the other hand, blockchain became a very popular
term due to the boom of cryptocurrencies. In a
nutshell, the blockchain is a distributed network
formed by a series of nodes, which record each of the
transactions that take place in such network in a chain
of blocks known as “ledger” [4]. This digital
ecosystem provides a high degree of security and
trust to the different actors that use it, due mainly to
the transparency of the actions taking place in the
network.

More recently, one of the more appealing features
of such network has been said to be its utility as a
computation platform for smart contracts. A smart
contract is a software program hosted on a
blockchain that integrates a series of clauses (similar
to a traditional one) that are automatically executed
when the conditions included in the contract are
fulfilled [6]. These digital contracts can be seen by
governments as a transposition of the contracts or
forms with which citizens interact to request some of
the services offered through any administration, such
as tax payment [29].

The most relevant characteristics of smart
contracts for their integration in the services offered
to their citizens are summarized as follows [12]:
• Transparency: all the transactions that take

place are recorded within the accounting book
or ledger, so it is easier to “track” these
transactions than it is in other digital ecosystems
with similar purposes.

• Automation: smart contracts allow businesses to
automatically trigger commercial actions based
on predefined conditions. This will boost
efficiency by streamlining processes, helps to
avoid possible frauds and reduce compliance
and time costs.

• Objectivity: being a piece of software, it does
not leave space to misinterpretation of the
contract conditions, a common issue with
traditional contracts.

• Immutability: once deployed on the blockchain,
contracts cannot be modified.

Next, some examples of areas where these
contracts have started to be used follows [4]:
• Intellectual Property: with the delivery of digital

diplomas by Massachusetts Institute of
Technology (MIT) or the University of Cyprus.

• Food: companies such as Carrefour or Wallmart
use these contracts to monitor the food
distribution process from its origin to its sale.

• Health: proposals such as MedRec (Israel) for
recording patient data.

• Administration: user voting management
systems, such as FollowMyVote or birth
registration in Illinois.

Despite the advantages of this technology, the
adoption of the blockchain ecosystem does not
escape from a series of drawbacks [1][2][12]:
• Immutability: being mentioned previously as

one of the most outstanding advantages of smart
contracts, it is also a major deficiency due to the
inability to change the contractual terms of an
agreement between various parties.

• Security: smart contracts do not escape their
own nature. As software programs, they may
contain security flaws derived from their design
or implementation. Individuals could therefore
take advantage from the immutability of the
contract to exploit existing security flaws.

• Hardware dependency: it is a demanding
technology in terms of resources needed to run
it. This makes it difficult to establish and use it
in developing countries or areas.

• Contamination: high energy consumption from
miners constitutes a handicap for non-developed
countries suffering problems with electricity
supply and maintenance.

• Complexity: compared to others with higher
levels of acceptance, it is still an incipient
technology. Therefore, smart contract
developers face a steep learning curve. The lack
of tools to streamline development processes is
indeed one of the most popular demand in
existing literature [2].

3. Methodological Proposal
Given the inherent complexity of designing and

implementing e-government services based on the
use of smart contracts, this section introduces a
model-based proposal to do so. The use of models

Page 2070

allows to abstract from the complexity of the
underlying code, thus enabling non-technical people
to think about contracts, and even negotiate their
terms in the context of the targeted service.

3.1. Bridging smart contracts and service
design

Figure 1 provides a conceptual overview of the
proposal introduced in this paper. The underlying
idea is that the definition of process (as BPMN) or
exchange value (as e3value) models results way more
intuitive for stakeholders as an intermediate step to
the specification of smart contracts. These notations,
along with Canvas, Service Blueprint or PCN, are
commonly used when designing or redefining a
service or e-service. There is even a modeling toolkit
supporting these notations and bridging some of them
[21]. Therefore, the models used to design the
service, can be used as input to develop the smart
contracts needed to implement the service.

Figure 1. Generating smart contracts from high-

level models

As next subsection explains, relationships among
smart contracts and e3value have been analyzed as
well. The e3value notation is used to reflect the value
exchanges that occur between actors in a given
context [10]. As a result, a number of mapping rules
to generate a smart contract skeleton from an e3value
model have been identified. The code generated will
need manual refinement, but the proposal reduces
drastically the effort needed to develop the contract.
In addition, it enables business professionals to think,
negotiate and discuss in terms of (smart) contracts.

This is obviously a two-way mechanism: partial
versions of an e3value can be generated from a smart
contract. This will help also when an implemented
smart contract must be presented to business
managers, since the model will provide a global and
high-level overview of the contract and the
underlying interactions. Finally, the relationships
between BPMN and smart contracts are also being
analyzed in order to support the same functionality in
the mid-term.

The election of e3value and BPMN is not casual:
the value exchanges collected in e3value models are

easily mapped into the interactions represented in a
smart contract. On the other hand, BPMN serves to
represent the processes in which the value exchanges
take place, reflecting the interactions and messages
exchanged between actors.

Note however that some other techniques for
service design have also been integrated in the
proposal. While this work focuses on the
functionality related to smart contracts development,
the same principles have been exploited in order to
allow generating business and business process
models from models expressed with other notations.
As a result, the starting point to generate a smart
contract could be not only an e3value model, but any
of the remaining models supported by the proposal
(Canvas business model, Process Chain Network or
Service Blueprint). This way, a chain of model
transformations [7] will serve to move forward from
the starting model selected either to an e3value or
BPMN one, and then to the smart contract.

On the other hand, e-service design is favored by
the fact that business process models gathering the
details of the service provisioned can be generated
from the business models representing an overview
of the organization and the context in which it
performs its activity. This way, a Canvas business
model could be the starting point to generate a
Service Blueprint, a PCN or a BPMN model. This as
well to facilitate the communication between the
different stakeholders, since they could use their
preferred modeling technique which would be easily
and automatically converted into models expressed
with other notations. As mentioned before, service
design for e-government usually involves several
stakeholders, each of them with its own interests and
preferences.

3.2. Correspondences between e3value and
smart contracts

Existing proposals analyzing the relationships
between business process models and smart contracts
such as Lorikeet [26] or Caterpillar [16]. However,
we have found that there is a more direct
correspondence with e3value due to the nature of the
value exchanges it represents. Solidity is a
programming language, similar to Javascript, for
defining smart contracts in Ethereum net. Smart
contracts in solidity have the following relevant
aspects:
• A data type (address objects) to represent the

different actors that will interact with the
contract.

• A series of events that warn of the start or end
of an action.

Page 2071

• A series of functions, which execute the defined
code based on the logic programmed within
them. It is in them, where the economic

transactions (exchange coupons, assets, coins,
permission, etc.) in the contracts take place.

Figure 2. Correspondences between an auction smart contract and the correspondent e3value model

The example shown in Figure 2 is intended to
illustrate the relationships found to hold between
e3value and smart contracts. The left-hand side of the
figure shows an auction smart contract coded in
Solidity with the IDE developed as part of the
proposal (see Section 4) while the right-hand side
shows an e3value model, also elaborated with the
developed tooling.
• e3value Actors (Citizen and Administration) are

entities that carry out activities, granting them
some type of benefit or corresponding benefit.
These actors correspond to Address objects of in
Solidity. These objects represent unique
addresses, commonly associated with the
different actors interacting with the smart
contract.

• e3value value ports are related to the actions of
receiving and sending the exchanged value
objects. These ports are connected through
value exchanges element to indicate the
direction of the value exchange. Value ports and
value exchanges could be then associated with
the smart contract’s functions. These functions
execute the code for sending and receiving
currency, services or products by the actors
interacting with the contract.

• e3value value objects correspond to the assets
sent and received by the actors in the contract.
In terms of Solidity we will be talking about
coupons, crypto assets, permissions, etc.

• e3value actors own value interfaces that group
value ports to reflect the exchanges that can take
place between actors. This grouping relationship
between value interfaces and value ports can be
mapped to the relationship that holds between

smart contracts themselves, which group
together the functions encoded.

• e3value stimulus events (start and end) reflect
the triggering or completion of a task. These
events can be mapped into Solidity Event
objects.

All this given, Figure 2 illustrates these
correspondences by using the mentioned Auction
smart contract. First, the smart contract can be
modelled as one or several value interfaces. This is
one the decisions to be made by the domain expert.
Next, each address object corresponds to an actor,
whereas the event objects are related with the
stimulus objects collected in the e3value model. The
assets being the subjects of interest for the contract
(the ether received by the bidder, the different
acknowledgements, etc.) are mapped to value objects
in the models, which are interchanged through the
value port and value exchange objects mapping the
contract functions.

The following table tries to reflect in a simple
way the correspondence previously analyzed between
elements of a smart contract and elements of an
e3value:

Smart Contract

element e3Value element e3Value
graphic symbol

Address/Address
payable object

Actor/Market
segment

Smart contract class
Value

Interface/Value
interfaces group

Functions Value ports &
Value exchange

Page 2072

Assets (notifications,
coupons, permissions,

…)
Value Objects [Advices,goods…]

Events Start / End
Stimulus

Table 1. Correspondences between smart contract
and e3value models

4. Technological solution
This section introduces the modeling toolkit in

which the proposal described in this work is being
implemented and integrated. Thereby, the technical
details of the toolkit are first discussed to later focus
on the construction and integration of a DSL for
smart contracts development. Such DSL will be later
bridged with the rest of DSLs bundled in the toolkit
by means of model-based techniques, namely model
transformations and model weaving.

4.1. Development process
We plan to integrate the proposal of this work

into INNoVaServ: a modeling toolkit which integrate
several notations and functionalities for service
design [21]. Figure 3 illustrates the conceptual
architecture of INNoVaServ. It basically consists of
an Eclipse IDE where several plugins as well as a
layer of functionalities connecting them have been
integrated. Each plugin implements a visual DSL.
They were initially built atop of Eclipse Modeling
Framework (EMF)/Eclipse Graphical Modeling
Framework (GMF) [11] following the guidelines
sketched in [28] for the development of model-based
tools atop of Eclipse1.

Figure 3. Simplified overview of INNoVaServ’s

conceptual architecture

However, due to the recent lack of GMF support,
the migration of the DSLs from GMF to Sirius was
addressed. Since Sirius is also based on Eclipse EMF,
the development process of graphical editors is still
similar to that of GMF.

On the other hand, the model processor layer
supports several functionalities such as automatic
model validation and fixing implemented with
Acceleo. In addition, model transformations (M2M)
among the different DSLs have been implemented

1 Ecore (meta)models: https://postimg.cc/gallery/0NLJ9PG

using the Epsilon family of languages [15]. Epsilon
Transformation Language (ETL) supports many-to-
many model transformations and it eases the
combination of declarative rules with imperative
constructions and lazy and greedy rules. This is an
essential feature, since many of the model
transformations developed are not direct but require
certain level of interaction with the user to collect
some design decisions that should guide the
transformation, as it occurs when generating smart
contracts from e3value models. In this sense, Epsilon
Object Language (EOL) has been used to improve
user interaction by means of dialog boxes and to
handle the transformations accordingly. Also, each
transformation generates a weaving model to
materialize the relationships that hold between source
and target models. The presented tool aims to reduce
the digital gap between the different government
professionals through the use of model
transformations, facilitating the analysis of
requirements and the implementation of the e-service
in question, being one of the most requested demands
[12][19].

To that end, Modelink, a simple but useful multi-
panel editor provided by Epsilon is used. It consists
of 2-3 side-by-side EMF tree-based editors, which
allows visualizing the source and target models,
along with the corresponding weaving model. Note
that relationships collected in the latter can be
directly edited in the editor.

Again, it is worth noting that the visualizations
provided by Modelink are planned to be improved by
developing ad-hoc multi-panel editors like those
presented in [27]. For instance, integrated overviews
of all the models involved in a given project and their
relationships could be provided this way.

Finally, since the toolkit is still basically an
EMF/GMF tool, it is consequently interoperable with
any other EMF/GMF existing tool. Note that there
exists plenty of them since EMF/GMF has turned to
be the de-facto standard for the development of
model-based tools for the last 10 years. For instance,
leaning on Papyrus, UML models could be almost
immediately combined with those supported by
INNoVaServ for business management tasks.

4.2. SmaC: model-based tool support for
smart contracts

First of all, SmaC2 is a textual DSL that supports
the coding of smart contracts with Solidity. These
contracts can be injected to EMF models and then
subject to any model-based processing task.

2 https://cutt.ly/1g3BRdh

Page 2073

SmaC has been developed with Xtext, a tool for
the development of textual DSLs. From a grammar
specification, Xtext generates an infrastructure for the
textual DSL. This infrastructure is integrated by a
series of projects acting as containers, either to house
the metamodel from which SmaC EMF models can
be created or to collect a series of functionalities
encoded in Xtend that facilitate the elaboration of
these textual models. One of the functionalities
defined in SmaC is indeed to produce EMF models
from Solidity SmaC contracts.

In relation to some of the challenges of coding
smart contracts [1], SmaC presents a series of
advantages detailed below:
• SmaC establishes a structural pattern for the

coding of a smart contract. The specified smart
contract is therefore made more readable and
understandable by the developer.

• It requires defining a gas control when
executing the loop actions. This avoids infinite
loops which may lead to security issues.

• It contains a series of ad-hoc facilities that can
be easily extended or modified at the user's
request. Some of these facilities are code
autocompletion, validation and quickfixes.

• A set of ad-hoc data types (User & Company)
has been bundled in the DSL grammar to
facilitate the correspondence between SmaC and
e3value.

• Any SmaC model is itself a smart contract
defined in Solidity. Therefore, it can be
compiled to bytecode by any IDE intended for
it, such as Remix.

In summary, SmaC provides a model-based IDE
for the development of Solidity smart contracts which
entails a number of current and potential advantages
for developers.

5. Case study
This section presents a case study focused on the

electronic auctions used by the Spanish Government
to illustrate the proposal of this work to bridge
service design notations and smart contracts for e-
government. Please note that all the excerpts in this
section correspond to models elaborated with the
tooling support developed.

It should be noted that the example used in this
case study corresponds to a real scenario which has
been emulated in the laboratory. To that end, the
guidelines sketched in [23] for conducting cases
studies were followed to run a brief experiment with
a group of 51 undergraduate students on Service
Engineering with no much experience developing
Smart Contracts but good knowledge in e3value. Note

that the main goal of this experiment was just to
obtain some evidence to assess the viability of the
proposal.

The first step in the case study design is to define
the objectives and route plan. The main objective of
this experiment was to evaluate how much of a Smart
Contract model could be generated from an e3value
one and vice versa. To that end, the models presented
below were provided to the students, who were later
asked to refine them in order to incorporate the use of
Smart Contracts.

Regarding preparation for data collection phase,
no survey or form were needed to reach our goal. The
only data collected consisted of the models generated
by the students. Once the resulting models were
collected, the e3value’s were compared with the
correspondent Smart Contracts so that the number of
elements with direct correspondence among these
notations were counted. The percentage of Smart
Contract elements generated from an e3value model
and vice versa were then computed. When moving
from Smart Contract to e3value models the
transformation coverage was 48,15% on average. By
contrast, the opposite direction reached a
transformation coverage of 33,35% on average. Both
are preliminary acceptable percentages given into
account the differences between the correspondent
models. The case study used in the experiment is
described as follows.

As Figure 4 shows, the auctions consist currently
of the publication of a series of goods (homes,
vehicles, etc.) offered by the government
administration through an electronic portal. These
goods have been previously confiscated to debtors
who failed to pay. Citizens authenticate themselves
electronically in the portal and register their bids
during a period previously established by
government. In 3 to 14 days the administration sends
these data to a judicial administration so that a public
official can grant its proof of faith to both the
administration and the bid participants on the winner.
Once the result is issued, the winner has 40 days to
make the payment effective, at the expense of the
judicial administration granting the property title
within a period of time not determined. To improve
the understanding of the auction process, we have
only modeled the process in which a participant bids
and waits for the result of the auction. In case she
wins the auction, she would have to pay the
remaining fee. Otherwise, she must wait an indefinite
period (days, weeks, months) for the government
administration to reimburse her the amount offered in
the auction.

Page 2074

Figure 4. BPMN model excerpt: auction process WITHOUT smart contracts

Figure 5 illustrates the value exchanges taking
place in the auction process currently run by the
Spanish Government administration. In this case, the
value objects exchanged between the citizens
participating in the auction and the administration of
the treasury when bidding are the amount of the bid
and the notification of participation.

Figure 5. e3value model excerpt: auction process

without smart contracts

To deduct the winner, the administration requests
a judicial administrator to validate the process,
receiving from the administration his salary for the
work carried out. Regarding the winning bidder, there
is an exchange between the auctioned good and the
bid amount. Regarding non-winning bidders, the
administration refunds the money and the citizen
issues a notification upon reception.

To improve the process and take advantage from
the features of smart contracts mentioned in Section
2, a new process is proposed hereafter.

To that end, we lean on the smart contract
presented in Figure 2, which corresponds to an
electronic auction model in which the participants
(each one represented unambiguously through an
address field) interacts with a contract deployed on
Ethereum to bid for the goods offered by the
administration. It is indeed the administration who
deploys the contract and establishes a period of time
for the participants to bid through it. Participants bid
must overcome the highest bid to date in order for the
contract to record the bid and its unique address (bid
function). Recall that such address acts as an

identifier for the participant does not win the auction
and requests a refund. Once the auction period has
expired, the government administration will invoke
the auctionEnd function, so his account is reimbursed
with the funds of the highest bid and issuing a
notification that the auction has finished indicating
the winning bid. The rest of participants can then
request to have their currency instantly refunded to
their account (withdraw function).

Figure 6 shows the changes needed in the BPMN
model to run the auction process by incorporating
smart contracts which entails basically the
elimination of a third party and its corresponding
tasks, which are now carried out by the smart
contract. These changes are basically based on the
Smart Contracts advantages analyzed in Section 2.

The use of smart contracts in this scenario brings
a series of improvements regarding the original
process illustrated by Figure 4:
• Elimination of intermediary actors thanks to the

automation of tasks. The smart contract allows
to eliminate the judicial administrator who
intervened to certify the auction result, being
carried out by the smart contract itself upon
completion of the auction process.

• Reduction of time and monetary costs. By using
a smart contract, the time lapse for sending the
result to the judicial administration is 0, because
the auction result is directly stored in the
contract. As soon as the administration invokes
the auctionEnd function, it obtains the funds
stored in the contract which correspond to the
highest bid instantly (as opposite to the former
40 days period). Likewise, as soon as they
invoke the withdraw function, the funds are
instantly returned to the non-winning
participants.

• Automatic registration of all the bids made.
Possible loss or alteration of information is

Page 2075

prevented by the smart contract while
“transparency” is ensured.

• Complete control of the auction process. For
instance, if a bidder is not able to fulfill the
payment promise of his/her bid the auction
process is suspended. The use of smart contracts

implies that bidders will prepay by depositing
the funds along with their bid in the contract.
Likewise, errors from the judicial administration
which could also result in the auction being
suspended are now avoided.

Figure 6. BPMN model excerpt: auction process WITH smart contracts

Additionally, as discussed in Section 3.1, all the
capabilities of the modeling toolkit for Service
Design can help to shorten the distance among the
stakeholders involved in the provision of the service.
For instance, the e3value model could be used to
generate semi-automatically a partial view of the
correspondent Canvas Business Model for the
auction service. Likewise, regarding business process
models, it is also possible to exploit the information
gathered in the BPMN model to generate complete
PCN models. Finally, if needed, it is also possible to
reduce the level of detail in the process models used
to design the service. This can be useful for
displaying high-level service designs without delving
into the details of service delivery but offering a
simplistic and concise vision of the process. In this
sense, it is possible to generate Service Blueprints
from BPMN, PCN or e3value models. Note that
Service Blueprint is indeed one of the most popular
notations for Service Designers.

All in all, supporting this set of business and
business process modeling notations will serve then
to close the gap between IT experts, non-IT experts,
and Operations Managements experts. One cannot
stay that one notation is better or worse than the
others. All of them are somehow useful in the sense
that they can provide complementary points of view
more oriented to each of the stakeholders involved in
the context of e-government service design.

6. Related works
Due to the functionalities offered by smart

contracts, they are increasingly being integrated as a
solution to existing problems in several of the
services offering of companies and government
administrations. In order to ease and improve the
integration of smart contracts in these processes,

proposals for the development and deployment of
smart contracts through BPMN such as Lorikeet [26]
or Caterpillar [16] have emerged. However, these
proposals hinder the interpretation of the different
actors that are part of the process when defining the
smart contract, due to the digital gap that may exist
between business professionals and developers. We
have discovered however that e3value fits much
better with the nature of smart contracts. There are in
fact some works on the utility of e3value models as a
way to identify potential business cases for the
application of blockchain technologies [9] but they
are far from identifying the similarities between the
concepts on which value models and smart contracts
are based. There are other proposals that aim to
reduce the digital gap by adopting smart contracts
through state machine such as FSolidM. However,
this proposal is more focused on developers than on
stakeholders involved in the provision of the service,
unlike SmaC that includes both sectors [17].

On the other hand, there are DSL-based proposals
to provide high-level languages for the definition of
smart contracts [6][22]. Regarding them, SmaC,
supports the generation of fully functional contracts
and allows connecting them to the processes where
the contracts should be integrated.

Regarding tool support for business and business
process modeling, we have found no tool supporting
all the notations currently supported by INNoVaServ.
Likewise, there is no proposal currently exploiting
the relationships between those notations as it
happens with INNoVaServ.

There exist some tools supporting some of these
notations, like Canvanaizer, Miro, draw.io,
Lucidchart or Gliffy, which are web-based
applications that supports (some of them)
collaborative edition of Canvas Business Model,
Service Blueprint or BPMN. They have simple and

Page 2076

intuitive graphical interfaces, but they are not model
based tools, so subsequent processing of the
information collected in those models is not
contemplated. Likewise, they lack export support
with suitable formats for post-processing (like XML),
the output format being a simple image in most cases.
Some of them are commercial solutions offering free
limited editions, while others are completely free.

All this given, to the best of our knowledge this is
the first proposal to consider the business and
business process modelling notations discussed here
along with smart contracts, and providing tool
support to use them in the context of e-government
service design.

7. Conclusion and future work
Smart contracts and its ecosystem offer several

advantages to improve the services offered by e-
government administrations, like removal of
unnecessary activities or intermediaries,
transparency, cost reduction or confidence increase.

The integration of smart contracts into these
services implies however a re-designing of services
and some mechanisms to shorten the distance
between smart contracts (software pieces) and
business experts.

Given the incipient nature of smart contracts and
the complexity associated to their development, if
they were to be integrated in service design activities,
a high-level easy way of dealing with and think about
them was needed.

In this sense, the main contribution of this work is
to integrate a series of business and business process
modeling notations with a model-based solution for
smart contracts development. The resulting toolkit
bundles a set of DSLs and will support the partial
generation of smart contracts from e3value of BPMN
models and vice versa.

To that end, the relationships that hold among the
main elements of e3value and smart contracts have
been analyzed. These relationships are being
implemented by means of unidirectional model
transformations to support the generation of Solidity
code skeletons from e3value models and vice versa,
the generation of e3value models from smart
contracts. As this functionality is integrated in the
modeling toolkit, it will be possible to ease the
integration of smart contracts in service design
activities from the early stages of the process.

Regarding the scope of the proposal, there are
however a series of limitations that we plan to
address as follows:
• As mentioned in Section 5, so far the proposal

has been validated by means of a case study run

in the laboratory. From this experiment we
obtained some preliminary metrics to assess the
quality of the work, as the percentage of
elements generated by the model
transformations currently bundled in the tool.
Nevertheless, a formal validation, probably in
the shape of a real project, is needed.

• Another limitation is related with the number of
correspondences identified between Smart
Contract and e3value models. Interactive
techniques to exploit potential correspondences
will serve to improve the proposal.

• Note also that it is not possible to generate
complete smart contracts from an e3value
model. Instead, it is possible to generate a
skeleton, i.e. class headers, methods, etc. but not
their content. Some kind of user interactive
assistant allowing manual completion of code
when moving from an e3value model to a smart
contract would definitively help to improve the
proposal.

• Finally, the technological solution presented
here is built atop of Eclipse, what entails a
number of complications related with plug-in
dependencies, installation issues, etc. The
current trend in this sense is to deploy the tools
in the cloud (see the latest works from Obeo for
instance3). We plan to address this movement in
the mid-term.

Regarding next steps of this work, given that both
the modeling toolkit and the DSL for smart contracts
are already running, we are already working to
exploit the relationships found between e3value and
smart contracts to provide automatic transformations
between them and bundle them into the toolkit. In the
medium term, relationships with BPMN and other
business modeling techniques will be exploited as
well. Likewise, a block-based visual concrete syntax
for the smart contracts DSL is being developed.

Acknowledgements. This work has been partially
funded by the Regional Government of Madrid,
through the FORTE-CM project (S2018/TCS-4314)
and the Spanish MINECO, through the MADRID
project (TIN2017-88557-R).

3 https://www.obeo.fr/en/products/554-product-obeo-cloud-
platform

Page 2077

References

[1] Alharby, M., & van Moorsel, A. (2017). A systematic

mapping study on current research topics in smart
contracts. International Journal of Computer Science
& Information Technology, 9(5), 151-164.

[2] Bosu, A., Iqbal, A., Shahriyar, R., & Chakraborty, P.
(2019). Understanding the motivations, challenges
and needs of blockchain software developers: A
survey. Empirical Software Engineering, 24(4), 2636-
2673.

[3] Chinosi, M., & Trombetta, A. (2012). BPMN: An
introduction to the standard. Computer Standards &
Interfaces, 34(1), 124-134.

[4] Crosby, M., Pattanayak, P., Verma, S., &
Kalyanaraman, V. (2016). Blockchain technology:
Beyond bitcoin. Applied Innovation, 2(6-10), 71.

[5] Delgado, A., Calegari, D., González, L., Montarnal,
A., & Bénaben, F. (2020, January). Towards a
Metamodel Supporting E-government Collaborative
Business Processes Management within a Service-
based Interoperability Platform. In Proceedings of the
53rd Hawaii International Conference on System
Sciences.

[6] Frantz, C. K., & Nowostawski, M. (2016,
September). From institutions to code: Towards
automated generation of smart contracts. In 2016
IEEE 1st International Workshops on Foundations
and Applications of Self* Systems (FAS* W) (pp.
210-215). IEEE.

[7] Garcés, K., Vara, J.M., Jouault, F. et al. Adapting
transformations to metamodel changes via external
transformation composition. Softw Syst Model 13,
789–806 (2014).

[8] Giancaspro, M. (2017). Is a ‘smart contract’ really a
smart idea? Insights from a legal perspective.
Computer law & security review, 33(6), 825-835.

[9] Gordijn, J., & Akkermans, H. (2001). Designing and
evaluating e-business models. IEEE intelligent
Systems, (4), 11-17.

[10] Gordijn, J. E-business value modelling using the e3-
value ontology. In W.L. Curry editor, Value creation
form e-business models, pp. 98--127, Oxford, UK,
2004.

[11] Gronback, R. C. (2009). Eclipse modeling project: a
domain-specific language (DSL) toolkit. Pearson
Education.

[12] Hou, H. (2017, July). The application of blockchain
technology in E-government in China. In 2017 26th
International Conference on Computer
Communication and Networks (ICCCN) (pp. 1-4).
IEEE.

[13] Juell-Skielse, G., & Perjons, E. (2009, July).
Improving E-government through benefit analysis
and value modeling. In 2009 33rd Annual IEEE
International Computer Software and Applications
Conference (Vol. 1, pp. 332-339). IEEE.

[14] Jussila, J., Sillanpää, V., Lehtonen, T., Helander, N.,
& Frank, L. (2019, January). An activity theory
perspective on creating a new digital government

service in Finland. In Proceedings of the 52nd Hawaii
International Conference on System Sciences.

[15] Kolovos, D. S., Paige, R. F., & Polack, F. A. (2008,
July). The epsilon transformation language. In
International Conference on Theory and Practice of
Model Transformations (pp. 46-60).

[16] López-Pintado, O., García-Bañuelos, L., Dumas, M.,
& Weber, I. (2017, September). Caterpillar: A
Blockchain-Based Business Process Management
System. In BPM (Demos).

[17] Mavidrou, A., & Laszka,A. (2018, February). Design
secure ethereum smart contracts: A finite state
machine based approach. In International Conference
on Financial Cryptography and Data Security (pp.
523-549). Springer, Berlin, Heidelberg.

[18] Mellor,S.J., Clark, T., & Futagami, T. (2003). Model-
driven development: guest editors’ introduction.
IEEE software, 20(5),14-18

[19] Ølnes, S. 2016. Beyond Bitcoin enabling smart
government using blockchain technology. Lecture
Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). Springer, Cham. 253–26.

[20] Osterwalder, A., Pigneur, Y., Oliveira, M. A. Y., &
Ferreira, J. J. P. (2011). Business Model Generation:
A handbook for visionaries, game changers and
challengers. African journal of business management,
5(7), 22-30.

[21] Pérez-Blanco, F. J., Vara, J. M., Gómez, C., De
Castro, V., & Marcos, E. Model-Based Tool Support
for Service Design. In International Conference on
Fundamental Approaches to Software Engineering
(pp. 266-272), 2020.

[22] Regnath, E., & Steinhorst, S. (2018, September).
SmaCoNat: Smart Contracts in Natural Language. In
2018 Forum on Specification & Design Languages
(FDL) (pp. 5-16). IEEE.

[23] Runeson, P., Höst, M. Guidelines for conducting and
reporting case study research in software engineering.
Empir Software Eng 14, 131 (2009).

[24] Sampson, S.E. (2012). Visualizing service operations.
Journal of Service Research, 15(2), 182-198.

[25] Shostack, G.L.: Designing services that deliver.
Harvard Business Review 62(1) (January 1984) 133–
139.

[26] Tran, A. B., Lu, Q., & Weber, I. (2018). Lorikeet: A
Model-Driven Engineering Tool for Blockchain-
Based Business Process Execution and Asset
Management. In BPM (Demos). (pp. 56-60).

[27] Vara, J. M., Bollati, V. A., Jiménez, Á., & Marcos, E.
(2014). Dealing with traceability in the MDD of
model transformations. IEEE Trans. on Software
Engineering, 40(6), 555-583.

[28] Vara, J. M., & Marcos, E. (2012). A framework for
model-driven development of information systems:
Technical decisions and lessons learned. Journal of
Systems and Software, 85(10), 2368-2384.

[29] Yang, L., Elisa, N., & Eliot, N. (2019). Privacy and
Security Aspects of E-Government in Smart Cities.
Smart Cities Cybersecurity and Privacy, 89–102.

Page 2078

	1. Introduction
	2. Adopting blockchain and smart contracts in e-government
	3. Methodological Proposal
	3.1. Bridging smart contracts and service design
	3.2. Correspondences between e3value and smart contracts

	4. Technological solution
	4.1. Development process
	4.2. SmaC: model-based tool support for smart contracts

	5. Case study
	6. Related works
	7. Conclusion and future work

