
Effort Estimation in Capturing Architectural Knowledge

Rafael Capilla1, Francisco Nava1, Carlos Carrillo2

1 Depto. de Ciencias de la Computación, Universidad Rey Juan Carlos, Madrid, Spain
2Depto. de Ingeniería y Arquitecturas Telemáticas, Universidad Politécnica de Madrid, Spain

{rafael.capilla, francisco.nava}@urjc.es, ccarrillo@diatel.upm.es

Abstract

Capturing and using design rationale is becoming a

hot topic for software architects, as architectural design
decisions are now considered first class entities that
should be recorded and documented explicitly.
Capturing such architecture knowledge has been
underestimated for several years as architects have been
only focused on documenting their architectures and
neglecting the rationale that led to them. The
importance of recording design rationale becomes
enormous for maintenance and evolution activities, as
design decisions can be replayed in order to avoid
highly cost architecture recovery processes. Hence, in
this work we describe how architecture design decisions
can be captured and documented with specific tool
support. We also provide effort estimation in capturing
such knowledge and we compare this with architecture
modeling efforts in order to analyze the viability of
knowledge capturing strategies.

1. Introduction

For many years, software architectures have been
proven useful for representing the main parts of a
software system [4] by means of architectural
descriptions or diagrams. From the nineties, different
types of descriptions (mostly based on UML diagrams)
are used to provide different perspectives or architecture
views for different stakeholders [9, 16, 20]. Recently,
the software architecture research community as well as
software architects from the industry are facing the
problem to consider architecture design decisions as first
class entities that should be documented explicitly [6].
The importance of design rationale in software
architecture was early stated in the nineties by Perry and
Wolf [18], which consider the rationale as a relevant
piece for understanding the design. More recently,
Kruchten et al. [17] have modernized this idea as they
state that Architectural Knowledge (AK) = Design

Decisions + Design. Hence, the importance of design
rationale that has been neglected in the past becomes
now relevant for most modern architecting processes.

Therefore, recording, using, managing, and
documenting architectural design decisions are new
complementary activities (e.g.: capturing knowledge,
sharing) that should be carried out in parallel to typical
architecture modeling tasks. These new challenges need
to deal with many obstacles in order to overcome those
barriers that try to impede the transfer of implicit mental
models from the architect’s expertise to explicit and
documented knowledge. This architectural knowledge
(AK) should be codified in a suitable form that can be
reused afterwards when needed.

The goal to document explicitly undocumented
knowledge has an overhead that should be taken into
account if we want to estimate the potential savings in
typical maintenance and evolution activities. In this
context, having tool support to provide some degree of
automation for the activities aimed to capturing this
knowledge becomes a strong need as a mean to facilitate
the gradual introduction of documented design rationale
in typical architecting processes.

The remainder of this work is structured as follows.
Section 2 describes the motivation of our work as well
as the ADDSS approach, a web-based tool for capturing
and documenting architectural design decisions. In
section 3 we describe the experiences carried out with
ADDSS and the results we obtained measuring the effort
in capturing architectural design decisions. Section 4
discusses related work and section 5 outlines the
conclusions and future work.

2. Capturing AK with Tool Support

In this section we first introduce the motivation of
our approach and after we describe the ADDSS tool for
capturing and documenting architecture design
decisions.

mailto:francisco.nava}@urjc.es
mailto:ccarrillo@diatel.upm.es

2.1. Motivation

Software architects have widely used architecture
modeling tools for producing and documenting the
models of their system’s architecture. At present, there is
lack in the documentation generated by typical
architecting processes as they never record the design
decisions that led to a particular architecture. This
problem is slightly mentioned in [9], which states the
importance for recording design rationale but not the
processes required to produce such knowledge. In the
past, typical architecting tools don’t include design
rationale as a first class entity that has to be documented
and only one of the five tools discussed in [13] (i.e.:
Compendium) provides limited support for capturing
first class architectural design decisions (maybe some of
these tools can evolve to more advanced versions in
which their capabilities are extended to support new
concepts and features).

In [24] the authors mention several reasons for using
rationale in software engineering like supporting
knowledge transfer or improving quality. Design
decisions can bridge the gap between rationale and
architecture whilst the rationale enriches architecture
with the underlying reasons that led to them. Thus,
design rationale has a strong impact in the architecting
construction process, and the design choices can play a
key role if these can be captured and used.

Another barrier that has to be tackled is the mentality
by which users (e.g.: architects, business managers,
developers) consider enough important the value of
design rationale and how they use and document the
knowledge related to design decisions. The survey
described in [21] mentions the lack of empirical
evidence to probe the designer’s perception for
documenting such valuable asset. However, barriers
found for using and documenting design decisions and
its rationale motivate the use of processes and tool
support to facilitate the gradual introduction of new roles
in architecting like producers and consumers of
architectural knowledge. These new practices need of
specific tool support for using and documenting the
design rationale and avoid negative designer attitudes as
they don’t care to spend effort in capturing such AK. A
complementary experience carried out in [12] tries to
probe the value of design rationale in software
architecture. This approach mentions that users enacting
different use cases need different type of information
describing the design rationale as this information can be
tailored to different needs.

As a result, we can state that there are many cultural
and technical barriers that may hamper the use and
documentation of design rationale and users need to be
convinced about the expected benefits in doing new
complementary activities pertaining to the architecture
construction process.

One way to motivate the capture and use of AK is to
probe the expected benefits in further maintenance and
evolution activities. Hence, the overhead required in the
development phase can be compensated during
maintenance. Is a well-known fact in software
engineering that maintenance is a time consuming
activity that requires a lot of effort and time in order to
support the evolution of systems over time. For instance,
typical maintenance costs may range between 50-75% of
the total development cost [5]. The cost for developing
and maintaining the architecture should be also
considered as important as well. Often, maintenance is
only performed at the code level and when the
architecture becomes obsolete or inexistent, highly cost
reverse engineering processes have to be carried out to
recover the design from the changes made in the code, as
the design decisions that led to such changes were never
recorded. We have motivated the importance for
recording architectural design decisions in relationship
to typical architecting activities. Also, estimating this
new effort is important to know how recording such
design decisions can pay off. Hence, we need to probe
the value of capturing the design decisions in the overall
design process, as effort estimation will serve us to
know the savings along the life of a software system.

2.2. The ADDSS Approach

The Architecture Design Decision Support System
(ADDSS – http://triana.escet.urjc.es/ADDSS) is a web-
based tool for capturing, managing and documenting
architecture design decisions [7]. ADDSS’ conceptual
model [8] relies on the ideas described in the “decision
view” [11], which consider this as a new cross-cutting
architectural view with respect to the traditional ones
[16] used for documenting the architecture. The
decisions view fosters capturing and documenting the
design decisions and the rationale that happen during
any architecting process.

The main capabilities of ADDSS are summarized in
the following bullet points.

http://triana.escet.urjc.es/ADDSS

• Capturing design rationale, which provides
templates of attributes specific to capture and
record the design decisions and their rationale.
Mandatory and optional list of attributes provide
flexible approach for characterizing and
documenting the design decisions for different
user profiles.

• Stored design patterns and architecture styles
which can be retrieved as design solutions during
the reasoning activity.

• Relationship between requirements,
architectures and decisions, are useful links that
can be established during the architecting activity
to bridge the gap between requirements and
architectures. Also, links between decisions can
be defined to track the traces between the
decisions and used to estimate change impact
analysis or to track the root causes of changes.

• Iterative construction process comprises the
main architecting activities which relate typical
architecture modelling tasks with the
characterization of the design decisions. In this
phase, we construct and visualize the different
architecture products with their decisions.
Architectures can be uploaded into ADDSS
knowledge base to show the evolution of the
design. ADDSS users can navigate and brose the
architectures and the decisions made.

• Architecture view support which provides the
different perspectives of the same architecture.
Users can visualize each different architecture
view and display the UML diagrams for each
single view.

• Documenting decisions, results key to extend the
traditional architecture documentation view
following the goals stated in the “decision view”
[11]. An automatic report facility provides online
PDF documents containing a detailed description
of the decisions made for each architecture, as
well as the requirements and architectures for
each set of decisions. This documentation clearly
shows the relationships between decisions and
requirements and architectures.

Not all the activities dealing with architectural design

decisions are supported by ADDSS. The previous list
provides a set of core features that seem to be enough
for capturing design decisions, as it is the mail goal of
this work. Otherwise, are capabilities are desired for
future extensions of the tool, like for instance knowledge
sharing. Also, some improvements to previous
approaches have been made, such as the feature of

ADDSS that describes the evolution of the architectures
with their design rationale in an iterative way, similar as
architects built their architectures.

3. Effort in Capturing Design Rationale

In order to face some of the challenges described in
section 2.1, we used ADDSS to determine the effort in
capturing architecture design decisions compared to
typical architecture modeling tasks. Hence, we can
estimate the overhead required to store such knowledge
and determine the viability of capturing AK as well as
the potential benefits for further maintenance activities.

We first summarize previous experiences using
ADDSS and second, we outline how we carried out a
case study to estimate the effort required to capture
architectural design decisions in different phases of the
software life-cycle.

3.1. Initial experiences using ADDSS

We released ADDSS 1.0 in 2006 and version 2.0 in
2007, and we evaluated the tool by means of several
experiences as we summarize below.

3.1.1. ADDSS 1.0 with URJC students. We used
ADDSS 1.0 with twenty-two master students from a
master course of the Rey Juan Carlos University(URJC),
Madrid (Spain), participated in the evaluation. The
students were organized in eleven teams of two persons
and they had to store the decisions and the architectures
for a subset of requirements belonging to a virtual reality
system (VR-Church). The students were familiarized
with software architecture concepts and architectural
design decisions before using ADDSS. As a result, we
interviewed the students and all of them had to fill a
questionnaire to evaluate the capabilities of the tool. The
average effort spent by all the teams in capturing the
decisions was 10 hours, with some significant
differences among the teams, maybe because of the
different experience of the members, as many of them
work for companies. Other results highlighted the high
usability of the tool, the easy of use, and the low
learning effort. The students employed between four and
six iterations to deliver the final architecture of the VR-
Church system, and several intermediate architectural
products were stored with the decisions made. Figure 1
shows the results of the effort in hours spent by all the
teams.

3.1
se
20
1.0
ar
vie
to
sto
Ch
of
ca
as
do

Interviews with the two domain experts and a domain
analysis activity were carried out before using ADDSS.
We spent around one month in the design and modeling
activities of the VR-Church system, and four
intermediate architecture products were built (with
Magicdraw 10.5) before the final architecture was
released. Hence, the construction the VR-Church
architecture took five iterations, and we stored these
using ADDSS, such as Figure 2 shows.
During the decision making process, a number of 32
coarse-grained design decisions, including 15 alternative
decisions were considered. From the whole number of
decisions, 24 of them were approved as valid. The status
and category attributes were proven useful during the

0
2

4
6

8
10

12
14

16
18

20

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Figu
arch
Figure 1. Effort spent by the teams using ADDSS
.2. Architecting a virtual reality system. In our
cond experience we used ADDSS 2.0 (released in
07) with improved capabilities with respect to version
. Some of these new capabilities include: better

chitecture visualization, support for architecture
ws, support for alternative decisions, and attributes

 describe the status and category of the decisions
red. To test the new version we used the same VR-
urch system but taking into account the complete list

 requirements instead of the subset used in our first
se study. In the experience two of the co-authors acted
 software architects while two other persons acted as
main experts.

evolution of the architecture. Fine-grained decisions like
variation points were not stored in order to alleviate the
effort in capturing the decisions. We also defined and
stored 24 dependencies between the decisions. We
didn’t measure the effort in recording such knowledge
but we proved the viability of the tool for capturing and
documenting the design decisions along with their
architectures. Figure 3 shows a screenshot used by the
architect to capture the information of a design decision,
with explicit links to the requirements that motivate such
decision (left box of Figure 3), and dependencies to
previous decisions, shown in the right box of Figure 3.

Figure 3. Characterization of a design decision with
explicit links to requirements and architectures.

re 2. ADDSS iterative
itecting process

Once the architect has characterized a design
decision, he/she can browse the list of decisions made
(Figure 4) and upload the architecture, which is the
result of the set of decisions made. After the decisions
are stored for the first time, the architect and other
relevant stakeholders cans deliberate about the
alternative decisions and after making the right choices,
change the status and the category in ADDSS of the
design alternatives considered.

3.1.3. ADDSS
2007 we tes
Fraunhofer
Engineering (
combined AD
developed at
Architecture
document the
tool. One of t
from the Fraun

The SAVE
of an existing
architectures
DecisionMode
the rationale
DecisionMode
document su
architectures
iterations to re
SAVE. We d
corresponding
of the funct
ADDSS was
outcome of th
scale-up AD

Fraunhofer recommended to extend the multi-user
management features and a way for resolving
overlapping or incompatible decisions. As a result from
this combined experiment we captured and documented
the design decisions of the architectures recovered using
SAVE. We experienced the benefits for replaying past
design decisions and we perceived these useful in future
refactorings of the DecisionModeler tool.

 at the Fraunhofer IESE. During June
ted ADDSS in collaboration with the
Institute for Experimental Software
IESE) in Kaiserslautern, Germany. We
DSS with a reverse engineering tool

Fraunhofer IESE called SAVE, (Software
Visualization and Evaluation, [15]) to
 design decisions made over a different
he co-authors and one software engineer
hofer participated in the experiment.

 tool was applied to analyze the evolution
tool (i.e.: DecisionModeler) to recover the
of the changes made in the code of the
ler. Because SAVE is unable to describe
 of the changes made in the
ler, we used ADDSS to store and
ch decisions as well as the main
recovered with SAVE. We employed 4
cord the main architectures recovered with
idn't store the intermediate architectures
 to minor changes (i.e.: small refactorings)
ionality of the DecisionModeler tool.
 useful and complementary with the
e SAVE reverse engineering tool; but to
DSS to industrial applications, the

Also, recorded decisions can be helpful to align them

with changes made at the design and code levels. We
also observed that micro-architectural decisions would
take more documenting effort than coarse-grained
decisions, but for our purpose we considered enough to
store the main decisions and their architectures
belonging to the major changes performed over the
DecisionModeler.

Generally speaking, software architects usually do
their reasoning activities implicitly in their minds, but
partially automating such activities (e.g.: the automatic
documentation facility of ADDSS) and recording this
valuable knowledge, results hard because we are trying
to change the way in which architects do their job, as we
want to describe explicitly the decisions that are implicit
in their minds. These new tasks should run in parallel
with modeling tasks and they represent an overhead that
has to be estimated to know the potential benefits for
further maintenance operations. In order to demonstrate
how much effort would be required to record this
architectural knowledge, we carried out a recent
experiment, such as we describe in next section.

Figure 4. List of decisions that motivated a particular architecture.

3.2. A case-study to estimate the effort in
capturing AK with ADDSS 2.0

During January 2008 we carried out a new experiment to
estimate the effort in capturing design decisions with
ADDSS 2.0 along different phases of the software life-
cycle.

3.2.1. Design and objectives of the case study.
In the experience, we didn’t follow the typical
guidelines for controlled experiments. Instead, we
preferred to give the students the chance to capture the
design decisions out of the laboratory hours. The
motivation for this relies on the future collaborative
capabilities of ADDSS that can be used by distance and
distributed teams to store and discuss the decisions
remotely at different times. Hence, our experiment tries
also to simulate this kind of situations on behalf of the
nature of ADDSS as a web-based tool. Because we are
interested in maintenance and evolution, we designed
the experiment in three different phases: development,
maintenance, and evolution, and we measured the effort
spent in both reasoning and modeling tasks for the three
phases. By doing this we could estimate the overhead
required in capturing the decisions with tool support
with respect to typical architecture modeling activities.
We used ADDSS 2.0 with 17 master students from a
regular computer science course from the Rey Juan
Carlos University (URJC) of Madrid (Spain). At least
around 50% of the subjects work for software
companies and they can be considered as senior software
engineers. All of them possess concepts on software
architecture and they have been trained on the notion
and use of architectural design decisions with ADDSS.
In our case study we used the same VR-Church system
as the target system and all the subjects had to capture
the decisions for the three phased mentioned before.

For the development phase we gave them 16
requirements from the VR-Church system and 5 tables
containing the design decisions already made before by
other software architects, including the alternatives and
the choices made as well as the rationale that motivated
such decisions. A number of 32 design decisions
including 15 alternatives were given to them. The
students had to replay the development phase storing in
ADDSS the information concerning the design decisions
and measuring the time employed in this task. Each of
the tables containing a subset of the decisions belongs to
a single iteration in the architecting process, as ADDSS
supports an iterative process that clearly shows the
evolution of the architecture over time.

In addition, they had to specify the architectures for
the decisions stored for each of the iterations enacted.
They used the UML Magicdraw tool in their modeling
activities and they measured the time spent in such
modeling tasks. Users only had to model the static view
of the architecture in the form as a UML package and
class diagram as other architecture views were not
considered. When capturing the decisions, the users had
to simulated the reasoning mental activity and store the
alternative decisions including a status (e.g.: pending)
and a category (e.g.: alternative). After that, the
simulation of the mental process for selecting the design
choices implied a change in the status to approve or
reject the decisions and to select its category (e.g.: main,
alternative, and derived). Hence, the time measured in
this activity tried to simulate how the architect would
reason when several alternatives are available and taking
into account the rationale behind such decision.

Once the first 5 architectures were stored as result of
the development phase, we started the maintenance and
we gave the subjects a new set of requirements (7 FR, 1
HWR, and 1 NFR). In this phase the subjects had to
make new design decisions (not already made before)
and model the architectures. In addition, we gave them
the freedom to use the architecture from the last iteration
of the development phase and modify the existing
decisions or to create new iterations to store the new
decisions and the resulting architectures.

Finally, we carried out an evolution phase in which
the architecture had to evolve to a better stage. In this
phase users were told to refine the previous decisions
and architectures by adding fine-grained decisions
belonging to the specification of new class attributes,
methods, and variation points into the UML classes.
Hence, subjects had to revisit many of the decisions
made in the development and maintenance phases and
modify some of these to add new ones, in particular with
a lower granularity level. Another possibility they had
was to create new iterations to store the new decisions,
as well as reflecting such changes in the designs. We
also told the students to gather and report the effort spent
in their reasoning and modeling activities and to provide
personal conclusions from the experiment. ADDSS
provides an automatic reporting system that produces
PDF documents of the information stored. The students
performed the three phases individually, but they could
interact between them to exchange ideas or to discuss
about the suitability of a potential design choice, even
with the instructor. Hence, the time employed in the
peer-to-peer discussions was added to effort spent in
their reasoning activities. In next subsection we outline
and discuss the results we obtained.

3.2.2. Evaluation. After analyzing the results, we did a
preliminary evaluation and we discarded the results of 3
subjects because they failed in doing correctly
experiment. Hence, we accepted 14 results out of 17 as
valid. Because our main goal was to estimate the overall
overhead of the effort spent in capturing and maintaining
the design decisions for the three main phases, we didn’t
analyze individually the results for each subject to know
how many decisions were captured for each iteration.
The results we obtained for the three phases mentioned
above are discussed below.

Development (architecting): The overall effort we
measured from the subjects in capturing the design
decisions and in the modeling tasks during the initial
architecting phase is shown in Figure 4. The 14 subjects
spent a total of 1759 hours in the reasoning and
capturing of the design decisions for the first five
iterations of the architecture development phase and
2006 hours in modeling the five architecture products.
Hence, the subjects spent a total of 247 hours in their
modeling tasks more than in the decision-making
activities. Capturing the decisions consumed less effort
than typical modeling activities as the decisions were
already made by others and given to the students. The
overhead of 1759 hours spent in the reasoning activities
represents a 47 % with respect to the traditional
architecting phase. In addition, the users defined an
average of 23.5 dependencies between design decisions.
One of the subjects established a high number of
dependencies (i.e. 95), two subjects didn’t establish
dependencies, and three of them defined less than 10
dependencies. The other subjects were on the average.
Therefore, we could deduct that some of the subjects
misunderstood the notion of dependency between design
decisions and confuse this with dependencies between
requirements or even between parts of the architecture.

Maintenance: During maintenance, the effort spent in
capturing the decisions decreased as we expected, but
compared to the architecting phase, the students spent
more time in their reasoning activities than in the
modeling ones (i.e.: 918 hours for making and capturing
decisions and 715 hours in modeling tasks, as Figure 4
shows). This is because in the development phase the
decisions were already given to the subjects, while in the
maintenance phase the users had to think from scratch in
new decisions based on new requirements. Users spent
203 hours more in their reasoning activities than in the
modeling tasks. In addition, the subjects defined an
average of 13.5 dependencies more than in the
development phase, as a result of the complexity

introduced by the new requirements which motivated
new related decisions and new relationships in the
architecture. Moreover, the number of iterations above 5
increased in most cases, as 7 subjects added 2 new
iterations, 2 of them 3 iterations, and 4 of them only 1
iteration. One of the subjects didn’t add any new
iteration and he/she incorporated the new decisions into
the existing architectures. The subjects needed also an
average of 1.8 iterations to store the new decisions.
Hence, with only two iterations the subjects stored in
most cases the new set of decisions, and only two new
architectures had to be modeled. In this phase the
percentage of the effort spent in the decision-making
activity (reasoning + capturing) was around 56 %. The
effort obtained in this phase is not in contradiction with
the total percentage of maintenance effort of a typical
software project as we only carried out one single
maintenance task during a brief period. Typical
maintenance effort percentage is usually estimated over
months or years.

Evolution: Finally, we carried out an evolution activity
to produce a more detailed architecture with respect to
the previous one. Hence, the architecture evolved from
its current state to a better one. The evolution phase
consisted in detailing the attributes, methods, and
variation points in the classes of the UML design. No
new concrete requirements were given to the subjects,
but only the goal to improve the existing designs. Hence,
the subjects had the freedom to revisit previous
decisions and add concrete requirements to motivate the
inclusion of specific attributes, methods, and variation
points (e.g.: by means of stereotypes and tagged values)
in the design. As a result, users spent a number of 453
hours in creating and capturing the new decisions and
530 hours in the modeling tasks (see Figure 4). The
difference between both efforts is 77 more hours spent
in modeling activities. We can explain this difference
because most of the new decisions were a refinement of
previous ones taken in the development and maintenance
phases. Hence, users didn’t have to spend much more
time in reasoning about new decisions but only modify
existing ones or add decisions based on previous
knowledge (i.e.: knowledge reused). Users spent around
a 46 % of their effort in creating the new decisions for
this phase. In this case, adding fine grained decisions
was remarkably more easy that capturing the main key
decisions for the first stages of the architecture. Because
users had to refine the previous decisions, only 17 new
dependencies were added, which represents only an
increment of 1.2 % with respect to the maintenance
phase. In addition, all the subjects excepting two of them

added a single iteration to produce the new version of
the architecture with the refactorings made. Hence, we
believe it was easier to the subjects to add new decisions
in a new iteration than to refine existing ones, which are
often split across several iterations and phases. Hence,
user had only to improve a single architecture from the
last iteration rather than several ones across different
iterations. The evolution phase was slightly different
than the two previous phases because in the
development and maintenance phases, the granularity of
the decisions was coarse-grained (e.g.: based on patterns
and styles) while in the evolution phase all the decisions
were fine-grained. Low level granularity decisions
usually introduce more complexity in the network of
decisions, but the users didn’t perceive this as they only
added a few set of new dependencies. The summary of
the effort spent in the decision-making and modelling
activities is summarized in figure 4.

We can observe from Figure 4 that users needed to
spend more effort in the development phase for creating
the first decisions and modelling the architecture
products, even if the decisions have been made before.
Hence, this effort is expected to be saved or reduce in
subsequent maintenance phases (including evolution) as
the time needed to maintain previous decisions decrease
significantly.

3.3. Threats to Validity

In this section we discuss some of the issues that might
have affected the results of our experiment and may
limit the generalizations of the results.

The first issue refers to carrying out a controlled
experiment in the sense that we gave the students the
freedom to perform the three phases at their houses.
Hence, we didn’t control the time spent by the subjects
in a controlled environment and we had to trust in the

results. To partially solve this threat we gave many
advices about how to enact the case study and tell them
to be fair and honest in measuring the effort.

The second issue involves the decisions of the
development phase as these were made before and given
to the subjects. The main reason for this was because
users were not familiarized with virtual reality system
development and we wanted to facilitate them the first
architecting stages. This issue is easy to solve by giving
the subjects only the requirements that will motivated
the decisions in the development phase.

The third issue might affect the generalization and
extrapolation of the results as we could replay the same
experiment in a different context. Our work cannot be
generalized to industrial settings since we conducted it
within an academic scope. Performing the same tasks in
an industrial setting would be valuable for us in the way
as we could deal with other type of systems and address
the concerns of software architects in a real environment
with different characteristics.

Decisions
Modeling

Decisions
Modeling

Decisions Modeling

0

500

1000

1500

2000

2500

Development Maintenance Evolution

E
ffo

rt
(h

ou
rs

)

Regarding Figure 4,one could say the effort of doing
a project with design rationale would be twice as
without storing the decisions, but two important factors
have not been measured in this experience. The first
refers to the period used for analyzing the results.
Evidently, a long evaluation period is needed to estimate
better the maintenance and evolution efforts of the
design decisions and the savings that could be achieved
in the long term with respect to the development tasks.
The second refers to the cost, not included in the
experiment, of potential reverse engineering activities
carried out to understand a particular architecture in the
absence of design rationale. Figure 4 provides only
effort in time to estimate the burden of capturing design
rationale and compare these in three different phases, as
a proof that maintenance effort can reduced. Otherwise,
we didn’t use cost-benefit analysis to estimate the ROI
in the experiment.

Figure 4. Summary of the effort spent in decision-
making and modelling tasks for the three phases

4. Related Work

Initial attempts for supporting Knowledge Based
Software Engineering (KBSE) systems were popular in
the eighties. For instance, gIBIS [10] is an application
hypertext tool designed to facilitate the capture of early
design deliberations with some collaborative features. Most
of these attempts were focused on general knowledge and
only a few tools have been design with software
engineering in mind.

To date, architectural knowledge has been often neglect
in software architecture development, but an increasing
number of ongoing efforts for capturing and

documenting design decisions and its rationale, some of
them with tool support, have produced some promising
results since 2004. Basic research has been done for
representing the information of architectural design
decisions and how this should be captured. Some
authors have focused on describing template lists of
attributes for capturing such knowledge [8] [17] [23]
while others use ontologies to organize the design
decisions in addition to the attributes that are used to
describe such AK [1] [17]. Others have focused on
describing underlying rationale in the form of
assumptions [19] that are produced during the reasoning
activity in architecting.

Specific tool support is still in not yet mature and at
present, some research prototypes in addition to ADDSS
have been developed. Most of them are still ongoing
projects belonging to different universities. For instance,
PAKME [2] [3] is a web-based architecture knowledge
management system that captures architectural design
decisions and design rationale though specific templates.
PAKME is built on the top of an open source groupware
platform (Hipergate) and provides collaborative features.
Archium [14] is a Java tool that integrates requirements,
decisions, architectures, and implementation models, and
provides traceability among a wide range of concepts.
Archium uses an architecture description language
(ADL) to describe the architectures from a component &
connector view, and stores and visualizes design
decisions and its rationale. AREL [22] is a tool for
capturing architecture decisions, design rationale and
design options by means of a UML meta-model. In
AREL, UML entities are linked to show the
relationships between design decisions, design concerns
and design options. Evolution history of the decisions is
captured with eAREL, which is an extension of AREL.

With respect to empirical studies, the work described
by Falessi et al. [12] has evaluated the importance of
documenting design rationale based on the expected
benefits, but not the effort in capturing such knowledge.

5. Conclusions and Future Work

This work proves the viability of using a codification
strategy for capturing architecture design decisions in
parallel to typical architecture modeling activities, as
opposite to other strategies based on personalization.
ADDSS partially automates the capturing ad
documenting of architectural design decisions and
assists the architect in such engineering activity. The
results from the experiment carried out refine previous
ones and provide more insight as we have estimated the
effort in three different phases of the software life-cycle.

In addition, comparing the effort spent in reasoning and
capturing design rationale with respect to typical
modeling activities let us know to estimate the overhead
required for the three different phases, and which of
these may require more effort, often depending on the
number and type of decisions to store (i.e.: coarse-
grained and fine-grained decisions).

The initial architecting phase was a more time-
consuming activity when decisions were recorded for
the first time. This required overhead can be saved in
further maintenance and evolution activities as shown in
Figure 4, but we perceived the experienced of the
subjects using the tool plays also an important role as
training activities can be carried out to accelerate the
capturing of knowledge. Also, because maintenance and
evolution activities are carried out along many years, a
longer study is needed to obtain more precise results, as
well as to estimate the ROI taking into account the
savings of avoiding other processes like reverse
engineering. In addition, it would be useful to estimate
the number of decisions reused or which decisions
become obsolete.

From the reports the subjects had to fill evaluating the
usefulness of the tool, most of them perceived it useful
and easy to use. One additional conclusion from the
experience out with the Fraunhofer IESE was the utility
to count with recorded design rationale, as the architect
didn’t need to remember past decisions which can be
easily replayed and remembered for the refactorings.

For future work we would like to carry out longer
experiments to estimate more accurately the savings of
and the ROI. Also, we would like to know the impact in
the agility of the architecting process when the number
of attributes for characterizing a decision increases and
how this relates to the user satisfaction when capturing
such knowledge. This might affect the effort spent in
capturing the design decisions as users could be
interested in capturing different types of information. As
ADDSS is not integrated with external modeling tools,
this may hamper the use of tools like for supporting
design rationale. A future integration with other software
engineering tools may facilitate the introduction of these
new activities in the traditional architecting processes.

6. Acknowledgements

This work is partially funded by the PILOH project
of the Spanish Ministry of Education and Research
programme under grant number URJC-CM-2006-CET-
0603. We also thank people from the Fraunhofer, Jens
Knodel, Dirk Muthig, and Thomas Forster, for

supporting our work and providing useful conclusions
for future improvements.

7. References

[1] Akerman, A. and Tyree, J. Using Ontology to Support
Development of Software Architectures. IBM Systems Journal,
45 (4), (2006), 813-825.

[2] Ali- Babar, M. A. and Gorton, I. A Tool for Managing
Software Architecture Knowledge. Proceedings of the 2nd
Workshop on Sharing and Reusing Architectural Knowledge,
ICSE Workshops, IEEE DL (2007).

[3] Ali-Babar, M., Gorton, I. and Kitchenham, B. A
Framework for Supporting Architecture Knowledge and
Rationale Management. in Dutoit, A.H., McCall, R., Mistrik, I.
and Paech, B. eds. Rationale Management in Software
Engineering, Springer, (2006), 237-254.
[4] Bass, L., Clements P. and Kazman R. Software
Architecture in Practice, Addison-Wesley, 2nd edition, (2003).

[5] Boehm, B. W. Software Engineering Economics, IEEE
Transactions on Software Engineering, 10 (1), 4-21 (1984).

[6] Bosch, J. Software Architecture: The Next Step,
Proceedings of the 1st European Workshop on Software
Architecture (EWSA 2004), Springer-Verlag, LNCS 3047, pp.
194-199 (2004).

[7] Capilla, R., Nava, F., Pérez, S. and Dueñas, J.C. A Web-
based Tool for Managing Architectural Design Decisions,
Proceedings of the 1st Workshop on Sharing and Reusing
Architectural Knowledge, ACM Digital Library, Software
Engineering Notes 31 (5) (2006).

[8] Capilla, R., Nava, and Dueñas, J.C. Modeling and
Documenting the Evolution of Architectural Design Decisions,
Proceedings of the 2nd Workshop on Sharing and Reusing
Architectural Knowledge, ICSE Workshops, IEEE DL (2007).

[9] Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R. and Stafford, J. Documenting Software
Architectures. Views and Beyond, Addison-Wesley (2003).

[10] Conklin, J. and Begeman, M., gIBIS: a hypertext tool for
exploratory policy discussion. in Proceedings of the 1988
ACM conference on Computer-supported cooperative work,
(1988), 140-152.

[11] Dueñas, J.C. and Capilla, R. The Decision View of
Software Architecture, Proceedings of the 2nd European
Workshop on Software Architecture (EWSA 2005), Springer-
Verlag, LNCS 3047, pp. 222-230 (2005).

[12] Falessi, D, Cantone, G., Kruchten, P. Do Architecture
Design Methods Meet Architect’s Needs, 7th Working IEEE /

IFIP Conference on Software Architecture (WICSA 2007), pp.
5, (2008).

[13] Jansen, A. and Bosch, J. Evaluation of Tool Support for
Architectural Evolution, 19th International Conference on
Automated Software Engineering (ASE’04), pp. 375-378,
(2004).

[14] Jansen, A., van der Ven, J., Avgeriou, P. and Hammer,
D.K. Tool Support for Architectural Decisions, 6th Working
IEEE / IFIP Conference on Software Architecture (WICSA
2007), pp. 4, (2007).

[15] Knodel, J., Lindvall, M., D. Muthig, M. Naab. "Static
Evaluation of Software Architectures", 10th European
Conference on Software Maintenance and Reengineering, Bari,
Italy, (2006), 279-294.

[16 Kruchten, P., Architectural Blueprints. The “4+1” View
Model of Software Architecture, IEEE Software 12 (6), pp.42-
50 (1995).

[17] Kruchten, P., Lago, P., and van Vliet, H., T. Building up
and Reasoning About Architectural Knowledge, QoSA2006,
Springer-Verlag LNCS 4214, pp. 43-58 (2006).

[18] Perry, D.E. and Wolf, A.L. "Foundations for the Study of
Software Architecture", Software Engineering Notes, ACM
SIGSOFT, October 1992, pp. 40-52.

[19] Roeller, R., Lago, P., van Vliet, H., 2006. Recovering
Architectural Assumptions. The Journal of Systems and
Software 79, 552-573.

[20] Rozanski, N. and Woods. E. Software Systems
Architecture: Working with Stakeholders Using viewpoints
and Perspectives, Addison-Wesley (2005).

[21] Tang, A., Babar, M.A., Gorton, I. and Han, J.A. A Survey
of the Use and Documentation of Architecture Design
Rationale, 5th IEEE/IFIP Working Conference on Software
Architecture, (2005).

[22] Tang, A., Jin, Y. and Han, J. A Rationale-based Model for
Design Traceability and Reasoning, Journal of Systems and
Software 80, pp. 908-934, Elsevier (2007).

[23] Tyree, J. and Akerman, A. Architecture Decisions:
Demystifying Architecture. IEEE Software, vol. 22, no 2, pp.
19-27, (2005).

[24] van der Ven J.S., Jansen, A.G., Nijhuis, J.A.G., and
Bosch, J. Design Decisions: The Bridge between the Rationale
and Architecture. In Rationale Management in Software
Engineering, pp. 329-346, Springer-Verlag (2006).

	1. Introduction
	2. Capturing AK with Tool Support
	2.1. Motivation
	2.2. The ADDSS Approach

	3. Effort in Capturing Design Rationale
	3.1. Initial experiences using ADDSS
	3.2. A case-study to estimate the effort in capturing AK wit
	3.3. Threats to Validity

	4. Related Work
	5. Conclusions and Future Work
	6. Acknowledgements
	7. References

