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Abstract 

 
Capturing and using design rationale is becoming a 

hot topic for software architects, as architectural design 
decisions are now considered first class entities that 
should be recorded and documented explicitly. 
Capturing such architecture knowledge has been 
underestimated for several years as architects have been 
only focused on documenting their architectures and 
neglecting the rationale that led to them. The 
importance of recording design rationale becomes 
enormous for maintenance and evolution activities, as 
design decisions can be replayed in order to avoid 
highly cost architecture recovery processes. Hence, in 
this work we describe how architecture design decisions 
can be captured and documented with specific tool 
support. We also provide effort estimation in capturing 
such knowledge and we compare this with architecture 
modeling efforts in order to analyze the viability of 
knowledge capturing strategies.  
 
1. Introduction 
 

For many years, software architectures have been 
proven useful for representing the main parts of a 
software system [4] by means of architectural 
descriptions or diagrams. From the nineties, different 
types of descriptions (mostly based on UML diagrams) 
are used to provide different perspectives or architecture 
views for different stakeholders [9, 16, 20]. Recently, 
the software architecture research community as well as 
software architects from the industry are facing the 
problem to consider architecture design decisions as first 
class entities that should be documented explicitly [6]. 
The importance of design rationale in software 
architecture was early stated in the nineties by Perry and 
Wolf [18], which consider the rationale as a relevant 
piece for understanding the design. More recently, 
Kruchten et al. [17] have modernized this idea as they 
state that Architectural Knowledge (AK) = Design 

Decisions + Design. Hence, the importance of design 
rationale that has been neglected in the past becomes 
now relevant for most modern architecting processes.  

Therefore, recording, using, managing, and 
documenting architectural design decisions are new 
complementary activities (e.g.: capturing knowledge, 
sharing) that should be carried out in parallel to typical 
architecture modeling tasks. These new challenges need 
to deal with many obstacles in order to overcome those 
barriers that try to impede the transfer of implicit mental 
models from the architect’s expertise to explicit and 
documented knowledge. This architectural knowledge 
(AK) should be codified in a suitable form that can be 
reused afterwards when needed.  

The goal to document explicitly undocumented 
knowledge has an overhead that should be taken into 
account if we want to estimate the potential savings in 
typical maintenance and evolution activities. In this 
context, having tool support to provide some degree of 
automation for the activities aimed to capturing this 
knowledge becomes a strong need as a mean to facilitate 
the gradual introduction of documented design rationale 
in typical architecting processes.  

The remainder of this work is structured as follows. 
Section 2 describes the motivation of our work as well 
as the ADDSS approach, a web-based tool for capturing 
and documenting architectural design decisions. In 
section 3 we describe the experiences carried out with 
ADDSS and the results we obtained measuring the effort 
in capturing architectural design decisions. Section 4 
discusses related work and section 5 outlines the 
conclusions and future work.  
 
2. Capturing AK with Tool Support 
 

In this section we first introduce the motivation of 
our approach and after we describe the ADDSS tool for 
capturing and documenting architecture design 
decisions. 
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2.1. Motivation 
 

Software architects have widely used architecture 
modeling tools for producing and documenting the 
models of their system’s architecture. At present, there is 
lack in the documentation generated by typical 
architecting processes as they never record the design 
decisions that led to a particular architecture. This 
problem is slightly mentioned in [9], which states the 
importance for recording design rationale but not the 
processes required to produce such knowledge. In the 
past, typical architecting tools don’t include design 
rationale as a first class entity that has to be documented 
and only one of the five tools discussed in [13] (i.e.: 
Compendium) provides limited support for capturing 
first class architectural design decisions (maybe some of 
these tools can evolve to more advanced versions in 
which their capabilities are extended to support new 
concepts and features).  

In [24] the authors mention several reasons for using 
rationale in software engineering like supporting 
knowledge transfer or improving quality. Design 
decisions can bridge the gap between rationale and 
architecture whilst the rationale enriches architecture 
with the underlying reasons that led to them. Thus, 
design rationale has a strong impact in the architecting 
construction process, and the design choices can play a 
key role if these can be captured and used.  

Another barrier that has to be tackled is the mentality 
by which users (e.g.: architects, business managers, 
developers) consider enough important the value of 
design rationale and how they use and document the 
knowledge related to design decisions. The survey 
described in [21] mentions the lack of empirical 
evidence to probe the designer’s perception for 
documenting such valuable asset. However, barriers 
found for using and documenting design decisions and 
its rationale motivate the use of processes and tool 
support to facilitate the gradual introduction of new roles 
in architecting like producers and consumers of 
architectural knowledge. These new practices need of 
specific tool support for using and documenting the 
design rationale and avoid negative designer attitudes as 
they don’t care to spend effort in capturing such AK. A 
complementary experience carried out in [12] tries to 
probe the value of design rationale in software 
architecture. This approach mentions that users enacting 
different use cases need different type of information 
describing the design rationale as this information can be 
tailored to different needs.  

 
 

As a result, we can state that there are many cultural 
and technical barriers that may hamper the use and 
documentation of design rationale and users need to be 
convinced about the expected benefits in doing new 
complementary activities pertaining to the architecture 
construction process.  

One way to motivate the capture and use of AK is to 
probe the expected benefits in further maintenance and 
evolution activities. Hence, the overhead required in the 
development phase can be compensated during 
maintenance. Is a well-known fact in software 
engineering that maintenance is a time consuming 
activity that requires a lot of effort and time in order to 
support the evolution of systems over time. For instance, 
typical maintenance costs may range between 50-75% of 
the total development cost [5]. The cost for developing 
and maintaining the architecture should be also 
considered as important as well. Often, maintenance is 
only performed at the code level and when the 
architecture becomes obsolete or inexistent, highly cost 
reverse engineering processes have to be carried out to 
recover the design from the changes made in the code, as 
the design decisions that led to such changes were never 
recorded. We have motivated the importance for 
recording architectural design decisions in relationship 
to typical architecting activities. Also, estimating this 
new effort is important to know how recording such 
design decisions can pay off. Hence, we need to probe 
the value of capturing the design decisions in the overall 
design process, as effort estimation will serve us to 
know the savings along the life of a software system.  

 
2.2. The ADDSS Approach 
 

The Architecture Design Decision Support System 
(ADDSS – http://triana.escet.urjc.es/ADDSS) is a web-
based tool for capturing, managing and documenting 
architecture design decisions [7]. ADDSS’ conceptual 
model [8] relies on the ideas described in the “decision 
view” [11], which consider this as a new cross-cutting 
architectural view with respect to the traditional ones 
[16] used for documenting the architecture. The 
decisions view fosters capturing and documenting the 
design decisions and the rationale that happen during 
any architecting process.  

The main capabilities of ADDSS are summarized in 
the following bullet points. 
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• Capturing design rationale, which provides 
templates of attributes specific to capture and 
record the design decisions and their rationale. 
Mandatory and optional list of attributes provide 
flexible approach for characterizing and 
documenting the design decisions for different 
user profiles. 

• Stored design patterns and architecture styles 
which can be retrieved as design solutions during 
the reasoning activity.  

• Relationship between requirements, 
architectures and decisions, are useful links that 
can be established during the architecting activity 
to bridge the gap between requirements and 
architectures. Also, links between decisions can 
be defined to track the traces between the 
decisions and used to estimate change impact 
analysis or to track the root causes of changes.  

• Iterative construction process comprises the 
main architecting activities which relate typical 
architecture modelling tasks with the 
characterization of the design decisions. In this 
phase, we construct and visualize the different 
architecture products with their decisions. 
Architectures can be uploaded into ADDSS 
knowledge base to show the evolution of the 
design. ADDSS users can navigate and brose the 
architectures and the decisions made.  

• Architecture view support which provides the 
different perspectives of the same architecture. 
Users can visualize each different architecture 
view and display the UML diagrams for each 
single view.  

• Documenting decisions, results key to extend the 
traditional architecture documentation view 
following the goals stated in the “decision view” 
[11]. An automatic report facility provides online 
PDF documents containing a detailed description 
of the decisions made for each architecture, as 
well as the requirements and architectures for 
each set of decisions. This documentation clearly 
shows the relationships between decisions and 
requirements and architectures. 

 
Not all the activities dealing with architectural design 

decisions are supported by ADDSS. The previous list 
provides a set of core features that seem to be enough 
for capturing design decisions, as it is the mail goal of 
this work. Otherwise, are capabilities are desired for 
future extensions of the tool, like for instance knowledge 
sharing. Also, some improvements to previous 
approaches have been made, such as the feature of 

ADDSS that describes the evolution of the architectures 
with their design rationale in an iterative way, similar as 
architects built their architectures.  

 
3. Effort in Capturing Design Rationale 
 

In order to face some of the challenges described in 
section 2.1, we used ADDSS to determine the effort in 
capturing architecture design decisions compared to 
typical architecture modeling tasks. Hence, we can 
estimate the overhead required to store such knowledge 
and determine the viability of capturing AK as well as 
the potential benefits for further maintenance activities.  

We first summarize previous experiences using 
ADDSS and second, we outline how we carried out a 
case study to estimate the effort required to capture 
architectural design decisions in different phases of the 
software life-cycle.  

 
3.1. Initial experiences using ADDSS 
 

We released ADDSS 1.0 in 2006 and version 2.0 in 
2007, and we evaluated the tool by means of several 
experiences as we summarize below. 

 
3.1.1. ADDSS 1.0 with URJC students. We used 
ADDSS 1.0 with twenty-two master students from a 
master course of the Rey Juan Carlos University(URJC), 
Madrid (Spain), participated in the evaluation. The 
students were organized in eleven teams of two persons 
and they had to store the decisions and the architectures 
for a subset of requirements belonging to a virtual reality 
system (VR-Church). The students were familiarized 
with software architecture concepts and architectural 
design decisions before using ADDSS. As a result, we 
interviewed the students and all of them had to fill a 
questionnaire to evaluate the capabilities of the tool. The 
average effort spent by all the teams in capturing the 
decisions was 10 hours, with some significant 
differences among the teams, maybe because of the 
different experience of the members, as many of them 
work for companies. Other results highlighted the high 
usability of the tool, the easy of use, and the low 
learning effort. The students employed between four and 
six iterations to deliver the final architecture of the VR-
Church system, and several intermediate architectural 
products were stored with the decisions made. Figure 1 
shows the results of the effort in hours spent by all the 
teams. 
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Interviews with the two domain experts and a domain 
analysis activity were carried out before using ADDSS. 
We spent around one month in the design and modeling 
activities of the VR-Church system, and four 
intermediate architecture products were built (with 
Magicdraw 10.5) before the final architecture was 
released. Hence, the construction the VR-Church 
architecture took five iterations, and we stored these 
using ADDSS, such as Figure 2 shows. 
During the decision making process, a number of 32 
coarse-grained design decisions, including 15 alternative 
decisions were considered. From the whole number of 
decisions, 24 of them were approved as valid. The status 
and category attributes were proven useful during the 
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Figure 1. Effort spent by the teams using ADDSS 
.2. Architecting a virtual reality system. In our 
cond experience we used ADDSS 2.0 (released in 
07) with improved capabilities with respect to version 
. Some of these new capabilities include: better 

chitecture visualization, support for architecture 
ws, support for alternative decisions, and attributes 

 describe the status and category of the decisions 
red. To test the new version we used the same VR-
urch system but taking into account the complete list 

 requirements instead of the subset used in our first 
se study. In the experience two of the co-authors acted 
 software architects while two other persons acted as 
main experts.  

evolution of the architecture. Fine-grained decisions like 
variation points were not stored in order to alleviate the 
effort in capturing the decisions. We also defined and 
stored 24 dependencies between the decisions. We 
didn’t measure the effort in recording such knowledge 
but we proved the viability of the tool for capturing and 
documenting the design decisions along with their 
architectures. Figure 3 shows a screenshot used by the 
architect to capture the information of a design decision, 
with explicit links to the requirements that motivate such 
decision (left box of Figure 3), and dependencies to 
previous decisions, shown in the right box of Figure 3. 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 3. Characterization of a design decision with 
explicit links to requirements and architectures.  
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Once the architect has characterized a design 
decision, he/she can browse the list of decisions made 
(Figure 4) and upload the architecture, which is the 
result of the set of decisions made. After the decisions 
are stored for the first time, the architect and other 
relevant stakeholders cans deliberate about the 
alternative decisions and after making the right choices, 
change the status and the category in ADDSS of the 
design alternatives considered.  
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management features and a way for resolving 
overlapping or incompatible decisions. As a result from 
this combined experiment we captured and documented 
the design decisions of the architectures recovered using 
SAVE. We experienced the benefits for replaying past 
design decisions and we perceived these useful in future 
refactorings of the DecisionModeler tool.  

 
 

 at the Fraunhofer IESE. During June 
ted ADDSS in collaboration with the 
Institute for Experimental Software 
IESE) in Kaiserslautern, Germany. We 
DSS with a reverse engineering tool 

Fraunhofer IESE called SAVE, (Software 
Visualization and Evaluation, [15]) to 
 design decisions made over a different 
he co-authors and one software engineer 
hofer participated in the experiment. 

 tool was applied to analyze the evolution 
tool (i.e.: DecisionModeler) to recover the 
of the changes made in the code of the 
ler. Because SAVE is unable to describe 
 of the changes made in the 
ler, we used ADDSS to store and 
ch decisions as well as the main 
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 useful and complementary with the 
e SAVE reverse engineering tool; but to 
DSS to industrial applications, the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also, recorded decisions can be helpful to align them 

with changes made at the design and code levels. We 
also observed that micro-architectural decisions would 
take more documenting effort than coarse-grained 
decisions, but for our purpose we considered enough to 
store the main decisions and their architectures 
belonging to the major changes performed over the 
DecisionModeler.  

Generally speaking, software architects usually do 
their reasoning activities implicitly in their minds, but 
partially automating such activities (e.g.: the automatic 
documentation facility of ADDSS) and recording this 
valuable knowledge, results hard because we are trying 
to change the way in which architects do their job, as we 
want to describe explicitly the decisions that are implicit 
in their minds. These new tasks should run in parallel 
with modeling tasks and they represent an overhead that 
has to be estimated to know the potential benefits for 
further maintenance operations. In order to demonstrate 
how much effort would be required to record this 
architectural knowledge, we carried out a recent 
experiment, such as we describe in next section.  

 

Figure 4. List of decisions that motivated a particular architecture. 



3.2. A case-study to estimate the effort in 
capturing AK with ADDSS 2.0 
 
During January 2008 we carried out a new experiment to 
estimate the effort in capturing design decisions with 
ADDSS 2.0 along different phases of the software life-
cycle.  
 
3.2.1. Design and objectives of the case study.  
In the experience, we didn’t follow the typical 
guidelines for controlled experiments. Instead, we 
preferred to give the students the chance to capture the 
design decisions out of the laboratory hours. The 
motivation for this relies on the future collaborative 
capabilities of ADDSS that can be used by distance and 
distributed teams to store and discuss the decisions 
remotely at different times. Hence, our experiment tries 
also to simulate this kind of situations on behalf of the 
nature of ADDSS as a web-based tool. Because we are 
interested in maintenance and evolution, we designed 
the experiment in three different phases: development, 
maintenance, and evolution, and we measured the effort 
spent in both reasoning and modeling tasks for the three 
phases. By doing this we could estimate the overhead 
required in capturing the decisions with tool support 
with respect to typical architecture modeling activities. 
We used ADDSS 2.0 with 17 master students from a 
regular computer science course from the Rey Juan 
Carlos University (URJC) of Madrid (Spain). At least 
around 50% of the subjects work for software 
companies and they can be considered as senior software 
engineers. All of them possess concepts on software 
architecture and they have been trained on the notion 
and use of architectural design decisions with ADDSS. 
In our case study we used the same VR-Church system 
as the target system and all the subjects had to capture 
the decisions for the three phased mentioned before.  

For the development phase we gave them 16 
requirements from the VR-Church system and 5 tables 
containing the design decisions already made before by 
other software architects, including the alternatives and 
the choices made as well as the rationale that motivated 
such decisions. A number of 32 design decisions 
including 15 alternatives were given to them. The 
students had to replay the development phase storing in 
ADDSS the information concerning the design decisions 
and measuring the time employed in this task. Each of 
the tables containing a subset of the decisions belongs to 
a single iteration in the architecting process, as ADDSS 
supports an iterative process that clearly shows the 
evolution of the architecture over time.  

In addition, they had to specify the architectures for 
the decisions stored for each of the iterations enacted. 
They used the UML Magicdraw tool in their modeling 
activities and they measured the time spent in such 
modeling tasks. Users only had to model the static view 
of the architecture in the form as a UML package and 
class diagram as other architecture views were not 
considered. When capturing the decisions, the users had 
to simulated the reasoning mental activity and store the 
alternative decisions including a status (e.g.: pending) 
and a category (e.g.: alternative). After that, the 
simulation of the mental process for selecting the design 
choices implied a change in the status to approve or 
reject the decisions and to select its category (e.g.: main, 
alternative, and derived). Hence, the time measured in 
this activity tried to simulate how the architect would 
reason when several alternatives are available and taking 
into account the rationale behind such decision.  

Once the first 5 architectures were stored as result of 
the development phase, we started the maintenance and 
we gave the subjects a new set of requirements (7 FR, 1 
HWR, and 1 NFR). In this phase the subjects had to 
make new design decisions (not already made before) 
and model the architectures. In addition, we gave them 
the freedom to use the architecture from the last iteration 
of the development phase and modify the existing 
decisions or to create new iterations to store the new 
decisions and the resulting architectures.  

Finally, we carried out an evolution phase in which 
the architecture had to evolve to a better stage. In this 
phase users were told to refine the previous decisions 
and architectures by adding fine-grained decisions 
belonging to the specification of new class attributes, 
methods, and variation points into the UML classes. 
Hence, subjects had to revisit many of the decisions 
made in the development and maintenance phases and 
modify some of these to add new ones, in particular with 
a lower granularity level. Another possibility they had 
was to create new iterations to store the new decisions, 
as well as reflecting such changes in the designs. We 
also told the students to gather and report the effort spent 
in their reasoning and modeling activities and to provide 
personal conclusions from the experiment. ADDSS 
provides an automatic reporting system that produces 
PDF documents of the information stored. The students 
performed the three phases individually, but they could 
interact between them to exchange ideas or to discuss 
about the suitability of a potential design choice, even 
with the instructor. Hence, the time employed in the 
peer-to-peer discussions was added to effort spent in 
their reasoning activities. In next subsection we outline 
and discuss the results we obtained.  



3.2.2. Evaluation. After analyzing the results, we did a 
preliminary evaluation and we discarded the results of 3 
subjects because they failed in doing correctly 
experiment. Hence, we accepted 14 results out of 17 as 
valid. Because our main goal was to estimate the overall 
overhead of the effort spent in capturing and maintaining 
the design decisions for the three main phases, we didn’t 
analyze individually the results for each subject to know 
how many decisions were captured for each iteration. 
The results we obtained for the three phases mentioned 
above are discussed below. 
 
Development (architecting): The overall effort we 
measured from the subjects in capturing the design 
decisions and in the modeling tasks during the initial 
architecting phase is shown in Figure 4. The 14 subjects 
spent a total of 1759 hours in the reasoning and 
capturing of the design decisions for the first five 
iterations of the architecture development phase and 
2006 hours in modeling the five architecture products. 
Hence, the subjects spent a total of 247 hours in their 
modeling tasks more than in the decision-making 
activities. Capturing the decisions consumed less effort 
than typical modeling activities as the decisions were 
already made by others and given to the students. The 
overhead of 1759 hours spent in the reasoning activities 
represents a 47 % with respect to the traditional 
architecting phase. In addition, the users defined an 
average of 23.5 dependencies between design decisions. 
One of the subjects established a high number of 
dependencies (i.e. 95), two subjects didn’t establish 
dependencies, and three of them defined less than 10 
dependencies. The other subjects were on the average. 
Therefore, we could deduct that some of the subjects 
misunderstood the notion of dependency between design 
decisions and confuse this with dependencies between 
requirements or even between parts of the architecture.  
 
Maintenance: During maintenance, the effort spent in 
capturing the decisions decreased as we expected, but 
compared to the architecting phase, the students spent 
more time in their reasoning activities than in the 
modeling ones (i.e.: 918 hours for making and capturing 
decisions and 715 hours in modeling tasks, as Figure 4 
shows). This is because in the development phase the 
decisions were already given to the subjects, while in the 
maintenance phase the users had to think from scratch in 
new decisions based on new requirements. Users spent 
203 hours more in their reasoning activities than in the 
modeling tasks. In addition, the subjects defined an 
average of 13.5 dependencies more than in the 
development phase, as a result of the complexity 

introduced by the new requirements which motivated 
new related decisions and new relationships in the 
architecture. Moreover, the number of iterations above 5 
increased in most cases, as 7 subjects added 2 new 
iterations, 2 of them 3 iterations, and 4 of them only 1 
iteration. One of the subjects didn’t add any new 
iteration and he/she incorporated the new decisions into 
the existing architectures. The subjects needed also an 
average of 1.8 iterations to store the new decisions. 
Hence, with only two iterations the subjects stored in 
most cases the new set of decisions, and only two new 
architectures had to be modeled. In this phase the 
percentage of the effort spent in the decision-making 
activity (reasoning + capturing) was around 56 %. The 
effort obtained in this phase is not in contradiction with 
the total percentage of maintenance effort of a typical 
software project as we only carried out one single 
maintenance task during a brief period. Typical 
maintenance effort percentage is usually estimated over 
months or years.  
 
Evolution: Finally, we carried out an evolution activity 
to produce a more detailed architecture with respect to 
the previous one. Hence, the architecture evolved from 
its current state to a better one. The evolution phase 
consisted in detailing the attributes, methods, and 
variation points in the classes of the UML design. No 
new concrete requirements were given to the subjects, 
but only the goal to improve the existing designs. Hence, 
the subjects had the freedom to revisit previous 
decisions and add concrete requirements to motivate the 
inclusion of specific attributes, methods, and variation 
points (e.g.: by means of stereotypes and tagged values) 
in the design. As a result, users spent a number of 453 
hours in creating and capturing the new decisions and 
530 hours in the modeling tasks (see Figure 4). The 
difference between both efforts is 77 more hours spent 
in modeling activities. We can explain this difference 
because most of the new decisions were a refinement of 
previous ones taken in the development and maintenance 
phases. Hence, users didn’t have to spend much more 
time in reasoning about new decisions but only modify 
existing ones or add decisions based on previous 
knowledge (i.e.: knowledge reused). Users spent around 
a 46 % of their effort in creating the new decisions for 
this phase. In this case, adding fine grained decisions 
was remarkably more easy that capturing the main key 
decisions for the first stages of the architecture. Because 
users had to refine the previous decisions, only 17 new 
dependencies were added, which represents only an 
increment of 1.2 % with respect to the maintenance 
phase. In addition, all the subjects excepting two of them 



added a single iteration to produce the new version of 
the architecture with the refactorings made. Hence, we 
believe it was easier to the subjects to add new decisions 
in a new iteration than to refine existing ones, which are 
often split across several iterations and phases. Hence, 
user had only to improve a single architecture from the 
last iteration rather than several ones across different 
iterations. The evolution phase was slightly different 
than the two previous phases because in the 
development and maintenance phases, the granularity of 
the decisions was coarse-grained (e.g.: based on patterns 
and styles) while in the evolution phase all the decisions 
were fine-grained. Low level granularity decisions 
usually introduce more complexity in the network of 
decisions, but the users didn’t perceive this as they only 
added a few set of new dependencies. The summary of 
the effort spent in the decision-making and modelling 
activities is summarized in figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can observe from Figure 4 that users needed to 
spend more effort in the development phase for creating 
the first decisions and modelling the architecture 
products, even if the decisions have been made before. 
Hence, this effort is expected to be saved or reduce in 
subsequent maintenance phases (including evolution) as 
the time needed to maintain previous decisions decrease 
significantly.  
 
3.3. Threats to Validity 
 
In this section we discuss some of the issues that might 
have affected the results of our experiment and may 
limit the generalizations of the results. 

The first issue refers to carrying out a controlled 
experiment in the sense that we gave the students the 
freedom to perform the three phases at their houses. 
Hence, we didn’t control the time spent by the subjects 
in a controlled environment and we had to trust in the 

results. To partially solve this threat we gave many 
advices about how to enact the case study and tell them 
to be fair and honest in measuring the effort. 

The second issue involves the decisions of the 
development phase as these were made before and given 
to the subjects. The main reason for this was because 
users were not familiarized with virtual reality system 
development and we wanted to facilitate them the first 
architecting stages. This issue is easy to solve by giving 
the subjects only the requirements that will motivated 
the decisions in the development phase.  

The third issue might affect the generalization and 
extrapolation of the results as we could replay the same 
experiment in a different context. Our work cannot be 
generalized to industrial settings since we conducted it 
within an academic scope. Performing the same tasks in 
an industrial setting would be valuable for us in the way 
as we could deal with other type of systems and address 
the concerns of software architects in a real environment 
with different characteristics.  
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Regarding Figure 4,one could say the effort of doing 
a project with design rationale would be twice as 
without storing the decisions, but two important factors 
have not been measured in this experience. The first 
refers to the period used for analyzing the results. 
Evidently, a long evaluation period is needed to estimate 
better the maintenance and evolution efforts of the 
design decisions and the savings that could be achieved 
in the long term with respect to the development tasks. 
The second refers to the cost, not included in the 
experiment, of potential reverse engineering activities 
carried out to understand a particular architecture in the 
absence of design rationale. Figure 4 provides only 
effort in time to estimate the burden of capturing design 
rationale and compare these in three different phases, as 
a proof that maintenance effort can reduced. Otherwise, 
we didn’t use cost-benefit analysis to estimate the ROI 
in the experiment.  

Figure 4. Summary of the effort spent in decision-
making and modelling tasks for the three phases 

 
4. Related Work 
 

Initial attempts for supporting Knowledge Based 
Software Engineering (KBSE) systems were popular in 
the eighties. For instance, gIBIS [10] is an application 
hypertext tool designed to facilitate the capture of early 
design deliberations with some collaborative features. Most 
of these attempts were focused on general knowledge and 
only a few tools have been design with software 
engineering in mind.  

To date, architectural knowledge has been often neglect 
in software architecture development, but an increasing 
number of ongoing efforts for capturing and 



documenting design decisions and its rationale, some of 
them with tool support, have produced some promising 
results since 2004. Basic research has been done for 
representing the information of architectural design 
decisions and how this should be captured. Some 
authors have focused on describing template lists of 
attributes for capturing such knowledge [8] [17] [23] 
while others use ontologies to organize the design 
decisions in addition to the attributes that are used to 
describe such AK [1] [17]. Others have focused on 
describing underlying rationale in the form of 
assumptions [19] that are produced during the reasoning 
activity in architecting.  

Specific tool support is still in not yet mature and at 
present, some research prototypes in addition to ADDSS 
have been developed. Most of them are still ongoing 
projects belonging to different universities. For instance, 
PAKME [2] [3] is a web-based architecture knowledge 
management system that captures architectural design 
decisions and design rationale though specific templates. 
PAKME is built on the top of an open source groupware 
platform (Hipergate) and provides collaborative features. 
Archium [14] is a Java tool that integrates requirements, 
decisions, architectures, and implementation models, and 
provides traceability among a wide range of concepts. 
Archium uses an architecture description language 
(ADL) to describe the architectures from a component & 
connector view, and stores and visualizes design 
decisions and its rationale. AREL [22] is a tool for 
capturing architecture decisions, design rationale and 
design options by means of a UML meta-model. In 
AREL, UML entities are linked to show the 
relationships between design decisions, design concerns 
and design options. Evolution history of the decisions is 
captured with eAREL, which is an extension of AREL. 

With respect to empirical studies, the work described 
by Falessi et al. [12] has evaluated the importance of 
documenting design rationale based on the expected 
benefits, but not the effort in capturing such knowledge.  

 
5. Conclusions and Future Work 
 

This work proves the viability of using a codification 
strategy for capturing architecture design decisions in 
parallel to typical architecture modeling activities, as 
opposite to other strategies based on personalization. 
ADDSS partially automates the capturing ad 
documenting of architectural design decisions and 
assists the architect in such engineering activity. The 
results from the experiment carried out refine previous 
ones and provide more insight as we have estimated the 
effort in three different phases of the software life-cycle. 

In addition, comparing the effort spent in reasoning and 
capturing design rationale with respect to typical 
modeling activities let us know to estimate the overhead 
required for the three different phases, and which of 
these may require more effort, often depending on the 
number and type of decisions to store (i.e.: coarse-
grained and fine-grained decisions).  

The initial architecting phase was a more time-
consuming activity when decisions were recorded for 
the first time. This required overhead can be saved in 
further maintenance and evolution activities as shown in 
Figure 4, but we perceived the experienced of the 
subjects using the tool plays also an important role as 
training activities can be carried out to accelerate the 
capturing of knowledge. Also, because maintenance and 
evolution activities are carried out along many years, a 
longer study is needed to obtain more precise results, as 
well as to estimate the ROI taking into account the 
savings of avoiding other processes like reverse 
engineering. In addition, it would be useful to estimate 
the number of decisions reused or which decisions 
become obsolete.  

From the reports the subjects had to fill evaluating the 
usefulness of the tool, most of them perceived it useful 
and easy to use. One additional conclusion from the 
experience out with the Fraunhofer IESE was the utility 
to count with recorded design rationale, as the architect 
didn’t need to remember past decisions which can be 
easily replayed and remembered for the refactorings.   

For future work we would like to carry out longer 
experiments to estimate more accurately the savings of 
and the ROI. Also, we would like to know the impact in 
the agility of the architecting process when the number 
of attributes for characterizing a decision increases and 
how this relates to the user satisfaction when capturing 
such knowledge. This might affect the effort spent in 
capturing the design decisions as users could be 
interested in capturing different types of information. As 
ADDSS is not integrated with external modeling tools, 
this may hamper the use of tools like for supporting 
design rationale. A future integration with other software 
engineering tools may facilitate the introduction of these 
new activities in the traditional architecting processes.  
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