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Abstract—We investigate the increasingly prominent task of
jointly inferring multiple networks from nodal observations.
While most joint inference methods assume that observations
are available at all nodes, we consider the realistic and more
difficult scenario where a subset of nodes are hidden and cannot
be measured. Under the assumptions that the partially observed
nodal signals are graph stationary and the networks have similar
connectivity patterns, we derive structural characteristics of the
connectivity between hidden and observed nodes. This allows us
to formulate an optimization problem for estimating networks
while accounting for the influence of hidden nodes. We identify
conditions under which a convex relaxation yields the sparsest
solution, and we formalize the performance of our proposed
optimization problem with respect to the effect of the hidden
nodes. Finally, synthetic and real-world simulations provide
evaluations of our method in comparison with other baselines.

Index Terms—Graph learning, network topology inference,
hidden nodes, graph signal processing, graph stationarity, multi-
layer graphs.

I. INTRODUCTION

IN recent years, graphs have become a staple model of
the irregular (non-Euclidean) structure commonly found in

contemporary data. Disciplines like signal processing often
rely on graphs to capture the underlying irregular domain
of the signals, where such successful applications include
genetics, brain networks, and communications [2]–[4]. Nev-
ertheless, despite the popularity of graph-based methods, in
practice the topology of the graph is often not readily available,
spurring the development of graph learning algorithms [5]–[7]
to infer the network topology from a set of nodal observations.

Indeed, the task of network topology inference, also known
as graph learning, has emerged as a vibrant research area
within graph signal processing (GSP) [8]–[11]. A crucial
assumption for learning the graph topology is the statistical
relationship between the signals and the unknown topology.
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Different assumptions lead to different methods, with notewor-
thy examples including correlation networks and (Gaussian)
Markov random fields ((G)MFR) [2], [5], [12], smooth (local
total variation) models [13]–[15], GSP-based approaches [16]–
[18], and models with more elaborate graph priors [19], [20].
A common feature of the previous works is that they focus
on learning a single graph. However, many contemporary
setups involve multiple related networks, each with a subset
of signals. Some examples include brain analytics, where
observations from different patients are used to estimate their
brain functional networks; social networks, where the same
set of users may present different types of interactions; or
multi-hop communication networks in dynamic environments,
where a network needs to be inferred for each time instant.
Intuitively, in situations where several closely related networks
exist, approaching the problem in a joint fashion can boost the
performance of network topology inference by harnessing the
relationships among graphs [21]–[26].

Despite the clear benefits, joint network topology inference
approaches usually assume that observations from every node
are available, which is often not the case. In many relevant
scenarios, the observed signals correspond only to a subset of
the nodes in the whole graph, while the remaining nodes stay
unobserved or hidden. Ignoring the presence of the hidden
nodes can drastically hinder the performance of the graph
learning algorithms. Nevertheless, accounting for their influ-
ence is not a trivial endeavor since the inference task becomes
ill-posed. For single network inference, some works dealing
with this challenging setting include graphical models [27],
[28], inference of linear Bayesian networks [29], nonlinear
regression [30], and stationary-based algorithms [31], [32].
However, the presence of hidden nodes is yet to be addressed
for several unknown graphs. Since the key to joint topology
inference is exploiting the similarity of the graphs, it is crucial
to model the influence of the hidden nodes to measure the
graph similarity between nodes that remain unobserved.

To this end, we propose a topology inference method that
simultaneously performs joint estimation of multiple graphs
and accounts for the presence of hidden variables. Under
the assumption that the observed signals are realizations of
a random process that is stationary on the graph [10], [33],
we formalize the relationship between the nodal observations
and the unknown networks under the influence of the hidden
nodes. The joint formulation necessitates exploiting graph
similarities, not only with respect to observed nodes but also
to hidden ones. To accomplish this, we carefully model the
structure associated with latent variables and exploit it with
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a regularization inspired by the group Lasso penalty [34].
Finally, we conduct thorough mathematical and numerical
analyses of the proposed approach, where we show the
conditions under which it recovers the sparsest solution and
bounds the error of the estimated graphs, and we evaluate its
performance and the hidden variables’ detrimental influence
through simulations with synthetic and real-world data.
Related work and contributions. Early methods for joint
graph learning were introduced in [22] assuming that obser-
vations follow a GMRF and, later on, in [23] followed by a
joint inference method for graph stationary signals. However,
both works assumed that observations from the whole graphs
were available. At the same time, the influence of hidden
nodes when learning a single graph was studied in [27]
and [32] assuming that the observations adhered respectively
to a GMRF or a graph-stationary model. On the other hand,
the relevant task of learning several graphs in the presence
of hidden nodes has only been considered under GMRF
assumptions in the preliminary results from [35]. In contrast,
in this paper, we (i) build over our previous work from [1]
for joint graph learning with hidden variables under the more
lenient assumption of stationary observations; and (ii) develop
a theoretical analysis to characterize how the hidden nodes
influence the quality of the estimated graphs. Finally, note that
GMRF and graph stationarity are intrinsically different models
for the observations, resulting in materially different inference
algorithms and, even more relevant for the problem at hand,
requiring different methods to encourage graph similarities
with respect to both observed and hidden nodes.

To summarize, our main contributions are:
• We design a convex optimization problem to jointly learn

the topology of several related graphs in the presence of
hidden variables under graph-stationary observations.

• We rely on a regularization inspired by group Lasso to
model the similarity between hidden nodes and hence
harness the similarity of the entire node set, both hidden
and observed nodes.

• We derive theoretical guarantees for the recoverability of
the estimated graphs in the presence of hidden nodes.

• We evaluate the performance of the proposed approach
and compare it with state-of-the-art alternatives in syn-
thetic and real-world datasets.

The remainder of the paper is organized as follows. Sec-
tion II introduces GSP concepts necessary for our proposed
network topology inference method and its theoretical guar-
antees. We introduce in Section III the task of learning graphs
in the presence of hidden nodes. In Section IV we present
our proposed optimization problem that accounts for hidden
nodes, along with its convex relaxation. We provide theoretical
guarantees for the viability and performance of our method
in Section V, which are validated by several synthetic and
real-world experiments in Section VI. Finally, a concluding
discussion is provided in Section VII.

II. FUNDAMENTALS OF GSP

We introduce notation and concepts in GSP to characterize
the statistical relationship between the network topology and

measurements on nodes, both observed and hidden.

Notation. For a matrix Y ∈ RM×N , vec(Y) ∈ RMN

denotes the vertical concatenation of the columns of Y. We
let calligraphic letters denote index sets, where, given any
matrix X ∈ RM×N and any vector x ∈ RN , we let XC,·
and X·,C respectively return the rows and columns of X
selected from index set C and xC returns the entries of x
selected from C. The notation IM denotes the identity matrix
of size M×M , while 1M×N and 0M×N respectively represent
matrices of all ones and zeros of size M ×N . We let D, L,
and U respectively denote the indices of the diagonal, lower
triangular, and upper triangular entries of a vectorized square
matrix, i.e., for any matrix Y ∈ RM×M and y = vec(Y), we
have that yD contains the diagonal entries of Y. We define
yL and yU similarly. The notation O(·) and o(·) denote the
usual asymptotic meaning, and we say that f ≍ g if f = O(g)
and g = O(f).

Graph signal processing and graph stationarity. We con-
sider undirected graphs of the form G = (V, E), where V
denotes the set of |V| = N nodes and E ⊆ V × V is the edge
set such that the unordered pair (i, j) ∈ E if and only if nodes
i and j are connected. A convenient representation for the
structure of a graph is its adjacency matrix A ∈ RN×N , where
Aij = Aji ̸= 0 if and only if (i, j) ∈ E . We may define a more
general class of matrices to encode graph structure known as
the graph shift operator (GSO), of which the adjacency matrix
is an example [8]–[10]. Formally, the GSO is a square matrix
S ∈ RN×N , where Sij ̸= 0 only if i = j or (i, j) ∈ E .
Commonly chosen GSOs include the adjacency matrix A
and the graph Laplacian L := diag(A1) − A [8], [10].
Because we consider undirected graphs, S is symmetric and
thus diagonalizable.

Critical to the network inference task is the statistical
relationship between nodal observations and the topology of
G. We represent real-valued observations on the nodes of G as
graph signals x = [x1, . . . , xN ]⊤ ∈ RN , where xi denotes the
signal value at the i-th node. In this work, we assume that the
observations are realizations of a random graph signal that is
stationary on G [16], [33], [36], a versatile model that has
shown theoretical and practical relevance. From a mathemat-
ical point of view, a random graph signal x is stationary on
its underlying graph G if the covariance matrix of x, denoted
as C, can be written as a (matrix) polynomial of the GSO S,
which results in C and S having the same eigenvectors [10],
[33], [37], [38]. This definition includes correlation networks,
where C = S and MRFs, where C = S−1, as particular cases.
From a practical (generative) point of view, stationary random
graph signals are particularly suited to represent consensus
dynamics, heat diffusion processes, and network processes
on brain structural networks [39]–[41]. Formally, under this
point of view we have that the random graph signal x can
be modelled as x = Hw, where w is a stochastic zero-mean
white input signal and H performs the diffusion process on
w that characterizes the influence of the GSO S on x. To that
end, the matrix H is assumed to be a linear graph filter [9],
[42], [43], a matrix polynomial of the GSO H =

∑L−1
l=0 hlS

l

with real-valued filter coefficients {hl}L−1
l=0 that sufficiently



3

models nodal behavior for many signal processing tasks,
including denoising and interpolation [10], [39], [42], [44],
[45]. The structure of S dictates the behavior of the graph
signal x = Hw, where we may view Slw as the diffusion
of w across an l-hop neighborhood. Under the diffusion
model, the signal behavior at the i-th node is encoded in
the diffused signal values in an (L − 1)-hop radius. Under
this setting, the graph signals are random with covariance
C = E[xx⊤] = HE[ww⊤]H = H2 due to the input w being
white. Clearly, if H is a polynomial of S, so is C = H2,
showing that both point of views are equivalent.

Finally, we note that under stationarity of x, we have that
matrices S and C commute and hence, it must hold that CS =
SC. This is a compact and tractable way to account for the
graph stationarity of the observed signals and will be later on
used as a constraint in our optimization problems.

III. INFERENCE OF MULTILAYERED GRAPHS WITH LATENT
VARIABLES

Let there be a set of K undirected networks {G(k)}Kk=1

on the same set V of N nodes with GSOs denoted as
{S∗(k)}Kk=1. We assume that for each graph there exist a set
with Rk realizations of a stationary graph signal collected
in data matrices X(k) ∈ RN×Rk , where the Rk columns
contain the nodal observations on the k-th graph. For a signal
x(k) on the k-th graph, its covariance matrix is denoted by
C(k) = E[x(k)(x(k))⊤]. We further assume that for every
graph we do not know the entire data matrix X(k) but only
observe signal values on a subset O ⊂ V of O nodes, where
H := V\O denotes the set of H hidden nodes. Our goal is to
estimate the subnetwork of each network G(k) induced by O
from partially observed graph signals.

Under this setting, we can now formalize the task of
estimating the network structure at the node subset O that is
encoded in the GSOs {S∗(k)}Kk=1. Without loss of generality,
we partition the GSO and the covariance matrix of each
network as

S∗(k) =

[
S
∗(k)
O S

∗(k)
OH

S
∗(k)
HO S

∗(k)
H

]
, C(k) =

[
C

(k)
O C

(k)
OH

C
(k)
HO C

(k)
H

]
, (1)

where S
∗(k)
OH = (S

∗(k)
HO )⊤ and C

(k)
OH = (C

(k)
HO)

⊤ by the symme-
try of S∗(k) and C(k). The submatrices S

∗(k)
O ∈ RO×O and

S
∗(k)
H ∈ RH×H encode the connectivity of the subnetworks of

G(k) induced by O and H, respectively, while S
∗(k)
OH ∈ RO×H

represents the edges connecting observed nodes to hidden
nodes. We similarly define C

(k)
O , C(k)

H , and C
(k)
OH. Given the

partitions in (1), we aim to estimate the subnetworks encoded
in {S∗(k)

O }Kk=1.
We also partition each X(k) to be conformal with S∗(k) and

C(k) as X(k) = [X
(k)⊤
O ,X

(k)⊤
H ]⊤, where X

(k)
O ∈ RO×Rk is

the data matrix containing the partially observed graph signals
and X

(k)
H ∈ RH×Rk remains unknown. We can thus apply

the partially observed stationary graph signals X
(k)
O and the

commutative relationship C(k)S∗(k) = S∗(k)C(k) as described
in Section II to recover the structure in S

∗(k)
O . Given the

problem setting, we can now formalize our joint topology
inference problem in the presence of hidden nodes as follows.

Problem 1 Given the sets {X(k)
O }Kk=1 of graph signal values

at the observed nodes for each of the K graphs, recover
{S∗(k)

O }Kk=1 under the following assumptions:
(AS1) the number of hidden nodes H is much smaller than
the number of observed nodes, that is, H ≪ O;
(AS2) the signals in X(k) are realizations of a process that is
stationary in S∗(k); and
(AS3) the GSOs S∗(k) and S∗(k′) are sparse and have similar
sparsity patterns.

We elaborate on the implications of the assumptions. The
first assumption (AS1) ensures the tractability of the prob-
lem. When most of the nodes in the graph are observed,
the covariance submatrix C

(k)
O sufficiently characterizes the

structure of S
∗(k)
O . Importantly, under H ≪ O, the matrix

product C
(k)
OHS

∗(k)
HO is low-rank, a crucial result for infer-

ring S
∗(k)
O , which is also assumed in different single graph-

learning approaches. Assumption (AS2) establishes a global
relationship between the graph signals X(k) and the unknown
graph structure S∗(k), including both observed and hidden
nodes. This assumption enables us to specify how the hidden
nodes affect X(k) by considering the connectivity between
observed and hidden nodes encoded in S

∗(k)
OH from (1) and

the commutative relationship C(k)S∗(k) = S∗(k)C(k). The
final assumption (AS3) guarantees that all K graphs have
similar edge connectivity patterns across all the shared node
set V . Not only can we then benefit from jointly inferring the
observed subnetworks, but we may also share hidden node
information across all K graphs during inference. We naturally
expect that the support of S

∗(k)
O will be similar across all K

graphs [22], [23], [35]; however, it is important to also exploit
the edgewise similarity for S

∗(k)
OH to account for connections

between observed and hidden nodes.
Notice that for the simpler case where the set H of hidden

nodes differs across graphs, (AS3) would allow us to exploit
nodal observations from graph k that are hidden for graph k′ to
account for hidden nodes. However, in this work, we address
the more challenging scenario in Problem 1, where there is a
subset of nodes for which there are no direct observations for
any graph. We rely on the statistical relationship between the
graph signals and the graph topology to formulate a suitable
optimization problem for jointly inferring the subnetworks in
S
∗(k)
O .

IV. JOINT GRAPH LEARNING WITH LATENT VARIABLES AS
A CONVEX OPTIMIZATION PROBLEM

Network topology inference with stationary graph signals
commonly exploits the commutativity of the graph signal co-
variance matrices and the GSOs. We also adopt this approach;
however, unlike previous works, we cannot directly apply the
commutative relationship due to the presence of hidden nodes.
We must revisit the commutativity of C(k) and S∗(k) with the
partitions in (1) before introducing our inference problem with
stationary graph signals. From stationarity (AS2), we know that
S∗(k)C(k) = C(k)S∗(k) for all k = 1, . . . ,K. From (1) it then
follows that

C
(k)
O S

∗(k)
O − S

∗(k)
O C

(k)
O = (P∗(k))⊤ −P∗(k) (2)
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for all k = 1, . . . ,K, where P∗(k) := C
(k)
OHS

∗(k)
HO . The

right-hand side of (2) fully accounts for the influence of
hidden nodes. When P∗(k) is known, estimating S

∗(k)
O relies

solely on the commutator on the left-hand side. This is
similar to traditional network inference with stationary graph
signals, where we also know the value of the commutator
C(k)S∗(k) − S∗(k)C(k) = 0N×N .

With the prior structural information in place, we can
approach estimating the subnetworks from sample covariance
submatrices Ĉ

(k)
O = 1

Rk
X

(k)
O (X

(k)
O )⊤ by the following non-

convex optimization problem

min
{S(k)

O ,P(k)}K
k=1

K∑
k=1

αk∥S(k)
O ∥0 +

∑
k<k′

βk,k′∥S(k)
O − S

(k′)
O ∥0

+

K∑
k=1

γk∥P(k)∥2,1 +
∑
k<k′

ηk,k′

∥∥∥∥[P(k)

P(k′)

]∥∥∥∥
2,1

s. t.
∑K

k=1 ∥Ĉ
(k)
O S

(k)
O − S

(k)
O Ĉ

(k)
O +P(k) − (P(k))⊤∥2F ≤ ϵ2,

S
(k)
O ∈ S, (3)

where we have introduced auxiliary matrices {P(k)}Kk=1 to
account for the right hand side of (2). We first discuss (3) as it
relates to {S(k)

O }Kk=1. The first two terms in the objective of (3)
encourage sparse subnetworks with similar sparsity patterns
as in (AS3). The second constraint encourages valid GSOs for
S
(k)
O . In this work, we let the GSOs denote adjacency matrices,

so we define

S :=
{
S : S = S⊤, diag(S) = 0,

∑
j Sj1 = 1

}
, (4)

where {S(k)
O }Kk=1 denote valid submatrices of nontrivial ad-

jacency matrices, that is, S
(k)
O ̸= 0O×O. While we select

adjacency matrices as GSOs, problem (3) accommodates other
GSOs, such as the graph Laplacian [16], under minor modifi-
cations.

We next discuss the auxiliary matrices {P(k)}Kk=1. The first
constraint encourages the commutativity in (2) with P(k) as
an approximation of P∗(k) = C

(k)
OHS

∗(k)
HO to avoid a bilinear

formulation. As will be discussed in Section V, the upper
bound ϵ accounts for both the sample covariance submatrix
error and the difference between P(k) and P∗(k). Thus,
similarly to [35], we introduce the low-rank matrices P(k) to
replace entities that depend on hidden nodes. However, instead
of using the standard convex surrogate for low-rankness given
by the nuclear norm, we rely on the ℓ2,1 to impose additional
structure on P(k) based on the assumptions in Problem 1.

Precisely, the last two terms in the objective apply a group
Lasso penalty via the ℓ2,1 norm [34], which evaluates the ℓ1
norm of the vector containing the ℓ2 norm of each column of
the input matrix, that is, ∥P(k)∥2,1 =

∑O
i=1 ∥P

(k)
·,i ∥2. Recall

that since H ≪ O by (AS1), the matrix P∗(k) is not only low-
rank but has sparse columns, hence the third term in the ob-
jective applying the ℓ2,1 norm to encourage column-sparsity in
P(k). While low-rank constraints are commonly implemented
with the convex nuclear norm penalty [32], where solutions
with sparse singular values are sought, we simultaneously
promote low-rankness while encouraging column sparsity by

the group Lasso penalty. Additionally, since the networks are
assumed to have similar sparsity patterns by (AS3), we expect
that the column sparsity patterns of P∗(k) across networks will
be similar, hence the fourth term in the objective.

As is common with optimization problems for sparse net-
work inference, we introduce a convex relaxation of (3) that
enjoys efficient solvability and theoretical guarantees. Our
convex formulation is

min
{S(k)

O ,P(k)}K
k=1

K∑
k=1

αk∥S(k)
O ∥1 +

∑
k<k′

βk,k′∥S(k)
O − S

(k′)
O ∥1

+

K∑
k=1

γk∥P(k)∥2,1 +
∑
k<k′

ηk,k′

∥∥∥∥[P(k)

P(k′)

]∥∥∥∥
2,1

s. t.
∑K

k=1 ∥Ĉ
(k)
O S

(k)
O − S

(k)
O Ĉ

(k)
O +P(k) − (P(k))⊤∥2F ≤ ϵ2,

S
(k)
O = (S

(k)
O )⊤, diag(S

(k)
O ) = 0, ∀k = 1, . . . ,K,∑

j [S
(1)
O ]j1 = 1, (5)

where we have removed the nonconvexities in (3) by substi-
tuting the ℓ0 norms in the objective with convex ℓ1 norms.
We further specified the constraints according to (4) for valid
adjacency submatrices. While the last constraint is valid to
preclude trivial adjacency submatrices, it would not be viable
for graph Laplacians as GSOs. However, the theoretical results
in Section V still hold for graph Laplacian GSOs by replacing
the last constraint in (4) to enforce valid graph Laplacian
submatrices.

V. THEORETICAL RESULTS

We formalize the viability of the convex relaxation in (5)
by presenting conditions under which the solutions to (3) and
(5) are equivalent. We also compute an upper bound on the
error of the solution to (5) and apply the bound to evaluate
the effectiveness of (5) at accounting for hidden nodes.

A. Sparsity of the convex relaxation

We first introduce the following definitions to rewrite the
optimization problems in (3) and (5) in vector form. Let the
vectors α ∈ RK and β ∈ RK(K−1)/2 collect values of αk

and βk,k′ , respectively. Let L′ := L(1) ∪ · · · ∪ L(K), where
L(k) := {i = j+(k− 1)O2 : j ∈ L} for L containing indices
for a O2-length vector (corresponding to the vector form of an
O×O matrix) as described in Section II. We define the directed
difference matrix Z := [1⊤

K⊗−IK ]·,L+[IK⊗1⊤
K ]·,L, where L

contains indices for a K2-length vector. We can then introduce
the matrix Ψ := 2[Ψ0]·,L′ associated with the objectives of
(3) and (5), where

Ψ0 :=

[
diag(α)⊗ IO2

diag(β)Z⊤ ⊗ IO2

]
.

For the first constraint of (3) and (5), we introduce Σ :=
blockdiag(Σ(1), . . . ,Σ(K)), where Σ(k) := [Σ

(k)
0 ]·,L +

[Σ
(k)
0 ]·,U and Σ

(k)
0 = (−Ĉ

(k)
O ⊕ Ĉ

(k)
O ) for all k = 1, . . . ,K,

and L and U for Σ(k) return entries of a vector of length O2.
Furthermore, let Q be a commutation matrix such that for any
square matrix Y, we have that vec(Y⊤) = Qvec(Y), and let
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M = blockdiag(IO2 − Q, . . . , IO2 − Q) with K diagonal
blocks. Let E(k,i) = {(k− 1)O2 + (i− 1)O+ j}Oj=1 be index
sets for all k = 1, . . . ,K and i = 1, . . . , O. Based on this,
define E(k,k′,i) = E(k,i) ∪ E(k′,i) for every k, k′ = 1, . . . ,K
with k < k′, where E(k,i) corresponds to the indices of the
i-th column in the vectorized version of the matrix P(k) and
E(k,k′,i) to the indices of the i-th columns of the vectorized
versions of P(k) and P(k′).

With the following vectorizations,

s = [vec(S
(1)
O )⊤L , · · · , vec(S

(K)
O )⊤L ]

⊤ ∈ RKO(O−1)/2, (6)

p = [vec(P(1))⊤, · · · , vec(P(K))⊤]⊤ ∈ RKO2

, (7)

we may rewrite the optimization problem (3) as

{s′,p′} = argmin
{s,p}

∥Ψs∥0 +
K∑

k=1

O∑
i=1

γk∥pE(k,i)∥2

+
∑
k<k′

O∑
i=1

ηk,k′∥pE(k,k′,i)∥2

s. t. ∥Σs+Mp∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1

(3’)

and (5) as

{ŝ, p̂} = argmin
{s,p}

∥Ψs∥1 +
K∑

k=1

O∑
i=1

γk∥pE(k,i)∥2

+
∑
k<k′

O∑
i=1

ηk,k′∥pE(k,k′,i)∥2

s. t. ∥Σs+Mp∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1.

(5’)

We further denote J as supp(Ψs′) and I as supp(s′), where
supp(y) denotes the support of the vector y. With the above
definitions in place, we have the following result.

Theorem 1. Assume that problem (5’) is feasible. The solution
{ŝ, p̂} of (5’) is equivalent to the solution {s′,p′} of (3’) if
the following two conditions are satisfied:

1) Σ·,I is full column rank; and
2) There exist constants ψ,Cs > 0 such that

∥ΨJ c,·(T1 −T2)Ψ
⊤
J ,·∥∞ < 1,

where

T1 :=
(
ψ−2(Σ⊤Σ+ 2ϵ2C−2

s IKO(O−1)/2)

+Ψ⊤
J c,·ΨJ c,·

)−1
,

T2 :=
T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)

⊤T1

(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1)
.

The proof of Theorem 1 can be found in Appendix A,
but we also provide a summary here. To decouple the joint
optimization of s and p, we consider an alternating minimiza-
tion algorithm, permitting separate analysis of s-subproblems
and p-subproblems at each iteration. Proximal alternating
minimization [46], an iterative optimization algorithm, applied
to (3’) and (5’) can be shown to converge to the original
solutions {s′,p′} and {ŝ, p̂}, respectively. We then can show

that the p-subproblems for (3’) and (5’) are equivalent for
every iteration, and therefore p′ = p̂. When the iterations
grow sufficiently large for convergence, the s-subproblems for
(3’) and (5’) are equivalent under the conditions of Theorem
1, so s′ = ŝ.

Under the sufficient conditions of Theorem 1, the convex
relaxation in (5) enjoys recovery of the sparsest solution of
(3) even in the presence of hidden nodes. Note that this result
differs significantly from that of Theorem 1 in [23] due to
the presence of another variable p that is not associated with
an entrywise sparsity penalty. Condition 1) of Theorem 1
guarantees that the solution to (5) is unique, and condition 2)
permits the existence of a dual certificate that ensures that the
solutions to (5) and (3) are equivalent [23], [47]. Thus, under
the conditions of Theorem 1, the ℓ1 norm does not introduce
any estimation error for obtaining the sparsest GSO submatrix
estimates, and we need only consider the distortion from
the sample covariance submatrices {Ĉ(k)

O }Kk=1 and auxiliary
matrices {P̂(k)}Kk=1 obtained from (5).

B. Robust recovery under hidden nodes

By Theorem 1, we can guarantee under mild conditions
when the solution to (5) is equivalent to the sparsest solution
from (3). Therefore, to evaluate the efficacy of our method
in estimating the true GSO submatrices {S∗(k)

O }Kk=1, we need
only consider the estimation error of (5). In the sequel, we
derive an upper bound on the distortion between the true GSO
submatrices {S∗(k)

O }Kk=1 and the estimated ones {Ŝ(k)
O }Kk=1

obtained from (5). Let s∗ be the vectorization of the true GSO
submatrices {S∗(k)

O }Kk=1 as in (6). We define K as supp(Ψs∗),
and we let R :=

∑K
k=1Rk and ω := maxk=1,...,K ωk,

where ωk := max{maxi[C
(k)
O ]ii,maxi[S

∗(k)
O C

(k)
O S

∗(k)
O ]ii}.

We present our main result on the performance of our proposed
method.

Theorem 2. Let {Ŝ(k)
O }Kk=1 be the estimated subnetworks

obtained from (5) with ϵ = ϵR + α for

α2 =

K∑
k=1

∥∥∥(P̂(k) − (P̂(k))⊤
)
−
(
P∗(k) − (P∗(k))⊤

)∥∥∥2
F

and ϵR ≥ C1Oω
√
(K logO)/R for some constant C1 > 0.

Under the following four conditions,
1) K = o(logO);
2) R1 ≍ R2 ≍ · · · ≍ RK;
3) logO = o(min{R/(K7(logR)2), (R/K7)1/3}); and
4) Σ is full column rank;

with probability at least 1− e−C2 logO for some constant C2

we have that
K∑

k=1

∥Ŝ(k)
O − S

∗(k)
O ∥1 ≤ τ(ϵR + α),

where τ =
4
√

|K|σmax(Ψ)∥Ψ†∥1
σmin(Σ)

(2 +
√
|K|). (8)

The proof of Theorem 2 can be found in Appendix B. In
brief, we first apply the commutative relationship described
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in Section II to show that {s∗, p̂} is a feasible solution to
(5’). We can then bound the ℓ1-norm difference between the
vectorization of the true GSOs s∗ and the estimated one ŝ
based on the commutativity constraint, ϵ = ϵR + α.

Theorem 2 presents an upper bound on the estimation
error of (5). If K and O are fixed, then as the number
of observed graph signals R increases, the sample covari-
ance submatrices {Ĉ(k)

O }Kk=1 approach the true covariance
submatrices, and the first term τϵR in the upper bound in
(8) becomes negligible. With enough observed graph signals,
the error primarily depends on the second term τα, which
denotes the approximation error of {P̂(k)}Kk=1, the crux of our
proposed method. If (5) is effective at enforcing P(k) to share
structural characteristics of C(k)

OHS
∗(k)
HO such that they are close,

then the estimation of the GSO submatrices S
∗(k)
O becomes

easier according to (8). Furthermore, as P(k) becomes a more
accurate approximation of P∗(k), the estimation accuracy of
Ŝ
(k)
O improves increasingly when compared to estimating S

∗(k)
O

while ignoring the presence of hidden nodes. We formalize
this statement in the following result that characterizes the
effectiveness of our proposed formulation with respect to the
auxiliary matrices {P(k)}Kk=1.

Corollary 1. Let the naive subnetwork estimates considering
only observed nodes be denoted as {S̃(k)

O }Kk=1 [23], which
we define as the solution to (5) while fixing P(k) = 0O×O

for every k = 1, 2, . . . ,K, and we let ϵ = ϵR, where
ϵR ≥ C1Oω

√
(K logO)/R for some constant C1 > 0, and

γk = 0, ηk,k′ = 0 for every k, k′ = 1, 2, . . . ,K and k < k′.
Additionally, let s̃ be the vectorization as in (6) of {S̃(k)

O }Kk=1

and define δ as

δ2 =

K∑
k=1

∥P∗(k) − (P∗(k))⊤∥2F .

Then, we have that
K∑

k=1

∥S̃(k)
O − S

∗(k)
O ∥1 ≤ (τ + τ ′)(ϵR + 1

2δ),

where τ =
4
√

|K|σmax(Ψ)∥Ψ†∥1
σmin(Σ)

(2 +
√

|K|)

and τ ′ =
2ρKO(O − 1)(1 +

√
|K|)σmax(Ψ)∥Ψ†∥1

σmin(Σ)
(9)

for some ρ ∈ [0, 1]. Furthermore, we have that if

K∑
k=1

∥∥∥(P̂(k) − (P̂(k))⊤
)
−
(
P∗(k) − (P∗(k))⊤

)∥∥∥2
F

≤
(
τ ′

τ

)2

ϵ2R +

(
τ + τ ′

2τ

)2 K∑
k=1

∥∥∥P∗(k) − (P∗(k))⊤
∥∥∥2
F
,

(10)

then the error bound in (8) is lower than the error bound in
(9).

The proof of Corollary 1 can be found in Appendix C,
which follows a similar procedure to the proof of Theorem
2. Corollary 1 demonstrates the criticality of accounting for
hidden nodes. We describe these implications more intuitively

here. First, as discussed following Theorem 2, we note that as
P̂(k) approximates P∗(k) more accurately, we achieve greater
improvement over {S̃(k)

O }Kk=1 from our proposed inference
problem (5). Indeed, as the matrix difference (P̂(k))⊤ − P̂(k)

approaches the right-hand side of (2), we remove the influence
of the hidden nodes on the estimation of the observed subma-
trices. Second, note that the second term in the upper bound
of (10) is proportional to δ, which measures the influence
of the hidden nodes on the observed nodes in the stationary
graph signal regime. When δ is negligible, the hidden nodes
have little effect on the observed nodes, and the inclusion of
{P(k)}Kk=1 in the inference process may affect performance
detrimentally. However, as δ increases, the need to account
for the right-hand side of (2) becomes crucial. We verify
this comparison of (5) and the naive solution {S̃(k)

O }Kk=1 with
synthetic simulations in Section VI.

VI. NUMERICAL EVALUATION

We introduce several experiments to assess the performance
of the proposed network topology inference method. The ex-
periments employ synthetic and real-world data and compare
the quality of the graphs estimated by different algorithms.
For the k-th graph, we compute the normalized error between
the true S

∗(k)
O and the estimated Ŝ

(k)
O as

nerr(S
∗(k)
O , Ŝ

(k)
O ) =

∥S∗(k)
O − Ŝ

(k)
O ∥2F

∥S∗(k)
O ∥2F

, (11)

and then report the average across the K graphs being
estimated, i.e., 1

K

∑K
k=1 nerr(S

∗(k)
O , Ŝ

(k)
O ). The code for the

proposed method and the experiments is available on GitHub1.

A. Synthetic experiments

We rely on synthetic graphs and signals to assess how
different elements impact the performance of the proposed
approach. Unless specified otherwise, in the following ex-
periments we consider K = 3 graphs with N = 20 nodes
from which O = 19 are observed. The graph G(1) is sampled
from an Erdős-Rényi (ER) random graph model with a link
probability of p = 0.2, and the related graphs are created by
randomly rewiring a fixed number of edges. Stationary graph
signals are generated by diffusing a white input signal across
the graph, i.e., x = Hw, where the coefficients of H are
drawn from a uniform distribution and w ∼ N (0, I).
Varying the effect of hidden nodes. We start by illustrating
the result in (10) that expresses when it is beneficial to
incorporate P(k) for hidden nodes. To this end, we estimate
K = 3 networks from perfectly known covariance submatrices
C

(k)
O so ϵR = 0 [cf. (10)], to assess only the effects of

P(k) and the hidden nodes H, characterized respectively by
α from Theorem 2 and δ from Corollary 1. We compare two
network inference methods: (i) “JH-GSR”, which denotes the
method in (5) that accounts for hidden nodes, and (ii) “J-GSR”,
which denotes the method described in Corollary 1 that ignores
hidden variables [23]. Fig. 1a shows the network estimation

1https://github.com/reysam93/hidden joint inference

https://github.com/reysam93/hidden_joint_inference
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,Ŝ

(k
)

O
)/
K

JH-GSR-2 JH-GSR-6
NN-2 NN-6
J-GSR-2 J-GSR-6

Fig. 1: We test the performance of the proposed network topology inference in different settings. (a) Evaluation of the performance of graph
inference accounting for hidden nodes via (5) and graph inference ignoring hidden nodes as described in Corollary 1 as the weights of
edges between observed and hidden nodes increase. (b) Evaluation of the influence of increasing the number of graphs being estimated. (c)
Evaluation of the detrimental effects of increasing the number of hidden nodes. The experiments consider different graph learning alternatives
and the reported results are the average error of 100 independent realizations.

error as the edge weights connecting observed nodes and
hidden nodes increase, that is, as nonzero entries in S

∗(k)
OH

grow larger. While the GSO sparsity patterns do not change,
the hidden node influence δ increases with the edge weights
in S

∗(k)
OH . To measure performance that is consistent with

Corollary 1, we report the average error across all K graphs
as the normalized ℓ1-norm difference, equivalent to computing
(11) with the ℓ1 norm replacing the squared Frobenius norm.
We let ϵ = 10−8 for the first constraint in (5); however,
the solution to the naive problem with P(k) = 0O×O may
not be feasible. Indeed, when ϵ is small enough, it may be
impossible to obtain a feasible solution {S̃(k)

O }Kk=1 such that
all constraints hold. In such a case where the solution is
infeasible, we let its error be 1. Along with network estimation
error, we compare in Fig. 1a normalized values of α and
δ to evaluate when the result in (10) holds. In particular,
we let ᾱ :=

∑
k nerr(P

∗(k), (P∗(k))⊤ + P̂(k) − (P̂(k))⊤)/K
and δ̄ :=

∑
k nerr(P

∗(k), (P∗(k))⊤)/K. Since we need only
consider which value is greater, we plot ᾱ/C and δ̄/C for
some constant C > 0 such that the values are between 0 and
1.

When the edge weight is 0, the hidden nodes are decoupled
from the network and thus have no effect on the observed
nodes, and indeed “J-GSR” perfectly recovers the true net-
works. For zero-valued edge weights in S

∗(k)
OH , we observe

α ≥ δ, where “JH-GSR” is comparable but not superior to “J-
GSR”. As the edge weight increases and becomes nonnegligi-
ble, the effect of the hidden nodes increases, and we observe in
Fig. 1a that α < δ for all nonzero edge weights and “JH-GSR”
consistently outperforms “JH-GSR” as expected from (10). We
thus validate the necessity of our proposed method, where as
the influence of hidden nodes increases, we must account for
their presence to maintain a satisfactory estimation error.

Varying the number of graphs. We next assess the benefits
of considering a joint network topology inference approach
when several graphs need to be learned. To that end, Fig. 1b
illustrates the normalized error computed according to (11)
as the number of graphs K being estimated increases. The
performance of “JH-GSR” is compared with (i) “S-GSR”,
the network topology inference method from stationary ob-

servations [16] where graphs are learned individually and
the presence of hidden variables is ignored; “SH-GSR”, a
generalization of (i) that takes into account the influence of
hidden variables [32]; and (iii) “J-GSR” as in Fig. 1a. Looking
at the results, we observe that “JH-GSR” outperforms the
alternatives, showcasing the benefits of harnessing the graph
similarity while accounting for the influence of the hidden
nodes. We also observed that the joint approaches achieve a
lower error when more than one graph is being estimated, and
furthermore, that the benefits of the joint approaches increase
with K. Lastly, Fig. 1b also shows that for the setup at hand,
ignoring the influence of hidden nodes results in a worse
performance than ignoring the relation across networks, which
is studied in more detail in the following experiment.

Varying the number of hidden nodes. The results in Fig. 1c
investigate the detrimental influence of the presence of hidden
nodes in the network topology inference task. We examine
fixed-size graphs with N = 20 nodes and increase the number
of hidden nodes H as shown in the x-axis. We evaluate
the performance of (i) our proposed method, “JH-GSR”, (ii)
an alternative implementation of our method replacing the
group Lasso penalty by the nuclear norm, “NN”, and (iii)
the joint network topology inference ignoring the presence
of hidden nodes, “J-GSR” [23]. Then, for each baseline, we
consider the estimation of either 2 or 6 graphs. First, from
Fig. 1c, it can be seen that increasing the number of hidden
nodes renders the inference problem more challenging and,
moreover, that ignoring the presence of hidden nodes results in
poor performance. Second, the superior performance of “JH-
GSR” over “NN” supports our initial intuition that the group
Lasso penalty is better suited to capture the structure of the
problem at hand. Furthermore, we also observe that estimating
6 graphs leads to a better performance than estimating 2, a
behavior aligned with the previous experiment.

Varying graph similarity. The last experiment involving
synthetic data tests the impact of (AS3), a critical assumption
in joint graph learning. More precisely, we consider estimating
K = 3 graphs as the proportion of different edges increases,
i.e., as the graphs become more dissimilar. The errors of the es-
timated graphs are depicted in Fig. 2a, where we compare the
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,Ŝ

(k
)

O
)/
K

JH-GSR-P LVGL-P FGL-P
JH-GSR-M LVGL-M FGL-M

102 103 104 105 106
0

0.2

0.4

0.6

0.8

1

(a) Number of signals

n
er
r(
S
∗(

k
)

O
,Ŝ
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Fig. 2: We test the performance of the proposed network topology inference in settings with synthetic and real-world data. (a) Evaluation of
the impact of the graph similarity in joint network topology inference methods. This experiment considers different graph learning alternatives
and the reported results are the average error of 100 independent realizations. (b) Error estimating three graphs considering either a joint
or a separate method. Graphs are obtained from the students of the University of Ljubljana dataset. (c) Error estimating two graphs from
voting signals considering different approaches.

performance of “JH-GSR” with (i) “LVGL”, a graphical Lasso
algorithm modeling the presence of hidden nodes [27]; and
(ii) “FGL”, a joint graphical Lasso algorithm [22]. Moreover,
since graphical Lasso algorithms assume that the observations
are drawn from a GMRF, we consider two different types of
signals. Signals sampled from a GMRF are denoted as “M”,
and signals generated as the diffusion of a white input via a
polynomial of the GSO are denoted as “P”. As expected from
(AS3), Fig. 2a shows that the performance of joint methods,
“JH-GSR” and “FGL”, deteriorates as we consider a higher
number of different links. For the two signal models, we
observe that “JH-GSR-M” is superior to “JH-GSR-P” since the
GMRF model is a simpler special case of graph stationarity
that is less sensitive to hidden nodes. Interestingly, “JH-
GSR-M” also outperforms “FGL-M”, although the latter is a
method tailored for GMRF observations, showcasing the more
general nature of the stationary model and the importance
of accounting for the presence of hidden nodes. In contrast,
we observe that graphical models are incapable of estimating
graphs from stationary observations, and we note that “LVGL-
P” is not included in the figure due to its high error.

B. Application to real-world graphs

In addition to the synthetic data where we know the model
relating the networks and the observed graph signals, we assess
our proposed method with real-world data to demonstrate
its efficacy in several scenarios, including those where the
stationarity assumption is not explicitly enforced.
Students dataset. The following experiment combines real-
world graphs with synthetic signals. This mixed approach
allows us to investigate the applicability of the proposed
method to real-world graphs while ensuring that the observed
signals are stationary. We employed three graphs defined on a
common set of 32 nodes, where nodes represent students from
the University of Ljubljana, and the different graphs encode
various types of interactions among the students2. The results
are displayed in Fig. 2b, where we observe the error of the
recovered graphs as the number of samples increases. The

2Original data available at http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:
pajek:students

error reported is the average of 50 realizations of random sta-
tionary graph signals, with only one hidden node considered.
For each of the three graphs, we evaluate the performance
of both the joint and the separate estimation methods, “JH-
GSR” and “SH-GSR”. From the results, it is evident that the
recovery of all three graphs significantly improves with a joint
approach, demonstrating the benefits of leveraging the existing
relationship between the networks.

Learning multiple observed graphs from voting data.
Finally, we close with an experiment aimed at learning two
related political graphs from voting data3. More specifically,
we consider 25 cantons of Switzerland as the nodes of the
graph and the percentage of votes in favor of 185 initiatives
submitted between 2000 and 2020 as the signals. Our goal
then is to infer the political graph of Switzerland for two
consecutive periods of time. Intuitively, although political
representation may evolve with time, this process is typically
slow and, hence, the two graphs are expected to be closely
related. We validate the estimations via ground truth graphs
whose links reflect the political preferences of the cantons,
which are obtained by performing separate inference of both
graphs with all available signals. We consider H = 2 hidden
nodes and estimate the K = 2 graphs varying the percentage
of available signals from 70% to 90%. We compare the pro-
posed algorithm, “JH-GSR”, with three alternative methods:
“J-GSR”, “SH-GSR”, and “J-LVGL” from [35].

The estimation error of the two graphs using the four
methods is shown in Fig. 2c. Since the number of available
signals for the second graph is considerably smaller than
the signals available for the first graph, we observe a much
larger estimation error for the second graph when the separate
approach “SH-GSR” is employed. In contrast, for the joint
estimation method “J-GSR”, we observe that errors are similar
for both graphs and inferior on average compared to “SH-
GSR”. This behavior illustrates that harnessing the similarity
of the graphs results in an improvement in performance since
it allows sharing common learned structures across graphs.
Moreover, we observe that “JH-GSR” outperforms both “SH-
GSR” and “J-GSR” since, in addition to being a joint ap-

3Original data available at https://swissvotes.ch/page/home

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
https://swissvotes.ch/page/home
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proach, it takes into account the influence of the hidden nodes.
We also compare “JH-GSR” with “J-LVGL”, both of which
perform joint network inference while accounting for hidden
nodes. However, we find that “JH-GSR” is drastically superior
due to complexities in the data structure that “J-LVGL” cannot
capture accurately. Indeed, the stationary model subsumes the
GMRF model while allowing for more complex statistical
relationships between the graph topology and the signals.

To summarize, it is not only crucial to account for the
presence of hidden nodes but, when several related graphs are
involved, it is also important to exploit the similarity between
both observed and hidden nodes. This becomes particularly
relevant when data is limited to a subset of the graphs, as
demonstrated in the improved estimation of the second graph
when considering joint network inference methods.

VII. CONCLUSION

In this paper, we presented a method to infer multiple
networks on the same node set in the presence of hidden nodes.
To characterize the effect of the hidden nodes, we assumed that
graph signals were stationary on their respective networks. By
the inherent block structure of the covariance matrix C(k) and
the GSO S∗(k) of the k-th network, we introduced a set of
auxiliary matrices P(k) to account for the effect of hidden
nodes in the relationship C(k)S∗(k) = S∗(k)C(k) stemming
from the stationarity assumption. By prior assumptions on
structure and stationarity, we derive characteristics of P(k)

that permit us to form an optimization problem that performs
network inference while accounting for the presence of hidden
nodes. Moreover, we verified that the estimation of the sparsest
networks is equivalent to a computationally feasible convex
relaxation under mild conditions. We further demonstrated a
bound on the error of our proposed method dependent on
the error due to the sample covariance matrices and P(k).
The performance of our method was evaluated in multiple
synthetic and real-world datasets in comparison with other
baseline methods, and we also verified the improvement in
estimation due to the incorporation of P(k).

APPENDIX A
PROOF OF THEOREM 1

We first combine the last two terms in the objective
functions of (3’) and (5’) by defining the combined index
set E :=

⋃O
i=1{E(k,i)}Kk=1 ∪ {E(k,k′,i)}k<k′ and parameters

{η′g}g∈E such that η′E(k,i) = γk and η′E(k,k′,i) = ηk,k′ for every
k, k′ = 1, . . . ,K such that k < k′ and i = 1, . . . , O.

Let us consider solving (3’) by proximal alternating mini-
mization [46] with

p′(t) = argmin
p

∑
g∈E

η′g∥pg∥2 +
1

2λ′t
∥p− p′(t−1)∥22

s. t. ∥Σs′
(t−1)

+Mp∥2 ≤ ϵ, (12a)

s′
(t)

= argmin
s

∥Ψs∥0 +
1

2µ′
t

∥s− s′
(t−1)∥22

s. t. ∥Σs+Mp′(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

(12b)

and (5’) with

p̂(t) = argmin
p

∑
g∈E

η′g∥pg∥2 +
1

2λ̂t
∥p− p̂(t−1)∥22

s. t. ∥Σŝ(t−1) +Mp∥2 ≤ ϵ, (13a)

ŝ(t) = argmin
s

∥Ψs∥1 +
1

2µ̂t
∥s− ŝ(t−1)∥22

s. t. ∥Σs+Mp̂(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

(13b)

for t ∈ N, where the parameters λ′t, µ
′
t, λ̂t, and µ̂t are bounded

above and below by positive real numbers. By the proximal
term in each update step of (12) and (13), the subproblems are
strongly convex, and thus each iteration has a unique solution.
Furthermore, for every t ∈ N and any given pair of constants
Cs

t , C
p
t > 0, we may select positive values λ′t, µ

′
t, λ̂t, and µ̂t

such that the solutions to (12) and (13) are equivalent to

p′(t) = argmin
p

∑
g∈E

η′g∥pg∥2

s. t. ∥Σs′
(t−1)

+Mp∥2 ≤ ϵ, ∥p− p′(t−1)∥2 ≤ Cp
t ,

(14a)

s′
(t)

= argmin
s

∥Ψs∥0

s. t. ∥Σs+Mp′(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1

∥s− s′
(t−1)∥2 ≤ Cs

t , (14b)

and

p̂(t) = argmin
p

∑
g∈E

η′g∥pg∥2

s. t. ∥Σŝ(t−1) +Mp∥2 ≤ ϵ, ∥p− p̂(t−1)∥2 ≤ Cp
t ,

(15a)

ŝ(t) = argmin
s

∥Ψs∥1

s. t. ∥Σs+Mp̂(t)∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1

∥s− ŝ(t−1)∥2 ≤ Cs
t . (15b)

Let us initialize the proximal alternating minimization steps
for (14) and (15) with p0 := p′(0) = p̂(0) and s0 := s′

(0)
=

ŝ(0) such that ∥Σs0 + Mp0∥2 < ϵ. Note that the objective
functions of (3’) and (5’) are semi-algebraic functions [48]
and thus have the Kurdyka-Łojasiewicz property [46]. By [46,
Theorem 3.3], there exist constants r′, s′ > 0 such that when
we let ∥p′ − p0∥2 + ∥s′ − s0∥2 < r′ and

∥Ψs′∥0 +
∑
g∈E

η′g∥p′
g∥2 ≤ ∥Ψs0∥0 +

∑
g∈E

η′g∥[p0]g∥2

< ∥Ψs′∥0 +
∑
g∈E

η′g∥p′
g∥2 + s′,

where the first inequality is due to the optimality of {s′,p′},
then we have that the sequence {s′(t),p′(t)} converges to
{s′,p′} in finitely many steps. Similarly, there exist constants
r̂, ŝ > 0 such that we can guarantee that the sequence
{ŝ(t), p̂(t)} converges to {ŝ, p̂} in finitely many steps. More
specifically, there exist positive integers T1, T2 such that
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{s′,p′} = {s′(t),p′(t)} for every t ≥ T1 and {ŝ, p̂} =
{ŝ(t), p̂(t)} for every t ≥ T2.

We first show that p′(t) = p̂(t) for every t ∈ N. Let
T := max{T1, T2}. Furthermore, let us consider sequences
of positive real numbers Cs

t , C
p
t for t = 1, . . . , T such that

T−1∑
t=1

Cs
t ≤ ϵ− ∥Σs0 +Mp0∥2

σmax(Σ)
, (16a)

T∑
t=1

Cp
t ≤

ϵ− ∥Σs0 +Mp0∥2 − σmax(Σ)
∑T−1

t=1 Cs
t

σmax(M)
, (16b)

Cs
T ≥ (2ϵ+ σmax(M)Cp

T )/σmin(Σ). (16c)

Note that when p′(0) = p̂(0) and s′
(0)

= ŝ(0), we have that
the optimization subproblems (12a) and (13a) are equivalent,
so p1 := p′(1) = p̂(1). Next, assume that for some t ≤ T , we
have that p′(l) = p̂(l) =: pl for every l = 1, . . . , t− 1. Then,
by (16a) and (16b) we have that

∥Σs′
(t−1)

+Mp̂(t)∥2 ≤ ∥Σs0 +Mp0∥2
+
∑t−1

i=1 ∥Σ(s′(i) − s′(i−1))∥2
+
∑t

i=1 ∥M(p̂(i) − p̂(i−1))∥2
≤ ∥Σs0 +Mp0∥2

+ σmax(Σ)
∑t−1

i=1 C
s
i

+ σmax(M)
∑t

i=1 C
p
i

≤ ∥Σs0 +Mp0∥2
+ σmax(Σ)

∑T−1
i=1 Cs

i

+ σmax(M)
∑T

i=1 C
p
i

≤ ϵ,

and by an analogous proof, we have that

∥Σŝ(t−1) +Mp′(t)∥2 ≤ ϵ.

Then p′(t) is a feasible solution for (15a), and p̂(t) is a
feasible solution for (14a). Since the solutions are unique and
the objective functions are equivalent, we have that p′(t) =
p̂(t) =: pt. Thus by induction, we have that p′(t) = p̂(t) for
every t ∈ N and p′ = p̂ = pT .

Next we show that the solutions s′ and ŝ are equivalent. By
(16c) we have that

∥s′(T ) − ŝ(T−1)∥2 ≤σ−1
min(Σ)∥Σ(s′

(T ) − ŝ(T−1))∥2
≤σ−1

min(Σ)∥Σs′
(T )

+MpT ∥2
+ σ−1

min(Σ)∥Σŝ(T−1) +MpT−1∥2
+ σ−1

min(Σ)∥M(pT − pT−1)∥2
≤ 2σ−1

min(Σ)ϵ+ (σmax(M)/σmin(Σ))Cp
T

≤Cs
T ,

and similarly

∥ŝ(T ) − s′
(T−1)∥2 ≤ Cs

T .

Thus, s′ = s′
(T ) and ŝ = ŝ(T ) are both feasible solutions of

(14b) and (15b) at iteration T , so we may rewrite (14b) and
(15b) at iteration T as

s′ = argmin
s

∥Ψs∥0

s. t. ∥Σs+MpT ∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

∥s− s′
(T−1)∥2 ≤ Cs

T , ∥s− ŝ(T−1)∥2 ≤ Cs
T , (17)

ŝ = argmin
s

∥Ψs∥1

s. t. ∥Σs+MpT ∥2 ≤ ϵ, (e1 ⊗ 1O−1)
⊤s = 1,

∥s− s′
(T−1)∥2 ≤ Cs

T , ∥s− ŝ(T−1)∥2 ≤ Cs
T . (18)

Now we provide the conditions for s′ = ŝ. We introduce a
modification to the problems (17) and (18) that are parame-
terized by the positive real number r > 0 as

s′r = argmin
s

∥Ψs∥0 s. t. ∥Φrs+RpT − br∥2 ≤ ϵ, (19)

ŝr = argmin
s

∥Ψs∥1 s. t. ∥Φrs+RpT − br∥2 ≤ ϵ, (20)

where we define block conformal matrices Φr and R and
block conformal vector br as

Φr = [Σ⊤, r(e1 ⊗ 1O−1), ϵ(C
s
T )

−1(1⊤
2 ⊗ IKO(O−1)/2)]

⊤,

R = [M⊤,0KO2 ,0KO2×KO(O−1)]
⊤,

br = [0⊤
KO2 , r, ϵ(Cs

T )
−1s′

(T−1)⊤
, ϵ(Cs

T )
−1ŝ(T−1)⊤]⊤. (21)

Note that as r increases, we recover the solutions to the
unmodified problems (17) and (18), where s′r → s′ and ŝr → ŝ
as r → ∞.

By the proof of Theorem 1 in [23] and Theorem 1 of [47], if
[Φr]·,I is full column rank and there exists a positive constant
ψ > 0 such that

∥ΨJ c,·(ψ
−2Φ⊤

r Φr +Ψ⊤
J c,·ΨJ c,·)

−1Ψ⊤
J ,·∥∞ < 1 (22)

when r → ∞, then we have that s′ = ŝ. Under condition
1) in the statement of Theorem 1, we have that Σ·,I is full
column rank, and since Φr consists of rows appended to Σ,
then [Φr]·,I is also full column rank. Thus, we need only show
that condition 2) implies (22) for r → ∞.

By the definition of Φr and the Sherman-Morrison formula,
we have that

(ψ−2Φ⊤
r Φr +Ψ⊤

J c,·ΨJ c,·)
−1

=

(
ψ−2(Σ⊤Σ+ 2ϵ2(Cs

T )
−2IKO(O−1)/2) +Ψ⊤

J c,·ΨJ c,·

+ r2ψ−2(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)
⊤
)−1

= T1 −
r2ψ−2T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)

⊤T1

1 + r2ψ−2(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1)
,

and as r → ∞, we have

lim
r→∞

(ψ−2Φ⊤
r Φr +Ψ⊤

J c,·ΨJ c,·)
−1

= T1 −
T1(e1 ⊗ 1O−1)(e1 ⊗ 1O−1)

⊤T1

(e1 ⊗ 1O−1)⊤T1(e1 ⊗ 1O−1)

= T1 −T2.
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Then the inequality ∥ΨJ c,·(T1 − T2)Ψ
⊤
J ,·∥∞ < 1 is

equivalent to the condition (22) when r → ∞. Thus, we have
that the conditions hold for s′ = ŝ by Theorem 1 of [23] and
Theorem 1 of [47], as desired.

APPENDIX B
PROOF OF THEOREM 2

To establish an upper bound on the estimation error of (5),
we first provide the following lemma necessary to determine
an upper bound on the error of (5).

Lemma 1. Under the following four conditions,
1) K = o(logO);
2) R1 ≍ R2 ≍ · · · ≍ RK;
3) logO = o(min{R/(K7(logR)2), (R/K7)1/3}); and
4) ϵR ≥ COω

√
(K logO)/R for some constant C > 0;

with probability at least 1− e−C1 logO for some constant C1

we have that
K∑

k=1

∥∥∥(Ĉ(k)
O −C

(k)
O )S

∗(k)
O − S

∗(k)
O (Ĉ

(k)
O −C

(k)
O )

∥∥∥2
F
≤ ϵ2R.

Proof. The proof of Lemma 1 follows from the proof of Claim
2 in [23]. □

Recall that s∗ is the vectorization of the true GSO sub-
matrices {S∗(k)

O }Kk=1 as in (6). We show that {s∗, p̂} is a
feasible solution to (5’). We demonstrate an upper bound on
the commutativity of sample covariance submatrices and true
subnetworks as∣∣∣∣ K∑

k=1

∥Ĉ(k)
O S

∗(k)
O − S

∗(k)
O Ĉ

(k)
O + P̂(k) − (P̂(k))⊤∥2F

∣∣∣∣ 1
2

≤
∣∣∣∣ K∑
k=1

∥∥∥(Ĉ(k)
O −C

(k)
O )S

∗(k)
O − S

∗(k)
O (Ĉ

(k)
O −C

(k)
O )

∥∥∥2
F

∣∣∣∣ 1
2

+

∣∣∣∣ K∑
k=1

∥∥∥(P̂(k) − (P̂(k))⊤
)
−
(
P∗(k) − (P∗(k))⊤

)∥∥∥2
F

∣∣∣∣ 1
2

≤ ϵR + α, (23)

where we have used Lemma 1, the definition of α, and the
relationship in (2). Because

∑O
j=1[S

∗(k)
O ]j1 = 1 by definition,

(23) is equivalent to

∥Σs∗ +Mp̂∥2 ≤ ϵR + α = ϵ, (24)

so {s∗, p̂} is a feasible solution to (5’).
We introduce a modification of (5’) to combine the con-

straints into one inequality. Consider the following modified
optimization problem that is parameterized by r > 0

{ŝr, p̂r} = argmin
{s,p}

∥Ψs∥1 +
K∑

k=1

O∑
i=1

γk∥pE(k,i)∥2

+
∑
k<k′

O∑
i=1

ηk,k′∥pE(k,k′,i)∥2

s. t. ∥Φ̄rs+ R̄p− b̄r∥2 ≤ ϵ, (25)

where Φ̄r = [Σ⊤, r(e1 ⊗ 1O−1)]
⊤, R̄ = [M⊤,0KO2 ]⊤,

and b̄r = [0⊤
KO(O−1)/2, r]

⊤. The parameter r determines the

strictness of the second constraint in (5’) such that when r →
∞, we have that ŝr → ŝ. Note that since (e1 ⊗ 1O−1)

⊤ŝ = 1
and (e1 ⊗ 1O−1)

⊤s∗ = 1, then by (24) and the definition of
{ŝ, p̂}, we have that {ŝ, p̂} and {s∗, p̂} are feasible solutions
of (25) for every r > 0.

We next provide an upper bound on the difference between
ŝ and s∗ following the proof of Claim 1 in [23]. First, note
that as in the proof of Claim 1 of [23], we have that when
Σ is full column rank, then so is Φ̄r, which guarantees the
existence of a dual certificate y = I⊤K,·sign(ΨK,·s

∗), where
Ψ⊤y = Φ̄

⊤
r Φ̄r(Φ̄

⊤
r Φ̄r)

−1Ψ⊤I⊤K,·sign(ΨK,·s
∗) ∈ Im(Φ̄

⊤
r ),

yK = sign(ΨK,·s
∗), ∥yKc∥∞ < 1, and ∥Ψs∗∥1 = y⊤Ψs∗.

Consider the following inequality

∥Ψs∗ −Ψŝ∥1 ≤ ∥Ψŝ− u∥1 + ∥Ψs∗ − u∥1, (26)

where u ∈ RKO(O−1)/2 such that supp(u) ⊆ K. We derive
an upper bound for the second term on the right-hand side of
(26) as

∥Ψs∗ − u∥1≤
√
|K|∥Ψs∗ − u∥2

≤
√

|K|∥Ψs∗ −Ψŝ∥2 +
√
|K|∥Ψŝ− u∥1

≤
√

|K|σmax(Ψ)∥s∗ − ŝ∥2
+

√
|K|∥Ψŝ− u∥1

≤
√
|K|σmax(Ψ)

σmin(Φ̄r)
∥Φ̄r(s

∗ − ŝ)∥2

+
√

|K|∥Ψŝ− u∥1. (27)

For the first term on the right-hand side of (26), we have that

ξ := min
u:supp(u)⊆K

∥Ψŝ− u∥1

= max
v

min
u

∥Ψŝ− u∥1 (28)

+ v⊤IKc,·(u−Ψŝ) + v⊤IKc,·Ψŝ

= max
w:supp(w)⊆Kc

min
u

∥Ψŝ− u∥1

+w⊤(u−Ψŝ) +w⊤Ψŝ,

where (28) results from the Lagrangian of ξ and duality theory.
Given the dual certificate y, we have that

ξ = max
w:supp(w)⊆Kc,

∥w∥∞≤1

(y +w)⊤Ψŝ− y⊤Ψŝ

≤ ∥Ψŝ∥1 − y⊤Ψŝ+ y⊤Ψs∗ − ∥Ψs∗∥1
≤ y⊤Ψ(s∗ − ŝ), (29)

where the final inequality is due to the optimality of {ŝ, p̂}
and the feasibility of {s∗, p̂} for (5’). Lastly, since Ψ⊤y =

Φ̄
⊤
r Φ̄r(Φ̄

⊤
r Φ̄r)

−1Ψ⊤I⊤K,·sign(ΨK,·s
∗), we have that

y⊤Ψ(s∗ − ŝ)

≤ sign(ΨK,·s
∗)⊤IK,·Ψ(Φ̄

⊤
r Φ̄r)

−1Φ̄
⊤
r Φ̄r(s

∗ − ŝ)

≤
√

|K|σmax(Ψ)

σmin(Φ̄r)
∥Φ̄r(s

∗ − ŝ)∥2, (30)

where the second inequality results from the fact that every
positive scalar and its ℓ2 norm are equal. We may substitute
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(27) and (30) into (26) and the fact that Ψ is full column rank
to obtain

∥s∗ − ŝ∥1 ≤ τr∥Φ̄r(s
∗ − ŝ)∥2,

where

τr =

√
|K|σmax(Ψ)∥Ψ†∥1

σmin(Φ̄r)
(2 +

√
|K|). (31)

As r → ∞, we have that

∥s∗ − ŝ∥1 ≤ lim
r→∞

τr∥Φ̄r(s
∗ − ŝ)∥2

≤ 2 lim
r→∞

τr(ϵR + α),

where by the feasibility of {ŝ, p̂} and {s∗, p̂} for every r > 0,
we have that

∥Φ̄r(s
∗ − ŝ)∥2 ≤ ∥Φ̄rs

∗ + R̄p̂− b̄r∥2
+ ∥Φ̄r ŝ+ R̄p̂− b̄r∥2

≤ 2(ϵR + α). (32)

Finally, we return to the equivalent matrix formulation as
K∑

k=1

∥Ŝ(k)
O − S

∗(k)
O ∥1 ≤ 4τr(ϵR + α). (33)

By the end of the proof of Theorem 2 in [23], we have that
limr→∞ 4τr ≤ τ , as desired.

APPENDIX C
PROOF OF COROLLARY 1

Consider the following optimization problem

min
{S(k)

O }K
k=1

K∑
k=1

αk∥S(k)
O ∥1 +

∑
k<k′

βk,k′∥S(k)
O − S

(k′)
O ∥1

s. t.
∑K

k=1 ∥Ĉ
(k)
O S

(k)
O − S

(k)
O Ĉ

(k)
O ∥2F ≤ ϵ2R,

S
(k)
O = (S

(k)
O )⊤, diag(S

(k)
O ) = 0, ∀k = 1, . . . ,K,∑

j [S
(1)
O ]j1 = 1, (34)

whose solution is equivalent to the naive solution {S̃(k)
O }Kk=1

described in the statement of Corollary 1. Similarly to (5), we
can define a vectorized version of (34) as

s̃ = argmin
s

∥Ψs∥1 s. t. ∥Σs∥2 ≤ ϵR, (e1 ⊗ 1O−1)
⊤s = 1,

(35)

and a version parameterized by r > 0 as

s̃r = argmin
s

∥Ψs∥1 s. t. ∥Φ̄rs− b̄r∥2 ≤ ϵR, (36)

where Φ̄r and b̄r are defined as for (25) and limr→∞ s̃r = s̃.
We provide the following upper bound via (2)∣∣∣∣ K∑
k=1

∥Ĉ(k)
O S

∗(k)
O − S

∗(k)
O Ĉ

(k)
O ∥2F

∣∣∣∣ 1
2

≤
∣∣∣∣ K∑
k=1

∥∥∥(Ĉ(k)
O −C

(k)
O )S

∗(k)
O − S

∗(k)
O (Ĉ

(k)
O −C

(k)
O )

∥∥∥2
F

∣∣∣∣ 1
2

+

∣∣∣∣ K∑
k=1

∥∥∥P∗(k) − (P∗(k))⊤
∥∥∥2
F

∣∣∣∣ 1
2

≤ ϵR + δ,

and similarly to Theorem 2, we apply Lemma 1 to get

∥Φ̄rs
∗ − b̄r∥2 ≤ ϵR + δ,

where s∗ may not be a feasible solution to (36). However, by
the triangle inequality and the optimality of s̃r, there exists
ρ ∈ [0, 1] such that

∥Ψs̃r∥1 − ∥Ψs∗∥1 ≤ ρ∥Ψs̃r −Ψs∗∥1. (37)

In particular, let ρ = max{0, (∥Ψs̃r∥1 − ∥Ψs∗∥1)/∥Ψs̃r −
Ψs∗∥1}, where ρ = 0 when s∗ is a feasible solution to (36),
but otherwise, it may be possible that ρ ∈ (0, 1]. Furthermore,
since (e1⊗1O−1)

⊤s̃ = 1, then s̃ is a feasible solution to (36)
for every r > 0.

We then can introduce a similar inequality to (26) as

∥Ψs∗ −Ψs̃∥1 ≤ ∥Ψs̃− ũ∥1 + ∥Ψs∗ − ũ∥1, (38)

where ũ ∈ RKO(O−1)/2 such that supp(ũ) ⊆ K. The upper
bound for the second term of the right-hand side of (38) can
be found analogously to (27), where we have

∥Ψs∗ − ũ∥1≤
√
|K|σmax(Ψ)

σmin(Φ̄r)
∥Φ̄r(s

∗ − s̃r)∥2

+
√

|K|∥Ψs̃r − ũ∥1. (39)

Similarly to (29) in the proof of Theorem 2, we can upper
bound the first term as

ξ̃ := min
ũ:supp(ũ)⊆K

∥Ψs̃− ũ∥1

≤ ∥Ψs̃∥1 − y⊤Ψs̃+ y⊤Ψs∗ − ∥Ψs∗∥1
≤ y⊤Ψ(s∗ − s̃) + ρ∥Ψ(s∗ − s̃)∥1, (40)

where we account for the possible infeasibility of s∗ with (37).
We may combine (40), and (39) to obtain

∥s̃− s∗∥1 ≤ (τr + τ ′r)(2ϵR + δ), (41)

where τr is defined in (31) and we let

τ ′r :=
ρKO(O − 1)(1 +

√
|K|)σmax(Ψ)∥Ψ†∥1

2σmin(Φ̄r)
.

As with the proof of Theorem 2, we have that for r → ∞,

K∑
k=1

∥S̃(k)
O − S

∗(k)
O ∥1 ≤ (τ + τ ′)(ϵR + 1

2δ), (42)

as desired.
Finally, the bound (10) is equivalent to the following in-

equality

α2 ≤
(
τ ′

τ

)2

ϵ2R +

(
τ + τ ′

2τ

)2

δ2,

which is a sufficient condition for the upper bound in (8) to
be less than the upper bound in (9).
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