

VAST: a visualization-based educational tool for language processors courses

Francisco J. Almeida-Martínez, Jaime Urquiza-Fuentes y J. Ángel Velázquez-Iturbide

ITiCSE 2009 - 14th annual ACM SIGCSE conference on Innovation and technology in

computer science education, 342.

DOI: http://doi.acm.org/10.1145/1562877.1562983

VAST - A Visualization-based Educational Tool for
Language Processors Courses

Francisco J. Almeida-Martínez, Jaime Urquiza-Fuentes, J. Ángel Velázquez-Iturbide
Departamento de Lenguajes y Sistemas Informáticos I

Escuela Superior de Ingeniería Informática, Universidad Rey Juan Carlos
C/ Tulipán s/n, 28933 Móstoles (Madrid), Spain

{francisco.almeida,jaime.urquiza,angel.velazquez}@urjc.es

ABSTRACT
In this demonstration we present VAST, a visualization tool
to support teaching language processors. On the one hand,
VAST provides an API that allows generating visualizations
of syntax trees independently of the parser generator. On
the other hand, VAST provides a GUI with multiple views:
the source code, the stack and the syntax tree.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers; K.3.1 [Computer Uses
in Education]: Computer-assisted instruction (CAI); K.3.2
[Computer and Information Science Education]: Com-
puter science education

General Terms
Human Factors, Languages

Keywords
Syntax trees, Visualization

1. INTRODUCTION
Many concepts of a typical language processors course are

based on the formal languages theory. When students are
writing a syntax directed translator, they must think about
the construction process of the corresponding syntax tree.

Teaching parsers is usually supported by visualization tools
drawing the syntax tree. But most of these tools are focused
on the formal language theory, e.g. JFlap [4]. Parser gener-
ators are useful in the language processor courses. But if one
wants to visualize the syntax tree structure, she must choose
between: develop her own visualization, or use a parser gen-
erator with a built-in visualization system e.g. [1, 2, 3].

2. USE AND STRUCTURE OF VAST
The main objective of VAST is allow generating and ma-

nipulating syntax trees independent from the parser gener-
ator. Adapting parser specifications to generate the visual-
izations of the syntax trees is easy with VAST. There exist
many parser generators, but all of them have the same struc-
ture, semantic rules associated to grammar rules. VAST pro-
vides an API (VASTapi) that can be used from the semantic

Copyright is held by the author/owner(s).
ITiCSE’09, July 6–9, 2009, Paris, France.
ACM 978-1-60558-381-5/09/07.

rules. Thus, its use is only limited by the implementation
language, which is Java. Students only need to include in the
semantic rules associated to each grammar rule an API call
like xxx.addProduction("LHS","RHS"); and fix the axiom
production with an API call like xxx.setRoot();.

Then the students generate the parser using the parser
specification annotated with the VASTapi calls. Next, the
syntax tree visualization data is produced as a side effect of
the parser execution.

Finally, the syntax tree visualization can be manipulated
with VASTview, the GUI supplied by VAST. VASTview
provides three synchronized views: the input stream, the
stack and the syntax tree. The visualization can be static –
showing a specific processing state– or dynamic –playing the
syntax tree construction process–. The graphical properties
of the visualization can be customized with a configuration
utility. Usually, the syntax trees produced in language pro-
cessor projects are huge. We have designed VASTview to
cope with this problem. The syntax tree view offers both a
global and a zoomed view. Students can navigate through
the tree using both views. The global view highlights the
current part of the tree visualized in the zoomed view, and
the zoom factor is controlled by the students. Furthermore,
we allow the students to hide/show subtrees adapting the
visualization to their needs.

VAST is available at: http://www.lite.etsii.urjc.es/vast/.

3. ACKNOWLEDGMENTS
This work was supported by project TIN2008-04103/TSI

of the Spanish Ministry of Science and Innovation.

4. REFERENCES
[1] J. Bovet. ANTLRWorks: The ANTLR GUI

development environment.
http://www.antlr.org/works/index.html, 2009.

[2] A. Kaplan and D. Shoup. CUPV–a visualization tool
for generated parsers. In SIGCSE ’00: Proceedings of
the 31st SIGCSE Technical Symposium on Computer
Science Education, pages 11–15, New York, NY, USA,
2000. ACM.

[3] M. Mernik and V. Zumer. An educational tool for
teaching compiler construction. IEEE Transactions on
Education, 46(1):61–68, Feb. 2003.

[4] S. Rodger. Learning automata and formal languages
interactively with JFLAP. In ITICSE ’06: Proceedings
of the 11th annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, pages
360–360, New York, NY, USA, 2006. ACM.

342

