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Abstract

In this paper we propose a procedure that uses single index model to construct

interpolation intervals for a general class of linear processes. We present an extensive

Monte Carlo experiment studying the finite sample properties of this procedure.

Finally, we illustrate the performance of the proposed method with a real data

example.
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1 Introduction

In Alonso and Sipols (2008), a sieve bootstrap procedure for constructing

interpolation intervals for a general class of linear processes is proposed. This

procedure treats interpolation as a prediction with restrictions on future val-

ues, and it uses nonparametric estimators of the conditional quantiles. As

usual, the behavior of these nonparametric estimators depends on the number

of restrictions; it is known that nonparametric estimators suffer from the curse

of dimensionality, i.e., the estimators become worse as the dimension increase.

In this paper we propose to use a procedure based on a single index model, in

an attempt to minimize the effect of the number of variables or restrictions.

The single index models (SIM) are widely used in applied quantitative sci-

ence. For example censored Tobit models, binary choice models or errors-in-

variables models (for details and more examples see Ichimura, 1993). The SIM

consists of resuming the effect of the k−covariate variable X in a unique vari-

able, called index, in order to capture most information regarding the relation

between a response variable Y and the set of explanatory variables X, thereby

avoiding the “curse of dimensionality”. Specifically, given a response variable

Y and a set of explanatory variables X, the model can be written as

Y = η(λ′X) + ε, (1)

where λ is a vector of k× 1 parameters, with ||λ|| = 1 and E(ε|X) = 0. Both

the link function η and the parameter vector λ are unknown.
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Using the results of Guerrero and Peña (2000), the following expression was

obtained by Alonso (2001) for a general class of time series linear model with

Gaussian innovations:

Xτ |XO ∼ N (−(H ′Σ−1H)−1H ′Σ−1X, H ′Σ−1H), (2)

where Xτ = (Xτ1 , Xτ2 ..., Xτm) is the missing observations vector, X is the

complete observed series with zeros in positions (τ1, τ2, ..., τm), XO = X \Xτ .

H is a T ×m matrix such that Hτi,i = 1 and Hi,j = 0 in another case, and Σ

is the T × T autocovariance matrix.

Notice that the above expression implies that the conditional distribution

of Xτ |XO depends on XO only through the index −(H ′Σ−1H)−1H ′Σ−1X.

This result gave rise to using the SIM methodology which takes into account

past and future observations, XP = (X1, X2, ..., Xτ1−1), XF = (Xτm+1, Xτm+2, ..., XT )

respectively, as explanatory variables, and missing observations, Xτ , as the

response variable.

In this paper we will assume that the conditional distribution of Xτ depends

on the sample only through an index, i.e.

f (Xτ |XP ,XF ) = f (Xτ |λ′(X ′
P ,X ′

F )′ ) . (3)

The major advantage of the above assumption is that the function f can be

estimated by nonparametric procedures, that are not affected by the dimension

of the vector since λ′(X′
P ,X′

F ) has dimension equal to one.

The rest of the paper is organized into the following sections. Section 2

briefly describes the SIM estimation method proposed by Yu and Ruppert

(2002). Section 3 is based on Alonso and Sipols (2008), where the bootstrap

procedure for constructing interpolation intervals is described by substituting
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the standard nonparametric techniques with the SIM procedure. Section 4

presents the results of an extensive Monte Carlo study and Section 5 illustrates

the behavior of the proposed procedure with a real data example. A brief

summary of conclusions is given in Section 6.

2 Single Index Model estimation procedure

In general, SIM estimation takes place in two stages. First the vector of

coefficients, λ, is estimated. Then, using the index values as single explana-

tory variable, the link function η is estimated using standard non-parametric

techniques. There are a variety of methods to estimate the single-index mod-

els parameters. Geenens and Delecroix (2006) give a review of many them;

comparing M-estimators, like semiparametric least squares (Ichimura, 1993)

and semiparametric maximum likelihood (Klein and Spady, 1993; Delecroix,

Härdle and Hristache, 2003), and direct estimators like average derivative es-

timator (ADE): unweighted average derivatives (UADE)(Härdle and Stoker,

1989) and density-weighted average derivatives (DWADE)(Powell, Stock and

Stoker, 1989). Their simulation study points out that once the sample size

grows, the M-estimators outperform the direct estimators. In our case we will

always have large sample sizes because the SIM estimates are calculated on

the bootstrap samples.

Some of the problems and weaknesses presented in the above mentioned

methods are dealt with by Yu and Ruppert (2002), who propose the use of

penalized spline (which may be classified as an M-estimation approach). Some

of the advantages of this method are that it is rapid and computationally

stable, and it uses standard nonlinear least squares software.
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The Yu and Ruppert’s method involves the simultaneous estimation of all

parameters in the following partially linear single index model:

yi = η(λ′xi) + β′zi + εi, (4)

where xi ∈ Rd, zi ∈ Rdz , yi ∈ R, λ ∈ Rd (unknown single index parameter),

β ∈ Rdz (unknown linear parameter)and η : R→ R is an unknown univariate

function; {εi} is an independent error process with zero mean and variance

σ2
0. {εi} is assumed independent of {(xi, zi)}. In order to have an identifiable

model, the following conditions are imposed: ||λ|| = 1 and the first nonzero

element of λ is positive. In our case, we have a simpler model since we can

assume that β ≡ 0.

Their method assume that the link function can be written by

η(u) = δ + δ1u + . . . + δpu
p +

K∑

k=1

δp+k(u− κk)
p
+, (5)

where B(u) = (1 u . . . up (u − κ1)
p
+ . . . (u − κK)p

+)′ is a spline basis, δ =

(δ, δ1, . . . δp+K)′ is the spline coefficient vector and {κk}K
k=1 are the spline knots.

The knots are chosen at equally spaced sample quantiles of the estimated index

values λ′x.

If we denote vi = (x′iz
′
i)
′ and θ = (λ′β′δ′)′, then the spline model can be

written as:

η(u) = δ′B(u), (6)

and the mean function E[yi|vi; θ] is given by:

m(vi; θ) = δ′B(λ′xi) + β′zi. (7)

The model (4)-(7) can be estimated by the penalized least squares method
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which minimizes the following expression:

Qn,α(θ) = n−1
n∑

i=1

{yi −m(vi; θ)}2 + αδ′Dδ, (8)

where D is an appropriate positive semidefinite symmetric matrix and α ≥ 0

is a penalty parameter. Once we have an estimate of θ, we can use a standard

nonparametric estimator for the unknown function η (see details in Yu and

Ruppert, 2002).

3 A time series bootstrap procedure for interpolation intervals

Alonso and Sipols (2008) provide a procedure for calculating the interpola-

tion intervals, using a nonparametric estimator of the conditional distribution

function. This section briefly describes their procedure, which is a modifica-

tion of that proposed by Alonso, Peña and Romo (2002) as applied to time

series with missing observations.

Let {Xt}t∈Z be a stationary process with E [Xt] = µX which admits a

MA(∞) representation

Xt − µX =
∞∑

j=0

ψjεt−j, ψ0 = 1, t ∈ Z (9)

where {εt}t∈Z is a sequence of independent and identically distributed random

variables with E(εt) = 0 and V (εt) = σ2. The coefficients {ψj}+∞
j=0 have, at

most, a polynomial decay, and the polynomial Ψ(z) =
∞∑

j=0

ψjz
j is bounded

and different from zero in |z| ≤ 1. Then {Xt}t∈Z admits an autoregressive

representation:
∞∑

j=0

φj(Xt−j − µX) = εt, φ0 = 1 (10)

and the polynomial Φ(z) =
∞∑

j=0
φjz

j is bounded and different from zero in

|z| ≤ 1. This AR(∞) representation motivates the sieve bootstrap proposed

6



by Kreiss (1988) and Bühlmann (1997).

The procedure proposed by Alonso and Sipols (2008) consists of the following

steps:

1. Given a sample X = (X1, X2, ..., Xn) , select the autoregressive approxima-

tion of order p = p(n) using the Bayesian information criteria (BIC, see,

Schwarz 1978).

The BIC criteria is used in order to obtain a parsimonious model. Of course,

other model selection criteria can be used, e.g., the AICC criterion proposed

by Hurvich and Tsai (1989).

2. Obtain the parameter’s estimates: φ̂p =
(
φ̂1, φ̂2, ..., φ̂p

)′
by means of the

resolution of the following Yule-Walker equations:

Γ̂pφ̂p = −γ̂p, (11)

where Γ̂p =
[
R̂ (i− j)

]p

i,j=1
, γ̂p =

(
R̂(1), ..., R̂(p)

)′
, and

R̂(j) =
n−|j|∑

t=1

atat+|j|
(
Yt − Y

) (
Yt+|j| − Y

)
�

n−|j|∑

t=1

atat+|j|,

where Yt = atXt, at represents the state of the observation at time t, i.e.,

at = 1 if Xt is observed and at = 0 if Xt is a missing observation.

The estimators (11) were proposed by Parzen (1963) and its asymptotical

properties have been studied by Dunsmuir and Robinson (1981). If the number

of missing observations remains constant with the sample size n, then the effect

of substituting
n−|j|∑
t=1

atat+|j| by n in (11) is asymptotically zero.

3. Calculate the residuals:

ε̂t =
p∑

j=0

φ̂j

(
Xt−j −X

)
with φ̂0 = 1, t ∈ Υp, (12)
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where Υp = {t :
∏p

i=0at−i = 1}.

4. Obtain the empirical distribution function of the centered residuals:

F̃ε̃(x) = (#Υp − p)−1
∑

t∈Υp

I (ε̃t ≤ x) , (13)

where ε̃t = ε̂t − ε̂ (·) and ε̂ (·) = (#Υp − p)−1 ∑
t∈Υp

ε̂t.

5. Obtain a resample of i.i.d. observations: ε∗t ∼ F̃ε̃.

6. Define X∗
t by the relation:

p∑

t=0

φ̂j

(
X∗

t−j −X
)

= ε∗t , (14)

where the first p observations are equal to X.

7. Given (X∗
1 , . . . , X

∗
n), obtain Y ∗

t = atX
∗
t , and calculate the autoregressive

parameter estimates, φ̂φφ
∗
p , as in step 2.

8. Calculate the future observations by the relation:

X∗
T ′+h − X̄ = −

p∑

j=1

φ̃ ∗j (X∗
T ′+h−j − X̄) + ε∗T ′+h, (15)

where h = 1, 2, . . . , T − T ′, X∗
t = Xt for T ′− p ≤ t ≤ T ′, and

T ′ =max {t ∈ Υp : t < τ}.

From step 8, the bootstrap distribution function for the (T − T ′)× 1 vector

(X∗
T ′+1, X

∗
T ′+2, . . . , X

∗
T ) conditional to (X∗

T ′−p = XT ′−p, X
∗
T ′−p+1 = XT ′−p+1, . . . , X

∗
T ′ =

XT ′) is obtained, i.e., the distribution of the “future” observations from time

T ′+1 up to time T conditional to its past. From this multidimensional distribu-

tion one could obtain F ∗
X∗

τ
, the distribution of X∗

τ conditional to YYY ∗T
T ′+1 \ Y ∗

τ = YYY T
T ′+1 \ Yτ .

Notice that [T ′ + 1, T ] includes all the missing observations. In the particular

case of m consecutive missing observations T ′ =max {t ∈ Υp : t < τ} = τ − 1,

where τ is the index of the first missing observation in the block.
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The steps from 5 to 8 are repeated B times in order to obtain an estimation

of F ∗
X∗

τ
using one of the following nonparametric estimators (e.g., see Cao et

al, 1997):

F ∗
X∗

τ
(x|yyy) =

B∑
b=1

I
(
X∗(b)

τ ≤ x
)
KKK

(
(yyy − YYY

∗(b) T
T ′+1 )/h

)

B∑
b=1

KKK
(
(yyy − YYY

∗(b) T
T ′+1 )/h

) (16)

or

F ∗
X∗

τ
(x|yyy) =

B∑
b=1
K

(
(x−X∗(b)

τ )/h
)
KKK

(
(yyy − YYY

∗(b) T
T ′+1 )/h

)

B∑
b=1

KKK
(
(yyy − YYY

∗(b) T
T ′+1 )/h

) , (17)

where KKK is a Kernel with dimension T − T ′ − 1, and K(x) =
∫ x
−∞ K(s)ds.

For simplicity in the notation, in (16) and (17) Yτ is omitted in YYY T
T ′+1 \ Yτ .

From these estimators of the conditional distribution, the conditional quantiles

can be derived. Alternatively, since our interest is in obtaining interpolation

intervals, the following nonparametric quantile estimator can be used:

Q∗ (θ) (yyy) =
Q∗L (θ) (yyy) + Q∗U (θ) (yyy)

2
, (18)

where

Q∗L (θ) (yyy) = max
1≤b≤B

{
X∗(b)

τ /
B∑

`=1

111(X∗(`)
τ ≤ X∗(b)

τ )W`(yyy) ≤ θ

}
, (19)

Q∗U (θ) (yyy) = min
1≤b≤B

{
X∗(b)

τ /
B∑

`=1

111(X∗(`)
τ ≤ X∗(b)

τ )W`(yyy) > θ

}
(20)

and W`(y) are the nonparametric weights (e.g., see Cao et al, 1997).

3.1 SIM methodology

We propose a modification of the Alonso and Sipols (2008) procedure based

on SIM methodology assuming that the conditional distribution FXτ (x|y) can

be approximated by FXτ (x|λ′y).

The steps of the previous algorithm are modified as follows: (i) It is not
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necessary to modify steps 1–6 of the procedure proposed in Section 3, and (ii)

Steps 7 and 8 are not carried out since our procedure works with the bootstrap

series generated in step 6.

The steps 5 and 6 are repeated B times in order to obtain estimations of

the indexes, λτ for τ = τ1, τ2, . . . , τm using the estimation procedure described

in Section 2, i.e., we obtain λ̂τ by estimating the model (4)-(8) with response

variable y = X∗
τ , explanatory variable x = [X∗′

P ,X∗′
F ]′ and β = 0.

Then, an estimation of F ∗
X∗

τ
is obtained using the following nonparametric

estimator:

F ∗
X∗

τ
(x|yyy) =

B∑
b=1

I
(
X∗(b)

τ ≤ x
)
K

(
(λ̂

′
τyyy
′ − λ̂

′
τ [X

∗′
P ,X∗′

F ]′)/h
)

B∑
b=1

K
(
(λ̂

′
τyyy
′ − λ̂

′
τ [X

∗′
P ,X∗′

F ]′)/h
) (21)

where X∗
P and X∗

F are the previously defined series of past and future ob-

servations, respectively; and λ̂τ is the estimated index for the missing value

at position τ . Notice that the estimator (21) entails that the distribution

FXY
(x|y) can be approximated by FXY

(x|λ′y), i.e., similar to a single index

model.

It is noteworthy that, in this proposal, the kernel is evaluated in a one-

dimensional variable, thus avoiding the problem of dimensionality of estima-

tors (16) and (17).

4 Simulation Results

Alonso and Sipols (2008) considered three different alternatives, since the

behavior of the nonparametric estimator (16) and (17) depends on the dimen-

sion of the conditioning vector YYY T
T ′+1\Yτ : (CT) conditioning up to observation

T ; (CP) conditioning up to observation T ′ + m + p̂ where m is the number
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of missing observations and p̂ is the selected autoregressive order; and (CO)

conditioning up to observation T ′ + m + popt where popt is the order that min-

imize the mean squared error (MSE) of the nonparametric conditional mean

as interpolator of Xτ .

Considering that the best results were obtained when using CP and CO, in

this section we will compare the CP and CO approaches with the SIM method-

ology. For the SIM procedure, we will consider two cases: (SIM) conditioned

on all past (XP ) and future (XF ) observations, and (SIMP) conditioned up

to future observation τm + p̂ and from past observation τ1 − p̂, where τ1 and

τm are the index of the first and last missing observation, respectively; and p̂

is the selected autoregressive order.

A simulation study is therefore carried out in order to evaluate how our

methods (SIM, SIMP) perform compared to (CP, CO) and the additive out-

lier approach (AO) proposed by Gómez et al (1997, 1999). For this last ap-

proach, we use the program TRAMO (Time series Regression with ARIMA

noise, Missing observations and Outliers) developed by Gómez and Maravall

(1996). This program was used in Gómez et al (1997, 1999) and it provides the

missing values estimation and its standard error. Then, assuming normality,

a Gaussian interpolation interval can be derived.

We have run a simulation experiment with series of length 100 generated

from the following models:

Model 1: (1− 0.8B)Xt = εt (22)

and

Model 2: Xt = (1− 0.7B)εt, (23)

where the {εt} are i.i.d. Fε. The error distributions Fε considered are the
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standard normal N (0, 1), a shifted exponential distribution with zero mean

and scale parameter equal to one, and a contaminated distribution 0.9 F1 +

0.1 F2 with F1 ∼ N (−1, 1) and F2 ∼ N (9, 1).

We have considered different patterns of missing data: (i) one missing ob-

servation at a fixed position t = 10, 50, 90; and (ii) five consecutive missing

observations at positions t = 45 to 49. These models and patterns of missing

data were considered by Gómez et al (1997).

In order to approximate the distribution F ∗
X∗

τ
conditional to Y ∗T

T ′+1 \ Y ∗
τ =

Y T
T ′+1 \Yτ , for CP and CO, Alonso and Sipols (2008) used the following band-

width:

h =
(

4

2 + d

)1/(d+4)

B−1/(d+4)s, (24)

where s2 = d−1 ∑
i sii, sii are the diagonal elements of the covariance matrix,

S, of vector (X
∗(b)
T ′+m+1, X

∗(b)
T ′+m+2, . . . , X

∗(b)
T ′+m+d), d is the number of conditioning

observations, and B is the number of bootstrap replications.

For SIM and SIMP, we use the previous expression with d = 1 since we

are considering a one-dimensional variable, and s is the standard deviation of

λτ [X
∗(b)
P ,X

∗(b)
F ]. In this case, the bandwidth formula coincides with Silverman’s

rule of thumb (Härdle et al(2004)):

h =
(

4

3

)1/5

B−1/5s (25)

In all methods we have considered B = 1000 bootstrap replications. To

compare the different interpolation intervals, we use their mean coverage and

the proportions of observations lying out to the left and to the right of the

interval. Tables 1-3 present the coverage results for Model 1 using the three

distribution error, a nominal level of 90% and the above mentioned patterns
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of missing observations. Tables 4-6 present the results for Model 2.

The main conclusions are the following:

• SIM does not always outperform CP and CO in terms of mean coverage.

• SIMP outperforms SIM, CP and CO methods in terms of mean coverage.

• SIM, SIMP, CP and CO methods outperform the AO approach in terms of

mean coverage.

From Tables 1-6 we can derive the following results: (i) In some cases the

mean coverage obtained with SIM is outperformed by the other methods.

That is due to the fact that least squares methods for estimating index λ

are less accurate if there are a large number of explanatory variables; (ii)

SIMP outperforms the SIM in terms of mean coverage in almost all the cases,

i.e., SIMP attains a coverage closer to the nominal value. Notice that SIMP

takes into account a smaller number of variables ; (iii) SIMP outperforms CO

and CP as it is known that nonparametric estimators suffer from the curse of

dimensionality, i.e., the estimators becomes worse as the dimension increases;

(iv) Regarding the different positions of an isolated missing observation, we

observe that SIM and SIMP perform similarly in the considered positions, the

exception being the MA model with contaminated innovations; (v) Regarding

the pattern of five consecutive missing observations, in general, we observe a

better coverage at the beginning and at the end of the missing block; (vi) The

SIM, SIMP, CP and CO approaches outperform the AO approach in almost

all the considered cases, which causes a lower coverage of their interpolation

intervals. Moreover, the AO approach fails in the case of non-Gaussian error

distribution having, in some cases, coverage lower than 80%.
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5 Real data example

Here we study the monthly sales (in kiloliters) of red wine by Australian

winemakers (1980-1992), considered in Brockwell and Davis (2001). In order to

illustrate the proposed procedure, we consider a pattern of twelve consecutive

missing observations.

In Figure 1, we present the interpolation relative errors using the proposed

procedure, SIMP, the CO procedure with popt = 4, and using a fully paramet-

ric method selected by using the TRAMO program developed by Gómez and

Maravall (1996). We observe that SIMP and AO methods have a similar per-

formance in terms of relative errors. The SIMP has a MSE, 0.0017, comparable

to the obtained MSE, 0.0013, using TRAMO. However, if we compare them

in terms of coverage, the SIMP approach obtains 94% and the AO approach

obtains 69.2%. We observe that SIMP and CO methods have a similar perfor-

mance in terms of relative errors. The MSE obtained by SIMP is comparable

to the obtained MSE, 0.0016, using CO and if we compare them in terms of

coverage, the SIMP approach obtains 94% and the nonparametric conditional

mean approach obtains 93%. These results are consistent with the simulation

results reported in Section 4. In this real application the results by SIMP and

CO are quite similar, but in the Monte Carlo simulations SIMP outperforms

CO in all the cases.

In Figure 2 we illustrate the results of the proposed procedure for the pre-
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Figure 1. Interpolation relative errors using the CO, AO and SIMP approaches.

vious pattern of twelve consecutive missing observations at positions 67,...,78.

We can see that interpolation intervals capture the underlying dynamics in

the data.
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Figure 2. Interpolation results for series Australian red wine sale data (1980-1992).
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6 Conclusions and Extensions

In this article we proposed a single-index model methodology in order to

construct interpolation intervals. The goal achieved by our approach is that

it avoids the “curse of dimensionality” in nonparametric estimations, outper-

forming the results of Alonso and Sipols (2008). The result is supported by

our simulations and real data studies.

16



References

Alonso, A.M (2001). Resampling techniques and missing values in time series.

PhD thesis, Universidad Carlos III de Madrid.

Alonso, A. M., Peña, D. and Romo, J. (2002). Forecasting time series with

sieve bootstrap, Journal of Statistical Planning and Inference, 100, 1-11.

Alonso, A.M. and Sipols, A.E. (2008). A time series bootstrap procedure for

interpolation intervals. Computational Statistics and Data Analysis, 52,

1792-1805.

Beveridge, S. (1992). Least squares estimation of missing values in time series.

Communications in Statistics Theory and Methods, 21, 3479-3496.

Brockwell, P.J. and Davis, R.A. (2001). Introduction to time series and fore-

casting. Springer-Verlag, New York.
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Gómez, V. and Maravall, A. (1996). Programs TRAMO (Time Series Regres-

sion with ARIMA noise, Missing observations and Outliers) and SEATS

(Signal Extraction in ARIMA Time Series). Instruction for the user, Work-

ing Paper 9628, Bank of Spain, Madrid.
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Gómez, V., Maravall, A. and Peña, D. (1999). Missing observations in ARIMA

models: Skipping approach versus, additive outlier approach, Journal of

Econometrics, 88, 341-363.

Guerrero, V. M. and Peña, D. (2000). Linear combination of restrictions and

forecasts in time series analysis. Journal of Forecasting, 19, 103-122.
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Table 1
Simulation results for Model AR using Gaussian innovations.

Missing obs. Method Coverage Coverage (left/right)
10 CP 93 4.2/2.8

CO 93.8 3.4/2.8
SIM 90.4 3.2/6.4

SIMP 91.6 3.6/4.8
AO 94 4/2

50 CP 90.8 6.3/2.9
CO 90.4 5.8/3.8
SIM 90.6 4/5.4

SIMP 90.4 5.4/4.2
AO 88 7/5

90 CP 91.8 2.8/5.4
CO 91.5 4/4.5
SIM 91.8 2.4/5.8

SIMP 90.6 2.8/6.6
AO 92 3/5

RP CP 87.5 7.2/5.8
CO 87.8 7.4/5.6
SIM 91.2 4.6/4.2

SIMP 90 5.8/4.2
AO 86 7/7

45 CP 86.8 4/9.2
CO 87 9/4
SIM 87.2 9/3.8

SIMP 87.4 8.6/4
AO 88 9/3

46 CP 90.2 5.6/4.2
CO 90.4 6.2/3.4
SIM 90.4 5.5/4.1

SIMP 90.2 6.4/3.4
AO 89 7/4

47 CP 85 5/10
CO 84.4 5.6/9.4
SIM 87.6 7.8/4.6

SIMP 86.2 5.8/8
AO 82 7/11

48 CP 84 6.8/9.2
CO 85 6/9
SIM 89.2 8/2.8

SIMP 90.4 5.8/3.8
AO 80 8/12

49 CP 93.4 3/3.6
CO 94.2 2.4/3.4
SIM 87.8 4.4/7.8

SIMP 92.6 2.2/5.2
AO 93 1/6
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Table 2
Simulation results for Model AR using exponential innovations.

Missing obs. Method Coverage Coverage (left/right)
10 CP 92.2 7.2/0.6

CO 91.0 8.0/1.0
SIM 92.2 5/2.8

SIMP 89.1 9.5/1.4
AO 82 10/8

50 CP 95.2 3.2/1.6
CO 95.6 2.8/1.6
SIM 91.6 5.6/2.8

SIMP 90 5/5
AO 81 9/10

90 CP 91.2 6/2.8
CO 91.4 6/2.6
SIM 88.8 7.4/3.8

SIMP 90.8 6/3.2
AO 83 9/8

RP CP 92 5/3
CO 92 6/2
SIM 91 6/3

SIMP 90.6 4.6/4.8
AO 81 7.2/11.8

45 CP 91 5.5/3.5
CO 91 5.6/3.4
SIM 90 6.7/3.3

SIMP 89.5 6.3/4.2
AO 77 9/14

46 CP 90.6 5.4/4
CO 91 6/3
SIM 91.2 5/3.8

SIMP 90.6 5.4/4
AO 79 9/12

47 CP 87 6/7
CO 87 7.2/5.8
SIM 88 7/5

SIMP 88.8 7/4.2
AO 68 8/24

48 CP 93 3/4
CO 93 4/3
SIM 91.8 3/5.2

SIMP 89.2 4/6.8
AO 73 7/20

49 CP 93.4 5.6/1.0
CO 93.6 4.6/1.8
SIM 92.8 5.6/1.6

SIMP 92.4 5/2.6
AO 81 8/11
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Table 3
Simulation results for Model AR using contaminated innovations.

Missing obs. Method Coverage Coverage (left/right)
10 CP 91 2/7

CO 91.6 2.2/6.2
SIM 91.4 4/4.6

SIMP 90.6 3/6.4
AO 77.6 7/15.4

50 CP 91.8 4.6/3.6
CO 91 6.2/2.8
SIM 91.2 4.6/4.2

SIMP 90.2 5.2/4.6
AO 79 8/13

90 CP 93 2/5
CO 92 3/5
SIM 90.8 1.6/7.6

SIMP 90.2 4.6/5.2
AO 75.8 6.2/18

RP CP 91 4.6/4.4
CO 92 4.6/3.4
SIM 91.4 4.6/4

SIMP 91.2 4/4.8
AO 73 8/19

45 CP 90 6/4
CO 90.2 5/4.3
SIM 90.2 5.4/4.4

SIMP 90.2 5/4.3
AO 74.6 12.8/12.6

46 CP 91 6/3
CO 91 5.4/3.6
SIM 89.8 6/4.2

SIMP 89.4 5.6/5
AO 65.2 16.6/18.2

47 CP 91 4.7/4.3
CO 90.4 5.6/4.0
SIM 91.2 5.6/3.2

SIMP 90.8 6/3.2
AO 64.6 15.8/19.6

48 CP 93 5/2
CO 91.4 4.8/3.8
SIM 91.8 4.4/3.8

SIMP 90.6 5.6/3.8
AO 61 16/23

49 CP 96.8 2.2/1
CO 95.4 3.2/1.4
SIM 88 10.0/2

SIMP 92.4 4.2/3.4
AO 62.2 10.2/27.6
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Table 4
Simulation results for Model MA using Gaussian innovations.

Missing obs. Method Coverage Coverage (left/right)
10 CP 86.6 9.0/4.4

CO 90.2 6.4/3.4
SIM 90.6 5.4/4

SIMP 90.2 6/3.8
AO 84.3 10.0/5.7

50 CP 87 7.2/5.8
CO 89 8.8/2.2
SIM 90.4 7.2/2.4

SIMP 89 8.5/2.5
AO 85.2 12.8/2.0

90 CP 89.2 5.2/5.6
CO 91 6/3
SIM 92.6 4.2/3.2

SIMP 90 5/5
AO 76 14.0/10.0

RP CP 89 3.8/7.2
CO 88.8 3.8/7.4
SIM 91.2 5/3.8

SIMP 90.4 5.5/4.1
AO 78 13/9

45 CP 83.2 9.4/7.4
CO 85.6 8.6/5.8
SIM 86 9/5

SIMP 86.2 8.4/5.4
AO 86 10/4

46 CP 85.0 4.8/10.2
CO 88.6 3.4/8
SIM 90.2 6.4/3.4

SIMP 89 2/9
AO 88.8 3.2/8

47 CP 84 6.2/9.8
CO 88.2 3.2/8.6
SIM 85.2 6/8.8

SIMP 88.2 3.6/8.2
AO 86 5/9

48 CP 80.6 11.6/7.8
CO 85.2 8.4/6.4
SIM 82.8 10.6/6.6

SIMP 86.6 8/5.4
AO 86 10/4

49 CP 82.0 12.2/5.8
CO 84.8 10.6/4.6
SIM 81.4 12.2/6.4

SIMP 85.6 10/4.4
AO 84 12/4
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Table 5
Simulation results for Model MA using exponential innovations.

Missing obs. Method Coverage Coverage (left/right)
10 CP 88.2 5.4/6.6

CO 88.2 6.4/5.4
SIM 92.8 3/4.2

SIMP 90.4 4.6/5
AO 83 12/5

50 CP 85.8 6.2/8.0
CO 87.6 6.6/5.8
SIM 90 2.8/7.2

SIMP 89.4 3.6/7
AO 82 9/9

90 CP 90.2 2.8/7.0
CO 91.2 2.6/6.2
SIM 91.2 5/3.8

SIMP 90.4 4.6/5
AO 78 13/9

RP CP 89 3.8/7.2
CO 88.8 3.8/7.4
SIM 89.6 6.8/3.6

SIMP 90.4 5.4/4.2
AO 77.6 10.6/11.8

45 CP 83 10.8/6.2
CO 85 9.2/5.8
SIM 83.2 10.8/6

SIMP 86.4 9.4/4.2
AO 89 4/7

46 CP 84.2 7.0/8.8
CO 83.8 6.6/9.6
SIM 84 7.2/8.8

SIMP 85 6/9
AO 85 6/9

47 CP 82.8 6.4/10.8
CO 87 4.4/8.6
SIM 83 7/10

SIMP 88 3.4/8.6
AO 85 4/11

48 CP 78.4 11/10.6
CO 82.6 9.6/7.8
SIM 77.4 12/10.6

SIMP 88 7/5
AO 88 7.0/5.0

49 CP 87.6 7.0/5.4
CO 90 6.4/3.6
SIM 88.2 8.4/3.4

SIMP 89.2 6.2/4.6
AO 87 7/6
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Table 6
Simulation results for Model MA using contaminated innovations.

Missing obs. Method Coverage Coverage (left/right)
10 CP 88 5.3/6.7

CO 91.8 3.2/5
SIM 87 6.3/6.7

SIMP 91.1 3.5/5.4
AO 69.4 13.2/17.4

50 CP 89.2 6.0/4.8
CO 89.0 6.2/4.8
SIM 89.8 6.0/4.2

SIMP 90.2 7.2/2.6
AO 72.8 14.4/12.8

90 CP 87.2 7.6/5.2
CO 87.0 6.8/6.2
SIM 87.8 6/6.2

SIMP 90.2 5/4.8
AO 72.8 11.8/15.4

RP CP 88.6 5.4/6
CO 89.8 5.2/5
SIM 88.8 5/6.2

SIMP 90.1 7.3/2.6
AO 75.8 9.4/14.8

45 CP 87.8 4.2/8.0
CO 88.8 3.8/7.4
SIM 87.2 3.4/9.4

SIMP 89 3.4/7.6
AO 83.2 4.2/12.6

46 CP 84.4 8.0/7.6
CO 86.0 7.6/6.4
SIM 84.2 7.8/8

SIMP 87 6.6/6.4
AO 82.2 7.6/10.2

47 CP 85.0 7.8/7.2
CO 86.2 7.4/6.4
SIM 85.8 7/7.2

SIMP 86 6.8/7.2
AO 84.8 7.2/8.0

48 CP 82.6 7.0/10.4
CO 86.4 5.4/8.2
SIM 83.4 9/7.6

SIMP 87 4.4/8.6
AO 84.6 5.2/10.2

49 CP 86.0 9.8/4.2
CO 88.4 8.2/3.4
SIM 87.2 8/4.8

SIMP 89.4 7.2/3.4
AO 84.4 7.8/7.8
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