
Enabling Web Service Discovery in Heterogeneous
Environments

Zijie Cong and Alberto Fernández Gil
Artificial Intelligence Research Group

Universidad Rey Juan Carlos
Calle Tulipán s/n, 28933, Móstoles, Spain
{zijie.cong, alberto.fernandez}@urjc.es

Abstract. In large, open environments, service discovery has to face the
challenge of heterogeneity. Service advertisements published by different
organizations or individuals may differ in their description models, thus
expressiveness levels. Even on the same expressiveness level, organizations
may use assorted domain ontologies. In addition, a service discovery tool may
not have a global view of all service advertisements in the system.
Unfortunately, most contemporary service discovery approaches rely on these
key factors. This paper presents a method that addresses the mismatch problem
in description models. A neutral model is proposed in this work for aligning
different service description models. A matchmaking method that encompasses
different semantic, syntactic and hybrid service description languages based on
this neutral model is also presented. Implementation and evaluation of the
proposed method showed a satisfactory result.

Keywords: service discovery, matchmaking, semantic web services, service
oriented architecture, agreement technologies, semantic alignment.

1 Introduction

Service-Oriented Architecture (SOA) has been widely adopted by the industries due
to its discoverability, maintainability, reusability and composability. A SOA is
usually implemented using Web Services. While there exist various definitions of the
term “web service”, most of these definitions agree on four characteristics of web
services: i) A web service is a software unit of business functionality; ii) web
services provide Application Programming Interfaces (APIs), which are usually
described in a standardized language; iii) web services are accessible through
standardized network protocols such as HTTP; iv) web services provide
interoperable machine-to-machine interaction. Among these characteristics, ii) and
iv) are most promising and important for bringing the aforementioned advantages of
SOA to practices.

However, with the rapid rise of interest from academia, industries and public,
different web service description approaches have been proposed and are commonly
seen in practice. Ranging from simple keywords and free text to highly expressive,

semantic enabled description models such as OWL-S [19], SAWSDL [16] and
WSMO [7].

The existence of differences among these service description approaches in open
environments reflexes the different needs and the capabilities of their providers, e.g.
a human agent without expertise in web services usually describe their services in
natural languages instead of a structured service description language based on XML;
on the other hand, a software agent will prefer to describe its capabilities in a
semantic enabled description languages, such as OWL-S and SAWSDL to facilitate
the machine-to-machine interaction.

To provide a clear view of the levels of expressiveness, Figure 1 illustrates three
levels used in this paper:

• Machine-understandable
• Machine-processable
• Human-understandable

From this figure, we may notice that approaches that address machine-to-machine
level communication take into consideration also the lower level communication
needs. This coverage provides possibility for service discovery tools to match service
descriptions across expressiveness levels with some information loss. Thus the
problem lies on the differences among description languages.

Note that most approaches assume the use of the same language for both service
advertisements and requests. Therefore, semantic alignment mechanisms need to be
purposefully integrated into the service discovery process. In addition, the
performance of the current approach depends on the size of corpus (registered
services) to a large extends due to the employment of classic information retrieval
techniques (e.g. TF-IDF), which may lead to scalability problem in decentralized
systems.

The contributions of this paper are: i) an architecture for service discovery where
semantic alignment mechanisms are integrated into, ii) an alignment technique for

Machine - Understandable

Machine - Processable

Human - Understandable

Expressiveness ApproachScenario of Interaction

Machine-to-Machine

Human-to-Machine

Human-to-Human

Semantic Inputs/Outputs,
Preconditions/Effects

Syntactic Inputs/Outputs

Text

Keywords,
Tag-cloud

Components

OWL-S, WSMO,
SAWSDL

WSDL

Keywords
Tag-cloud

Text

Figure 1 Levels of expressiveness and service description approaches

different service description models, and iii) a scalable service matchmaking method
that uses the aligned services in decentralized, open environments.

This paper is an extended version of [4], including more detailed explanations, an
example and extending implementation and empirical evaluation.

The rest of the paper is organized as: Section 2 presents a service discovery
architecture with service alignment and enrichment techniques for decentralized,
heterogeneous environment. Section 3 details the matchmaking process based-on
proposed model. Section 4 presents the implementation of our service discovery
system and evaluation results. Section 5 presents related works and finally, section 6
concludes our work.

2 Service Discovery Architecture
The architecture of our service directory is depicted in Figure 2. There are two types
of agents that interact with the directory, the one who offers the service (Service
Provider) and the consumer of services (Service Requester). As we will see in
Section 4, they can access the directory through a REST service or a human-oriented
web interface.

Service providers register services in the directory providing the following
information:

• Service Description: the service description specified by the provider is essential
because it will contain all the information related to the service offered (it can
include the service category). In our framework, we allow several service
description models. They include semantic models (OWL-S, WSMO), syntactic
models (WSDL), hybrid (SAWSDL), as well as other lighter approaches
(keyword, tag-cloud, and text-based service descriptions).

• Grounding: the service provider must attach the information required to access the
service by a client (for example a WSDL file).

• Category (optional): the category of the service can be explicitly defined in this
section according to the NAICS [2] classification. As we will see later, service
category is complemented with information provided in the service description
section, such as explicit annotation (e.g. in some versions of OWL-S) or extracted
from a textual description.

Figure 2 Service Discovery Architecture

Service descriptions and category are combined and converted into a common
format (AT-GCM) and stored in a Service Registry. The common format (section 2.1)
comprises the relevant characteristics of the original models, from a service
matchmaking point of view. The Mapping to AT-GCM module generates the AT-
GCM version of the service from the service description and the category.

The AT-GCM, the Grounding, and the original Service Description provided by
the Service Provider are stored as an entry in the service registry database.

When client agents (service requesters) want to use the service directory for
finding a service, they send the necessary information (Query Description) to obtain
a list of matching services (sorted list by the degree of match with the query). Query
descriptions are specified using one of the available description languages. Note that
our framework is able to return services described in a different language to the
query. For instance, it may return an OWL-S service while the query is specified
using WSDL.

When the service directory receives a query description, the query is transformed
into the ATM-GCM format (Mapping to AT-GCM) and passed to the Matchmaker.
Then, the matchmaker compares the query against the AT-GCM versions of the
services stored in the database and returns a ranked list of services to the client. This
process is detailed in section 3.

2.1 An unified model for representing service descriptions

Setting out from existing conceptual comparisons between semantic web service
descriptions ([26, 18, 23, 17]) and considering lighter approaches too, we obtained a
General Common Model (AT-GCM1) with the following elements: inputs, outputs,
preconditions, effects, keywords, textual description, category and tag cloud.

Detailed description about the model and the mappings from original models to
the AT-GCM can be found in [9]. Here we summarise that description.

Definition 1. Let N be a set of concepts of domain ontologies, a general common
model (AT-GCM) for service discovery is a tuple <IGCM, OGCM, PGCM, EGCM, KGCM,
CGCM, T GCM, TCGCM >, where:

• IGCM = <Isyn, Isem> is the pair of sets of syntactic (Isyn∈{a, .., z}*) and semantic
(Isem⊆ N) inputs of the service.

• OGCM = <Osyn, Osem> is the pair of sets of syntactic (Osyn∈{a, ..., z}*) and semantic
(Osem⊆ N) outputs.

• PGCM is the set of preconditions. PGCM ⊆ N
• E GCM is the set of effects. EGCM ⊆ N
• KGCM = <Ksyn, Ksem> is the pair of sets of syntactic and semantic keywords, where

Ksyn⊆ {a, …, z}*, Ksem⊆ N.

1 AT stands for Agreement Technologies, meaning agreement among different service

description models. It is also the name of one of our funding projects (CSD2007-0022).

• CGCM is a set of categories of the service, described semantically (Csem⊆ N) (e.g.
NAICS or UNSPSC).

• TGCM is a textual description of the service.
• TCGCM is a tag cloud. TCGCM = {<t, n>| t ∈ {a, …, z}*, n ∈ N}.

Table 1 shows how the different elements of the AT-GCM can be obtained from
each source service description model. The first column specifies the element of the
AT-GCM, while each cell contains the value mapped from the model shown in the
first row.

GCM OWL-S /
WSMO

SAWSDL WSDL Keyword

(tag)

Tag

Cloud

Text

IGCM <Ø, pt(I)> <Isyn,Isem > <I, Ø> <Ø, Ø> <Ø, Ø> <Ø, Ø>

OGC

M
<Ø, pt(O)> <Osyn,Osem> <O, Ø> <Ø, Ø> <Ø, Ø> <Ø, Ø>

PGC

M
P Ø Ø Ø Ø Ø

EGCM E Ø Ø Ø Ø Ø

CGCM C Cat(T) Cat(T) Cat(T) Cat(T) Cat(T)

TGCM T T T Ø Ø S

TCGC

M
∆(T) ∪ N(I)
∪ N(O)

∆(T) ∪ Isyn ∪
Osyn

∆(T) ∪ I ∪
O

{<t, 1>| t∈
Ksyn}

S ∆(S)

KGC

M
<τ(∆(T)) ∪

N(I)∪N(O),

pt(I)∪ pt(O)>

<τ(∆(T)) ∪ Isyn

 ∪ Osyn,

N(Isem)∪N(Osem

)>

<τ(∆(T)) ∪
Isyn∪ Osyn,

φ >

K <τ(S),Ø> <τ(∆(S)),Ø>

Table 1 Mapping details for each component in AT-GCM

There are many straightforward mappings that consist of simple associations
between parameters in both models. For instance, in OWLS/WSMO IGCM=< Ø,
pt(I)> because they only provide semantically described inputs I (Isem), where
pt(I)={ t | t=parameterType(i) ∀i∈I}.

However, some fields (e.g. tag-clouds, keywords) may not be explicitly described
by a given model but they can be obtained from the rest of the description. Tag-
clouds can be calculated from textual descriptions by means of a function ∆(T),
which returns the k most relevant words from the text T as well as their frequency
(section 2.2.1). Syntactic keywords can be easily obtained from tag clouds (either
original or calculated with ∆) with their frequency set to 1 (function τ). The set of
input and output concept names as well as their parameter types (pt(I) and pt(O)) are

also adopted as syntactic and semantic keywords, respectively. Function Cat(T)
discovers an appropriate category based on T (section 2.2.2). Function N(I/O)
retrieves the syntactic name of an input or output, e.g. URI fragment of an semantic
input.

Figure 3 sumarises the characteristics of the AT-GCM that can be obtained from
each original service description model.

2.2 Model enrichment

Useful information about services may not always be explicitly defined by the
providers in their original service descriptions. Such information could, however, be
discovered from other elements in the description and/or by using external resources.
In this section, we briefly introduce the enrichment of AT-GCM using existing
elements and external resources.

A complete schema is shown in Figure 4.

ISemISyn OSemOSyn P EKSemKSyn CTTCGCM

OWL_S / WSMO

SAWSDL

WSDL

Keywords

Tag Cloud

Text

Figure 3 AT-GCM characteristics covered by service description models

Mapping to GCMService Provider

Service
Description

Category
(optional)

Grounding

AT-GCM

Category
Extractor

WordNet

NAICS-07Category in Service
Description

Category
Selection

n
Categorie

s
Keywords

Inputs

Outputs

Preconditions

Effects

Text

Tag-cloud

delta(T)

N(I)

N(O)tau(TC)

Figure 4 Mapping to GCM

2.2.1 Extracting syntactic information

To extract keywords from a textual service description, if user-provided keywords
are presented in service descriptions, i.e. training examples exist; supervised-learning
algorithms can be employed to find keywords automatically. Most related
techniques, for example [25], uses TF-IDF for feature selection and Naïve Bayes for
establishing model.

In the current stage, our approach first tokenizes the textual description. Instead of
breaking the text using spaces and punctuation marks, word segmentation is
performed to tokenize text into logical lexical units. For example, text description:

“This service returns the size of the Air Force of a given country.”

will be tokenized into (after filtering):
{“size”, “Air Force”, “country”}

Then we filter out stopwords that include conjugations, prepositions, articles and
some web service related words, e.g. service, information, give, provide etc. We
assume that nouns and verbs usually carry more information than adjectives and
adverbs. A third party lexical database, WordNet, is used to determine the part-of-
speech of each word. Adjectives and adverbs are filtered out.

The extracted keywords are then lemmatized using WordNet. Comparing to other
popular stemming algorithms such as Porter’s [10], [28] stemming algorithm,
WordNet significantly reduces false positive results.

Tokenization

This service returns the size of
the Air Force of a given

country.

this, service, returns, the, size, of,
the, Air Force, of, a, country

Filtering

size, Air Force, country

WordNet

Dictionary

POS tagging

Lemmatization

Dictionary

Figure 5 Keywords extraction based on WordNet

Figure 5 demonstrates the whole keywords extraction process.

In structured web service descriptions, such as WSDL, SAWSDL and OWL-S,
where inputs and outputs of web services are also specified, the set of input and
output concept parameter types (pt(I) and pt(O)) are converted into syntactic IOs by
extracting their URIs’ fragments. For example if a semantic input is an individual of
concept: http://www.ia.urjc.es/ontologies/Transportation.owl#Car, then the fragment
Car is extracted as a syntactic input. Then syntactic IOs will also be added into tag-
clouds.

2.2.2 Category Discovery

Our directory is organized using service’s category information based on the North
American Industry Classification System (NAICS) [2]. Services need to provide at
least one NAICS category to be registered in our directory.

Among all service description languages considered by our directory, only OWL-
S provides a mechanism to include NAICS category information in the service
description, but also commonly ignored by service providers.

To automatically categorize a web service according to their industrial sectors,
various approaches have been proposed. Most existing approaches [3, 5, 11, 13, 21]
consider service categorization as a text classification problem.

Classic classifiers such as Support Vector Machine [27] and Naive Bayesian [20]
are employed by these works to classify web service using keywords extracted from
textual service description, Input/Outputs and other components.

As most of these classifiers perform supervised learning, training examples must
be provided a priori, these training examples are usually obtained manually. This
requirement may not always be satisfied because, a) standard service categorization
taxonomies are usually enormous, e.g. NAICS 2007 has approximated 24,000
categories, it is highly unlikely to provide sufficient training examples that covers all
categories; b) multiple taxonomies may exist within a registry, once a new taxonomy
is presented, new training examples must be provided to train the classifier.

[5] uses also information from functional components in structured service
description such as WSDL. It assumes that services under same category have similar
inputs and outputs, which is a strong assumption for industrial-sector-oriented
categorization systems.

To associate an appropriate category with the service, we first extract keywords
related to each category from NAICS 2007 Index file. During each service
registration, if no category information is provided by the service provider nor
defined in the service description, category extractor calculates the similarity
between keywords extracted from service description and keywords of each NAICS
2007 category to find the most suitable categories for the service.

The similarity is measured by mapping each keyword from both NAICS
categories and service description to WordNet synsets and domain category relations,
and the similarity is defined as:

KS∩kc
kc

where KS denotes the keywords extracted from service description S, and kc denotes
sets of keywords of each NAICS 2007 category c.

2.3 Example

To demonstrate the proposed mapping process, this section shows our proposal with
an example of a university researcher service taken from the OWL-S test collection.
This service returns information of research in a given university. We present an
OWL-S representation of that service, as well as their mapping to the GCM.

A segment of original service definition is presented as following:

We define formally the OWL-S university researcher example service S =<I, O,

P, E, C, T> as follows:

I = {npr2:_UNIVERSITY}

O = {npr:_RESEARCHER}

P = Ø

E = Ø

C = Ø

T = “This service returns researchers in university”

2 npr: http://(OWLS-TC URI)/services/1.1/university_researcher-service.owls

<profile:textDescription xml:lang="en">
 This service returns researcher of a university
</profile:textDescription>

<profile:hasInput rdf:resource="#_UNIVERSITY"/>
<profile:hasOutput rdf:resource="#_RESEARCHER"/>

<process:Input rdf:ID="_UNIVERSITY">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.0.0.1/ontol
ogy/portal.owl#University</process:parameterType>
</process:Input>

<process:Output rdf:ID="_RESEARCHER">
 <process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.0.0.1/ontol
ogy/portal.owl#Researcher</process:parameterType>
</process:Output>

From the OWL-S service description we can obtain the service mapping described
in the GCM according to Table 1. There are no syntactic inputs/outputs, and the
semantic inputs would be the semantic concepts (parameter types) of inputs I. The
tag cloud includes the most relevant words of the text T as well as their frequency.

The syntactic keywords are obtained using tag clouds with frequency 1 as well as
the inputs and outputs concept names. As for the semantic keywords the semantic
concepts of inputs and outputs (parameter types of inputs I and outputs O) are taken.
Therefore:

 SGCM = <IGCM, OGCM, PGCM, EGCM, KGCM, CGCM, T GCM, TCGCM > where:

IGCM = <{university},{portal3:University}>

OGCM = <{researcher},{portal:Researcher}>

PGCM = Ø

EGCM = Ø

KGCM=<{university,researcher},{portal:University,portal:Researcher}>

CGCM = Ø

T GCM = “This service returns researchers in university”

 TCGCM = {<university,2>, <researcher,2>

3 Service Matchmaking
Service matchmaking is an essential part of our service directory. The similarity
between two service descriptions (request and advertisement) is based on the
similarities of each pair of corresponding elements in their AT-GCMs.

We further classify the elements in AT-CGM into three categories: semantic
elements, syntactical elements and category information. Each type of element is
associated with an ontology, and a generic ontological similarity algorithm is applied
to calculate the similarity between each pair of corresponding elements of service
request (SR) and advertisement (SA).

• Semantic elements are associated directly with their original ontologies used in the
service description.

• Syntactic information is associated with external lexical databases such as
WordNet, which can also be considered as ontology.

• The category of a service is often an element in certain classification systems,
such elements usually organized in a hierarchy, which can be considered as
ontology also.

Table 2 summarizes the AT-GCM components in each categories and the
associated ontology:

3 portal: http://(OWL-TC URI)/ontology/portal.owl

Category Component Ontology

Semantic Elements Isem, Osem, Ksem [From service description]

Syntactic Elements Ksyn, Isyn, Osyn, TC WordNet

Category Information C NAICS-07

Table 2 GCM components and ontologies

Figure 6 illustrates the complete matching schema.

3.1 Semantic Elements Matchmaking

Semantic elements in AT-GCMs include semantic inputs, semantic outputs and
semantic keywords. For instance, in an AT-GCM obtained from an OWL-S
description, the semantic elements are Isem, Osem and Ksem=(Isem ∪ Osem).

The matching process of semantic concepts in web services takes one concept
from service request (CR) and service advertisement (CA) and returns their degree of
match.

The degree of match between these semantic concepts is based on their
subsumption relation in the ontology. In this paper, we adopt the four degrees of

Syn. Outputs

Syn. Inputs
Syn.

Keywords

Category

TagCloud

Semantic
Matching

Category
Matching

NAICS
07

WordN
et

Sem. Outputs

Sem. Inputs
Sem.

Keywords
Syn. Outputs

Syn. Inputs
Syn.

Keywords

Category

TagCloud

Sem. Outputs

Sem. Inputs
Sem.

Keywords

Service Request Service Advertisement

Aggregation DegreeOfMatch

Figure 6 Service Matchmaking Process

match proposed by Paolucci et al. in [22]: exact (CA=CR), plug-in (CR subsumes CA),
subsumes (CA subsumes CR) and fail (otherwise).

To obtain a numerical similarity between two concepts, we further calculate the
length of the shortest ancestral path between these two concepts:

where α ≥ 0 and β ≥ 0 are parameters scaling the contribution of the shortest path
length (l) between the two concepts and the depth (h) of the least common subsumer
in the concept hierarchy, respectively.

With this function, we define the degree of match between concepts, CA and CR
as:

3.1.1 Semantic Outputs/Inputs

In line with Paolucci’s proposal in [22], a semantic output matches if and only if for
each output of the request there is a matching output in the service description, i.e.
the service provides all the outputs required.

For two sets of semantic outputs, OR
sem and OA

sem, the similarity between these
two outputs is calculated using function:

In function OSemMatch OR denotes the semantic outputs from service request.
Therefore, if the service request requires no outputs (|OR

sem|=0), it returns 1, exact
match, regardless of the outputs produced by service advertisement OA

sem. Otherwise,
the semantic match is obtained by taking, for each output in the request, the best
match against the ones in the advertisement. The worst case (minimum value) is then
chosen to combine the best matches.

For semantic inputs, an analogous approach is followed, but with the order of the
request and advertisement reversed.

conceptMatch(CR, CA) =

8
>>><

>>>:

1, if CR = CA
1
2 + 1

2sim(CA, CR), if CR subsumes CA
1
2sim(CR, CA), if CA subsumes CR

0, otherwise

OSemMatch(OR
sem, OA

sem) =

8
<

:
1, if |OR

sem| = 0

Min Max

oR2OR
sem,oA2OA

sem

(conceptMatch(oR, oA)), otherwise

sim(C1, C2) =

(
1, if C1 = C2

e��l · e�h�e��h

e�h+e��h , otherwise

3.1.2 Semantic Keywords

For semantic keywords from service request, KR
sem and from service advertisement,

KA
sem the degree of match between two sets of semantic keywords is calculated using

measure proposed in [8]:

with r = (sim(r,r1), sim(r,r2), ... , sim(r,a1), sim(r,a2), …), and a analogously.

3.2 Syntactic Elements Matching

Syntactic elements in AT-GCM include syntactic keywords, tag-cloud, syntactic I/Os
and text. To achieve uniformity and simplicity, we would like to adopt the similarity
measures defined in the last section to suit the syntactic elements too.

However, these elements have no associated ontological concepts explicitly
defined in the service description, thus these elements need to be mapped into
concepts of a certain lexical database with subsumption relation defined, such as
WordNet.

Beyond a simple English dictionary, WordNet groups English words into sets of
synonyms called synsets, with various semantic relations between these synsets.
These semantic relations include hyponym, hypernym, domain, cause, member,
holonym, meronym similar, antonym, instance etc. With these semantic relations,
WordNet can be considered as an ontology.

There are several benefits of employing a universal lexicon in service discovery.
The first and most important reason is that when matching services with no semantic
information available, such as WSDL, lexicon may provide extra semantic
information base on natural language description, even though limited. Also, when
domain ontologies differ, this independent lexicon may perform as a universal
ontology minimizes the possibility of mismatch. Finally, similar to domain ontology
semantic matching, lexicon-based semantic matching will not be affected by the size
of corpus.

WordNet also helps the effectiveness of syntactic matching, e.g. U.S. and United
States of America may be considered as different terms in pure syntactic matching
algorithms, but synonyms in WordNet.

3.2.1 Syntactic Keywords

Syntactic keywords are first mapped to WordNet synsets, with hypernym/hyponym
relations defined between synsets, we simply adopt function KSemMatch defined in
the last section:

KSemMatch(R,A) =

P
r2R

�⇥r
|
P

r2R
�⇥r | ·

P
a2R

�⇥r
|
P

r2R
�⇥r |

KSynMatch(Rsyn, Asyn)
WordNet

=

P
r2R �r

�⇥r
|
P

r2R �r
�⇥r | ·

P
a2A �a

�⇥a
|
P

a2A �a
�⇥a |

where KR
synsets and KA

synsets denote WordNet synsets associated with keywords in the
service request and service advertisement respectively.

Similarity between tag-clouds is calculated in the same way with weights
(frequencies):

where δr and δa denots the frequency of term r (in R) and a (in A) repectively.

3.2.2 Syntactic Inputs/Outputs

Degree of match of WordNet synsets mapped from syntactic inputs and outputs are
calculated in the same way as their semantic counterparts.

3.3 Category Matching

As stated in section 2, our directory uses NAICS 07 as services categorization
standard. With 2341 categories in total, NAICS 07 standard organizes these
categories in a 5-level hierarchy.

Each category is considered as a concept in this category taxonomy, the
calculation of the similarity between two categories is done by using:

3.4 Aggregation Function

Finally, service matching must combine the similarity value for each of these fields.

simIsyn, simIsem simOsem, simOsyn, simTC , simKsyn, simKsem, simC denote the similarity
of syntactic/semantic inputs, syntactic/semantic outputs, tag-cloud,
syntactic/semantic keywords and category respectively between a service request and
a service advertisement. An aggregation function is a function that combines these
similarity values.

For the moment, a general approach is taken: a weighted sum of each similarity,
where the weighting parameters are the contribution of the corresponding
components of the AT-GCM. The contribution of each component is calculated using
a logistic function:

TagMatch(Rsyn, Asyn)
WordNet

=

P
r2R �r

�⇥r
|
P

r2R �r
�⇥r | ·

P
a2A �a

�⇥a
|
P

a2A �a
�⇥a |

OSynMatch(OR
syn, O

A
syn)WordNet

=

8
<

:
1, if |OR

syn| = 0

Min Max

oR2OR

syn

,oA2OA

syn

(conceptMatch(oR, oA)), otherwise

CatMatch(C1, C2) = simNAICS�07(C1, C2)

w(nc) =
1

(1+ e
(1− nc

0.5N
)
)

where nc denotes the number of elements in component C (for example, number of
semantic outputs), and N denotes the average number of elements in both service
models.

Function w is a logistic function, which makes the weights of the components with
number of elements close to the average increase rapidly. Also, logistic function
prevents the over-influence caused by components with excessive number of
elements.

4 Implementation and Evaluation
In this section we describe the implementation and evaluation of the proposed
approach.

4.1 Directory implementation

The proposed framework has been implemented as a web server that performs two
main operations: register and search services. Moreover, information about the
content of the directory (e.g. number of categories of registered services) and NAICS
category list can also be obtained. The information about the content is the number of
services registered belonging to each category. That information gives an idea of the
specialization of a particular directory. It can be seen as a category-cloud description
of the directory, which might be used by an agent to select among a set of candidate
directories for registering and/or searching services.

Web Interface
Service Search

Service Register

Service
Directory

Other Tools
ActionScript
C++
Delphi
Java
Visual Basic
...

JSON

GET

GET

Figure 7 Service Directory Interaction

We used SQLite4 database to facilitate the implementation in future distributions
of the service directory.

There are two types of agents that interact with the directory, service providers
and the service requesters. They can access the directory through a REST service that
can be implemented in different programming languages (Java, PHP, etc.).

The service directory receives search requests and responds to them through JSON
[6] data exchange, including a list of descriptions of the matching services and their
corresponding grounding so that they can be invoked if desired. When the directory
receives a client request (GET) it carries out the operation using the specific
parameters included in the request and answers using JSON objects. The client can
use the received information to show it or invoke the services.

In addition, we have implemented a Web Interface that helps human users to work
with the directory. It also uses the REST to interact with the service directory. Figure
7 shows the interaction of our proposed service directory with the Web Interface and
other languages.

4 http://www.sqlite.org/

Figure 8 Service registration

The Web Interface has several tabs providing different functionality. The
information tab shows the number of services registered belonging to each category.

Figure 8 shows the service registration tab. Services can be registered individually
or zipped for adding a set of services from files. For individual registrations, the user
can fill a form where the description language and the service NAICS category can
be chosen from a combo boxes. The user must provide a service name and a service
description using the language selected. Optionally, the user can also supply a

Figure 9 Service search

Figure 10 Category tree browsing

grounding, which is not processed by internally the directory but only stored for its
retrieval.

There are two ways of carrying out a service search (search tab). One is by
specifying a service request, which can be done choosing a service category, writing
a service query in one of the available languages or both (see Figure 9). An alternative
way is by browsing the category tree (See Figure 10).

4.2 Evaluation of Matchmaking

To evaluate the performance of our matchmaker, we used a public test collection
OWL-S TC 4.0. This test collection consists of 1083 service advertisements and 42
queries, relevance information are provided based on human judgment.

Two performance measures, precision and recall were collected. Precision and
recall are two commonly used measures for measurement of IR effectiveness. Given
a query q, precision P is the proportion of the relevant services retrieved by the
matchmaker to all the retrieved services, and is described as:

p =
relevant _ services∩ retrieved _ services

retrieved _ services

Recall R is the proportion of relevant services, which have been retrieved to all the
relevant services, and is described as

r =
relevant _ services∩ retrieved _ services

relevant _ services

Detailed description of test-collection and evaluation measures can be found in the
OWLS-TC Manual5.

Figure 11 illustrates the precision and recall of 5 different strategies based on AT-
GCM:

1. Semantic I/O Logical is a classical strategy based on semantic I/Os’ subsumption
relation defined in domain ontology, widely used by semantic service
matchmakers, e.g. OWLS-MX [15], iSeM [14]. This strategy works on service
descriptions with semantic inputs and outputs such as OWL-S, WSMO and
SAWSDL.

2. WordNet I/O Logical strategy uses syntactic I/Os’ subsumption relation found in
WordNet lexicon. This strategy work on service descriptions with syntactic inputs
and outputs, such as OWL-S, WSMO, SAWSDL and WSDL.

3. WordNet I/O+Tag strategy, in addition to pure WordNet I/O logical matching,
takes into consideration also the tag-cloud of a service. The raking is based on the
Cosine value of the semantic similarity (using path distance) vector of all terms in
tag-cloud.

5 http://projects.semwebcentral.org/projects/owls-tc/

4. TF-IDF Cosine (WordNet Unfold) uses unfolded WordNet hierarchies instead of
domain ontology. This strategy does not rely on domain ontologies. It will be also
affected by the statistical characteristics of the term and test collection.

5. TF-IDF Cosine (Unfolded Domain Ontology) strategy is a technique in IR field
adopted by many matchmakers e.g. OWLS-MX, iSeM. This strategy unfolds
concept hierarchy of the semantic I/O concepts, and then performs TF-IDF
ranking function to determine the degree of match of two services. This strategy
relies on the existence of semantic information and statistical characteristics of the
term.

Among this five strategies, 1, 2 and 3 are single-matching strategies, which relies
only on two services engaged in matching, with a third-party lexicon (in this case
WordNet). Strategies 2 and 3 are particular suitable for dealing with heterogeneity in
open environments, since the information required are usually available.

Strategy 3, WordNet-based I/O + Tag matching gives an average precision around
0.771 at recall level 0.2, comparable to most contemporary matchmakers’
performance based on same test collection, e.g. iSeM, around 0.82, makes this
strategy practical in real-world uses.

Since TF-IDF ranking require a global visibility of all service advertisements in
the system to produce satisfying results, the last two strategies may not be suitable in
decentralized systems. In addition, strategy 5 requires also the domain ontology,
which fails for syntactic service descriptions.

Comparing semantic with syntactic information, strategy 2 (WordNet I/O)
behaves similar to strategy 1 (Semantic I/O subsumption) at higher recall level. Even

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

isi
on

WordNet I/O+Tags (PathDistance+Cosine)
WordNet I/O Logical
TF-IDF Cosine (WordNet Unfold)
TF-IDF Cosine(Domain Ontology)
Semantic IO Logical

Figure 11 Precision vs. Recall of Matchmakers

though, at lower recall level, WordNet I/O subsumption approach performs worse
than the semantic subsumption approach, it provides extra ability to match service
advertisements without explicit semantic annotations. Strategy 4 and 5 perform
generally better than other strategies since the unfolding exploits more information in
the ontology (including WordNet, which can be considered as a global ontology)
than shallow I/O concept subsumption matching.

5 Related Work
Some other efforts have been made trying to align or compare different service
description approaches. As we mentioned in Section 2, we set out from existing
conceptual comparisons between popular semantic web service languages [19, 16, 7]
to obtain a general model description of services that facilitates their discovery.

Giantsiou et al. [12] propose a service meta-model in which found services are
transformed and represented in RDF. Their meta-model and discovery approach is
influenced by light-weight approaches (SAREST and SAWSDL). Differently, we
focus on both lightweight and semantic techniques, allowing other description
models.

Most of the current approaches to Semantic Web Services matching, particularly
those based on OWL-S, are based on subsumption reasoning on concepts included in
the descriptions (e.g.[15, 14]. Klusch et. al [15] present a hybrid matchmaker that
complements logic based reasoning with approximate matching techniques from
Information Retrieval. In this sense we propose a hybrid approach, which combines
subsumption checking, concepts similarity, and information retrieval. However, we
focus on the integration of several different service descriptions.

The directory service using a common model (AT-GCM) in the same direction as
iServe [24] uses the minimum service model to address interoperability, the
difference is that our board to consider Tag-Cloud, and keywords free text for use in
the directory.

Ambite et al introduced a system (DEIMOS) for constructing semantic web
service from online sources automatically in [1]. DEIMOS uses an existing semantic
web service as a seed, by calculating the syntactic similarity and a brute-force
invocation-observation learning process, DEIMOS semantically annotated an
external source. Differently to our approach they use only inputs/outputs to
characterise services. Also, they use the Local-As-View (LAV) datalog rules to
describe the sources. We use RDF instead, although this does not reduce expressivity
against LAV, in fact DEIMOS generates an RDF graph from LAV descriptions.

In addition, A. Hess introduced a web service classification approach using
machine-learning techniques in [13]. Even though the evaluation showed a
remarkable accuracy, no information about computational efficiency was shown. As
techniques such as Naïve-Bayes and SVM could be noticeably computationally
expensive, this approach might not be entirely suitable for service discovery in a
large, open environment.

6 Conclusion
In this paper, problems of heterogeneity in open-environment service discovery are
identified: 1) the differences in expressiveness levels of service description 2) service
description approaches and 3) domain ontology diversity. To address these
challenges , an architecture that has semantic alignment as a first citizen component
is proposed. In particular, we discussed in detail the alignment of service description
models, and the transformation of them into a unified common model. In this paper,
we provide alignment mechanism for a set of common service description languages
while other languages can be easily integrated into. In fact, if such new model fits
into the proposed AT-GCM only the adequate mappings have to be specified.
Otherwise, new characteristics might be added to the AT-GCM to account for those
new languages, and considering them empty for the previous models (additionally
those legacy models might be completed with the corresponding mappings to the
new characteristics). Matchmaking techniques dedicate to specific components in
AT-GCM are also proposed. In addition to common semantic subsumption matching,
our system employs third party lexicon, WordNet, bringing semantic matching
ability to syntactic information.

Regarding computational aspects, note that the mapping of service advertisements
to the AT-GCM can be done at registration time, so we only need to process the
service request at run time (as well as the matchmaking algorithm). We also
proposed the combination of service matching and concept similarity into an
integrated service-matching framework.

The proposed framework has been implemented and both machine and human
interfaces are available. We carried out a matchmaking performance evaluation using
a well-known semantic test collection (OWLS-TC 4.0). The evaluation showed a
satisfying result in open decentralized environment. In particular, the results showed
that the proposed approach to enriching syntactic descriptions obtained performances
close to semantic ones. This is an important result towards the unified framework
integrating descriptions at different level of expressiveness as is the aim of this work.
Also, note that experiments have been carried out using a test collection specific for
one semantic description model (OWL-S). Our future work includes experimenting
with a larger unified test collection including services written in different languages.
In such a setting, we expect our framework to perform better than others (which are
usually focused in only on type of descriptions).

Acknowledgment. Work partially supported by the Spanish Ministry of Science and
Innovation through grants TIN2009-13839-C03-02 (cofunded by Plan E) and
CSD2007-0022.

7 References

1. Ambite, J., Darbha, S., Goel, A., Knoblock, C., Lerman, K., Parundekar, R. and

Russ, T. "Automatically constructing semantic web services from online sources."
The Semantic Web-ISWC 2009 (2009): 17-32.

2. Ambler, C. A., and Kristoff, J. E. "Introducing the North American industry
classification system." Government Information Quarterly 15, no. 3 (1998): 263-
273.

3. Bruno, M., Canfora, G., Di Penta, M. and Scognamiglio, R. "An approach to support
web service classification and annotation." In Proceedings of the IEEE International
Conference on e-Technology, e-Commerce and e-Service (2005), pp. 138-143.

4. Cong, Z., Fernandez, A. and Soto, C. "A Directory of Heterogeneous Services",
Fourth International Workshop on REsource Discovery (RED@ESWC2011), CEUR
Workshop Proceedings vol. 737, pp. 65-79, (2011)

5. Corella, M. A. and Castells, P.. "Taxonomy-Based Web service categorization using
conceptual parameter descriptions." In Proceedings of the 1st International
Workshop on Semantic Matchmaking and Resource Retrieval: Issues and
Perspectives (SMR 2006) at the 32nd International Conference on Very Large Data
Bases (VLDB), (2006).

6. Crockford, D. "The application/json Media Type for JavaScript Object Notation
(JSON), July 2006." URL: http://www. rfc-editor. org/rfc/rfc4627.txt.

7. De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., König-
Ries, B. et al. "Web service modeling ontology (WSMO)." Interface 5 (2006): 1.

8. Ehrig, M. Ontology alignment: bridging the semantic gap. Springer, 2006.
9. Fernandez, A., Cong, Z. and Balta, A. "Bridging the Gap Between Service

Description Models in Service Matchmaking", Multiagent and Grid Systems, vol. 8,
no. 1, pp. 83-103. (2012)

10. Frakes, W. B. "Stemming algorithms." Information retrieval: Data structures and
algorithms (1992): 131-160.

11. Funk, A. and Bontcheva, K. "Ontology-based categorization of web services with
machine learning." In Proceedings of the seventh international conference on
Language Resources and Evaluation (LREC), (2010).

12. Giantsiou, L., Loutas, N., Peristeras, V. and Tarabanis K. "Semantic Service Search
Engine (S3E): An Approach for Finding Services on the Web." Visioning and
Engineering the Knowledge Society. A Web Science Perspective (2009): 316-325.

13. Hess, A. and Kushmerick, N. "Automatically attaching semantic metadata to web
services." In Proceedings of Information Integration on the Web (IIWEB) 2003 , pp.
111-116. (2003).

14. Klusch, M. and Kapahnke, P. "iSem: Approximated reasoning for adaptive hybrid
selection of semantic services." The Semantic Web: Research and Applications
(2010): 30-44.

15. Klusch, M., Benedikt F. and Sycara, K. "OWLS-MX: A hybrid Semantic Web
service matchmaker for OWL-S services." Web Semantics: Science, Services and
Agents on the World Wide Web 7, no. 2 (2009): 121-133.

16. Kopecky, J., Vitvar, T., Bournez, C. and Joel Farrell. "Sawsdl: Semantic annotations
for wsdl and xml schema." Internet Computing, IEEE 11, no. 6 (2007): 60-67.

17. Kourtesis, D., and Paraskakis, I. "Combining SAWSDL, OWL-DL and UDDI for
semantically enhanced web service discovery." The Semantic Web: Research and
Applications (2008): 614-628.

18. Lara, R., Roman, D., Polleres, A. and Fensel, D. "A conceptual comparison of
WSMO and OWL-S." Web Services (2004): 254-269.

19. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S. et al. "OWL-S: Semantic markup for web services." W3C Member
submission 22 (2004).

20. McCallum, A. and Nigam, K. A comparison of event models for naive bayes text
classification. In AAAI-98 Workshop on learning for text categorization (Vol. 752,
pp. 41-48). (1998).

21. Mohanty, R., Ravi, V. and Patra, M. R. "Web-services classification using intelligent
techniques." Expert Systems with Applications 37, no. 7 (2010): 5484-5490.

22. Paolucci, M., Kawamura, T., Payne, T. and Sycara, K. "Semantic matching of web
services capabilities." The Semantic Web—ISWC 2002 (2002): 333-347.

23. Paolucci, M., Wagner, M. and Martin, D. "Grounding OWL-S in SAWSDL."
Service-Oriented Computing–ICSOC (2007): 416-421.

24. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J. and Domingue, J.
"iServe: a linked services publishing platform." In Proceedings of the 1st Workshop
on Ontology Repositories and Editors for the Semantic Web. CEUR Workshop
Proceedings, vol. 596. (2010).

25. Renz, I., Ficzay, A. and Hitzler, H.. "Keyword Extraction for Text Characterization."
In Proceedings of Applications of Natural Language to Data Bases. (2003).

26. Scicluna, J., Lara, R., Polleres, A. and Lausen, H. "Formal mapping and tool to owl-
s." WSMO Working Draft 17 (2004).

27. Vapnik, V., Golowich, S. E. and Smola, A. “Support vector method for function
approximation, regression estimation, and signal processing”. Advances in neural
information processing systems, 281-287. (1997)

28. Willett, P. "The Porter stemming algorithm: then and now." Program: electronic
library and information systems, 40, no. 3 (2006): 219-223.

