
Enabling Web Service Discovery in Heterogeneous 
Environments 

Zijie Cong and Alberto Fernández Gil 
Artificial Intelligence Research Group 

Universidad Rey Juan Carlos 
Calle Tulipán s/n, 28933, Móstoles, Spain 
{zijie.cong, alberto.fernandez}@urjc.es 

Abstract. In large, open environments, service discovery has to face the 
challenge of heterogeneity. Service advertisements published by different 
organizations or individuals may differ in their description models, thus 
expressiveness levels. Even on the same expressiveness level, organizations 
may use assorted domain ontologies. In addition, a service discovery tool may 
not have a global view of all service advertisements in the system. 
Unfortunately, most contemporary service discovery approaches rely on these 
key factors. This paper presents a method that addresses the mismatch problem 
in description models. A neutral model is proposed in this work for aligning 
different service description models. A matchmaking method that encompasses 
different semantic, syntactic and hybrid service description languages based on 
this neutral model is also presented. Implementation and evaluation of the 
proposed method showed a satisfactory result.  

Keywords: service discovery, matchmaking, semantic web services, service 
oriented architecture, agreement technologies, semantic alignment. 

1 Introduction 
 

Service-Oriented Architecture (SOA) has been widely adopted by the industries due 
to its discoverability, maintainability, reusability and composability. A SOA is 
usually implemented using Web Services. While there exist various definitions of the 
term “web service”, most of these definitions agree on four characteristics of web 
services: i) A web service is a software unit of business functionality; ii) web 
services provide Application Programming Interfaces (APIs), which are usually 
described in a standardized language; iii) web services are accessible through 
standardized network protocols such as HTTP; iv) web services provide 
interoperable machine-to-machine interaction. Among these characteristics, ii) and 
iv) are most promising and important for bringing the aforementioned advantages of 
SOA to practices. 

However, with the rapid rise of interest from academia, industries and public, 
different web service description approaches have been proposed and are commonly 
seen in practice. Ranging from simple keywords and free text to highly expressive, 



 

semantic enabled description models such as OWL-S [19], SAWSDL [16] and 
WSMO [7].  

The existence of differences among these service description approaches in open 
environments reflexes the different needs and the capabilities of their providers, e.g. 
a human agent without expertise in web services usually describe their services in 
natural languages instead of a structured service description language based on XML; 
on the other hand, a software agent will prefer to describe its capabilities in a 
semantic enabled description languages, such as OWL-S and SAWSDL to facilitate 
the machine-to-machine interaction. 

To provide a clear view of the levels of expressiveness, Figure 1 illustrates three 
levels used in this paper: 

• Machine-understandable 
• Machine-processable 
• Human-understandable 

From this figure, we may notice that approaches that address machine-to-machine 
level communication take into consideration also the lower level communication 
needs. This coverage provides possibility for service discovery tools to match service 
descriptions across expressiveness levels with some information loss. Thus the 
problem lies on the differences among description languages. 

Note that most approaches assume the use of the same language for both service 
advertisements and requests. Therefore, semantic alignment mechanisms need to be 
purposefully integrated into the service discovery process. In addition, the 
performance of the current approach depends on the size of corpus (registered 
services) to a large extends due to the employment of classic information retrieval 
techniques (e.g. TF-IDF), which may lead to scalability problem in decentralized 
systems. 

The contributions of this paper are: i) an architecture for service discovery where 
semantic alignment mechanisms are integrated into, ii) an alignment technique for 
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different service description models, and iii) a scalable service matchmaking method 
that uses the aligned services in decentralized, open environments. 

This paper is an extended version of [4], including more detailed explanations, an 
example and extending implementation and empirical evaluation. 

The rest of the paper is organized as: Section 2 presents a service discovery 
architecture with service alignment and enrichment techniques for decentralized, 
heterogeneous environment.  Section 3 details the matchmaking process based-on 
proposed model. Section 4 presents the implementation of our service discovery 
system and evaluation results. Section 5 presents related works and finally, section 6 
concludes our work. 

2  Service Discovery Architecture 
The architecture of our service directory is depicted in Figure 2. There are two types 
of agents that interact with the directory, the one who offers the service (Service 
Provider) and the consumer of services (Service Requester). As we will see in 
Section 4, they can access the directory through a REST service or a human-oriented 
web interface. 

Service providers register services in the directory providing the following 
information: 

• Service Description: the service description specified by the provider is essential 
because it will contain all the information related to the service offered (it can 
include the service category). In our framework, we allow several service 
description models. They include semantic models (OWL-S, WSMO), syntactic 
models (WSDL), hybrid (SAWSDL), as well as other lighter approaches 
(keyword, tag-cloud, and text-based service descriptions). 

• Grounding: the service provider must attach the information required to access the 
service by a client (for example a WSDL file).  

• Category (optional): the category of the service can be explicitly defined in this 
section according to the NAICS [2] classification. As we will see later, service 
category is complemented with information provided in the service description 
section, such as explicit annotation (e.g. in some versions of OWL-S) or extracted 
from a textual description.  

Figure 2 Service Discovery Architecture 



 

Service descriptions and category are combined and converted into a common 
format (AT-GCM) and stored in a Service Registry. The common format (section 2.1) 
comprises the relevant characteristics of the original models, from a service 
matchmaking point of view. The Mapping to AT-GCM module generates the AT-
GCM version of the service from the service description and the category.  

The AT-GCM, the Grounding, and the original Service Description provided by 
the Service Provider are stored as an entry in the service registry database. 

When client agents (service requesters) want to use the service directory for 
finding a service, they send the necessary information (Query Description) to obtain 
a list of matching services (sorted list by the degree of match with the query). Query 
descriptions are specified using one of the available description languages. Note that 
our framework is able to return services described in a different language to the 
query. For instance, it may return an OWL-S service while the query is specified 
using WSDL. 

When the service directory receives a query description, the query is transformed 
into the ATM-GCM format (Mapping to AT-GCM) and passed to the Matchmaker. 
Then, the matchmaker compares the query against the AT-GCM versions of the 
services stored in the database and returns a ranked list of services to the client. This 
process is detailed in section 3. 

2.1 An unified model for representing service descriptions 

Setting out from existing conceptual comparisons between semantic web service 
descriptions ([26, 18, 23, 17]) and considering lighter approaches too, we obtained a 
General Common Model (AT-GCM1) with the following elements: inputs, outputs, 
preconditions, effects, keywords, textual description, category and tag cloud.  

Detailed description about the model and the mappings from original models to 
the AT-GCM can be found in [9]. Here we summarise that description.  

Definition 1. Let N be a set of concepts of domain ontologies, a general common 
model (AT-GCM) for service discovery is a tuple <IGCM, OGCM, PGCM, EGCM, KGCM, 
CGCM, T GCM, TCGCM >, where: 

• IGCM = <Isyn, Isem> is the pair of sets of syntactic (Isyn∈{a, .., z}*) and semantic 
(Isem⊆ N) inputs of the service. 

• OGCM = <Osyn, Osem> is the pair of sets of syntactic (Osyn∈{a, ..., z}*) and semantic 
(Osem⊆ N) outputs. 

• PGCM is the set of preconditions. PGCM ⊆ N 
• E GCM is the set of effects. EGCM ⊆ N 
• KGCM = <Ksyn, Ksem> is the pair of sets of syntactic and semantic keywords, where 

Ksyn⊆ {a, …, z}*, Ksem⊆ N. 

                                                             
1 AT stands for Agreement Technologies, meaning agreement among different service 

description models. It is also the name of one of our funding projects (CSD2007-0022). 



 

• CGCM is a set of categories of the service, described semantically (Csem⊆ N) (e.g. 
NAICS or UNSPSC). 

• TGCM is a textual description of the service. 
• TCGCM is a tag cloud. TCGCM = {<t, n>| t ∈ {a, …, z}*, n ∈ N}. 

Table 1 shows how the different elements of the AT-GCM can be obtained from 
each source service description model. The first column specifies the element of the 
AT-GCM, while each cell contains the value mapped from the model shown in the 
first row. 

 

GCM OWL-S / 
WSMO 

SAWSDL WSDL Keyword 

(tag) 

Tag 

Cloud 

Text 

IGCM <Ø, pt(I)> <Isyn,Isem > <I, Ø> <Ø, Ø> <Ø, Ø> <Ø, Ø> 

OGC

M 
<Ø, pt(O)> <Osyn,Osem> <O, Ø> <Ø, Ø> <Ø, Ø> <Ø, Ø> 

PGC

M 
P Ø Ø Ø Ø Ø 

EGCM E Ø Ø Ø Ø Ø 

CGCM C Cat(T ) Cat(T ) Cat(T ) Cat(T ) Cat(T ) 

TGCM T T T Ø Ø S 

TCGC

M 
∆(T) ∪ N(I) 
∪ N(O) 

∆(T) ∪ Isyn ∪ 
Osyn 

∆(T) ∪ I ∪ 
O 

{<t, 1>| t∈ 
Ksyn} 

S ∆(S) 

KGC

M 
<τ(∆(T)) ∪ 

N(I)∪N(O), 

pt(I)∪ pt(O)> 

<τ(∆(T)) ∪ Isyn 

    ∪ Osyn,  

N(Isem)∪N(Osem

)> 

<τ(∆(T)) ∪ 
Isyn∪ Osyn, 

φ > 

K <τ(S),Ø> <τ(∆(S)),Ø> 

Table 1 Mapping details for each component in AT-GCM 

There are many straightforward mappings that consist of simple associations 
between parameters in both models. For instance, in OWLS/WSMO IGCM=< Ø, 
pt(I)> because they only provide semantically described inputs I (Isem), where 
pt(I)={ t | t=parameterType(i) ∀i∈I}. 

However, some fields (e.g. tag-clouds, keywords) may not be explicitly described 
by a given model but they can be obtained from the rest of the description. Tag-
clouds can be calculated from textual descriptions by means of a function ∆(T), 
which returns the k most relevant words from the text T as well as their frequency 
(section 2.2.1). Syntactic keywords can be easily obtained from tag clouds (either 
original or calculated with ∆) with their frequency set to 1 (function τ). The set of 
input and output concept names as well as their parameter types (pt(I) and pt(O)) are 



 

also adopted as syntactic and semantic keywords, respectively. Function Cat(T) 
discovers an appropriate category based on T (section 2.2.2). Function N(I/O) 
retrieves the syntactic name of an input or output, e.g. URI fragment of an semantic 
input.  

Figure 3 sumarises the characteristics of the AT-GCM that can be obtained from 
each original service description model.  

 

 

 

 

2.2 Model enrichment 

Useful information about services may not always be explicitly defined by the 
providers in their original service descriptions. Such information could, however, be 
discovered from other elements in the description and/or by using external resources. 
In this section, we briefly introduce the enrichment of AT-GCM using existing 
elements and external resources.  

A complete schema is shown in Figure 4.  
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Figure 3 AT-GCM characteristics covered by service description models 
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2.2.1 Extracting syntactic information 

To extract keywords from a textual service description, if user-provided keywords 
are presented in service descriptions, i.e. training examples exist; supervised-learning 
algorithms can be employed to find keywords automatically. Most related 
techniques, for example [25], uses TF-IDF for feature selection and Naïve Bayes for 
establishing model.  

In the current stage, our approach first tokenizes the textual description. Instead of 
breaking the text using spaces and punctuation marks, word segmentation is 
performed to tokenize text into logical lexical units. For example, text description: 

“This service returns the size of the Air Force of a given country.”  

will be tokenized into (after filtering): 
{“size”, “Air Force”, “country”} 

Then we filter out stopwords that include conjugations, prepositions, articles and 
some web service related words, e.g. service, information, give, provide etc. We 
assume that nouns and verbs usually carry more information than adjectives and 
adverbs. A third party lexical database, WordNet, is used to determine the part-of-
speech of each word. Adjectives and adverbs are filtered out. 

The extracted keywords are then lemmatized using WordNet. Comparing to other 
popular stemming algorithms such as Porter’s [10], [28] stemming algorithm, 
WordNet significantly reduces false positive results. 

Tokenization

This service returns the size of 
the Air Force of a given 

country.

this, service, returns, the, size, of, 
the, Air Force, of, a, country

Filtering

size, Air Force, country

WordNet

Dictionary

POS tagging

Lemmatization

Dictionary

Figure 5 Keywords extraction based on WordNet 



 

  

Figure 5 demonstrates the whole keywords extraction process. 

In structured web service descriptions, such as WSDL, SAWSDL and OWL-S, 
where inputs and outputs of web services are also specified, the set of input and 
output concept parameter types (pt(I) and pt(O)) are converted into syntactic IOs by 
extracting their URIs’ fragments. For example if a semantic input is an individual of 
concept: http://www.ia.urjc.es/ontologies/Transportation.owl#Car, then the fragment 
Car is extracted as a syntactic input. Then syntactic IOs will also be added into tag-
clouds.  

2.2.2 Category Discovery 

Our directory is organized using service’s category information based on the North 
American Industry Classification System (NAICS) [2]. Services need to provide at 
least one NAICS category to be registered in our directory. 

Among all service description languages considered by our directory, only OWL-
S provides a mechanism to include NAICS category information in the service 
description, but also commonly ignored by service providers. 

To automatically categorize a web service according to their industrial sectors, 
various approaches have been proposed. Most existing approaches [3, 5, 11, 13, 21]  
consider service categorization as a text classification problem. 

Classic classifiers such as Support Vector Machine [27] and Naive Bayesian [20] 
are employed by these works to classify web service using keywords extracted from 
textual service description, Input/Outputs and other components. 

As most of these classifiers perform supervised learning, training examples must 
be provided a priori, these training examples are usually obtained manually. This 
requirement may not always be satisfied because, a) standard service categorization 
taxonomies are usually enormous, e.g. NAICS 2007 has approximated 24,000 
categories, it is highly unlikely to provide sufficient training examples that covers all 
categories; b) multiple taxonomies may exist within a registry, once a new taxonomy 
is presented, new training examples must be provided to train the classifier. 

[5] uses also information from functional components in structured service 
description such as WSDL. It assumes that services under same category have similar 
inputs and outputs, which is a strong assumption for industrial-sector-oriented 
categorization systems. 

To associate an appropriate category with the service, we first extract keywords 
related to each category from NAICS 2007 Index file. During each service 
registration, if no category information is provided by the service provider nor 
defined in the service description, category extractor calculates the similarity 
between keywords extracted from service description and keywords of each NAICS 
2007 category to find the most suitable categories for the service. 



 

The similarity is measured by mapping each keyword from both NAICS 
categories and service description to WordNet synsets and domain category relations, 
and the similarity is defined as: 

KS∩kc
kc

 

where KS denotes the keywords extracted from service description S, and kc denotes 
sets of keywords of each NAICS 2007 category c.  

2.3 Example 

To demonstrate the proposed mapping process, this section shows our proposal with 
an example of a university researcher service taken from the OWL-S test collection. 
This service returns information of research in a given university. We present an 
OWL-S representation of that service, as well as their mapping to the GCM.  

A segment of original service definition is presented as following: 

 
We define formally the OWL-S university researcher example service S =<I, O, 

P, E, C, T> as follows:  

I = {npr2:_UNIVERSITY} 

O = {npr:_RESEARCHER} 

P = Ø 

E = Ø 

C = Ø 

T = “This service returns researchers in university”  

                                                             
2 npr: http://(OWLS-TC URI)/services/1.1/university_researcher-service.owls 

<profile:textDescription xml:lang="en"> 
 This service returns researcher of a university 
</profile:textDescription> 
 
<profile:hasInput  rdf:resource="#_UNIVERSITY"/> 
<profile:hasOutput rdf:resource="#_RESEARCHER"/> 
 
<process:Input rdf:ID="_UNIVERSITY"> 
 <process:parameterType 
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.0.0.1/ontol
ogy/portal.owl#University</process:parameterType> 
</process:Input> 
 
<process:Output  rdf:ID="_RESEARCHER"> 
 <process:parameterType 
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.0.0.1/ontol
ogy/portal.owl#Researcher</process:parameterType> 
</process:Output> 



 

From the OWL-S service description we can obtain the service mapping described 
in the GCM according to Table 1. There are no syntactic inputs/outputs, and the 
semantic inputs would be the semantic concepts (parameter types) of inputs I. The 
tag cloud includes the most relevant words of the text T as well as their frequency.  

The syntactic keywords are obtained using tag clouds with frequency 1 as well as 
the inputs and outputs concept names. As for the semantic keywords the semantic 
concepts of inputs and outputs (parameter types of inputs I and outputs O) are taken. 
Therefore: 

    SGCM = <IGCM, OGCM, PGCM, EGCM, KGCM, CGCM, T GCM, TCGCM > where:  

IGCM =  <{university},{portal3:University}> 

OGCM = <{researcher},{portal:Researcher}> 

PGCM  =  Ø 

EGCM  = Ø 

KGCM=<{university,researcher},{portal:University,portal:Researcher}> 

CGCM  =  Ø 

T GCM  = “This service returns researchers in university” 

 TCGCM  = {<university,2>, <researcher,2> 

3 Service Matchmaking 
Service matchmaking is an essential part of our service directory. The similarity 
between two service descriptions (request and advertisement) is based on the 
similarities of each pair of corresponding elements in their AT-GCMs. 

We further classify the elements in AT-CGM into three categories: semantic 
elements, syntactical elements and category information. Each type of element is 
associated with an ontology, and a generic ontological similarity algorithm is applied 
to calculate the similarity between each pair of corresponding elements of service 
request (SR) and advertisement (SA). 

• Semantic elements are associated directly with their original ontologies used in the 
service description.  

• Syntactic information is associated with external lexical databases such as 
WordNet, which can also be considered as ontology.  

• The category of a service is often an element in certain classification systems, 
such elements usually organized in a hierarchy, which can be considered as 
ontology also.  

Table 2 summarizes the AT-GCM components in each categories and the 
associated ontology: 

                                                             
3 portal: http://(OWL-TC URI)/ontology/portal.owl 



 

 

Category Component Ontology 

Semantic Elements Isem, Osem, Ksem [From service description] 

Syntactic Elements Ksyn, Isyn, Osyn, TC WordNet 

Category Information C NAICS-07 

Table 2 GCM components and ontologies 

 

Figure 6 illustrates the complete matching schema. 

 

3.1 Semantic Elements Matchmaking 

Semantic elements in AT-GCMs include semantic inputs, semantic outputs and 
semantic keywords. For instance, in an AT-GCM obtained from an OWL-S 
description, the semantic elements are Isem, Osem and Ksem=(Isem ∪ Osem).  

The matching process of semantic concepts in web services takes one concept 
from service request (CR) and service advertisement (CA) and returns their degree of 
match.  

The degree of match between these semantic concepts is based on their 
subsumption relation in the ontology. In this paper, we adopt the four degrees of 
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match proposed by Paolucci et al. in [22]: exact (CA=CR), plug-in (CR subsumes CA), 
subsumes (CA subsumes CR) and fail (otherwise). 

To obtain a numerical similarity between two concepts, we further calculate the 
length of the shortest ancestral path between these two concepts: 

 

 

where α ≥ 0 and β ≥ 0 are parameters scaling the contribution of the shortest path 
length (l) between the two concepts and the depth (h) of the least common subsumer 
in the concept hierarchy, respectively.  

With this function, we define the degree of match between concepts, CA and CR  
as: 

 

3.1.1 Semantic Outputs/Inputs 

In line with Paolucci’s proposal in [22], a semantic output matches if and only if for 
each output of the request there is a matching output in the service description, i.e. 
the service provides all the outputs required. 

For two sets of semantic outputs, OR
sem and OA

sem, the similarity between these 
two outputs is calculated using function: 

 

In function OSemMatch OR denotes the semantic outputs from service request. 
Therefore, if the service request requires no outputs (|OR

sem|=0), it returns 1, exact 
match, regardless of the outputs produced by service advertisement OA

sem. Otherwise, 
the semantic match is obtained by taking, for each output in the request, the best 
match against the ones in the advertisement. The worst case (minimum value) is then 
chosen to combine the best matches. 

For semantic inputs, an analogous approach is followed, but with the order of the 
request and advertisement reversed. 

conceptMatch(CR, CA) =

8
>>><

>>>:

1, if CR = CA
1
2 + 1

2sim(CA, CR), if CR subsumes CA
1
2sim(CR, CA), if CA subsumes CR

0, otherwise

OSemMatch(OR
sem, OA

sem) =

8
<

:
1, if |OR

sem| = 0

Min Max

oR2OR
sem,oA2OA

sem

(conceptMatch(oR, oA)), otherwise

sim(C1, C2) =

(
1, if C1 = C2

e��l · e�h�e��h

e�h+e��h , otherwise



 

3.1.2 Semantic Keywords 

For semantic keywords from service request, KR
sem and from service advertisement, 

KA
sem the degree of match between two sets of semantic keywords is calculated using 

measure proposed in [8]:  

 

with r = (sim(r,r1), sim(r,r2), ... , sim(r,a1), sim(r,a2), …),  and a analogously. 

3.2 Syntactic Elements Matching 

Syntactic elements in AT-GCM include syntactic keywords, tag-cloud, syntactic I/Os 
and text. To achieve uniformity and simplicity, we would like to adopt the similarity 
measures defined in the last section to suit the syntactic elements too. 

However, these elements have no associated ontological concepts explicitly 
defined in the service description, thus these elements need to be mapped into 
concepts of a certain lexical database with subsumption relation defined, such as 
WordNet. 

Beyond a simple English dictionary, WordNet groups English words into sets of 
synonyms called synsets, with various semantic relations between these synsets. 
These semantic relations include hyponym, hypernym, domain, cause, member, 
holonym, meronym similar, antonym, instance etc. With these semantic relations, 
WordNet can be considered as an ontology. 

There are several benefits of employing a universal lexicon in service discovery. 
The first and most important reason is that when matching services with no semantic 
information available, such as WSDL, lexicon may provide extra semantic 
information base on natural language description, even though limited. Also, when 
domain ontologies differ, this independent lexicon may perform as a universal 
ontology minimizes the possibility of mismatch. Finally, similar to domain ontology 
semantic matching, lexicon-based semantic matching will not be affected by the size 
of corpus. 

WordNet also helps the effectiveness of syntactic matching, e.g. U.S. and United 
States of America may be considered as different terms in pure syntactic matching 
algorithms, but synonyms in WordNet. 

3.2.1 Syntactic Keywords 

Syntactic keywords are first mapped to WordNet synsets, with hypernym/hyponym 
relations defined between synsets, we simply adopt function KSemMatch defined in 
the last section: 

KSemMatch(R,A) =

P
r2R

�⇥r
|
P

r2R
�⇥r | ·

P
a2R

�⇥r
|
P

r2R
�⇥r |

KSynMatch(Rsyn, Asyn)
WordNet

=

P
r2R �r

�⇥r
|
P

r2R �r
�⇥r | ·

P
a2A �a

�⇥a
|
P

a2A �a
�⇥a |



 

 

where KR
synsets and KA

synsets denote WordNet synsets associated with keywords in the 
service request and service advertisement respectively. 

Similarity between tag-clouds is calculated in the same way with weights 
(frequencies): 

 

where δr and δa denots the frequency of term r (in R) and a (in A) repectively.  

3.2.2 Syntactic Inputs/Outputs 

 

Degree of match of WordNet synsets mapped from syntactic inputs and outputs are 
calculated in the same way as their semantic counterparts. 

 

3.3 Category Matching 

As stated in section 2, our directory uses NAICS 07 as services categorization 
standard. With 2341 categories in total, NAICS 07 standard organizes these 
categories in a 5-level hierarchy. 

Each category is considered as a concept in this category taxonomy, the 
calculation of the similarity between two categories is done by using: 

3.4 Aggregation Function 

Finally, service matching must combine the similarity value for each of these fields.  

simIsyn, simIsem simOsem, simOsyn, simTC , simKsyn, simKsem, simC denote the similarity 
of syntactic/semantic inputs, syntactic/semantic outputs, tag-cloud, 
syntactic/semantic keywords and category respectively between a service request and 
a service advertisement. An aggregation function is a function that combines these 
similarity values. 

For the moment, a general approach is taken: a weighted sum of each similarity, 
where the weighting parameters are the contribution of the corresponding 
components of the AT-GCM. The contribution of each component is calculated using 
a logistic function:  

TagMatch(Rsyn, Asyn)
WordNet

=

P
r2R �r

�⇥r
|
P

r2R �r
�⇥r | ·

P
a2A �a

�⇥a
|
P

a2A �a
�⇥a |

OSynMatch(OR
syn, O

A
syn)WordNet

=

8
<

:
1, if |OR

syn| = 0

Min Max

oR2OR

syn

,oA2OA

syn

(conceptMatch(oR, oA)), otherwise

CatMatch(C1, C2) = simNAICS�07(C1, C2)



 

w(nc ) =
1

(1+ e
(1− nc

0.5N
)
)  

where  nc denotes the number of elements in component C (for example, number of 
semantic outputs), and N  denotes the average number of elements in both service 
models.  

Function w is a logistic function, which makes the weights of the components with 
number of elements close to the average increase rapidly. Also, logistic function 
prevents the over-influence caused by components with excessive number of 
elements. 

 

4  Implementation and Evaluation 
In this section we describe the implementation and evaluation of the proposed 
approach. 

4.1 Directory implementation 

The proposed framework has been implemented as a web server that performs two 
main operations: register and search services. Moreover, information about the 
content of the directory (e.g. number of categories of registered services) and NAICS 
category list can also be obtained. The information about the content is the number of 
services registered belonging to each category. That information gives an idea of the 
specialization of a particular directory. It can be seen as a category-cloud description 
of the directory, which might be used by an agent to select among a set of candidate 
directories for registering and/or searching services. 
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We used SQLite4 database to facilitate the implementation in future distributions 
of the service directory. 

There are two types of agents that interact with the directory, service providers 
and the service requesters. They can access the directory through a REST service that 
can be implemented in different programming languages (Java, PHP, etc.).  

The service directory receives search requests and responds to them through JSON 
[6] data exchange, including a list of descriptions of the matching services and their 
corresponding grounding so that they can be invoked if desired. When the directory 
receives a client request (GET) it carries out the operation using the specific 
parameters included in the request and answers using JSON objects. The client can 
use the received information to show it or invoke the services. 

In addition, we have implemented a Web Interface that helps human users to work 
with the directory. It also uses the REST to interact with the service directory. Figure 
7 shows the interaction of our proposed service directory with the Web Interface and 
other languages. 

                                                             
4 http://www.sqlite.org/ 

Figure 8 Service registration 



 

The Web Interface has several tabs providing different functionality. The 
information tab shows the number of services registered belonging to each category. 

Figure 8 shows the service registration tab. Services can be registered individually 
or zipped for adding a set of services from files. For individual registrations, the user 
can fill a form where the description language and the service NAICS category can 
be chosen from a combo boxes. The user must provide a service name and a service 
description using the language selected. Optionally, the user can also supply a 
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grounding, which is not processed by internally the directory but only stored for its 
retrieval. 

There are two ways of carrying out a service search (search tab). One is by 
specifying a service request, which can be done choosing a service category, writing 
a service query in one of the available languages or both (see Figure 9). An alternative 
way is by browsing the category tree (See Figure 10). 

4.2 Evaluation of Matchmaking  

To evaluate the performance of our matchmaker, we used a public test collection 
OWL-S TC 4.0. This test collection consists of 1083 service advertisements and 42 
queries, relevance information are provided based on human judgment. 

Two performance measures, precision and recall were collected. Precision and 
recall are two commonly used measures for measurement of IR effectiveness. Given 
a query q, precision P is the proportion of the relevant services retrieved by the 
matchmaker to all the retrieved services, and is described as: 

p =
relevant _ services∩ retrieved _ services

retrieved _ services
 

Recall R is the proportion of relevant services, which have been retrieved to all the 
relevant services, and is described as  

r =
relevant _ services∩ retrieved _ services

relevant _ services
 

Detailed description of test-collection and evaluation measures can be found in the 
OWLS-TC Manual5. 

Figure 11 illustrates the precision and recall of 5 different strategies based on AT-
GCM: 

1. Semantic I/O Logical is a classical strategy based on semantic I/Os’ subsumption 
relation defined in domain ontology, widely used by semantic service 
matchmakers, e.g. OWLS-MX [15], iSeM [14]. This strategy works on service 
descriptions with semantic inputs and outputs such as OWL-S, WSMO and 
SAWSDL. 

2. WordNet I/O Logical strategy uses syntactic I/Os’ subsumption relation found in 
WordNet lexicon. This strategy work on service descriptions with syntactic inputs 
and outputs, such as OWL-S, WSMO, SAWSDL and WSDL.  

3. WordNet I/O+Tag strategy, in addition to pure WordNet I/O logical matching, 
takes into consideration also the tag-cloud of a service. The raking is based on the 
Cosine value of the semantic similarity (using path distance) vector of all terms in 
tag-cloud. 

                                                             
5 http://projects.semwebcentral.org/projects/owls-tc/ 



 

4. TF-IDF Cosine (WordNet Unfold) uses unfolded WordNet hierarchies instead of 
domain ontology. This strategy does not rely on domain ontologies. It will be also 
affected by the statistical characteristics of the term and test collection. 

5. TF-IDF Cosine (Unfolded Domain Ontology) strategy is a technique in IR field 
adopted by many matchmakers e.g. OWLS-MX, iSeM. This strategy unfolds 
concept hierarchy of the semantic I/O concepts, and then performs TF-IDF 
ranking function to determine the degree of match of two services. This strategy 
relies on the existence of semantic information and statistical characteristics of the 
term.  

Among this five strategies, 1, 2 and 3 are single-matching strategies, which relies 
only on two services engaged in matching, with a third-party lexicon (in this case 
WordNet).  Strategies 2 and 3 are particular suitable for dealing with heterogeneity in 
open environments, since the information required are usually available.  

Strategy 3, WordNet-based I/O + Tag matching gives an average precision around 
0.771 at recall level 0.2, comparable to most contemporary matchmakers’ 
performance based on same test collection, e.g. iSeM, around 0.82, makes this 
strategy practical in real-world uses.  

Since TF-IDF ranking require a global visibility of all service advertisements in 
the system to produce satisfying results, the last two strategies may not be suitable in 
decentralized systems. In addition, strategy 5 requires also the domain ontology, 
which fails for syntactic service descriptions. 

Comparing semantic with syntactic information, strategy 2 (WordNet I/O) 
behaves similar to strategy 1 (Semantic I/O subsumption) at higher recall level. Even 
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though, at lower recall level, WordNet I/O subsumption approach performs worse 
than the semantic subsumption approach, it provides extra ability to match service 
advertisements without explicit semantic annotations. Strategy 4 and 5 perform 
generally better than other strategies since the unfolding exploits more information in 
the ontology (including WordNet, which can be considered as a global ontology) 
than shallow I/O concept subsumption matching. 

5 Related Work 
Some other efforts have been made trying to align or compare different service 
description approaches. As we mentioned in Section 2, we set out from existing 
conceptual comparisons between popular semantic web service languages [19, 16, 7] 
to obtain a general model description of services that facilitates their discovery.  

Giantsiou et al. [12] propose a service meta-model in which found services are 
transformed and represented in RDF. Their meta-model and discovery approach is 
influenced by light-weight approaches (SAREST and SAWSDL). Differently, we 
focus on both lightweight and semantic techniques, allowing other description 
models. 

Most of the current approaches to Semantic Web Services matching, particularly 
those based on OWL-S, are based on subsumption reasoning on concepts included in 
the descriptions (e.g.[15, 14]. Klusch et. al [15] present a hybrid matchmaker that 
complements logic based reasoning with approximate matching techniques from 
Information Retrieval. In this sense we propose a hybrid approach, which combines 
subsumption checking, concepts similarity, and information retrieval. However, we 
focus on the integration of several different service descriptions. 

The directory service using a common model (AT-GCM) in the same direction as 
iServe [24] uses the minimum service model to address interoperability, the 
difference is that our board to consider Tag-Cloud, and keywords free text for use in 
the directory. 

Ambite et al introduced a system (DEIMOS) for constructing semantic web 
service from online sources automatically in [1]. DEIMOS uses an existing semantic 
web service as a seed, by calculating the syntactic similarity and a brute-force 
invocation-observation learning process, DEIMOS semantically annotated an 
external source. Differently to our approach they use only inputs/outputs to 
characterise services. Also, they use the Local-As-View (LAV) datalog rules to 
describe the sources. We use RDF instead, although this does not reduce expressivity 
against LAV, in fact DEIMOS generates an RDF graph from LAV descriptions. 

In addition, A. Hess introduced a web service classification approach using 
machine-learning techniques in [13]. Even though the evaluation showed a 
remarkable accuracy, no information about computational efficiency was shown. As 
techniques such as Naïve-Bayes and SVM could be noticeably computationally 
expensive, this approach might not be entirely suitable for service discovery in a 
large, open environment. 



 

6 Conclusion 
In this paper, problems of heterogeneity in open-environment service discovery are 
identified: 1) the differences in expressiveness levels of service description 2) service 
description approaches and 3) domain ontology diversity. To address these 
challenges , an architecture that has semantic alignment as a first citizen component 
is proposed. In particular, we discussed in detail the alignment of service description 
models, and the transformation of them into a unified common model. In this paper, 
we provide alignment mechanism for a set of common service description languages 
while other languages can be easily integrated into. In fact, if such new model fits 
into the proposed AT-GCM only the adequate mappings have to be specified. 
Otherwise, new characteristics might be added to the AT-GCM to account for those 
new languages, and considering them empty for the previous models (additionally 
those legacy models might be completed with the corresponding mappings to the 
new characteristics). Matchmaking techniques dedicate to specific components in 
AT-GCM are also proposed. In addition to common semantic subsumption matching, 
our system employs third party lexicon, WordNet, bringing semantic matching 
ability to syntactic information. 

Regarding computational aspects, note that the mapping of service advertisements 
to the AT-GCM can be done at registration time, so we only need to process the 
service request at run time (as well as the matchmaking algorithm). We also 
proposed the combination of service matching and concept similarity into an 
integrated service-matching framework.  

The proposed framework has been implemented and both machine and human 
interfaces are available. We carried out a matchmaking performance evaluation using 
a well-known semantic test collection (OWLS-TC 4.0). The evaluation showed a 
satisfying result in open decentralized environment. In particular, the results showed 
that the proposed approach to enriching syntactic descriptions obtained performances 
close to semantic ones. This is an important result towards the unified framework 
integrating descriptions at different level of expressiveness as is the aim of this work. 
Also, note that experiments have been carried out using a test collection specific for 
one semantic description model (OWL-S). Our future work includes experimenting 
with a larger unified test collection including services written in different languages. 
In such a setting, we expect our framework to perform better than others (which are 
usually focused in only on type of descriptions). 
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