
Noname manuscript No.

(will be inserted by the editor)

Conflict Avoidance: 0-1 linear models for Conflict

Detection & Resolution

A. Alonso-Ayuso · L. F. Escudero · P.

Olaso · C. Pizarro

Received:27 December 2010 / Accepted: date

Abstract The Conflict Detection and Resolution Problem for Air Traffic Flow Man-

agement consists of deciding the best strategy for airborne aircraft so that there is

guarantee that no conflict takes place, i.e., all aircraft maintain the minimum safety

distance at every time instant. Two integer linear optimization models for conflict

avoidance between any number of aircraft in the airspace are proposed, the first being

a pure 0-1 linear which avoids conflicts by means of altitude changes, and the second

a mixed 0-1 linear whose strategy is based on altitude and speed changes. Several ob-

jective functions are established. Due to the small elapsed time that is required for

solving both problems, the approach can be used in real time by using state-of-the-art

mixed integer linear optimization software.

Keywords: Air Traffic Flow Management, Conflict Avoidance, Mixed 0-1 Linear Op-

timization, Pure 0-1 Linear Optimization, Conflict Detection and Resolution.

1 Introduction. Brief state-of-the-art

Air traffic in Europe and the USA has undergone an astonishing growth during recent

years, and a further 50% increase is expected by 2018 over the traffic in 1999, see

[2]. In this scenario, the aim of Air Traffic Flow Management consists of extending

the airspace allowing the so called "Free Flight", where the pilots and the airlines are

able to decide freely the flight plan, keeping in touch with the air traffic controller. To

maintain safety the air flow, the Conflict Detection and Resolution Problem (CDR) or

Conflict Avoidance Problem (CA) is currently attracting the interest of air transporta-

tion service providers and has been studied extensively.

Unfortunately, the CDR has proven to be a hard problem to solve. To give some

idea, the way in which to represent the actual trajectory of an aircraft is by means of a

dynamic model that has to take into account, as an example, the following relationships:

speed of the aircraft will depend on the wind direction and altitude on which it flies

(such that the higher a aircraft flies, the lesser the air is around it and thus it needs
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to go faster to maintain its position); acceleration depends on the speed (e.g., at lower

speeds, a plane can reach higher acceleration ratios) and altitude, and so on. Notice

that the aircraft is losing mass throughout the flight as fuel burns, and this influences

the speed and acceleration of the aircraft (and, viceversa, the speed influences the

consumption of fuel and thus the mass loss), etc. Good introductions to flight dynamics

modelization can be found in [5,10,25]. Finally, CDR has to deal with the simultaneous

trajectories of (possibly) many aircraft. Moreover, we must bear in mind that given

the intended trajectories, captured in the flight plans, some uncertainty regarding the

actual trajectories of the aircraft is unavoidable, which makes CDR harder to solve.

Trying to address all these issues within a mathematical optimization model would

lead today to an unmanageable problem (in terms of computing effort, i.e., elapsed

time and memory requirements).

Different methods have appeared in the literature. What follows is a brief state-

of-the-art on the subject. Magister (2002) [16] presents two different models: The first

applies to conflict detection. The second is related to conflict resolution to solving the

conflict by lowering one of the two aircraft that are taken into consideration in the

conflict. In addition, the same author [17] describes the conflict resolution problem in

great detail and makes a quantitative analysis of avoidance procedures.

One of the most recent works, see Jardin (2005) [14], presents some algorithms for

strategic conflict detection, based on the use of a 4-dimensional space and time grid

to represent the airspace. This approach to compute conflict detection was previously

introduced by Jardin (2003) [12,13], where he uses a 3-dimensional grid (two horizontal

spatial dimensions and time). Prandini and Hu (2008) [22] present a stochastic approx-

imation scheme to estimate the probability that a single aircraft will enter a forbidden

area of the airspace within a finite time horizon. A numerical algorithm is also proposed

for computing an estimate of the probability that the aircraft might enter an unsafe

region of the airspace or come too close to another aircraft. Hu, Pradini and Sastry

(2005) [9] introduce a model of a two-aircraft encounter with a random field term to

address correlation of the wind perturbations to the aircraft motions. Based on this

model, they estimate the probability of conflict by using a Markov chain approximation

scheme. The same authors [8] study the problem that consists of evaluating whether

the flight plan assigned to an aircraft is safe. They introduce a kinematic model of

the aircraft motion in a three dimensional wind field with spatially correlated random

perturbations.

Kuchar and Yang (2000) [15] present a survey of CDR modeling methods. The

Traffic alert and Collision Avoidance System (TCAS), which is an implementation of

the Airborne Collision Avoidance System mandated by the International Civil Aviation

Organization, searches through a set of potential climb or descent manoeuvres and se-

lects the least-aggressive one that still provides adequate protection; see [24]. Pannequin

et al. (2007) [21] present an approach to the problem with severe weather conditions

by using a Nonlinear Model Predictive Control scheme. Christodoulou and Costoulakis

(2004) [3] propose a Mixed Integer Nonlinear Programming (MINLP) model for solving

the conflict problem. It allows for speed changes and heading angle control optimiza-

tion to be solved by using standard optimization software, but it may require, once

again, more computing effort than may be affordable. A MINLP model proposed by

Christodoulou and Kodaxakis (2006) [4], with linear objective function and nonlinear

constraints only allows speed changes as manoeuvres. Treleaven (2007) [26] assumes

that aircraft travel at the same altitude and at the same speed, using only horizon-
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tal manoeuvres for conflict resolution; two, three and multiple intersecting flows are

considered.

Obstacle avoidance by using the linearized constrained Uninhabited Aerial Vehicle

(UAV) dynamic has been modeled by Richards and How (2002) [23]. Centralized Model

Predictive Control has been widely developed for constrained systems and has been

applied to the co-operative control of multiple vehicles.

Pallottino, Feron and Bicchi (2002) [20] propose two mixed integer models for CDR,

one allows speed changes and the other one allows angle changes, both on the same

plane. These models are based on a geometric approach. The second model assumes

that the speed is the same for all aircraft, such that each one can manoeuvre only once

with an instantaneous heading angle deviation that can be positive (left turn), negative

(right turn) or null (no deviation). It does not consider returning to the original route,

nor does it explain how the aircraft, after a manoeuvre, reaches its destination. The

mixed 0-1 linear model presented in Alonso-Ayuso, Escudero and Martin-Campo (2010)

[1] is inspired in [20], whose first model (speed changing) is extended to permit aircraft

to change both their speed and altitude levels, such infeasible situations caused by the

speed and "head to head" conflict are avoided. Moreover, all aircraft will be forced

to return to the initial configuration when conflict situations are resolved and, finally,

a pathological case unresolved in [20] is avoided. However, these two approaches are

intended to be executed repeatedly, each execution within a short time horizon. The

trajectories are assumed to be linear over a horizontal plane (even though flight level

changes are allowed), which could be problematic since they rely on direction angles.

Notice that projecting the trajectories onto a plane could appreciably change the actual

angles, which makes these models suitable only for small airspace regions in the short

term.

Hu, Pradini and Sastry (2002) [6] study the multi-aircraft encounters in a three di-

mensional environment and propose an algorithm for solving the two aircraft nonlinear

optimization problem. For more than two aircraft, they consider what is called two-

legged manoeuvres approach, such that a manoeuvre consists of two stages, moving

at a constant speed and through a straight line during both stages. The original opti-

mization problem is then reduced to a finite dimensional convex optimization problem

with linearly approximated conflict-free constraints on the waypoints and a quadratic

objective function. Path flightability is taken into account by introducing an upper

bound on the speed and turning angle constraints, which can be expressed by using

second order cone expressions. So, the optimization problem becomes a Second Order

Cone Programming (SOCP) one. However, the assumptions on which the proposal are

based (namely, every aircraft departs and arrives at the same time, all aircraft move

linearly except for one heading angle change in the two-legged manoeuvre, etc.) force

to apply the model recursively, which could make it unaffordable as an option in most

practical cases, due to the non-linearity of its constraints and objective function. In

[7], the same authors study the problem as above, although constrained to the plane,

proposing a randomized convex optimization algorithm to find numerically the optimal

multi-legged manoeuvres (with an arbitrary number of stages).

Mao, Feron and Billimoria (2001) [18] set out geometric constructions to solve the

problem, including aircraft one-by-one until representing the total number of aircraft,

considering the previous aircraft as obstacles and making a sequential process. Mao et

al. (2005) [19] tackle the problem using instantaneous heading changes as manoeuvres



4 A. Alonso-Ayuso et al.

between two aircraft. The approach extends the results of the previous work in which

the manoeuvres that have been considered are not physically realistic.

The main contributions of our work are as follows:

1. A new point of view has been adopted, so that it does not tackle the CDR problem

by directly modeling the physical laws under which the aircraft have to fly. On

the contrary, the approach requires some simple parameters which constraint the

variations of a given flight plan in order to avoid conflicts, so that such laws are

implicitly taken into account. Additionally, only linear models are required which

can be computed in very small elapsed time.

2. We propose a scheme for conflict detection that would allow to decide if a certain

manoeuvre for conflict avoidance should be applied or else all flight plans can be

left as they are. Then, it would help to reduce the dimensions of the models aimed

at finding such manoeuvres.

3. Two novel optimization models are proposed. The first one is a pure 0-1 linear

model, whose aim consists of changing flight levels (i.e., forcing the aircraft to climb

or descend in order to avoid conflicts). The second model is a mixed 0-1 linear one

that solves the problem by changing aircraft flight levels and speed. Both models

are very tight and, then, require very small elapsed time for solving even large-

scale instances, so, the can be used in real time for realistic conflict detection and

resolution problems.

4. We assume the aircraft flying on any kind of surface (particularly, a geoid), hence

their trajectories are not restricted to be linear. So, the given flight plans may be

either the rigid ones with fixed beacon points, the future freely decided flight plan

in the context of ‘"Free Flight", or straight-line extrapolation of the current speed

vector as in [1,20]. Speed is not restricted to be constant as it is the case in many

of the approaches found in the literature. Additionally, our approach is specially

suited for being used in long term time horizons as well in wider airspace regions

than the preceding ones.

Based on our computational experience reported in Section 5, we can point out

that our first model is tighter than the second one (and, then, it requires smaller

computational effort), so, it allows to consider wider aerial zones with a higher set

of aircraft and a longer time horizon than the second model. Nevertheless, this other

model is quite efficient, according to the computational experience to report below. On

the other hand, the first model has the drawback of only allowing flight level changes,

a manoeuvre that may not be the preferred choice for many pilots and airlines, since

these changes could cause annoyance to passengers and crew. Nevertheless, it will not

be necessary in most real-life cases to accumulate many of such flight level changes and,

so, this model will be useful and applicable in most practical situations. Further more,

it may be the preferred manoeuvre, as opposed to speed changes, since the latter may

imply greater fuel consumption and more risks than the former. To summarize, the

models we propose are both efficient and useful in most real-life situations, the second

being more comprehensive than the first one.

The remainder of the paper is organized as follows: Section 2 technically introduces

the problem and some notation. Section 3 presents the first model, its preprocessing and

its pure 0-1 formulation. Section 4 presents the second model, with some new elements,

its preprocessing and its mixed 0-1 formulation. Section 5 reports the computational
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results for two testbeds of realistic airborne aircraft conflict instances. And, finally,

section 6 concludes and outlines future work.

2 Problem description

A conflict is an event in which two or more aircraft are within an unsafe distance from

one another at a given instant. The minimum safety distance is typically 5 nm (nautical

miles) of horizontal distance between aircraft outside the TRACON (Terminal Radar

Approach Control) and 3 nm inside the TRACON, or at least 1000 feet of vertical

separation (the current en-route separation standard at lower altitudes).

Let us consider a set of aircraft F . For each flight f ∈ F , a dynamic trajectory

model is required to project the states into the future in order to predict whether a

conflict would occur. This projection may be based solely on current state information

(e.g., a straight-line extrapolation of the current speed vector) or may be based on

additional procedural information such as a flight plan. In both situations there is

generally some uncertainty in estimating the future trajectory. It is represented via

a finite sequence of waypoints, Wf . A waypoint is a reference point in the physical

space that consists of a tupla with latitudinal and longitudinal coordinates, generally

with respect to a reference geoid. At each waypoint, we also know the scheduled speed

for moving to the next waypoint. Let also define W
′

f and W−
f

as the the sets of all

waypoints to transverse by flight f .

So, let us assume that the route path for each aircraft is broken down into segments

(not necessarily with equal size), altitude (flight level) and speed through each one

of these segments, such that the number of waypoints for every aircraft is sufficiently

representative of the route. Thus, the distance between two given consecutive waypoints

(i.e., the length of a segment) should be less than 5nm (according to the current en-

route separation standard at lower altitudes), so, 2nm can be a reasonable distance.

Additionally, let Lf
i = {zfi , z

f
i + 1, . . . , zfi } denote the set of the allowed flight

levels for aircraft f to traverse its ith waypoint, for f ∈ F , i ∈ Wf . In order to prevent

infeasible flight level changes, let us define V
f
i (V f

i ) as the max (min) number of flight

levels that aircraft f is allowed to climb or descend from its ith waypoint to the next

one, for f ∈ F , i ∈ W−
f

. Let also define t
f
i and z

f
i as the scheduled time and altitude

of aircraft f while traversing its ith waypoint of its route, for f ∈ F , i ∈ Wf .

We will consider that a conflict takes place if two aircraft traverse two waypoints

in their respective routes that are too close to one another, within a small interval of

time. To determine the bounds of such interval let us resort to a conservative strategy,

and define mA
f,k
i,j = max{|tfi+1 − t

f
i |, |t

k
j+1 − tkj |} as the smallest time interval that is

allowed for aircraft f and k to reach their next waypoints i + 1 and j + 1 from the

waypoints i and j, respectively, ∀f, k ∈ F , (i, j) ∈ Wf ×Wk

Finally, we can define a partition of the aircraft set F =
⋃

i∈I Fi, Fi ∩ Fj =

∅, ∀i, j ∈ I, where f ∈ Fi ⇒ Ff ⊂ Fi,∀f ∈ F ,∀i ∈ I for splitting the problem into

subproblems.

So, the CDR problem to tackle consists of detecting all conflicts in the alert zone

(being this one an aerial sector or even the whole airspace) and avoiding them by

using a solution provided by very tight 0-1 linear optimization models that are solved
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by using a state-of-the art optimization engine. The proposed models suggest some

changes (as few as possible) in altitude and speed of the aircraft scheduled flight plans.

3 Collision Avoidance via flight level changes

3.1 Conflict Detection

The scheme proposed for aircraft conflict detection is very similar for the two types

of CDR problems to tackle in this work, namely, CA via flight level changes and CA

via flight level and speed changes. It, obviously, helps to decide if a conflict can be

avoided, if any, but it also helps to finding at which pair of waypoints a conflict would

occur. Moreover, the conflict detection scheme have some differences between both

approaches. The basic idea for the flight level change scheme is as follows.

For a pair of aircraft (f, k) ∈ F × F , there is a potential conflict at the pair of

waypoints (i, j) ∈ Wf ×Wk if the following conditions hold:

1. The waypoints i and j have a smaller distance than the minimum allowed (i.e.

5nm),

2. The time instants are such that t
f
i < tkj+1 and tkj < t

f
i+1, since suppose, on the

contrary, that e.g., the second inequality does not hold, then, when aircraft k reaches

waypoint j, aircraft f is at waypoint i + 1, at least, and, so, no conflict between

the aircraft k and f is possible at the pair of waypoints (i, j)),

3. The flight levels are such that zfi 6 zkj and zkj 6 z
f
i since, otherwise, the aircraft f

and k cannot be at the same flight level while traversing the waypoints i and j).

Let Pf,k ⊂ Wf ×Wk denote be the set of all potencial waypoint conflicts between

the aricraft f and k, and Ff ⊂ F be the set of potential aircraft conflicts where aircraft

f is involved, for aircraft f, k ∈ F . Notice that k ∈ Ff iff Pf,k 6= ∅).

Similarly, for a pair of aircraft (f, k) ∈ F ×F , there is a current conflict at the pair

of waypoints (i, j) ∈ Wf ×Wk if (i, j) ∈ Pf,k and z
f
i = zkj .

Finally, let CPf,k ⊂ Wf × Wk denote the set of all current waypoint conflicts

between aircraft f and k, and CFf ⊂ F be the set of current aircraft conflicts with

aircraft f is involved, for aircraft f, k ∈ F . Notice that k ∈ CFf iff CPf,k 6= ∅.

As an illustration, let us consider the aerial zone depicted in Figure 1, where three

aircraft cross their paths. Particularly, we can observe that waypoint i2 is too close

to the waypoints j5 and j6, which are within the safety disc drawn around waypoint

i2. Suppose that aircraft 1 is scheduled to fly through the waypoints i2 and i3 at

time instants (e.g., seconds) 33 and 48, respectively, and aircraft 2 is scheduled to fly

through the waypoints j5 and j6 at the time instances 54 and 71, respectively, (i.e.

t1i2 = 33, t1i3 = 48, t2j5 = 54, t2j6 = 71). Then, there is not a potential conflict nor a

current conflict at the pair of waypoints (i2, j5) (i.e., (i2, j5) 6∈ CP1,2 ⊂ P1,2), since

t2j5 > t1i3 . However, there might be a conflict at the waypoints (i2, j6). So, the values

t2j6 , t
2
j7

, t1i2 and t1i3 should be checked to evaluate it.

On the other hand, we can observe in the figure that waypoint i4 too close to

the waypoints k4, k5 and k6. So, suppose that e.g., t1i4 = 63, t1i5 = 78, t3k4
= 65 and

t3k5
= 85. Then we find out that t1i4 < t3k4

< t1i5 and, so, the first and second conditions
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Fig. 2 Illustrative case for different flight levels of the routes of the aircraft 1 and 3

given above hold for the pair of waypoints (i4, k4) to belong to the sets P1,3 and CP1,3.

To check if the third condition hold, the paths of the aircraft 1 and 3 depicted in Figure 2

should be analyzed on the axes x and z (i.e., abscissa and height). We can observe that

both aircraft fly at different flight levels and, so, no current conflict takes place, thus

(i4, k4) 6∈ CP1,3. However, suppose that z3k4
= 1, z3k4

= 2 and z1i4 = 1, z1i4 = 1, then

z3k4
= z1i4 = z1i4 < z3k4

and, thus, (i4, k4) ∈ P1,3, since aircraft 3 is allowed to fly at

level 1 in waypoint k4 and, so, a conflict may occur at the pair of waypoints (i4, k4) if

such change is introduced by the model given below.

3.2 Model formulation for conflict resolution

The pure 0-1 model that we propose deals with the CDR problem by changing (i.e,

climbing or descending) flight levels (i.e., altitude) for the aircraft in order to avoid

current conflicts. It considers two objectives in a composite form, i.e., the maximization

of rewards for the aircraft flying on the scheduled flight levels and the minimization
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of penalizations of flight level changes for the aircraft flying at other levels different

from those scheduled ones. Both objectives are optimized at all the given waypoints.

So, the model assigns flight level changes, if any, to the aircraft in order to guarantee

that there will be no conflict among them.

Parameters

c
f
i and h

f
i , , reward and penalization for changing (i.e., climbing or descending) the

scheduled flight level for aircraft f at its waypoint i, respectively, ∀f ∈ F , i ∈ Wf .

0-1 variables

φ
f
i,h

= 1 , it will have the value 1 if aircraft f is at altitude level h at ith waypoint in

its route path and 0, otherwise, ∀f ∈ F , i ∈ Wf , h ∈ Lf
i .

ν
f
i = 1 , it will have the value 1 if aircraft f changes its altitude level from its waypoint

i to the next one and 0, otherwise, ∀f ∈ F , i ∈ W−
f

.

The objective function includes two terms, namely, the reward for having the air-

craft flying at the scheduled altitude levels and the penalization for flying at different

altitude levels than the scheduled ones.

The model is as follows,

max
∑

f∈F ,i∈Wf ,h=z
f
i

c
f
ı · φf

i,h
−

∑

f∈F ,i∈W−

f

h
f
i · νfi (1)

subject to:

∑

h∈Lf
i

φ
f
i,h

= 1 ∀f ∈ F , i ∈ Wf (2)

φ
f
i,h

6

V
f

i
∑

ℓ=V
f
i

φ
f
i+1,h+ℓ

∀f ∈ F , i ∈ W−
f , h ∈ Lf

i (3)

φ
f
i,h

6

V
f

i−1
∑

ℓ=V
f
i−1

φ
f
i−1,h−ℓ

∀f ∈ F , i ∈ W
′

f , h ∈ Lf
i (4)

φ
f
i,h

− φ
f
i+1,h 6 ν

f
i ∀f ∈ F , i ∈ W−

f , h ∈ Lf
i (5)

φ
f
i,h

+ φ
k
j,h 6 1 ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k
h ∈ Lf

i ∩ Lk
j (6)

φ
f
i,h

, ν
f
i ∈ {0, 1} ∀f ∈ F , i ∈ Wf , h ∈ Lf

i . (7)

Constraints (2) guarantee that all flights traverse every waypoint at only one flight level.

Constraints (3)-(4) ensure "soft" flight level changes. Constraints (5) give the number

of flight level variations from one waypoint with respect to the next one. Constraints

(6) avoid the conflicts. Finally, expression (7) defines the integrality character of the

0-1 variables.
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4 Collision Avoidance via flight level and speed changes

4.1 Definitions

Hereafter we expand the model presented in section 3.2 to take also into account speed

changes. To that end, the following additional parameters and variables are defined.

Parameters

t
f
i and t

f
i , lower and upper bounds for the feasible time instant at which aircraft f

traverses the route segment i → (i+ 1), respectively, f ∈ F , i ∈ W−
f

.

s
f,k
i,j , reward for avoiding the conflicts between the aircraft f and k at the waypoints i

and j due to time coincidence.

Variables

τ
f
i , variable that represents the time elapsed at the time instant aircraft f transverses

waypoint i, for f ∈ F , i ∈ Wf .

γ
f,k
i,j , 0-1 variable such that it will have the value 1 if there is no conflict between the

aircraft f and k at the waypoints i and j due to the timing (and, so, independently

at which flight level they traverse their respective waypoints) and 0, otherwise, for

f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k.

β
f,k
i,j , 0-1 instrumental variable, see below.

4.2 Conflict Detection

As we mention in section 3.1, although the scheme for conflict detection is very similar

for the both models that we propose in this work, there are some differences. Let the

following slight modification. For a pair of aircraft (f, k) ∈ F × F , there is a potential

conflict at the pair of waypoints (i, j) ∈ Wf ×Wk if both the conditions 1 and 3 stated

in section 3.1 hold and, instead of condition 2, the following one holds too:

– The time instants are such that tf1+
∑

i′<i t
f
i′
< tk1+

∑

j′6j t
k
j′ and t

f
1+

∑

i′6i t
f
i′ >

tk1 +
∑

j′<j t
k
j′ since suppose, on the contrary, that e.g., the second inequality does

not hold, then even if aircraft k reaches waypoint j the soonest possible time,

aircraft f is at its waypoint i+ 1, at least, and no conflict between the aircraft k

and f is possible at the pair of waypoints (i, j)),

Similarly to the problem with flight level changes only, for a pair of aircraft (f, k) ∈
F ×F , there is a current conflict at the pair of waypoints (i, j) ∈ Wf ×Wk if (i, j) ∈

Pf,k, tfi < tkj+1, t
k
j < t

f
i+1 and z

f
i = zkj .

4.3 Model formulation for conflict resolution

As in the pure 0-1 model, the first term in the objective function rewards the flights

that do not change their scheduled flight level, the second term penalizes the number
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of "jumps" (climbing or descending) of the aircraft taken into consideration and the

third term rewards the number of conflict resolutions by avoiding time coincidence.

Notice that the model presented in section 3.2 does only consider the first two terms.

The model is as follows,

max
∑

f∈F ,i∈Wf ,h=z
f
i

c
f
ı φ

f
i,h

−
∑

f∈F ,i∈W−

f

h
f
i ν

f
i +

∑

∀f∈F ,k∈Ff ,(i,j)∈Pf,k

s
f,k
i,j γ

f,k
i,j (8)

subject to constraints (2)-(5) and

τ
f
1 − t

f
1 6 µ ∀f ∈ F (9)

t
f
1 − τ

f
1 6 µ ∀f ∈ F (10)

τ
f
i+1 − τ

f
i 6 t

f
i ∀f ∈ F , i ∈ W−

f (11)

τ
f
i+1 − τ

f
i > t

f
i ∀f ∈ F , i ∈ W−

f (12)

τ
f

|Wf |
− t

f

|Wf |
6 ǫ ∀f ∈ F (13)

t
f

|Wf |
− τ

f

|Wf |
6 ǫ ∀f ∈ F (14)

γ
f,k
i,j 6

(τfi − τkj )

mA
f,k
i,j

+m
f,k
i,j β

f,k
i,j ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k (15)

γ
f,k
i,j 6

(τkj − τ
f
i )

mA
f,k
i,j

+m
f,k
i,j (1− β

f,k
i,j ) ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k (16)

φ
f
i,h

+ φ
k
j,h 6 1 + γ

f,k
i,j ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k
, h ∈ Lf

Wf
∩ Lk

Wk

(17)

τ
f
i ∈ ℜ+ ∀f ∈ F , i ∈ W−

f (18)

φ
f
i,h

, ν
f
i ∈ {0, 1} ∀f ∈ F , i ∈ Wf , h ∈ Lf

i (19)

γ
f,k
i,j , β

f,k
i,j ∈ {0, 1} ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k
, (20)

where the parameter ǫ in constraints (13) and (14) is half the length of the time interval

around the scheduled arrival time. Its purpose is to avoid to constrain the aircraft

arrival time to an isolated value. The aim of this requirement is to avoid changing

scheduled flight times in other air zones, which could lead to new conflicts where they

had previously been avoided. The parameter µ in constraints (9) and (10) is half the

length of the time interval around the scheduled "departure" time. It will allow a small

margin to decide when the aircraft fly into the conflict zone. The parameter m
f,k
i,j in

constraints (15) and (16) is the smallest possible value, big enough to guarantee that

the right-hand-side of both constraints is positive, since their left-hand-side is a 0-1

variable.

Constraints (9) and (10) set the initial time instant for the aircraft to arrive to the

conflict zone. Constraints (11) and (12) ensure "soft"’ speed changes. Constraints (13)

and (14) force the aircraft to arrive at their destination waypoints at (almost) their

previously assigned time instant. Constraints (17) avoid the conflicts together with the

auxiliary constraints (15) and (16), whose purpose is to force the variables γ
f,k
i,j to be
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zero if aircraft f and k traverse the waypoints i and j, respectively, within a small

time interval (i.e., the difference of their time instants be smaller than mA
f,k
i,j ). Finally,

constraints (18)-(20) define the character of the variables.

Note: As in the pure 0-1 model, the integrality condition of variable ν
f
i can be relaxed

(i.e., let ν
f
i ∈ ℜ+), as it can be done with variable γ

f,k
i,j for similar reasons.

4.4 Tightening the model

Reducing the parameter m
f,k
i,j .

The easiest candidate for the parameter would be the total time considered in the

problem, but a tighter candidate can be calculated as follows,

m
f,k
i,j =

max
{

|
∑

s<i t
f
s −

∑

t<j t
k
t |, |

∑

s<i t
f
s −

∑

t<j t
k
t |
}

mA
f,k
i,j

+ 1. (21)

Again, we can even reduce m
f,k
i,j by taking into account that so far, the aircraft are

forced to arrive at their destination waypoints at their assigned arrival time instants.

Then, let us use in expression (21) the following formulae: min
{

∑

s<i t
f
s , t

f

|Wf |
−
∑

s>i t
f
s

}

and max
{

∑

s<i t
f
s , t

f

|Wf |
−
∑

s>i t
f
s

}

instead of
∑

s<i t
f
s and

∑

s<i t
f
s , respectively.

Similarly, we can replace
∑

t<j t
k
t and

∑

t<j t
k
t with analogous expressions.

Special set of constraints

The above model for collision avoidance via flight level and speed changes just

presented above can be tightened by appending the constraints

γ
f,k
i,j = γ

f,k
i+1,j ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k (22)

γ
f,k
i,j = γ

f,k
i,j+1 ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k (23)

γ
f,k
i,j = γ

f,k
i−1,j ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k (24)

γ
f,k
i,j = γ

f,k
i,j−1 ∀f ∈ F , k ∈ Ff

, (i, j) ∈ Pf,k
. (25)

Constraints (22)-(25) actually reduce the LP feasible space, while exclude some non

optimal 0-1 solutions, thus resulting in a much tighter model and, then, allowing to

obtain a a smaller elapsed time for solving the problem. To understand their meaning

and why the excluded 0-1 solutions are not optimal, let us recall first how the variables

γ
f,k
i,j work. If the waypoints i and j are too close, the conflict between the aircraft f

and k is avoided, since the time instant at which each aircraft traverses the respective

waypoint are sufficiently distant, then γ
f,k
i,j = 1 and, otherwise, it is zero. So, the above

constraints force to avoid a particular set of possible conflicts between the two aircraft

f and k (i.e., conflicts in consecutive waypoints), by one and only one of the possible

manoeuvres, e.g., solving them all by changing the flight level. For an illustration,

consider the situation depicted in Figure 1, and suppose that (i4, k4), (i4, k5), (i4, k6) ∈
P1,3, then if e.g., the potential conflict in (i4, k4) is avoided by delaying aircraft 3 so

that both aircraft 1 and 3 do not coincide on time at that waypoint, then the potential

conflict in (i4, k5) should be avoided taken advantage of such delay without needing to

force a new maneuver, e.g., forcing aircraft 1 descending one flight level.
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5 Computational experience

We report the results of the computational experience obtained while optimizing the

pure 0-1 model and the mixed 0-1 model presented in sections 3.1 and 4.2, respectively.

The models have been implemented in a c++ experimental code and have been opti-

mized by using the sate-of-the-art engine CPLEX v12.1 [11]. The computations were

carried out in a PC Intel Core 2 Duo 4, 2 GHz and 2 Gbytes of RAM.

Two sets of testbeds of randomly generated instances have been used in our ex-

perimentation, 24 instances for the first testbed and 25 instances for the the second

one. For each instance 10 simulations have been performed, such that the averages of

the computational results are reported. The simulations differ one from the other for

each instance in the the conflict zone, and the arrival time instances of the aircraft

(chosen at random throughout a uniform distribution) to the conflict zone along the

time horizon through any of the four sides of the conflict zone (all of them with equal

probability) and any waypoint of the sides (we have used a normal distribution with

a standard deviation equal to 1). A random number of potential flight levels ranges

between 1 and 8 per aircraft.

The second term in the objective function (2) have been used for the pure 0-1 model

(i.e., minimizing the number of flight level changes). The constraints (22)-(25) have

been also appended in the mixed 0-1 model, where the number of conflict resolutions

by speed changing is maximized and the number of flight level changes is minimized. So,

the following objective function has been used for this model, min
∑

f∈F ,i∈Wf ,h∈Lf
i

ν
f
i +

∑

∀f∈F ,k∈Ff ,(i,j)∈Pf,k(−10) · γf,ki,j ).

Tables 1 and 3 show the problem dimensions in the 24 instances in the testbed for

the pure 0-1 model and the 25 instances in the testbed for the mixed 0-1 model. The

headings are as follows: |F |, number of aircraft; CZ, conflict zone side length (in nautical

miles); |T |, time horizon (in secs.); |
⋃

f∈F CFf |, number of current aircraft conflicts;

|
⋃

f∈F Ff |, number of potencial aircraft conflicts; |
⋃

f∈F ,k∈CFf CPf,k|, number of

current waypoint conflicts; and |
⋃

f∈F ,k∈Ff Pf,k|, number of potencial waypoint con-

flicts. We can observe that the number of aircraft, conflict zone side length and time

horizon have realistic dimensions.

The number of conflicts that took place in the simulations for each instance has

been measured in 4 different ways, namely, the number of current aircraft conflicts, the

number of potential aircraft conflicts, the number of current waypoint conflicts, and

the number of potential waypoint conflicts.

Tables 2 and 4 show the dimensions of the pure 0-1 and mixed 0-1 models, re-

spectively. The headings are as follows: m and m∗, number of constraints before and

after CPLEX preprocessing, respectively; rm: Ratio (in %) between m and m∗ (i.e.,
m∗·100

m ); n01 and nc, number of 0-1 and continuous variables, respectively; n and n∗,

number of variables before and after CPLEX preprocessing, respectively; rn, ratio (in

%) between n and n∗ (i.e., n∗·100
n ). We can observe in these tables how high are the

dimensions of the models.

Tables 5 and 6 report the computational results. The headings are as follows: zlp,

solution value of the LP relaxation; zs, solution value of the stronger LP relaxation

(i.e., the value of the LP model after appending the cuts identified by CPLEX); zip,

solution value of the original CDR problem; GAPlp and GAPs, related optimality gaps
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Table 1 Dimensions of the flight level change problem

Case |F | CZ |T | |
⋃

f∈F
CFf | |

⋃
f∈F

Ff | |
⋃

f∈F,k∈CFf CPf,k | |
⋃

f∈F,k∈Ff Pf,k|

p01 25 50 300 15 43 36 270
p02 25 50 600 27 70 79 691
p03 25 100 300 8 20 29 177
p04 25 100 600 12 34 40 345
p05 25 200 600 5 12 18 145
p06 50 200 900 22 45 100 908
p07 50 200 1800 20 67 68 1295
p08 50 200 3600 18 77 65 1650
p09 50 400 1800 10 25 50 681
p10 50 400 3600 12 49 52 1301
p11 65 200 900 36 80 138 1338
p12 65 200 1800 37 125 132 2361
p13 65 200 3600 31 124 107 2588
p14 65 400 1800 20 49 89 1208
p15 65 400 3600 18 69 79 1861
p16 75 200 900 49 100 200 1826
p17 75 200 1800 46 168 187 3026
p18 75 200 3600 39 171 122 3398
p19 75 400 1800 26 58 125 1458
p20 75 400 3600 25 98 98 2471
p21 100 400 3600 43 177 173 4433
p22 100 600 3600 30 93 146 2682
p23 200 400 1800 195 463 868 11610
p24 200 400 3600 163 673 693 17665

computed as
zip−zlp

zip
% and

zip−zs
zip

%, respectively; nn, number of CPLEX branch-and-

cut nodes; tlp, ts and tip, elapsed times (secs.) to obtain the solution values zlp, zs and

zip, respectively; tt, total elapsed time from the starting of the optimization; nc, total

number of cuts identified and appended by CPLEX.

Note: Some results for the pure 0-1 model, namely zlp, zs, zip, GAPlp, GAPs and

nn, have not been included in Table 5, since they are zero in all instances of the testbed.

Additionally, the model is so tight that the LP solution gives integer values for the (0-1)

variables and then, the CPLEX branch-and-cut phase is not been required in any of

the instances, being the total elapsed time close to zero in 21 out of 24 instances, and

very small for the other three remaining instances.

Finally, it is worthy to point out the impressive total time tt (in secs.) that has

been required for providing the optimal solution of the mixed 0-1 models, see Table 6.

6 Conclusions and Future Work

Two integer linear optimization models for Conflict Detection and Resolution in a set

of aircraft in the airspace have been proposed. The first one is a pure 0-1 linear model

which avoid conflicts by means of altitude changes, and the second one a mixed 0-1

linear model whose strategy is based on altitude and speed changes. The very small

elapsed time for both models shows that they can be used in real time, particularly in

the medium term.
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Table 2 Dimensions of the pure 0-1 model

Case m m* rm(%) n n* rn(%)
p01 3052 1493 48.9 1081 537 49.7
p02 5222 3758 72.0 1735 1264 72.9
p03 2265 1906 84.2 844 714 84.6
p04 3275 2385 72.8 1231 909 73.8
p05 2007 1428 71.2 787 562 71.4
p06 8634 7431 86.1 3115 2675 85.9
p07 6876 6596 95.9 2631 2509 95.4
p08 6668 5771 86.5 2564 2211 86.2
p09 5558 5425 97.6 2095 2035 97.1
p10 5071 4941 97.4 1941 1883 97.0
p11 11648 11376 97.7 4164 4048 97.2
p12 13082 12788 97.8 4777 4648 97.3
p13 10396 10024 96.4 3963 3799 95.9
p14 9240 8242 89.2 3427 3037 88.6
p15 6867 6698 97.5 2595 2520 97.1
p16 15032 14668 97.6 5296 5140 97.1
p17 16359 15942 97.5 6007 5828 97.0
p18 13847 13592 98.2 5178 5064 97.8
p19 11848 11529 97.3 4400 4262 96.9
p20 10838 9440 87.1 4054 3524 86.9
p21 17117 16583 96.9 6406 6179 96.5
p22 14893 14519 97.5 5519 5353 97.0
p23 67260 65831 97.9 22654 22058 97.4
p24 33092 32789 99.1 11681 11547 98.9

Several extensions for improving the performance of both models can be proposed,

particularly the possibility of selecting alternative routes and allowing aircraft climbing

or descending to the next flight level in more than one step as well as allowing to relate

flight level changes to speed. It is a subject of future research work.

Another piece of work consists of tackling the problem where the aircraft can per-

form the three types of manoeuvres: altitude, speed and angle changes. We had ad-

dressed in this work the first two ones. However, the most difficult one is the angle

change, since some nonlinearities can appear in the constraints of the model. Its de-

signing and testing its validity with state-of the art exact mixed integer nonlinear opti-

mization solvers as well metaheuristics as the Variable Neighborhood Search approach

will be the subject of our future research work.
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Table 3 Dimensions of the flight level and speed changes problem

Case |F | CZ |T | |
⋃

f∈F
CFf | |

⋃
f∈F

Ff | |
⋃

f∈F,k∈CFf CPf,k| |
⋃

f∈F,k∈Ff Pf,k |

m01 10 50 300 2 7 6 48
m02 10 50 600 3 9 8 75
m03 10 100 300 1 3 3 21
m04 10 100 600 1 4 5 51
m05 10 200 600 1 2 4 40
m06 20 50 300 9 27 20 162
m07 20 50 600 17 46 48 406
m08 20 100 300 6 13 19 109
m09 20 100 600 6 15 24 203
m10 20 200 600 4 7 16 104
m11 25 50 300 15 43 36 270
m12 25 50 600 27 70 79 691
m13 25 100 300 8 20 29 177
m14 25 100 600 12 34 40 345
m15 25 200 600 5 12 18 145
m16 50 200 900 22 45 100 908
m17 50 200 1800 20 67 68 1295
m18 50 200 3600 18 77 65 1650
m19 50 400 1800 10 25 50 681
m20 50 400 3600 12 49 52 1301
m21 75 200 900 49 100 200 1826
m22 75 200 1800 46 168 187 3026
m23 75 200 3600 39 171 122 3398
m24 75 400 1800 26 58 125 1458
m25 75 400 3600 25 98 98 2471
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Table 5 Computational results for the pure 0–1 model

Case tlp ts tip tt nc
p01 <.01 0 <.01 <.01 <.01
p02 <.01 <.01 <.01 <.01 15
p03 <.01 <.01 <.01 <.01 1
p04 <.01 <.01 <.01 <.01 19
p05 <.01 <.01 <.01 <.01 <.01
p06 <.01 <.01 <.01 <.01 44
p07 <.01 <.01 <.01 <.01 72
p08 <.01 <.01 <.01 <.01 166
p09 <.01 <.01 <.01 <.01 1
p10 <.01 <.01 <.01 <.01 <.01
p11 <.01 <.01 <.01 <.01 38
p12 <.01 <.01 <.01 <.01 10
p13 <.01 <.01 <.01 <.01 5
p14 <.01 <.01 <.01 <.01 54
p15 <.01 <.01 <.01 <.01 4
p16 <.01 1 1 1 80
p17 <.01 1 <.01 <.01 14
p18 <.01 <.01 <.01 <.01 37
p19 <.01 <.01 <.01 <.01 16
p20 <.01 <.01 <.01 <.01 19
p21 <.01 <.01 <.01 <.01 6
p22 <.01 <.01 1 1 80
p23 2 18 15 18 311
p24 <.01 4 3 4 58
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Table 6 Computational results for the mixed 0-1 model

Case zlp zs zip GAPlp(%) GAPs(%) nn tlp ts tip tt nc
m01 442.02 25.00 25.00 - - 0 <.01 <.01 <.01 <.01 0
m02 702.86 44.00 44.00 - - 0 <.01 <.01 <.01 <.01 0
m03 197.56 20.00 20.00 - - 0 <.01 <.01 <.01 <.01 0
m04 486.63 50.00 50.00 - - 0 <.01 <.01 <.01 <.01 0
m05 387.03 31.00 31.00 - - 0 <.01 <.01 <.01 <.01 0
m06 1490.52 58.00 58.00 - - 0 <.01 <.01 <.01 <.01 6
m07 3892.76 258.00 258.00 2080.65 0.00 0 <.01 <.01 <.01 <.01 10
m08 1005.62 33.00 33.00 - - 0 <.01 <.01 <.01 <.01 0
m09 1929.84 210.00 210.00 1405.56 0.00 0 <.01 <.01 <.01 <.01 14
m10 962.81 56.00 -56.00 - - 0 <.01 <.01 <.01 <.01 0
m11 2502.83 94.00 94.00 3090.24 0.00 0 <.01 <.01 <.01 <.01 2
m12 6635.38 544.00 544.00 1132.49 0.00 0 <.01 1 <.01 <.01 56
m13 1601.03 89.00 89.00 3297.22 0.00 0 <.01 <.01 <.01 <.01 0
m14 3254.44 437.00 437.00 772.58 0.00 0 <.01 <.01 <.01 <.01 22
m15 1375.16 169.00 169.00 - - 0 <.01 <.01 <.01 <.01 53
m16 8628.41 1244.65 1241.00 779.14 0.20 4 <.01 <.01 1 1 133
m17 12670.84 4914.69 4821.00 204.00 1.65 3 <.01 1 <.01 <.01 85
m18 16327.43 8069.55 7578.00 126.69 4.81 141 <.01 1 5 5 169
m19 6555.91 1993.00 1993.00 447.78 0.00 0 <.01 <.01 <.01 <.01 67
m20 12816.86 7624.00 7259.00 76.33 3.96 117 <.01 1 2 3 83
m21 17517.54 3214.14 3213.00 514.68 0.04 0 <.01 2 2 3 307
m22 29704.67 12036.53 11348.00 172.10 5.80 435 <.01 5 24 24 677
m23 33618.61 18632.84 17065.90 104.55 9.41 482 <.01 4 30 31 627
m24 14087.53 4059.69 3985.00 308.12 3.63 3 <.01 1 1 1 108
m25 24435.39 13424.85 12601.00 104.32 6.22 173 <.01 2 9 9 338
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