
May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research

Vol. 00, No. 00, 00 Month 2012, 1–22

RESEARCH ARTICLE

On a selection and scheduling problem in automatic

storage and retrieval warehouses

Antonio Alonso-Ayusoa∗, Gregorio Tiradob, Ángel Ud́ıasa

aUniversidad Rey Juan Carlos; bUniversidad Complutense de Madrid
(Received 00 Month 200x; final version received 00 Month 200x)

Warehousing is one of the main components of the supply chain and its
optimization is crucial to achieve global efficiency. Warehouse operations in-
volve receiving, shipping, storing and order picking, among others, and the
coordinated optimization of all these different operations is highly complex.
This paper approaches a selection and scheduling real problem that arises in
an automatic storage/retrieval warehouse system involving the scheduling of
forklifts pickup operations. The objective is to minimize the total loading time
of the vehicles performing transportation, while respecting their departure due
dates. This complex problem is approached through a two-phase decomposi-
tion method, combining both exact and heuristic procedures. The performance
of the proposed solution method is evaluated through extensive computational
results performed on several scenarios from a real case study built from data
from a real mattress warehouse.

Keywords: logistics; scheduling; warehouse; order picking; heuristics.

1. Introduction

The area of logistics and transportation has undergone a great development during the
last decades and it is one of the most important areas of concern for many companies.
The new technologies becoming available introduce constant changes and induce new
customer requirements, making it necessary to develop new adapted tools to deal with
them and be able to compete in the market. Significant savings can be achieved if logistic
processes are efficiently organized, and to achieve this all the components of the supply
chain must be coordinated and optimized. Warehouses are one of these components and
in fact warehousing management is among the most crucial factors to achieve efficiency
(according to Lambert et al. 1998, there are more than 750,000 warehouse facilities all

∗Corresponding author. Email: antonio.alonso@urjc.es

ISSN: 1478-6451 print/ISSN 1478-646X online
c© 2012 Taylor & Francis
DOI: 10.1080/1478645YYxxxxxxx
http://www.informaworld.com

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

2

over the world). The organization of warehouse operations has been approached in the
literature using several different strategies and has been receiving an increasing atten-
tion during the last years. Gu et al. (2007, 2010) present a comprehensive review of the
state-of-art of warehouse research. Whereas the first paper focuses on warehouse oper-
ation problems related to the four major warehouse functions, i.e., receiving, storage,
order picking, and shipping, the latter concentrates on warehouse design, performance
evaluation, case studies, and computational support tools.
Among all warehouse operations, order picking –the process of retrieving articles from

their storage locations in response to a specific customer request– is the most intensive
labor activity in the warehouse, and a very capital-intensive operation in warehouses
with automated systems (de Koster et al. 2007, Coyle et al. 1996, Tompkins et al. 2003,
among others). These authors estimate that order picking can account for up to 65%
of the operating costs of a warehouse, and thus their optimization is crucial to reduce
costs. Several order picking methods have been proposed in the literature, as for instance
single-order picking, batching and sort-after-pick, single-order picking with zoning and
batching with zoning.
In most warehouses, the solution of the order picking optimization problem consists

of generating an order picking sequence for each stack crane in order to reduce the total
travel time. This is too complex to be solved to optimality in a reasonable time, and
usual approaches apply shortest path algorithms (in terms of traveling time) that solve
the TSP in polynomial time (see Ratliff and Rosenthal 1983 and Van deer Veen and Van
Dal 1983, among others). Another possibility is to use simulation techniques, as in Chan
and Chan (2011), where a simulation study of different storage and routing strategies
to optimize picking operations is performed, or in Samaranayake et al (2011), where
a numerical simulation is used to evaluate the performance of an integrated approach
within the supply chain system of a global car company. Uncertainty in warehousing
has also been considered in the literature, as in Kumar et al. (2011), where a ware-
house scheduling problem with uncentainty regarding the demand of the customers is
approached using a Fuzzy Artificial Immune System algorithm. However, the main data
related to the problem approached in this paper is deterministic and known beforehand,
and thus uncertainty is not considered.
Efficient organizations of the order picking operations frequently include order batch-

ing, i.e. the grouping of customer orders into picking orders (de Koster et al. 1999). For
a recent review of order batching methods see, for example, Henn et al. (2011). Most
approaches are focused on the minimization of picking times for a set of customer orders.
Pan et al (2011) approach the coordination of batching and picking operations in a syn-
chronized zone picker-to-part order picking system by using an analytical approximation
model based on probability and queueing network theory. Chan and Cheng (2012) also
solve a joint batch picking and picker routing problem, but now using metaheuristics.
The authors apply a particle swarm optimization algorithm for the batching part and an
ant colony optimization algorithm to design a good picking route for each batch. Öncan
(2013), though, focuses only on the Order Batching Problem, in which the order picking
routing policy is given. In this context, a genetic algorithm is used to find a good batching
strategy for the customers.
However, nowadays on-time retrievals of customer orders have become important and

then due dates for the customer orders appear. For instance, in distribution systems
orders are typically carried to the customers by trucks, and thus the departure times
of the trucks must be determined in order to ensure that the items are delivered in the
required time period (Gademann et al. 2001). Furthermore, depending on the particular

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 3

distances to the customers, different departure times arise, and the due dates for the
customer orders originate from the corresponding departure times. Recently, Henn (2012)
presents an algorithm for minimizing the total tardiness in picker-to-part warehouses
taking into account these due-dates, and Mishra et al. (2011) use simulated annealing to
minimize tardiness and the number of tardy jobs in a lot-size problem in warehousing,
with the constraint of meeting all due dates dates while transferring the product from
manufacturer to the warehouse and from the warehouse to the retailer.
The problem approached in this paper belongs to this family of order picking problems

with due dates. We introduce a selection and scheduling real problem that arises in an
automatic storage/retrieval warehouse system involving the scheduling of forklift pickup
operations. The items stored in the warehouse are organized in cages that are managed
by forklifts and classified by an automatic device. The decisions must be taken in two
levels: firstly, a selection of some cages containing the items needed for satisfying the
demand must be performed, and secondly the optimal sequence of extraction (picking)
for classification is to be determined. The objective is to minimize the total loading time of
the forklifts transporting the demanded items, that mainly depends on the transportation
time from the shelves where the cages are stored to the classifying automatic machine that
processes them. Moreover, there is a due time associated to each vehicle that must also be
respected, making it not sufficient to only minimize the total loading time and increasing
the complexity of the problem. However, the problem approached in this paper differs
substantially from a TSP, since in each pick up operation the forklift only moves one cage
simultaneously and the shortest path from each cage position to the input/output point
is known a priori. In this case, the difficulty arises in the optimal selection of the cage
from which each item reference is to be delivered to each specific destination. Since this
item reference is also stored in many other cages in the warehouse, each of these cages
could contain other daily demanded item references that could be demanded by vehicles
with different departure deadlines. To the best of the authors’ knowledge, a problem with
the characteristics of the one approached in this paper has not been considered in the
literature yet.
The remainder of this paper is organized as follows. Section 2 gives a detailed descrip-

tion of the problem. In Section 3 a two-phase formulation of the problem is presented,
providing an exact method to solve phase 1 and a heuristic to solve phase 2. In Section 4
the considered case study is described in detail and the computational results obtained
on this case study are discussed. Finally, Section 5 draws some conclusions from this
work and raises some ideas for future research. Besides, the notation used is summa-
rized in Appendix A and the pseudocode of the proposed solution method is provided in
Appendix B.

2. Problem description

The problem presented in this paper is a selection and scheduling real problem in auto-
matic storage/retrieval warehouse AS/RS systems. The warehouse works as a distribution
center, it stores the products of the factory and sends the customers’ orders by truck.
The factory produces items with different characteristics and each item type is labeled
with a different reference. Usually the quantity of each item reference in the warehouse
is proportional to its demand, but there are situations in which this is not the case. The
warehouse items are located in cages with limited capacity that can be partially filled or
even empty. The warehouse is organized in parallel double-sided aisles with single deep

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

4

racks that store the cages in different vertical levels that can be individually picked up
by means of a forklift.
The picking process consists of picking up the cage from the rack and moving it to an

input/output point (I/O point) were the retrieved cage is dropped off. In the I/O point,
an automatic machine removes the demanded items and put them in the corresponding
shipping bins. The not-demanded items are put again in the cage, that is refilled with
new items from the factory and relocated in the warehouse. When a shipping bin is full,
an automated guided vehicle (AGV) moves it from the I/O point to the dock, where a
forklift truck place it inside the corresponding trucks. All forklift trucks are supposed to
have the same maximum speed and the same picking capacity (number of cages that can
be picked per time unit). The I/O point, with the automatic machine, is located near the
dock bays. A limited number of trucks, that actually carry out the customer deliveries,
can be loaded at the I/O point. See Figure 1 for a simple illustration of the warehouse.

Figure 1.: Illustration of the warehouse

Every day, the warehouse has to deliver a set of orders that are known the day be-
fore. An order consists on a set of references and the amount of each reference that is
demanded. Each order has a truck assigned. Depending on the destination, each truck
has a departure deadline, in order to be able to arrive to its destination on time. A truck
cannot depart until all its assigned items are loaded. Therefore it is necessary to plan
and execute the loading procedures accurately in order to reduce the picking time and
fulfill the delivery deadlines.
The cages are sequentially extracted from the warehouse to the I/O point and thus the

extraction sequence will determine when the references are available at the I/O point.
Besides, since one reference can be demanded by several trucks, when an item with a
particular reference is to be managed at the I/O point it must also be decided to what
truck it will be sent to, among all trucks demanding that reference. These decisions will
determine when the last reference of each truck is extracted and thus when the tracks can
departure. Note that each extracted cage may contain references demanded by different
trucks, and thus a cage that is suitably sequenced for full-filling a truck could be a in a
bad position for another truck.
It is also important to state clearly the differences between an item and a reference

(also referred to as item reference). An item is a particular object in the warehouse, while
a reference is a label given to an item to identify its type. Hence, there may be several
items with the same reference. Note that one order consists of a set of references, not

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 5

items, and thus there may be many different items in the warehouse that could be used
to serve the demand of one particular order.
To sum up, the problem consists of choosing a set of cages from the warehouse con-

taining enough references to meet all customers demands and designing an optimal cage
picking sequence minimizing the time of the operation and respecting the due times of
the trucks involved. In the next section we present a formulation of the problem and a
solution method based on a 2-phase decomposition.

3. Formulation and solution method

Warehouse operations greatly enhance the productivity of the delivery process. How-
ever, there are some difficult problems that need to be solved, such as order sequencing,
resource assignment for each line item, generating an order picking sequence for each
crane or forklift, and replenishment planning. Usually, all tasks are strongly related and
it would therefore be desirable to solve the four tasks together using a single model.
However, such a model would be too complex, especially in real life applications, where
large instances of the problems need to be solved quickly.
In the problem considered in this paper the order sequencing and resource assignment

tasks are easily determined a priori, and so far the replenishment planning task is not
a company concern, so order picking is the key issue to be optimized. Still, a model to
generate an optimal order picking sequence for this problem is still too complex to be
approached as a whole and to be solved to optimality in reasonable time, and thus it
must be simplified to make it tractable. Fortunately, the two main decisions to be taken
(cages to be extracted and sequence of extraction) can be easily separated, and then
the problem naturally decomposes into two phases: in the first phase the cages to be
extracted, containing enough items to meet the demand of each kind of product, are
determined, and then in the second phase, once the set of cages to be picked is fixed, the
optimal picking sequence is designed.
Just since an item reference can be requested in several destinations, even several times,

it seems more interesting to solve firstly the cage selection problem that minimizes the
total length of the routes to the I/O point, and afterwards the task sequencing problem
for the selected cages and loading the trucks. The first phase is solved to optimality using
an integer linear mathematical programming model and the second phase, that is more
complex, is solved using heuristics. In what follows the two phases considered are detailed
and the solution methods used are described. A schematic representation of the different
alternatives available for each phase is presented at the end of this section (see Figure
4), and a detailed pseudocode of the complete solution method is provided in Appendix
B.

3.1. Phase 1: cage selection

In this phase, we have to decide what cages are extracted from the warehouse so that the
demand is met, considering the objective of minimizing the total travel time. We have a
set I of cages and a set K of references. Cage i has uik units of reference k and needs a
time ti to be extracted, ∀i ∈ I, k ∈ K. This extracting time has two main components:
the time to move cage i from the rack to the I/O point and the time of the cage exchange
process. The objective is to select the cages to be extracted in order to meet the demand
(say, dk units for reference k, ∀k ∈ K). This problem can be solved by using the following

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

6

0–1 Mathematical Programming Model, where the variables xi = 1 if cage i is selected,
and 0 otherwise.
The model formulation results:

min
∑

i∈I

tixi (1)

∑

i∈I

uikxi ≥ dk ∀k ∈ K (2)

xi ∈ {0, 1} ∀i ∈ I (3)

Constraints (2) ensure that the quantity of items of each reference k in the extracted
cages are sufficient to meet the demand. This model can be easily solved by using a plain
solver as Cplex 12.3 or Gurobi in a few seconds. It produces a solution that provides
the set of cages that are to be extracted to satisfy the demand, but not the sequence of
extraction. The second phase of the algorithm is aimed to find a good extraction sequence
allowing to assign a departure time for each truck that is compatible with its deadline.
In order to compare our proposal, we have considered two alternatives to obtain the

initial set of cages: at random (select random cages until all demand is satisfied) or fol-
lowing a closest-first selection procedure (select cages with demanded references closest
to the I/O point until all demand is satisfied). Note that the closest-first selection pro-
cedure is the most intuitive, and then, the most frequently used in real applications.

3.2. Phase 2: cage picking sequencing

Phase 1 provides a set of cages containing all demanded references and meeting the total
demand, but it does not give any information about what cages to extract first. Once
the initial set of cages is selected, phase 2 is aimed to find the optimal sequence that
must be followed to extract those cages. At the beginning of the day, the orders of all
trucks become open and they can start being loaded. Each truck has a latest departure
time, determined to ensure that it arrives on time to its destination, but it is not allowed
to depart until all its demanded items are received and thus the corresponding order is
closed. The objective is to find a sequence of cages that allows each truck to depart on
time and that minimizes the average loading time of the trucks (the average time the
orders are open, or equivalently, the sum of loading times of all trucks).
Small changes in the extraction sequences may lead to important changes in the load-

ing times. Let us illustrate with a small example how the loading times of the vehicles
change when the extraction sequence is modified. Let us assume we have selected 4
cages, say c1, c2, c3, c4, whose extraction times are equal to 1 hour each, containing refer-
ences {1, 1, 1, 1, 2, 7}, {1, 2, 2, 3, 3, 8}, {1, 2, 3, 4, 5, 6, 8}, {1, 3, 4, 6, 6, 8}, respectively, and
there are 3 vehicles, say v1, v2 and v3, which demanded references are {1, 1, 1, 1, 2},
{2, 2, 3, 3, 3, 7} and {1, 2, 3, 4, 5}, respectively. Some possible extraction sequences are the
following:

• Extraction sequence E1 = (c1, c2, c3, c4): v1 departs in 1 hour, v2 in 2 hours and v3 in
4 hours.

• Extraction sequence E2 = (c2, c3, c4, c1): just moving c1 to the end, the loading times
of all vehicles are now 4 hours.

• Extraction sequence E3 = (c2, c1, c3, c4): swapping the first two cages in E1, now v1

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 7

departs in 2 hours, v2 in 2 hours and v3 in 4 hours.

• Extraction sequence E4 = (c3, c2, c1, c4): swapping the first and third cages in E1, now
v1 departs in 3 hours, v2 in 3 hours and v3 in 4 hours.

Solving to optimality the cage picking sequencing problem considered in this phase
is computationally highly demanding, being prohibitive for realistic instances, and for
this reason it will be approached using heuristics. The heuristics described next, which
can provide good solutions using small computing time, consist of a constructive stage
(Section 3.2.1) to design an initial sequence and an improving stage (Section 3.2.2) based
on a local search procedure.

3.2.1. Sequencing constructive stage

The first stage in phase 2, the sequencing constructive stage, is aimed to sequence the
elements of the initial set of cages already built to meet the demands of all trucks. This
can be done simply at random, following a closest-first ordering policy (cages closest to
the I/O point are extracted first) or using a more elaborated sorting procedure based on
the departure times of the vehicles. The first two sequencing methods are straightforward,
but, since departure times of the vehicles do not give an order of the cages, the third
rule requires the definition of a set of cage priorities based on the departure times of the
vehicles, which is done as follows.
Since vehicles with earlier departure times must be served more urgently, they are

assigned a higher priority, and as a result the priority assigned to each cage is based, not
only on its extraction time, but also on the priorities of the vehicles that can be served
by the items contained in it. This follows the idea that closest cages should be assigned
to vehicles with higher priority, so that they can be loaded earlier.
Let pj denote the priority assigned to vehicle j according to its departure time (note

that pj < pk means that truck j has more priority than truck k). The priority qi assigned
to each cage i is calculated following the Priority Assignment procedure described in
Figure 2.

Priority Assignment procedure

Set qi = 0 for each cage i.
for all cages i:

for all demanded items l of cage i:
1. Set qi = qi +

1
p2

j

, where j is the vehicle with the highest

priority demanding item l

2. Decrease by one unit the demand of vehicle j for item l

end for

end for

Figure 2.: Phase 2. Improving procedure

The Priority Assignment procedure described above provides two different methods to
calculate priorities:

• If step 2 is skipped, we obtain what is called the Static Priority Assignment method.
Here priorities are assigned to cages without updating the demands of the vehicles dur-
ing the assignment process, that remain unchanged. As a consequence, this assignment
is not dependent on the order in which cage priorities are calculated.

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

8

• If step 2 is performed, we obtain what is called the Dynamic Priority Assignment

method. Here, every time the priority of a cage is modified, the demand of the cor-
responding vehicle is updated, assuming that the demand of the last considered item
from the current cage is already fulfilled. Therefore, the priority assigned to a cage
depends on the order in which cages are considered, i.e. the initial cage sequence used
for the calculation of priorities. Two variants have been considered in the construc-
tion of the initial sequence when applying the Dynamic Priority Assignment method:
the cages are initially ordered at random or in increasing order of extraction time
(closest-first ordering).

Then, the method based on departure times consists on sorting the given cages accord-
ing to the priorities qi calculated following any of the two priority assignment procedures
described above.
Note that, if the initial set of cages is built by solving to optimality the mathematical

programming model of phase 1, it does not exist any sequence in which one of the cages
has no demanded references when it is extracted to be processed, since in that case the
initial set would not be optimal. However, if the initial cage set is built randomly or
following a closest-first selection policy, there may exist sequences in which one cage
(or more) has no demanded references at the time of extraction (because the demanded
references of that cage were already served by other cages). In that case, those cages
with no demanded references are directly removed from the sequence and are not used
any more.
As it was already pointed out earlier, the way items arriving at the I/O point are

distributed among the bins that are to be loaded into the trucks is a relevant decision
to make. For this purpose, the trucks are first sorted (usually in increasing order of
departure time or simply at random) and then, every time an item is ready to leave the
I/O point, it is loaded into the bin assigned to the first truck demanding that item.

3.2.2. Sequencing improving stage

Once the constructive stage is finished a complete feasible sequence is obtained, that
is used as a starting point of the improving stage. This stage consists on a local search
procedure based on swapping the positions of two cages in the sequence with the objective
of improving the solution quality (according both to the sum of loading times or departure
times feasibility). This Improving procedure is detailed in Figure 3.
Note that swapping the positions of only two cages in the sequence may change the

loading times of all vehicles with assigned items belonging to cages within those positions
(see the example at the beginning of Section 3.2), and thus the recalculation of the
objective function value after performing the swap move is highly time consuming. As
a consequence, the amount of running time needed to test all possible swaps to be
performed on any initial solution is computationally prohibitive and thus only a small
subset of cages are selected to take part on the evaluated swaps.
To explain how the cages to be swapped are selected, let Λ̂ = (c1, · · · , cn) be the initial

(sorted) solution sequence of cages, Λ = {c1, · · · , cn} the initial (unsorted) set of cages
andm the number of vehicles. Any swap s is defined by a pair of cages s = {ci, cj} ∈ Λ×Λ,
indicating that swap s corresponds to swapping the positions of cages ci and cj in the
solution sequence. To define the reduced candidate subset of swaps that will be actually
considered, several subsets of promising cages will be constructed as follows.
A straightforward way to construct a reduced subset of cages consists in just selecting

some of them randomly from Λ. With this purpose, let Ωr ⊆ Λ be a set of ⌊rn⌋ cages
randomly chosen from Λ. A more elaborated method is based on choosing some cages

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 9

Improving procedure

for (each selected swap) do
if (departure times are met in current solution) then

if (departure times are met after swap) and (objective function is improved)
then

perform swap.
else,

reject swap
end if

else

if (loading times are reduced after swap) or (objective function is improved)
then

perform swap.
else,

reject swap
end if

end if

end for

Figure 3.: Phase 2. Improving procedure

that could be particularly interesting to be swapped so that they could lead to larger
improvements in the solution quality. For this purpose, let Ωj

t ⊆ Λ be the set containing

the last t cages in the solution sequence Λ̂ with items to be loaded to vehicle j and let
Ωt =

⋃

j Ω
j
t be the union of all those sets for all vehicles. This subset Ωt of cages is

designed in this way because the last cages to be delivered to each vehicle are the ones
determining their earliest departure times, and as a consequence those cages provide a
greater potential of improvement if their positions in the sequence are modified.
Considering these subsets of cages introduced above, the reduced candidate subset of

swaps, denoted by Φ, can be constructed in different ways. In this paper we consider the
following possibilities:

• I1: Φ is randomly generated such that Φ ⊆ Λ × Λ and |Φ| = v. This means that v

swaps are chosen randomly among all possible swaps involving any pair of cages.
• I2: Φ = Ωt×Λ. In this case the last t cages assigned to each vehicle are swapped with

all other cages in the sequence. Note that since |Ωt| ≤ tm and |Λ| = n, it holds that
|Φ| ≤ tmn. In general, it is an upper bound and not an equality because a given cage
could be one of the last t cages assigned to several vehicles and in that case |Ωt| < tm.

• I3: Φ = Ωt × Ωr. In this case the last t cages assigned to each vehicle are swapped
with r cages randomly selected from the sequence. Note that since |Ωt| ≤ tm and
|Ωr| = ⌊rn⌋, it holds that |Φ| ≤ tm⌊rn⌋. Again, for the same reason as before, this is
in general an upper bound and not an equality.

The strategy I1, I2 or I3 that is chosen and the values of v, r and t determine the number
of swaps that are finally considered in the improving phase. In Section 4 it will be shown
what values of the parameters are used and how each strategy performs when applied to
a case study.

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

10

3.3. Schematic representation

A schematic representation of the complete solution method, providing the different
strategies to be used at each step, is given in Figure 4. As stated previously, first the set
of cages to be extracted is selected, then an initial cage-extraction sequence is constructed,
and finally that sequence is improved by applying local search.

Selection of the initial set of cages

Construction of extraction sequence

Sequence improvement







– Randomly until demand is fulfilled

– Closest cage first until demand is fulfilled

– Solve mathematical model of phase 1































– Randomly

– Closest cage first

– Based on priorities

1) Static priority rule

2) Dynamic priority rule
{

a) Random initial ordering

b) Closest first initial ordering

Local search based on swap subsets

Figure 4.: Phase 2 solution method

4. Computational experience

4.1. Case study

In the case study considered in this paper the warehouse stores the items produced by
the factory and deals with their organization and shipment to meet the requests of the
customers. The main characteristics of this real mattress warehouse are listed in Table 1.

Aisle length 90 m
Centre distance between two aisles 4 m
Travel speed within aisles 2 m/s
Travel speed outside aisles 2 m/s
Additional time to enter or leave an aisle 0 s
Cage Capacity 8
Shipping Bin Capacity 8
Number of aisles 28
Number of cages per aisle 209
Number of cages in the warehouse 5852

Table 1.: Warehouse characteristics

The following assumptions have been made:

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 11

• All order information is known beforehand (references, departure times, etc.).

• The time required to pick a cage includes horizontal and vertical movement.

• Forklifts can only pick up one cage at the same time.

• The I/O point is fixed for all cases and central bottom located.

• The time required to relocate a cage to its original position is not considered.

Each item and storage location has a unique bar-code or chip to store the information
of the storage location; however, at the moment, the storage process is continuously
performed in a common random storage layout.
The warehouse is organized in 28 parallel double-sided 90-meter long aisles with single

deep racks that contain 3 cages in different vertical levels that can be individually picked
up by means of a forklift. The dock bays at the I/O point have capacity for 30 trucks.
On a daily basis, more than 4000 items must be processed and shipped from the

warehouse to 30 different destinations (orders). The trucks that actually perform the
deliveries have an homogeneous capacity of 154 items.
In our case study we have considered a total number of 46822 items in the warehouse

with 2370 different item references, following an ABC distribution: on the one hand,
there are many items (items of type A) corresponding to just a few references (typically
up to 150 items for each of those few references), but on the other hand there are many
references associated to very few items (items of type C, typically for more than half of
the references there is only one single item available in the warehouse); the rest are items
of type B.
For the generation of different realistic test instances based on this case study, three

important factors have been considered:

• Customer Demand.
- Random (DR): The probability of a reference being demanded is the same for all
references, no matter how many items with that reference exist in the warehouse.
Therefore, all references have the same probability of being demanded by a customer.

- ABC distribution (DABC): The probability of a reference being demanded by a
customer is proportional to the number of items of this reference in the warehouse.

• Storage Policy.
- Random (SR): Cages are randomly distributed in the warehouse.
- ABC distribution (SABC): The cages containing the most demanded references
(A items) are stored close to the I/O point, whereas cages containing references with
low demand (C items) are stored far away from it.

- Homogeneous cages closer (SHCC): The more items with the same reference
contained in a cage, the closest to the I/O point that cage is stored.

• Departure Time of Trucks.
- Discrete Increase (P1): Trucks are divided into 4 groups (with 5, 10, 10 and 5
trucks) and the trucks belonging to the same group share the same departure time.

- Continuous Increase (P2): The departure times are increased proportionally all
over the day and only two trucks share each departure time.

For each level of the factors related to customer demand (2 possibilities) and storage
policy (3 possibilities) we have generated 10 replicas, obtaining (2× 10)× (3× 10) = 600
instances. Combining customer demand and storage policy we have 2×3 = 6 different sce-
narios (DR SR, DR SABC, DR SHCC, DABC SR, DABC SABC, DABC SHCC), and
then we have 100 instances for each scenario. Besides, each of these instances is combined
with the two departure times assignments considered, obtaining a total of 2×600 = 1200
instances (200 instances for each of the 6 available scenarios, 100 with P1 departure times

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

12

and 100 with P2 departure times).

4.2. Computational results

In what follows the computational results obtained for the case study introduced above
will be presented and analyzed. The mathematical model used in phase 1 has been
solved using CPLEX 9 and the heuristics of phase 2 have been implemented in C#. All
computations have been performed on an Intel Core2Duo 2GHz with 2Gb RAM.

Phase 1

First the results obtained after solving phase 1 for the 600 instances considered are
presented. Please note that phase 1 is focused on the cage selection problem, minimizing
the total extraction time while ensuring that the demand of all customers is served, and
thus the departure times of the vehicles are not taken into account. As a consequence,
the initial set of cages obtained for each P1 and P2 instance would be identical.
The main results concerning the set of cages to be extracted on each scenario are given

in Table 2. In the first two columns the instance scenarios considered are specified. In
columns 3 and 4 the largest and smallest total extraction times, respectively, required on
the instances of each scenario are provided, while columns 5 and 6 show the average and
the standard deviation of the extraction times, respectively. In column 7, the average
number of cages to be extracted for each scenario is presented, and finally column 8
shows the average running time (in seconds) needed to solve phase 1 on each case.

Storage Demand MAX MIN Average sd # cages Cpu time

SR DR 127118 117694 122693 2139.45 975.40 1.80
SR DABC 74858 67648 71544 1532.82 838.00 77.87

SABC DR 157671 148788 154327 2042.33 967.90 1.95
SABC DABC 90572 83512 87926 1700.62 812.50 71.15
SHCC DR 180290 174247 177293 1411.74 973.57 2.12
SHCC DABC 101987 92781 98804 2268.73 847.00 4.74

Table 2.: Results concerning the set of cages to be extracted after solving phase 1

It can be observed that in DR scenarios the number of cages to be extracted is around
13% larger than in the corresponding DABC scenarios, being the total extraction time
around 41% larger. This result was expected since in DR scenarios any reference is
equally likely to be demanded, and thus there may be demanded items for which very
few available cages exist and they have to be extracted even in the case they are placed
very far away from the I/O point. It is also important to note that the smallest average
extraction times are obtained for the SR scenarios, showing that using storing policies
SABC or SHCC do not improve extraction times with respect to the random storing
policy. This may seem surprising at first glance, but it should not be: it indicates that
most abundant references are not a problem, because there exist many alternatives for
obtaining them; however, scarce references are more significant, because there are very
few alternative cages containing them and they should not be stored far away from the
I/O point.

Phase 2: Sequencing constructive stage

In what follows we present the results obtained by solving phase 2 for a random selec-
tion of 10 instances for each scenario considered and each departure time combination
(10 × 6 × 2 = 120 instances in total). Only a fraction of all instances is considered be-
cause phase 2 is computationally much more demanding than phase 1 and it would take

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 13

too long to solve all 1200 instances. However, we believe that the 120 instances selected
are a representative sample and are enough to obtain illustrative results for the given
scenarios.
The rules chosen for the design of the cage picking sequence in phase 2 are described

in Table 3. These rules are referred to as R0,. . . , R9 (see column 1) and correspond to
the possible combinations among the different methods available for the selection of the
initial cage set (column 2), the cage sequencing method (columns 3), the cage priority
assignment rule (column 4), and the initial cage ordering (in columns 5). The methods
used by these rules were described in Section 3.2 and outlined and linked together in the
diagram presented in Figure 4.

Rule Initial Cage Priority Init. cage
cage set Sequencing assignment rule ordering

R0 Random Random – –
R1 Closest-first Closest-first – –
R2 Closest-first Priority rule Static Closest-first
R3 Closest-first Priority rule Dynamic Closest-first
R4 Phase 1 Random – –
R5 Phase 1 Closest-first – –
R6 Phase 1 Priority rule Static Random
R7 Phase 1 Priority rule Static Closest-first
R8 Phase 1 Priority rule Dynamic Random
R9 Phase 1 Priority rule Dynamic Closest-first

Table 3.: Sequencing rules description

Table 4 shows the results obtained after applying rules R0-R9, based on the Sequencing
Constructive Stage described in Section 3.2.1, to the 60 P1 instances (10 for each scenario)
considered. In line 3 the results concerning phase 1 (only extraction time) are given,
while lines 4-13 show the results concerning total loading times obtained using rules R0
to R9, respectively. Columns labeled by X provide the average total loading times for
each scenario and columns labeled by sd contain the corresponding standard deviations.
Average values over all scenarios (and for each rule) are given in column 15, while average
values over all rules (and for each scenario) are given in the last line. Finally, the total
loading time percentage deviations from the rule showing the best performance, that is
R9, are shown in the last column.
The main conclusion that can be drawn from Table 4 is that the rule showing the best

overall performance is R9, providing the smallest total extraction time in all scenarios,
although it is remarkable that rules R3 and R7 also provide good results. This can be seen
more clearly in Table 5 that shows, for each rule and for each scenario, the percentage
deviations in the average total loading times from the results obtained with rule R9. Each
rule is associated with one column and each scenario with one line. Besides, as it was
already shown in Table 2 for extraction times, in Table 4 it can also be observed that the
average total loading time is higher in DR scenarios than in the DABC ones. This result
was again expected, due to the fact that in DR scenarios there are more scarce references
demanded than in ABDC ones and extracting them usually takes a longer time.
The results concerning total loading times obtained applying rules R0-R9 to P2 in-

stances are very similar to the ones obtained for P1 instances, showing again that R9 is
clearly the rule with the best overall performance, and thus they are omitted in the pa-

M
ay

2
0
,
2
0
1
3

In
te
rn

a
ti
o
n
a
l
J
o
u
rn

a
l
o
f
P
ro
d
u
ct
io
n
R
es
ea
rc
h

IJ
P
R
˙2
0
1
2
˙a
lo
n
so
ay

u
so
et
a
l˙
R
1
˙v
8

14

SR DR SR DABC SABC DR SABC DABC SHCC DR SHCC DABC Avg. % R9
X sd X sd X sd X sd X sd X sd

FOF1 122750 2489 71576 1669 154512 1336 87974 1683 177375 1543 98572 2116 118793
R0 5963154 115743 4565850 68847 7060953 66071 4959563 54998 7851935 64208 5301379 93756 5950472 111.0
R1 4699579 164021 2537644 75054 6242736 94126 3364238 98717 7256563 121945 3702989 81424 4633958 64.3
R4 3689521 178618 2118221 47409 4582118 43710 2730682 416550 5259149 47971 2923271 60736 3550494 25.9
R5 3656841 187756 2068819 53421 4560632 38441 2699033 408017 5244924 52602 2867133 63905 3516230 24.7
R3 3436954 96707 1842281 47426 4470780 80282 2341741 48504 5267854 115934 2518500 52888 3313018 17.5
R8 3698650 187437 2119789 51353 4594200 43106 2717901 395382 5267811 49335 2910989 56775 3551557 25.9
R9 2907244 131752 1642037 35922 3677172 46472 2126636 318003 4297588 47272 2269519 30990 2820033 0.0
R2 5350867 96970 3532496 65302 5128003 76911 3357852 85269 5903848 72618 3954314 116174 4537897 60.9
R6 3698862 181012 2117724 51956 4588214 37763 2712842 395013 5268383 44279 2922530 60635 3551426 25.9
R7 3416029 271493 1879389 49307 4204594 23939 2398615 367449 4813693 52901 2544260 39262 3209430 13.8

Avg. 3694586 146727 2226893 49788 4478538 50196 2681553 235417 5146284 60964 2910314 59878

Table 4.: Constructive stage results with rules R0-R9 on P1 instances

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 15

SR DR SR DABC SABC DR SABC DABC SHCC DR SHCC DABC

R0 105.1 178.1 92.0 133.2 82.7 133.6
R1 61.7 54.5 69.8 58.2 68.9 63.2
R2 84.1 115.1 39.5 57.9 37.4 74.2
R3 18.2 12.2 21.6 10.1 22.6 11.0
R4 26.9 29.0 24.6 28.4 22.4 28.8
R5 25.8 26.0 24.0 26.9 22.0 26.3
R6 27.2 29.0 24.8 27.6 22.6 28.8
R7 17.5 14.5 14.3 12.8 12.0 12.1
R8 27.2 29.1 24.9 27.8 22.6 28.3

Table 5.: Percentage deviations in loading times from the best (rule R9) for P1 instances

per. However, as expected, the results concerning departure time violations are different
in P1 and P2 instances. Table 6 shows, for each scenario and each rule, the average sum
of times that vehicles exceed their deadlines and the average number of trucks violating
their deadlines, both for P1 (Table 6a) and P2 instances (Table 6b). It can be observed
that average time violations and number of trucks violating deadlines are quite higher in
P1 instances than in P2 instances; these differences in the results regarding deadline vio-
lations are mainly due to the distribution of time limits for P1 and P2 instances, because
P1 deadlines take only 4 possible values and there are large time jumps between ones
and the others, while P2 deadlines are increased in a more continuous fashion and this
helps in loading the trucks on time in an organized way. Again, it is remarkable that SR
scenarios are harder to solve than DABC ones also according to the deadline satisfaction:
for P2 instances, all rules but R0 and R2 find solutions satisfying all deadlines in DABC
instances, while in DR scenarios only rule R9 (and R3 and R7 in some cases) is able to
find solutions not violating any deadline.
Figure 5 illustrates more clearly the average departure deadlines compliance applying

several rules to different scenarios with the two deadline configurations used. Figure 5a is
related to P1 instances of scenario SHCC DABC, while Figure 5b refers to P2 instances
of scenario SHCC DA. They compare the deadline of each truck (in white) with the
average departing time in the solutions obtained using rules R0, R1 and R9 (in different
grey colors). It can be observed that rules R0 and R1 (together with R4 and R5, that
show a similar behavior but are not included in the graphic to avoid confusion) provide
solutions with many trucks departing after their deadlines. In fact, in these solutions the
departure times of all trucks lie in a very small time period, indicating that most of them
are finished to be loaded at the same time and thus deadline information is not taken into
account properly when making scheduling decisions. However, the figures also show that
the solutions provided by rule R9 do verify all departure deadlines, and it can be clearly
observed how the departure times of the trucks are different and tend to increase as the
deadline also increases (see the border between the darkest area corresponding to R9
and the following one corresponding to R1 on both Figues 5a-b). Rules R8, R2 and R6
perform a bit better than R0-R5 thanks to the use of some Priority assignment procedure
(Static or Dynamic), but are still clearly outperformed by rules R3 and R7, that show
the best overall performance after R9 and are able to adjust loading times to departure
deadlines quite well (again, they are not included in the graphic to avoid confusion). The
explanation for this could be that R3 and R7 share several of the key features of R9,
that seem to be the Closest-first initial ordering policy and the use of a Dynamic Priority
Assignment procedure to perform the cage sequencing based on priorities.

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

16

SR DR SR DABC SABC DR SABC DABC SHCC DR SHCC DABC

time # of

trucks
time # of

trucks
time # of

trucks
time # of

trucks
time # of

trucks
time # of

trucks

R0 167.88 5.0 104.31 5.0 268.59 15.0 118.33 5.0 411.46 25.0 135.22 5.0
R1 103.28 5.0 7.41 4.3 175.14 5.0 43.77 5.0 293.91 15.5 57.03 5.0
R2 94.73 4.8 27.96 2.0 66.79 5.9 18.28 3.4 66.15 11.3 17.12 4.0
R3 8.28 2.2 0.00 0.0 26.97 3.5 0.00 0.0 52.30 4.1 0.00 0.0
R4 66.90 5.0 1.97 0.6 106.93 5.0 22.40 5.0 138.28 5.0 32.25 5.0
R5 61.82 5.0 51.92 0.4 93.92 4.5 18.13 5.0 135.65 5.0 26.88 5.0
R6 68.07 5.0 1.46 0.7 97.14 4.5 21.47 5.0 139.26 5.0 32.20 5.0
R7 13.19 2.8 0.00 0.0 28.47 2.7 1.21 0.3 45.47 4.0 0.00 0.0
R8 67.95 5.0 1.74 0.5 98.06 4.5 21.88 5.0 139.17 5.0 31.41 5.0
R9 0.00 0.0 0.00 0.0 1.35 0.9 0.00 0.0 7.67 2.0 0.00 0.0

(a) P1 instances
SR DR SR DABC SABC DR SABC DABC SHCC DR SHCC DABC

time # of

trucks
time # of

trucks
time # of

trucks
time # of

trucks
time # of

trucks
time # of

trucks

R0 168.93 12.9 38.67 6.0 317.66 17.5 67.51 8.0 457.45 21.1 85.04 9.8
R1 46.74 7.4 0.00 0.0 192.56 14.0 0.12 0.2 339.72 18.2 1.66 1.1
R2 84.34 10.5 6.12 5.7 60.58 15.4 3.61 6.4 58.56 21.0 11.91 14.0
R3 0.00 0.0 0.00 0.0 1.76 1.3 0.00 0.0 20.86 7.1 0.00 0.0
R4 6.25 2.1 0.00 0.0 44.14 6.0 0.00 0.0 92.73 10.0 0.00 2.1
R5 2.83 1.9 0.00 0.0 39.63 6.0 0.00 0.0 88.77 9.8 0.00 0.0
R6 5.95 2.0 0.00 0.0 44.27 6.0 0.00 0.0 94.53 10.0 0.00 0.0
R7 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 9.88 4.8 0.00 0.0
R8 6.46 2.0 0.00 0.0 44.35 6.0 0.00 0.0 94.32 10.0 0.00 0.0
R9 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0

(b) P2 instances

Table 6.: Time (in hours) that deadlines of trucks are violated

(a) P1 instances (b) P2 instances

Figure 5.: Illustration of departure time of trucks using R0, R1 and R9

Phase 2: Sequencing improving stage

Once a first feasible extraction sequence is constructed, the improving stage described
in Section 3.2.2 is applied in order to reduce loading times and deadline violations. With
the aim of considering only a small amount of promising swaps, the improving stage makes
use of different reduced swaps subsets, obtained by combining different types of cages
subsets (I1, I2, I3) of different sizes, as described in Section 3.2.2. The nine combinations
tested in this experimentation are shown in Table 7 (where n is the number of cages
selected to be extracted).

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

International Journal of Production Research 17

Swap Improving Parameter # swaps
subset strategy value evaluated
IS0 I1 v = 5000 5000
IS1 I2 t = 1 30n
IS2 I2 t = 3 90n
IS3 I2 t = 4 120n
IS4 I2 t = 6 180n
IS5 I3 t = 1, r = 0.5 15n
IS6 I3 t = 3, r = 0.5 45n
IS7 I3 t = 4, r = 0.5 60n
IS8 I3 t = 6, r = 0.5 90n

Table 7.: Reduced swap subsets description

The improving stage is the most running time demanding phase (it can take hours to be
run) and thus the experimentation has been performed only on a small set of 7 instances
of different types representing different scenarios that have been randomly selected from
the original test bed. Table 8 shows the percentage of reduction in the total loading times
obtained after applying the improving stage with the 9 reduced swap sets on the selected
instances, starting from the initial solution obtained applying the constructive sequencing
stage with R9 (that showed the best overall performance). It can be observed that reduced
sets IS2 and IS6 provide the largest improvements in all considered instances, improving
the total loading times an average of more than 5%. However, running times should
also be taken into account when evaluating the performance of each reduced swap set
selection. For this purpose, Figure 6 provides a comparison between the percentage of
loading time improvements achieved by each strategy (Figure 6a) and the running time
required to be executed (Figure 6b). These figures show that, although reduced sets IS2
and IS6 provide similar average improvements, IS6 requires half the running time than
IS2, letting us conclude that IS6 shows the best overall performance.
IS6 improving stage can be run in around 20 hours in a standard PC, and since orders

are usually known every day 24 hours before the loading plan must be designed, it could
actually be executed on a daily basis. However, if this time is excessive, reduced sets IS7
and IS8 provide improvements between 3-4% with running times between 10-15 hours,
while reduced sets IS0 and IS5 provide improvements between 1-2% with running times
between 2-4 hours. Therefore, the improving phase to be used should be chosen according
to the running time available for computation.

SR1 SR8 SR0 SABC2 SABC2 SHCC6 SHCC9
DR4 RA6 DABC0 DR4 DR9 DR5 DR9 average

IS0 2.06 1.54 1.94 1.28 1.63 1.70 1.40 1.65
IS1 2.06 1.69 2.25 0.91 1.92 1.87 1.41 1.73
IS2 5.46 4.98 6.06 5.54 6.45 5.54 4.98 5.57
IS3 2.60 3.44 4.41 2.71 3.40 4.00 2.74 3.33
IS4 3.93 3.70 4.91 3.95 4.43 4.60 3.98 4.21
IS5 1.43 1.49 1.81 0.68 1.99 1.70 1.28 1.48
IS6 4.63 4.25 6.74 4.70 6.90 4.65 5.75 5.37
IS7 2.22 3.15 4.95 1.89 3.86 3.20 3.37 3.23
IS8 3.42 3.34 5.28 2.90 5.49 3.76 4.60 4.11

average 3.09 3.06 4.26 2.73 4.01 3.45 3.28

Table 8.: Improvement (%) over R9 for each reduced swap set

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

18

(a) Improvement (%) (b) Computing times

Figure 6.: Comparison of improvement (%) and running time for different
reduced swap sets

5. Conclusions and future work

This work approaches a typical logistics problem in many warehouses related to order
picking, which is usually the most intensive labor activity in the warehouse. In this prob-
lem, decisions concerning what items should be extracted to serve customers demand,
what extraction sequence should be followed to minimize loading times and what cages
should be assigned to each truck to meet departure due times must be carefully planned
and coordinated to achieve efficiency. Two main objectives are considered: reduce the
total operational time to extract the cages and load the items in the trucks and meet
the due times associated to the departures of those trucks. Given the huge number of
items that must be processed in the warehouse every day, as well as the nature of the
resulting problem, the application of exact algorithms in this context is computationally
prohibitive. Therefore, in this paper we have focused on a heuristic solution approach
based on a 2-phase decomposition of the problem, that is shown to be able to provide
large improvements over the planning method that logistics companies usually use on
their daily warehouse operations. The case study considered shows that significant re-
ductions in operational time are achieved, together with a much better compliance with
the departure deadlines of the trucks.
Several of the proposed improving mechanisms are able to improve both total oper-

ational time and departure deadline violations of the initial solutions built on the con-
structive stage; however, it is important to note that the computational complexity of
some of those improving methods may be excessive to be run in a daily basis. Therefore,
one interesting research line to be undertaken in the future deals with the development
of this improving phase, exploring new subsets of exchanges to expand the local search
process, designing more efficient techniques for the evaluation of candidate moves and
considering alternative metaheuristic frameworks such as variable neighborhood search,
tabu search or genetic algorithms (see for example Chan and Kumar 2009, where meta-
heuristics such as tabu search and simulated annealing are applied to other warehouse
scheduling problems).
In the formulation of the problem approached, some assumptions had to be made in

order to make it tractable, and their consideration could also lead to other interesting
lines of future research. For instance, the proposed model considers that the forklifts can

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

REFERENCES 19

move freely through the warehouse and they cannot interfere with each other. However,
two or more forklifts could meet at the same time traveling by the same aisle, causing
a congestion and delaying the distribution of the cages. Besides, the location to where
picked cages are moved back after being managed by the I/O point is not part of the
problem approached, but a correct relocation of the extracted cages could facilitate sig-
nificantly the picking operations of the following day. Furthermore, the way new items
are placed in the relocated cages is also important for the plans to be followed during
the following days, and that is also outside the scope of the problem considered in this
paper.

Acknowledgements

This research has been partially supported by projects OPTIMOS2 MTM2009-14039-
C06-03, TIN2009-07901 from the Spanish Ministry of Science and Innovation and
RIESGOS-CM from Comunidad de Madrid (Spain).

References

[1] Chan FTS and HK Chan (2011). Improving the productivity of order picking of a
manual-pick and multi-level rack distribution warehouse through the implementa-
tion of class-based storage. Expert Systems With Applications, 38(3), 2686-2700.

[2] Chan, LK and CY Cheng (2012). Joint order batching and picker routing us-
ing two-phased algorithm. Proceedings of the Asia Pacific Industrial Engineering

& Management Systems Conference, V. Kachitvichyanukul, H.T. Luong, and R.
Pitakaso Eds.

[3] Chan, FTS and V Kumar (2009). Hybrid TSSA algorithm-based approach to
solve warehouse-scheduling problems. International Journal of Production Re-

search, 47(4), 919-940.
[4] Chen, ZL (2009). Integrated production and outbound distribution scheduling:

Review and extensions. Operations Research, 58, 130-148.
[5] Coyle, JJ, EJ Bardi and CJ Langley (1996). The management of Business Logistics.

South Western College Publishing.
[6] Dekker, R, R de Koster, KJ Roodbergen and H Van Kalleveen (2004). Improving

order-picking response time at Ankor’s warehouse. Interfaces, 34(4), 303-313.
[7] Gademann, N, J Berg and H Hoff (2001). An order batching algorithm for wave

picking in a parallel-aisle warehouse. IIE Transactions, 33, 385-398.
[8] Gu, JX, M Goetschalckx and LF McGinnis (2010). Research on warehouse de-

sign and performance evaluation: A comprehensive review. European Journal of

Operational Research, 203, 539-549.
[9] Gu, JX, M Goetschalckx and LF McGinnis (2007). Research on warehouse oper-

ation: A comprehensive review. European Journal of Operational Research, 117,
1-21.

[10] Henn S (2012). Order batching and sequencing for the minimization of the total
tardiness in picker-to-part warehouses. Flexible Services and Manufacturing Jour-

nal (in press). DOI 10.1007/s10696-012-9164-1.
[11] Henn S, S Koch and G Wascher (2011). Order Batching in Order Picking Ware-

houses: A Survey of Solution Approaches. Working Paper No. 01/2011. Faculty of

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

20 REFERENCES

Economics and Manegement, Otto-von-Guericke-Universitat Magdeburg, Magde-
burg, Germany.

[12] Hsieh, L-F and L Tsai (2006). The optimum design of a warehouse system on order
picking efficiency. International Journal of Advanced Manufacturing Technology,
28, 626-637.

[13] De Koster, R, KJ Roodbergen and R Van Voorden (1999). Reduction of walking
time in the distribution center of De Bijenkorf. In: Speranza MG, P Stähly (Eds.)
New Trends in Distribution Logistics, 215-234. Springer, Berlin.

[14] De Koster, R, T Le-Duc and KF Roodbergen (2007). Design and control of ware-
house order picking: A literature review. European Journal of Operational Research,
182, 481-501.

[15] Kumar V, N Mishra, FTS Chan, and A Verma (2011). Managing warehousing in an
agile supply chain environment: an F-AIS algorithm based approach. International
Journal of Production Research, 49(21), 6407-6426.

[16] Lambert, DM, JR Stock and LM Ellram (1998). Fundamentals of Logistics Man-

agement. McGraw-Hill, Singapore.
[17] Mishra N, V Kumar, N Kumar, M Kumar and MK Tiwari (2011). Addressing lot

sizing and warehousing scheduling problem in manufacturing environment. Expert
Systems With Applications, 38(9), 11751-11762.

[18] Öncan, T (2013). A Genetic Algorithm for the Order Batching Problem in Low-
Level Picker-to-Part Warehouse Systems. Proceedings of the International Multi-

Conference of Engineers and Computer Scientists Vol I, Hong Kong.
[19] Pan, L, JZ Huang and SCK Chu (2011). Order batching and picking in a synchro-

nized zone order picking system. Proceedings of the IEEE International Conference

on Industrial Engineering and Engineering Management Singapore, 156-160.
[20] Petersen, C and R Schmenner (1999). An evaluation of routing and volume-based

storage policies in an order picking operation. Decision Science 30(2), 481-501.
[21] Ratliff, HD and AS Rosenthal (1983). Order-picking in a rectangular warehouse: a

solvable case of the traveling salesman problem. Operations Research, 31(3), 507-
521.

[22] Samaranayake P, T Laosirihongthong and FTS Chan (2011). Integration of man-
ufacturing and distribution networks in a global car company - Network models
and numerical simulation. International Journal of Production Research, 49(11),
3127-3149.

[23] Tompkins, JA, JA White, YA Bozer, E. Frazelle and JMA Tanchoco (2003). Fa-
cilities Planning. Wiley, New Jersey.

[24] Van der Veen, JAA and R van Dal (1983). Solvable Cases of the No-Wait Flow-Shop
Scheduling Problem. Operational Research Society, 42(11), 971-980.

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

REFERENCES 21

Appendix A. Notation

Warehouse
TSP Travelling Salesman Problem
AS/RS system Automatic Storage/Retrieval System
I/O point Input/Output point
AGV Automated Guided Vehicle
item any particular object of the wharehouse
reference label to identify the type of an item
cage set of items stored together in the warehouse
forklift truck vehicles for the transportation of cages

Phase 1. Mathematical Model
I set of cages in the warehouse
K set of references
V set of vehicles
uik number of units of reference k stored on cage i
ti extraction time of cage i
dk demand of references of type k
xi 1 if cage i is selected, 0 otherwise

Phase 2. Cage picking sequencing
closest first policy cages closest to the I/O point are picked first
pj priority of vehicle j
qi priority of cage i
Static Priority demands are not updated while assigning priorities
Dynamic Priority demands are updated while assigning priorities
Λ = {c1, · · · , cn} initial (unsorted) solution sequence of cages (selected in Phase 1, Λs ⊂ I)

Λ̂ = (c1, · · · , cn) initial (sorted) solution sequence of cages
Ωr set of cages randomly chosen from Λ

Ωj
t ⊆ Λ set containing the last t cages in Λ̂ with items to be loaded to vehicle j,

Ωt =
∑

j∈V Ωj
t

Φ reduced candidate subset of swaps
I1 swapping strategy: a few swaps are chosen at random (Φ = Λ× Λ)
I2 swapping strategy: last cages are swapped with all others (Φ = Ωt × Λ).
I3 swapping strategy: last cages are swapped with some of the others (Φ =

Ωt × Ωr)

Computational experiments
DR uniform demand of references
DABC demand proportional to the number of items for each reference
SR random distribution of cages in the wharehouse
SABC cages with most demanded references closer to the I/O point
SHCC cages with homogeneous items closer to the I/O point
P1 discrete increase in departure times of vehicles
P2 continuous increase in departure times of vehicles
R0-R9 sequencing rules, described in Table 3
IS0-IS9 reduced swap subsets, described in Table 7

Appendix B. Pseudocode of the solution method

In what follows a pseudocode of the complete solution method proposed is presented.
Note that the first stage of Phase 2 consists on creating an initial sequence of cages, Λ̂.
The pseudocode considers that Λ̂ is built based on the priority rule. If the sequence is
built randomly or using the closest cage first rule, step 2.2 can be skipped and step 2.3
must be properly adapted.

May 20, 2013 International Journal of Production Research IJPR˙2012˙alonsoayusoetal˙R1˙v8

22 REFERENCES

Phase 1. Determine Λ ⊂ I, initial set of cages, by solving model (1)-(3).
Phase 2. Sequencing constructive stage:

2.1. Assign priorities to vehicles (based on their departure times), pj,∀j ∈ V
2.2. Assign priorities to cages in Λ

Set qi = 0 for each cage i.
For all cages i:

For all demanded items l of cage i:
1. Set qi = qi +

1
p2

j

, where j is the vehicle with the highest

priority demanding item l

2. Decrease by one unit the demand of vehicle j for item l

end for

end for

2.3 Build Λ̂, the initial sequence of cages (based on their priorities).
2.4 Improve the current sequence of cages Λ̂

For (each selected swap) do
If (departure times are met in current solution) then

If (departure times are met after swap) and (obj function is
improved)

then

perform swap and update Λ̂
else,

reject swap
end if

else

if (loading times are reduced after swap) or (obj function is
improved)

then

perform swap and update Λ̂
else,

reject swap
end if

end if

end for

2.5 Stopping criteria

If (maximum computing time is reached) or (no swaps were performed in the last
iteration)

then

STOP. Λ̂ is the proposed solution.
else,

repeat step 2.4
end if

