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Abstract

Two reference indices used to characterize left ventricular (LV) global chamber
function are end-systolic peak elastance (Emax) and the time-constant of relax-
ation rate (τ ). However, these two indices are very difficult to obtain in the clinical
setting as they require invasive high-fidelity catheterization procedures. We have
previously demonstrated that it is possible to approximate these indices noninva-
sively by digital processing color-Doppler M-mode (CDMM) images. The aim of
the present study was twofold: (1) to study which feature extraction from linearly
reduced input spaces yields the most useful information for the prediction of the
haemodynamic variables from CDMM images; (2) to verify whether the use of
nonlinear versions of those linear methods actually improves the estimation. We
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studied the performance and interpretation of different linearly transformed in-
put spaces (raw image, discrete cosine transform (DCT) coefficients, partial least
squares, and principal components regression), and we compared whether non
linear versions of the above methods provided significant improvement in the es-
timation quality. Our results showed that very few input features are enough for
providing a good (medium) quality estimator for Emax (for τ ), which can be read-
ily interpreted in terms of the measured flows. Additional covariates should be
included to improve the prediction accuracy of both reference indices, but espe-
cially in τ models. The use of efficient nonlinear kernel algorithms does improve
the estimation quality of LV indices from CDMM images when using DCT input
spaces that capture almost all energy.

Keywords: Color Doppler, M-mode Image, Kernel Methods, Support Vector
Regression, Partial Least Squares, Principal Component Regression, Left
Ventricular Function, Elastance, LV relaxation, Cosine Transform.

1. Introduction

Characterization of left ventricular (LV) systolic and diastolic chamber func-
tion is still a pending issue in the clinical setting. In experimental physiology,
peak end-systolic elastance (Emax) is well established as the best available index
to measure systolic performance of the LV chamber. In turn, the time-constant
of LV relaxation (τ ) is accepted as the gold standard method accounting for the
rate of relaxation of the chamber, one of the main diastolic properties of LV func-
tion. Measuring Emax requires complex measurements of instantaneous pressure
and volume inside the LV chamber as well as preload intervention maneuvers.
Measuring τ requires invasive catheterization of the LV using high-fidelity micro-
manometers. For these reasons, neither Emax nor τ are only measured in patients
for research purposes.

A number of noninvasive methods have been developed to obtain surrogate
indices that correlate with Emax and τ . Among them, most research has fo-
cused on Doppler-echocardiography, because it is a fully noninvasive, non ion-
izing, cheap and readily available at the patient’s bedside. In a previous work we
have shown that τ and Emax can be reasonably approximated from CDMM im-
ages. Using a fluid-dynamic approach we have shown thatEmax correlates closely
to the peak-ejection pressure difference developed inside the ventricle, which can
be computed by solving Euler’s equation from the CDMM velocity data (Yotti
et al., 2005). Similarly, τ can be approximated by the peak reverse end-ejection
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pressure difference with reasonable accuracy (Yotti et al., 2011). Importantly, us-
ing a learning from samples approach we have obtained similar approximations
without the need of complex fluid-dynamic modeling (Rojo-Alvarez et al., 2006).
Hence, an experimental (animal) setup was used to simultaneously measure the
catheter-based curves (pressure and flow) and acquire the CDMM images; and
a machine-learning model was designed for straightforward estimation of τ and
Emax parameters from an input space given by the diastolic period of the digitized
CDMM image.

In that precedent work, a linear estimator was used for the image input space,
which raises several questions. On the one hand, nonlinear relations between
CDMM images and indices can be expected, as the haemodynamic variables in
the cardiac circulatory system are known to be mostly interrelated by nonlinear
fluid dynamic equations. On the other hand, linear kernel estimators are often sug-
gested in the machine learning literature as the most appropriate choice for high-
dimensional input spaces, and they also provide with easier to interpret, black-box
models than their nonlinear counterparts. Therefore, our aim was to test whether
alternative algorithms on the machine learning specifications could improve the
prediction of invasive indices Emax and τ from CDMM images. First, we wanted
to study which feature extraction from linearly reduced input spaces yields the
most useful information for the prediction of the haemodynamic variables from
CDMM images. Second, we wanted to verify whether the use of nonlinear algo-
rithmic versions of those linear methods actually improves the estimation. Ac-
cordingly, we benchmarked the performance of several linear kernel estimators,
in terms of linear feature extraction transformations, and in addition we analyzed
the physical and clinical meaning of the relevant features in these transformed
spaces, when possible. We also benchmarked the nonlinear kernel versions of
the above analyzed estimators, hence determining the actual improvement ob-
tained by the consideration of nonlinearity in the estimation kernel machine. For
this purpose, we chose several kernel methods, namely, Support Vector Regres-
sion (SVR), Principal Component Regression (PCR), and Partial Least Squares
(PLS), according to different levels of algorithm complexity in terms of the mul-
tidimensional output estimation from the multidimensional input. SVR performs
one dimensional output robust estimation, PCR performs dimensionality reduc-
tion and multidimensional output estimation, and PLS performs a dimensionality
reduction according input-output covariance.

The rationale for the chosen input features was as follows. First, the RAW
input space conveys all the image information, hence it represents a necessary
benchmarking. Also, a linear machine working on the input space will be easy
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to interpret, in terms of the relative temporal and spatial position of the linear
weights. Second, DCT input space is a widespread used frequency transform in
image problems, and given the smoothness and low-pass frequency content of
CDMM images, it can be expected to work well from an image information com-
pression point of view. Third, PCR provides us with features from an intrinsic
image decomposition (different from frequency decompositions), with a decou-
pled regression stage. And finally, PLS provides us with features from an intrinsic
image decomposition in which the regression output quality is an embedded opti-
mization criterion.

The scheme of the paper is as follows. In the next section, the fundamental
theory of the multidimensional kernel machines is summarized for the SVR, PCR,
and PLS algorithms. Then, a detailed set of experiments is presented for bench-
marking and interpretation of linear vs nonlinear kernel versions of the estimators.
Finally, conclusions are drawn.

2. Multidimensional Kernel Machines

This section first describes the basic equations of SVR, PCR and PLS. These
methods allow both linear and nonlinear estimation without explicitly extracting
features from the images. Both PCR and PLS implicitly extract features (com-
ponents or latent vectors) previous to the estimation problem. PCR performs a
feature extraction such every new feature captures as much as possible of the re-
maining variance of the input data, where PLS extracts features that maximize the
covariance of the input data and target variables.

2.1. SVR Estimation
SVR is a well-studied technique that allows nonlinear mappings of the in-

put space and works well with high dimensional spaces like images (Smola and
Schölkopf, 2004). Given a training set {(xi, yi), i = 1, . . . , n} where xi ∈ Rd

and yi ∈ R, the SVR finds a function f that estimates yi as

ŷi = f(xi) = φT (xi)w + b = yi + ei (1)

where φ : Rd → H is in general a nonlinear mapping to the feature spaceH; (·)T
is the matrix transpose operator; w is the weight column vector in this space; b
is a bias term; and ei is the residual error. Function f is found by minimizing a
functional with a regularization term and a loss term, as follows:

L =
1

2
||w||2 +

n∑
i=1

L(ei) (2)
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whereL is in our case the robust ε-Huber loss function (Rojo-Alvarez et al., 2006),
which increases the flexibility modeling outliers, given by

L(ei) =


0 |ei| ≤ ε
1
2δ

(|ei| − ε)2 ε ≤ |ei| ≤ ε+ δC

C(|ei| − ε)− 1
2
δC2 ε+ δC ≤ |ei|

(3)

where ε is the insensitive-zone parameter (no loss for errors lower than ε), and δC
controls the size of the quadratic zone of the loss function. Finally, we minimize
the following convex problem:

L =
1

2
||w||2 +

1

2δ

∑
i∈I1

(ξ2i + ξ∗2i ) + C
∑
i∈I2

(ξi + ξ∗i )−
∑
i∈I2

δC2

2
(4)

with respect to w, b, ξi, ξ
∗
i , taking into account the following convex constraints:

yi − φT (xi)w − b ≤ ε+ ξi (5)

φT (xi)w + b− yi ≤ ε+ ξ∗i (6)
ξi, ξ

∗
i ≥ 0 (7)

for i = 1, . . . , n, and where ξi, ξ∗i are positive slack variables to penalize the
positive and negative errors, and I1 and I2 are respectively the sets of samples that
are in the quadratic and linear loss zone.

Following the same procedure that solves standard SVR (Smola and Schölkopf,
2004), we obtain the following solution:

ŷt = f(xt) =
n∑
i=1

(αi − α∗i )K(xi,xt) + b (8)

where K(xi,xt) = φ(xi)
Tφ(xt) is a Mercer kernel function, which is usually

constructed without explicitly projecting inH (i.e., without explicit knowledge of
φ) and C ≥ αi, α

∗
i ≥ 0 are the Lagrange multipliers for the restrictions (5), (6).

After optimization, some αi, α∗i have a non-zero value and their associated sample
is named support vector (SV), because it influences function f . Three parameters
(C, ε, δ) need to be tuned for linear SVR (as well as the kernel width σ for the
Gaussian case). Linear kernel is defined as kL(x1,x2) = xT1 x2, and Gaussian

kernel is defined as kG(x1,x2) = e−
||x1−x2||

2

2σ2 .
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2.2. PCR Estimation
PCR (Massy, 1965) performs a Principal Component Analysis (PCA) on the

zero-mean n × d predictor matrix X, and then applies Ordinary Least Squares
(OLS) to the resulting g principal components (scores) T = [t1, t2, . . . , tg] and
the zero-mean n × k dependent variables matrix Y, where k is the number of
dependent variables. X can be factorized as:

X = TPT (9)

where P = [p1,p2, . . . ,pr] is the loadings matrix (PPT = I) and r, is the rank
of X. Any number g ≤ r of components can be selected in order to estimate Y,
however, these components should be selected carefully. Massy (1965) proposes
using the variance of the components or the dependence (correlation with Y) de-
pending on the purpose of the analysis, but author warns also that low variance
components can be useful for predicting Y. Jolliffe (1982) and Hadi and Ling
(1998) discourage the direct application of the high-variance rule for selection
components.

Predictions for X and Xt are done by using the following matrix relations:

Y = TB + F (10)

B̂ = (TTT)−1TTY (11)

Ŷ = TB̂ = XPB̂ (12)

Ŷt = XtPB̂ (13)

where (10) is the regression model based on the principal components; (11) is the
OLS estimator for B̂; and (12) and (13) are the predictions.

As described in (Rosipal et al., 2001b; Rosipal and Trejo, 2001), the nonlinear
kernel PCR (KPCR) performs kernel PCA (Schölkopf et al., 1999) and then OLS
using the principal components in the feature space. The same concerns appear
in KPCR as in PCR, low variance components could be useful for prediction, as
shown in (Rosipal et al., 2001a). One parameter (g) needs to be tuned for PCR
(and the kernel width for Gaussian KPCR).

2.3. PLS Estimation
PLS for regression (see Wold et al. (2001); Rosipal and Krämer (2006) for a

description and an overview) are used for modeling relations between blocks of
variables (e.g., a block of d explanatory variables and another block of k response
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variables), as well as for dimensionality reduction. PLS extracts orthogonal latent
vectors (also called score vectors) by maximizing the covariance between blocks
of variables; then PLS projects the observed data to its latent structure and use
the latent vectors to perform regression of the response variables. PLS techniques
assume that the observed data are generated by a process driven by a small number
of latent (not directly observed) components.

PLS models the zero-mean n × d explanatory (predictor) matrix X and the
zero-mean n× k dependent variables Y as:

X = TPT + E (14)

Y = UQT + F = TDQT + (HQT + F) = TCT + F∗ (15)

where T = [t1, t2, . . . , tg] and U = [u1,u2, . . . ,ug] contain the extracted la-
tent vectors as columns, and g is the number of latent components extracted;
P = [p1,p2, . . . ,pg] and Q = [q1,q2, . . . ,qg] are the loading matrices; and
E and F represent residual matrices. The second equality in (15) comes from the
assumption of T columns being good predictors of Y and U = TD + H, where
D is a diagonal matrix.

In order to find score vectors ti and ui, a procedure based on NIPALS algo-
rithm (Wold, 1966) finds wi, ci vectors such that

cov(ti,ui)
2 = cov(Xwi,Yci)

2 = max
||r||=1
||s||=1

cov(Xr,Ys)2 (16)

where cov(ti,ui) is the sample covariance between vector ti and vector ui. The
procedure starts by a random selection of ui vector (it can be initialized as ui = Y
if k = 1). Then, the following steps are repeated until convergence:

1.- wi = XTui/||XTui|| 3.- ci = YT ti/||YT ti||
2.- ti = Xwi 4.- ui = Yci

Here, wi, ti, ci and ui can also be found by solving eigenvalue problems (Höskulds-
son, 1988) or using other approaches as SIMPLS (de Jong, 1993) that directly
finds wi vectors. The loadings can be computed as

pi = XT ti/(t
T
i ti) qi = YTui/(u

T
i ui)

Then, X and Y are deflated as follows:

X = X− tip
T
i (17)

Y = Y − tit
T
i Y/(t

T
i ti) = Y − tic

T
i (18)
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and the algorithm is repeated until the required number of components is reached
(see Wold et al. (2001) for stopping criteria).

The estimated Ŷ and Ŷt for the training data X and test data Xt are respec-
tively given by:

B = W(PTW)−1CT (19)

Ŷ = XB = TCT (20)

Ŷt = XtB (21)

where W, P and C respectively are the matrices with wi, pi and ci as columns.
To extend PLS to nonlinear problems, it is common to apply the kernel-trick

(Schölkopf and Smola, 2001) to the predictor matrix X and then perform a linear
PLS in the feature space (Rosipal and Trejo, 2001). The NIPALS-based kernel
version results:

1.- ti = Kui/||Ku|| 3.- ui = Yci/||Yci||
2.- ci = YT ti

where K is the kernel matrix of the training data. Steps 2.- and 3.- can be merged
and a kernel might also be applied to the dependent variables.

3. Experiments

The experimental design for data processing is as follows. In Experiment 1,
linear SVR was built from raw input space (CDMM images without transforma-
tions), both for estimating Emax and τ . Attention was paid to the free parameters
search. Error analysis and model diagnostic is given. Weights are plotted and
analyzed from a physiological perspective. In Experiment 2, we used DCT co-
efficients of raw images as input space. Linear SVR was used to analyze the re-
sulting images and the dependence on the retained energy and two normalization
schemes were examined. In Experiment 3, we analyzed raw images using PCR.
This method was one of the simplest alternatives to SVR as it reduces the dimen-
sionality with PCA and then estimates using OLS. We compared the supervised
and unsupervised alternatives to select the principal components. In Experiment
4 raw images were analyzed using PLS. We can see PLS as a dimensionality re-
duction method guided by the variable to be estimated, followed by a prediction
using OLS, and accordingly, we wanted to compare the gain of doing supervised
dimensionality reduction as opposed to PCR. In Experiment 5 we tested whether
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PCR and PLS methods, which include an implicit dimensionality reduction, could
be benefited by using, as input space, the DCT coefficients of the CDMM images.
Finally, in Experiment 6 we compared linear methods with their nonlinear (Gaus-
sian) counterparts.

To compare the performance of different algorithms, we follow a leave-one-
individual-out procedure, which has as many iterations as individuals and is ex-
plained as follows: 1) each individual is selected as test in one iteration and is only
used to evaluate the estimator capabilities. 2) The test individual is used neither
to train the estimator nor to search for its optimal parameters. 3) The rest of indi-
viduals (training individuals) are used to search for the optimal parameters of the
model by using cross-validation, where each individual is assigned only to a fold.
4) All the training individuals are used to create a model with the best parameters
of the previous step. 5) The test individual is used to evaluate that model.

This evaluation procedure, which follows best machine learning practices,
provides appropriate error estimates as test individuals are not known for the
training procedure and controls overfitting by not mixing individuals in the cross-
validation folds, which induces conservative selection of parameters.

We denote the mean of the absolute error (MAE) of the estimation of index Y
for individual m as:

Ēm = 1/Nm

Nm∑
i=1

|Ŷm[i]− Ym[i]| , (22)

where Nm is the number of cases recorded for individual m, Ym[i] and Ŷm[i] are
respectively the measured and estimated indices. We use as error figure Ē, defined
as the mean of the error defined by (22) for all individuals.

3.1. Materials
This study used data from an experimental protocol with 20 minipigs, whose

left ventricular outflow tract (LVOT) flow velocity profile is similar to normal
adult humans. Both CDMM images and invasive tracings (using catheters) were
simultaneously acquired for each animal in a high fidelity setup. Animals were
anesthetized and their heart conditions were manipulated (drugs and vena cava
occlusion) to get different values for Emax and τ . All measures where averaged
by performing the experiment three times on each pig. For Emax estimation, 9
pigs where considered that jointly sum up to 274 beats. For τ estimation, 20 pigs
were considered that jointly sum up to a total of 1362 beats.
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We detail further the images. CDMM images (DICOM format) were ob-
tained from an epicardial approach using a phase-array broadband 2.0–4.0 MHz
transducer on a Sequoia C-256 system (Siemens AG) (Yotti et al., 2005). These
CDMM tracings display the 1-dimensional spatiotemporal map of ejection flow
velocity along the long axis of the LV. Velocity values were obtained from the
color values of each pixel using a previously validated decoding and de-aliasing
algorithm (Bermejo et al., 2001). Spatial and temporal calibration was obtained
from the DICOM metadata, while velocity calibration was obtained by reading
the images scale limits. The beginning and end of ejection, as well as the po-
sitions of the LV apex and outflow tract, were visually identified in each image.
CDMM recordings were then aligned and cropped slightly beyond these limits,
interpolated using a bivariate tensor product spline, and then downsampled to a
grid of 32 × 32 pixels. The details of the experimental setup have been reported
in (Yotti et al., 2005).

We considered this data in an animal per animal basis, i.e., we always consid-
ered together the beats of an animal whether it is used for training or for testing
purposes. Our data for each animal consist in the set of its measurements for each
beat, namely, CDMM image and invasively measured values (Emax and τ ).

3.2. Experiment 1: Linear SVR on Raw Images Input Space
In this experiment, we analyzed the raw 32×32 CDMM images, in a leave-

one-individual-out scheme, with linear SVR. All the images were standardized by
dividing them by the constant that made its maximum absolute value one.

A relevant matter is parameter search. We followed a sequential grid search
approach where: (1) a parameter was optimized in a grid while the remaining
parameters were kept static; (2) the parameter was set to the value providing min-
imum error; (3) the next parameter was considered. The search finished when no
parameter changed after a round. The SVR parameters were sampled in the fol-
lowing ranges: ν ∈ [0.05, 1], C ∈ [e−4, e4] and δ ∈ [10−2, 1]/C ×max(|Emax|).
Given that it can be shown that δC is the length of the quadratic segment of the loss
function (3), δC ∈ [10−2, 1]×max(|Emax|). We defined δ∗ = δC/max(|Emax|),
which varies between 0.01 and 1, and relates to the length of the quadratic zone
of (3) with the maximum of the target variable. As Emax is standardized to be
zero-mean and unit-variance previously to create the model, this selection of δC
provides a quadratic penalty in the loss function that can be selected to be as small
0.01max(|Emax|) or as high as max(|Emax|). Larger lengths for the quadratic
zone are not considered as we do not want quadratic loss for large residuals that
are even clearly outliers or samples that can not be modeled.
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We started with the prediction of Emax by using the raw CDMM images. The
average result (for all individuals) of the linear search of SVR parameters is shown
in Figure 1, which also shows the boxplot of the best values for each individual.
Parameter ν seemed to have little impact on the accuracy, and only C and δ∗

seemed to have some effect. However, when looking at the optimal parameters,
ν was close to zero for the prediction of 7 out of nine animals, C had a little
variation, and δ∗ was close to 1 for almost all cases, which informs that almost all
residuals were penalized in the quadratic zone of the loss function.

The prediction and the residuals are shown in Figure 2, where we observe that
the SVR was accurately following Emax. The residuals were not Gaussian, as
we see heavy tails in the histogram. The Bland-Altman (BA) plot compares the
true value, i.e. the gold standard, to the difference between the true and estimated
values, with the aim of detecting systematic errors, biases, heteroscedasticity or
outliers. In the BA plot for Emax we observe that SVR trended to underesti-
mate values above 9 mmHg/ml, which shows a mixture of heteroscedasticity and
bias. The averaged absolute error and its standard deviation is shown in Table 1.
SVR-LIN was the best linear predictor for raw images. Emax had a mean of 4.2
mmHg/ml and a standard deviation of 3.1 mmHg/ml. The average estimation er-
ror was about a 20% (30%) of the mean (standard deviation) of Emax, and the
maximum absolute error was 5.4 mmHg/ml.

With linear kernel, predictor f (1) becomes a linear combination of the training
images, and its absolute value for each image pixel represents the importance
of that pixel for the prediction of the haemodynamical variable. The regression
weights, represented as images, for each test case are shown in Figure 3(a), and
their mean and standard deviation in Figure 4(a). A strong agreement on these
weights is found in most machines, where we see that the center and lower center
of the image is contrasted with its surroundings, hence, the predictor contrasted
the region near the apex and near the LVOT at the beginning and near the end of
the normalized ejection time with the region near the LVOT in the middle of the
normalized ejection time.

For τ prediction, we used the same ranges for the parameters as for Emax
prediction. We show the average result of the linear search of SVR parameters
and the boxplot of the best values in Figure 1. In this case, the boxplot shows
than both ν and δ∗ varied dramatically from predicting each case, and on the other
hand, C was almost the same for all cases. The three parameters seemed to have
impact in the accuracy, but variations of ν from 0.2 to 1 had almost no effect.

The regression weights for τ , represented as images, are shown in Figure 3(b)
and their mean and standard deviation in Figure 4(b). There were several patterns
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Figure 1: SVR-LIN on raw images. (a) and (c) show the averages of parameter searches.
(b) and (d) show the boxplot with optimal parameters for each animal: ν ∈ [0.05, 1], C ∈
[exp(−4), exp(4)] (represented in natural log scale) and normalized δ∗ ∈ [1e−2, 1]. First (second)
row represents Emax (τ ) results.

in the regression weights that depended at least on the selected training param-
eters: patterns like the ones for predicting animals 1, 2, 9, 12, 13, 14, 17, 19
resulted from training with ν < 0.15 (most samples do not penalize) and δ∗ > 0.5
values (the quadratic zone of the loss function is large); patterns like 3, 6, 7, 10,
11, 15, 18, 20 resulted for training with ν > 0.5 (most samples penalize) and
δ∗ < 0.06 values (the quadratic zone of the loss function is very small so almost
all the residuals were penalized with a linear cost). When looking at the coeffi-
cients themselves, we see a great agreement just above the lower-left corner where
the maximum of the coefficients are for all images. There is also quite agreement
on the zones with the larger negative coefficients. Both observations are observed
in Figure 4. The prediction and the residuals are shown in Figure 2. We observe

12



2

4

6

8

10

12

E
m
a
x

30
35
40
45
50
55
60
65
70
75

τ

(a) (b)

−3 −2 −1 0 1 2 3 4 50

5

10

15

20

25

30

Residuals
1 2 3 4 5 6 7 8 9 10 11 12

−3
−2
−1
0
1
2
3
4
5

Emax

C
A

T
m

in
us

SV
R

-L
IN

-40 0 40 80 120 1600

50

100

150

200

250

Residuals
30 40 50 60 70 80 90 100

−30

−20

−10

0

10

20

30

40

τ

C
A

T
m

in
us

SV
R

-L
IN

(c) (d) (e) (f)

Figure 2: SVR-LIN on raw images. (a) and (b) are the predictions for Emax and τ respectively;
catheter measurement is plotted in blue (dot-line) and prediction in red (continuous), vertical dot-
ted lines divide the individuals. (c) and (d), and (e) and (f) are the residuals and Bland-Altman
plots respectively for Emax and τ .

Emax mmHg/ml τ ms

Method Ē ± desv Ē ± desv

SVR-LIN 0.919 ± 0.32 9.79 ± 4.8
PCR 0.947 ± 0.30 11.0 ± 5.6
SPCR 0.968 ± 0.32 11.8 ± 5.1
PLS 0.927 ± 0.32 10.7 ± 5.3

Table 1: Comparison of Experiment 1, 3 and 4. Estimation error and standard deviation. RAW
CDMM images.

that the estimation provided by the SVR-LIN for τ was less accurate than for
Emax. In addition, the BA plot shows an almost-linear behavior in the difference
of prediction and gold standard for high τ values. This systematic error dependent
of the value of τ (that could be modeled by a line and partially removed) demon-
strates the inability of the model to follow high τ values and the need to include
other covariates. The average absolute error and its standard deviation is shown in
Table 1. SVR-LIN was again the best linear predictor for raw images. Measured
τ had a mean of 53.2 ms and a standard deviation of 16.6 ms. The average esti-
mation error was about a 18% (59%) of the mean (standard deviation) of τ , and
the maximum absolute error was 162.6 ms which was an outlier as we can see in
Figure 2, the next maximum error was just above 60 ms.
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Figure 3: SVR-LIN on raw images. (a) Regression coefficients to predict Emax for individuals
1–9. (b) Regression coefficients to predict τ for individuals 1–20.

3.3. Experiment 2: Linear SVR on DCT Input Space
We also tested the estimation of Emax and τ using the SVR with the Discrete

Cosine Transform (DCT) coefficients instead of the raw images. DCT coefficients
represent the frequency content of CDMM images, which resulted smooth and
could be efficiently represented with few coefficients, e.g., {70, 75, 80, 85, 90, 95}%
of the energy was respectively retained with only {4, 6, 9, 15, 37, 176} out of 1024
coefficients in the case of Emax (9 individuals), and with {4, 5, 7, 11, 23, 110} out
of 1024 coefficients in the case of τ (20 individuals). To obtain the coefficients
needed to preserve an energy amount, we first calculated the DCT transform of
each image. Then, we obtained the energy in the DCT domain and accumulated
the energy content of all images in frequency domain. Finally, we sorted the fre-
quencies in descending energy-content order and kept the minimum number of
coefficients that provided the required amount of energy.

Figure 5 shows a contour plot with the cumulative energy content of the DCT
coefficients in decreasing order. We observe that energy-content was located in
the low frequencies in most images. In addition, it shows the absolute value of
DCT coefficients in log scale. We observe that there were 4 orders of magnitude
(e−9) among maximum and minimum coefficient.

DCT coefficients were standardized (zero-mean, unit-variance) as a prepro-
cessing step to the SVR. Alternatively, it was also considered to subtract the mean
but not changing the variance. The first approach is inspired in typical preprocess-
ing of independent variables, which is common practice in machine learning and
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Figure 4: SVR-LIN on raw images. For Emax (left panel) the first row shows mean (left) and
standard deviation (right) of regression coefficients predicting each test case; and the second row
shows mean (left) and standard deviation (right) of all CDMM images. For τ (right panel) the
structure is repeated. The images are represented in normalized axis: the y-axis represents the
distance to the apex and the x-axis represents the normalized time from diastole.

statistics. The second approach implicitly makes the assumption that information
is related to variance, thus avoiding emphasizing low variance components, which
might be regarded as noise. Both approaches are compared below. A closer anal-
ysis of the DCT coefficients shown in Figure 5 in the Emax case reveals, on the
one hand, that only 22 (152) DCT coefficients (frequencies) absolute means were
above the maximum absolute mean divided by 100 (1000); on the other hand, only
40 (282) frequencies variance were above the maximum variance divided by 100
(1000). Considering both facts together, to use a zero-mean unit-variance stan-
dardization has the drawback of amplifying the importance of many frequencies
with little contribution on the data, which can lead to poor modeling, especially
in the case of small datasets. Table 2 shows this behavior with large errors when
more than 176 components were considered. By subtracting only the mean, low
energy components are not emphasized, and to model with all components does
not penalize the results. The problem of the later approach is that higher-variance
components have more influence in the model, but variance does not necessarily
mean information for the estimation at hand.

For Emax we focused on the DCT coefficients that capture 75% of the energy
(this figure provided the best prediction for the zero-mean unit-variance standard-
ization). The optimum parameters of the search of SVR parameters (see Figure 6)

15



0.8
0.9

0.95
0.95

0.95

0.99
0.99 0.99

0.
99

0.99

0.99

0.990.99

0.99

0.99

0.
99

0.99

0.99

0.9
9

0.99

0.99
0.99

0.99

0.99

0.99

→ higher frequencies

→
lo

w
er

fr
eq

ue
nc

ie
s

0.8 0.9

0.95

0.95

0.99

0.99

0.99

0.99

0.
99

0.9
9

→ higher frequencies

→
lo

w
er

fr
eq

ue
nc

ie
s

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Figure 5: First row present DCT coefficients cumulative energy. Emax (left).
{70, 75, 80, 85, 90, 95}% of the energy was respectively retained with {4, 6, 9, 15, 37, 176}
out of 1024 coefficients. For τ (right) the same energy percentages were retained with
{4, 5, 7, 11, 23, 110} out of 1024 coefficients. Second row represent the absolute value of DCT
coefficients in natural log scale for Emax (left) and τ (right).

were different than the ones obtained using the raw images, as the input space
has now only 6 dimensions. We found, however, some similarities, described
below. In the parameter search for Emax, ν showed an approximately flat error
from 0.2 to 1 (it was almost flat from 0 to 1 in Figure 1) and the most chosen
value was approximately 0.5 (it was close to 0 in Figure 1); C showed a minimum
around 10−1 (same shape that in Figure 1) and its most chosen optimum value
was close to e−2.4 ≈ 0.09 (lower than in Figure 1); δ∗ seemed to have more effect
than in Figure 1 and presented a minimum around 0.5, which was also the value
most selected as optimum (compare with 1, which was most selected in Figure 1).
Therefore, the models for DCT with 75% of the energy had in general more sup-
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Figure 6: SVR-LIN on DCT coefficients. (a) and (c) show the averages of parameter searches.
(b) and (d) show the boxplot with optimal parameters for each animal: ν ∈ [0.05, 1], C ∈
[exp(−4), exp(4)] (represented in natural log scale) and normalized δ∗ ∈ [1e−2, 1]. First (second)
row represents the results for Emax retaining 75% (τ retaining 85%) of energy.

port vectors, i.e., were more complex (higher ν), had a shorter quadratic zone in
the loss function (lower δ∗) and less penalty to errors (lower C) than the models
used for raw images.

The mean for all individuals of the regression weights to be applied to the
selected 6 DCT frequencies are shown as images on Figure 7. In addition, to have
a better understanding of the predictor, we show the mean for all individuals of
the regression coefficients to be applied to the original images. These coefficients
were obtained from combining (with the SVR α weights) the images calculated
as the IDCT (inverse DCT) of the standardized DCT coefficients of the samples
that became support vectors. The prediction is (roughly) made by adding the
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Figure 7: SVR-LIN + DCT: we show in (a) and (b) a zoom on the non-zero DCT coefficients. Both
forEmax and τ we show the mean (left) and standard deviation of (right) of regression coefficients
for prediction of each individual. (c) and (d) show the same predictors mean and standard deviation
for both Emax and τ in image space. The predictors for Emax and τ retain respectively 75% and
85% of the energy.

beginning and the end of the ejection and subtracting mid-ejection. The prediction
and the residuals (not shown) had a great agreement with the obtained from the
raw images, yielding a small increase in the maximum error.

For τ we focused on the DCT coefficients that captured 85% of the energy
(again, the one that provided the best prediction for the zero-mean unit-variance
standardization). Parameters ν and δ∗ (see Figure 6) seemed to be the more influ-
ential ones in the search process, which explain the large variation of the optimal
values selected for C. Models using DCT coefficients with 85% of energy had
higher ν (more support vectors), higher C (more penalty to errors) and lower δ∗

(smaller quadratic zone) than the models used for raw images.
The mean for all individuals of the regression weights to be applied to the

selected 11 DCT coefficients are shown in Figure 7, where we also show the
regression coefficients to be applied to the original images. The pattern, a lin-
ear combination of low frequency DCT image basis components, is a low pass
approximation to the one shown in Figure 4. The prediction error of the DCT
predictor is slightly higher than the one of the raw predictor, but DCT predictor is
easier to interpret. We observe that the predictor for τ roughly contrasted the flow
at the beginning and end of normalized ejection time near the apex with the flow
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at the beginning of ejection time near the LVOT, the mid-ejection time towards
the LVOT, and the 1/4 and 3/4 of ejection time towards the apex. The prediction
and the residuals were similar to the ones resulted when using linear SVR applied
to raw images (see Figure 2).

Table 2 compares SVR-LIN on raw images vs SVR-LIN on DCT coefficients
(with both standardization schemes discussed above). SVR-LIN on the raw im-
ages performed the best both for predicting Emax and τ . However, DCT1 (zero-
mean, unit-variance normalization) seemed to be very efficient, as its error was
close to the one attained using raw images for 75% (85% for τ ) of the energy
using only 6 (11 for τ ) coefficients instead of 1024 used by raw images. On the
other hand, by using DCT2 (zero-mean normalization), we also see that low en-
ergy components can increase the accuracy, as in the case of Emax.

3.4. Experiment 3: PCR on Raw Images Input Space
In this experiment, we estimated the reference indices from raw CDMM im-

ages with PCR and SPCR using the same methodology of previous sections. No
preprocessing was applied to the raw CDMM image in order to make results com-
parable to the ones obtained by SVR (dividing the images by a constant makes
no difference for PCR). We started by considering the prediction of Emax with
PCR. The search of the optimum number of components is shown in Figure 8. In
all cases, the optimum number of components, from the minimum error criterion,
was equal to or lower than 3, which was the mode. This was a considerable re-
duction of dimensionality, as we end adjusting a model with 3 variables (instead
of 1024). The principal components are shown in Figure 9. The first one contrasts
the normalized mid-ejection time with the beginning of the ejection time region
from the middle towards the apex; the second one contrasts two instants around
the mid-ejection time; and the third one contrasts the region that surrounds (left,
down, right) the middle of the image with the rest of it, especially with the end
of the ejection time. The mean of the regression coefficients of the predictors
for each individual are shown in Figure 9. We observe that the predictor was
dominated by the first principal component. In addition, the predictor had some
similarities with the Figure 4 of SVR on raw predictions, both cases had a clear
negative zone on the mid-ejection time, and a clear positive zone in the upper left
of the figure. In addition, both predictors contrasted the middle of the figure with
its surroundings. On the other hand, PCR predictor was smoother than the SVR
predictor, which makes it easier to interpret. This predictor was also similar to
the obtained from DCT shown in Figure 7, and their performance was almost the
same.
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Emax mmHg/ml τ ms

Method Energy (%) #Coef Ē ± desv #Coef Ē ± desv

RAW 100 1024 0.919 ± 0.32 1024 9.79 ± 4.8

DCT1 70 4 1.13 ± 0.50 4 11.0 ± 5.3
DCT1 75 6 0.949 ± 0.32 5 11.1 ± 5.6
DCT1 80 9 0.994 ± 0.37 7 11.5 ± 6.1
DCT1 85 15 1.05 ± 0.35 11 9.91 ± 4.0
DCT1 90 37 0.958 ± 0.32 23 10.1 ± 4.5
DCT1 95 176 1.10 ± 0.52 110 10.5 ± 4.6
DCT1 99 760 1.37 ± 0.80 698 12.6 ± 6.0
DCT1 99.5 883 1.36 ± 0.84 849 12.9 ± 6.0
DCT1 99.9 993 1.31 ± 0.87 985 13.1 ± 5.7

DCT2 70 4 1.10 ± 0.52 4 11.1 ± 5.4
DCT2 75 6 0.939 ± 0.34 5 11.1 ± 5.5
DCT2 80 9 0.967 ± 0.37 7 11.1 ± 5.7
DCT2 85 15 0.974 ± 0.35 11 10.4 ± 4.5
DCT2 90 37 0.925 ± 0.32 23 10.1 ± 4.8
DCT2 95 176 0.925 ± 0.32 110 10.0 ± 4.9
DCT2 99 760 0.923 ± 0.32 698 10.0 ± 4.9
DCT2 99.5 883 0.922 ± 0.32 849 10.0 ± 4.9
DCT2 99.9 993 0.924 ± 0.32 985 10.1 ± 4.9

Table 2: Experiment 2. SVR-LIN. Raw is CDMM images without transformations. DCT1 stands
for zero-mean unit-variance DCT coefficients normalization and DCT2 for zero-mean untouched-
variance DCT coefficients normalization.

Finally the prediction, residuals and BA plot (not shown) were similar to the
ones obtained with SVR (Figure 2), but PCR exhibited a heavier right tail in the
residuals histogram.

Another possibility to select the principal components uses the correlation
with the variable to estimate (SPCR). Following this approach, we show the search
for best number of components in Figure 8(c). Here we observe that the selected
number of components ranged from 2 to 24, being higher than 10 in 3 out of nine
cases. Therefore, we found the optimal number of components highly dependent
with the individual that was left-out, which shows the sensitivity of SPCR and its
need for more individuals to become more stable. The mean of principal compo-
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Figure 8: PCR on raw CDMM images: Each line is the search result for optimal number of
components during the training of the model for each test individual. (a) and (b) show the results
for PCR. (c) and (d) show the results for Emax.

nents extracted from the data to train each individual predictor are shown in Fig-
ure 10. We see that, in most cases, the first two principal components were similar
to the ones obtained by PCR. The rest of components were highly variable from
one predictor to another, except the third component, which was similar in most
cases (note its variance increase with respect to the other two components). The
mean of regression coefficients are shown Figure 10, where we see that predictors
changed significantly from one individual to another (note the high variance). The
mean of the regression coefficients had some similarity to the mean of SVR-LIN
predictors shown in Figure 4. Finally, the prediction, residuals and BA plot (not
shown) were similar to the ones given by PCR, the left tail of the SPCR residuals
histogram was heavier and reached −4 mmHg/ml; the slight increase in error of
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Figure 9: PCR on raw CDMM images: (a) and (c) are the principal components for Emax and τ .
(c) and (d) are the mean and standard deviation of the individual predictors for Emax and τ .

SPCR when compared to PCR was due to over-estimations.
Later, we considered the prediction of τ with PCR. We show the search for

the optimum number of components in Figure 8; we found the optimum number
of components equals to 2 for all but one of the individuals’ predictors, which
equals to one. The first 2 principal components are shown in Figure 9. The first
one was similar to the first component that resulted in the Emax analysis; the
second component was different and roughly contrasted the regions above and
below the main diagonal, that is, the first part of the ejection time towards the
LVOT is contrasted with the second part of the ejection time towards the apex.
The mean of the regression components for all individuals are shown in Figure 9;
there was a strong agreement for all predictors and they were roughly a fatter
version of the first component. This predictor was different to both the resulting
from DCT+SVR-LIN and RAW+SVR-LIN. Finally, the prediction, residuals and
BA plot (not shown) were similar to previous cases, the residuals had heavier tails
than DCT+SVR-LIN and RAW+SVR-LIN.

We also considered the results of predicting τ with SPCR. The search for
optimum coefficients is shown in Figure 8. There was again a great variance
in the optimum number of components that ranges from 1 to 17, being above 5
for 6 out 20 predictors and 1 the mode. The mean of the principal components
extracted from the data to train each individual predictor are shown in Figure 10,
where we observe that only the first component was uniformly the common factor
(note the high variance of the second component). The mean of these predictors
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Figure 10: SPCR on raw CDMM images: (a) and (b) are the principal components for Emax and
τ , first row is the mean for all the individuals and second row standard deviation. (c) are the mean
(left) and standard deviation (right) of the individual’s predictors for Emax, which (d) represents
for τ .

is shown in Figure 10, which was similar to the one provided by RAW+SVR-LIN
(see Figure 4). The prediction, residuals, and BA plot (not shown) were similar to
the previous ones, but the prediction was worse than previous approaches, having
heavier residual tails.

A summary table for error comparison among methods is shown in Table 1,
where we observe that both PCR and SPCR accuracies are worse than SVR-LIN.
On the other hand, PCR provides easier to interpret predictions. SPCR performs
worse than PCR, which we explore below. Table 3 shows a comparison of the
mean absolute error on each individual provided by PCR and SPCR for Emax.
SPCR gave better accuracy on 5 out of 9 individuals, in one of these cases SPCR
selected a 2-components model and PCR a 3-components, which shows SPCR
ability to choose better components for the estimation at hand. It is interesting
to note that in the cases where SPCR performed noticeably worse (animals 6, 8
and 9), at least it doubled the number of components used by PCR. The biggest
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PCR SPCR difference

Animal Comps MAE Comps MAE subs %

1 1 0.623 3 0.584 0.0389 6.24
2 3 0.907 5 0.886 0.0216 2.38
3 3 1.05 3 0.969 0.0841 7.99
4 2 0.527 14 0.524 3.14× 10−3 0.596
5 3 1.10 4 1.13 −0.0328 −2.99
6 3 0.602 16 0.714 −0.112 −18.6
7 3 1.36 2 1.24 0.114 8.41
8 3 1.20 6 1.41 −0.217 −18.1
9 2 1.15 24 1.25 −0.0940 −8.15

Table 3: Experiment 3: PCR vs SPCR mean absolute error (MAE) mmHg/ml for each individual
Emax prediction. We compare the number of components (Comps) and the error difference.

relative difference was in animal 6, 3 components in PCR and 16 in SPCR, which
resulted in 19% error increase.

Table 4 shows the same comparison for τ . Overall SPCR only provided better
estimations for 8 out of 20 animals. Taking into account that PCR chose 2 com-
ponents for all animals but one, for which chose 1; one interesting aspect was that
SPCR chose 1 component for 7 animals. We can compare PCR, and SPCR means
of principal components in Figures 9 and 10, where we see that first principal
component for τ is almost the same for both methods and it was uniformly chosen
by all predictors. Therefore, SPCR was not selecting more components because
the second component with highest correlation with the output (that correspond to
the component from 7-th to 18-th highest variance depending on the case) overfit-
ted the output and was kept in the growing sets of components to evaluate. On the
other hand, when PCR and SPCR agree on the number of components (animals 8
and 16), SPCR performs better. In the case of animal 8 both principal components
are almost the same, the one in PCR has obtained with all data, as the component
selection does not involve the variable to be estimated; but only the training data
was used to obtain SPCR components. In the case of animal 16 the improvement
could be ascribed to the same reason, or to the convenience in this case of the cor-
relation with the target instead of the variance. When the number of components
selected by SPCR was higher than the selected by PCR, the performance of SPCR
was higher only in 3 out of 11 animals (5, 9 and 14). In these three cases the
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PCR SPCR difference

Animal Comps MAE Comps MAE subs %

1 2 4.99 1 4.50 0.490 9.82
2 2 7.74 1 7.42 0.322 4.15
3 2 3.78 7 5.64 −1.86 −49.3
4 2 4.93 1 10.3 −5.38 −109
5 2 14.2 5 12.4 1.78 12.5
6 2 8.96 5 10.2 −1.26 −14.0
7 2 14.5 17 16.2 −1.70 −11.8
8 1 25.0 1 23.3 1.61 6.46
9 2 14.4 3 12.4 2.02 14.0

10 2 6.08 6 6.84 −0.761 −12.5
11 2 6.99 5 8.44 −1.46 −20.9
12 2 15.2 1 14.2 0.979 6.45
13 2 10.5 1 12.7 −2.20 −20.9
14 2 7.89 3 7.77 0.128 1.62
15 2 11.7 7 14.8 −3.04 −25.9
16 2 13.3 2 12.0 1.28 9.68
17 2 7.18 1 8.15 −0.965 −13.4
18 2 8.32 6 10.0 −1.70 −20.4
19 2 12.3 8 17.2 −4.97 −40.5
20 2 22.1 1 22.4 −0.202 −0.912

Table 4: Experiment 3: PCR vs SPCR mean absolute error (MAE) ms for each individual τ
prediction. We compare the number of components (Comps) and the error difference.

number of selected components (5, 3 and 3) was relatively low compared to the
case of animals 3, 19 or 15 (49%, 40% and 26% increase of error, respectively).

3.5. Experiment 4: PLS on Raw Images Input Space
In this experiment, we estimated the LV indices from raw CDMM images

with PLS using the same methodology of previous sections. We first considered
the prediction of Emax. Figure 11 shows the search for the optimal number of
dimensions, which turned to be 2 for all cases being independent of the individual
left out. This shows how efficiently PLS is able to find the subspace useful for
prediction. The mean of the loadings obtained for each predictor is shown in Fig-
ure 12. The first loading was almost the same for all predictors, the second loading
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Figure 11: PLS on raw images: Number of components search. Each line is the search result for a
different test individual.

was similar for all predictors with little variations. The mean of the predictors for
the 9 individuals is shown in Figure 12, which shows a strong similarity among
them and their main dependence on the first loading. The predictor was roughly
contrasting the normalized mid-ejection time (emphasis near the LVOT) with its
surroundings (emphasis at the beginning of the normalized ejection time near the
apex and after the normalized mid-ejection time near the LVOT). The prediction,
residuals and BA plot is shown in Figure 13. Prediction is similar to the one pro-
vided by SVR-LIN (see Figure 2) but slightly higher error, as we see one sample
above 6 mmHg/ml in the BA plot.

The τ case was similar, Figure 11 shows the search for the optimal number
of dimensions, which turned to be one for all cases. The mean of the loadings
is shown in Figure 12, where we can see a great agreement for all individuals.
The same happened with the predictors. The mean of all predictors was similar
to the one obtained by PCR (see Figure 9). The prediction, residuals and BA (not
shown) were similar to previous results. The error was compared with the other
methods applied to raw CDMM images in Table 1, attaining the best accuracy
after SVR-LIN.

3.6. Experiment 5: PCR and PLS on DCT Images Input Space
In this experiment we estimated the reference indices from the DCT coeffi-

cients of the CDMM images using the same methodology as in previous sections.
To decide which coefficients to preserve, we used the same energy targets that in
Experiment 2. In addition, we also preserved all the coefficients. The coefficients
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Figure 12: PLS on raw CDMM images: (a) and (b) are the principal components for Emax and τ ,
first row is the mean for all the individuals and second row standard deviation. (c) and (d) are the
mean and standard deviation of the individual’s predictors for Emax and τ .

variance was untouched to not distort the images. The results of the prediction
of Emax and τ are summarized in Table 5. When all the energy is preserved, the
prediction results of using the DCT coefficients were the same as using the raw
images. This can be interpreted as a basis change that do not affect the results
as both PCR and PLS construct a new basis from the input. However, if a fixed
amount of energy is preserved, which could be interpreted as some type of filter-
ing in frequency, PCR and PLS could be benefited. For instance, we observe in
Table 5 for Emax prediction that PCR did slightly better using 90% of the energy
given by DCT than using all the energy, which shows that PCR could be benefited
by filtering. On the other hand, PLS attained its best result when keeping all the
energy. τ prediction, which is harder, showed that DCT pre-filtering improved the
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Figure 13: PLS: prediction and BA plot. Emax.

PCR PLS

Emax τ Emax τ

Energy Ē ± desv Ē ± desv Ē ± desv Ē ± desv

70 1.18 ± 0.50 11.1 ± 5.5 1.15 ± 0.46 10.7 ± 5.3
75 1.03 ± 0.38 10.8 ± 5.5 0.962 ± 0.31 10.7 ± 5.2
80 1.02 ± 0.36 10.9 ± 5.2 0.950 ± 0.31 10.8 ± 5.2
85 0.970 ± 0.32 11.2 ± 5.5 0.955 ± 0.33 10.5 ± 4.7
90 0.946 ± 0.30 11.0 ± 5.6 0.931 ± 0.31 10.7 ± 5.3
95 0.963 ± 0.31 11.0 ± 5.6 0.933 ± 0.32 10.7 ± 5.3
99 0.947 ± 0.30 11.0 ± 5.6 0.927 ± 0.32 10.7 ± 5.3
99.5 0.947 ± 0.30 11.0 ± 5.6 0.927 ± 0.32 10.7 ± 5.3
99.9 0.947 ± 0.30 11.0 ± 5.6 0.927 ± 0.32 10.7 ± 5.3

100 0.947 ± 0.30 11.0 ± 5.6 0.927 ± 0.32 10.7 ± 5.3

Table 5: Experiment 5. PLS and PCR using DCT coefficients as input space. Energy is shown in
%, units for Emax and τ are mmHg/ml and ms, respectively.

results both for PCR (75% of the energy) and PLS (85%) of the energy.

3.7. Experiment 6: Linear vs Nonlinear Estimations
In this experiment, we tested the nonlinear counterparts of the algorithms of

the previous experiments applying the same methodology. The results are sum-
marized in Table 6. If we consider the performance of Emax estimators using raw
CDMM images (Table 1 vs Table 6), we observe that linear methods outperformed
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Figure 14: Comparison of best linear method against best nonlinear method mean absolute error
for each individual. (left)Emax result, (right) τ (result). Better nonlinear performance is for points
above diagonal.

their nonlinear counterparts when estimating Emax, both method by method and
globally. On the other hand, if we consider instead estimators that use DCT coef-
ficients (Table 2 vs Table 6), we found that DCT+SVM-RBF keeping 90% of the
energy outperformed all linear and nonlinear methods.

However, we observe that nonlinear methods outperformed their linear coun-
terparts, both method by method and globally, in the estimation of τ using raw
CDMM images (Table 1 vs Table 6). The same happened in the DCT space (Ta-
ble 2 vs Table 6). Globally, the best result for τ was found by DCT+SVM-RBF
keeping 85% of the energy, and very close to it by SVM-RBF on the raw CDMM
images after zero-mean, unit-variance normalization.

Finally, we compared best linear and nonlinear methods performance for each
individual. Figure 14 compares RAW+SVM-LIN vs DCT2+SVM-RBF. We ob-
serve that nonlinear method did much better in the case of τ ; 16 out of 20 individ-
uals were better estimated by the nonlinear method. For Emax, nonlinear method
was also better (5 out of 9 cases), but the difference among both methods was only
clear for 1 out of 9 individuals, where linear was noticeably worse than nonlinear
kernel.

4. Discussion and Conclusion

High-dimensional input spaces and overfitting. Among the kernel methods com-
munity, it is generally accepted that linear Support Vector Machine (SVM) is
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Emax mmHg/ml τ ms

Method Energy (%) Ē ± desv Ē ± desv

RAW+SVM-RBF 0.942 ± 0.39 8.88 ± 3.7
RAW+SVM-RBF† 0.970 ± 0.38 8.59 ± 3.9
RAW+KPCR 1.02 ± 0.32 9.82 ± 3.9
RAW+KSPCR 0.969 ± 0.42 9.19 ± 3.3
RAW+KPLS 0.944 ± 0.34 9.45 ± 3.5
DCT1+SVM-RBF 70 1.19 ± 0.70 10.1 ± 3.9
DCT1+SVM-RBF 75 0.931 ± 0.38 9.83 ± 4.2
DCT1+SVM-RBF 80 0.981 ± 0.35 9.42 ± 3.5
DCT1+SVM-RBF 85 0.985 ± 0.38 9.10 ± 3.5
DCT1+SVM-RBF 90 1.08 ± 0.43 9.38 ± 3.6
DCT1+SVM-RBF 95 1.28 ± 0.62 9.40 ± 3.9
DCT1+SVM-RBF 99 1.46 ± 0.74 9.98 ± 3.5
DCT1+SVM-RBF 99.5 1.43 ± 0.75 10.1 ± 3.4
DCT1+SVM-RBF 99.9 1.43 ± 0.72 10.1 ± 3.7
DCT2+SVM-RBF 70 1.09 ± 0.66 9.86 ± 3.6
DCT2+SVM-RBF 75 0.928 ± 0.37 9.72 ± 3.8
DCT2+SVM-RBF 80 0.949 ± 0.38 9.28 ± 3.4
DCT2+SVM-RBF 85 0.948 ± 0.36 8.58 ± 3.7
DCT2+SVM-RBF 90 0.902 ± 0.35 8.78 ± 3.4
DCT2+SVM-RBF 95 0.922 ± 0.36 8.95 ± 3.5
DCT2+SVM-RBF 99 0.943 ± 0.40 8.87 ± 3.6
DCT2+SVM-RBF 99.5 0.948 ± 0.41 8.78 ± 3.6
DCT2+SVM-RBF 99.9 0.945 ± 0.40 8.78 ± 3.6

Table 6: Experiment 6: Nonlinear methods comparison. † indicates that the image pixels were
made zero-mean unit-variance. Otherwise, they were only divided by the maximum. DCT1 stands
for zero-mean unit-variance DCT coefficients normalization and DCT2 for zero-mean untouched-
variance DCT coefficients normalization.

better than nonlinear SVM for high dimensional input spaces like text catego-
rization (Yang, 1999) or fMRI data (Cox and Savoy, 2003; LaConte et al., 2005;
Misaki et al., 2010). This is supported by two theoretical facts: Cover’s Theo-
rem (Cover, 1965) and Vapnik-Chervonenkis VC-dimension (Vapnik, 1995). Cover’s
Theorem discusses the probability of separating a set of n samples into two sets in
a general setting. He showed that the natural capacity of a transformation having
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d degrees of freedom is 2d. In other words, the expected number of points that
can be separated into two sets with high probability by a transformation of d de-
grees of freedom is 2d. The VC-dimension of a family of surfaces is the number
of points that the family can classify into two classes no matter the points’ labels.
VC dimension of SVM with linear kernel (hyperplane) in d dimensions is d + 1
and VC-dimension of a SVM with Gaussian kernel is∞. The capacity of SVM
with Gaussian kernel is very high which might lead to overfitting.

In our case, we have CDMM images that were resampled to have d = 1024
pixels. So we can assume there is high probability that a hyperplane classifies
up to n = 2048 points in this space. Actually, as VC dimension expresses, we
can separate any configuration of 1025 points with hyperplanes. We have 274 and
1362 samples respectively for Emax and τ . Therefore, this dimension is enough
for a classification task with a linear kernel and the number of samples might be
too small to project these samples in a higher-dimension space and then classify
them using a hyperplane, which is what SVM with Gaussian kernel does. There-
fore, it is easy to fall in overfitting when using nonlinear SVM and the input space
is already very high, as the learner is too flexible.

We can qualitatively borrow these ideas and expect a similar behavior in our
estimation (regression) problem. VC-dimension has also been proposed for re-
gression linear methods (Cherkassky et al., 1999). The question is how to ad-
dress an estimation problem where the input space is higher than or comparable
to the number of samples. One possibility is to follow the ideas of Structural Risk
Minimization (Vapnik, 1995), i.e., create nested subsets of increasing complex-
ity where to find the regressor function. This approach is naturally followed by
PCR and PLS regression methods, where there is a step to decide the number
of latent components in the data, and then there is a step of search for the best
regressor using this number of components. Instead of bounds we used cross-
validation to select the adequate number of components. For SVR, we have to
find the hyperparameters, but it is not direct to find the parameter sets that form
the aforementioned nested subsets of increasing complexity. Therefore, we used
the usual cross-validation to select SVR hyperparameters.

Conclusions on hetherocedasticity. The estimation results, though good forEmax,
are still heteroscedastic (see BA plots for SVR, PCR and PLS), which shows that
the model could be improved with extra variables. In the case of τ , the het-
eroscedasticity is considerable, rendering the method unable to accurately esti-
mate high values of τ . We have to admit that the estimation quality needs to be
improved, but still can be of utility in clinical practice. Other variables like heart
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rate, peak LV pressure, LV ejection fraction and their squares that could also be
estimated noninvasively have shown to improve τ estimation (Rojo-Alvarez et al.,
2006).

Interpretability of weights in linear machines with raw input features. One of the
main strengths of linear methods, in addition to simplicity, is the possibility of
interpret as images what the estimator is doing. These images can be analyzed
by an expert to assess whether the method is doing something “reasonable” with
the data. Also, these estimator images could give some insights of LV function
suggesting new research hypotheses. For Emax the estimators given by SVR-LIN
and SPCR are quite rough in comparison with the ones given by PCR and PLS.
Therefore as the accuracy is almost the same (less than 1% increased error), PLS
estimator could be easier to interpret and preferable as it obtained with only two
latent factors. For τ the estimator given by PCR and PLS are smoother than the
one given by SVR-LIN, however this one estimates much better (error decrease of
9%). So, in this case it could be worthy to interpret SVR-LIN estimator instead.
Anyway, as the estimation is not so good, the results should be interpreted with
caution.

Conclusions on DCT input spaces. DCT representation seems a good choice for
CDMM images, as it gives an insight on their frequency content and allows for
effective compression. We represented the estimator as images including stan-
dardization. The estimator obtained using DCT+SVR-LIN is somewhat similar to
a very smooth version of SVR-LIN estimator, both in case of Emax or τ , where
their estimation capabilities are really close to SVR-LIN (3% more error for Emax
and 1% for τ ). DCT+SVR-LIN estimators use much less coefficients (6 for Emax,
11 for τ ), therefore, it could be worthy to interpret their estimators instead of
SVR-LIN ones, especially for τ , where PCR and PLS are not so good. In addi-
tion, we showed that DCT pre-filtering can improve the results of PCR and PLS,
especially in the case of hard prediction problems, such τ , and therefore it can be
applied previously to other dimensionality reduction techniques as PCR and PLS.

DCT coefficients standardization should be taken with care. We remove the
mean of all coefficients as we do not expect it would be useful for estimation. It
could be useful, as an additional criterion to the variance, to select which coef-
ficients to keep. If we decide to standardize the variance of the coefficients with
the aim of giving the same importance to all the frequencies, we must be careful
selecting the frequencies to include for not amplifying the noise.
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Intrinsic image features for input spaces. SPCR could lead to improvements over
PCR but we found this improvements more likely in well characterized problems
(as Emax estimation). Problems where the estimation is hard (as τ estimation)
were more suitable for PCR. We conjecture that one of the problems of SPCR is
that very low variance components can, by chance, have high correlations with
the target variable but no real meaning in the data. A previous filter based on the
variance on the number of components that removes components below a thresh-
old could be useful for SPCR. Another important aspect to consider is the way we
select the sets of components. We restricted ourselves to nested component-sets,
where each set with g components is formed by the g components with highest
variance (PCR) or correlation (SPCR). Wrapper feature selection methods could
give better component sets at the price of higher search times. The overfitting
example given by SPCR on raw data for τ estimation reminds us how careful we
should be when the estimation problem at hand uses data in high dimension and
we only have a number of points comparable to the dimension. Being conserva-
tive in this type of cases (use the variance to select the components as PCR) it is
safer and provides better results because we can not select noisy components.

Nonlinear transformations of input spaces. We have also experimentally shown
that nonlinear methods could outperform linear methods when a previous feature
extraction step is considered to estimation. This behavior is also found in other
high-dimensional datasets (e.g. Mourão Miranda et al. (2005); Song et al. (2011)).
We got better estimations by using DCT+SVM-RBF than using linear methods.
We conjecture, taking into account our previous discussion on complexity, that
convenient feature extraction in nonlinear estimation problems enables taking ad-
vantage of the flexibility of nonlinear estimation methods by limiting their over-
fitting capabilities and reducing the search space. Also, not mixing individuals
in the cross-validation folds helps to prevent overfitting by inducing conservative
parameter selections.

In addition, we observed that transformations of the variable to be estimated
could lead to better estimations. The residuals of Emax and τ estimation provided
by RAW+SVR-LIN have heavy-tails (see Figure 2). Therefore, we tried to esti-
mate log(Emax) and log(τ) instead and we found a 6% increase of accuracy in the
case of Emax, and a 4% decrease in accuracy for τ . This is a simple example of
how a simple transformation could increase accuracy.

We can conclude that CDMM image-based noninvasive estimates of reference
indices of LV function can be improved when using nonlinear machines. This in-
crease in performance involves the selection of alternative lower dimension input
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spaces where the power of nonlinear machines can be exploited without falling
in overfitting. Overfitting becomes an issue in estimation if flexible architectures
are used in high dimensional input spaces. We have shown how DCT input space
could be a good alternative to raw images in echocardiography that could benefit
from the use of nonlinear machines.

On the other hand in exploratory analysis and when the understanding of the
estimator is a must, we found PLS to have a good balance between accuracy and
simplicity enabling knowledge gain and expert feedback about the estimator.
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