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Legend of notation

The criteria used in this thesis for notation for differet@neents are the following:

Sets.- Capital and calligraphic letters, (for exampte X).
Scalars.- Italic letters, so much capital as small ones, (for examples, X, z).

Vectors.- Small bold letters (for examples). Its components are denoted by scalarss,whereas
different subarrays are denotedsy All vectors, save for otherwise stated, are column vegtors
arow vector is denoted by’ . Particulary,0 and1 are vectors with all its components equal to
0 and 1, respectively.

Matrices.- Bold capital letters,(for examplé/). Same notation is used for its arrays, columns or

submatricesM;. Its elements are denoted as the scalafg,

Given a matrixM, its transposed matrix 1¥1”. The absolute value of a numheris denoted
by |z|. Given a vectok, |x| denotes its vector dimension, whereas in a set CAsgF| refers to its
cardinal.
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Resumen

La optimizacion (también llamada programacion matiragdPM)) es la rama de las matematicas que
trata sobre encontrar aquella solucibn que proporciongagbr beneficio para un problema dado, di-
cho de otro modo, trata de buscar, de entre todas las posiilesones a un problema, aquella que
minimice una funcion dada (o equivalentemente, la maxémiétese quaax{ f () }=min{—f(z)}),
generalmente se trata de una funcion r¢alR™ — R) y se demominduncion objetivo El conjunto

de soluciones factibles vendra definido mediante ecuasioratematicas, llamadas restricciones, que
las soluciones deben cumplir.

Asi pues, dado un problema cualquiera, se debe realizarogielmmatematico consistente
en una serie de restricciones y una funcion objetivo a nim@mpara después resolverlo mediante
alguno de los algoritmos proporcionados por el estado ¢el & modelado de un problema dado
es de hecho un arte en si mismo. Se trata de abstraer agastiestos innecesarios, superfluos,
y al mismo tiempo representar la realidad lo mas fielmengtbp y ello teniendo en cuenta que,
dependiendo del enfoque elegido, la resolucion del mguietale no ser viable en la practica con los
recursos computacionales de que dispone la humanidad etusl estadio de desarrollo. Aspectos
gue pueden afectar drasticamente a la facilidad de reéaoldel modelo son:

¢ Eltipo de modelo (fundamentalmente, si es lineal o no-l)nea
e Las variables que entran en juego (el nUmero de variablsegngnteras, continuas o binarias)

e La eleccion de las restricciones adecuadas. En el tralajoatielado puede jugar un papel
fundamental la bUsqueda de nuevas restricciones quetpartracer el modelo masbusto
desde el punto de vista matematico, o dicho de otro modo wuela ciertas condiciones que
permitan a los algoritmos encontrar la solucion madrféante.

Dentro de la optimizacibn matematica, en esta tesis vartrasisitar por dos areas que ocupan
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un lugar destacado, la Programacion Lineal y la Prograimaestocastica.

La Programacion Lineal trata de aquellos modelos cuyasagsnes y funcion objetivo son
lineales. En general los modelos lineales se pueden resatvnenos tiempo que los no-lineales,
especialmente si no tienen variables enteras, o tienersppcamplen ciertas condiciones.

En esta tesis se aplica la programacion lineal a los praidese elusion de conflictos en el
trafico aéreo, mediante un enfoque distinto al habitubei@to de tratar estos problemas hasta ahora
se basaba principalmente en modelos no-lineales, lo qudadabas limitaciones computacionales
mencionadas arriba, no permitia enfrentarse a casos equéosntren en juego muchos aviones o
considerar un espacio aéreo amplio (generalmente loslootiatan 2 0 3 aviones en un espacio
limitado). El nuevo enfoque aplicado en esta tesis, en aampkrmite aplicar la programacion lineal,
lo cual a su vez facilita considerar el plan de vuelo de todssvViones presentes en un espacio aéreo
lo suficientemente amplio, y resolver los posibles confliaplicando cambios de velocidad o de
altura, e incluso cambiando a rutas alternativas si ellafpesible.

Por otro lado nos adentramos en el area de la Programastoeéstica. En muchos prob-
lemas reales la incertidumbre juega un papel importanteeypqu tanto deberia tenerse en cuenta
en el modelo resultante. Sin embargo la incertidumbre negealrapar tan facilmente, y el como
modelarla es aun un problema que dista de estar cerrad@nssbiha avanzado mucho y existe un
enfoque ampliamente aceptado y para el que se han podidoaflesaarios algoritmos que explotan
eficientemente sus caracteristicas particulares.

Antecedentes

Elusi 6n de conflictos en el tr &fico a éreo

La deteccion y resolucién de conflictos en el trafico agoeAir Conflict Avoidance, o sim-
plemente Conflict Avoidance (CA), como se suele denominda diteratura especializada, consiste
basicamente en evitar que los aviones se aproximen dedoasidre si.

El CA copa actualmente el interés de las compafiias siépe@s el creciente trafico aéreo
suscita la necesidad de encontrar soluciones automagizmgesimplifiquen el trabajo de los contro-
ladores aéreos. Evidentemente, el factor humano jueggayguypor muchos afios un papel esencial
por la habilidad, dificilmente reproducible por las migis de hoy en dia, de integrar informacion,
analizarla y tomar las decisiones oportunas. No obstarf@|eehumano también es posible y es por
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ello que los sistemas autbmatas se usan desde hace tiettgacahinas de los aviones y en las torres
de control aéreo, tanto en sistemas de alerta de confliotoe de asistencia a la toma de decisiones,
proponiendo en su caso soluciones operativas.

Con el incremento de la demanda en el transporte aéreo,ceeungente la necesidad de
automatizar ain mas la deteccion y resolucion de cowodlicSe ha estudiado mucho el problema de
CA y se han propuesto diversos métodos en la literaturacedigada, en su mayor parte desde el
punto de vista de la optimizacibn matematica, si bien niegdamente. Como veremos, también se
ha abordado el problema desde distintos enfoques comat-@a@uputing (mediante el uso de redes
neuronales, algoritmos genéticos y otras meta-hecasti

Comencemos definiendo ebnflictode un modo preciso. Asi, podria definirse como aquella
situacion en que la distancia entre dos 0 mas aviones wiokiterio de separacion establecido. La
distancia minima establecida suele ser de 5 millas ramitiorizontalmente o al menos 1000 pies de
separacion vertical. De este modo queda definido un volutaeona protegidaalrededor de cada
avibn, que debe ser respetado por cualquier otro veheulmdo instante de tiempo. Podriamos
definir dicho espacio de un modo mas restrictivo (e.g. ufease 500 pies de diametro) o con otros
parametros, por ejemplo, el tiempo necesario para raetmiide este modo tendriamos en cuenta la
relacion entre distancia y velocidad relativa de los eelos).

Un planteamiento tipico es presentar un modelo dinamieoigtente predecir las posiciones
de los aviones en el futuro a partir de su situacion actuaiydacidir si habra un conflicto. Sin
embargo hay que tener en cuenta que cierta incertidumbreésable y dicho modelo deberia con-
siderarla a riesgo de no ser del todo fiable su prediccionoffe lado, como mencionabamos antes,
un modelo de este tipo sera tipicamente no-lineal y @detestringirse a unos pocos vehiculos a fin de
ser computable en un tiempo razonable. Otra opcibn padaggarse en informacion previa tal como
un plan de vuelo. Debemos mencionar que existen modelosplaaar las trayectorias optimas de
los aviones en vuelo, y funcionan con bastante eficienaiegrsibargo, aqui la dificultad estriba en
gue hay que tratar las trayectorias de mas de un avion yasiehmodelo debe evitar conflictos entre
ellos, esto seria relativamente facil de modelar pereselitado seria irresoluble computacionalmente.

Este problema se ha estudiado ampliamente y desde mucloogiesftal como se puede leer
en el primer capitulo de esta tesis, que contiene un resdmgran parte de la bibliografia existente
al respecto. Como deciamos al principio, la optimizagi@etematica ha sido la herramienta mas
utilizada en la resolucion de este problema, y esta ha siadri€n la eleccion en este trabajo, en
particular la programacion lineal.
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Programaci 6n Estoc astica

La optimizacdn es una herramienta matematica fundamental en la toma dgaies hoy

en dia, y se aplica en la mas variada gama de problemasaquiegde las finanzas hasta la elusion
de conflictos, pasando por los muchos y muy variados prolsleledas grandes organizaciones, de
planificacion, produccion y distribuciobn. En muchosasmes posible modelar los problemas a los
gue nos enfrentamos mediante modelos deterministas, diarga) en muchos otros problemas la in-
certidumbre juega un papel clave que no es posible sosRgea.muchos problemas de planificacion
o finanzas, sin ir mas lejos, un modelo que no tuviera en adarnnhcertidumbre inherente al mundo

financiero podria proporcionar decisiones absolutamemselas.

La Programacion Estocastica (SP, por sus siglas ensinhgl&gio para solventar este pro-
blema. Si bien ya desde 1955 se viene tratando la incerticueip Programacion Matematica, su
desarrollo no tuvo lugar hasta que los avances en compathcpermitieron, en los afios 80.

Una primera aproximacion a la SP consistid en obtenerrdosedios de los parametros es-
tocasticos y resolver el modelo resultante como si de utermnista se tratase. Sin embargo, dicho
problemapromediono tiene necesariamente relacion con el escenario quaeetd vaya a suceder,
es mas, la solucion obtenida podria ni siquiera serlfigcpara muchos de los posibles escenarios.
Otras aproximaciones se han abordado desde entoncesa pe&s extendida en la actualidad es la de
modelar mediantérboles de escenario€n ella, los parametros indeterminados son representado
mediante variables aleatorias, y un escenario consistearealizacion concreta de dichas variables.
Estas variables suelen ser continuas y esta técnica tdasi reducirlas, mediante aproximacion,
a variables discretas con un numero limitado de posiblesas calculando las probabilidades de
cada uno de ellos. Surgen aqui numerosos problemas comeadeterminar cual es el nimero ade-
cuado, lo suficientemente representativo, de escenariossiderar. A mayor nimero de escenarios
obtendremaos una mejor representacion de la realidad pgeeratro lado las dimensiones del modelo
se dispararan con rapidez alcanzando tamafos inmaeegbla practica.

Los escenarios se suelen representar mediante un artmhodyp raiz representa la primera
etapa, en la cual se tomaran algunas decisiones. Una vee thagomado una decision, se dispondra
de cierta informacion nueva antes de tomar la siguientesidac las posibles realizaciones de los
parametros indeterminados en la siguiente etapa se egpaesmediante sendas ramas que llevan a
nuevos nodos en los que nuevas decisiones se han de tomar.hastes los nodos terminales, de
modo que el camino seguido desde la raiz hasta cada unohaes diodos terminales representara un
escenario y se correspondera con una realizacion candestodos los parametros indeterminados
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del problema.

Por otro lado, al darse distintos posibles escenarios, relepio de solucion optima pierde
sentido, pues las decisiones 6ptimas para un escenarienamtpor qué serlo para los demas. La
estrategia pasa por tanto por buscar soluciones que s¢iffefapara todos los escenarios sin quedar
supeditada a ninguno en concreto. La estrategia clasitsiste en minimizar la esperanza de la
funcion objetivo considerando todos los escenarios.

A pesar de que esta metodologia se aplica fundamentalragrteblemas de programacion
lineal, el tamafio de los modelos alcanza con facilidad fesgigantescos, con cientos de miles de
variables, e incluso millones. Es mas, en muchos casosatébles son enteras o binarias, lo cual
hace que estos problemas sean dificiles de resolver. Esfibgue en la literatura se han propuesto
una serie de algoritmos que buscan resolver los problemRsodeamacion Estocastica Entera, como
por ejemplo los métodos L-Shaped, Branch-and-Bound &stico, Branch-and-Fix-Coordinado, y
diversas técnicas heuristicas como el algoritmo Fix-Retbx Coordinado.

Objetivos

En lo que a la elusion de conflictos se refiere, el objetivatpido es el de crear un modelo
matematico que permita resolver el problema de CA de un rflegible y eficiente, y aplicable a
casos con un numero considerable de aviones y en un esgaemamplio.

En cuanto a los problemas de Programacion Estocastiodjetlvo es desarrollar una apro-
ximacibn algoritmica capaz de resolver problemas gée®ed®e Programacion Estocastica multietapa
0-1 Mixta de un modo eficiente, y de este modo permitir resalgsos suficientemente grandes que
de otro modo serian dificilmente manejables.

Por (ltimo, y para ambas propuesas, realizar una expai@omputacional que permita
conocer su calidad.

Metodologia

Para la consecucion de los objetivos mencionados se haralksio el siguiente plan de
trabajo:
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Elusi 6n de conflictos en el tr &fico a éreo

Se ha realizado en primer lugar una revision exhaustiveadigeratura existente en torno
al problema planteado. De dicho analisis se concluye gumalgoria de los enfoques adoptados
hasta ahora adolecen de una alta complejidad en cuanto sadwcién, por lo cual, aun cuando casi
siempre se limitan a una o a lo sumo dos de las tres posible®ionas de elusion de conflicto (v.g.
cambio de velocidad, de altura o giro), no son aplicablessascan los que se encuentre un niimero
considerable de aviones y un espacio aéreo de amplitudnziopal a cualquiera de los sectores de
control en que se divide el espacio aéreo.

Se propone por tanto un nuevo enfoque, basado en el plan e gue permita modelar el
problema mediante programacion lineal y sea capaz detdeteproponer maniobras de elusion de
conflictos basadas en cambios de velocidad y altura. Hiitesgé este nuevo enfoque esta inspirado
en la idea de separar tareas: Ya que existen herramientasglanlar las trayectorias de vuelo de un
modo bastante realista y eficiente, la solucion mas dargalsaria por crear una nueva herramienta
gue, a partir de las rutas ya existentes, detecte y reswsleahflictos. Elideal, de nuevo, seria poder
calcular también de un modo preciso, los margenes en qlieapealizarse correctamente la dinamica
de vuelo, ademas del 6ptimo, pues al dar prioridad a latelude conflictos, pierde importancia la
eficiencia del vuelo (esto lo dejamos para trabajo futura).olistante, atn partiendo de los actuales
planes de vuelo y considerando pequeias alternativag(fpammente cambios de altura), es posible
aun evitar los conflictos de un modo bastante coherente y &strauopinibn no menos realista que
las propuestas actualmente existentes en la literatuespécto, incorporando ademas la ventaja del
gran alcance de esta nueva propuesta. Todo lo anterior ceradla presentacion de dos modelos
lineales, uno 0-1 puro y otro 0-1 mixto.

A continuacibn se desarrolla una experiencia computatiorediante la generacion aleato-
ria de casos de diversa complejidad de resolucion, en leshborizonte espacial y temporal son
considerablemente grandes y participan un numero coabigede aviones.

Finalmente se analizan tanto la aplicabilidad de los madaiesentados como alguna posible
mejora como puede ser la inclusion de rutas alternativa®ananiobra de elusion de conflictos.

Programaci 6n Estoc astica

En primer lugar, se ha partido de una propuesta algoritimastante reciente, llamada Fix-
And-Relax Coordinatiorf (FRC), basada en una heuristigagyha probado en numerosas ocasiones
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su eficiencia y calidad. A partir de ahi, se han propuestcsana de heuristicas para desarrollar un
nuevo algoritmo[(FRC}HJ) que permita resolver problemasdgs con mayor eficiencia. Ademas se
ha desarrollado una version basada en programacion menta [FRC-BJ), mediante el uso de las
librerias de paso de mensajes (MPI, por sus siglas ersiglinpliamente utilizadas en el desarrollo
de aplicaciones paralelas en entornos de memoria no cadgdundamentalmente en clusters de
computadores.

Por Gltimo, se ha realizado una experiencia computacignalpermitiera comparar los re-
sultados de los 3 algoritmos, [e FRC,[e[ FRC-J ¥ el FRIC-PJ¢@sio con los tiempos y calidad
de soluciones proporcionados por la herramienta CPLEX egual standard de facto en la progra-
macion lineal. Para ello se toma un problema particularrdgramacion estocastica multietapa 0-1,
y se recogen una serie de instancias de tamafio medianodegraa ya habian sido testadas en la
literatura.

Conclusiones

Las principales contribuciones de este trabajo son:

Elusi 6n de conflictos en el tr afico a éreo

e Se propone un nhuevo enfoque que permite modelar el problesdeamne programacion lineal,
lo cual facilita encontrar soluciones en tiempos muy breidésho enfoque, en vez de intentar
modelar las trayectorias de los aviones basandose erdasieges dinamicas de la fisica, trata
de dividir tareas, y estudiar la elusion de conflictos aipédd un plan de vuelo dado. Dicho
plan ya tiene en cuenta la fisica de vuelo y las prefererdgakas aerolineas para restringir
las posibles soluciones. Es suficiente con considerar upr{eaipio, pequefio) margen de
maniobra para acelerar o cambiar de altura. De este modsidgparear modelos que detecten
los posibles conflictos y propongan, si es necesario, lasgmondientes maniobras de elusion.

e Se presentan dos modelos lineales, el primero de ellos guel(sin variables continuas) y
permite eludir conflictos mediante cambios de altura, mésngue el segundo es 0-1 mixto (es
decir, integra tanto variables binarias como continua®cynre a cambios de velocidad y de
altura, pudiendo dar prioridad a uno u otro en funcién deptaserencias del usuario. Dichos
modelos son lo suficientemente robustos como para podersseitos en un periodo realmente
corto de tiempo incluso para casos de gran tamafo, lo caifldoe especialmente Utiles para
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ser usados en tiempo real.

e La propuesta es flexible, permite que las trayectorias nolgezales. El plan de vuelo en que
se basa puede haber sido calculado de diversos modos: radeadi extrapolacion del vector
de velocidad en un momento dado, de los puntos de baliza detoales planes de vuelo o
bien de planes de vuelo libres basados en trayectorian@pttalculadas a priori. Por Gltimo,
no se exige que la velocidad se mantenga constante durambeizinte temporal como es el
caso en parte de la literatura.

¢ Debido alos tiempos de resolucion realmente pequefiosxjgen ambos modelos, la propues-
ta esta especialmente indicada para ser usada en el lazm ykn regiones aéreas amplias,
gue puedan implicar varios de los sectores de control diedran que se divide el espacio
aéreo.

e Finalmente, los modelos son facilmente escalables y pusdeampliados y mejorados con
nuevas restricciones. Si bien se bosquejan mejoras a andutedon para ciertos casos, como
por ejemplo la inclusion de rutas alternativas como mami@busiva, se deja como propuesta
para trabajo futuro.

De acuerdo con la experiencia computacional presentadayeste observar que el primer
modelo es particularmente robusto y eficiente, por lo quel@aplicarse a problemas aun mayores
gue el segundo modelo, tanto en cantidad de aviones inaolasrcomo espacio aéreo u horizonte
temporal. En cualquier caso, el segundo modelo tambiérstnaubuenos resultados, sin embargo,
cabe plantear que en muchos casos puede ser suficiente cpropoasta limitada a los cambios de
altura como maniobra elusiva, dado que en la mayoria ddtlec®nes reales, los conflictos son
pocos y basta con una infima cantidad de maniobras pardaswudos potenciales conflictos. Por
otro lado, de acuerdo con parte de la literatura, los cant@oglocidad no se consideran maniobras
particularmente eficientes, lo cual es comprensible puedguimplicar mayor consumo de com-
bustible y por otro lado implican mayor incertidumbre (pwériabilidad de la velocidad del viento,
entre otros factores). En resumen, ambos modelos son mignédis y aplicables en casos reales,
pudiendo predecir y resolver los conflictos para uno o vasgasores de control a la vez con varias
horas de antelacion.

Comotrabajo futuro se propone desarrollar las mejoras bosquejadas en estebtesiando
el modo de mantener o mejorar la eficiencia computacionabsieniodelos actuales. También se
plantea el desarrollo de una capa intermedia que permigard#iar los parametros utilizados por los
modelos del presente trabajo a partir de los datos que nmaeejk practica las compafias aéreas y
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los centros de control de trafico aéreo, y en particularpgumnita obtener tanto las trayectorias como
los margenes de actuacion 6ptimos para la elusion déatos.

Programaci 6n Estoc astica

Se proponen dos nuevos algoritmos, uno de ellos secuenelaityo paralelo, basados am-
bos en heuristicas que han probado su efectividad premianyenuevas heuristicas propuestas por
primera vez en esta ocasion. Si bien ambos algoritmos ngopimnan el 6ptimo al tratarse de
heuristicos, se comprueba en la experiencia computddmmalidad de las soluciones obtenidas,
llegando a mejorar a CPLEX en algunos casos.

Se toma un problema y una serie de casos de prueba de lauliteatistente, el Multi-
period location-allocation problem under uncertainty,puoblema de decision estratétiga y tactica
cuyo objetivo es decidir la colocacion 6ptima de instalaes para abastecimiento a clientes. En
dicho problema los parametros aleatorios incluyen la del@ael nimero minimo de clientes en
cada periodo, el nimero minimo de instalaciones a ahricagla periodo, el coste de apertura y
mantenimiento de cada instalacion, asi como el costeigeaaain cliente a una instalacion.

Se consideran soblo variables binarias y los modelos somalenes dimensiones, con hasta
medio millon de variables. Son por tanto problemas difscgue sin embargo ambos nuevos algo-
ritmos son capaces de resolver en tiempos considerablerpeqtiefios, especialmente comparados
con los tiempos que requieren CPLEKY HRC, que es el algommeose ha usado como referencia.

Cabe decir que los tiempos requeridos por el algoritmo elar8dFRC-PlJ, son particularmente
buenos, demostrando que en este tipo de problemas cuyainatgode resolucion se basan en la
descomposicion, la computacion paralela permite megmmarmemente los tiempos de calculo.

Por otro lado, téngase en cuenta que la ventaja de estediptydritmos no es solo de efi-
ciencia en cuanto al tiempo de computacion, sino tambi&uanto a memoria, pues al descomponer
el problema principal en varios subproblemas, los reaqsisie memoria del sistema son menores.

Por Gltimo, se proponen las siguientes lineas de imnstig ytrabajo futuro :
e Desarrollo de nuevas mejoras en los algoritmos presentadogiendo a otras técnicas conoci-

das como ldescomposiéin Lagrangiana Aumentad®icha descomposicion permite obtener
mejores cotas del 6ptimo de la funcién objetivo en cadarmted arbol de ramificacion, con las
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cuales se puede mejorar el mecanismo de poda.

Incorporar medidas de riesgo a las funciones objetivo. aHalsora, los modelos considerados
presentan como funcion objetivo el valor esperado de laifunobjetivo sobre el conjunto
de escenarios. Sin embargo, actualmente se estan terearceenta medidas de riesgo con-
siderando, por ejemplo, semidesviaciones y exceso de ljliolbal. Estas aproximaciones
son mas convenientes bajo la presencia de las variablesasimque los clasicos esquemas de
media-varianza.

Ampliar la experiencia computacional, aplicando los dtguors presentados en esta tesis y las
mejoras que se introduzcan, a problemas ain mas grandiésilgside resolver.

Recurrir a otras técnicas de programacion paralela queitad mejorar aln mas el algoritmo
[ERC-PJ, permitiendo dividir el problema en subproblemassalver por distintos procesos
mediante la fijacibn de algunas variables a valores distipaira cada proceso.

Investigar distintos modos de aplicar la heuristica glad& en el capitulo_4.4 para evitar que
los submodelos mas dificiles sean resueltos muy a menDétha heuristica consistiria en

cada iteracion, en fijar, al ramificar una nueva variablealdr que obtuvo dicha variable para
el submodelo mas dificil de resolver, de este modo norsscasario resolverlo de nuevo.

Desarrollo de una libreria que permita resolver problegaamerales multietapa 0-1 mixtos de
grandes dimensiones, que permita recurrir indistintaenahtlgoritmo de preferencia segln
las circunstanciad__FRC, FRC-J o FRC-PJ, pudiendo autpandé seleccion de la etapa de
corte, asi como diversas estrategias como pueden seetzigsl de la variable a ramificar, el
valor a asignar a dicha variable, etc.

Difusi 6n de los resultados

Los principales resultados de esta tesis han sido pressnesd

e XXXIII Congreso Nacional de Estadistica e InvestigaciOperativa. A parallel computing

metaheuristic for solving multistage stochastic mixeddget programsMadrid, 2012.

e 12th International Conference on Stochastic ProgramniiRC: A heuristic extension of the

BFC approach for solving very large scale multistage mixed<€lochastic programd-alifax
(Canada), 2010.
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e ECCO XXIII-CO2010 European Chapter on Combinatorial Optation. On The Conflict
Avoidance for Air Traffic Flow Management Problem, two medelalaga, 2010.

e 24th European Conference on Operations Rese&RRE.: A heuristic extension of the Branch-
and-Fix Coordination approach for solving very large scahiltistage mixed 0-1 stochastic
problems.Lisboa, 2010.

e 24th European Conference on Operations Resedtamflict Avoidance for Air Traffic Flow
Management Problem, pure and MIP modélsboa, 2010.

e 4th workshop on Optimization and Variational Analysi€®n solving large-scale stochastic
mixed 0-1 linear problems. Seminario invitadeéiche, 2010.

e 23rd European Conference on Operational Rese@afthe collision avoidance for air traffic
management problem, a large scale mixed 0-1 program appro&esion invitada. Bonn
(Alemania), 2009.

¢ 23rd European Conference on Operational Rese@althe air traffic flow management prob-
lem. A stochastic integer programming approach. &esgivitada.Bonn (Alemania), 2009.

o Workshop CORAL 2009 (Conference on Routing and Logistié#) traffic flow management.
Airports and sectors constraints, with en route probldétiche, 2009.

Ademas, parte del trabajo recogido en esta tesis ha sidcadd en[23] 24].






Preface

Presentation and motivation

Optimization is a very important mathematical tool for hetpin decision making and is
widely applied in many different areas. However, it is siill continuous development since the
problems it deals with are hard to solve and in most casediéeyto be highly simplified in order to
allow our scarce computational resources finding theirt&oiu This makes problem modeling a true
art in which the objective is not only finding a good approxiima to reality but avoiding complexity
in order to get efficient (easily solvable) models.

In this thesis two important areas in optimization are esgaonamely, Linear Programming
(CP) and Stochastic Programmirig {SP).

Conflict Avoidance (CA) in the Air Traffic Flow

In particula P is applied to the problem of Conflict Avoidan[CA) in the air traffic flow.
The[CA problem is attracting more and more interest due tortbreasing demand of aerial traffic
worldwide. That is why new and improved automatic systemsémflict detection and resolution
are demanded. THe CA problem has been widely studied as caaepein Chaptdrl1 and many
approaches have been explored, most of them using Matleh@ptimization, though other ap-
proaches have been explored, as soft-computing (neusabriet, genetic algorithms, ant colony and
other heuristics).

XXV
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Stochastic Programming

Uncertainty is present in many real problems where many leegmeters cannot be known
a priori. For these problems, Stochastic Programrhing SPoappes the uncertainty by offering
different models (chance-constrained, two-stage andi4stalje models, risk measures...). However,
it is not until the 80’s whefh SP is broadly applied, thanksht® advances in computing. ISP models
easily reach huge dimensions, with hundreds of thousamda, raillions of variables, what makes of
them hard problems, especially when dealing with integaakites.

So, several algorithms have been proposed in the literatppeoaching the resolution of
Stochastic Integer Programming problems, such as L-Shapé#tbds, stochastic Branch-and-Bound,
Branch-and-Fix-Coordination, and different heuristisgree Fix-And-Relax Coordination algorithm.

Objectives of the thesis

In this thesis a new approach to the]CA is introduced, thatwvafiolving the problem both
flexible and efficiently. An approach applicable in situaidnvolving a wide aerial space and an
appreciable number of aircraft. In addition, new algorithframeworks are proposed to solve large-

scalgmulti-stag€ Stochastic mixed 0-1 Programming problems.

Thesis Outline

The thesis is structured as follows:

Chapter 1l presents an overview about[the Conflict Avoidali®) problem, including an
exhaustive state of the art on the subject.

In Chaptef 2, the_Conflict Avoidanice (CA) problem is desatibend 2 models are presented:
a pure 0-1 and a mixed 0-1 linear, the first of which avoids atsfby means of altitude changes,
while the second’s strategy is based on altitude and speetyel. Then, a computational experience
is reported, showing that both problems are solvable inyrsahall elapsed times, for what the ap-
proach can be used in real time with the help of a state-c&thenixed integer linear optimization
software. Finally, some improvements are discussed, arathrags, the inclusion of a third elusion
maneuver, namely route changing.
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Chaptef 3,111 introduces some basic concepts of StochasticaPhming, and presents a state-
of-the-art description df SP and current algorithms desiigio solve stochastic mixed 0-1 multistage
problems. Finally, a brief introduction to parallel progmaing is outlined, including thie MPI library,
which is the tool used to implement the parallel algorithregented in Chaptét 4.

In Chaptef 4 two algorithm$, FRC-J and FRQ-PJ, based on omidhies, are presented for
solving large-scale multistage mixed 0-1 problems undeerdainty, wheré_ FRC-PJ is a parallel
version of FRCJ.

Chaptef b presents a broad computational experience fessing the quality of the algorithm
frameworks introduced in this thesis. For this purpose,rizgs®f computational experiments have
been run for large-scale instances of the NP-hard Mulis@ipchastic Facility Location Problem
(MSELP)

Finally, Chaptel b remarks some conclusions and outlineedarther research areas.

Diffusion

The main results of this thesis have been published in [Z3rdipresented in several national
and international meetings:

e XXXIII National Congress of Statistics and Operations Resk. A parallel computing meta-
heuristic for solving multistage stochastic mixed integergrams Madrid (Spain), 2012.

e 12th International Conference on Stochastic ProgramnHRC: A heuristic extension of the
BFC approach for solving very large scale multistage mixedd€iochastic programd-alifax
(Canada), 2010.

e ECCO XXIII-CO2010 European Chapter on Combinatorial Optation. On The Conflict
Avoidance for Air Traffic Flow Management Problem, two medelalaga (Spain), 2010.

e 24th European Conference on Operations Rese&RRE.: A heuristic extension of the Branch-
and-Fix Coordination approach for solving very large scahiltistage mixed 0-1 stochastic
problems.Lisbon (Portugal), 2010.

e 24th European Conference on Operations Resedtamflict Avoidance for Air Traffic Flow
Management Problem, pure and MIP modélsbon (Portugal), 2010.
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e 4th workshop on Optimization and Variational Analysi€n solving large-scale stochastic
mixed 0-1 linear problems. Seminario invitadéiche (Spain), 2010.

e 23rd European Conference on Operational Rese@althe collision avoidance for air traffic
management problem, a large scale mixed 0-1 program approdwevited Session. Bonn
(Germany), 2009.

e 23rd European Conference on Operational Rese@nulthe air traffic flow management prob-
lem. A stochastic integer programming approach. Invitessa.Bonn (Germany), 2009.

e Workshop CORAL 2009 (Conference on Routing and Logistiéd)traffic flow management.
Airports and sectors constraints, with en route probldtiche (Spain), 2009.



Chapter 1
Conflict Avoidance: State of the art

The objective of this first chapter of preliminaries is to\gde the reader with a basic knowledge

about thé_Conflict Detection and Resolutibn (GDR]) or Confiadidance [[CA) problem, the state of
the art on the subject and the main contributions of this work

1.1 Conflict Avoidance Introduction

Air traffic in Europe and the USA has undergone an astonistiingth during recent years. In
1999 a 50% increase was expected by 2018 over the traffictiydlaa, see Air Traffic Action Group
[5]. In this scenario, the aim of Air Traffic Flow Managememnsists of extending the airspace
allowing the so called Free Flight’, where the pilots and the airlines are able to decide fréedy
flight plan, keeping in touch with the air traffic controll&fo maintain safety in the air flow, tthie CA
problem is currently attracting the interest of air tranggiion service providers and has been studied
extensively.

[CAlis concerned with the following question: Once the flighmfiguration for a set of aircraft
is known, how to draw up a new configuration that prevent theralits from coming too close to each
other, i.e. avoid any conflict situation.

There have been built methods for maintaining separatidwemn aircraft in the current
airspace system. Humans are an essential element in thiegsraue to their ability to integrate
information and make judgments. However, because failanesoperational errors can occur, au-
tomated systems have begun to appear both in the cockpit miideoground to provide decision
support and to serve as traffic conflict alerting systems. s@lsystems use sensor data to predict
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conflicts between aircraft and alert humans to a conflict amdprovide commands or guidance to
resolve the conflict. Relatively simple conflict predicttw@ve been a part of air traffic control au-
tomation for several years, and fhe Traffic Alert and CdhisAvoidance System (TCAS) has been in
place onboard domestic transport aircraft since the e@904. Together, these automated systems
provide a safety net that should provide normal procedurd®lp controller and pilot when human
actions fail to keep aircraft separated beyond establighiatna.

Recently, interest has grown toward developing more ada@utomation tools to detect
traffic conflicts and assist in their resolution. These taolsld make use of future technologies, such
as a data link of current aircraft flight plan information etcshance safety and enable new procedures
to improve traffic flow efficiency.

With the growth of airspace congestion, there is an emengggl to implement these types of
tools to assist the human operators in handling the expgrdiffic loads and improve flow efficiency.

Unfortunately, thé_ CDR has proven to be a hard problem teesdla give some idea, the way
in which to represent the actual trajectory of an aircraftyisneans of a dynamic model that has to
take into account, as an example, the following relatiqmshspeed of the aircraft will depend on the
wind direction and altitude on which it flies (such that thgh@r an aircraft flies, the lesser the air is
around it and thus it needs to go faster to maintain its pmsgitiacceleration depends on the speed
(e.g., at lower speeds, a plane can reach higher acceferatios) and altitude, and so on. Notice
that the aircraft is losing mass throughout the flight as lughs, and this influences the speed and
acceleration of the aircraft (and, viceversa, the speeddnfles the consumption of fuel and thus the
mass loss), etc. Good introductions to flight dynamics mipdibn can be found in [101, 133, 225].
Finally,[CDR has to deal with the simultaneous trajectooie@ossibly) many aircraft. Moreover, we
must bear in mind that given the intended trajectories,uragtin the flight plans, some uncertainty
regarding the actual trajectories of the aircraft is undable, which makes_ CDR harder to solve.
Trying to address all these issues within a mathematicéinagtion model would lead today to an
unmanageable problem (in terms of computing effort, ilapged time and memory requirements).

To begin with, it is necessary to have a clear definition of @flaxi. A conflict is an event
in which two or more aircraft experience a loss of minimumasagion. In other words, the distance
between aircrafts violates a criterion that is considenedesirable. One example criterion is a min-
imum of 5 nm (nautical miles) of horizontal distance betwe@araft or at least 1000 ft of vertical
separation (the current en-route separation standardvat mititudes). As a result, each aircraft has
as a safety zone a cylindrical volume of airspace with a 2.5adius and a height of 1,000 ft (500 ft
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above and 500 ft below), and they are not allowed to inter§dwt safety zone could also be defined
as a much smaller region (e.g., a sphere 500 ft in diametdheirrase of tactical collision alerting
systems. In any case, the underlying CDR functions are aijalthough the specific models and
alerting thresholds would probably be different.

The goal for the CDR system is to predict that a conflict is gamoccur in the future, assist
in the resolution of the conflict situation and communicate detected conflict to a human operator.

Traditionally, absolute 4D trajectory-based air trafficmagement and control and relative
aircraft-to-aircraft-based spacing concepts have beasiigated as alternative pathways. Prevot et
al. [200] describe research in European programs, such ARElnd Co-space and in US, programs
such as DAG-TM, and they finally suggest to investigate coaiidins of these elements.

A recent paper by EUROCONTROL [102] specifies the requirdmefMedium-Term con-
flict Detection (MTCD) (e.g. up to 20 minutes) for Air Traffic&hagement Systems in detail. The
MTCD system is required to detect and notify to the Air Traffiontrol Officer (ATCO) a probable
loss of the required separation between two aircraft, arair penetrating restricted airspace. This
paper assumes that flight data and trajectories are protacth@d MTCD, where some uncertainty is
expected and has to be taken into account.

Magister [157] presents two different models: The first &spto conflict detection. The
second is related to conflict resolution to solving the cohBiy lowering one of the two aircraft that
are taken into consideration in the conflict. In additiore #ame authof [158] describes the conflict
resolution problem in great detail and makes a quantitatiadysis of avoidance procedures.

The remainder of this Chapter is organized as follows. Sulis€1.2 is devoted to the most
interesting papers existing in the literature on Collisizetection. Section 113 is devoted to the main
categories of Conflict Resolution. Sectionl1.4 presentsvgpfeblems similar t CA in the airspace
and classifies the literature mentioned in this state ofthie a table. Finally, sectidn 1.5 summarizes
the main contributions of this thesis on the]CA problem.

1.2 Conflict Detection

Conflict Detection (CD) is the process of detecting conflaotsong two or more aircrafts, or
between an aircraft and some other airspace constraintasupdstricted airspace or regions of bad
weather.
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Let two aircrafts moving on the same horizontal plane, eatloviing its individual flight
plan. The flight plan is assumed to consist of a sequence opeiatg (a waypoint is a reference
point in physical space used for purposes of navigationgrisists of a tupla with latitudinal and
longitudinal coordinates, plus altitude with respect tef@rence geoid) on the plane and a sequence
of speeds for moving between them. One can then define thalptityg of conflict (PC) as the
probability where two aircraft will be within an unsafe @iste from one another (typically 5 nm
outside the TRACON - Terminal Radar Approach Control - and&ical miles inside the TRACON).
Conflict detection consists of estimating PC.

An early work, from Chiang et al_[61] use Delaunay and Voidd@agrams. With this re-
search, they reduce the conflict detection algorithm fédm?) to O(n logn). A contemporary work,
by Erzberger et al [83] combines deterministic trajectomydiction and stochastic conflict analysis
to achieve reliable conflict detection. They formulate emmdels for trajectory prediction, and de-
scribe an efficient algorithm for estimating conflict prollioas a function of encounter geometry.

Prandini et al. [[199] outline a framework for conflict deteatand resolution for pairs of
aircrafts moving on the same horizontal plane, and theysean the prediction component. They
propose a probabilistic framework, thus allowing unceaitain the aircrafts positions, and they solve
the problem resorting to appropriate randomized algothm

Prandini et al. [[198] deal with aircraft conflict detectionthe mid-range and short range
levels of the ATMS. Starting from an empirically motivatetbpabilistic description of the aircraft
motion, they propose stochastic models for mid-term andtgbon prediction of the aircraft posi-
tions, thus allowing the corresponding criticality me&suto take into account the various sources
of uncertainty inherent in the environment. Although thegus on the planar case, they sustain that
the extension to the 3-D case is straightforward suggestediever, it is considerably harder to get
meaningful bounds for the error of such approximations.

Gandhi et al. [[110] describe approaches to detect airbdmetades on collision course and
crossing trajectories in video images captured from aroamdaircraft. The crossing target detection
algorithm was also implemented on a pipelined architectims DataCube and runs in real time.
Their work has been successfully tested on flight tests atadby NASA.

Hu et al. [128] study the problem that consists of evaluatuigther the flight plan assigned
to an aircraft is safe. They introduce a kinematic model efdhicraft motion in a three dimensional
wind field with spatially correlated random perturbatioi$ien they propose an iterative algorithm
based on a Markov chain approximation scheme. The samerayif)] introduce a model of a
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two-aircraft encounter with a random field term to addregsetation of the wind perturbations to
the aircraft motions. Based on this model, they estimat@tbkability of conflict by using a Markov
chain approximation scheme

Jardin [140], presents some algorithms for strategic aunfiétection, based on the use of
a 4-dimensional space and time grid to represent the aisp@ihis approach to compute conflict
detection was previously introduced by Jardin [138,/13%jexke he uses a 3-dimensional grid (two
horizontal spatial dimensions and time).

Prandini and HU [197] present a stochastic approximatiberse to estimate the probability
that a single aircraft will enter a forbidden area of thegake within a finite time horizon. A numer-
ical algorithm is also proposed for computing an estimatéhefprobability that the aircraft might
enter an unsafe region of the airspace or come too close thexraircraft.

1.3 Conflict Resolution

Several methods have been proposed to generate a solutioootaflict. Kuchar and Yang
[147] present a survey of CDR modeling methods with their alassification. Dowek and Mufioz
[78] present a mathematical framework for the formal speatiibn and analysis of conflict detection
and resolution algorithms and their properties. For8tate of the Arsix categories have been picked
up, namely, Prescribed, Optimized, Force field, Manual,rBleNetworks and Others. And finally
the works presented in two conferences of aviation that pia&e in 2009 are commented.

1.3.1 Prescribed

The studies of this category study the standard maneuvatsitiorne aircraft are able to
carry out to avoid simple conflicts. Resolution maneuveesfixed during system design based on
a set of predefined procedures. NASA [178] and Carpenter arghdt [56] assume that a fixed
climbing-turn maneuver is always performed to avoid traffica parallel runway approach. Pre-
scribed maneuvers may have the benefit that operators caaibedt to perform them reflexively.
This may decrease response time when a conflict alert isds$l@vever, prescribed maneuvers are
less effective, in general, than maneuvers that are comiuteal time since there is no opportunity
to modify the resolution maneuver. In many conflicts, it viié necessary to adapt the resolution
maneuver to account for unexpected events in the enviropmeto reduce the aggressiveness of the
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maneuver.

Peng and Lin in[[187] study some horizontal maneuvers edoaperaffic alert and collision-
avoidance system (TCAS), separately developing speedynd Hirection changes.

1.3.2 Optimization

This type of approaches typically combine a kinematic magi¢h a set of cost metrics.

An optimal resolution strategy is then determined by finding no-conflicts trajectories with the
lowest cost. For example, the Traffic alert and Collision i#dlamce System (TCAS), which is an
implementation of the Airborne Collision Avoidance Systemandated by the International Civil
Aviation Organization, searches through a set of potentialb or descent manoeuvres and selects
the least-aggressive one that still provides adequategiion; see [212]. This requires the definition
of appropriate cost functions, typically projected sepama or fuel or time, but costs could also
cover workload. Developing costs may be fairly straightfard for economic values but difficult
when modeling subjective human utilities. Since curretgriest in this field is generally centered
on strategic resolution of conflicts before immediate tattevasion is required, economic costs and
operator workload will be important to the system design.

Some of the models denoted as using Optimized conflict résnlapply techniques such
as game theory, genetic algorithms, expert systems, oy fuaatrol to the problem. Expert system
methods use rule bases to categorize conflicts and decidiavite alert and/or resolve a conflict.
These models can be complex and would require a large nunitvates to completely cover all
possible encounter situations. Additionally, it may bdidifit to certify that the system will always
operate as intended, and the “experts” used to developinith@ system may in fact not use the best
strategy in resolving conflicts. However, a rule base, bygiescan be easier than it is an abstract
mathematical algorithm for a human to understand or explain

Krozel and Peters [146] analyze collision avoidance probtefree flight context, taking eco-
nomics features into consideration. They use relativeanaif two aircrafts in a horizontal plane and
vectorial and probabilistic calculations to detect if aftiohoccurs, so the model is non-deterministic.
To solve the collision avoidance problem, first of all, thensider economic factors, like fuel con-
sumption, and time factors, like time required to execugenttaneuver and return back to course. The
authors also order the different possible maneuvers vel&ti the cost of these ones, being altitude
changes the most economical, and speed changes the warsh@cal.
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Frazzoli et al. [[10B] solve a planar, multi-aircraft corfliesolution problem, formulated as
a nonconvex, quadratically constrained quadratic progeamd then approximating it by a convex,
semidefinite program. The optimal solution to this conveogpam is then used to randomly generate
feasible and locally optimal conflict resolution maneuvetsery individual aircraft should then be
able to express their preferences at regular time interifay are given always conflict-free, straight
paths.

Mao et al. [160] set out geometric constructions to solvepttablem, including aircraft one-
by-one until representing the total number of aircraft,sidering the previous aircraft as obstacles
and making a sequential process.

Hu has devoted a series of papers and two Thesis to this probles work is very interesting
for us, since it tackles the most general case: many airerafounters in three dimensional space.
Particularly, in [126], Hu et al. study the problem of designoptimal conflict-free maneuvers (a
maneuver is defined to be a continuous and piece@ismap) for multi-aircraft encounters in a three
dimensional environment, proposing an algorithm for saihe two aircraft nonlinear optimization
problem. For more than two aircraft, they consider what Ikedawo-legged maneuvers approach,
such that a manoeuvre consists of two stages, moving at dacbrspeed and through a straight
line during both stages. The original optimization problsnthen reduced to a finite dimensional
convex optimization problem with linearly approximatedflizt-free constraints on the waypoints
and a quadratic objective function. Path flightability ikaa into account by introducing an upper
bound on the speed and turning angle constraints, whichearfressed by using second order cone
expressions. So, the optimization problem becomes a S¢aatet Cone Programming (SOCP) one.

However, the assumptions on which the proposal are basede(paevery aircraft departs
and arrives at the same time, all aircraft move linearly pkéer one heading angle change in the
two-legged manoeuvre, etc.) force to apply the model réalys which could make it unaffordable
as an option in most practical cases, due to the non-liyeafrits constraints and objective function.
In [127], the same authors study the problem as above, glthoonstrained to the plane, proposing a
randomized convex optimization algorithm to find numetictte optimal multi-legged manoeuvres
(with an arbitrary number of stages).

Finally, Hu [124], Hu and Sastry[([132], HU_[125], Hu et al.30]) and Hu et al. [[131]
study the more general problem of optimal collision avoadaand optimal formation switching for
multiple agents moving on a Riemannian manifold.

Pallottino et al. [[185] propose two mixed integer modelsG®@IR, the first one allows speed
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changes and the other one angle changes, both on the sarae Plase models are based on a ge-
ometric approach. The second model assumes that the spgexisame for all aircraft, such that
each one can manoeuvre only once with an instantaneousesdile deviation that can be positive
(left turn), negative (right turn) or null (no deviation)t does not consider returning to the original
route, nor does it explain how the aircraft, after a manogurgaches its destination. Alonso-Ayuso
et al. [16] use the geometric idea proposed_in [185], whoseiodel (velocity changes model) is
extended to permit aircraft changing both their speed atiidd levels, resulting in the so-called
Velocity and Altitude Changes(VAC) model, which is basedMised Integer Linear Optimization
(MILO), thus infeasible situations caused by "head to heeatiflicts are avoided. Moreover, all
aircraft will be forced to return to the initial configuratiavhen conflict situations are resolved and,
finally, a pathological case unresolved|in [185] is avoid€dese two approaches are intended to be
executed repeatedly, each execution within a short timzdwr The trajectories are assumed to be
linear over a horizontal plane (even though flight level gjeanare allowed). Notice that projecting the
trajectories onto a plane could appreciably change thebangles, which makes these models suit-
able only for small airspace regions in the short term. Ltttey extended the VC model to a Mixed
Integer Non Linear Optimization (MINLO) model by includirgpntinuity in the velocity changes,
since the original considers that all changes happen i@staausly, see [17]. Later on, in [18], they
presented an approximation for coordinating differentaffic Controllers Officers (ATCO) in dif-
ferent air sectors. In[19], a two-step approach is preseiie first step being a nonconvex MINLO
model based on geometric constructions aimed at minimihiegveighted aircraft angle variations to
obtain the new flight configuration, and the second step stingiof a set of unconstrained quadratic
optimization models where aircraft are forced to returnhteirt original flight plan as soon as pos-
sible once there is no aircraft in conflict with any other. [22], the Variable Neighborhood Search
metaheuristic is used for solving the CDR by turn changes IMONnodel previously proposed. In
[20], an exact MINLO model is presented and, finally,[inl/[24 nulticriteria scheme based on Goal
Programming is presented and a Sequential Mixed Integeai®ptimization (SMILO) approach is
proposed in order to provide a good solution in short conmgutiime for solving the previous models.

Peyronne et al. [190] propose a trajectory using B-splimesasemi-infinite programming
formulation for solving the CDR problem via turn changesnly uses continuous variables, but the
computational experiment is restricted to six aircraftamftict.

Recently, Rey et al. [203] have presented a MILO model whpeed changes are used for
avoiding conflict situations. Cafieri and Durand|[50] alsogwse a MINLO model based on velocity
regulation considering different time instants for pemnfarg velocity changes.
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Cafieri and Durand_[49] focus on mixed 0-1 nonlinear optiriiza (MINLO) models for
conflict avoidance based on speed regulation, while tr@jest are kept unchanged and considering
different times for velocity changes.

Obstacle avoidance by using the linearized constrainediiahited Aerial Vehicle (UAV)
dynamic has been modeled by Richards and How|[204]. CezgchiModel Predictive Control has
been widely developed for constrained systems and has Ipgtiedato the co-operative control of
multiple vehicles. By augmenting the system with a binagrdet state”, that indicates whether the
target set is reached or not, the authors end up with a hypstém at hand. Task completion is then
guaranteed by imposing a hard terminal equality constrairthe target state. See al50 [205].

Christodoulou and Costoulakis [62] propose a MINLP modesfiving the conflict problem.
The method allows velocity changes and heading angle ddatsolve all potential conflicts by using
standard optimization software, but it can require more matational effort than what it could be
affordable.

Ma and Miller [156] present a MILP Trajectory Generation rabdpplied to a rotorcraft
performing nap-of-the-earth flight in challenging terraiith multiple known surface threats, i.e. they
work on a concrete application of optimal path planning foaatonomous vehicle in an obstacle field
in three dimensions.

Schouwenaars et al. [215] discuss the implementation, iog tise state-of-the-art optimiza-
tion engine, of a guidance system based on MILP on a modifiednamous T-33 aircraft equipped
with Boeing’s UCAV avionics package. Their formulation iepented for safe, real-time trajectory
generation in a partially-known, cluttered environment.

Mao et al. [162] tackle the problem using instantaneous ihgachanges as manoeuvres
between two aircraft. This paper extends the results of Mab ¢160] in which the manoeuvres that
have been considered are not physically realistic.

A MINLP model proposed by Christodoulou and Kodaxakis [6@th linear objective func-
tion and nonlinear constraints only allows speed changesaameuvres.

Treleaven[[227] assumes that aircraft travel at the sariteddtand with the same speed, and
uses only horizontal maneuvers for the conflict resolutitims analysis is extended to consider two,
three and multiple intersecting flows.

Pannequin et al[ [186] present an approach to the problemseitere weather conditions by
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using a Nonlinear Model Predictive Control (NMPC) scheme.

Finally, Cetek|[58] presents a model that takes into accmanty physical features like wind
speed, relative density at the given flight altitude, gedighal acceleration, mass of the aircraft,
aerodynamic drag force, etc. The model is non-linear arglriecessary a great effort to solve the
problem, in fact the computational experience that is regloshows very large resolution times (more
than 10 minutes), and it is not valid neither for imminentftiots (short term) nor medium term. In
this model, vertical and heading maneuvers are not contgetplonly speed changes), being “head
to head” conflicts impossible to solve.

1.3.3 Force field

This type of approaches treat each aircraft as a chargeidlpamd use modified electrostatic
equations to generate resolution maneuvers. The replitsives between aircraft are used to define
the maneuver that each performs to avoid a collision. A fdield method, while attractive in the
sense that a conflict resolution solution is continuousilable by using relatively simple equations,
may have some pathologies that require additional coretidarbefore they can be used in operation.
For example, force field methods may assume that aircraftregrusly maneuver in response to the
changing force field, or that aircraft can vary their speegt @wide range. This requires a high level
of guidance on the flight deck and increases complexity beyssuing simple heading vectors, for
example. Additionally, sharp discontinuities in the conmalad resolution maneuvers may occur that
require additional processing or filtering to arrive at pbghy feasible solutions. Several human-in-
the-loop implementations of the force field method, howeappear to have resolved these problems
and have shown that the force field based on resolution caffdmtive when properly applied. See
Duong and Hoffman [79], Hoekstra, Van Gent and Ruigfok [1&1d Zeghal and Hoffman [244].

It has also been suggested that potencial fields can be us#¥inavigation for obstacle and
collision avoidance applications. Sigurd and How [221]qoeed a method that provides a way for
groups of UAVs to use the gradient of a potencial field to natdghrough heavily populated areas
safely while still aggressively approaching their targets

1.3.4 Manual

Some models allow the user to generate potential confliotusn solutions and obtain feed-
back as to whether the trial solution is acceptable. Thesgefa@re denoted as handling a manual
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solution in the table. The benefit of a manual solution is thiatgenerally more flexible in the sense
that it is based on human intuition, using information thaymot be available to the automation. For
example, weather information that is not available to theRGIystem may be important when con-
sidering a conflict resolution maneuver. Automated sohdithat do not take relevant environmental
information into account will likely produce nuisance gadas that the human finds unacceptable.

1.3.5 Neural Networks and metaheuristics

In the fifties, artificial neural networks began to be appliednany fields in artificial in-
telligence like analysis and adaptive control, speechgeition, etc. These networks are based on
statistical estimation and optimization and control tlyedtis field has been used in the ICA problem
together with other heuristics techniques like genetiomtigms.

Durand et al. [[81] have built a neural network with unsupsdi learning to compute new
trajectories that are close to the optimal trajectory inflicis with two aircraft. This 3-layer neural
network modifies only the heading direction (not more thardd§rees) of the aircraft if there is a
conflict between them. To help the training of the neural oekwthe authors use a genetic algorithm.
This network is not valid for conflicts involving more thandwircraft, however they provide some
schemes to solve conflicts involving three aircraft, butmote.

Alam et al. [7] have constructed a neural network that coesputar optimal trajectories to
solve two aircraft conflicts in a 2D free flight environmeniipaing only heading changes maneu-
vers, since they assume that the aircraft fly at constantisge¢hree layer artificial neural network
architecture is used to lead the aircraft to the destingg@nt. This neural network does not confront
more than two aircraft in a same conflict, and it is not valid iBD environment. These are important
drawbacks for the problem.

Doshi [77] presents a neural network to predict the positibtine aircraft by using event his-
tory, being a long history a better choice than a short hystarce it reduces noise in the model. With
this neural network, the conflict detection is obtained bynpating separation distances between
points of the prediction. An algorithm for determining tmeursion distance between two aircraft is
presented. It is based on trigonometric analysis and yelisalues useful for danger detection, but
it only detects danger conflicts.

Christodoulou and Kontogeorgou [64] present a neural nétwmopredict the optimal speed
change for two aircraft in order to avoid an imminent conflicka 3D environment. The algorithm
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combines the neural network with non-linear optimizatiorobtain the optimal speed change. For
each conflict case there is an uniqgue model based on nom-bp&aization and it is solved in a 3D
environment, but only speed changes are allowed. Vertiealauvers are not considered since it is
assumed that aircraft can fly out of a space divided in layeis.also assumed that the aircraft fly at
constant speed and the motion direction is linear.

Other metaheuristic methods have been used to solve thieprals Ant Colony optimization
(see Durand and Alliot [80] and Meng and Qi [167] for solvidg tproblem by performing angle
change maneuvers). Genetic Algorithms (see Medioni efl&8][by also performing turn changes
and Vivona et al.[[232] for prescribed maneuvers). Parfisl@rm optimization (see Gao et al. [111]
where again the turn change maneuver is used)

1.3.6 Others

Chiang et al.[[61] solve the conflict problem with which theyi the Space-Time FIoWSTF)
Method. It is based on an iterative procedure for addingdul@craft) using a graph search in a
discretized space-time to route each tube amongst thedglreated tubes, which are considered to
be obstacles.

Tomlin et al. [226] develop a method to solve the conflict peab by using both speed and
heading changes. The algorithm is based on Lie algebra amiltda-Jacobi-lsaacs equations.

Goodchild et al.[[11]7] propose a cooperative optimal confésolution algorithm based on
distributed artificial intelligence, by using a dynamiciagization algorithm

Bicchi and Pallottino[[40] use optimal control and game tigeto solve the problem. The
model assumes that linear velocity is constant and allowsaneuver all the aircraft including air-
speed, several angles, heading angle, longitude anddiatitsl parameters.

Bayen et al. [[33] propose a Lagrangian model where the mangave simple instructions
such as turn to heading angle, fly direct to a concrete poititspeed increase. The model permits
aircraft to fly at different altitudes, but not to climb or desad. This model permits a shortcut or
detour maneuver that could either shorten or lengthen thiat ftilan.
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1.4 Similar problems and Review table

A problem applied in military aircrafts is presented by S$haret al. [[220] whose model
considers aircrafts flying in close proximity to terrain ahdy have to avoid all fixed obstacles like
mountains. The problem is modeled in a 3D environment usimgnimax optimal control problem
formulated as a nonlinear programming problem. This modsldanonsmooth cost function that is
transformed into a smooth cost by introducing additionafimlity constraints.

There are other problems treated in the literature thaiedaeed to collision avoidance applied
in other fields like underwater or automobile routes wheeerttachine have to avoid fixed obstacles
in its path. Neural networks have been used to tackle this offproblems, see Ishi et al._[135],
Nishida et al. [[179] and Ishi et all_[134] applying this rdsub an underwater robot. Mukai et al.
[172] and [173] use their results to generate a new path eagpithe collision with a fixed obstacle
by using MILP. Finally, Kim et al. [[144] model the same prableas a MILP model but by using a
piecewise polynomial approach which is a class of the hydlyitamical system.

In Table[1.1 the main features of the literature that has pemnously reviewed are presented.
The Collision Detection Problem (CDP) and Collision Retiolu Problem (CRP) are distinguished.
With regard to the type of maneuver three types of maneuverslassified: Horizontal (H), Vertical
(V) and Speed changes (S). The papers shown in the tableddoralyly the most relevant among those
mentioned in this chapter.
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1.4. Similar problems and Review table

Table 1.1: Review table

Reference| CDP | CRP | Maneuvers| Number of aircrafts| Dimension
[7] X X H 2 2D
[8l X N 3D
[33] X N 2D
[40] X X H N 2D
[56] X X H,V 2 2D
58] X X S 2 2D
[61] X X HV N 3D
[62] X X HS N 2D
[63] X X S N 3D
[64] X X S N 3D
[72] X S,V N 1D
[77] X N 2D
[78] X X H,SV N 3D
[81] X H 2 2D
[83] X X H,SV N 3D
[110] X 1 2D
[117] X S N 2D
[124] X H,S N 2D
[125] X H,SV N 3D
[126] X H,SV N 3D
[127] X H,S N 2D
[128] X 2 3D
[129] X 2 3D
[131] X H,SV N 3D
[130] X H,S.V N 3D
[132] X H,SV N 3D
[138] X X H N 3D
[139] X H,SV N 3D
[140] X N 4D
[146] X X H,V,S N 3D
[156] X X H,SV 1 3D
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Table 1.2: Review table

Reference| CDP | CRP | Maneuvers| Number of aircrafts| Dimension
[185] X X H,S N 2D
[186] X H,SV N 3D
[197] X 1 2D
[198] X N 2D
[199] X 2 2D
[200] X H N 3D
[202] X S N 3D
[204] X X H,V N 2D
[205] X H,V N 2D
[221] X H N 2D
[226] X H 2,3 2D
[161] X H,S 3 2D
[16Q] X H N 2D
[162] X H N 2D
[178] X X H,V 2 2D
[190] X H 6 2D
[16] X H,V 6 3D
[49] X S 3D

1.5 Problem description

[Conflict Avoidancé has been widely studied as can be seeni®chhpter. There are quite
a lot of different points of view from which the problem cantaekled. Three different maneuvers
are considered to avoid a conflict, namely: velocity, atgwand heading angle changes. To begin
with, in this thesis we will consider two maneuvers: speed atitude changes. But we will study
other alternatives in order to take into account indepethygléeading angle changes. Heading angle
changes have a nonlinear nature, and most of the modelsalteatitem into account are nonlinear,
although some exceptions can be found, such as a paper oftiRall Feron and Bicchi (2002) [185]
that solves the problem with heading angle changes usingdiiteger linear programming, but the
resulting model does not return aircrafts to their initimedtion. And there are also a series of papers,
from Alonso-Ayuso et al[[16, 17, 18, 19,120, 22] 21] extedime approach proposed by Pallottino et
al. in an interesting way, although nonlinearity is eveliyugintroduced, some heuristics are applied
aimed at finding good solutions earlier.

The general approach is by developing a dynamic model tgmyedict the future aircraft
positions from their current situation and then deciding donflict will take place. However, some
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uncertainty is inevitable and has to be taken into accouthhérmodel at the risk of not offering a

reliable prediction. On the other hand, such models are&jlginon-linear and will be constrained

to consider just a few aircraft in order to be solved in a raabte time. The approach proposed in
the next chapter is about basing the model on previous irstiom like a flight plan. Notice that there

are models for finding the optimum trajectory for an airboaireraft and they are efficient enough
(see, e.q.[1222]), however, itis not easy to extend such taddedealing with more than one aircraft

and eluding conflicts among them. It would be relatively easgreate such model but it would be
computationally unmanageable.

In the next chapter we present a model based on mixed intiegar [programming to solve
conflict avoidance problems, using only two maneuvers tadaconflicts: velocity and altitude
changes. It is a dynamic model that can manage a great nurhbécaft and that for each time
period under consideration yields the altitude (i.e. flyliegl) and the speed the aircraft should fly
so that collisions are avoided.



Chapter 2

Conflict Avoidance: 0-1 linear
models for Conflict Detection &
Resolution

The Conflict Detection and Resolution Problem for Air Trafflow Management consists of decid-
ing the best strategy for airborne aircraft so that thereusrantee that no conflict takes place, i.e.,
all aircraft maintain the minimum safety distance at evémetinstant. In this chapter, two integer
linear optimization models for conflict avoidance betweey aumber of aircraft in the airspace are
proposed, the first being a pure 0-1 linear which avoids aisfliy means of altitude changes, and the
second a mixed 0-1 linear whose strategy is based on altétndespeed changes. Several objective
functions are established. Due to the small elapsed timésthequired for solving both problems, the
approach can be used in real time by using state-of-theigetchnteger linear optimization software.

The main contributions of this chapter are as follows:

1. A new point of view has been adopted, so that it does notddbk CDR problem by directly
modeling the aircraft trajectories nor the physical lawsamwhich the aircraft have to fly.
On the contrary, the approach rests on the idea of decongpt®nproblem, using the aircraft
trajectories that actually incorporate such physical lamngd the airlines preferences, and with
a (hopefully, small) room for maneuver proposes the needaflict avoidance maneuvers, if
any. Additionally, only linear models are required whiclm ¢ computed in very small elapsed
time.

2. Two novel optimization models are proposed. The first gree pure 0-1 linear model, aimed

17
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at changing altitude levels (i.e., forcing the aircraft tiond or descend in order to avoid con-
flicts). The second model is a mixed 0-1 linear one that sahegroblem by changing aircraft
altitude levels and speed. Both models are very tight amuh, tequire very small elapsed time
for solving even large-scale instances, so, they can be insegl time for realistic conflict
detection and resolution problems.

. The approach is flexible, allowing non-linear trajeasriwhich can be the beacon points of

the currently used flight plans, or the future freely decidptimal trajectories in the context of
"Free Flight”, or the simple straight-line extrapolatiohtbe speed vector at a given instant, as
in [16,[185]. Speed is not restricted to be constant as itdsctse in many other approaches
found in the literature.

. Additionally, due to its really small elapsed times, opprach is specially suited for being

used in long term time horizons as well as in wider airspag®ns that may comprise several
air traffic control areas in which the aerial space is divided

. Finally, both models are scalable and can be easily egteadd improved with new features

or restrictions, e.g. allowing alternative routes as adtkionflict avoidance maneuver, as will
be outlined later (although it is left for further research)

Based on the computational experience reported in Séc#hm2 can point out that our first

model is tighter than the second one (and, then, it requiredler computational effort), so, it allows
considering wider aerial zones with a higher set of airaatft a longer time horizon than the second
model. Nevertheless, this second model is quite efficienpming to the computational experience
to report below. On the other hand, the first model has the lslalvof only allowing altitude level
changes, a manoeuvre that may not be the preferred choicadsgmgers because they are more
uncomfortable. Nonetheless, in most real-life cases venydf such altitude level changes should
be necessary and this model will be useful and enough in mmastigal situations. Further more, it
may be the preferred manoeuvre, as opposed to speed chsingeghe latter may imply greater fuel
consumption and be more uncertain than the former. Actuediipcity changes are not considered
a very efficient maneuver in the literature; see Frazzolil.ef®08], Jardin [138] and Peyronne et
al. [190], among others. Moreover, in many papers aircralbaity is assumed to be constant, see
Pallottino et al. [[185], Christodoulou and Costoulakis][6Rreleaven([22]7], Gao et all [111] and
Cafieri and Durand [50], among others. To summarize, theqz@g models are both efficient and
useful in most real-life situations, the second being moregrehensive than the first one.

The remainder of the chapter is organized as follows: Selid technically introduces the
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problem and some notation. Sectlon]2.2 presents the firselmitgl preprocessing and its pure 0-1
formulation. Sectiof 213 presents the second model, wittheseew elements, its preprocessing and
its mixed 0-1 formulation. Sectidn 2.4 reports the compaitet results for two testbeds of realistic
airborne aircraft conflict instances. In Section] 2.5 furtikeas and extensions are presented. And,
finally, sectiorl 2.6 concludes and outlines future work.

2.1 Problem description

A conflict is an event in which two or more aircraft are withim@nsafe distance from one an-
other at a given instant. The minimum safety distance isglfgi 5 nm (hautical miles) of horizontal
distance between aircraft outside the TRACON (TerminaldR@gpproach Control) and 3 nm inside
the TRACON, or at least 1000 feet of vertical separation {iimeent en-route separation standard at
lower altitudes).

Let us consider a set of aircrafi. For each flightf € F, a dynamic trajectory model is
required to project the states into the future in order taligtevhether a conflict would occur. This
projection may be based solely on current state informdtamn, a straight-line extrapolation of the
current speed vector) or may be based on additional proakuifiormation such as a flight plan. In
both situations there is generally some uncertainty imegtng the future trajectory. It is represented
via a finite sequence of waypointgy;. A waypoint is a reference point in the physical space that
consists of a tupla with latitudinal and longitudinal cdaates, generally with respect to a reference
geoid. At each waypoint, we also know the scheduled speenhéwing to the next waypoint. Let
also defineW} and Wy as the sets of all waypoints but the first and the last onepectisely, to
transverse by flight.

Let us assume that the route path for each aircraft is brok@mdnto segments (not nec-
essarily with equal size), altitude level and speed threemth one of these segments, such that the
number of waypoints for every aircraft is sufficiently repeatative of the route. Thus, the distance
between two given consecutive waypoints (i.e., the lenfthsegment) should be less than 5nm (ac-
cording to the current en-route separation standard atrlaltizudes). So, 2nm can be a reasonable
distance. In order to justify this choice, assume the extrsituation where two aircraft approach
each other head-to-head from an initial distance of 5.1ranr(s conflict occurs), but, after 1 nm of
each route they are at the distance of 3.1nm each other. ftithé instant, assume that they turn
180 degrees and come back to their initial waypoints. Eacadi has been flying 2nm, in total,
that is precisely the distance that we have assumed redsarab no conflict has been detected, in
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spite that the aircraft have been in conflict since they haanlat a distance of 3.1 nm one from the
other. However, this distance is big enough to considerigheaf a real collision. Notice that any
more realistic situation is more favorable than the casedascribed, since the minimum distance
between the aircraft would be greater than 3.1 nm. Moredkerdistance between two consecutive
waypoints, although important, is case dependent (and, e input to the model of choice) and,
then, it does not affect the tightness and, so, the validith@models presented in this work.

Additionally, Ietﬁzf = {ng,ng +1,... ,Elf} denote the set of the allowed altitude levels for
aircraft f to traverse waypoint, for f € F, i € Wy. In order to prevent infeasible altitude level
changes, let us defirﬁlf (Kzf) as the max (min) number of altitude levels that aircyfafs allowed
to climb or descend from waypointto the next one, foy € F,i € W, . Let also define{ andzlf
as the scheduled time and altitude of aircréfivhile traversing waypoint in its route, forf € F,

’iGWf.

We will consider that a conflict takes place if two aircrafivierse two waypoints in their
respective routes that are too close to one another, witeimal interval of time. To determine the
bounds of such interval let us resort to a conservativeegjyatand definenAj.i ’f = max{\t{ 1
tlf|, |t§?+1 - t§|} as the smallest time interval that is allowed for aircréfind & to reach their next
waypointsi 4+ 1 and;j + 1 from the waypoints andj, respectivelyy f, k € F, (i,7) € Wy x W,

So, the CDR problem to tackle consists of detecting all cotsfin thealert zone(being this
one an aerial sector or even the whole airspace) and avoitliearg by using a solution provided
by very tight 0-1 linear optimization models that are solmdusing a state-of-the art optimization

engine. The proposed models suggest some changes (as fess#tdg) in altitude and speed of the
aircraft scheduled trajectories.

2.2 Collision Avoidance via altitude level changes

2.2.1 Conflict Detection

The scheme proposed for aircraft conflict detection is sinfdr the two types of CDR prob-
lems to tackle in this work, namely, CA via altitude level nbgas and CA via altitude level and speed
changes. Obviously, it helps to decide if a conflict can bedmd if any, but it also helps to finding
at which pair of waypoints a conflict would occur. Moreovére tconflict detection scheme have
some differences between both approaches. The basic iddgefaltitude level change scheme is as
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follows.

For a pair of aircraft(f, k) € F x F, there is gpotential conflictat the pair of waypoints
(i,7) € Wy x W if the following conditions hold:

1. The waypointg andj have a smaller distance than the minimum allowed.

2. The time instants are such thét < tfﬂ and tf < t{H. In order to justify this condition,
suppose, on the contrary, that e.g., the second inequalég dot hold, then, when aircraift
reaches waypoin{, aircraft f is at waypoint; + 1, at least, and, so, no conflict between the
aircraftk and f is possible at the pair of waypoints 7)).

3. The altitude levels are such th_a{t < zé‘? andgé? < Elf since, otherwise, the aircraftand &
cannot be at the same altitude level while traversing thepaiaysi and ;.

Let Pk ¢ Wy x W, denote be the set of agfiotencial waypoint conflictbetween the
aircraft f andk, andFf  F be the set opotential aircraft conflictavhere aircraftf is involved, for
f,k € F. Notice thatk € F/ iff P+ £ .

Finally, we can define a partition of the aircraft sét= J,.; F;, Fi N F; = 0,Vi,j € I,
wheref € F; = Ff c F;,Vf € F,Vi € T for splitting the problem into subproblems.

Similarly, for a pair of aircraft(f,k) € F x F, there is acurrent conflictat the pair of

waypoints(i, j) € Wy x Wy if (i, 5) € P/* andz] = 2.

Finally, let CP/F Wy x Wj, denote the set of alturrent waypoint conflictbetween
aircraft f andk, andCF/ ¢ F be the set oturrent aircraft conflictsvhere aircraftf is involved,
for f,k € F. Notice thatc € CF7 iff Pk £ (),

As an illustration, let us consider the aerial zone depiateigure[2.1, where three aircraft
cross their paths. Particularly, we can observe that waypgis too close to the waypoints andjg,
which are within the safety disc drawn around waypeéintSuppose that aircraft 1 is scheduled to fly
through the waypoints, andiz at time instants (e.g., seconds) 33 and 48, respectivalyamecraft 2
is scheduled to fly through the waypointsand jg at the time instances 54 and 71, respectively, (i.e.
th =33t} =48, t?S = 54, t?G = 71). Then, there is not a potential conflict nor a current conéitc
the pair of waypointsis, js) (i-., (iz, js) € CP"? C P'?), sincet?, > t}.. However, there might

be a conflict at the waypointss, j5). So, the vaIues?G, t§7, t1, andt;, should be checked to evaluate
it.
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Figure 2.2: lllustrative case for different altitude levelf the routes of the aircraft 1 and 3

On the other hand, we can observe in the figure that wayppisttoo close to the waypoints
k4, ks andks. So, suppose that e.g;, = 63,¢;. = 78,t} = 65 andt} = 85. Then, we find out
thattj, <t} < t; and, so, the firstand second conditions given above holdhéopair of waypoints
(i4, k4) to belong to the set®! andCP'3. To check if the third condition hold, the paths of the
aircraft 1 and 3 depicted in Figure 2.2 should be analyzecherakesr and z (i.e., abscissa and
height). We can observe that both aircraft fly at differetitiade levels and, so, no current conflict
takes place, thugis, ks) ¢ CP'?. However, suppose thaf = 1,7} = 2andzj, = 1,7, = 1,
thenz}, = zj, = 7, <z, and, thus(is, ks) € P13, since aircraft 3 is allowed to fly at altitude
level 1 in waypointk, and, so, a conflict may occur at the pair of waypoifts k4) if such change is
introduced by the model given below.
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2.2.2 Model formulation for conflict resolution

The pure 0-1 model that we propose deals with the CDR probleohanging (i.e, climbing
or descending) altitude levels for the aircraft in ordervoid current conflicts It considers two ob-
jectives in a composite form, i.e., the maximization of redgafor the aircraft flying on the scheduled
altitude levels and the minimization of penalizations ditadle level changes for the aircraft flying at
levels different from those scheduled ones. Both objestare optimized at all the given waypoints.
So, the model assigns altitude level changes, if any, toitheaét in order to guarantee that there will
be no conflict among them.

Parameters

c{ and h{, reward and penalization for changing (i.e., climbing oradesling) the scheduled alti-
tude level for aircraftf at waypointi, respectivelyy f € F,i € Wy.

0-1 variables

qﬁ{ 5. Will take on the value 1 if aircraff is at altitude leveh at waypoint; in its route path and 0,
otherwiseYf € F,i € Wy, h e L].

ul.f, will take on the value 1 if aircraff changes its altitude level from waypointo the next one and
0, otherwiseyf € F,i € W;.

The objective function includes two terms, namely, the reMfar having the aircraft flying
at the scheduled altitude levels and the penalization famdlat different levels than the scheduled
ones.

The model is as follows,

max Z c{gb{h — Z h{l/if (2.1)

feFieWy h==] feFiew;

A
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subject to:
N ol =1 VieFiewy 2.2)
hec!
v/
gb{,h S Z ¢{+1,h+z VfeFieW,he c! (2.3)
e=v/!
Vi,
oln< D Oline VfeFieWpher] (2.4)
ZZZ{—I
6l —oln<vl VieFiewr hecr! (2.5)
¢l v b, <1 VfeFkeF (i) e PPrhe ol nch (2.6)
ol vl €01} VfeFieWphecr!. @2.7)

Constraints[(2]2) guarantee that all aircraft traverseyewaypoint at only one altitude level. Con-
straints [(2.B)£(2)4) ensure “soft” altitude level chang€enstraints[(Z]5) give the number of altitude
level variations from one waypoint with respect to the nax.oConstraintg (216) avoid the conflicts.
Finally, the 0-1 character of the variables is given[byl(2.7)

Notel: It is assumed in the model that an aircraft can clindbadascend without modifying
the speed, by an increase and reduction of power, resplgctive

Note2: The integrality condition of variabh{ can be relaxed (i.e., Iegf € RT) since it only
appears in constraint_(2.5), where it is forced ta/ée} 1 if and only if ¢>{7h =1 andgbfﬂﬁ =0,
and zero otherwise, since it is penalized in the objectivetion and so it must take on the smallest
possible value.

2.3 Collision Avoidance via altitude level and speed change S

2.3.1 Definitions

Hereafter we expand the model presented in Subsdctior td.2aRe also into account speed
changes. To that end, the following additional parametedsvariables are defined.

Parameters
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sz and %{ , lower and upper bounds for the feasible time instant at waidraft f traverses the route
segment — (i + 1), respectivelyVf € F,i € Wy

fk

CH reward for avoiding the conflicts between the aircréfind & at the waypoints and; due to

time coincidenceyf € F,k € F/, (i,j) € P/H*.

Variables

Tif , nonnegative rational variable that represents the tintarimst which aircraff transverses way-
pointi, Vf € F,i € Wy.

fyi’f ’j’“ , 0-1 variable that takes on the value 1 if there is no conflitiveen the aircrafiff andk at the
waypointsi and; due to the timing (and, so, independently at which altituel they traverse
their respective waypoints) and 0, otherwigg,c 7,k € F7/, (i,j) € PI*.

ﬂif’j’“, instrumental 0-1 variable, it will take on the value 1 if aift & arrives at poingj before aircraft
f arrives at point, and it zero otherwise.

2.3.2 Conflict Detection

As we mention in Subsectidn 2.2.1, although the scheme fufticbdetection is very similar
for the both models that we propose in this work, there areesdifferences. Let the following slight
modification: For a pair of aircraftf, k) € F x F, there is gotential conflictat the pair of waypoints
(i,5) € Wy x W if both the conditions 1 and 3 stated in Secfion 2.2.1 hold arstiead of condition
2, the following one holds too:

e The time instants are such thet+ >, ¢} < th + 3, 7 andt] + 3, 0 > th o+
ijq gj?,. In order to justify this condition, suppose, on the contrahat e.g., the second
inequality does not hold, then even if aircrafreaches waypoint the soonest possible time
instant, aircraftf is at its waypoint + 1, at least, and no conflict between the aircfaéind f
is possible at the pair of waypoints, j).

Similarly to the problem with altitude level changes onhette is acurrent conflictfor a pair

of aircraft (f, k) € F x F at the pair of waypointsi, j) € Wy x Wy if (i,j) € PI*, t/ < th

ko 4f f— Lk
t7 <tjy; andz; = zj.
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2.3.3 Model formulation for conflict resolution

As in the pure 0-1 model, the first term in the objective fumetiewards the aircraft that do
not change their scheduled altitude level, the second temalizes the number of "jumps” (climbing
or descending) of the aircraft taken into consideration taechird term rewards the number of con-
flict resolutions by avoiding time coincidence. Notice ttret model presented in Section 2]2.2 does
only consider the first two terms.

The model is as follows,
Kk _fk
max Yol Y wlul+ > st (2.8)
fEF €Wy h=2] fEFiew; VfeF keF/! (i,5)ePlk

subject to constraint§ (2.2)-(2.5) and

—t{<u vfeF 2.9)
-l <y vieF (2.10)
- <# vieFie Wy (2.11)
tha -t >t vreFiews (2.12)
foo_
Ty —thy, <€ VFEF (2.13)
! !
bl ~ Tiwyg S € VIES (2.14)
1.k (Tz‘f_Tl'g) £k of ok %
Wy S s mlBly Ve FokeFL (i) e Ph (2.15)
moas’. ’ ’
[2¥)
Ik (Tk T ) £k k k
Wy S g Amly(L=B7) VfeFkeF ., (ij)ePh (2.16)

oL+ ok, <149l VreFkeF, () eP her), nily,

(2.17)
7/ eRT VfeFieWwy (2.18)

ol vl €01} VieFiews hec! (2.19)
VBl efo1y VieFkeF, (i) e P, (2.20)

where the parameteiin constraints[(2.13) anf (2.114) is half the length of theetinterval around the
scheduled arrival time. Its purpose is to avoid to constitagraircraft arrival time to an isolated value.
The aim of this requirement is to avoid changing schedulgtitfimes in other air zones, which could
lead to new conflicts where they had previously been avoidée parameter in constraints[(2]9)
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and [2.10) is half the length of the time interval around ttteesluled "departure” time. It will allow a
small margin to decide when the aircraft fly into the confliohe. The parameten{ ’f in constraints
(2.15) and[(2.16) is the smallest possible value, big endogjuarantee that the right-hand-side of
both constraints is positive, since their left-hand-sila 0-1 variable.

Constraints[(Z]9) and (2.110) set the initial time instamttf@ aircraft to arrive to the conflict
zone. Constraint$ (2.111) arld (2.12) ensure “soft” speedga® Constraint§ (2.113) arid (2.14) force
the aircraft to arrive at their destination waypoints aim@st) their previously assigned time instant.
Constraints[(Z.17) avoid the conflicts together with thelary constraints[(2.15) and (2.1.6), whose
purpose is to force the vz:1riable,§f’j"C to be zero if aircraftf and k traverse the waypointsand 7,
respectively, within a small time interval (i.e., the difface of their time instants be smaller than
m A{ f). Finally, constraintd (2.18)-(2.20) define the charaofdéhe variables.

Note 1: As in the pure 0-1 model, the integrality condition/afiableuif can be relaxed (i.e.,
let uif € R™), as it can be done with variabiﬁf’f for similar reasons.

Note 2: It is assumed in the model that in case of requiring e.gpeed increase due to a
latitude level change the issue can be addressed via albadfaice of the parameters of the model,
particularly the speed bounds to allow a speed in accordaithehe altitude level change.
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2.3.4 Tightening the model

Reducing the parametenfk

The easiest candidate for the parameter would be the twtaldonsidered in the problem, but
a tighter candidate can be calculated as follows,

f, max {| Zs<z s Zt<] tt | | Zs<z Zt<] |}

mg; = N
7-]

+1. (2.21)

Again, we can even reduae{ ’f by taking into account that so far, the aircraft are forcedrto
rive at their destination waypoints at their assigned aftime instants. Then, let us use in expression
@23) the foIIowing formulaem PSS thy = Ssstd andsup {5, 6l o], — 5,7 )
instead of) ___, t; anozs <it !, respectively. Similarly, we can replade, <j 7 and > i<ty with
analogous expressions.

Special set of constraints

The above model for collision avoidance via altitude leved apeed changes just presented
above can be tightened by appending the constraints

BIF <l vfeF ke F (i,5) e PP (2.22)

slk <k vfeF ke F (i,5) e PP (2.23)

sl =1-6 vieF keF (i5)epi* (2.24)
v+ ﬁjf 1+4f, VfeFkeF (i,5) e PP (2.25)
VIE < BIE v Al VFe Fike FLG,5) e PR (2.26)

Constraints[(2.22)-(2.26) tighten the model allowing apdmiant improvement in the com-
puting time needed for solving the problem. Let us enlightesir “meaning”:

(2.22) (2.23) if aircraft k arrives at pointj before aircraftf arrives at point, then it must arrive at

pointj — 1 earlier and sqﬁf - = 1. Likewise, aircraftf will arrive at: +1 later, soﬁZ+1 ;=1
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(2.24) if aircraft k arrives at pointj before aircraftf arrives at point (i.e. ﬂif ’j’“ = 1) then it cannot
. "
be true the opposite (|.e§3.j7l.f =1).

(2.28) if aircrafts f andk do not coincide on time at poinisandj respectively (i.eyif’j’“ =1),and
aircraft k arrives at pointj before aircraftf arrives at point (i.e. ﬁif ’j’“ = 1), then aircraftsf

andk do not coincide on time at poinisand;j — 1 either (i.e.yf;kl ;= 1).

(2.28) if aircrafts f andk do not coincide on time at poinisandj respectively (i.e%f’j’“ =1),and
aircraft f arrives at point before aircraftt arrives at poing (i.e. @f, ’j’“ = 0), then aircraftsf
andk do not coincide on time at poinis— 1 andj either (i.e.%f;k1 ;= 1).

We have tried too with an alternative series of constraints:

dE =k Ve FkeF (ij) e PHF (2.27)
E =k, VfeFkeF (ij) e PP (2.28)
W =afh, VieFkeF (i) e P (2.29)
v =alt vieF ke F (i,)) e PP (2.30)

Constraints[(2.27)-(2.30) actually reduce the LP feasplece, while exclude some non op-
timal 0-1 solutions, what produces a much tighter model tref, allows to obtain a smaller elapsed
time for solving the problem. To understand their meaning #e reason based on which the ex-
cluded 0-1 solutions are not optimal, let us recall first hwaariabIeSygf’jk work. If the waypoints
1 andj are too close, the conflict between the aircrafind k is avoided, since the time instant at
which each aircraft traverses the respective waypoint#fieiently distant, them{ ’j’“ = 1 and zero,
otherwise. So, the above constraints force to avoid a pdatiset of possible conflicts between the
two aircraft f andk (i.e., conflicts in consecutive waypoints), by one and omig of the possible
manoeuvres, i.e. changing the altitude level or the speedalfkillustration, consider the situation
depicted in Figur€ 211, and suppose that k4), (i4, ks ), (i4, ks) € P13, then if e.g., the potential
conflict in (i4, k4) is avoided by delaying aircraft 3 so that both aircraft 1 ardb3iot coincide on
time at that waypoint, then the potential conflic{in, k5) should be avoided taken advantage of such
delay and not forcing a new maneuver, e.g., forcing airdradt descend an altitude level.
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2.4 Computational experience

We report the results of the computational experience obtaivhile optimizing the pure 0-1
model and the mixed 0-1 model presented in secfions|2.2.2.3&
been implemented in a c++ experimental code and have be#mizgd by using the sate-of-the-art
engine CPLEX v12.1. The computations were carried out in arfe€l Core 2 Duo 4, 2 GHz and 2
Gbytes of RAM.

8, respectively. The models have

Two sets of testbeds of randomly generated instances haveused in our experimentation,
24 instances for the first testbed and 25 instances for thesdbend one. For each instance 10
simulations have been performed, such that the averagé® afomputational results are reported.
The simulations differ one from the other for each instamcgl) the conflict zone and (2) the arrival
time instances of the aircraft (chosen at random throughaouiform distribution) to the conflict
zone along the time horizon through any of the four sides efdbnflict zone (all of them with
equal probability) and any waypoint of the sides (we have aseormal distribution with a standard
deviation equal to 1). A random number of potential altitdeleels ranges between 1 and 8 per
aircratft.

The second term in the objective functidn (2.1) has been fmethe pure 0-1 model (i.e.,
minimizing the number of altitude level changes). The aamsts [2.22)1(2.26) have been also ap-
pended to the mixed 0-1 model. The objective functionl(2a the following parameters in the
testbed:clf =0, hlf =1 ands{’;C = 10, so, the number of altitude levels is minimized and the numbe
of conflict resolutions by speed changing is strongly mazedi

Tableg 2.1 and 212 show the problem dimensions in the 24ios$an the testbed for the pure
0-1 model and the 25 instances in the testbed for the mixedh@del. The headings are as follows:
|F|, number of aircraftCZ, conflict zone side length (in nautical milesJ;|, time horizon (in secs.);
|Urer CF'|, number ofcurrent aircraft conflicts | User F7|, number ofpotencial aircraft con-
flicts; | U ez recrr CPP*|, number ofcurrent waypoint conflictsand | U ;¢ 5 e s P¥*|, number
of potencial waypoint conflict3Me can observe that the number of aircraft, conflict zone kdgth
and time horizon have realistic dimensions.

The number of conflicts that took place in the simulationseforh instance has been measured
in 4 different ways, namely, the number@irrent aircraft conflicts the number opotential aircraft
conflicts the number oturrent waypoint conflictsand the number gotential waypoint conflicts

Tabled 2.8 and 214 show the dimensions of the pure 0-1 anddmbdemodels, respectively.
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The headings are as followm andm*, number of constraints before and after CPLEX preprocess-
ing, respectivelyym: ratio (in %) betweenn andm* (i.e., %); n0landnc, number of 0-1 and
continuous variables, respectively;andn*, number of variables before and after CPLEX prepro-
cessing, respectively;n, ratio (in %) betweem andn* (i.e., ”Tloo) We can observe in these tables
how high are the dimensions of the models.

Tableg 2.b and 2.6 report the computational results. Theihgsare as followsz;,, solution
value of the LP relaxationz,, solution value of the stronger LP relaxation (i.e., thaueabf the LP
model after appending the cuts identified by CPLEX); solution value of the original CDR prob-
lem; GAP,, andG AP;, related optimality gaps computed%%z;ﬂ% and%%, respectivelynn,
number of CPLEX branch-and-cut nodég, ¢, andt;,, elapsed times (secs.) to obtain the solution
valuesz,, z, andz;,, respectively;t;, total elapsed time from the starting of the optimizatioi,
total number of cuts identified and appended by CPLEX.

Note: Some results for the pure 0-1 model, namgly z, z;,, GAP,,, GAP, andnn, have
not been included in Table 2.5, since they are zero in alaimsts of the testbed. Additionally, the
model is so tight that the LP solution gives integer valueste (0-1) variables and then, the CPLEX
branch-and-cut phase is not been required in any of thenioss$a being the total elapsed time close
to zero in 21 out of 24 instances, and very small for the otfwexet remaining instances.

Finally, it is worthy to point out the impressively good totiest; (in secs.) that have been
required for providing the optimal solution of the mixed ®abdels, see Table 2.6.

2.5 Further discussions and extensions for the proposed mod -
els

At this section we discuss some thoughts onapglicability of our models and propose some
extensions to the proposed models.

2.5.1 On ascending or descending flight levels

We are assuming as a hypothesis that aircraft are exactlgiaea flight level while flying
through each waypoint, so if an aircraft climbs one levehfra given waypoint, say, to the next
one, sayb, the ascension must be executed completely while flyingsdggnenfrom « to b. Thus
e.g. given a segment 2 miles long, the aircraft must be abkst¢end or descend 1000 ft. (the
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Table 2.1: Dimensions of the altitude level change problenmfode[2.1[-2.]7

Case|F[|CZ| |T] |Ufe]-“0]:f| |Ufe]-"‘;cf| |Urerrecrs CPIH] |Uterrers P
pO1 | 25|50 300 15 43 36 270

p02 | 25|50 | 600 27 70 79 691

p03 | 25|100 300 8 20 29 177

pO4 | 25|100K 600 12 34 40 345

pO5 | 25 (200K 600 5 12 18 145

p06 | 50 (2001 900 22 45 100 908

p07 | 50 {200/1800 20 67 68 1295
p08 | 50 |{200/3600 18 77 65 1650
p09 | 50 {400/1800 10 25 50 681
p10 | 50 |400/3600 12 49 52 1301
pll | 65 (200K 900 36 80 138 1338
pl2 | 65{200/1800 37 125 132 2361
pl13 | 65 |200/3600 31 124 107 2588
pl4 | 65 (4001800 20 49 89 1208
pl5 | 65 (4003600 18 69 79 1861
p16 | 75|200K 900 49 100 200 1826
pl7 | 75(200/1800 46 168 187 3026
pl18 | 75|200/3600 39 171 122 3398
pl19 | 75 (4001800 26 58 125 1458
p20 | 75 (4003600 25 98 98 2471
p21 |100{400/3600 43 177 173 4433
p22 |100{600/3600 30 93 146 2682
p23 |200/400/1800 195 463 868 11610
p24 |200/400/3600 163 673 693 17665
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Table 2.2: Dimensions of the altitude level and speed chapggblem for moddl 2]B-2.20

Cas¢|F|| CZ| [T] [|Urer CF|IUser FIUserrecrs CPH | Urerrers P
mO01| 10| 50| 300 2 7 6 48
mO02| 10| 50 | 600 3 9 8 75
mO03| 10 {100, 300 1 3 3 21
mO04 | 10|100, 600 1 4 5 51
mO05| 10 {200, 600 1 2 4 40
mO06| 20| 50 | 300 9 27 20 162
mQ07| 20| 50 | 600 17 46 48 406
mO08| 20 {100, 300 6 13 19 109
mO09| 20 {100, 600 6 15 24 203
m10| 20|200, 600 4 7 16 104
m1ll| 25| 50| 300 15 43 36 270
m12| 25| 50| 600 27 70 79 691
m13| 25|100, 300 8 20 29 177
m14| 25|100 600 12 34 40 345
m15| 25|200 600 5 12 18 145
m16| 50|200 900 22 45 100 908
m17|50{200|1800 20 67 68 1295
m18| 50|200|3600 18 77 65 1650
m19| 50|400|1800 10 25 50 681
m20| 50|400|3600 12 49 52 1301
m21| 75|200, 900 49 100 200 1826
m22| 75|200|1800 46 168 187 3026
m23| 75|200|3600 39 171 122 3398
m24| 75|400)1800 26 58 125 1458
m25| 75|400|3600 25 98 98 2471
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Table 2.3: Dimensions of the pure 0-1 model2.1-2.7

Case m m* rm(%)| n n* (rn(%)

pOl | 3052| 1493 | 48.9 | 1081| 537 | 49.7

p02 | 5222 | 3758| 72.0 | 1735| 1264 | 72.9

p03 | 2265| 1906| 84.2 | 844 | 714 | 84.6

p04 | 3275| 2385| 72.8 | 1231| 909 | 73.8

p05 | 2007 | 1428| 71.2 | 787 | 562 | 71.4

p06 | 8634 | 7431| 86.1 | 3115| 2675| 85.9

p07 | 6876| 6596| 95.9 | 2631| 2509| 95.4

p08 | 6668 | 5771| 86.5 | 2564 | 2211 | 86.2

p09 | 5558 | 5425| 97.6 | 2095| 2035| 97.1

pl0| 5071|4941 | 97.4 | 1941 1883| 97.0

pll (11648113746 97.7 | 4164 | 4048| 97.2

pl2 (1308212788 97.8 | 4777| 4648| 97.3

p13 (1039610024 96.4 | 3963 | 3799| 95.9

pl4 | 9240| 8242 | 89.2 | 3427 | 3037 | 88.6

pl5 | 6867 | 6698 | 97.5 | 2595| 2520| 97.1

pl6 (1503214668 97.6 | 5296| 5140| 97.1

pl7 (1635915942 97.5 | 6007 | 5828| 97.0

p18 1384713592 98.2 | 5178 | 5064 | 97.8

pl19 (1184811529 97.3 | 4400| 4262 | 96.9

p20 (10838 9440| 87.1 | 4054 | 3524 | 86.9

p21 1711716583 96.9 | 6406| 6179| 96.5

p22 (1489314519 97.5 | 5519| 5353| 97.0

p23 (6726065831 97.9 |2265422058 97.4

p24 13309232789 99.1 {11681]11547 98.9
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Table 2.4: Dimensions of the mixed 0-1 modellP.8-2.20
Case m m* |rm(%)| nO1 | nc n n* (rn(%)
mO1| 960 | 746 | 77.7| 353 | 51 | 404 | 313 | 77.5
mO02| 1440| 1064 | 73.9| 503 | 71 | 574 | 424 | 73.9
mO03| 562 | 453 | 80.6| 219 | 36 | 255 | 208 | 81.6
mO04| 1056| 796 | 75.4 | 367 | 53 | 420 | 319 | 76.0
m05| 957 | 795 | 83.1| 333 | 51 | 384 | 318 | 82.8
mO06 | 2783| 2085| 74.9 | 1002| 136| 1138| 839 | 73.7
mO07| 6039| 4215| 69.8 | 2009 | 239 | 2248| 1508| 67.1
mO08| 2347| 1907 | 81.3 | 875 | 131 | 1006| 812 | 80.7
mQ09| 3971| 3064 | 77.2 | 1364 | 192 | 1556| 1189| 76.4
ml10| 2192| 1665| 76.0 | 793 | 117| 910 | 699 | 76.8
ml1l| 4570| 3475| 76.0 | 1612| 214 | 1826| 1361 | 74.5
ml12|9918| 7012| 70.7 | 3204 | 365| 3569 | 2412 | 67.6
ml13| 3295| 2572| 78.1 | 1207| 171 | 1378| 1054 | 76.5
ml4| 5976| 4381 | 73.3 | 2054 | 273 | 2327 | 1697 | 72.9
ml15| 3265| 2600| 79.6 | 1181| 178 | 1359| 1084 | 79.8
m16(15897 12094 76.1 | 5339| 705 | 6044 | 4539 | 75.1
m17(2132114073 66.0 | 6920| 866 | 7786| 5289 | 67.9
ml18(2703217451 64.6 | 8584|1057 9641 | 6472 | 67.1
m19(12690 9302 | 73.3 | 4262|580 | 4842| 3614 | 74.6
m20(2182013947 63.9 | 7015| 883 | 7898| 5450| 69.0
m21(2924421485 73.5|9725(1215/1094Q 7891| 72.1
m22(4793932576 68.0 |153201854{1717411780 68.6
m23(55906 36855 65.9 |174552132/1958713376 68.3
m24 (2650219513 73.6 | 8847|1186/10033 7465| 74.4
m25(4186027504 65.7 |131941651/1484510268 69.2

standard vertical distance between flight levels) i.e., fiy1\& climbing anglex such thattg(a) =
0.189/2 = «a ~ arctan(.095) ~ 0.094 radians, or els§.42°, what seems reasonable. But situations
may present in which, for a particular aircraft, it woulddakiore to ascend or descend a flight level
than the distance fromto b, (e.g., we may need to use much shorter segments, e.g. ¢thafamnight
difficulties to ascend 1000 ft. in half a mile, at an anglewaftan(0.189 x 2) ~ 0.36rad = 20.70°).

There is an additional problem: our constraints guararttaed particular pair of aircrafts
avoid all conflicts by flying at different flight levels in theawpoints, but how can we guarantee that
they do not come into a conflict between those points whileismescending and the other one is
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ascending. We will discuss this issue below and show howlt@ sbe problem and how to relax the
hypothesis.

Ascending (descending) in more than one step:

We can take into account that it may take two or more stepscenals(descend) a flight level,
by doing what follows:

re-define the variablasjih angS{h = 1 if aircraft f traverses point at a height between flight
levelsh — 1 andh + 1. And constraints[(Z2]2)-(21.4) could be replaced by sometcainss that took
into account some “steps” for changing the altitude leved,,det us propose the following set of
constraints so that it takes up to t@egment$o ascend or descend a level:

Table 2.5: Computational results for the pure 0—1 mbdeP2#1 -
Case 1, ts tip ty nc
pO0l|<0.01] O |<0.01|<0.01{<0.01
p02 |< 0.01|< 0.01|/< 0.01|< 0.01] 15
p03|< 0.01|< 0.01|< 0.01|< 0.01] 1
p04 |< 0.01/< 0.01/< 0.01|< 0.01] 19
p05 |< 0.01]< 0.01|/< 0.01{< 0.01}< 0.01
p06 |< 0.01{< 0.01|< 0.01|< 0.01| 44
p07 |< 0.01]< 0.01|/< 0.01|< 0.01] 72
p08 |< 0.01{< 0.01|< 0.01|< 0.01| 166
p09 |< 0.01|< 0.01|< 0.01|< 0.01] 1
pl0|< 0.01]< 0.01|/< 0.01{< 0.01}< 0.01
pll|< 0.01|< 0.01/< 0.01|< 0.01] 38
pl2 |< 0.01{< 0.01/< 0.01|< 0.01] 10
pl3 (< 0.01|< 0.01|< 0.01|< 0.01] 5
pl4 1< 0.01|{< 0.01|< 0.01|< 0.01] 54
pl5(< 0.01{< 0.01|< 0.01{< 0.01| 4
pl6|< 0.01] 1 1 1 80
pl7]1<0.01] 1 |<0.01|<0.01] 14
p18 |< 0.01|< 0.01|< 0.01|< 0.01| 37
p19|< 0.01{< 0.01/< 0.01|< 0.01] 16
p20 [< 0.01{< 0.01{< 0.01|< 0.01| 19
p21 (< 0.01|< 0.01|< 0.01{< 0.01| 6
p22 |< 0.01|< 0.01| 1 1 80
p23 2 18 15 18 311
p24 (< 0.01] 4 3 4 58
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Yool <2 VieF, iew (2.31)
her!

1
Sl <> Olip VEF. iewy her] (2.32)
=—1
1
Slon< > ¢l ., VEF, ieW, her! (2.33)
=—1

Ol ipt Ol <ol ol VIEF, iewr her! (2.34)

Ot i SOl ol VfEF, iews her] (2.35)

oLyt dln <Ol +1 ViEeF, iew, her] (2.36)

Table 2.6: Computational results for the mixed 0-1 m

Case z, 2s Zip  |GAP,(%)|GAP,(%)| nn| t, ; t; | nc
mO01| 442.02| 25.00 | 25.00 - - 0 |<0.01|<0.01{<0.01|<0.01] O
m02| 702.86 | 44.00 | 44.00 - - 0 |<0.01|<0.01{<0.01|<0.01] O
mO03| 197.56| 20.00 | 20.00 - - 0 [<0.01|<0.01|<0.01|<0.01| O
m04| 486.63| 50.00 | 50.00 - - 0 [<0.01|<0.01|< 0.01|<0.01f| O
mO05| 387.03| 31.00 | 31.00 - - 0 [<0.01|<0.01|<0.01|<0.01| O
mO06| 1490.52| 58.00 | 58.00 - - 0 [<0.01|<0.01|< 0.01|< 0.01| 6
mOQ7| 3892.76| 258.00 | 258.00 | 2080.65 0.00 0 |<0.01|<0.01{< 0.01{< 0.01] 10
mO08| 1005.62| 33.00 | 33.00 - - 0 |<0.01|<0.01{<0.01|<0.01] O
mQ09| 1929.84| 210.00 | 210.00 | 1405.56 0.00 0 |<0.01|<0.01{< 0.01|< 0.01] 14
m10| 962.81| 56.00 | -56.00 - - 0 |<0.01|<0.01{<0.01|<0.01] O
mll| 2502.83| 94.00 94.00 | 3090.24 0.00 0 [<0.01|<0.01|< 0.01|< 0.01| 2
ml2| 6635.38| 544.00 | 544.00 | 1132.49 0.00 0|<001 1 |<0.01/<0.01|56
ml13| 1601.03] 89.00 | 89.00 | 3297.22 0.00 0 [<0.01|<0.01|<0.01|<0.01| O
ml4| 3254.44| 437.00 | 437.00 | 772.58 0.00 0 |<0.01|<0.01|< 0.01|/< 0.01| 22
ml15| 1375.16| 169.00 | 169.00 - - 0 |<0.01|<0.01|< 0.01/< 0.01| 53
ml16| 8628.41| 1244.65| 1241.00, 779.14 0.20 4 |<0.01|<0.01] 1 1 |133
m17|12670.84 4914.69| 4821.00, 204.00 1.65 3|<001] 1 |<0.01/<0.01|85
m18|16327.43 8069.55| 7578.00, 126.69 481 |141)<0.01| 1 5 5 (169
m19| 6555.91| 1993.00| 1993.00, 447.78 0.00 0 |<0.01|<0.01|< 0.01|< 0.01] 67
m20|12816.86 7624.00| 7259.00{ 76.33 3.96 |117/<0.01| 1 2 3 83
m21|17517.54 3214.14| 3213.00| 514.68 0.04 0 [<0.01] 2 2 3 |307
m22|29704.6712036.5311348.00 172.10 5.80 (435 < 0.01] 5 24 24 677
m23|33618.6118632.8417065.90 104.55 9.41 |482/<0.01| 4 30 31 |627
m24114087.53 4059.69| 3985.00| 308.12 3.63 3 |<0.01] 1 1 1 |108
m25|24435.3913424.8512601.00 104.32 6.22 |173<0.01| 2 9 9 |338
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Where [2.311) allows for a given aircraftto traverse a given route poinflying between two
flight levels, and constraints (Z132)- (2136) are intendeduarantee “soft” level changes.

2.5.2 Rerouting

Here we present an idea for allowing the aircraft choositeymétive routes to avoid conflicts

First, let the following additional parameters:

RY, set of possible routes to follow for aircraft vV f € F.

Wﬂ:, set of ordered route points for aircrgftand routen, Vf € F,Vn € R,
W™ = Wi\ {{W|} (all the points but the last one)
S = wi \ {1} (all the points but the first one)

Wi =wi \ {1, W} (all the points but the first and the last ones)

crf;, cost for using the route, Vf € F,n € RY.

and the following variables:

pﬁ, 0-1 variable such that its value is 1 if the aircréffollows the routen € R7 and, otherwise, it is
zero,Vf € F,Vn € RS,

Finally, we propose the following model:

min Z le . ¢{,h + Z h{,h . Vl-f + Z C’I“T{ . p{; (2.37)
fEFnERS ieW] ™ h=z!

feFners iew] her! feFmeRS
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subject to:
Z pl =1 vVferF (2.38)
nerR’f

Yool =pl VfeF, neRl, iew] (2.39)

nec!

v/
O1n < Y dloanee VIEF, neRl ieWl  her] (2.40)

=v{

Vi,
ola< D 6l VEF ne®R!, iew], herl (2:41)

Z:Z{—l
¢l —oln<vl+0-pl) VfeF, nerRf, iewl , her! (2.42)
Sl +of <1l VieFkeey (i,j)eeprher) ncy,, (243
(2.44)
ol <pl VfeF, neRf, iew!, necr] (2.45)
ol,.vlpl €{0,1} VfeF, ieWy, her! (2.46)

The third term in the objective functiof (2]37), allows usintroduce preferences among
routes.

Constraint[(2.38) guarantees that every aircraft followly one route. Constraint (2.39) is to
ensure that all flights traverse every route point at onlyfbght level, for the route selected.

Constraint[(2.39) could be replaced by, _ ./ qﬁ{h <1 VfeF, nerRl, iewl
(and constraintg (2.88) arld (2145) can be removedz to avaig tise variables;;ﬁ). Constraints[(2.38)
and [2.45b) force to select only one route per aircraft. Bdétthem force variableaﬁj.i ;, to be0 when
the route they belong to is not selected. Using both comésrdiielps tightening the model. Finally,
the integrality condition for variablpr can be relaxed.

2.5.3 Arriving at a different time

Constraints[(2.113)-(2.14) force the aircrafts to arrivénait to) the assigned arrival time. But
this may no be a requirement in some situations. In orderlowalifferent arrival times, we could
replace constraints (2.13)-(2]14), by the following ones:
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f f f
Tw,| ~ t|Wf| <et+A; VferF (2.47)
f f
t|W‘f| = Thw,| e+ N VieF (2.48)

Where variable\Z; €R* ()\5 € R*) represent the number of seconds after (before) the arrival
time that aircraftf arrives to poindV;. These variables should be penalized in the objective ifumct
with some weighting factok in these constraints is the threshold.

2.5.4 Changing flight level might imply changing speed

As we said above, ascending, descending or maintainingigfint lével might imply flying at
a different speed. To take this into account in the modeffgrdnt lower bounds could be assigned to
TZ?:Ll - Zf as a function of the changes of flight level state. In otherdspconstraintd (2.11)-(2.12)
could be replaced by the following ones:

@lop+ ol — VAl <l -7/ vfeF, iew; necl h-1er] (249
(@l p+ ¢l -0 DI <~ vreF iew; hecglh+1ec! (250)
@lp+toly—1-cl <t -7/ vieFr iew; herl her] (2.51)

If the upper bounds were also needed, the following vargaatel constraints could be added
to allow so:

azf, 0-1 variable that takes on value 1 if aircréfts ascending through segments (i + 1).
5{, 0-1 variable that takes on value 1 if aircréfts descending through segmént: (i + 1).

Cf, 0-1 variable that takes on value 1 if aircrgftdoes not change its flight level through segment
i— (i+1).
VfeF,ie Wy
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(S + ¢y — 1) < of
(¢{+1h +¢th+1 1) < ¢6;
(¢{+1h+¢zh_1) <
of +6/ +¢f =1

—f =/ —f
TZH_Tingz’ 'O‘{+Di '5{"'01' 'Cif

ST, ST

VfeF,
VfeF,
VfeF,
VfeF,
VfeF,

iEW]?
iEW]?
iEW]?
iEWf_
ieWy

heﬁ
heﬁ
heﬁ

Where [2.55) is redundant but it is intended to reinforcenttoglel.

2.6 Conclusions

41

i+17

41

h—1ecl! (252
h+1ecl! (253)

hecl!

(2.54)
(2.55)
(2.56)

Two novel tight integer linear optimization models for CaetfDetection and Resolution in a

set of aircraft in the airspace have been proposed. The fiesisa pure 0-1 linear model which avoid
conflicts by means of altitude changes, and the second ongeai il linear model whose strategy
is based on altitude and speed changes. The very small élapsefor both models shows that they

can be used in real time, particularly in the medium and lemgt and in wide airspace regions.

The approach is quite flexible and can be applied in the futerdy decided optimal trajec-

tories in the context of "Free Flight”.

Several extensions for improving the performance of botlklelseocan be proposed, particu-

larly the possibility of selecting alternative routes atidwing aircraft climbing or descending to the

next altitude level in more than one step as well as allowingetate altitude level changes to speed.

It is a subject of future research work.






Chapter 3

Introduction to Stochastic
Programming and Parallel
Computing: State of the art

The remainder of this thesis aims to contribute to the fiel@toichastic Programmihg (SP). Uncer-
tainty is the key ingredient in many decision problems [andW@&P created to approach it. However,
problems are big sized and hard to solve. Here we presequargial algorithm and a parallel
one, based dmetaheuristidsapproaches in order to help solving large scale optimingtimblems
under uncertainty (3P problems).

Basic concepts of Stochastic Programming are introducediedl as a brief state-of-the-art
description of Stochastic Programming and current allgorit designed to solve stochastic mixed 0-1
multistage problems. Finally, since our approach invoRasallel Computing (PC), we outline a brief
introduction to this field at the end of this chapter.

Chaptef#t presents the Fix-and-Relax rdinafion (FR&jme we have implemented for
this thesis and tHe FRC-J and FRQ-PJ algorithms, which ahewesolution of large scale stochastic
optimization problems by decomposing the original probiato smaller subproblems and coordi-
nately solving them by keeping the so-called non-antiarfigitprinciple. Since both algorithms are
optimality is not guaranteed. Finally, Chaptér 5 sumnearithe results of a broad
computational experience that has been carried out usinigesle algorithms previously presented,
for a particular problem: Multi-period location-allocaiti problem under uncertainty.

The remainder of this chapter is organized as follows: e8] outlines a brief state of
the art on Stochastic Programming. Seclion 3.2 presentfaitideamental concepts of modeling linear

43
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problems under uncertainty. Scenario tree modeling isaéx@dl in Sectioh 313. Sectibn 8.4 shows the
different ways of representing the Deterministic Equinéleroblem [[DEM) and Sectidn 3.5 shows
the concepts of Expected Value of Perfect Information (B\&ld Value of the Stochastic Solution
(VSS). The main algorithms in Stochastic Linear Prograngrare presented in Sectign 8.6. And
Sectiong 3.7 anld 3.8 are devoted to Stochastic Integerdnmging and its main known algorithms,
respectively. The Branch-And-Fix (BFC) algorithm is teshtseparately in Section 8.9 . Finally,
Section 3,111 introduces some basics concepts on Paraliep@mg and the libraries that will be
used for implementing the parallel algorithm presentedhértext chapter.

3.1 Introduction

Optimization is a very useful mathematical decision aid &l is widely applied in many dif-
ferent areas. Most traditional optimization models aredeinistic. However, uncertainty is present
in many real problems where some parameters cannot be kn@ninora Since the 50's, it is well
known that deterministic optimization is not appropriate ¢dapturing the uncertain behavior present
in most real situations. Very frequently, mainly in probEmith a given time horizon to exploit,
some coefficients in the objective function, tight hand sideg(rhs) vector and the constraint matrix
are not known with certainty when the decisions have to beaqawt some information is available.
Financial planning, airline scheduling and production distribution planning are just a few exam-
ples of areas in which ignoring uncertainty may lead to worseven wrong decisions. Several ways
to formalize this uncertainty have been studied leadingfferént approaches to solve stochastic op-
timization problems. However, it is not until the 1980s {B& is beeing broadly applied in real-world
applications, with the help of new advances in computemeltigies that allowed the solution of big
size models. This increased the interedt ih SP, yielding advances in mathematical theory. New
problem formulations appear almost every year and thig#gi$ one of the strengths of the field.

The need to incorporate uncertainty in mathematical progreng models resulted in the field
of SR which, basically, deals with mathematical programshith some parameters are random vari-
ables. Early work of Beale [34] and Dantzig [69] started fredd in 1955, followed by Charnes and
Cooper in 1959 (see [60]). Their methods had their rootsadtissical decision theory (Wald, 1950)
[234], althoug SP focuses on methods of solution and awcalyfiroperties instead of constructing
derivatives and updating probabilities.

The[Deterministic Equivalent Problém (DEM) explained irc8m[3.4 was coined by Wets
[239], and its first solution was due to Benders|[35], by ugheyso-called Benders Decomposition
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(BD); see also Birge and Louvealx [45]; Laporte and LouvdgdBg], among others. Sen and Sher-
ali in [219] have proposed a decomposition algorithm based branch-and-cut approach to solve
ffwo-stagéstochastic programs having first-stage pure 0-1 variabldsOal mixed-integer recourse

variables, where a modified BD method is developed. Escueleab. presented in [92, 98, 195] a

general algorithm to solievo-stagestochastic mixed 0O-1 problems.

In thejmulti-stag€ stochastic integer optimization problem, at each stageiside has to be
made. So, the decisions for a given stage yielded by the noadelot anticipate the information not
yet available, i.e., the corresponding variables must tetkthe same value under each scenario for a

given group of scenarios. In other words [fim@n-anticipativity | constraints (NAC) must be satisfied
(see Wets [240] and Rockafellar and Wets [211]). NAC aréhferexplained in Sectidn 3.3.2.

Alonso-Ayuso et al. [[14,15] addressjedulti-stage stochastic mixed 0-1 problems where
both binary and continuous variables appear at any stadedinhe horizon, and where uncertainty
appears only in the objective function coefficients and ke r

Large-scal@nulti-stage Stochastic mixed 0-1 Problems are in general hard to sageijning
large computing resources, and there are few approachée llitarature to solve up to optimality
such problems where both binary and continuous variabled,uaicertainty, appear anywhere in
the model. A decomposition methodology (so-narBednch-and-Fix Coordination]| (BEC)), was
introduced in Escuder [84] and further developed in Escudeal. [94/ 96, 97, 98, 89]. Moreover,

a parallel computing version of thie BFC algorithm has bearsqmted recently in Pagés-Bernaus
et al. [184]. Other decomposition methods have been propmsMulvey and Ruszczynski [177];
Vladimirou [233]; Blomval and Lindberd [48]; Blomvel [47T he Stochastic Dynamic Programming
(SDP)metaheuristidintroduced in Cristobal et al. [68] and Escudero et[al! [96]ded good results.

In Dias et al. [76] several parallelization strategies amgppsed aimed at speed up the stochastic
dynamic programming solution.

The decomposition algorithms used to solve these kind dflpros ease the job and, more-
over, they can be parallelized allowing the use of greatenmder forces. Part of this thesis will
focus on this issue. Few papers have appeardgtochastic Programmingusing parallel program-
ming for stochastic continuous and mixed 0-1 programmieg,Birge et al.[[43]; Beraldi et al. [36];
Fragniere et al..[106]; Linderoth et al. [152]; Lucka et d54]; Al-Khamis and M'Hallah[[6]; and
Pages-Bernaus et al. [184], among others.

Classical models present as the objective function theatzgesalue of the objective func-
tion over the set of finite scenarios, i.e. the so called risitral (RN) approach. However, RN
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solutions have the inconvenience of ignoring the varigbdf such objective function value over the
scenarios. So, it does not hedge against the low-probabifih-consequence events (the so-called
black swans). Alternatively, risk measures can be addeddierdo hedge against the impact of most
unwanted scenarios. Risk measures are currently been isteeaccount by considering minimiz-
ing, for example, semi-deviations, excess of probabilitynditional value-at-risk, expect shortfall
and others. These approaches are more convenient undereenge of binary variables than the
classical media-variance schemas.

Recently, new risk averse measures have appeared in tauie, e.g., the so-named first-
and second-order Stochastic Dominance Constraint (SDategtes for a set of profiles, each one
included by a threshold for a given function value and sonpegyof shortfall related bounds on
reaching it. See [115] and [1114] for first-order and secortenSDC integer-linear recourse, respec-
tively, and [89] for the mixture of both strategies in a mpdtiiod setting. In particular, the Time
Stochastic Dominance (TSD) strategy reduces the risk ofigvsmlutions in a better way than some
others under some circumstances, according to the corignabhtomparison reported in e.d., [13].
The strategy also aims to minimize the objective functiopeeted value, see also [90].

Other methodologies aimed at improving the decompositigardhms currently used in $P
solving are Lagrangian Decompaosition procedures. Amoagibst recent approaches, see_ i [88]
where a Multistage scenario Cluster Lagrangian Decomipas{iMCLD) approach for obtaining
strong lower bounds on the solution value of large sizedimss of the multistage stochastic mixed
0-1 problem is presented. The MCLD procedure outperfornastitfiditional Lagrangian Decom-
position scheme based on single scenarios in both the godlity and elapsed time.An scheme
presented in [88], so-named Lagrangean Progressive Hpddgorithm LPHA, has its roots in the
seminal papef [209] (see also [238]) where PHA is describetht first time. In[[91l] a specialization
of the so-called Cluster Lagrangean Decomposition forinintg strong (lower) bounds on multistage
stochastic (minimization) is applied to a facility locatiproblem under uncertainty.

For a deeper understanding [of| SP the books|[191| 45,142 [2B34rovide valuable re-
sources.The survey papers by Schultz etlal. [[216], Sen @I1FPh.D. theses by Stougie [223], van
der Vlerk [229] and Cargé [55] among many others, are goasliress on Stochastic Mixed Integer
Programming (SMIP).

Internationally, there is a research community interestaetifically in stochastic optimiza-
tion which information can be found ihttp://www.stoprog.org. This group provides a reposi-
tory of electronic papers with recent results nansdchastic Programming E-Print Serje@&JRL
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http://edoc.hu-berlin.de/browsing/speps/and information about international conferences, mainly
the triennial international conferences on SP, the nextoedivill be the 14th one, June, 2016 in
Buzios, Brazil.

3.2 Stochastic linear modeling

This section deals with the fundamental concepts of mogetiathematical programming
problems under uncertainty. The remainder of this thedia$ed on it.

3.2.1 Deterministic linear models

A deterministid Linear Programmih@ (LP) problem considta set of linear constraints and
a linear objective function, such that the problem solutimmst be subject to such linear constraints
and take the optimum value for the objective function. IredeinisticlLP problems all parameters
are considered certain (this is, a controllable model) hSudeterministic problem has the following
expression:

Z =mincix1 + coxa + ...CpTn

S. t.aj1zy +aexe + ... a1y, = b

a2171 + G222 + . .. A2, Ty = b (3.1)

Am1T1 + Q2o + . .. Gy = b,
T1,22,...,Tn >0
or, using a matricial notation,
Z =minc’x
s.t. Ax=b (3.2)
x>0

wherex is the n-vector of decisiongc is the n-vector of objective function coefficients\ is the
m x n matrix of constraints and is the m-dimensional column array of independent terms, and
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all c, A, b are real known data. The set of solutions that satisfy theainoehstraints, is defined as
X = {x: Ax = b,x > 0}. An optimum value* is a feasible solution wher€ x > c’x* for any
other feasible solutior € X.

According to the type of variables, linear optimization lpeons can be classified in:

General[Linear Programming| (LP) problems, where all decision variables are continuous, this is,
they take values in the space of real numiiRrs

[[Integer Programming| (IP) problems, where all decision variables take integer values. They are
known aspure integer linear problemsnd they are denoted &B. Particulary, it is a0-1
problem if all integers take values if0, 1}.

[Mixed Integer Programming| (MIP) problems, if there are continuous and integer decision vari-
ables. They are known amixed integer linear problemsand they will be denoted adIP.
Particulary, if all integer variables take values{id, 1} the problem is known amiixed 0-1
problem.

3.2.2 Decisions and stages

Stochastic programare optimization problems in which some of the model paramset A, b
of the model[(3.R) are considered uncertaitecourse programare those in which some decisions
or recourse actions can be taken after uncertainty is diedloThe uncertain data in the problem can
be represented by random variables. An accurate prolabdistribution of the random variables is
assumed known. Problems with these characteristic app@aunltiple disciplines, for example, pro-
duction and distribution costs usually depend on oil castp production depends on the uncertain
weather condition, etc.

It is often the case that making decisions is a matter of tine¢7 = {1,2,..., T} denote the
set of time periods in the time horizon. Notice that time pasi can be grouped in different decision
stages depending on the structure of the problem.

Definition 3.1. A [Stagéof a given time horizon, is a set of consecutive time periodw/hich the
realization of some uncertain parameters takes place.

The set of decisions is divided into two groups for [fwe-Stagéproblem:
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3 hours

Figure 3.1: Traveling salesperson example

e Decisions that must be taken before the experiment takes fflest-stage decisionsthe time
period when these decisions are taken is calleditsiestage They are denoted 5.

¢ Decisions that must be taken after the experiment takee gacond-stage decisionsThey
are denoted by (w). Since they depend on the result of the experimeand the first stage
variables, they can be denotgiu, X).

The sequence of events and decisions is thus summarized-as(w) — y(w, X).

Observe here that the definitions of first and second stagesndy related to the moment in
which they are made, before and after the random experiraadtmay in fact contain sequences of
decisions and events. For example, in agriculture farnesfitht stage corresponds to planting and
occurs during the whole spring. Second-stage decisionsistoof sales and purchases, and it can
occur during the summer.

An illustrative example is the following (see Birge and Laug, [44]). A traveling salesper-
son receives one item every day. She visits clients hopirsglidhe item. She returns home when
a buyer is found or when all clients are visited. Clients bugl@ not buy in a random fashion. The
decision is not influenced by the previous days’ decisiortse Jalesperson wishes to determine the
order in which to visit clients, in such a way as to be at homeaaly as possible (seems reasonable).
Time spent involves the traveling time plus some service taneach visited client. To make things
simple, once the sequence of clients to be visited is fixeid, ibt changed. Clearly the first stage
consists of fixing the sequence and traveling to the firshtli€he second stage has variable length
depending on the successive clients buying the item or noty, Monsider the following example.
There are two clients with probability of buying 0.3 and @ekpectively and traveling times (includ-
ing service) as in the graph of Figure13.1 Assume the daysstr8 a.m. If the sequence is (1, 2),
the first stage goes from 8 to 9:30. The second stage start8agAd finishes either at 11 a.m. if
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Client 1 buys or 2:30 p.m. otherwise. If the sequence is (2th®) first stage goes from 8 to 11:00,
the second stage starts at 11:00 and finishes either at 2tD@®pat 2:30 p.m. Thus, if sequence (2,
1) is chosen, the first stage may sometimes end after thedstage were finished if sequence (1, 2)
where chosen instead (in case Client 1 buys the item).

Traditionally, stochastic problems are classified mio-stageandmulti-stagéproblemgwhere
three or more stages are considered). In the remaindersadéktion these models are extended.

3.2.3 two-stage models

In many cases, two stages are enough to modeling a real prold¢ the first stage, deci-
sions that cannot be postponed are made (this is, beforeifkgdhe uncertainty parameters actual
value). The second stage begins when new information abeuwirtknown parameters is available, so
decisions are made taking into account the known value sttharameters. Therefore, first stage de-
cisions will be the same for all conceivable scenario, whieond stage variables are not anticipated
and they will depend on the realization of the uncertain patars.

Stochastic linear problems with two stages full recourseevilrdependently introduced by
Dantzig and Beale in 1955, and can be formulated as:

min ¢"x+B[Q(x,£(w))]
st Ax=b (3.3)
x>0

whereQ(x, (w)) is the optimal value of the second stage problem

min qu
y
st. Tx+Wy=h (3.4)
y=>0

Here,x andy are vectors of first and second stage decision variablgsctgely. The second stage
problem depends on the daga:= (q,h, T, W), some (eventually all) elements of which can be
random. Therefore it is viewefl = {(w) as a random vector. The expectation[in(3.3) is taken with
respect to the probability distribution gfw), which is supposed to be known. MatricEsand W

are called theechnologyandrecoursematrices, respectively. If matri¥V is fixed (not random), the
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above two-stage problem is called a problem Witled recoursesince second stage probleim (3.4)
can be viewed as a penalty term for violating the constriiwt= h, hence the namwith recourse

For anyz and¢ the functionQ(x, ), although not given explicitly, is a well defined extendedlre
valued function: it takes the valuecc if the second stage problein (B.4) feasible set is empty, and
the value—cc if the second stage problem is unbounded from below.

By the definition of the functiorQ(x, £), this problem can be written a8(x,¢) = Q(h —
Tx), where

Q(x) == inf{q"y : Wy = x,y > 0} (3.5)

andy denotesh — T'x.

Using the duality theory df Linear Programmijrig {LP) the oyl value Q(x) of the linear
program in the right hand side df(3.5) is equalstp{r'y : Wr < q}, unless both systems:
Wy = x,y > 0andW'r < q, are infeasible. Consequently,

Q(x,§) = sup{wT(h —Tx): Wir < q} (3.6)

The feasible seW!r < q of the dual problem is convex polyhedral. Therefore, for any
realization of random datg the functionQ(-, ) is convex piecewise linear, whose properties have
been extensively studied. For more details, see [44], arotreys.

3.2.4 Multistage models

Theffwo-stagemodel is a special case of a more general structure, ¢allgtistage stochas-

tic programming model, in which the decision variables aodstraints are divided into groups cor-
responding to stages= 1,...,T. The fundamental issue in such a modehi®rmation structure
what is known at stagewhen decisions associated withre made.

Letxy,...,x7 be the decision vectors corresponding to time periods €sjdg. .., 7. At
each stage some parameters are revealed, and the folloggngrce of actions take place:

decision &;) — observatiorty = (cz, Aa1, Aaz, by) — decision &2) — ...— observation
&r = (er, Arr—1, Arp, br) — decision &7)
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So, the following LP problem is considered:

min  clx; +clxy + céng + -+ chxp 3.7)
st Aixy = b,
Agixy + Agoxa = by
Aszrxg + As3xs =bs
Arr_1xr_1 + Arrxr =br
X1, Xo, X3, ... X7 >0

It is called gmulti-stage stochastic program if;, A;; andb; are known, but some (eventu-
ally all) of cost vectorss, ..., cp, matricesA, ;_; andAy, t = 2,...,T, and right hand side vectors
bs, ..., by are random parameters.

The objective is to design the decision process in such a hatythe expected value of the
total cost is minimized while optimal decisions are allowwede made atvery staget =1,...,T.

Let & denote the data which become known at stagén the setting of thémulti-stage
problem [3.¥)&; is assembled from the componentscpfA;:—1, A4, b, some (all) of which can
be random, ang; = (c1,A11,b;) is assumed to be known at the first stage of problem (3.7). Let
us denote by, ;) = ({5 -+, &), for 1 <t <t < T, the history of the process from stage
to stagef,. In particular,£[; ;) represents the information available up to timéhe key idea in the
abovemulti-stagg process is that every decision veckgimay depend on the information available at
staget (that is; 1), but not on the information to be revealed at later stagbis differsmulti-stage
stochastic programs from deterministic multiperiod peoi$, in which all the information is assumed
to be available at the beginning of the time horizon.

There are several ways to formulat¢raulti-stage stochastic program in a precise mathe-
matical form. For instancex; = Xt(ﬁ[u]), t =2,...,T, can be viewed as a function Qﬁl,t] =
(&1,...,&), and the minimization in((317) is performed over approgrifitnctional spaces. If the
number of scenarios is finite, this leads to a formulationhef linearjmulti-stage stochastic pro-
gram as one large structured (deterministic) LP problers. dtso useful to connect dynamics of the

[multi-stag€ process starting from the end as follows.

Let us look at the problem from the perspective of the lagjesfa. At that time the val-
ues of all problem data§; 7}, are already known, and the values of the earlier decisiamovg
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Xi,...,X7_1, have been chosen. Our problem is, therefore, a simple Litgrrmo
min C%XT
X
st Arr_ixr—1+ Arrxr =brp (3.8)
x7 > 0.
The optimal value of this problem depends on the earliersitativectorx_; and dat&, =

(ers Arr—1,A7rp,br), and is denoted b7 (x7_1,&r). At stageT — 1 it is known xr_» and
&,7—1)- Therefore, let the followinfiwo-stagéstochastic programming problem

3?;‘1—1} ch o xp_q + E[Q7(x1—1,87)1&0 7-1]]
St Ar_i17_oXr_2 +Ar_171X7_1 =br_4 (3.9
xr_1 > 0.
The optimal value of the above problem dependxen, and data; r_;), and is denoted
Or—1(x7-2,&1,7-1])-
In general, at stage= 2,...,7 — 1, the problem is:
Ir)lcitl’l cf Xt + B[Qup1 (%, 14 1) €01 1]
St Appaxi1 + Ayxy = by (3.10)
x; > 0.
Its optimal value is denote@; (x;-1,£[1 4) and is called theost-to-gofunction. On top of
all these problems is the problem to find the first decisians,
min ci x1 + E[Qy(x1, &2)]
st. Auxi;=by (3.11)
x1 > 0.

Note that all subsequent stages- 2,...,T areabsorbedin the above probleni (3.11) into
the functionQs(x;, &2) through the corresponding expected values.
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Thus, we obtain the followingested formulation

min ¢l x; + E{ min clxy
Aji1z1=b; Ao1x1+Az2x2=bo

—|—E[---—|—E[ min C%XTH],S.t.Xl,XQ,...,XT20.

ArT_1X7_1+ArrXT=bT

Observe that the dimensions of this type of problems mayrbedwge, making more difficult
the resolution. In the following section we revise the medtvant techniques to solve this type of
problems.

3.3 Modeling via scenario tree

3.3.1 Scenario tree

Scenario tree modeling is a technique used to model angimstethe uncertainty. The tra-
ditional approach for modeling the uncertainty implies ¢hection of a probability distribution, the
estimation of its parameters using historical data andljinlaé development of a stochastic model.
However, this approach may not be appropriate if, for instamve do not have enough information.
In addition, in many applications, it is necessary and sdio consider information that is not
reflected in historical data.

Definition 3.2. A[scenaridis a particular realization of the uncertain parameteragltbe different
stages of the time horizon.

Definition 3.3. A[scenario groupfor a given stage is the set of scenarios with the same réaliza
of the uncertain parameters up to the stage.

In most real problems, despite existing infinite possiblkdizations of a random variable,
these can be reduced to a finite numberepiresentativeealizations (or events). Several methodolo-
gies are commonly used. Amongst others, we can cite:

1. Neuronal network (used in Supply Chain, Energy, Envirental models, seé [39, 59, 165]).
2. Monte Carlo simulation (used in Financial model, see[ldthong others).

3. Cluster analysis, (used in Supply Chains, Energy mode&s[123] among others).
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T ={1,2,3,4}

Q=0 ={10,11,...,17}; Qs = {10, 11, 12}
Ry = {2,3,4}

No = {1,4,9};7(9) =4

Figure 3.2: Scenario tree

These and others methodologies can help in determiningefiresentative set of events that
will be represented by the set of scenarios in the model, ree@vbrks of Dantzig and Glynn [70],
Dempster and Thompson [74] as well as Di Domenica’s PhD EH&5li, among others.

Many of today approaches for stochastic programming areasitetree-based approaches
(seell27]), to illustrate this concept consider Fidure 8ath node represents a point in time where a
decision can be made. Once a decision is made, some cordiag@&an happen (e.g. , in this example
there are three contingencies for time peried 2), and information related to these contingencies is
available at the beginning of the stage (here, time peribdis information structure is visualized as a
tree, where each root-to-leaf path represents one spea#fiago and corresponds to one realization
of the whole set of the uncertain parameters. Each node imdbecan be associated with a scenario
group, such that two scenarios belong to the same group wea gtage, provided that they have the
same realizations of the uncertain parameters up to the.stegcordingly to thénon-anticipativity
principle, see e.g. Birge and Louveaux (1997) [44], botmades should have the same value for the

related variables with the time index up to the given stage.

Let the following notation related to the scenario tree:

T, setof stages along the time horizoh™ = 7 \ {| 7|}, beingT the last stage in the time horizon.
), set of scenarios.

R, set of scenario groups, so that we have a tree wReiethe set of nodes.
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R:, setof scenario groups in stagdort € 7 (R: C R).
Q,., setof scenarios in group forr € R (2, C Q).
~(r), immediate ancestor node of nodgfor r € R.

V,, set of ancestor scenario groups to greygncluding itself, forr € R. Notice that(V, C R).
Notice also thal’, can be defined as the set of scenario groups suclithat €2,...

V", set of successor scenario groups to greufor » € R. Notice again thalt’” can be defined as
the set of scenario groups such that C Q,.Vr' € V"

w®, likelihood that the modeler associates with scenaridP({ = ¢¥) = w¥, forw € , and
e W = L.

w,., weight factor representing the likelihood associated witbnario group:, for »r € R. Note:
Wy = cq w’andy ] o w, =1Vt e T.

Once the scenario tree is generated, it is necessary takiogaccount the structure of the
tree to extend the problem model. Alternatively, we canestiive deterministic problem associated to
each scenario:

Z% =min c¥x"
s.t. AYx% =Db¥ (3.12)
x>0
In model [3.12), the criterion to select an optimal solutismot clear. Feasible solutions

can appear for one scenario and not for another. A solutiarhese a better value in the objective
function for a specific scenario and not for another, etc.

However, scenario treemethodology provides feasible solutions under each simgnaut
without being subordinated to any of them and with the befadive function expected value for all
them.

The most prominent features of a stochdptidti-stagg model with full recourse are:

e Deterministic models for different scenarios differ somani others, in the objective function
coefficients, constraints coefficients and the indepentent.

e The number of variables that relate different stages isigaifgcant.
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e Constraint matrix is a quasi-stair type.

3.3.2 Non-anticipativity principle

The decisions outcomed by the model must satisfy the ndokgentivity principle that guar-
antees the independence of the solutions with respect tintbemation not yet available. The
[non-anticipativity principle, see Birge and Louveauix [44] and Rockafellar and Wets|[23#)s that
if two different scenariosy andw’ are identical until stage as to as the disponible information in

that stage, then the decisions in both scenarios must barhe ®o until stage.

For each realization of the uncertain parameters in diffiestages considered along the time

horizon, and letting“ = (£,£&5,...,£Y), it has been seen that it can be associated a sequence of
decisionsx® = (xY,x¥,...,x¥), forw € Q. But these decisions are not independent one to the
other.

Thenon-anticipativityprinciple requires that

!’

XY =x¥ if =g Vr=1,....1,

Figure[3.3 represents an example of tlom-anticipativityprinciple with|Q2| = 4 scenarios,
S = 3 decision stages anffl = 3 time periods. Node 1 of the scenario tree represents the,stag
or instant of time in which the first decision must be made.hig first stage the information about
uncertain parameters is known with precisign, This knowledge is expressed &s: ¢ = &7 =
£ = ¢}, Thatis, the realizations of the uncertain parametersnggieh scenario are equivalent in the
first stage. So, decisions must be the same too in the first ftagach scenario. These equalities,
x; : xi = x2 = x} = x{ are represented by the discontinued circle that includels paint stage
1. Once the first decision has been made, two perspectiveskamplace and the information about
the uncertain parameters is available at the beginningeokétond stage. Thwn-anticipativity
means that it can be found only two versions about the re@mizaf stochastic parameters (and so,

the decisionky). In the figure appears represented the equalities: x2 andx3 = x3.

3.4 Deterministic Equivalent Model

Optimization techniques for treating the uncertaintydobsn scenario analysis that describes
partial or full recourse, constitutes titochastic OptimizationThe scheme of modeling is based on
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Figure 3.3: Non anticipativity principle

thenon-anticipativity principlefor expressing relationships between the stochastic pteanmealiza-
tion for a given stage and the corresponding decision. Theigos to be obtained are not determined
to any particular scenario, but they take into account athem.

Definition 3.4. TheDeterministic Equivalent Model (DEMjssociated to the full recourse version of
the stochastic model associated to problem| (3.2), is defised

7 =min Z w" c¥x¥
s.t. AYxY =b¥Y VYwe (3.13)

x>0 Ywe

xYeN Ywe,

where\ is the set of solutions that satisfy then-anticipativityprinciple.

Thenon-anticipativityconstraints can be represented by different forms. Oneeof tonsists
of considering them implicitly into the variables’ defimiti, it is known ascompact representation
This representation reduces the size of the model in reldatiche number of variables. Another
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s=2,1
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s=3,1

s=3, 2
e=1 e=2 e=3
Figure 3.4: Scenario tree

way is asplitting variable representatigrthat can be very amenable depending on the optimizing
algorithm to use.

3.4.1 Compact representation

Let us consider @ulti-stageg model with two types of variables:
e which only appear in first stage

e which relate two consecutive stages, so-called-staged linked variables

For example, the deterministic model with three stagesnsidered:

min hfx; + hiyx2 + hixs + hl;xos + hix;

st Aixy+ A%2X12 =b;
A2)x12 + Aoxg + A3gxa3 = by

A§3X23 + A3x3 = bg

X1, X192, Xa, X923, x3 >0
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Ay || A, = by

1
2 2 =
Ay || A2 [|Azs b2

11
A3, |[ As = b3

— 12
3 =
Ajs A3 b3

2
2 2 =
A2, Ay || A2, b5

21
Ags Ag - bg

— 322
A3, As = b3

A%2 Ao Ag3 = b2

P — 31
A3, || As = b3

- — 32
A3, As = b3

Figure 3.5: Compact representation

where variables with subscrigt. only appear in stage, while variables with two subscripts, .1
relate to the stagesande + 1. For example, consider the scenario tree represented imdEiy4. The
compact representation of the deterministic equivalerdehiz given by the model,

minh{ x; +hipxio+ 35, (h5) x5+ 37, (hhs) x5+ 32, (b5 <}

s.t.A1xy +A%2X12 = b,
A%Qxlz +A2X§ +A%3X§3 = bg Vk
A3.xh, +Asxkl = Dbh Wk,
X1, X12, X]2€7 X]§37 Xl;)fl >0 Vkvl

In first stage there is only one node in the scenario tree anddme variable is used for all
scenarios, say, in stage 2 there are three nodes and variables replaced by three variables
k = 1,2,3. Finally, in stage3 there are 6 nodes and variabtg is replaced by 6 variablesk! for
k =1,2,3,1 = 1,2. Linking two-staged variables asg - andx’g3 for k = 1,2, 3. Figure[3.5 shows
the matrix structure for the compact representation.

3.4.2 Representation with splitting variables by scenario groups

In the splitting variable representation, the constraihthe non-anticipativityprinciple are
explicitly represented. This allows the decomposition hed thodel inseparated blockswhich is
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frequently an advantage for the resolution of the problem.

Definition 3.5. An scenario group for a given stage is the scenario set whose realization of the
uncertain parameters is the same until that stage.

To build the splitting variables representation for problg.13), we need:

e To create a new variable for each scenario group.

¢ To include equality constraints among these new variables.
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Figure 3.6: Representation with splitting variables byup®of scenarios

b2

The representation with splitting variables by scenariasigs can be expressed:
min hi'x; +hipxio + Y (W) xly + ) (h5) x5 + > (h;) x5+
k

k k
> (hi) x5 + Y ()T
k,l

Kl
S. t.
A1X1+A%2X12 =b; Vk
X12 —XIfQ = Vk
Adyxi+AgxE+AZxh, = b}
(3.14)
xk—  xhl =0 VI

3 okl kl_ Rkl
Ajax53+Aszxs'=by' VEk,l
k k k kl kl
Xl, X12’ X12 X2, X23, X23’ X3 2 O

Figure[3.6 shows the structure of this formulation, coroesling to the first scenario group. Complete
structure is obtained when it is aggregated into two equatskb.
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3.4.3 Representation with splitting variable by scenarios

This representation is similar to the previous one, buthis tase, new variables for each
scenario are created. Explicitly, this can be represermtethé problem:

min " p* [ x¢ + hiyxt, + by x5 + by vag, + by x|

weN
st Aixy + Alyxy, =by VweQ
A2,x4 + Aoxy + A3xy, =b% YweD
A3.xys + Asxy =by Vwe
xy — x4’ =0 Yw,w' €
XYy — X4 =0 VYw,w' e
Xy — x4’ =0 Yw,uw €I,
r€{2,3,4}
XY, — x%s =0 Yw,uw €I,
r€{2,3,4}
xy, X5y, X5, X5, x4 >0 Ywel

wherep” is the weight (i.e., probability) assigned to scenasia- € {2, 3,4} is the set of scenario
groups related to stage 2, abld = {1, 2},1I3 = {3,4},1I, = {5,6} are the set of scenarios within
the groups 2,3 and 4, respectively. Figurd 3.7 shows thetstriof this formulation.

3.5 The value of information in stochastic models

Stochastic programs have the reputation of being computty difficult to solve. Many
people faced with real-world problems are naturally iredirto solve simpler versions. Frequently
used simpler versions are, for example, to solve the detéstiti program obtained by replacing all
random variables by their expected values or to solve skdetarministic programs, each corre-
sponding to one particular scenario, and then to combirgettéferent solutions by some heuristic
rule.

A natural question is whether these approaches can sonsetiemeearly optimal or whether
they are totally inaccurate. The theoretical answer todbistion is given by two concepts, namely,
the expected value of perfect information and the value efdtochastic solution, see [44] as we
presented above.
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Figure 3.7: Splitting variables representation by sce@sari



3. Introduction to Stochastic Programming and Parallel Conputing: State of the art 65

3.5.1 The Expected Value of Perfect Information

Thelexpected value of perfect informatiofE’V PT)| measures the maximum amount a deci-

sion maker would be ready to pay in return for expected comagknd accurate) information about
the future. The concept df'V PI was first developed in the context of decision analysis amd ca
be found in a classical reference such as Raiffa and Schlaif961 [201]. In the 2-stage stochas-
tic programming setting, we may define it as follows. Suppbsé the uncertainty can be modeled
through a number of scenarios. Lgbe the random variable each of whose realizations corréspon
to one of the different scenarios. Define

min  z(x,£%) = ¢’ x + min{q’y|Wy = h — Tx,y > 0} (3.15)

st. Ax=Db,x>0,

as the optimization problem associated with one particsdanariav. Letx(£“) be optimal
solution of this problem and let(x(£“), £¥) be the value of the objective function. So, we are in
position to compute the expected value of the optimal smhytknown in the literature as theait-
and-see (WS}olution where:

WS = E; [mxin z(x,f)] = L [z(x(f),f)] (3.16)

We may now compare the wait-and-see solution to the soech#es-and-nowsolution cor-
responding to the recourse probl¢RP)defined earlier in(3.15) and which we now write as:

RP = min E¢2(x,§), (3.17)

with an optimal solutionx™.

The expected value of perfect information is, by definititrg difference between the wait-
and-see and the here-and-now solution, namely,

EVPI =RP - WS. (3.18)

3.5.2 The Value of the Stochastic Solution

For practical purposes, many people would believe thatrignttie wait-and-see solution or,
equivalently, solving the distribution problem is stilbtenuch work (or impossible if perfect informa-
tion is just not available at any price). This is especiailfialilt because the wait-and-see approach
delivers a set of solutions instead of one solution that diel implementable.
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A natural temptation is to solve a much simpler problem, fdgntiee one obtained by replac-
ing all random variables by their expected values. This lieddaheexpected value problem or mean
value problemwhich is simply

EV = min 2(x, €), (3.19)

whereé = E(€) denotes the expectation 6f Let us denote big(£) an optimal solution to
(3.19), called theexpected value solutiorAnyone aware of some stochastic programming concepts
or realizing that uncertainty is a fact of life would feel aakt a little insecure about advising to make

the decisiork(¢). Indeed, unlesg () is somehow independent §fthere is no reason to believe that

x(£) is in any way near to the solution of the recourse problem]3.1

The value of the stochastic solution is the concept thatiggcmeasures how good or, more
frequently, how bad a decisiaf(¢) is in terms of [3.17). We first define thexpected result of using
the EV solutiorto be

EEV = E¢[2(%(€),€)]. (3.20)

The quantityEEV, measures ho&(¢) performs, allowing second-stage decisions to be cho-

sen optimally as functions &(¢) and¢. The value for the stochastic solution is then defined as

VSS = EEV — RP. (3.21)

A high VSSvalue indicates great advantage using stochastic modelpgasition to tradi-
tional models based on averages. A snviSvalue indicates similar solutions in stochastic model
and in traditional models.

It is immediate to verify the following inequalities:

0< EVPI and 0<V§Sss.

Under general conditions the following inequalities asoalerified:

EV < RP < EEV (3.22)
WS < RP < EEV (3.23)
EV<WS (3.24)
EVPI < EEV — EV (3.25)

VSS < EEV — EV (3.26)
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Results of[(3.22)£(3.24) are proved|in [159], inequalit?B is proved in[[311] and inequality
(3.26) is proved in[[42]. See in [42] some other strong lowet apper bounds on the optimal value
RP.

3.6 Algorithms in Stochastic Linear Programming

3.6.1 L-Shaped method for two-stage problem

The basic idea of the L-Shaped method, introduced by VaneSyld Wets in 1969 [231],
consist of making an approximation to the non linear termhefdbjective function. It is well known
that calculating this term implies solving all linear pretvis corresponding to the second stage; this
is the reason for trying to avoid several evaluations of #wurse function. The proposed method
consists of using that term to buildnaasterproblem inx and to evaluate the recourse function only
as a subproblem.

It is based in the Benders Decomposition, a classical mathdththematical Programming
developed by Benders in 1962, which allows solving lineabfams with big dimensions.

This decomposition consists of splitting the model in twhr problems: The Relaxed Mas-
ter Problem (RMP), with a set of general constraints, arel Ahxiliar Problem (AP). RMP provides
a cost coefficient set for AP, and it receives a new constsghbased on those coefficients. This
separation makes easier the dimensional aspect, becahseeaid there are smaller problems.

Besides, the application of this decomposition strategpynal a lot of scenarios and stages,
bigger than the allowed dimension in classic optimizatibthe global compact problem.

Let us consider the following two-stage stochastic problem

min z = ¢ x + Z gty

weN
s.a Ax =b (3.27)
Tx + Wy = h" Yw e Q
X, y“ >0 Yw e Q

Figure[3.8 shows the matrix structure for this model.
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A =b

T! w = h1
T2 W = h2
T3 W =h?
T w =h?
Tb w = h5
T6 W = h6

Figure 3.8: Matrix structure for the two stage compact repnéation

The resolution of((3.27) is equivalent to the resolutionhaf master problen (3.28):

min z = ¢’ x + Q(x)

s.a Ax=Db (3.28)

with the recourse functiof)(x) defined as:

Q(x) = p*Q“(x) = p”ming*Ty"
we weN

s.a Wy“ =h"-T"x Yw € Q (3.29)

y“ >0 Yw e Q
Forx fixed, the recourse functiof (X) is decomposable iff2| independent problems (see Figuré3.9
Q“(X) =min q“"y*
s.a WyY=h"Y-T%

y“ >0

Using basic duality theoryp“ (X) is equivalent to:
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Figure 3.9: Two stage Benders decomposition

Q% (X) =max o(h* — TYX)
sa oWl=q"

Let us assume this problem has solutiynachieved at dual value?’, Vw € €.

The recourse function trivially satisfies the following straint:
Q*(x) =z o7 (h” — T%x).
Linearizing around the point of interest the next equivalent expression is obtained
Q¥ (x) > of(h* — T¥x) =07 (h* — T*x + T¥X — T¥X) =
=0 (h* — T*X) + 0, (T“X — T“x)
=07 + o;(T*X — T¥x).

Therefore:

Q) =3 pQ(x) > > pP(62 + oy(T¥X — T*x)).
we we
This expression is known in the literature as Benders opitiynaut.

If Q“(X) is infeasible for somey € 2, X is not a valid first-stage solution. Applying the
Farkas’ Theorem, a cut can be generated for separatinthis cut is known as Benders feasibility
cut. One cut can be obtained for each infeasible subproblem.
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The master problem is replaced by a Relaxed Master Problem:

min c’x+ 0

s.t. Ax =b
D:x >d; Vit=1,...,r (feasibility cuts)
Ex+60 >e Vt=1,...,s (optimality cuts)
x>0, e R

This cuts are added at each iteration of the procedure, irgiognation from the Auxiliary second
stage problem.
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Algorithm: Benders decomposition

Step 0. Setr =s=v = 0.

Step 1. Setv = v + 1. Solve the linear problem:
min c'x+ 6
s.t. Ax =b
D;x >d;, Vt=1,...,r
Ex+60 >e Vt=1,...,s
x>0, e R

and let(x”, #") denote an optimal solution.
Step 2. Forw = 1,...,|9], solve the linear problem
min 2, =elvT 4 elv™
st. Wy+Ivt —Iv” =h* — T¥”
y > 0,07, 07 >0,
wheree” = (1,...,1),
If 2/, = 0V w, then go to Step 3.

If z/, > 0 for somew, add a feasibility cut:

let 0¥ the multipliers of the associated simplex.

DefineD,;; = (¢¥)TT¥ andd,; = (¢¥)"h*.

Add the so-called feasibility cuD,;1x > d,41.

Setr := r + 1 and return to step 1.
Step 3. Forw = 1,...,|9], solve the linear problem
Q(x")Y =min 2z = q“Ty
st. Wy =h¥-T“x"
y=>0

Let o, denote the multipliers associated to the optimal solutarpfoblemw.
1 1

DefineE,1 = Y _p*(o) T ande, 1 = > p*(0?)"h.
w=1 w=1



72 3.6. Algorithms in Stochastic Linear Programming

Build the optimality cutE, 1x + 6 > egy1.
If (x¥,0") verifies the cut: STOR" is the optimal solution.

Otherwise, set := s + 1, add the cut and go back to Step 1.

oo ‘

In the previous algorithm, only an optimality cut is addeceath iteration. However, the
stochastic problem structure allows to introduce severtal @ne por scenario). Birge (1988) propose
a multiple cuts version for the L-Shaped method, in which cutefor each realization is added.

3.6.2 Lagrangean decomposition

A methodology available for solving problems with high dims@ns is the Lagrangean relax-
ation. Geoffrion[[112] and Fisher [104] apply this methodstive integer programming problems.
This technique is based on the dualization of those equatlimat make more difficult the resolution
of the problem. See also Guignard [120]

Let us consider the following splitting variable formutati for a two-stage stochastic pro-
gram:

min z = Z pw (CTXW + quyw)
wen

s.a AxY =Db Yw e Q
TxY + Wy“ = h” Yw € Q (3.30)
xY —x¢Tl=0 Yw € Q
XY, y¥ >0 Yw € Q)
The non-anticipativity constraints destroy the block ctie of the matrix and do not allows to de-

compose the problem in smaller subproblems. In this casepwsider d.agrangean Relaxatioof
(3.30), obtained by deleting dualization of then-anticipativityconstraints results in the following
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model:

min z = Z ¥ (CTX” + q“’Ty“) + Z W“T(X” —x*t
we we

s.a AxY =b Vw € Q
Tx* + Wy* = h* Yw € Q (3.31)

x¥ y¥ >0 Yw €

wherer is the vector of the Lagrange multipliers antle ),.. Generally, we may not be able to find
a vectorr such that[(3.31) coincides with the optimal of the originaed integer model. However,
it is known that[(3.311) is a lower bound, for which the bestifoh is obtained by solving

max L(m)

which is named.agrangian dual

It is observed that, for fixed values of the dual variablesaree, (3.31) is separable in sub-
problems which can be solved independently. From the solutbtained, the multipliers are updated
and the dual lagrangean is again optimized with the new sallibese multipliers are updated with,
e.g., the subgradient method among others (see below).

3.6.3 Obtaining Lagrangean multipliers: Subgradient meth od

Let 7r; denote the value aof at iterationi, so it is obtained iteratively according to the rule:
mi =m0 4 Bk — x¢H). (3.32)

wherevy — fv;‘{l is the stepdirection(here the subgradient) aritlis a scalar which represents the
steplength The most used expression féiis as follows,

O(L* — Lr,)

[l — =2

8=

where L, is the optimal solution of the Lagrangean relaxation aitien i, § is a scalar which
satisfies the inequality < § < 2 andL* is an upper bound fof (3.B1). Often the succession values
of ¢ is obtained by fixing) = 2 at the beginning and if the value,, does not increase after a given
number of iterations, the value 6fis reduced to the half.
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Algorithm: Lagrangean decomposition

Step 1. Initializei = 0, m; = 0.

Step 2. For the multipliers valug;, solve the Langrangean Relaxation (RL) anddetienote the
solution of each problem.
Step 3. If for a tolerance value> 0, it is verified that:
[lxs — x| < e

stop, the optimal solution for the dual Lagrangean origmaldel is computationally found.
Otherwise, go to Step 4.

Step 4. Set = ¢ + 1, and update the multipliers vector by using the subgradiegthod and go
back to Step 2.

oo

As an alternative we favor the Dynamically Constrained i@gtPlane scheme for updating
the Lagrange multipliers.

3.6.4 Augmented Lagrangean Decomposition

The Augmented Lagrangean Decomposition (ALD) introduce§llB6] and [213] improves
the Lagrangean decomposition in order to force the connemyef the problem by adding an infeasi-
bility penalty term to the objective function. Let us coraidhe problem[(3.30), where the variakle
is split in the variablesx* andx“*!. By dualizing the non-anticipativity constraints the Laggean
decomposition is obtained. In order to increase the coevexg speed, the following quadratic term

is added
P w w+11[2
LS x|
weN
to the objective function, where > 0 is a penalty weight. Thus, the Augmented Lagrangean decom-

position (ALD) becomes,

L) = min3" g (e +qTy)+ 30 w7 e —e#1) 4 £ 3 51

weN weN weN
S. a Ax¥ =b Yw e Q (3.33)
TxY +Wy“=h" Yw e Q

X%, y“>0 Yw e )
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Observe that, in contrast to the Lagrangean decompositimproblem is not completely separable
but, fortunately, it is quasi-separable quadratic.

ALD Algorithm

Step 1. Initializei = 0
Step 2. For the multipliers value, solve the probleni(3.33) and e}’ denote the optimal value.
Step 3. If, for given a tolerance value> 0, it is verified:

b == < e

stop, the optimal computational solution has been fountie@tise go to Step 4.

Step 4. Update the penalty weight and the multipliers vector by using, e.g., the subgradient
method. Set =i + 1 and go back to Step 2.

oo

This algorithm can be applied to solve a stochastic compéeteurse problem formulated by splitting
variables in scenario groups as well as in scenarios.

3.7 Stochastic Integer Programming

The general formulation of &tochastic Integer Programmin@IP) problem is basically
equivalent to the linear problem formulation. It is reqdirhat some of the variables are integer.
Furthermore, in many real applications some or all of théalées are binary, this is, only take 0-1
value.

Just a few properties of stochastic integer problems areriknahich is the reason why there
are not many efficient methods. However, some techniqugmpeal in SIP to solve specific problems
have been successful. In any case, SIP is very much a field dadelopment.
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Formally, a stochastic integer problem in two stages isesqed as:
min  ¢’x + E¢[min " Y]

st. Ax=b
T“x + Wy* = h"
xeX,ywe)y

where X and) may have integrality or binary constraints. Using this d#éin, the equivalent
deterministic integer problem can be formulated as:

min  ¢’x + Q(x)

st. Ax=Db

xeX
whereQ(x) represents the expected value at the second stage.

Clearly, if integrality constraints only appear &, the properties of2(x) and the feasible
regions = {x : Q(x) < oo} are the same as the continuous case. But when there arealityegr
constraints in the second stage, these properties are ultyusue.

Proposition 3.1. The expected recourse function of a stochastic integerl@nopbgenerally, is not
convex and is discontinuous.

The next simple example illustrates this proposition:

Let us consider the problem with only a variabte> 0 in the first stage and an integer
recourse function in the second stage:

Q(x,8) =min{2y1 +y2:y1 > x—&,y2 > — x}

Let us suppose thdttakes the values 1 or 2 with the same probabi%ty,Forg = 1, the optimal
solution at the second stage is:

yi=0,y,=[1—-x]| ifx<1,
yi=[x—1],y2=0 ifx>1,

where[a| denotes the minor integer value greater or equal than a., g 1) is discountinous in
x = 1 and non convex.
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In the feasible regions case, the convexity property doésymaly either. Since in the con-
tinuous case it is defined a feasible regidn of second stage for a fixed valgeas K2 = {x :
existy such thariWy = h(§) — T({)x,y € YV}, then the next result applies:

Proposition 3.2. The feasible region of the second stagg¢) = {x : Q(x,£) < oo} is generally
non Convex.

Proof

GivenKy = {x : 9(x) < oo}, if Q(x,£) is no convex, then, in generd(; is not convex
either. O

In some special cases, it is possible to calculate or appiate the functior@(x) in a reason-
able time. However, these cases are exceptions, and, jrofaxbf these cases is the recourse simple
integer case.

There are three levels of difficulty in solving stochastite@ger programs of the above form:

e Evaluating the second-stage cost for a fixed first-stagesidecand a particular realization of the
uncertain parameters. Note that this involves solving atairce of the second-stage problem
which may be an NP-hard integer program and involve sigmificamputational difficulties.

e Evaluating the expected second-stage cost for a fixed fagesdecision. If the uncertain pa-
rameters have continuous distribution, this involvesgraéng the value functio®(x, -) of
an integer program, and is in general impossible. If the taiteparameters have a discrete
distribution, this involves solving a (typically huge) nber of similar integer programs.

e Optimizing the expected second-stage cost. It is well kntvan the value function of an integer
program is non-convex and often discontinuous. Consetytimt expected second-stage cost
function E[Q(-,w)] is non-convex inx. Figure[3.10 illustrates the non-convex nature of the
objective functionc” x + E[Q(x,w)] for a small stochastic integer programming problem with
two first-stage variables, se€ [1]. The optimization of sacomplex objective function poses
severe difficulties.
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' x + E[0fx, &)

Figure 3.10: Objective function of a small Stochastic letegroblem

3.8 Algorithms in Stochastic Integer Programming

3.8.1 L-Shaped method for integer problems
In this section a general scheme for solving stochastig@ntproblems is presented. First, let
us remember the two-stage definition problem:
min  ¢’x + E:Q(x,¢€)

st. Ax=Db

xe X,

whereQ(x, ¢) = min{q”y|Wy = h — Tx,y € Y}. In this case X’ and/or) have integrality or
binary constraints ix and/ory, respectively.

The deterministic equivalent problem is defined as:
: T
min ¢ x + 9(x)
st. Ax=D
x e X,

where Q(x) is the expected value of the second stage. X etenote the constraints setdnwhich
does not defined the type of variables at the first stage.
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In a given stage of the algorithm, the following problem issidered:
min ¢'x+0

st. Ax=Db
Dx>d;, Vi=1,...,r
Ex+0>¢ Vi=1,...,s
x>0,0eR

This problem is obtained by performing the three followie¢axation in the deterministic equivalent
model:

1. Integrality conditions are changedsto> 0

2. The constraints € X are replaced bfeasibility cutsand

3. The exact definition of)(x) is replaced by a polyhedral representatiord iand the so-called

optimality cuts

The first stage constraint compris&sc = b andx € X'. Constraints inX’ are generally relaxed. This
is the case when these constraints are not previously knalso.when they are known but there are
so many that is not realistic to impose all of them at the bagin

Definition 3.6. A feasibility cut set is valid irx if there is a finite number such that
xe{x:Dyx>dy, I=1,...,r}
impliesx € X

The L-Shaped and Benders Decomposition changes the exaeseatation of)(x) by a
polyhedral representation. Later the extension to SIPheilshown .

Definition 3.7. A optimality cuts set is valid irx if there is a finite numbes such that
(x,0) e {(x,0) :Exx+0>e¢, l=1,...,s}

implies thatd = Q(x).

It is assumed that, for a fixed, Q(x) can be calculated in a finite number of steps.
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Integer L-Shaped algorithm

Step 0. Set = s = v = 0, Z = oo. Fix # value tooo or to a smaller appropriate bound. Make a list
of pending nodes which contain only one node correspondiriget initial subproblem.

Step 1. Choose a node from the list as current problem, iétisemot, stop.

Step 2. Setr = v + 1. Solve current problem. If there is not a feasible solutitinacard the actual
node and go to Step 1. Otherwise, (&t 6”) denote an optimal solution.

Step 3. Verify if some of the relaxed constraints are vialatd some of them are violated, add a
feasibility cut , set- = r + 1 and go back to Step 2. #'x” + 6 > z, discard the actual
problem and go back to Step 1.

Step 4. Verify whether or not some of the integrality coriateaare violated. If it is true, create
two branches, following thBranch and cuprocedure, append new nodes to the set of pending
nodes and go back to Step 1.

Step 5. ObtairQ(x”) andz” = ¢’'x” 4+ Q(x¥). If z¥ < z, updatez = 2*.

Step 6. If§¥ > Q(x”), then discard the actual node and go back to Step 1. Otherwipese an
optimality cut, sets = s + 1 and go back to Step 2.

oo

Proposition 3.3. Whenever valid feasibility and optimality cuts set existafgroblem, then the L-
Shaped method with integer variables finds an optimal swiufiit exists, and in a finite number of
steps.

Proof Each one of the three relaxations can be recovered in a finitgbar of steps. In addition,
according to Definition 3]7Q(x) can be calculated in a finite number of steps, so Step 5 is fouote
O

The first application of the L-Shaped method for integeralzlgs was proposed by Laporte
and Louveaux,[[149] for 01 variables in the first and secdades. A complete description can be
found in Carge and Tind [54]. A stochastic version of ltih@nch and cumethod used in the statistic
estimation of the recourse function instead of its exacluat@mn can be found in Norkin, Ermoliev
and Ruszczynski [180].
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3.8.2 Integer simple recourse

A two-stage stochastic problem with simple integer recewen be written as:

min ¢/ x+ E¢[min q+Ty+ + q_Ty_]

st Ax=Db
vyt >¢-Tx (3.34)
y >Tx—¢§

xeX,yt eZly €L}

whereT andq are known and fixed and where defines the set of decision variables at the first
stage, which can be continuous or integers and non negdtheexpected value functio@(x) can
be aproximated by a separable sumvirtomponents. This is, defining= Tx:

Q(x) =Y ilxi)
=1
where

VYi(xi) = Eg,vi(xi, &)

Generally, it is known that the expected recourse functiomoin convex and, i§ has a discrete dis-
tribution, it can be discontinuous. However, there is caityeamong values of functio evaluated
in non necessarily integers, but separated by an integengis.

Let x" denote a point iR™ and leti € Z". Let us definex! = x" + i and for allj € Z",
j <i,x* =x%+j. Equivalently,

= Ax? + (1 - N)x!
_ -y
1
Now, without lost of generalityx is used as an argument of the functigrfdoingTx = Ix = x). It
is possible to show that

P(x*) < Mp(x?) + (1= \p(x)

see Birge and Louveauk [44]. It means that a convex linearepiese function can be written, with
points separated by an integer distance. This convex fumetill be called g0 — approx in x ifitis
formed joining pointse + k, k a integer.
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Particular case: y = Tx binary

If the first stage decisions are integer, it is enough Thaas integer coefficients in order to
ensure thajg satisfies the integrality condition. By definition pf- approz, solving problem[(3.34)
is equivalent to solving:

m2
min{ch + ZPi(Xi)|AX =b,x=Tx,x € X}.
i=1

Since this objective function is piecewise linear and cantiee problem can be solved by a decom-
position method such as the L-Shaped method.

3.8.3 Stochastic Branch-and-Bound

The algorithm so-calle&tochastic Branch and Bourwias developed by Norkin, Pflug and
Ruszczynski in 1998] [181]. Its application requires theedwaination of a estimation of the cost
function value. Let a general SIP problem:

min  F(x) = E[f(x,w)]

st. xe X

whereX is a finite set of decisions andrepresents posible realizations of the random variable. Th
Stochastic Branch and Bouragbproach consists of:

e Performing a partition of feasible regictiin subsets of minor size and

¢ estimating lower bounds of the objective functibiix) inside these subsets.

In each step of the algorithm, a subset with the minor eséch&dwer bound is chosen for a later
partitioning in minors subsets. In contrast to traditioBaanch and Boundhis method does not

contain a step in which the algorithm ends with an exact gwiubut one stop criteria is chosen and
an approximate solution is attained.

Let XP denote the actual subsets in which the originalsdtas been divided. These subsets
are a partitionP of X'. So, the original problem is divided into the subproblems:

min  F(x) = E[f(x,w)]

st. xe XP
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and let

F*(XP) = min F
(A7) Iin (%)

The following hypothesis are considered:
e There is a function lower bound of the set of subsets of such than for alx? € P:
L(XP) < F*(XP)
and if X? is a unitary set then

L(XP) = F*(XP)

e There is a sequencg (AP)}; of random estimators af(X?) which tends taL(X?) whenl
tends tooo, with probability one.

Stochastic Branch and Bound algorithm |

Step 0. Setr = 0, P, = {X'} and estimate a lower bourgd(X).
Step 1. If the stop criteria is satisfied, stop. Otherwise, choosebaet of lower bound:
Y" = argmin{¢, (X?) : X € P,.}
and a approximated solutioti € ).
Step 2. If Y" is unitary, sefP,; = P,.. Otherwise, build a partition of subsgt:
P Y") =4V :i=1,...,n,}
and from here build a new partition:

PT-‘,—I - (PT - y?‘) U Pr(yr)

Step 3. Setr = r + 1, estimatet, (AX”?) for all subsetst”? € P,., go back to Step 1.

oo
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Observe that in the Stochastic Branch and Bound method, ¢tiné hound does not have the same
meaning as in the deterministic Branch and Bound. In thigrothethod, some branch of the tree
are cut when the lower bound are bigger than the actual upperdoof the optimal value of the cost

function. However, in the stochastic Branch and Bound aggrano branch is deleted definitely, but
all branches can be evaluated again in next iterations. Achraan be cut only if it is possible to

obtain deterministic lower and upper bounds.
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3.9 BFC. Definitions and algorithmic framework for pure 0-1 p rob-
lems

TheBranch-and-Fix Coordination methodology was introduced by Alonso-Ayuso,
Escudero and Ortuiio in 2003 [26]. The instances of the mix&édDeterministic Equivalent Prob-
lem (DEM) can have such large dimensions that the plain usfra state-of-the-art optimization
engine can make it unaffordable. Alternatively, we can usargety of schemes, see [85] and ref-
erences therein. THe BFC is aimed at soljmglti-stage| linking constraints in a mixed — 1
[Stochastic Programmingproblem, and provides an algorithmic scheme for solvingdascale prob-

lems.

It is applied to a stochastic model via scenario tree withgete recourse. Let the splitting
variable representation of the deterministic equivaleotieh (DEM):

min Z w” (c“x" + a“y") (3.35)
we

s.t. Ax“ + By“ = b¥ Vw e Q (3.36)
v -t =0 YweQ,, regG, teT\ (3.37)
x¥ € {0,1}", Yw € Q. (3.38)

wherev = (x,y), andx andy are, respectively, the vectors of 0—1 and continue vargable

In this representation, it is possible to obtHiyj independent problems if thr@n-anticipativity
constraints[(3.37) are relaxed:
min c*x% 4+ a¥y"
s.t. Ax¥ + By“ = b¥
x¥ € {0,1}",

So, |?| Branch-and-Fix (BF)trees are created, one for each scenario. Instead of aigaini
the optimal solution for each problem independeritly, BFGpscially designed to coordinate the
selection of the branching variable and branching node dohescenario-related BF tree, such that
the relaxednhon-anticipativity | constraints[(3.37) are satisfied when fixing the approprat@bles

to either one or zero. The approach also coordinates antbreds the scenario-related BF node
pruning, the variable fixing and the objective function baimg of the subproblems attached to the
nodes.
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Twin Node Families (TNF) in the BFC scheme

For the presentation of tH&FC approach, le©“ denote theBF tree associated with scenario
w, A% be the set of nodes i@“ for w € , 7 the set of indices of the variables in any vectgr, and
(x); thei-th variable inx$’, fort € T,i € Z,w € Q.

Definition 3.8. Two variables, sayz%); and(z"); are said to beommorvariables for the scenarios
w andw’ in scenario group, if w,w’ € Q,., r € Ry, forw # W',t € T~,i € Z. Notice that two
commonvariables have nonzero elements in ffimn-anticipativity constraint related to the given

scenario group.

Definition 3.9. Any two nodes, say € A“ andd’ € A“" are said to béwin nodes with respect
to a given scenario group if the paths from their root nodesath of them in their owBF trees
Qv and Q“', respectively, either have not yet been branched on / fixetestt commonvariables
or they have the same 0—1 values for their branched / fixedmonvariables(z¥); and (2% );, for
w,w' € Qr € Ry, t €T1,i €.

Definition 3.10. A [Twin Node Family[{TNF)say, 7 is a set of nodes such that any node isvin
node to all the other node members in the family, foe F, where F is the set of (indexes of) the

families.

Definition 3.11. A candidate TNHs a TNF whose members have not yet branched on / fixed at all
theircommorvariables.

Definition 3.12. A TNF integer sets a set ofTNFswhere all variables take integer values, there is
one node per eadBF tree and thgnon-anticipativity constraints(z%); — (z¢'); = 0 are satisfied,
Vw,w' € Q,re Ryt e T ,iecl.

Let us consider the scenario tree and Bketrees shown in Figure 3.111, wher¢ denotes a
given variable subscripteld under scenaria andx;, gives the generic notation for the variable. For
illustrative purposes, let the branching ordering z-, ..., xs. We can see that the firsandidate
TNFis Ji, since the variables from stage 1 a@mmonvariables to all nodes. Additionally/; is
a family that has already been branched on the same value ebthmornvariablex;. It is also a
candidate TNFsince thecommorvariablezs has not been branched on (and, suppose that it has not
been fixed either). Similarlyy/; is anothercandidate TNEFHowever, 7, is not acandidate TNFsince
all thecommorvariables for their node members have been already brarmhe@he family 7, is
split into the families75; and 7 to branch independently on the variablgsandx,4, since the nodes
10 and 11 aréwin nodes for these variables, while node 12 is not. Finallye ibat,7; and Jg are
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alsocandidate TNFssince the variable, is not yet branched and, on the other hand, ité®amon
variable for the node members of those families.



Scenario Tree

®< -—> scen.2

@—>@ --> scen.3

stage 1 2 3
variablesx1, z2 T3, T4 Ts5,T6

-—> scen.l

BF treeR! BF treeR? BF treeR?

Branching variables ordering;, z2, x3, x4, Ts5, ¢

Some Twin Node FamiliesST\NF9
J1=1{1,2,3}, Jo = {4,6,8}, T3 = {5,7,9}, Ju = {10, 11, 12}*,
Js = {10,11}, Js = {12}, Jr = {13,15}, Js = {14, 16}
x A non candidate TNF

Figure 3.11: Branch-and-Fix Coordination (BFC) scheme
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Therefore, the aim is to execut®| phases obranch and fix one for each scenario in a
coordinated way. One master probleid P) is considered which choose the selection of the variable
to branch and node to branch. Aj§d subproblems are considered, one for each scenario. Fidliie 3
illustrates the Branch-and-Fix trees.

BFC algorithm |

Step 1. Solve|Q?| linear model associated with the scenarios. If the intégrahd thenon-anticipativity
conditions are satisfied, then the solution is optimal ferstochastic 0-1 problem, stop. Oth-

erwise, go to Step 2.

Step 2. Storing in M P the fractional values of variables and the solution valueaufh linear prob-
lem. Choose in théd/ P the node and the variable to branch.

Step 3. Use same branching-and-fix variables in all actives twinesodhis is, active nodes of dif-
ferent trees to satisfy thigon-anticipativity | constraints on the-variables. OptimizéQ| sub-

problems in each iteration, one for each active node.

Step 4. Update the solution and the active nodes set, if it is empip, $he optimal solution has been
obtained. Otherwise, go to Step 2.

oo

Note that the last previous sequence must be executed if Bomanticipativity constraint is vio-

lated, although all variables are 0-1.
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3.10 Applications of Stochastic Programming

Due to the fact that many real-life problems have inherenéttainty, applications for Stochas-
tic Programming (SP) are vast. In this section we simply liggih a few of the applications where
both stochastic linear programming (SLP) and stochasttedinteger programming (SIP) have seen
significant success and provide references for furtherimgadUnlike SLP models, most SIP models
started appearing in the literature only in the last few gedne mainly to lack of practical algorithms
to tackle these problems. For instance, Bertsiinas [37Epites variety of SP problems with discrete
decision variables. A lot of practical problems, such asaciyp planning and strategic supply chain
planning under uncertainty often involve discrete decisiariables. Thus applications for SIP will
continue to grow as more practical solution methods fordlpeeblems are derived and implemented.

Next it is discussed applications[ofISP to finance [52] 65, (128105, 11€, 174, 1183, 122],
telecommunication_[4, 46], and more recently][30], 73], srortation [[192], 193], Air Traffic Flow
Management [25], electricity power generation [1118,]145/[8B83) 182, 76], facility locatiori [11,9,
238,91], and production, supply chain and scheduling [R1E4£27].

See also several applications in Birgel[41], Dantzig anchG I 1].

3.10.1 Transportation

Many transportation models are commonly formulated as Stetastarting from the Fergu-
son and Dantzid [103] model. In particular, dynamic vehalecation has been one of the prominent
areas in which SP has been applied. It involves routing afsethicles (e.g. trucks, freight cars,
planes) to meet demand along routes and to position themnimiated future demands (loads).
The objective is to maximize the total expected returns gwegn time horizons. See for example
Powell [192], and[[193], Frantzeskakis and Powlell [107] &wdvell [194] for various SP dynamic
vehicle allocation models. Over the last few years, Powall &ittoes (1996)[195] and Powell et
al. [196] have developed approximations and an adaptivditapalgorithm that effectively approx-
imate the value function at each time period and yield a fofrdymamic approximation. Other SP
models in transportation include the widely studied ststihavehicle routing problem. For example
Laporte et al.[[150] propose the integer L-shaped methothiocapacitated vehicle routing problem
with stochastic demands, Kenyon and Morton [143] study thehastic vehicle routing with random
travel times, and Laporte et al._[153] propose an exact isoldor thea priori optimization of the
probabilistic traveling salesman problem.
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ATFM: Air Traffic Flow Management

Alonso-Ayuso et al.[[25] develop an stochastic air traffioirManagement Model based on
the Bertsimas and Stock deterministic model proposed ih [3& objective of these models is to find
a flight planning without violating the capacity of the airfsoand air-sectors with a minimum delay
expected cost. Airport capacities may change dependingeather conditions. On the other hand,
the model requires 0—1 variables that model situationsoagxample, a flight is going to take off in a
given period of time or not, and a flight will be cancelled ot,ramong others. So, the model is a SIP
model. The algorithmic approach is a predecessor oBthach-and-Fix Coordinatiomethodology,
presented in Chapter 6.

3.10.2 Telecommunication

The system traffic, performance and reliability of telecammmations systems planning and
operations naturally involve uncertainties. TherefotecBastic Programming naturally renders itself
a viable approach to problems that arise in this field. Serl.dR&8], for example, applied the
Stochastic Programing (SP) planning methodology to ansimidl-sized network planning problem
for Sonet-Switched Network (SSN), and demonstrates imgataetwork performance due to the SP
model. This particular problem involves making networkigesand configuration decisions that
require consideration of random point-to-point demands Wigh variance forecasts in the network.
The authors used the stochastic decomposition (SD) methealte the problem.

Another problem in telecommunications system that is atlent® the SP approach is the
server location problem under uncertainty. This type obpms find many real-life applications
in situations where facilities agservershave to be located at some given potential sites in order to
provide some service to potentidlents In such problems uncertainty appears not only in the client
demands, but also in the client availability and servertiooacosts. For example, Wang et al. in 2003
[236] study the facility location problem for immobile serg with continuous stochastic demands.
They present several models and provide heuristics for loditions. Riis et al. in 2004 [206] study
a server location problem for the deployment of mobile dwitg centers in a telecommunications
network and report on the solution of a real large-scale lpmlinstance using the SP approach.
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3.10.3 Electricity Power Generation

Electricity power generation is one of the most common aoéagpplication and source of
developments for SP methods. One of the problems, usueflstred to as the unit commitment,
aims at finding a fuel cost optimal scheduling of startupidtwn decisions and operation levels
for power generation units over some given time horizon. 2€4b5] and Carge and Schultz [53]
study a unit commitment problem in the presence of uncdytaimthe load profiles and develop a
ffwo-stageéSIP model with integer first-stage and mixed-integer reseuihey apply a Lagrangean-
based decomposition algorithm to solve a problem with ratd €or a German utility company. The
problem has a total of 20.000 integer and 150.000 contindeuision variables with up to 180.000
constraints.

Other examples include the contributions of Pereira antbHE88,189], where decompo-
sition procedures are used for models of the Brazilian paystem; Takriti et al..[224] apply the
progressive hedging algorithm to a model of the Michigan gosystem designed for daily schedul-
ing. They report achieving a convergence to near optimaitieols quickly with potential savings
over a deterministic procedure of almost $150.000 in gdimgraosts for one sample week.

The recent deregulation of the electricity market has aslatd the development of new SP
models in this area. For example, Sen etlal. [217] develop-8&SBd model for power portfolio
optimization called DASH. This model is designed to helpisiea-makers to coordinate production
decisions with opportunities in the wholesale power markefhey report that the model selects
portfolio positions that perform well on a variety of scenargenerated through statistical modeling
and optimization.

3.10.4 Finance

Finance problems inherently involve uncertainty due tofthiare time nature of financial
returns and are therefore, amenable to the SP approach. oBhefdSP is to provide a strategy for
making decisions that hedge against unforseen scenaddtasmavoid potential losses. An excellent
example of SP application to finance is the Russel-Yasudaiksdel reported in Carifio et al. in
1994 [51], which won second prize in the 1993 Franz Edelmaar&Competition for Management
Science Achievement. In the model decisions are made fganéae insurance company on how to
optimally invest in assets to meet an uncertain liabilitgain over time. The investment returns are
also random and the model includes legal constraints aheuwide of income to meet liabilities. The
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authors model the problem apraulti-stage SLP problem and report that the model yield $79 million
in its first year of use.

For a list of other successes of application of SP to finaned¢6s§. Other finance models can
be found in[[163, 148]. For more recent works, see [207 2028].2

3.10.5 Manufacturing

Manufacturing usually involves complex operations in vhiandomness cannot be ignored.
The cost of raw materials, production capacity and demangraducts are often random. In fact,
uncertainty is inherent in manufacturing operations. Icerg years the interest has increased in
applying[SP to tackle problems in this area, particularlycapacity-planning and expansion and
strategic supply chain management under uncertainty.

Eppen et al. [[82] provide a capacity-planning model at Galnstotors formulated as a
Stochastic Linear Program aiming to determine the capémityarious products at a series of plants.
They maximize the expected profit with a downside risk caiistr Ahmed and Garcia [214] study
the dynamic capacity acquisition and assignment probledemuancertainty using the SP approach.
Given a set of resources and tasks, this problem seeks to fimdismum cost schedule of capacity
acquisitions for the resources and the assignment of reseto task over a given planning horizon.
This problem arises, for example, in the integrated plamniriocations and capacities of distribution
centers (DCs), and the assignment of customers to the DGsipiply chain applications. The ran-
domness in the problem appear in the assignment costs apbtessing requirements for the tasks.
They formulate a SIP model and apply a decomposition bassettbrand-bound method (Ahmed et
al. in 2004, [[3]) to solve numerous instances of the problem.

Application of SP to strategic supply chain management undeertainty seems to have
gained interest only in the last few years. Strategic supp8in planning involves the determination
of production topology, plant sizing, product selectiomduct allocation among plants and vendor
selection for raw materials. The goal is to maximize the etgukprofit over a given time horizon for
the investment depreciation and operations costs. Uriegria strategic supply chain planning may
appear in the product net price, product demand, raw mbsenigly cost and production cost. Some
recent work in this area include that of Escudero etlal! [8HtHassani et al.[[168], Ahmed et al.
[2]. In particular, Alonso-Ayuso et all_[26] presentfa@-StageSP approach for the problem, derive
a branch-and-fix coordinatioBFC) method and report on the solution of large-scale SIP proble
instances.
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3.10.6 Other Applications

OtherfStochastic Programmingapplications include the military (Morton et al. [169], Bak
et al. [32]) and network interdiction (Cormican et &l. [66hd Woodruff [242]). See too the book
from Wallace and Ziemba [235] for mgiochastic Programmindapplications.
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3.11 Parallel Computing

This section presents a basic introduction to Parallel Gdgmg and the libraries that are
going to be used for implementing the parallel algorithmspréed in the next chapter.

3.11.1 A brief introduction to Parallel Computing

Computing consists of running programs by carrying sevi@dalally, many) computations
simultaneously, the underlying idea is dividing large peols into smaller ones, which are then
solved concurrently.

The first multiprocessor computers appeared early in thedbfiag the last century, but it
is not until recent years that interest in parallel compytias grown. For many years computer
hardware has been experiencing continuous performanos.ghi 1965, Intel co-founder Gordon
Moore made the prediction now call&tbore’s Law that states: “the number of transistors in a dense
integrated circuit doubles approximately every two yeandbwever, the physical and mechanical
constraints on individual processor speed have been réaaheé manufacturers are turning to another
solution: multiple processors.

Nowadays, parallel computing is mainly based on multi-gmecessors and clusters. Com-
puting clustering technology emerged as a result of coeverg of a number of computing trends
including the availability of low cost microprocessorsgtnispeed networks, and software for high-
performance distributed computing. Computer clustergygrieally much more cost-effective than
single computers of comparable speed or availability. €kfgains its increasing importance in high
performance computing.

As far as software is concerned, several concurrent pragragilanguages, libraries and
APIs have been created for programming parallel compuldrase can generally be classified based
on the assumptions they make about the underlying memohjtecture: shared memory (shared
between all processing elements in a single address spadea)istributed memory (in which each
processing element has its own local address space). Sdhmrsadistinguish between concurrent
(or parallel) computation (when memory is shared amongge®es), and distributed computation
(when memory is distributed among interconnected indegetncomputers).

In a shared memory environment, variables, objects, aralsdaictures are accessible to all
the processes. This allows inter-processor communicadibe quite faster than the message passing
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paradigm used in memory distributed systems, since suclmemication can be accomplished by
just writing data into a memory location where another pssoe can read from. However, this
introduces the problem of guaranteeing the consistencyataf that can be accessed by concurrent
processes in an indeterminate order. Moreover, shared mesupercomputers are expensive and do
not scale easily. This is why, as mentioned above, paradielptiting is currently mainly based on
memory distributed computer clusters, which are cheapgteasily scalable.

POSIX Threads and OpenMP are two of most widely used sharedomyeAPls (CUDA
is also growing paradigm that takes advantage of GPUs),eslseWlessage Passing Interiace is the
most widely used message-passing system API (used inbdittd memory architectures), MPI

has become a de facto standard for communication amonggsex¢hat model a parallel program
running on a distributed memory system and remains the dorhimodel used in high-performance
computing today.

3.11.2 Message Passing Interface

In this thesis the parallel code has been implemented usirga@d thé MBI library, since we
understan@ MP| is the standard in distributed memory prograng, and C++ is the best choice when
the goal is getting the best computing times. The Messagshimaapproach makes the exchange of
data cooperative among processes. Data must both be #ypdient and received. An advantage
is that any change in the receiver's memory is made with tbeiver's participation, thus data is
interchanged securely and eadily. MPI is a message-pdgsiary specification designed by a group
of researchers from academia and industry to function onde wariety of parallel computers, it
defines the syntax and semantics of a core of library routifd®] uses Language Independent
Specifications (LIS) for calls and language bindings, sitisantended for use with any programming
language. There are several well-tested and effi€ieni Mplementations mainly for C, C++ and
Fortran, and it has been used too with Python, Perl, javalaldat. . .

In an[MP] environment every process runs independently § obphe program, and tasks
are allocated to processes by their ranks, i.e. each prixassigned a rank and then an instruction
can be assigned to it by identifying its rak._WPI library étions include point-to-point send/receive
operations, collective communications, combining paréaults of computations (gather and reduce
operations), synchronizing nodes (barrier operation)elsas obtaining network-related information
such as the number of processes in the computing sessigantprocessor identity that a process
is mapped to, choosing a graph-like logical process togplogighboring processes accessible in a
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logical topology, and so on. Communication operations @symchronous and asynchronous.

[MPI-2’s LIS specifies over 500 functions, however, most magions use only a subset of
that standard of no more than 25 functions. In this work wé lvdlconcerned with no more than 15
functions. Anyway, the list of indispensable function® tmes that a programmer cannot do without,
are 6 (see Table 3.1), while the others are just to add fléyibihodularity, efficiency, etc. See Gropp
et al. [119] for more o MP!.

MPI _Init Initialize MPI
MPI_Comm_size  Find out how many processes there are running
MPI _Comm_rank Find out which process | am

MPI1 _Send Send a message
MPI _Recv Receive a message
MPI _Finalize Finalize thé MBI environment

Table 3.1: six MPI functions

3.11.3 Speedup

Ideally, parallelizing a known algorithm and using p praessto run it shouldjet the job
donep times faster. Reality, however, is more complex and margefoppose this ideal situation.
Message passing inevitably introduces some overhead, astatgorithms include steps that cannot
be parallelized, sometimes bottlenecks appear that foroe processors to remain idle while waiting
for others to finish their calculi. Hence, the use of severat@ssors is not always as efficient as
desired. To analyze the efficiency in parallelizing an dtbar, let us outline some ideas taken from
the computer science field.

A Turing machine is a simple abstract computational deuite (o the mathematician Alan
Turing) devoted to understand and analyze the extent of edrabe computed on a sequential com-
puter. Additionally, it enables to define the cost of an athon (by estimating the number of opera-
tions needed to complete it) precisely and is the basisdorplexityanalysis. More advanced models
of abstract computing machines have been developed in tHefieomputer scienceAmong them,
the Parallel Random-Access Machine (PRAM) comprises aedhegntral memory that can be ac-
cessed by the different processorspoocessing unitgPUs). All PUs execute the same algorithm
synchronously and they may access the same memory arease Asiting machine, neither the
number of PUs nor the memory size are bounded, and any PUoiseasllto access any memory
location in a time unit. With this baggage, the efficiency giamallel algorithm can be analyzed.
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Let P be a problem of size n, let(n) be the time (alternatively, the number of operations)
needed to solve P by the best known sequential algorithm. Isioty(p, n) be the time needed by a
PRAM algorithm using PUs to solve P. THepeedujof such PRAM algorithm for problem P is then

defined asi(p,n) = t;?;n,)l)

to the sequential one. Tlefficiencyis defined ag(p,n) = @, and can be seen as the proportion

(from 0 to 1) of the total number of processors that are fullken advantage of. The speeplup and
efficiency are widely used to analyze theodnes®f a parallel algorithm.

and expresses how many times faster is the parallel algopddmpared

For more on parallel programming, see Casanova €t al. [57].



Chapter 4

Metaheuristic algorithms for solving
large-scale multistage stochastic
mixed 0-1 problems

4.1 Introduction. Fix-and-Relax Coordination

The aim of this chapter is to present several frameworks dtvirgy large-scale multistage
mixed 0-1 problems under uncertainty in the coefficientshef abjective function, the right-hand-
side vector and the constraints matrix. A scenario treersehis used to represent the Deterministic
Equivalent Model of the stochastic mixed 0-1 program witmptete recourse. Constraints are mod-
eled by a splitting variable representation via scenarios.

Traditionally, special attention has been given to optingzhe[DEM by maximizing the ob-
jective function expected value over the set of finite sdesarsubject to the satisfaction of all the
problem constraints in the defined scenarios. Currentlgllssmd medium-scale mixed OE1 DEM are
solved by using different types of decomposition approacHa this chapter, different approaches
based on the Fix-and-Reldx (ERC) algorithm, are considirmesblving large-scale stochastic mixed
0-1 problems. In Sectidn 4. 1[I FRC algorithm is presenteztti®[4.3 presents an improved ver-
sion for[ERC algorithn], Jumping Fix-and-Relax Coordingtadgorithm is introduced for obtaining,
hopefully, better results. Finally, Sectibn4.4 concludeéth a parallel version df FRC-J.

Solving the model[(3]9) for a given scenario by plain usingtate-of-the-art optimization
engines may not require too much computing time for solvimgls and medium scale problems.
However, given the potential dimensions of the stochasision of the problem it is unrealistic to

99
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solve the instances with numerous scenarios as typicaldiimes of real-life cases. As an alternative,

we propose using a BFC based heuristic approach, so-€alleghB-Relax Coordinatidn (FRC) that
without, obviously, guaranteeing the optimality of theudimin, provides good feasible bounds for the

optimal one.

4.1.1 Onthe Fix-and-Relax scheme

Let P, denote the set of (indexes of the) variables with subser{pe., the variables associ-
ated with scenario group).

As stated in[[28], the optimization to be carried out at ametistage of the original problem
can be decomposed, by nature, in as many independent maedils aumber of scenario groups in
that stage. Each independent model will be a two-stage mwidelcontinuous and 0-1 variables.
The first stage submodel will be included by the variables@ated with the related scenario group,
and the second stage submodel will also be included by thables associated with the successor
scenario groups, such that their nonanticipativity caists are relaxed. The integrality of the 0-1
variables in seP, will not be relaxed while optimizing the model attached ters&rio group-. The
variables associated with the ancestor scenario groupalraedy fixed for the problem to solve at
each scenario group The integrality of the variables associated with the sdcstage will be re-
laxed. Moreover, thix-and-Rel rdinatidri (FR@pproach must satisfy the constraints (8.37)
related to the first staggommonvariables in the independent model attached to the scegeuigp.
Notice that the two stage model will be solved up optimallyhatso-called-R levelr.

4.1.2 Fix-and-Relax model

Let us consider the following MIP model

(MIP): min cz+ay
rEX,YyeY 4.1
s.t.a; € {0,1} VjeP.,reR,
where X and) are the polytopes of the 0-1 variables and continuous Magalespectively, that
define the feasible set, aft} Vr € R is a partition of| R| elements of the set of the variablBssuch

that? = U,er P, andP, N P,» = 0, Vk, k' € Rr # 1.
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Problem[(4.11) can be approximated by model

(MIP,): min cx+ ay

zeX,yey
st. z; =7, ViePL,r<r,
J J r (42)
xzj € {0,1} Vi € Pr,
xj € [0,1] VieP.,r<r,

where the values; for j € P., ' < r in the so-calledFR levelr > 1 are retrieved from the solution
to the related modeld3/IP,,,v' =1,...,r — 1.

Since only a reduced subset of (non-fixed) 0-1 variablesps ikkeger at-R levelr, M IP,
can be solved with relative time efficiency. See [100, 11].

4.1.3 Branching strategy

We have chosen thdepth firststrategy, see Wolsey (1998) [241], for branching
selection and, then, the criterion for branching consisthoosing the candidafENH following the
smallest deterioratiortriterion (see section 4.1.6 below for the details) amomgtito sons of the
last branche@NE. When there is a guarantee that the incumbent solution catlde produced by
the successor of both nodes, themaaktrackingto the immediate ancestor node is performed.

4.1.4 Associated models to scenario group r

Here we present the models to deal with while solving a giverdvelr (remind that each
FR level is associated to a particular scenario group

Mixed integer model for scenario groudFR level )
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The model to be solved &R levelr is as follows,

min E E w® (e xs + apyy)

r’eVTU{r} we,,

s.t. A¥zY + BYyY = W Yw € Q,
v =Y vr' eV, /{r}
v — et = 0 Yw,w + 1€ Q, (4-3)
xze € {0,1} Vw € €,
0<ay <1 Yw e Qv e Vr
ys >0 Vw € Q" e VT U{r}

wherev = (z,y), v is such that = (v Yw € Q,,r" € R) and the values®, Vi’ € V,/{r}
are retrieved from the solution to the modéels [4.3), where replaced by, beingr’ an ancestor
scenario group (i.eFR leve) to groupr. Notice that thénon-anticipativity | constraints[(3.37) for
scenario group arev® — v¢ ! =0 Vw,w + 1 € ..

Scenario set models by relaxing then-anticipativity | constraints

The|Q, | independent scenario models while relaxingribe-anticipativity | constraints from

scenario group are as follows, for each scenatioc (2,.,

min = E w? (x4 anys)

" EVru{r}
S.LAYZY + BYye = b
v =1 vr' eV, /{r} (4.4)
xzy € {0,1}
0<ay <1 vr'e V' iw e Qp
Yy =0 Ve Vi U{r}:we Qp

On the LP optimal solution for TNF integer sets

The splitting variable representation for solving the madt&ched to a given TNF integer set
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for scenario group can be expressed as follows,

3 w W W w W, w
min E E W Cr Ty + E E W Qs Yot

r'eVT we r’'eVru{r} we,,
s.t. A¥x% 4+ B¥y¥ = b¥ Vw € Q,
v =T vr' eV, (4.5)
Yy —yetl =0 Vw,w+ 1€ Q,
0<az¥ <1 Vw € Q1 € V"
ys >0 Vw € Q1 € VWU {r}

4.1.5 Two-stage BFC algorithm

The following procedure is executed for each scenario grotgpsolve the mode[(413), for
r € Re¢,t € T. Notice that the problem to solve at eaEtRCl iteration, see below, is[@vo-Stage
problem with continuous and 0-1 variables in the first stag# @ntinuous variables in the second
stage. See [84] for more details.

Step 1: Solve th&),.|[MIPlsubmodeld (4]4) in order to analyze fA§Hthat comprises the root nodes
in the BF treesQ® Yw € 2, associated witlR levelr. If the[non-anticipativity | constraints
(B.37) are satisfied then stop, the optimal solutionFBr levelr mixed 0-1 model has been

obtained. Otherwise,

Step 2: Selection of the branching variable. We will see ldifferent possible strategies at this step,
according to théargest small deterioratiomriterion. See parametgrin sectiof 4.1.6.

Step 3: Selection of tHENHby branching on the chosen 0-1 variable, according teihallest dete-
rioration criterion. Bounding the just creat@dNH by solving the appropriate scenario related
models [(4.4). If the bounding value is not better (in thisega@maller) than the incumbent
solution value, sayZ ;7 p then théTNHis pruned and goto Step 6.

Step 4. If the solution that has been obtained in Step 3 stiffignon-anticipativity | constraints
(3.31) for thex commorwvariables aFR levelr (i.e., theTNFsbelong to an integer set), any of
the two following situations has happened:

(a) Thenon-anticipativity| constraints[(3.37) for the commorvariables aFR levelr have
also been satisfied and, then, a new solution has been fourtefanixed 0-1 model
(4.3) attached t&R levelr. The incumbent solution valug,;;» can be updated and,
additionally, the updating of the active sets at the treesdBFvw € () can also be

performed. In any case, the TNF is pruned. Goto Step 6.
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(b) Thejnon-anticipativity| constraints[(3.37) for thg commorvariables have not been sat-
isfied. Goto Step 5.

Otherwise, goto Step 2.

Step 5: Optimize the LP model that results from fixing theariables related t&R levelr in model
(4.3) to the values given in the TNFs whose associated maddbéen optimized in Step 3; see
model [45), whereZ! 'F' denotes the solution value. . 5F < 7,/ p, then the updating of
the active node sets arih,;p is performed. Prune thie TINF and continue to Step 6.

Step 6: If the sets of active hodes are empty, then stop dieceptimality of thancumbentolution
for FR levelr model has been proved, if any. Otherwise, goto Step 2.

4.1.6 FRC algorithm implementation

The[ERGalgorithm may have different implementations. Here we gmethe implementation
that we are using in our computational experience. For tesgmtation of the pseudocode of G
procedure, let the additional notation:

., ith 0-1 variable whose index is in sEt.

7+, value of theith 0-1 variable obtained as the solution of the scenarideelanodel [(4.14), for
reR,we Q.

Zurpr » Solution value of thé// I P. mixed integer model defined in_(4.3) fBR levelr.

Zﬂffg, solution value of the original problem given by the propoapg@roach.

Let us introduce the elements that we use for selecting thabla (following thelargest
small deteriorationcriterion) and the two descenddafilNH from a given one (following themallest
deteriorationcriterion), whereu,; is the selection parameter for tith 0-1 variables to branch jointly
in the scenario BF trees in the problem]4.3 for scenario group

fri = min{ S -y zw} Vi € P,

weN, wEN,

Additionally, h.;~ will denote theith variable in setP, in a non-increasing order of the
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u-parameter. Let the branching parametgrbe such that

0, if Y m<|%- D T
Api = weN, wEN,- Vi € Pr.
1, otherwise.

ProcedureFRC

ZiHS =0,t:=1
While t < |T| do:
Forr € Ry, do:

Build FR levelmodel M I P, (4.3), where the continuous and 0-1 variables for the an-
cestorFR levelsare fixed, the 0-1 variables for the model associated withaso® groupr are
restricted to be 0-1 valued, the integrality constrainelsxed for the 0-1 variables of the suc-
cessor scenario groups, and the nonanticipativity canstréor the successor scenario groups
are also relaxed.

ObtainZ,;;p, by executing the procedug-C2
If Zyrrpr = 400 then stop
If t = |T|thenZEHS .= ZEES 1+ Zyrip,
Endfor
t:=t+1

Endwhile

ProcedureBFC2 for FR levelr

Step 1: Initializei := 0 andZy;;p, := +00.

Step 2: Solve the LP relaxations of tj{¢| models[(4.4). It can be done in parallel. If the variables
from setP, have 0-1 values¥, Vw € (2 and the constraint§ (3.37) are satisfied, then update the

solution valueZ,;; p,- and the related solution and return to the main program sireceptimal
solution forFR levelr has been obtained.
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Step 3: Updaté := i + 1.

Step 4: Seti;~ = argma>5€7>r{urj, } such that variablg has not been previously branched on,
nor fixed at in the current branching path.

Branchz,,_,. = A for all scenario in scenario group

rheis
Step 5: Solve the LP problenisP¥ Vw € €2, and computeZ;, p,-. It can be done in parallel.
If Zrpr > Zyrpr then goto Step 7.

If there is any 0-1 variable in sé®, that either takes continuous values or it takes different
valuesz®; for some of the scenario modefs (4.4) in grougnen goto Step 3.

If all the y variables in seP, take the same value for all scenario modell(4.4) in groupen
updateZy;rp, := Z,pr, and goto Step 7.

Step 6: Solve LP mod€l(4.5) for satisfying the constra{if8{) for thecommony variables in given
FR levelr. Notice that the solution value is denoted By5'F".

UpdateZyrpr = min{ZIN¥, Zyrrpr}-
If i < |P,| then goto Step 3.
Step 7: Prune the current branch.
If z,5_,. = Arn_,., then goto Step 10.
Step 8: Updaté :=1i — 1.
If i« = 0 then save the solution valug,;; p, and the related solution, if any, and return.
Step 9: Ifz,;_,. =1— Ay, , then goto Step 8.
Step 10: Branch,;_,. :=1— A\_,., for all scenarios in group.

Goto Step 5.

4.2 Break stage scenario clustering

The relaxation of thimon-anticipativity constraints[(3.37) in the modé&l(3]35) results in a set
of |Q2| independent mixed 0-1 models. This way the original probielecomposed into smaller
independent subproblems easier to solve separately, dyutriay be more subproblems than needed.
There are other ways to divide the problem in subproblemsoaedof them is scenario clustering.

Let us the following definition:
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Definition 4.1. A [scenario clusteiis a set of scenarios where then-anticipativity constraints are
implicitly defined in the model.

A scenario-cluster partitioning allows a combination ofrggact and splitting variable repre-
sentations in the different stages of the problem, keepigigdn-anticipativity constraints implicitly
defined in the compact representation for each clusterewimise relating different cluster’s variables

are explicitly represented in the splitting variable reyaraation.

It is clear that the relaxation of the constrairits (8.37)dsnequired for all pairs of scenarios
in order to obtain computational efficiency. By considersagnarioclusteringthe quality of the
relaxation’s solution is reinforced. Moreover, some effiy in finding the solution can be lost, as
we will see later.

By scenarioclusteringthe original problem is decomposed in less (though biggarpsob-
lems, corresponding the extreme cases to the completergc@aatitioning (where each cluster is
comprised by just a single scenario) and the oridinal DEMfenm with only one cluster containing
all scenarios. Finding which scenario clustering is the bpson is an open problem and pretty much
instance dependent.

Although the criterion for scenario clustering is instawependent, we will favor the ap-
proach that shows higher scenario clustering for greaterbeun of scenario groups in common,
this way there are moifeon-anticipativity constraints to be implicitly satisfied, see Escudero et al.
[97,198)96]. That is why we choose theeak stage scenario cluster decompositimethodology for
partitioning the scenario setwith respect to a given fixed stage, called break stage, bsethration
of thelnon-anticipativity|constraints up to that stage. The concept of break stagevéisaintroduced
in [97], see alsa [90].

Let Q¢ denote the set of scenarios that belong to clustsuch that2c N Q¢ = 0, ¢,¢ €
C:c# d andQ = U.cQ¢ and letC” be the set of clusters associated to scenario groue.
peC" < Q. NOP £,

Definition 4.2. A break staget* is a stage such that the sefsmenario clustes C is defined by the
set ofscenario groupg R4 as follows:Ve : (c € C < 3lr € Ryx = Q. = Q°).

Model (3.35) is thus decomposed into submodels by relaxiegnon-anticipativity | con-
straints until the break stagé. Notice that fort* = 0, there is only one cluster that corresponds to
the originalDEM. So, no decomposition takes place, all thastraints remain implicit, tHe FRC al-
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gorithm will run a single level and the optimum solution vii# found. On the opposite, fét = T'—1

the origina[DEM is decomposed into the full scenario treshecluster comprises a single scenario
and thd FRC algorithm will run T levels. In general, #6r= ¢t whent > 0, the originallDEM is
decomposed intRR- | submodels, the ERC algorithm will run+ 1 levels and it is easy to see that
the solution found, say; is such thatZ, >= 7, ;. Thus, for higher break stages, more efficiency
should be achieved (in terms of time and computational resguneeded) thanks to decomposition,
but worse solutions could be found. Both results have to tenbad when choosing thé. Several
break stages will be chosen in the computational resulsepted in Chaptér 5 to address this issue.

Given the generahultilinking compacmodel for thé SP problem:

min Qp = Z wr(crxr + aryr)

reR
st Y (A + Blpyye) =by VreRr (4.6)
r'eVy
x, € {0,1},y, >0 Vr € R,

wherec, anda, are the row vectors of the objective function coefficiedtsand B; are the constraint
matrices related to stage b, is therhs vector, andx,, andy, are the vectors of the variables for
scenario group, such thaie, = ¢/, a, = af, A} = AY, B = B} andb, = b}, forr € Ryt €
T,pecC.

The model to consider for each scenario clugterC can be expressed:

min Z wy(erxr + aryy)

reR:peC”

S.t. Z (A:(T/)xr/ + B:(T/)yr/) = b7‘ VT € R P S CT (47)
r’' eV,
z, € {0,1},y, >0 VreR:peCr

4.2.1 Associated models to FR level r

Here we present the models to deal with while solving a givBrldvel . Notice that the
[non-anticipativity | constraints are explicitly declared until stagewhile they keep implicit for >

t* since forr € Ry : t > t*,|C"| = 1.

Mixed 0-1 model for scenario group(FR level |)
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The model to be solved &R levelr is as follows,

min Z Z ’wp(cz;/.fﬂfl + af/yf/)

r'eVru{r} pecr’

S.t. APxP + BPyP = pP VpeCr
of, =7, VpeCrr' e {(Vi\{r}}
vk — Uf, =0 Vp,p' e C" (48)
at € {0,1} Vp eC"
0<ab <1 vpeCr e {V\{r}}
yh, >0 VpeCCr,r e VT uU{r}

wherew? is the probability attributed tp, i.e. w? = >~ o, w*, andv = (z,y), vf are such that
v = (v Vr € R, pe(C")and the values’, Vr’ € V,\{r} are retrieved from the solution to the
models [(4.8), where is replaced by, such that’ € V,\{r}. Notice that thenon-anticipativity |
constraints are

P —of =0Vp,p eC” (4.9)

Cluster models by relaxing tin-anticipativity | constraints

When relaxing th@mon-anticipativity | constraints from mode[ (4.8) for FR level the result-
ing model can be split int¢C"| independent cluster models. Each of such models can beipptim
separately and concurrently in a different process, anddhanticipativityprinciple will be satisfied
by applying the BFC algorithm. The resulting model for a tdussayp, is as follows,

min Z wP () xl, + a,yl))
revru{r}pecr’
S.t. APaP + BPyP = bP

o, =7, vr' e V. \{r} (4.10)
zy € {0,1}

0<ab <1 vr' e Vi\{r} :peC”

yr >0 v eV u{r}:pec”

On the LP optimal solution for TNF integer sets
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The splitting variable representation for solving the LPdelattached to a givén TNF integer
set (see Sectidn 3.9) for FR lewetan be expressed as follows,

min Z Z wPe?,ab, + Z Z wPal,y?,

r'eVr\{r} pecr’ r’'eVru{r} pecr’

S.t. APgP + BPyP = pP VpeCr
W, =, Vp el e V\{r}
yr —yr =0 Vp,p' € C”
y € {0,1} VpeCr
0<aP <1 VpeCr,r' e Vi u{r}
yh, >0 YpecC eV u{r}

4.3 Jumping Fix-and-Relax Coordination (FRC-J)

algorithm drastically reduces the computational &ftorsolving large-scale multi-stage
mixed 0-1 SP problems. However, there are still very laggesproblems which remain hard to solve
even for this algorithm. This is why we have tried an improvedsion of ERC. In this section we
introduce such algorithm, which we have called Jumpingdfidg-Relax Coordinatidn (FRC-J). The
algorithm is based on some metaheuristics aimed at findiligresolutions and reducing the number
of visited nodes at each FRC-J level.

First, let us present the main ideas on wHich FIRC-J is basedfiGt objective is to find a
feasible solution as fast as possible, i.e, we follodeath firststrategy. Then we try to reduce the
number of visited nodes at each level and the computing tireaeh of those nodes.

These are the strategies to follow at each FRC-J level:

1. At each iteration of the Jumping Branch-and-Fix Coortiam (BEC-J), when branching, all
those variables not yet branched that follow fi@n-anticipativity| constraints are fixed to
their values (in some sense, we could say that their comelspg TNFs argumped dowrthe
BF tree). Thigumping dowrstrategy aims to find fastly a feasible solution to get annmoent

that will help pruning as marly TNIFs as possible.

2. Then, when the branching value is selected, instead efriogl variables in a non-increasing
order of theu-parameter, as in Sectign 4.11.6, an increasing orderingris,cand thus a variable
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with the least frequent value is selected (i.eldrgest small deterioratiomriterion):

heis = argminjepr{,um} st pp = min{ Z z, ICT| — Z Efl} Vi € P,.
peCr peCr

The branching parametar,,_,_ is, as before,

i =P Tl _ =P
O’ if Z xTh<i> S ’C ‘ Z xTh<i>
peCT peCT
1, otherwise.

A

rhais —

3. Once the branching variable has been selected, it is foxeght .. = A.4_,.. Then, there is
no need to find again tHe_MIP solution for those cluster mo(feIE)) for which the chosen
variable already takes on that valag{_,_ = \,;_,.) at the lasiE TNF. Then, only a few (half,
at most) of the models need to be solved again, saving a l@mopatational effort at this point.
Moreover, for the way the branching variable and its valgedmosen/ .~ and),;, see item
2), only the minimum number of such models need to be solvaihag

4. Finally, to help reducing drastically the number of \@gitnodes, when pruning, all those vari-
ables that were befoli@mped downare nowjumped backand the previously branched vari-
able is fixed to the opposite value. Notice that doing baskjumpingeludes searching some
branches of th8F treeand this excludes the guarantee of finding the optimal soiwt each
level since it can be skipped, though as we will see latghe testbed we have worked
with in the computational experience, when there is a GARbet FRC1J and FRC, it is very
low.

Besides, we are going to use a stack, saythat serves as a collection of elements, with
two principal operations: push, which adds an elemetat the collection (let us symbolize it by
S — push(i)), and pop & — pop(i)), which removes the last element that was added (this behavi
is usually coined as LIFO (last in, first out)). Since the newanching strategy will imply fixing
all those variables that already follow tl@n-anticipativity | constraints, and the selected variable
h<;, this variable will be pushed to the stack. This way, whempy, the last selectéd TINF can be
retrieved and the previousjympedINHs can bgumpedback.

Now let us present tHe FRC-J procedure:
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Procedure[FRC-J

ZifE =0, 1=1
While ¢t < t* do:
Forr € Ry, do:

Build FR levelmodel M I P, (4.8), where the continuous and 0-1 variables for the an-
cestorFR levelsare fixed, the 0-1 variables for the model associated witharo@ groupr
are restricted to be 0-1 valued, the integrality constrgimelaxed for the 0-1 variables of the
successor scenario groups, and[tlom-anticipativity | constraints for the successor scenario
groups are also relaxed.

ObtainZ,;;p, by executing the Subprocedure R levelr
If Zyrrpr = 400 then stop
If t = t* thenZl S = ZEHS 4+ Zyrip,

Endfor

t:=t+1

Endwhile

Subprocedurefor FR levelr

Step 1: Initializei := 0, Zyrp- := +00, the stack of fixed variableS = (.

Step 2: Solve the MIPU,. <z K"| models[(4.1D). It can be done in parallel. If the constrafdi)
are satisfied, then update the solution valyg; p, and the related solution and return to the
main program.

Step 3: Branch all thé: fixing the variables that follow tHeon-anticipativity| constraints.
UpdateS — push(i) andi := i+ k + 1.

Step 4: Seti.;~ = argmiryepr{urj, } such that variablg has not been previously branched on,
nor fixed at in the current branching path.

Branchxz,,_,. := Ari_,., for all scenario in scenario group Let us remind that there will be
no need to solve again the model for the majority of the scesar
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Step 5: Solve the MIP problem®/ I P? Vp € C" and computeZ);;p, = > MIPE. It can be

done in parallel.

peC”

If Zpr > Zurpr then goto Step 7.

If there is any O-1 variable in s&®, that takes different values!, for some of the scenario
models[(4.1D) in group then goto Step 3.

If all the y variables in seP, take the same value for all scenario mo@el (%.10) in grgupen
updateZyrp, := Z};;p,, and goto Step 7.

Step 6: Solve LP moddl(4.111) for satisfying the constraf@i8) for thecommony variables in given
FR levelr. Notice that the solution value is denoted B~ .

UpdateZasrpr = min{ZE8F Zyr1p,}.
Step 7: Prune the current branch.
If z,5_,. = An_,., then goto Step 10.
Step 8: Updat& — pop(i).
If + = 0 then save the solution valu&,;p, and the related solution, if any, and return.
Step 9: Ifz,;_,. =1— A\, then goto Step 8.
Step 10: Branch:

:=1— A\p_,., forall scenarios in group.

rheis

Goto Step 5.

4.4 Parallel Jumping Fix-and-Relax Coordination (FRC-PJ)

At this section we present the Parallel Jumping Fix-andaR€&loordination, a parallel ver-
sion of the sequential FRC-J algorithm presented in Se@i@n As we previously mentioned, the
process of solving the submodé€ls_(4.10) can be parallelaéalving an important reduction of the
computing time needed to solve the algorithm.

Several processes will be working concurrently, all of thegrforming the same type of tasks
except for one special process, which we will The[Mastar will coordinate the whole
execution of the program, deciding which subproblems aleetsolved, which variables to be fixed,
when and how to prune, and so on. Meanwhile, for each scedaster to be considered, there is a
process dedicated to solve that cluster's model.
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441

Let us try to analyze thepeedujof the[ERC-PJ algorithm: Firstly, simplifying the most, let
us suppose that all the subproblems were equally hard te sold it took us the same computing
time to solve each of them, and suppose too that this werbeatdmputational effort that we need
to take into account, while the time needed to complete thieliations of the algorithm and the extra
computing effort added to allow the communications betweerdifferent processes were negligible.
Then we could conclude that tflspeedufachieved by parallelizing tHe FRC-J algorithm would be
strictly proportional to the number of processes we used, if.there were e.g|C| = 10 clusters, it
would takd FRC-PJ a tenth of the time neede@ by FRC-J to seévetin problem. Of course this is
the ideal situation and in the real world we will get lower @#éncy.

To dig a bit deeper on the analysis, let us defined:

e t;; andt,;r, respectively, time needed to solve the problem by[the FR@dlthe FRC-PJ
algorithms.

* 1y, total computing time needed to carry out the patallelizableinstructions when solving
a particular problem by tHe FRC-J algorithm,

e {,, time added by the extra instructions needed to communaradecoordinate the different
processes by the FRCiPJ.

e C' C C, set of clusters that need to be solved again at iteration

e (¥, computing time needed to solve the subproblem for clystelC at iterationi € {1...n},
where we suppose that FRC-J needs to solvétthsubproblems: times.

Then,tjs = top + D g<icn 2peci ti - If fOr each cluster, times were similaf? (= t'vp €
C,i € {1,...,n}), then, reminding that for some iterations in FRC-J, attlba¥ of the subproblems
do not need to be solved again, let us approximate:
tif =tnp + Zogign ZpEC %

For[ERC-PU we get the following computing time:
tpjf =tnp +tp+ D 0<i<n maxpEC{tg}-

Parallelization efficiency depends oy), andt, values, which are usually low, but for small
problems they may be significant. Notice that some of the mlidgms may take a lot longer to
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be solved than the other ones (we have observed this behaute testbed we present in the next
chapter), in such cases, it is possible #at > peci . So the efficiency will highly depend on the
variability of the computing times needed to solve the défe subproblems, the more heterogeneous,
the less efficient will be the parallel algorithm.

Anyway, we have explored two ways to tackle this problem anprove thgspeedujof the
parallelization:

e Instead of keeping the fastest processes idle, waitinghierather processes to finish their
calculation for solving their problems, we could try to golmanching or pruning. However,
the slight improvement this strategy could deliver doesmake up for the difficult, almost
unmanageable, overhead that it would add to the algorithm.

e Another strategy could be setting,_,. = 7, s.t.p = maxyec{tF}. So, the slowest processes
would remain idle whenever possible. However, it is not easpredict which will be the
slowest subproblem to solve a priori. We tackled this pnobly using the first iteration time
as a reference, but usually, the first solution is the onet#iats longer to find, and once we
fix one (some) variable(s) and solve again, CPLEX managesdbdfisolution quite faster.
Moreover, after fixing some variables, trebwestproblem may become thiastestone. To
summarize, we have tried this strategy with no signififsgp@iedugmprovement, but we believe
it should be explored deeper in a later work, particulariyolaing larger problems that really
represent a challenge for the FRG-PJ algorithm.

4.4.2 |[FRC-PJ

Let us introduce the FRC-PJ procedure. By slightly abudiegibtation, let us use clusteto
refer to the process that works with its model, as well asageigroupr to refer to the corresponding
level of the algorithm. At a given moment, every procegmay be working on a different level
let us call itr?. The steps executed by all processes but by the Master akednaith a “’ " (as in
Step 3), while the steps not marked (asSitep 3 are all executed by thie Master except the first step,
which is executed by all processes.

Procedure[FRC-PJfor FR levelr

Step 1: Initializé MBI environment and variables.
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Step 2'; Each process reads the particular instance of liigreblem and initializes variables. Set

rP .= 0.
Step 3:[Mastér waits for any message from the other processes

Step 3": Each one of the processess C" solves itsM I PP problem [4ID) concurrently. When
finished solving sends the solution to fhe Mdster.

Step 4:[Mastér receives the message from a procesg, ddthe subproblem was infeasible prune
the current branch, i.e., goto Step 10. Otherwise save thé@ofound and update the value of
Zirpet = 281 pe- € Z0y 1 > Zarpr then prune, i.e. goto Step 10. If not all the processes
working on levelr? have yet sent their solutions for the current TNF, goto StegiBeck if,
constraints[(419) are satisfied, and if so, goto Step 8. @iker branch the currenf TNF:

Step 5: Branch all theé: fixing the variables that follow tHeon-anticipativity| constraints.
UpdateS — push(i) andi := i+ k + 1.

Step 6: Seti.;~ = argmir}-epr{urj, } such that variablg has not been previously branched on,
nor fixed at in the current branching path. Brangh_,. := A,j,_,. .. SetZ),;p, := 0. Send a
message to all clusters in scenario gretipGoto Step 3.

Step 7": All clusters in scenario group shall fix thek + 1 variables mentioned in the previous step
on their respective models, and goto Step 3'.

Step 8: If all they variables in seP, take the same value for all scenario model (4.10) in graup
then updateZy;rp, := Z);;p,, and goto Step 10.

Step 9: Solve LP model[ (4.111) for satisfying the constraidi§) for thecommony variables in
given FR levelr. Notice that the solution value is denoted BY A¥. Update Zy;p, =
min{Z}{gF,ZMIPT}.

Step 10: Prune the current branch.

If z,5_,. = Arn_,., then goto Step 13.

Step 11: Updat& — pop(7).

If ¢ = 0 then save the solution valu&,;p, and the related solution, if any, and return.

Step 12: Ifz,;_,. =1 — Ay, , then goto Step 11.

Step 13: Branch,,_,. :=1— \_,., send the message to all scenarios in grouoto Step 3.

Step 14’ All clusters in scenario grouf shall unfix the variablegumpedin the previous step on
their respective models and fix the variablg,_,_ := 1 — A.;_,. , and goto Step 3'.

<i>



Chapter 5
Computational Experience

In this chapter, a broad computational experience is ptedeor assessing the quality of the algo-
rithm frameworks introduced in previous chapter. A set ghpatational experiments have been run
for large-scale instances of the NP-hard Multistage Swtah&acility Location ProblemiMSELP)
The remainder of this chapter is organized as follows: Thédtisfage Stochastic Facility Location
Problem is firstly introduced in Section 5.1. Secfiond 5.2fally states th@MSFLP| and introduces

a pure0 — 1[DEM associated with it and Sectibn 5.3 reports computatierperience, for the algo-
rithms presented, solving a testbed randomly generated.

5.1 Multi-period location-allocation problem under uncer tainty

Discrete facility location decisions can be planned as akstquential actions to be im-
plemented at different moments of a given time horizon. Madtiod location problems look for
sequential location/allocation decisions that fulfil e@rtcoverage levels of demand in some places at
each time period. When focusing on essential services,|gtigu demand must be serviced from the
first time period. However, some applications have beendaoanvhich non-essential facilities have
to be located, and full coverage is only required at the entleplanning horizon. This is the case,
for instance, for the location of libraries, nursing homdader gardens, parking lots, supermarkets,
banks, etc. Usually, in these cases budget limitationsgmteivom imposing full coverage from the
first time period, and minimum coverage levels at the difietene periods are imposed instead. Dif-
ferent types of multi-period facility location problemsvesbeen studied in the literature by numerous
authors. The interested reader is referred to[[10, 12,[15&/[170/ 1377, 109, 243, 171, 230, 237], to
mention just a few.

117
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In this problems, there are several elements that evolve timite, like costs, availability of
resources or demands. Historical data is typically usedrechst their values but the fact is that the
actual behavior of the system is not deterministic and shbeladdressed ps Stochastic Programming
(SP) problems. In thBISELP], we are given a set of potential facilities (e.g., produtiants) and
a set of customers. At each time period, customers demareho€e must be satisfied from an open
facility. Thus, at each time period, two types of decisionsstrbe made: the location of the facilities
to open and the allocation of customers to open facilitiescestain data include facility set-up and

maintenance costs as well as customers assignment costhierfmore, requests for service from
the customers, as well as the minimum number of facilitiesgen, and the minimum number of
allocated customers for open facilities are also uncerfie objective in th®MSFLPIis to minimize
the overall expected costs (i.e. we consider a risk neunatiegy), which in our case, in addition to
the above mentioned costs, include penalties for unsatiséevice requests.

The deterministic version of tHEISELP] is already NP-hard (se& [10,/12]). Therefore, the
[MSELPlis an interesting and difficult application of Stochastitezer Programming since, in prac-
tice, very frequently it is an stochastic problem. See [I0]&n extensive computational compari-
son of three formulations for the deterministic versiont@f/ISFELP], where the formulation using
impulse-step variables produced the best results, thatyshis is the formulation used herein.

5.2 Multistage Stochastic Facility Location Problem

In the[MSELP]a set offacilities must be selected (opened) from a given set of potential spots
to give service to a given set ofistomersLetZ denote the index set of facilitieg] the index set of
customers, an@ the index set of time periods. Next we describe the modelymptheses and the
notation:

e Ateach period € 7 a decision must be made on the set of facilities to open. Ofeeldy is
opened it remains open until the end of the time horizon.

e There is aatency 7, that represents the number of periods required to makéabiaia fa-
cility from the moment it is decided to open it. Throughout will distinguish between the
time period when the decision is made to open a facility aedithe period when it becomes
available. We assume the latency is the same for all faslitiver the time horizon. We further
assume that the decision to open the facilities to be avaiktthe first- — 1 periods in the time
horizon has been made before the beginning of it. Notice ttherwise, no facility would be
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available during the first — 1 periods. Additionally, let7™* C 7 and the subseR* C R of
scenario groups such th@t = 7\ {T'— 7+ 1, ..., T} andR* = U7+ Rs.

e The index set of facilities that are open at some period edfte beginning of the time horizon
is denoted by~ C 7.
Foreachi € 77, t;, (—7 < t; < —1) denotes the period (before the beginning of the time
horizon) at which it was decided to open facility
Furthermore, for each € Z, R." denotes the index set of nodes of the scenario tree where it
can be decided to open facility This definition depends on whether or not facilitis open
before the beginning of the time horizon. That is:

RT =

(2

R VieI\I,
R* U {ti,ti +1,..., —1} Viel™.

e Customers are progressively assigned to open facilitietseagh period € 7 a minimum
number of customers must be assigned to each open facilitge @ customer is assigned it
must continue to be assigned in all subsequent periodguglththe customer assignment may
change from period to period. Moreover, at a given periodsdaruer cannot be assigned to
more than one facility. All customers must be assigned agtfieof the time horizon.

e Each customer may demand service at any subset of periodse Taquests will only be served
if the customer is already assigned. Assigned customerstoetcessarily have demand at all
periods after their first assignment.

e There are set-up and maintenance costs for the open feilissigning a customer to a facility
at a given period incurs a cost, even if the customer doesan@ tlemand at that period. In
addition, a penalty is paid for not servicing unassignedarusrs with demand. Fgre 7, let
p; denote the penalty for not servicing the demand of custgmer

e Service requests are assumed to be binary, uncertain aedeindent. In addition to the de-
mand, other parameters can also be uncertain as the minimombar of customers to be
assigned to a facility at each period, the minimum numbemoiiifies to be opened at each
period, and the set-up, maintenance and assignment cogtarticular, the following data are
assumed to be uncertain:

d; : coefficient that takes the value 1 or 0 depending on whetheottustomey has demand
at periodt(r) under scenario group Vj € J,r € R™.

n” : minimum number of customers to be serviced at pet{@dlunder scenario groug Vr €
R™.
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7 : lower bound on the number of customers to be assigned tatyagilif it is available at
periodt(r) under scenario group Vr € R™.

m” : minimum number of facilities to be opened at perige) under scenario group, Vr €
R*.

fisr : set-up cost for facility at periodt(r) under scenario group Vi € Z,r € Rj
Note: As mentioned before, the facilities opened at petiegl will become available at
periodt(r) + 7 (thus, at the nodeR,,, of the scenario tree).

M- . maintenance cost for facility at periodt(r) under scenario group, Vi € Z,r € R™.
Note that, if it is decided to open a facility at time perigdhen its maintenance costs will
be incurred from period + 7 to periodT.

ci. » assignment cost of customgto facility ¢ under scenario group Vi € Z,r € R™.

The objective in théMSFELP] is to minimize the expected overall cost throughout the time
horizon. This cost includes facilities set-up and mainteacosts, as well as assignments costs and
penalties for unserved customers.

We have followed the so-callestenario dependent location decisiamhere location deci-
sions are gradually made along the planning horizon. Thidesly is suitable for situations where
both the location and the assignment decisions are coesidgerational, and it leads to a multi-stage
stochastic programming model. This allows high flexibilitythe decision process but, on the other
hand, comes at the expenses bf a DEM which is difficult to solve

5.2.1 0-1[DEM

Next, we presentlaDEM for the scenario-dependent locatiaregy for thdMSELP]that uses
a mixture of impulse and step variables (de€ [10] and refexetherein), which is the combination
of variables that gave the best numerical results for therdehistic version of the problem. In
particular, let us the following sets of binary variables:

1, if by periodt(r) it has been decided
yr = to open facility:, under scenario group VieI,re Rj

0, otherwise
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and
1, if customer; is assigned to facility
xj; = at periodt(r), under scenario group VieI,jeJ,reR .
0, otherwise
Remarks:

1. For coherence, we f@{ =1,VieZ- andtheny; =1,Vr € Rj Additionally, we consider
thaty!” = 0,vie T\ T~

2. Recall that)] = 1 means that facility is open by period(r), but does not necessarily mean
that it is yet available at that period.
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The compact representation of fRESELPI for the scenario-dependent location strategy is as

follows,
. r r(,,T T r MT, r
min Y f0y0 + Y [p So -y ))+Z< > s )yi]+
P reR* iET\T~ €L rlir=~y7(r')
Z prz<20§jxl‘nj "’de;(l _ZU’CZTJD (5.1)
reR—- jeJ i€l €1
subject to
Z Z zi; >n' VreR™ (5.2)
i€l jeJ
Zx;‘j > f;‘yf(r) VieI,re R :97(r) e RS (5.3)
JjeT
lefjgl VieJ,reR :t(r)eT\{T} (5.4)
€L
da=1 VjeJreRr (5.5)
€L
ngjm <> ap VieJreR:t(r)>1 (5.6)
i€ 1€T
o<yl ViedieT,reR iy (r) €RY (5.7)
=0 YjEeJieLreR v (r) ¢ RS (5.8)
S @iy >mt e R\ {0} (5.9)
1€I\T~
S = (5.10)
i€\~
/O <yr VieINIT,reR\{0} (5.11)
yr=1 VieI ,reRr} (5.12)
e €{0,1} VieI,jeJ,reR" (5.13)
y; € {0,1} VieI\I ,reR;. (5.14)

The expressior[ (5.1) consists of minimizing the total exgegdocation-allocation cost over
the scenarios, according to a risk neutral strategy. Caingsr[5.2) force that a minimum number of
customers is assigned at perigdor t € 7. Constraints[(5]3) guarantee that a minimum number of
customers are assigned to each available facility at eagbdpeConstraints(5]4) ensure that, at each
period, each customer is assigned to one facility at the madwtireas Constraints (5.5) force all cus-
tomers to be assigned at the end of the time horizon. By ain&{5.6), a customer already assigned
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at periodt — 1 will also be assigned at periad although the facility to whom it is assigned is not
necessarily the same at both periods. Constrdints (5.7(Ea8pmodel that, at any period, customers
can be assigned only to available facilities. ConstralBif)(guarantee that a minimum number of
facilities are opened from a time period to the next one atbegime horizor7 *. Constraint[(5.10)
sets the number of facilities:” to be opened at period= 0. Finally, constraints(5.11) and(5]12)
ensure that if a facility is open at a given perigdhen it remains open at all subsequent periods.

5.3 Computational experience

To illustrate the performance and assess the quality oflgorithms we have run a series of
computational experiments based.on . For these experimenisave implemented the algorithms in
C++, using the_ MBI libraries for the parallel code. We runpatigrams irSolstorm a cluster placed
in the Norwegian University of Science and Technology (NTNib Trondheim, Norway. Solstorm
has 2732 CPUs of different types (132 cores at 1.6GHz Ing#, cbres at 3.0GHz Intel, 984 cores
at 2.4GHz Opteron, 1536 cores at 2.2GHz Opteron). CPLEXed as an auxiliary LP/MIP solver,
particularly its version v12.61. In all the experiments enpaiting time limit of 48h was set. An issue
we have had to deal with is that the computational resourt#isiocluster are shared and, hence,
the elapsed times vary from one execution to another. Thasalgorithms have been run twice and
written down the media for each case in the testbed. For eadess running FRC-PJ, a single core
has been assigned. Likewise, CPLEX was run on a single core.

5.3.1 Testbeds description

To test the formulations and the algorithm, a series of imsta have been used, taken from
the computational experience reported in Albareda-Saandt@l. [11], where stochastic optimization
is used to address a multistage location problem for thetiiing, to the best of our knowledge. For
that work, the computational experiments were conducteddifferent type of machine, particularly
a PC Intel Core 2 Duo, 2.60 GHz, 3 Gb RAM, Microsoft Visual Seu@++ compiler v6.0., and
a computing time limit of 24h was set. These instances werdamly generated. In the testbed,
the demands of the customerf X and the number of customers that need to be serviced at each
time period ") vary among scenario groups in the same time period, whil@gmaining uncertain
parameters (facility and distribution costs, and loweritliom the number of assigned customers to
each facility, if open) are generated as deterministic (laaq for all scenario groups r’ € R; then

Sy S ” M.,
o= M= 50 etel).
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Four time periods are considered, except for the last tmstarices, that include five time
periods. The number of customers range$2h, 50, 75}, and the number of facilities ifi8, 10, 15}
(see Table5l1). Also, in all cases, the latency is taken tobel since, for the considered lengths of
the time horizon, larger latencies would require to makeuabalf of the location decisions a priory
regardless the location strategy.

Facility setup costs f(sr) are uniformly drawn fronj200, 400], while allocation costsd;)
are drawn fronf10, 100] and maintenance costg (") are uniformly drawn frono, 15%‘]. Penalties
for not serving a customep; = £ > Max Cijt. To generate the rest of the data, a tentative number
teT €

of open facilities at each time period was first generated;’as {1, ..., |2 - |Z|/T|} fort € T. If
>ier ™ > |Z], the set of values was discarded and regenerated. The nmmitamber of customers

to be assigned at each time period has been generatéd=ag (7! + - + ) /(7! + -+ - + 7T)] -

|71

(Note that, forr with ¢(r) = T this expression leads td' = |7|). Minimum number of facilities to

be opened at each time periad?” = 1. Probability of demand: the same probability of demand has
been considered for all customers at all time periods. Tiubability, ¢, ranges in{0.1,0.5,0.9} and

its value is given in Table 5.1 for all the generated instance

To build the scenario trees we proceeded as follows. Froim eade, starting from the root,
the number of successor nodes have been randomly selemtedlfr2, 3}. Then, at the first successor
the customer demandz§ were randomly generated from a Bernoulli distribution witlobability ¢
defined above. In the second and third successors (if they) exlarger and a smaller probability,
respectively, was used. The actual probability of each elemands is computed assuming that
customers requests follow independent Bernoulli vargkli#h probabilityq and a total weight of
is proportionally distributed among the successor nodesekch set of costs three different regular
scenario trees have been generated.

Among the different possible alternatives for the set-upraaintenance facility costs, as well
as the minimum number of facilities to open at each time jgeribe one where the user considers
their expected values has been selected, computed asgollow

=S VieI,teT*
reRt

F =3 VieI,te T\ {0}
reRe

m' = max{m"} VteT"

reER:
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Table 5.1: Testbed. Problem and model dimensions.

Instance | |J| |Z| |T] q |9 |R] n m nel  dens (%)
C9-T4 | 75 15 0.9 94 153 171885 196917 1092525 ¢
C9-T3 | 75 15 0.9 158 250 281505 322533 1785585
C9-T2 | 75 15 0.9 153 248 279300 320004 1775610
C8-T4 | 75 15 0.5 141 223 250980 287608 1593330
C8-T3 | 75 15 0.5 268 429 483915 554541 3076035
C8-T2 | 75 15 0.5 117 188 211440 242271 1343520
C7-T4 75 15 0.1 112 175 196695 225365 1246095
C7-T3 | 75 15 0.1 98 158 177525 203384 1127535
C7-T2 | 75 15 0.1 120 186 209115 239606 1324065
C6-T4 | 50 10 0.9 165 267 134020 163273 851210
C6-T3 | 50 10 0.9 213 339 170260 207481 1080890
C6-T2 | 50 10 0.9 122 201 100790 122787 641130
C5-T4 | 50 10 0.5 95 151 75560 92061 479210 0,01
C5-T3 | 50 10 0.5 147 233 116860 142441 742230
C5-T2 | 50 10 0.5 203 319 160160 195161 1015290
C4-T4 | 50 10 0.1 292 450 226080 275575 1432280
C4-T3 | 50 10 0.1 167 266 133490 162677 847580
C4-T2 | 50 10 0.1 184 297 149130 181705 947450

(1) W W N e We W O e W WS W e e}

DO OO O OO O OO O OO O 3OO OO O

A N AN M

As we stated above, the criterion for clustering scenaricgets is instance dependent, and a
trade-off between the size of model(4.10) and the numberAS .9) is needed. Moreover, it has
to be taken into account that when the number of scenariggristucommon for the scenarios in the
same cluster increases, the results tend to improve[(s&p [15

5.3.2 Numerical results

Table[5.1 show the dimensions and probabilities of demarmlipinedium and large scale
instances included in the Testbed as well as the dimensiotie @ssociated DEMs. The headings
are as follows:zxz — yy, name of the instance, whete: is the case number ang, is the scenario
tree number (see Sectibn 513.1 for Testbed tregq);number of customer$7|, number of facilities;
|7|, number of periods in the time horizodq; probability of demand}(2|, number of scenarios under
consideration{R |, number of scenario groups; number of (0-1) variablesn, number of constrains;
nel, number of nonzero coefficients in the constraint matrix] éms, constraint matrix density (in
%). An entry ofe in the dens column indicates that the density of the instance is belolwreshold
value of0.01.

Tabled5.2-5]5 show the main computational results fornktances presented in Table]5.1.



126 5.3. Computational experience

Let us present them in turn.

Analysis of the dimensions and results of Tables 5.1-5.2][ ]

Table[5.2 compares the solution values and elapsed timee®etCPLEX and ERIC. The
headings are as follow, p, solution value of the LP relaxation of tlﬁ;CPLEX and?FRC,
solution values (i.e., expected total cost) of the incunbbelutions obtained by CPLEX and dur FRC
algorithm fofDEM, respectivelyT¢"LEX andTFRC | elapsed times (secs) to obtain the associated
incumbent solutions(G, goodness gap between the solution valﬁgg” © and?CPLEX, defined
asém;;# (in %); TG, time gap betweed “PLEX and TFRC | defined as%; GC
and GF, quasi-optimality gaps for the solution values obtaineddBLEX and[FRC, defined as
% (in %) and % (in %), respectively;t}, break stage used to decompose the
original [BEM into clusters for that particular instance te $olved by thé ERCpcy, number of
clusters in which the original DEM has been decomposed fatrghrticular instance to be solved by
the[ERC algorithm.

Notice thatGC = 0 would mean that the optimal solution is obtained by CPLEX] @d: =
0 would mean that both approaches being compared in the ponidisg table, have obtained the
same solution value. As we have explained above, the bregje st determines the number of
clusters and, for the FRC algorithm (as well as[for FRC-JdRE1PJ,as we will see later), there is
a trade-off between the quality of the solution and the eldgane. For highet?, lower computing
times are needed, but on the other hand worse solutions anel i@xpressed by higher goodness
gap,GG). This is why we have tried different break stages for easkaince, and we have selected
the solutions that we consider give the better trade-offvben the quality of the solution and the

computing time. Given the small values G5 and the highly positive value afG for most of the
instances where a CPLEX solution is given, it seems thdt R1€ &ption is the most reasonable one.

The cases C4 to C6, with 3 rows each, correspond to mediugrirsiances with 10 facilities
and 50 customers, whose uncertainty in the main parameteepliesented by up to 292 scenarios.
Their associated DEM have up to 226000 (binary) variablesaer 275000 constraints. CPLEX
proves the optimality of the solution in all the 9 instancgsdxuiring up to 13854 of elapsed time
(instance C6-T3). Notice that this instance has one of tfge&h probability of demand among the
customers_FRIC obtains very frequently near-optimal Eniuwith an optimality gap not higher than
3.6%. However, the elapsed time requirement$ of FRC are verylsbehg usually one order of
magnitude smaller than those required by CPLEX, reachingusstanding improvement afG =
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Table 5.2: Computational results. CPLEXvs ERC

Instancé  Zpp Z 0 TOPLEX| ZTRC O pFRCIGG (%) GC (%) GF (%) TG |t} ney
COT4 |19159,02 19644,09 1727649712,09 8963 0,35 2,53 2,89 19,282 4
COT3 | 19322 19817,52 17250@0439,74 317% 3,14 256 5,78 54,334 60
CO9T2 |19082,51 19580,18 1727549724,45 800% 0,74 2,61 3,36 21,582 8
C8T4 |18077,72 18569,88 1723909237,75 4760 3,60 2,72 6,42 36,204 53
C8T3 |18988,45 19714,56 1727549531,52 7037 -0,93 3,82 2,86 24,553 38
C8T2 |17459,53 17936,94 1723648441,02 1593 2,81 2,73 5,62 108,201 45
C7T4 |18998,82 19368,61 1300299693,88 1809 1,68 1,95 3,66 71,884 39
C7T3 |18779,62 19058,21 2494419499,45 1436 2,32 1,48 3,83 17,374 38
C7T2 | 18696,9 19064,1 1503189507,27 201% 2,32 1,96 4,33 74,603 15
C6T4 | 12931 13096,69 3876|13282,77 678 1,42 1,28 2,72 5,723 25
C6T3 |13076,12 13260,04 1385413390,33 470 0,98 1,41 2,40 29,484 78

OO 0—<

C6T2 |12897,23 13024,14 204613072,13 448 0,37 0,98 1,36 45712 7
C5T4 | 12655,5 12845,5 1567|13096,63 288 1,96 1,50 3,49 5443 13
C5T3 |12535,82 12676,38 2327 12705,2 380 0,23 1,12 1,35 6,123 20
C5T2 | 13138,6 13272,14 290513572,03 1150 2,26 1,02 3,30 2534 74
CAT4 |12829,75 12983,22 624213277,91 339 2,27 1,20 3,49 18,413 38
C4T3 |12906,62 13097,14 340413405,85 366 2,36 1,48 3,87 9,304 62
C4T2 |12926,51 13079,39 374513139,92 379 0,46 1,18 165 9,883 28

Elapsed time limit: 172800 secs (48 hours).

108.2 times faster (instance C8-T2).

The cases C7 to C9, with 3 rows each correspond to large-sabmnces, with 15 facilities
and 75 customers, whose uncertainty in the main parameteepliesented by up to 268 scenarios,
for which the associatedd DEM has up to 483000 (binary) végland 554000 constraints, FRC
was able to find good quality solutions for all the instancekess than 3 hours. On the other hand,
CPLEX reaches the time limit of 48 hours in 7 out of these %ainsés. Note that the worst time for
[ERQ is for instance C9-T4, that took 8963 seconds to find thenbent solution, with a goodness
gap GG#$.35% and an elapsed time improvemefit{ = 19.28). In the remaining instancels, FRC
yields very small goodness gaps. The largest one 3\&8, for instance C8-T4, which required
almost 2 days (172390 seconds) to be solved by CPLEX. Ndtatefar instance C8-T3, it todk FRC
2 hours to find a better solution than CPLEX in 2 days (as we earfia@ GG < 0). Additionally, for
instances C9-T4 and C9-T2, the goodness@éhis not higher thar %.
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Analysis of the results of Table 5.3 ]

Table[5.8 compares the solution values and elapsed timese®dERC and FRO-J. ASFRC-J
is an improved version for FRC algorithm, we want to comptstrengthnesses.

The headings are as follow&, p, solution value of the LP relaxation of t@EE;FRC and

7FRCJ, solution values (i.e., expected total cost) of the incumits®lutions obtained Hy FRC and
[FRC-J, respectively' " B¢ andT 17 | elapsed times (secs) to obtain the associated incumbent so
—FRCJ -—FRC

tions; GG, goodness gap between the solution vamed©’ and?FRC, defined aszfigg (in
%); TG, time gap betweefi ¥ ¢ andT#EC/ | defined as[TlfTRg,; GF andG.J, quasi-optimality gaps
for the solution values obtained by FRC and FRC-J define%f%cﬂ (in %) and 2" gp

. ! P 0 Zrp
(in %), respectivelyt}; andt; break stages used to decompose the original DEM into chufdethat
particular instance to be solved by {he ERC land FRC-J algosif respectivelyic; andnc;, number
of clusters in which the origind[ DEM has been decomposedhfat particular instance to be solved
by thel ERC and FRC-J algorithms, respectively.

Notice again that7G = 0 would mean that both approaches being compared in the corre-
sponding table, have obtained the same solution value. Taktyof the solutions found and the
elapsed times, let us insist, are concerned with the brmjesxt} and t;, selected to solve each
instance. And again, we have tried different break stagesdoh instance, in order to get what we
consider the better trade-off between the quality of thetgm and the computing time for comparing
both algorithms. While ERIC tends clearly to improve its skgbtimes for higher break stages and on
the other hand FRG-J improvement has a peak and then dedbinesme instances. That is why for
such instances a different break stage has been selecteotifoalgorithms.

[ERC-J finds almost always the same solutions FRC. Niiateve have selected = ¢
for 14 out of the 18 instances in the testbed, and for all botafithose 14 instances, both algorithms
found the same solutiorG(G = 0). For instance C5-T3, instead of selecting the same breagje st
finds a slightly better solutiori7G = 0.01) and the elapsed times are the closest among all the
instances, being FRCAG = 1.22 times faster, which does not seem a significant improveng@mnt.
the contrary, for instance C5-TH,_ FRC-J solution is betfefz(= —0.46), and the elapsed time is
quite better tooTG = 1.71).

For instances C9-T3 and C8-T4, the elapsed time needéd byJAB@nd the solution was
significantly better fot; = 3 than fort; = 4, this is why we have selected = 3 for both instances.
Thus, it is no surprise that, in these casé$; < 0. Anyway, it is of interest to note that FRC-J
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Table 5.3: Computational resulis. FRCvs FRC-J

Instancd Zpp | Z 0 TFRO| Z'TYT TFROIIGG (%) GF (%) GJ (%) TG |t} nes t] ne;
C9T4 |19159,0220054,12 315320054,12 804| 0,00 4,67 4,67 3,923 13 3 13
C9T3 | 19322 |20439,74 317520377,29 1294 -0,31 5,78 546 245 60 3 20
COT2 [19082,5120082,76 244520082,07 1320 0,00 524 524 188 22 3 22
C8T4 |18077,7219237,75 4760 19134 1160| -0,54 6,42 584 4,104 53 3 19
C8T3 |18988,4519531,52 703719531,53 3147 0,00 2,86 2,86 2,243 38 3 38
C8T2 |17459,5318441,02 159318441,02 905| 0,00 5,62 562 1,764 45 4 45
C7T4 |18998,8219693,88 180919693,88 480| 0,00 3,66 3,66 3,74 39 4 39
C7T3 |18779,6219499,45 14361949945 747| 0,00 3,83 3,83 1,92 38 4 38
C7T2 | 18696,9/19507,27 201519507,27 535| 0,00 4,33 4,33 3,783 15 3 15
C6T4 | 12931 |13282,77 678|13282,76 231| 0,00 2,72 2,72 2,98 25 3 25
C6T3 |13076,1213390,33 470/13390,09 235| 0,00 2,40 2,40 2,004 78 4 78
C6T2 |12897,2313072,13 448|13071,88 289| 0,00 1,36 1,35 158 7 2 7
C5T4 | 12655,513096,63 288/13036,03 168| -0,46 3,49 3,01 1,713 13 3 13
C5T3 |12535,8212705,2 380|12706,89 312| 0,01 1,35 1,36 1,223 20 3 20
C5T2 | 13138,6/13572,03 115(013572,03 272| 0,00 3,30 3,30 4,2% 74 4 74
C4T4 |12829,7%13277,91 339|13277,91 207| 0,00 3,49 3,49 1,643 38 3 38
C4T3 |12906,6213405,85 366|13405,85 207| 0,00 3,87 3,87 1,77 62 4 62
C4T2 |12926,5113230,94 301|13230,94 170| 0,00 2,36 2,36 1,77% 71 4 71

Elapsed time limit: 172800 secs (48 hours).

is capable of getting better solutions in significantly deraklapsed times (e.g7’G = 4.1 and

GG = —0.54%, for C8-T4), particularly for large sized problems. Conlthg, notice that, for all
the instances in the testbdd, FRC-J is faster FRC (dpGto= 4.1), being the elapsed time
less than a halflG > 2%) for 9 out of 18 instances, and what is more important, theee6aout

of the 9 large-scale instances (C7 to C9), whHEé > 2, even improving the solution for C8-T4,
whereGG = —0.54% andTG = 4.1%. For all the preceding, it seems that fhe FRC-J is the most
reasonable option faced[to FRC.

Analysis of the results of Table 5.4 ]

Table[5.4 compares the solution values and elapsed times®aiFRC1J anld FRCPJ. As we
will see,[FRC-BJ gets outstanding better elapsed times.

The headings are as followsi; p, solution value of the LP relaxation of t@Eﬁ;FRCJ

andz" “"’  solution values (i.e., expected total cost) of the incumbiselutions obtained Hy FRC-J
and[FRC-PJ, respective\fF' 7 and TFRCP7  elapsed times (secs) to obtain the associated in-
P7andZ" | defined

cumbent solutions(zG, goodness gap between the solution valzéd "’ andz
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—FRCPJ -—SFRCJ
as% (in %); TG, time gap betweefEC7 and TFRCFJ | defined as%; aJ

and G P, quasi-optimality gaps for the solution values obtainedERC-J and FRC-PJ, defined as

ZFRCI _ . ZFPRCPI . .
B (in %) andTP‘“’ (in %), respectivelyt; andt;, break stages used to decompose

the originallDEM into clusters for that particular instartoebe solved by the_ FRG-J ahd FRQ-PJ
algorithms, respectivelypc; andnc,, number of clusters in which the origira DEM has been de-
composed for that particular instance to be solved b/ the-BRGIFRC-RJ algorithms, respectively;

E, efficiency of the parallelization, defined %cgp (remind from Chaptdr 3.11.1 thatp, n) = @).

For this table we let the same break stagjethan in Tablé 5.3, but for solving the instances
with [ERC-PJ we have chosefy = 4 for almost all the instances, except for C8-T3 and C4-T4esin
the improvement in elapsed time was not significant.

The goodness gap is quite small, no more than@e= 1.75% for instance C5-T3 where,
however, the elapsed time improvement is quite hifttr (= 19.5), which is the highest of all the
instances. In it is the improvement in the elapsed times wtaaids out clearly from this table, being
TG > 10 for 14 out of the 18 instances, afily = 7.28 the least improvement accomplished by
(instance C8-T3). Let us point out that both algoritlalways find the same solutions, so the
gapsGG > 0% that can be seen in 9 out of the 18 instances are due to thédacl & ¢, but if we
had chosen a higher break stage[for FRC-J the elapsedifif&¢) would have been worse. Thus,
it seems that when the computational resources needed ailebde, thd FRC-PJ is clearly the best
option.[ERC-PJ can solve large instances in a few seconds @REEX needs hours, even days. We
can point out cases as C8-T3, whiere FRC-PJ finds a betteiosolnan CPLEX in 432 seconds vs 2
days.

Notice that efficiency is below0% (F < 0.5) for all the instances, although there are 5 of
them that get more tha®3% (E > 0.33), i.e. C9-T4, C7-T4, C7T3, C6-T2 and C5-T3. And the
least efficient instance is C6-T3, witi = 0.18. These are not big values but it has to be taken into
account that many processors have been used, what impliesinter-processor communications.
Another important factor that affects parallelization @éncy is the mentioned difference among the
subproblems resolution times. Great differences have bbsarved among those times for some
instances. Nevertheless, there is room for further rekearorder to improve the efficiency of the
proposed algorithm.
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Table 5.4: Computational resulfs._ FRIC-Jvs FRC-PJ

Instancd Zpp | Z <7 TFROV|ZTECTT pFROPIIGG (%) GJ (%) GP (%) TG |t; ne; t) ne,| E
COT4 |19159,0220054,32 804(20259,04 61 | 1,02 4,67 5,74 13,18 13 4 390,34
COT3 | 19322 |20377,29 129420439,74 77 | 0,31 546 578 16,48 20 4 60/0,28
C9T2 |19082,5120082,07 132020166,96 74 | 042 524 568 17,88 22 4 61[0,29
C8T4 |18077,72 19134 1160[19237,75 76 | 0,54 584 6,42 1526 19 4 53/0,29
C8T3 |18988,4519531,53 3147/19531,53 432 | 0,00 2,86 2,86 7,283 38 3 38/0,19
C8T2 |17459,5318441,02 905|18441,02 67 | 0,00 562 562 13,94 45 4 45/0,30
C7T4 |18998,8219693,88 480(19693,88 35 | 0,00 3,66 3,66 13,4% 39 4 390,35
C7T3 |18779,6219499,45 747|19499.45 51 | 0,00 3,83 3,83 14,% 38 4 38/0,39
C7T2 | 18696,9/19507,27 535|19624,06 56 | 0,60 4,33 4,96 9553 15 4 42/0,23
C6T4 | 12931 |13282,76 231(13312,83 13 | 0,23 2,72 2,95 17,48 25 4 63|0,28
C6T3 |13076,1213390,09 235|13390,09 16 | 0,00 2,40 2,40 14,% 78 4 78[0,19
C6T2 |12897,2313071,88 2891322861 15 | 1,20 1,35 2,57 1922 7 4 49(0,39
C5T4 | 12655,5/13036,03 168(13071,72 19 | 0,27 3,01 3,29 8,843 13 4 350,25
C5T3 |12535,8212706,89 3121292908 16 | 1,75 1,36 3,14 19,9B 20 4 55|0,35
C5T2 | 13138,6/13572,03 272|13572,03 18 | 0,00 3,30 3,30 1514 74 4 74/0,20
CAT4 |12829,7513277,91 2071327791 23 | 0,00 3,49 3,49 9,003 38 3 38|0,24
C4T3 |12906,6213405,85 2071340585 13 | 0,00 3,87 3,87 1592 62 4 62/0,26
C4T2 |12926,5113230,94 170|13230,94 11 | 0,00 2,36 2,36 154% 71 4 71[0,22

Elapsed time limit: 172800 secs (48 hours).

Analysis of the results of Table 5.5__]

Finally, Table 5.5 shows the computational results reparieAlbareda-Sambola et all ([11]),
which are compared to the results obtained by the FRC-Pdithigo

The headings are as followg, p, solution value of the LP relaxation of tE]IEI\ZFRaS

and?FRCPJ, solution values (i.e., expected total cost) of the incumiiselutions obtained by imple-

mentation of th& FRIC used in that paper &nd FRIC-PJ, respycti’ 7¢—5 and THECP/ | elapsed

times (secs) to obtain the associated incumbent solutiGias; goodness gap between the solution

— — _ —FRCPJ -—FRC-S
valuesz" "’ and 7" ¢ S, defined as% EFEc_s (in %); GJ and G P, quasi-optimality

—<FRC-S
gaps or the solution values obtaine anag RC-PJ, = —=LP (In %) an
for the soluti | btained [by FRC Bnd FRC-PJ,etefisZ—, =22 (in %) and

—FRCPJ
Z——2Lr (in %), respectivelyt;, break stage used to decompose the original DEM into clusters

for that particular instance to be solvedby FRC-PJ.

The aim is to compare the goodness of the solutions foundakiesino sense comparing the
elapsed times since the algorithms were run in differenthim@s. Anyway, for this table we have
chosen smaller break stages to get better solutions, areladhsed times are included to show that
even for these cases good times were achieved.
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Table 5.5: Computational results. FRC-SLOCvs FRC-PJ

Instancé Zpp |Z 0 0 TFRO-S|ZTRCTT pFRCPIIGG (%) GFS (%) GP (%) t
CO9T4 |19159,0219957,05 6656(19712,09 872 | -1,23 4,17 2,89
COT3 | 19322 (20277,86 9524(20272,28 912 | -0,03 4,95 4,92
C9T2 |19082,5119856,18 8821|19724,45 1562| -0,66 4,05 3,36
C8T4 |18077,7219039,68 7415|19035,88 1007| -0,02 5,32 5,30
C8T3 |18988,4519991,31 1557519531,53 432 | -2,30 528 2,86
C8T2 |17459,5318367,62 7678|18607,08 126 | 1,30 520 6,57
C7T4 |18998,8219627,87 3274|19601,23 113 | -0,14 3,31 3,17
C7T3 |18779,6219307,6 4040(19534,06 108 | 1,17 2,81 4,02
C7T2 | 18696,9/19548,97 6914(19277,25 959 | -1,39 4,56 3,10
C6T4 | 12931 |13323,31 807 |13312,83 13 | -0,08 3,03 2,95
C6T3 |13076,1213364,56 1084(13390,09 16 | 0,19 221 2,40
C6T2 |12897,2313176,96 715 |13071,88 97 | -0,80 2,17 1,35
C5T4 | 12655,513016,12 381 |13036,03 29 | 0,15 2,85 3,01
C5T3 |12535,8212880,07 642 |12706,89 49 | -1,34 2,75 1,36
C5T2 | 13138,6/13272,15 659 (1328756 74 | 0,12 1,02 1,13
C4T4 |12829,7513007,08 1606|13277,91 23 | 2,08 1,38 3,49
C4T3 |12906,6213101,12 976 |13333,35 30 | 1,77 1,51 3,31
C4T2 |12926,5113194,78 660 |13139,92 30 | -0,42 2,08 1,65

WWWWwWWNPEBRNWWRWWWDNDNDNDN

As we can see, the solutions found are very similar, beintgb&ir[FRC-PU in 11 out of 18
instances @G < 0), with a gap of down to-2.3% for instance C8-T3 and up t08% for instance
C4-T4. Notice that even for these good solutions the elafisees are small, from 16 seconds for
the medium sized instance C6-T4 up to the 25 minutes of tige I89-T2. And notice too the gap
deviation againgt FRC-PJ for 7 out of 9 of the largest insanc



Chapter 6

Conclusions, contributions and
future research

In this final chapter the conclusions from the research dgeel in this thesis are explained. The
original contributions achieved while pursuing the godlshis thesis are collected. Finally, some
future research lines are identified.

Some of the main results of this thesis have been publish@3ji24] and presented in several
national and international meetings:

o XXXIII National Congress of Statistics and Operations Resk. A parallel computing meta-
heuristic for solving multistage stochastic mixed integergrams Madrid (Spain), 2012.

e 12th International Conference on Stochastic ProgramniiRC: A heuristic extension of the
BFC approach for solving very large scale multistage mixed<€lochastic programd-alifax
(Canada), 2010.

e ECCO XXIII-CO2010 European Chapter on Combinatorial Ofation. On The Conflict
Avoidance for Air Traffic Flow Management Problem, two medelalaga (Spain), 2010.

e 24th European Conference on Operations Rese&iek.: A heuristic extension of the Branch-
and-Fix Coordination approach for solving very large scatelltistage mixed 0-1 stochastic
problems.Lisbon (Portugal), 2010.

e 24th European Conference on Operations Reseatamflict Avoidance for Air Traffic Flow
Management Problem, pure and MIP modélsbon (Portugal), 2010.

133



134 6.1. Conflict Avoidance in the Air Traffic Flow problem

e 4th workshop on Optimization and Variational Analysi€n solving large-scale stochastic
mixed 0-1 linear problems. Seminario invitadéiche (Spain), 2010.

e 23rd European Conference on Operational Rese@althe collision avoidance for air traffic
management problem, a large scale mixed 0-1 program approdwevited Session. Bonn
(Germany), 2009.

e 23rd European Conference on Operational Rese@nulthe air traffic flow management prob-
lem. A stochastic integer programming approach. Invitessa.Bonn (Germany), 2009.

e Workshop CORAL 2009 (Conference on Routing and Logistiéd)traffic flow management.
Airports and sectors constraints, with en route probldtiche (Spain), 2009.

6.1 Conflict Avoidance in the Air Traffic Flow problem CA [_|

With the objective in mind of tackling tHe_CA problem to demela tool that could help in
eluding conflicts both flexible and efficiently, a broad reshéhas been conducted through the vast
literature on the subject.

A new point of view has been adopted, based on given aircegfictories, that allows devel-
oping a linear model capable of detecting conflicts and mepuaneuvers for avoiding them. The
aim of this new approach is inspired in decomposing the prablSince it is already at our hand to
obtain the flight trajectories in a realistic and efficientywa good solution could be a model that,
taking into account the flight routes, be able of detectind awiding all conflicts. Ideally, such
trajectories would come with some parameters adding soora for correctly maneuvering, i.e. for
reducing or augmenting the speed and for climbing or desegral flight level (this is left as fur-
ther research). Nevertheless, even with the actual fligittpland considering a few maneuvers (e.g.
climb-descend just one flight level), it is possible to avoahflicts in a coherent and, in our opinion,
as realistic fashion as the approaches currently pres@amtbe literature on the subject, in addition
to the benefit of allowing a wide range of action.

Two novel models have been proposed: a pure 0-1 and a mixdah®at, the first of which
avoids conflicts by means of altitude changes, while thergsastrategy is based on altitude and
speed changes.

Based on the computational experience reported in Séc#hit 2an be said that both models
are tight and can be solved in really small elapsed timesgbitie first, pure 0-1 model, the most
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efficient. Although this model only considers flight levelatiying maneuvers, opposed to the two
maneuvers allowed by the second model (flight level and spleadges), it has to be pointed out that
speed changes are not considered a very efficient maneuwr literature (see Frazzoli et &l. [108],

Jardin [138] and Peyronne et al. [190], among others). Maedn many works aircraft are assumed
to fly at constant speed (see Pallottino et al. [185], Chaistibou and Costoulakis [62], Treleaven

[227], Gao et al.[[111] and Cafieri and Durand|[50], among i&theln addition, in many real cases

just a few flight level changes will solve the problem easily.

The approach is also flexible, it allows non-linear trajéeta These given trajectories can
be based on procedural information such as a flight plan, Hss/éhe optimal trajectory decided in
the future Free Flight' (see [222]), or a straight-line extrapolation of the catrepeed vector as in
[185,[16/17].

To summarize, both models can be solved in really small ethfismes, even for large-scale
instances, so, the approach can be used in real time withelpeoha state-of-the-art mixed integer
linear optimization software, and the approach can be us&mhg term time horizons as well as for
wide airspace regions that may comprise several air traffitrol areas in which the aerial space
is divided. Finally, the presented models can be easilynelete with new features or restrictions,
in particular a third conflict avoidance maneuver has beepgsed (selecting alternative routes),
although its implementation has been left for further redea

6.2 Stochastic Programming

Two new algorithms have been proposed, one being sequentiathe other, based on the
first, parallel. They use some heuristics that have prowerffectiveness previously in addition to
new heuristics proposed in this thesis. Although both dtlgms do not guarantee the solution to be
optimum, it can be seen in the computational experienceepted in Chaptdr]5 the quality of the
solutions, which improve even CPLEX in some instances.

Both algorithms have been tested by solving a series of {seghke instances of the Multi-
period location-allocation problem under uncertaintytrategic and tactical decision problem which
objective is deciding the optimum allocation of locationdtlfil certain coverage levels of demand
in some places at each time period. The instances have ugfta mellion variables and are hard
to solve. However, both algorithms manage to solve them nsicerably small computing times,
specially when compared with the elapsed times required”lyEX and thé FRC algorithm.
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The elapsed times required by the FRC-PJ algorithm arecphatly good, proving that par-
allel computing and decomposition algorithms work realliivtogether.

Finally, it has to be taken into account that these kind obi@ilgms not only allow perfor-
mance improvements in computing time, but also in memonsgaoption, since decomposing the
main problem in several subproblems reduces the system meaguirements.

6.3 Future work

This thesis yields a series of future lines of research thpefully will produce interesting
results. Some of them are examined below.

Extending the[CA models

The models fof_CA presented in Chaptér 2 can be extended supeéritormance improved.
In particular, choosing alternative routes as avoidancaeemeer; allowing aircraft climbing or de-
scending to the next altitude level in more than one step;ealas relating altitude level changes to
speed.

Computing the aircraft trajectories

An intermediate level to feed the proposed models with tharmaters they need from the
actual data used by the aerial companies and traffic corgrdkcs, yielding the trajectories as well
as the constraining parameters for changing speed andialti¢vels.

Lagrangean Decomposition

The Lagrangian Decomposition procedures can help to ingptioe algorithms presented in
this thesis. In particular, the specialization of the shedaCluster Lagrangean Decomposition pre-
sented in[[91]. In that work it is applied to a facility loaai problem under uncertainty. The FRIC-J
and thd FRC-PJ algorithms can be improved by using this tgearthat will allow obtaining strong
(lower) bounds at each iteration and so improving the pginirechanism.

Risk Measures
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The models considered so far present as the objective @umttie expected value of the ob-
jective function over the set of finite scenarios, i.e. theated risk neutral (RN) approach. However,
RN solutions have the inconvenience of ignoring the valitsibdf the objective function value over
the scenarios. So, it does not hedge against the low-piapétigh-consequence events (the so-
called black swans). Alternatively, risk measures can lokeddn order to hedge against the impact
of the most unwanted scenarios. Risk measures are curtesdly taken into account by consider-
ing, for example, semi-deviations, excess of probabitinditional value-at-risk and others. These
approaches are more convenient under the presence of hiagdaples than the classical media-
variance schemas. However, due to the large number of addlitd-1 and continuous variables and
constraints required by these strategies, problems belzwger and harder to solve. In particular, the
Time Stochastic Dominance (TSD) strategy reduces the figkr@ang solutions in a better way than
others under some circumstances, according to the corignabhtomparison reported in e.d., [13].
The strategy also aims to minimize the objective functiopeeted value, see also [90]. It would be
of interest solving such problems with the help of the alonis presented in this thesis.

Computational experience

The algorithms presented in this thesis, as well as the ingpreersions that will be devel-
oped, should be tested by applying them for the resolutiorenf large-scale problems.

Improving the the parallel approach

As it has been mentioned in Section 513.2, the efficiency efghrallel algorithni FRC-PJ
leaves room for improvement. To do so, observe that in mastpmtes it has been noticed that some
subproblems need considerably higher elapsed times tolzedsthan the others. As mentioned in
Chaptef 4, particularly in Section 4.4, it can be “avoidem’sblve such subproblems very frequently.
Such heuristic would consist in, when branching to a newatéei fixing the value that took that
variable in the solution of the hardest problem, so it woubd Ipe required solving it again. This
approach can be studied in a future work.

Besides, other parallel programming approaches can lak steh as dividing each subprob-
lem in more subproblems by fixing some variables to diffevahies, and assigning each subproblem
to a different process. This will allow more “parallelizzni’ and, hopefully, a greater improvement
in computing time.

Library
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It would be of great interest developing a library for solyigeneral large-scale multistage
stochastic mixed 0-1 problems, by using either of the allgors that have been implemented for this
thesis, namely FRC, FRC-J ahd FRG-PJ. Some different gieateould also be parameterizable,
such as the strategies for selecting the branching varitii#evalue it has to be fixed at, etc.
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Glossary

MSFLP Multi-Period Stochastic Facility Location Problern. x}E17,[118[ 120, 122, 123

Stochastic Programming the field of Mathematical Programming that considers anésdeith un-
certainty, incorporating it in the mathematical modEls,[@%5[94

expected value of perfect informatioE’V PI) Theexpected value of perfect informatioreasures
the maximum amount a decision maker would be ready to paytunrréor expected complete
(and accurate) information about the futufe.ll [44, 65

metaheuristic A metaheuristigs ahigher-levelprocedure designed as an efficient approach to a hard
optimization problem, aimed at finding a sufficiently gootusion. It is especially appropriate
for problems with incomplete or imperfect information anited computation capacity. 43,145

multi-stage multi-stage problems are stochastic problems in whichetlage more than two dis-
tinguished stages (time periods, such that at the beginmiirgach stage the values of some
uncertain parameters are revealed) where decisions ae. ki, [45 [50E50, 56, 59, 85, B3

non-anticipativity In the general formulation of a multi-stage stochasticgateoptimization prob-
lem, decisions are made stage-wise. At each stage, thevamables corresponding to deci-
sions that have to be made without anticipating the valuesoofe future problem data, i.e.,
they take on the same value under each scenario in a givep.g [55,[ 5[ 85, 84, 89,
[102+104[ 106-112, 116

scenario cluster A scenario clustelis a set of scenarios where then-anticipativity constraints are
implicitly defined in the model[_107

scenario group A scenario groupfor a given stage is the set of scenarios with the same réaliza
of the uncertain parameters up to the stdgé.[ 54, 107

140
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scenario A scenariois a particular realization of the uncertain parameteragtbe different stages
of the time horizon[ 54

two-stage problems where decisions are taken in one of two distinguisttages or time periods
(named first and second stage, where first stage is the tinwgefore the uncertain param-
eters values are known, and the second stage is the timel fadiéo such values are revealed).

[45,[48[50[ 51l 53, 92, 96, 103

BFC Branch-and-Fix Coordination. 44, 145,85, 110

BFC-J Jumping Branch-and-Fix Coordinatidn. 100,112

CA Conflict Avoidance il xxii[[ B, 11, 1%, 184, 136

CDR Conflict Detection and Resolutionl [, 2
DEM Deterministic Equivalent Probleri.}144,185] 89, 1107.1108], ITP0 [T25E131

FRC Fix-and-Relax Coordination_XivxV, xVif, xvii, 43, 99,00, 103104 107, 108, 110, 111,
126129131, 135, 188

FRC-J Jumping Fix-and-Relax CoordinatiorXv, xV/[ii, xXiii, ¥89,[IT0EITH, 126, T2B-131, 136,
1139

FRC-PJ Parallel Jumping Fix-and-Relax Coordinatiom Xv, Kviijikxiii) 43] TI3H115[ 128, 126,
[129+132(136=138

IP Integer Programmind._48
LP Linear Programmind._xki, 47, 48, b1

Master Master Process, responsible for coordinating all the coantiprocesses during the parallel

algorithm..[I118 174,116
MIP Mixed Integer Programmind. #8, 100, 103, 1113113

MPI Message Passing Interfaces kv, i) 96] B7,1115] 123

SP Stochastic Programminf. _kki=xXili, 43, 44,146 B3.1108]),[118
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speedup The[speedyp and efficiency of an algorithm are widely usedadyae thegoodnesf a
parallel algorithm. The speedup of a parallel algorithrior a problem P of size is defined
ass(p,n) = tz“(;’f%),wherets(n) is the time (alternatively, the number of operations) ndede
solve P by the best known sequential algorithm, gyid, ) the time needed by algorithm p to

solve P[9B 114,115

stage A stageof a given time horizon, is a set of consecutive time periodshich the realization of
some uncertain parameters takes pldce.. 48

TCAS Traffic Alert and Collision Avoidance Systeml. 2

TNF Twin Node Family[ 86, 101, 108, 104, 110-102.1116
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