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En Móstoles, a 24 de Octubre de 2015

Celeste Pizarro Romero





A Ariadne, a Nahia, a Julieta, mis 3 cachorritas

A Karina, mi Amiga, mi Compañera, mi Amor...
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Tan chiqúı, tan chiquita que es la niña,
tan chiqúı, tan chiquita y ya crecío.”
La canción de Trilce, de Daniel Viglietti, inspirado en la poesı́a de César Vallejo

Tras más de 3 años aparcada en el desván, pese a estarcasi terminada, cuando muchos ya la
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Legend of notation

The criteria used in this thesis for notation for different elements are the following:

Sets.- Capital and calligraphic letters, (for exampleF , X ).

Scalars.- Italic letters, so much capital as small ones, (for example,A, a,X, x).

Vectors.- Small bold letters (for example,x). Its components are denoted by scalars,xi, whereas

different subarrays are denoted byxi. All vectors, save for otherwise stated, are column vectors;

a row vector is denoted byxT . Particulary,0 and1 are vectors with all its components equal to

0 and 1, respectively.

Matrices.- Bold capital letters,(for example,M ). Same notation is used for its arrays, columns or

submatrices,M i. Its elements are denoted as the scalars,Mij .

Given a matrixM , its transposed matrix isMT . The absolute value of a numberx, is denoted

by |x|. Given a vectorx, |x| denotes its vector dimension, whereas in a set case,F , |F| refers to its

cardinal.
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Resumen

La optimización (también llamada programación matemática (PM)) es la rama de las matemáticas que

trata sobre encontrar aquella solución que proporcione elmayor beneficio para un problema dado, di-

cho de otro modo, trata de buscar, de entre todas las posiblessoluciones a un problema, aquella que

minimice una función dada (o equivalentemente, la maximice, nótese quemax{f(x)}=min{−f(x)}),

generalmente se trata de una función real (f : Rn → R) y se demominafuncíon objetivo. El conjunto

de soluciones factibles vendrá definido mediante ecuaciones matemáticas, llamadas restricciones, que

las soluciones deben cumplir.

Ası́ pues, dado un problema cualquiera, se debe realizar un modelo matemático consistente

en una serie de restricciones y una función objetivo a minimizar, para después resolverlo mediante

alguno de los algoritmos proporcionados por el estado del arte. El modelado de un problema dado

es de hecho un arte en sı́ mismo. Se trata de abstraer aquellosaspectos innecesarios, superfluos,

y al mismo tiempo representar la realidad lo más fielmente posible, y ello teniendo en cuenta que,

dependiendo del enfoque elegido, la resolución del modelopuede no ser viable en la práctica con los

recursos computacionales de que dispone la humanidad en su actual estadio de desarrollo. Aspectos

que pueden afectar drásticamente a la facilidad de resolución del modelo son:

• El tipo de modelo (fundamentalmente, si es lineal o no-lineal)

• Las variables que entran en juego (el número de variables, si son enteras, continuas o binarias)

• La elección de las restricciones adecuadas. En el trabajo de modelado puede jugar un papel

fundamental la búsqueda de nuevas restricciones que permitan hacer el modelo másrobusto

desde el punto de vista matemático, o dicho de otro modo que cumpla ciertas condiciones que

permitan a los algoritmos encontrar la solución más fácilmente.

Dentro de la optimización matemática, en esta tesis vamosa transitar por dos áreas que ocupan

xiii
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un lugar destacado, la Programación Lineal y la Programación Estocástica.

La Programación Lineal trata de aquellos modelos cuyas restricciones y función objetivo son

lineales. En general los modelos lineales se pueden resolver en menos tiempo que los no-lineales,

especialmente si no tienen variables enteras, o tienen pocas, y cumplen ciertas condiciones.

En esta tesis se aplica la programación lineal a los problemas de elusión de conflictos en el

tráfico aéreo, mediante un enfoque distinto al habitual. El modo de tratar estos problemas hasta ahora

se basaba principalmente en modelos no-lineales, lo que debido a las limitaciones computacionales

mencionadas arriba, no permitı́a enfrentarse a casos en losque entren en juego muchos aviones o

considerar un espacio aéreo amplio (generalmente los modelos tratan 2 o 3 aviones en un espacio

limitado). El nuevo enfoque aplicado en esta tesis, en cambio, permite aplicar la programación lineal,

lo cual a su vez facilita considerar el plan de vuelo de todos los aviones presentes en un espacio aéreo

lo suficientemente amplio, y resolver los posibles conflictos aplicando cambios de velocidad o de

altura, e incluso cambiando a rutas alternativas si ello fuera posible.

Por otro lado nos adentramos en el área de la Programación Estocástica. En muchos prob-

lemas reales la incertidumbre juega un papel importante y que por tanto deberı́a tenerse en cuenta

en el modelo resultante. Sin embargo la incertidumbre no se deja atrapar tan fácilmente, y el como

modelarla es aun un problema que dista de estar cerrado, si bien se ha avanzado mucho y existe un

enfoque ampliamente aceptado y para el que se han podido desarrollar varios algoritmos que explotan

eficientemente sus caracterı́sticas particulares.

Antecedentes

Elusi ón de conflictos en el tr áfico a éreo

La detección y resolución de conflictos en el tráfico aéreo, o Air Conflict Avoidance, o sim-

plemente Conflict Avoidance (CA), como se suele denominar enla literatura especializada, consiste

básicamente en evitar que los aviones se aproximen demasiado entre sı́.

El CA copa actualmente el interés de las compañı́as aéreas, pues el creciente tráfico aéreo

suscita la necesidad de encontrar soluciones automatizadas que simplifiquen el trabajo de los contro-

ladores aéreos. Evidentemente, el factor humano juega y jugará por muchos años un papel esencial

por la habilidad, difı́cilmente reproducible por las máquinas de hoy en dı́a, de integrar información,

analizarla y tomar las decisiones oportunas. No obstante, el fallo humano también es posible y es por
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ello que los sistemas autómatas se usan desde hace tiempo enlas cabinas de los aviones y en las torres

de control aéreo, tanto en sistemas de alerta de conflictos como de asistencia a la toma de decisiones,

proponiendo en su caso soluciones operativas.

Con el incremento de la demanda en el transporte aéreo, se hace urgente la necesidad de

automatizar aún más la detección y resolución de conflictos. Se ha estudiado mucho el problema de

CA y se han propuesto diversos métodos en la literatura especializada, en su mayor parte desde el

punto de vista de la optimización matemática, si bien no únicamente. Como veremos, también se

ha abordado el problema desde distintos enfoques como el soft-computing (mediante el uso de redes

neuronales, algoritmos genéticos y otras meta-heurı́sticas).

Comencemos definiendo elconflictode un modo preciso. Asi, podrı́a definirse como aquella

situación en que la distancia entre dos o más aviones violaun criterio de separación establecido. La

distancia mı́nima establecida suele ser de 5 millas náuticas horizontalmente o al menos 1000 pies de

separación vertical. De este modo queda definido un volumen, la zona protegida, alrededor de cada

avión, que debe ser respetado por cualquier otro vehı́culoen todo instante de tiempo. Podrı́amos

definir dicho espacio de un modo más restrictivo (e.g. una esfera de 500 pies de diámetro) o con otros

parámetros, por ejemplo, el tiempo necesario para recorrerlo (de este modo tendrı́amos en cuenta la

relación entre distancia y velocidad relativa de los vehı́culos).

Un planteamiento tı́pico es presentar un modelo dinámico que intente predecir las posiciones

de los aviones en el futuro a partir de su situación actual y ası́ decidir si habrá un conflicto. Sin

embargo hay que tener en cuenta que cierta incertidumbre es inevitable y dicho modelo deberı́a con-

siderarla a riesgo de no ser del todo fiable su predicción. Por otro lado, como mencionábamos antes,

un modelo de este tipo será tı́picamente no-lineal y deber´a restringirse a unos pocos vehı́culos a fin de

ser computable en un tiempo razonable. Otra opción pasa porbasarse en información previa tal como

un plan de vuelo. Debemos mencionar que existen modelos paracalcular las trayectorias óptimas de

los aviones en vuelo, y funcionan con bastante eficiencia, sin embargo, aquı́ la dificultad estriba en

que hay que tratar las trayectorias de más de un avión y además el modelo debe evitar conflictos entre

ellos, esto serı́a relativamente fácil de modelar pero el resultado serı́a irresoluble computacionalmente.

Este problema se ha estudiado ampliamente y desde muchos enfoques, tal como se puede leer

en el primer capı́tulo de esta tesis, que contiene un resumende gran parte de la bibliografı́a existente

al respecto. Como decı́amos al principio, la optimizaciónmatemática ha sido la herramienta más

utilizada en la resolución de este problema, y esta ha sido también la elección en este trabajo, en

particular la programación lineal.
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Programaci ón Estoc ástica

La optimizacíon es una herramienta matemática fundamental en la toma de decisiones hoy

en dı́a, y se aplica en la más variada gama de problemas, que van desde las finanzas hasta la elusión

de conflictos, pasando por los muchos y muy variados problemas de las grandes organizaciones, de

planificación, producción y distribución. En muchos casos es posible modelar los problemas a los

que nos enfrentamos mediante modelos deterministas, sin embargo, en muchos otros problemas la in-

certidumbre juega un papel clave que no es posible soslayar.Para muchos problemas de planificación

o finanzas, sin ir más lejos, un modelo que no tuviera en cuenta la incertidumbre inherente al mundo

financiero podrı́a proporcionar decisiones absolutamenteerradas.

La Programación Estocástica (SP, por sus siglas en inglés) surgió para solventar este pro-

blema. Si bien ya desde 1955 se viene tratando la incertidumbre en Programación Matemática, su

desarrollo no tuvo lugar hasta que los avances en computaci´on lo permitieron, en los años 80.

Una primera aproximación a la SP consistió en obtener los promedios de los parámetros es-

tocásticos y resolver el modelo resultante como si de uno determinista se tratase. Sin embargo, dicho

problemapromediono tiene necesariamente relación con el escenario que realmente vaya a suceder,

es más, la solución obtenida podrı́a ni siquiera ser factible para muchos de los posibles escenarios.

Otras aproximaciones se han abordado desde entonces, pero la más extendida en la actualidad es la de

modelar mediantéarboles de escenarios. En ella, los parámetros indeterminados son representados

mediante variables aleatorias, y un escenario consiste en una realización concreta de dichas variables.

Estas variables suelen ser continuas y esta técnica consistirı́a en reducirlas, mediante aproximación,

a variables discretas con un número limitado de posibles valores, calculando las probabilidades de

cada uno de ellos. Surgen aquı́ numerosos problemas como el de determinar cuál es el número ade-

cuado, lo suficientemente representativo, de escenarios a considerar. A mayor número de escenarios

obtendremos una mejor representación de la realidad, peropor otro lado las dimensiones del modelo

se dispararán con rapidez alcanzando tamaños inmanejables en la práctica.

Los escenarios se suelen representar mediante un árbol cuyo nodo raı́z representa la primera

etapa, en la cual se tomarán algunas decisiones. Una vez quese ha tomado una decisión, se dispondrá

de cierta información nueva antes de tomar la siguiente decisión, las posibles realizaciones de los

parámetros indeterminados en la siguiente etapa se representan mediante sendas ramas que llevan a

nuevos nodos en los que nuevas decisiones se han de tomar. Y ası́ hasta los nodos terminales, de

modo que el camino seguido desde la raı́z hasta cada uno de dichos nodos terminales representará un

escenario y se corresponderá con una realización concreta de todos los parámetros indeterminados



Resumen xvii

del problema.

Por otro lado, al darse distintos posibles escenarios, el concepto de solución óptima pierde

sentido, pues las decisiones óptimas para un escenario no tienen por qué serlo para los demás. La

estrategia pasa por tanto por buscar soluciones que sean factibles para todos los escenarios sin quedar

supeditada a ninguno en concreto. La estrategia clásica consiste en minimizar la esperanza de la

función objetivo considerando todos los escenarios.

A pesar de que esta metodologı́a se aplica fundamentalmentea problemas de programación

lineal, el tamaño de los modelos alcanza con facilidad tamaños gigantescos, con cientos de miles de

variables, e incluso millones. Es más, en muchos casos las variables son enteras o binarias, lo cual

hace que estos problemas sean difı́ciles de resolver. Es poresto que en la literatura se han propuesto

una serie de algoritmos que buscan resolver los problemas deProgramación Estocástica Entera, como

por ejemplo los métodos L-Shaped, Branch-and-Bound estocástico, Branch-and-Fix-Coordinado, y

diversas técnicas heurı́sticas como el algoritmo Fix-And-Relax Coordinado.

Objetivos

En lo que a la elusión de conflictos se refiere, el objetivo planteado es el de crear un modelo

matemático que permita resolver el problema de CA de un modoflexible y eficiente, y aplicable a

casos con un número considerable de aviones y en un espacio aéreo amplio.

En cuanto a los problemas de Programación Estocástica, elobjetivo es desarrollar una apro-

ximación algorı́tmica capaz de resolver problemas generales de Programación Estocástica multietapa

0-1 Mixta de un modo eficiente, y de este modo permitir resolver casos suficientemente grandes que

de otro modo serı́an dificilmente manejables.

Por último, y para ambas propuesas, realizar una experiencia computacional que permita

conocer su calidad.

Metodologı́a

Para la consecución de los objetivos mencionados se ha desarrollado el siguiente plan de

trabajo:
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Elusi ón de conflictos en el tr áfico a éreo

Se ha realizado en primer lugar una revisión exhaustiva de la literatura existente en torno

al problema planteado. De dicho análisis se concluye que lamayorı́a de los enfoques adoptados

hasta ahora adolecen de una alta complejidad en cuanto a su resolución, por lo cuál, aun cuando casi

siempre se limitan a una o a lo sumo dos de las tres posibles maniobras de elusión de conflicto (v.g.

cambio de velocidad, de altura o giro), no son aplicables a casos en los que se encuentre un número

considerable de aviones y un espacio aéreo de amplitud proporcional a cualquiera de los sectores de

control en que se divide el espacio aéreo.

Se propone por tanto un nuevo enfoque, basado en el plan de vuelo, que permita modelar el

problema mediante programación lineal y sea capaz de detectar y proponer maniobras de elusión de

conflictos basadas en cambios de velocidad y altura. El espı́ritu de este nuevo enfoque está inspirado

en la idea de separar tareas: Ya que existen herramientas para calcular las trayectorias de vuelo de un

modo bastante realista y eficiente, la solución más sencilla pasarı́a por crear una nueva herramienta

que, a partir de las rutas ya existentes, detecte y resuelva los conflictos. El ideal, de nuevo, serı́a poder

calcular también de un modo preciso, los márgenes en que podrı́a realizarse correctamente la dinámica

de vuelo, además del óptimo, pues al dar prioridad a la elusión de conflictos, pierde importancia la

eficiencia del vuelo (esto lo dejamos para trabajo futuro). No obstante, aún partiendo de los actuales

planes de vuelo y considerando pequeñas alternativas (particularmente cambios de altura), es posible

aun evitar los conflictos de un modo bastante coherente y en nuestra opinión no menos realista que

las propuestas actualmente existentes en la literatura al respecto, incorporando además la ventaja del

gran alcance de esta nueva propuesta. Todo lo anterior conduce a la presentación de dos modelos

lineales, uno 0-1 puro y otro 0-1 mixto.

A continuación se desarrolla una experiencia computacional mediante la generación aleato-

ria de casos de diversa complejidad de resolución, en los que el horizonte espacial y temporal son

considerablemente grandes y participan un número considerable de aviones.

Finalmente se analizan tanto la aplicabilidad de los modelos presentados como alguna posible

mejora como puede ser la inclusión de rutas alternativas como maniobra de elusión de conflictos.

Programaci ón Estoc ástica

En primer lugar, se ha partido de una propuesta algorı́tmicabastante reciente, llamada Fix-

And-Relax Coordination (FRC), basada en una heurı́stica, yque ha probado en numerosas ocasiones
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su eficiencia y calidad. A partir de ahı́, se han propuesto unaserie de heurı́sticas para desarrollar un

nuevo algoritmo (FRC-J) que permita resolver problemas grandes con mayor eficiencia. Además se

ha desarrollado una versión basada en programación concurrente (FRC-PJ), mediante el uso de las

librerı́as de paso de mensajes (MPI, por sus siglas en inglés), ampliamente utilizadas en el desarrollo

de aplicaciones paralelas en entornos de memoria no compartida, fundamentalmente en clusters de

computadores.

Por último, se ha realizado una experiencia computacionalque permitiera comparar los re-

sultados de los 3 algoritmos, el FRC, el FRC-J y el FRC-PJ, asicomo con los tiempos y calidad

de soluciones proporcionados por la herramienta CPLEX, quees el standard de facto en la progra-

mación lineal. Para ello se toma un problema particular de programación estocástica multietapa 0-1,

y se recogen una serie de instancias de tamaño mediano a grande que ya habı́an sido testadas en la

literatura.

Conclusiones

Las principales contribuciones de este trabajo son:

Elusi ón de conflictos en el tr áfico a éreo

• Se propone un nuevo enfoque que permite modelar el problema mediante programación lineal,

lo cual facilita encontrar soluciones en tiempos muy breves. Dicho enfoque, en vez de intentar

modelar las trayectorias de los aviones basándose en las ecuaciones dinámicas de la fı́sica, trata

de dividir tareas, y estudiar la elusión de conflictos a partir de un plan de vuelo dado. Dicho

plan ya tiene en cuenta la fı́sica de vuelo y las preferenciasde las aeroĺıneas para restringir

las posibles soluciones. Es suficiente con considerar un (enprincipio, pequeño) margen de

maniobra para acelerar o cambiar de altura. De este modo es posible crear modelos que detecten

los posibles conflictos y propongan, si es necesario, las correspondientes maniobras de elusión.

• Se presentan dos modelos lineales, el primero de ellos es 0-1puro (sin variables continuas) y

permite eludir conflictos mediante cambios de altura, mientras que el segundo es 0-1 mixto (es

decir, integra tanto variables binarias como continuas) y recurre a cambios de velocidad y de

altura, pudiendo dar prioridad a uno u otro en función de laspreferencias del usuario. Dichos

modelos son lo suficientemente robustos como para poder ser resueltos en un periodo realmente

corto de tiempo incluso para casos de gran tamaño, lo cual los hace especialmente útiles para
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ser usados en tiempo real.

• La propuesta es flexible, permite que las trayectorias no sean lineales. El plan de vuelo en que

se basa puede haber sido calculado de diversos modos: a partir de la extrapolación del vector

de velocidad en un momento dado, de los puntos de baliza de losactuales planes de vuelo o

bien de planes de vuelo libres basados en trayectorias óptimas calculadas a priori. Por último,

no se exige que la velocidad se mantenga constante durante elhorizonte temporal como es el

caso en parte de la literatura.

• Debido a los tiempos de resolución realmente pequeños queexigen ambos modelos, la propues-

ta está especialmente indicada para ser usada en el largo plazo y en regiones aéreas amplias,

que puedan implicar varios de los sectores de control de tráfico en que se divide el espacio

aéreo.

• Finalmente, los modelos son fácilmente escalables y pueden ser ampliados y mejorados con

nuevas restricciones. Si bien se bosquejan mejoras a ambos modelos para ciertos casos, como

por ejemplo la inclusión de rutas alternativas como maniobra elusiva, se deja como propuesta

para trabajo futuro.

De acuerdo con la experiencia computacional presentada, sepuede observar que el primer

modelo es particularmente robusto y eficiente, por lo que puede aplicarse a problemas aún mayores

que el segundo modelo, tanto en cantidad de aviones involucrados como espacio aéreo u horizonte

temporal. En cualquier caso, el segundo modelo también muestra buenos resultados, sin embargo,

cabe plantear que en muchos casos puede ser suficiente con unapropuesta limitada a los cambios de

altura como maniobra elusiva, dado que en la mayorı́a de las situaciones reales, los conflictos son

pocos y basta con una ı́nfima cantidad de maniobras para solucionar los potenciales conflictos. Por

otro lado, de acuerdo con parte de la literatura, los cambiosde velocidad no se consideran maniobras

particularmente eficientes, lo cual es comprensible pues pueden implicar mayor consumo de com-

bustible y por otro lado implican mayor incertidumbre (por la variabilidad de la velocidad del viento,

entre otros factores). En resumen, ambos modelos son muy eficientes y aplicables en casos reales,

pudiendo predecir y resolver los conflictos para uno o variossectores de control a la vez con varias

horas de antelación.

Comotrabajo futuro se propone desarrollar las mejoras bosquejadas en esta tesis, buscando

el modo de mantener o mejorar la eficiencia computacional de los modelos actuales. También se

plantea el desarrollo de una capa intermedia que permita desarrollar los parámetros utilizados por los

modelos del presente trabajo a partir de los datos que manejan en la práctica las compañı́as aéreas y
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los centros de control de tráfico aéreo, y en particular quepermita obtener tanto las trayectorias como

los márgenes de actuación óptimos para la elusión de conflictos.

Programaci ón Estoc ástica

Se proponen dos nuevos algoritmos, uno de ellos secuencial yel otro paralelo, basados am-

bos en heurı́sticas que han probado su efectividad previamente y nuevas heurı́sticas propuestas por

primera vez en esta ocasión. Si bien ambos algoritmos no proporcionan el óptimo al tratarse de

heurı́sticos, se comprueba en la experiencia computacional la calidad de las soluciones obtenidas,

llegando a mejorar a CPLEX en algunos casos.

Se toma un problema y una serie de casos de prueba de la literatura existente, el Multi-

period location-allocation problem under uncertainty, unproblema de decisión estratétiga y táctica

cuyo objetivo es decidir la colocación óptima de instalaciones para abastecimiento a clientes. En

dicho problema los parámetros aleatorios incluyen la demanda, el número mı́nimo de clientes en

cada perı́odo, el número mı́nimo de instalaciones a abrir en cada perı́odo, el coste de apertura y

mantenimiento de cada instalación, ası́ como el coste de asignar un cliente a una instalación.

Se consideran sólo variables binarias y los modelos son de enormes dimensiones, con hasta

medio millón de variables. Son por tanto problemas difı́ciles que sin embargo ambos nuevos algo-

ritmos son capaces de resolver en tiempos considerablemente pequeños, especialmente comparados

con los tiempos que requieren CPLEX y FRC, que es el algoritmoque se ha usado como referencia.

Cabe decir que los tiempos requeridos por el algoritmo paralelo, FRC-PJ, son particularmente

buenos, demostrando que en este tipo de problemas cuyos algoritmos de resolución se basan en la

descomposición, la computación paralela permite mejorar enormemente los tiempos de cálculo.

Por otro lado, téngase en cuenta que la ventaja de este tipo de algoritmos no es sólo de efi-

ciencia en cuanto al tiempo de computación, sino también en cuanto a memoria, pues al descomponer

el problema principal en varios subproblemas, los requisitos de memoria del sistema son menores.

Por último, se proponen las siguientes ĺıneas de investigación ytrabajo futuro :

• Desarrollo de nuevas mejoras en los algoritmos presentadosrecurriendo a otras técnicas conoci-

das como laDescomposición Lagrangiana Aumentada. Dicha descomposición permite obtener

mejores cotas del óptimo de la función objetivo en cada nodo del árbol de ramificación, con las
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cuales se puede mejorar el mecanismo de poda.

• Incorporar medidas de riesgo a las funciones objetivo. Hasta ahora, los modelos considerados

presentan como función objetivo el valor esperado de la función objetivo sobre el conjunto

de escenarios. Sin embargo, actualmente se están teniendoen cuenta medidas de riesgo con-

siderando, por ejemplo, semidesviaciones y exceso de probabilidad. Estas aproximaciones

son más convenientes bajo la presencia de las variables binarias que los clásicos esquemas de

media-varianza.

• Ampliar la experiencia computacional, aplicando los algoritmos presentados en esta tesis y las

mejoras que se introduzcan, a problemas aún más grandes y difı́ciles de resolver.

• Recurrir a otras técnicas de programación paralela que permitan mejorar aún más el algoritmo

FRC-PJ, permitiendo dividir el problema en subproblemas a resolver por distintos procesos

mediante la fijación de algunas variables a valores distintos para cada proceso.

• Investigar distintos modos de aplicar la heurı́stica planteada en el capitulo 4.4 para evitar que

los submodelos más difı́ciles sean resueltos muy a menudo.Dicha heurı́stica consistirı́a en

cada iteración, en fijar, al ramificar una nueva variable, alvalor que obtuvo dicha variable para

el submodelo más difı́cil de resolver, de este modo no seránecesario resolverlo de nuevo.

• Desarrollo de una librerı́a que permita resolver problemasgenerales multietapa 0-1 mixtos de

grandes dimensiones, que permita recurrir indistintamente al algoritmo de preferencia según

las circunstancias: FRC, FRC-J o FRC-PJ, pudiendo automatizar la selección de la etapa de

corte, ası́ como diversas estrategias como pueden ser la selección de la variable a ramificar, el

valor a asignar a dicha variable, etc.

Difusi ón de los resultados

Los principales resultados de esta tesis han sido presentados en:

• XXXIII Congreso Nacional de Estadı́stica e InvestigaciónOperativa. A parallel computing

metaheuristic for solving multistage stochastic mixed integer programs. Madrid, 2012.

• 12th International Conference on Stochastic Programming.FRC: A heuristic extension of the

BFC approach for solving very large scale multistage mixed 0-1 stochastic programs.Halifax

(Canadá), 2010.
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• ECCO XXIII-CO2010 European Chapter on Combinatorial Optimization. On The Conflict

Avoidance for Air Traffic Flow Management Problem, two models. Málaga, 2010.

• 24th European Conference on Operations Research.FRC: A heuristic extension of the Branch-

and-Fix Coordination approach for solving very large scalemultistage mixed 0-1 stochastic

problems.Lisboa, 2010.

• 24th European Conference on Operations Research.Conflict Avoidance for Air Traffic Flow

Management Problem, pure and MIP models.Lisboa, 2010.

• 4th workshop on Optimization and Variational Analysis.On solving large-scale stochastic

mixed 0-1 linear problems. Seminario invitado.Elche, 2010.

• 23rd European Conference on Operational Research.On the collision avoidance for air traffic

management problem, a large scale mixed 0-1 program approach. Sesión invitada. Bonn

(Alemania), 2009.

• 23rd European Conference on Operational Research.On the air traffic flow management prob-

lem. A stochastic integer programming approach. Sesión invitada.Bonn (Alemania), 2009.

• Workshop CORAL 2009 (Conference on Routing and Logistics).Air traffic flow management.

Airports and sectors constraints, with en route problem.Elche, 2009.

Además, parte del trabajo recogido en esta tesis ha sido publicado en [23, 24].
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Presentation and motivation

Optimization is a very important mathematical tool for helping in decision making and is

widely applied in many different areas. However, it is stillin continuous development since the

problems it deals with are hard to solve and in most cases theyhave to be highly simplified in order to

allow our scarce computational resources finding their solution. This makes problem modeling a true

art in which the objective is not only finding a good approximation to reality but avoiding complexity

in order to get efficient (easily solvable) models.

In this thesis two important areas in optimization are explored, namely, Linear Programming

(LP) and Stochastic Programming (SP).

Conflict Avoidance (CA) in the Air Traffic Flow

In particular LP is applied to the problem of Conflict Avoidance (CA) in the air traffic flow.

The CA problem is attracting more and more interest due to theincreasing demand of aerial traffic

worldwide. That is why new and improved automatic systems for conflict detection and resolution

are demanded. The CA problem has been widely studied as can beseen in Chapter 1 and many

approaches have been explored, most of them using Mathematical Optimization, though other ap-

proaches have been explored, as soft-computing (neural networks, genetic algorithms, ant colony and

other heuristics).

xxv
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Stochastic Programming

Uncertainty is present in many real problems where many key parameters cannot be known

a priori. For these problems, Stochastic Programming SP approaches the uncertainty by offering

different models (chance-constrained, two-stage and multi-stage models, risk measures...). However,

it is not until the 80’s when SP is broadly applied, thanks to the advances in computing. SP models

easily reach huge dimensions, with hundreds of thousands, even millions of variables, what makes of

them hard problems, especially when dealing with integer variables.

So, several algorithms have been proposed in the literatureapproaching the resolution of

Stochastic Integer Programming problems, such as L-Shapedmethods, stochastic Branch-and-Bound,

Branch-and-Fix-Coordination, and different heuristics as the Fix-And-Relax Coordination algorithm.

Objectives of the thesis

In this thesis a new approach to the CA is introduced, that allow solving the problem both

flexible and efficiently. An approach applicable in situations involving a wide aerial space and an

appreciable number of aircraft. In addition, new algorithmic frameworks are proposed to solve large-

scalemulti-stage Stochastic mixed 0-1 Programming problems.

Thesis Outline

The thesis is structured as follows:

Chapter 1 presents an overview about the Conflict Avoidance (CA) problem, including an

exhaustive state of the art on the subject.

In Chapter 2, the Conflict Avoidance (CA) problem is described, and 2 models are presented:

a pure 0-1 and a mixed 0-1 linear, the first of which avoids conflicts by means of altitude changes,

while the second’s strategy is based on altitude and speed changes. Then, a computational experience

is reported, showing that both problems are solvable in really small elapsed times, for what the ap-

proach can be used in real time with the help of a state-of-the-art mixed integer linear optimization

software. Finally, some improvements are discussed, amongothers, the inclusion of a third elusion

maneuver, namely route changing.
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Chapter 3.11 introduces some basic concepts of Stochastic Programming, and presents a state-

of-the-art description of SP and current algorithms designed to solve stochastic mixed 0-1 multistage

problems. Finally, a brief introduction to parallel programming is outlined, including the MPI library,

which is the tool used to implement the parallel algorithm presented in Chapter 4.

In Chapter 4 two algorithms, FRC-J and FRC-PJ, based on matheuristics, are presented for

solving large-scale multistage mixed 0-1 problems under uncertainty, where FRC-PJ is a parallel

version of FRC-J.

Chapter 5 presents a broad computational experience for assessing the quality of the algorithm

frameworks introduced in this thesis. For this purpose, a series of computational experiments have

been run for large-scale instances of the NP-hard Multistage Stochastic Facility Location Problem

(MSFLP)

Finally, Chapter 6 remarks some conclusions and outlines some further research areas.

Diffusion

The main results of this thesis have been published in [23, 24] and presented in several national

and international meetings:

• XXXIII National Congress of Statistics and Operations Research.A parallel computing meta-

heuristic for solving multistage stochastic mixed integerprograms. Madrid (Spain), 2012.

• 12th International Conference on Stochastic Programming.FRC: A heuristic extension of the

BFC approach for solving very large scale multistage mixed 0-1 stochastic programs.Halifax

(Canada), 2010.

• ECCO XXIII-CO2010 European Chapter on Combinatorial Optimization. On The Conflict

Avoidance for Air Traffic Flow Management Problem, two models. Málaga (Spain), 2010.

• 24th European Conference on Operations Research.FRC: A heuristic extension of the Branch-

and-Fix Coordination approach for solving very large scalemultistage mixed 0-1 stochastic

problems.Lisbon (Portugal), 2010.

• 24th European Conference on Operations Research.Conflict Avoidance for Air Traffic Flow

Management Problem, pure and MIP models.Lisbon (Portugal), 2010.
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• 4th workshop on Optimization and Variational Analysis.On solving large-scale stochastic

mixed 0-1 linear problems. Seminario invitado.Elche (Spain), 2010.

• 23rd European Conference on Operational Research.On the collision avoidance for air traffic

management problem, a large scale mixed 0-1 program approach. Invited Session. Bonn

(Germany), 2009.

• 23rd European Conference on Operational Research.On the air traffic flow management prob-

lem. A stochastic integer programming approach. Invited Session.Bonn (Germany), 2009.

• Workshop CORAL 2009 (Conference on Routing and Logistics).Air traffic flow management.

Airports and sectors constraints, with en route problem.Elche (Spain), 2009.



Chapter 1

Conflict Avoidance: State of the art

The objective of this first chapter of preliminaries is to provide the reader with a basic knowledge

about the Conflict Detection and Resolution (CDR) or ConflictAvoidance (CA) problem, the state of

the art on the subject and the main contributions of this work.

1.1 Conflict Avoidance Introduction

Air traffic in Europe and the USA has undergone an astonishinggrowth during recent years. In

1999 a 50% increase was expected by 2018 over the traffic in that year, see Air Traffic Action Group

[5]. In this scenario, the aim of Air Traffic Flow Management consists of extending the airspace

allowing the so called “Free Flight”, where the pilots and the airlines are able to decide freelythe

flight plan, keeping in touch with the air traffic controller.To maintain safety in the air flow, the CA

problem is currently attracting the interest of air transportation service providers and has been studied

extensively.

CA is concerned with the following question: Once the flight configuration for a set of aircraft

is known, how to draw up a new configuration that prevent the aircrafts from coming too close to each

other, i.e. avoid any conflict situation.

There have been built methods for maintaining separation between aircraft in the current

airspace system. Humans are an essential element in this process due to their ability to integrate

information and make judgments. However, because failuresand operational errors can occur, au-

tomated systems have begun to appear both in the cockpit and on the ground to provide decision

support and to serve as traffic conflict alerting systems. These systems use sensor data to predict

1
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conflicts between aircraft and alert humans to a conflict and can provide commands or guidance to

resolve the conflict. Relatively simple conflict predictorshave been a part of air traffic control au-

tomation for several years, and the Traffic Alert and Collision Avoidance System (TCAS) has been in

place onboard domestic transport aircraft since the early 1990s. Together, these automated systems

provide a safety net that should provide normal procedures to help controller and pilot when human

actions fail to keep aircraft separated beyond establishedminima.

Recently, interest has grown toward developing more advanced automation tools to detect

traffic conflicts and assist in their resolution. These toolscould make use of future technologies, such

as a data link of current aircraft flight plan information, toenhance safety and enable new procedures

to improve traffic flow efficiency.

With the growth of airspace congestion, there is an emergingneed to implement these types of

tools to assist the human operators in handling the expanding traffic loads and improve flow efficiency.

Unfortunately, the CDR has proven to be a hard problem to solve. To give some idea, the way

in which to represent the actual trajectory of an aircraft isby means of a dynamic model that has to

take into account, as an example, the following relationships: speed of the aircraft will depend on the

wind direction and altitude on which it flies (such that the higher an aircraft flies, the lesser the air is

around it and thus it needs to go faster to maintain its position); acceleration depends on the speed

(e.g., at lower speeds, a plane can reach higher acceleration ratios) and altitude, and so on. Notice

that the aircraft is losing mass throughout the flight as fuelburns, and this influences the speed and

acceleration of the aircraft (and, viceversa, the speed influences the consumption of fuel and thus the

mass loss), etc. Good introductions to flight dynamics modelization can be found in [101, 133, 225].

Finally, CDR has to deal with the simultaneous trajectoriesof (possibly) many aircraft. Moreover, we

must bear in mind that given the intended trajectories, captured in the flight plans, some uncertainty

regarding the actual trajectories of the aircraft is unavoidable, which makes CDR harder to solve.

Trying to address all these issues within a mathematical optimization model would lead today to an

unmanageable problem (in terms of computing effort, i.e., elapsed time and memory requirements).

To begin with, it is necessary to have a clear definition of a conflict. A conflict is an event

in which two or more aircraft experience a loss of minimum separation. In other words, the distance

between aircrafts violates a criterion that is considered undesirable. One example criterion is a min-

imum of 5 nm (nautical miles) of horizontal distance betweenaircraft or at least 1000 ft of vertical

separation (the current en-route separation standard at lower altitudes). As a result, each aircraft has

as a safety zone a cylindrical volume of airspace with a 2.5 nmradius and a height of 1,000 ft (500 ft
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above and 500 ft below), and they are not allowed to intersect. The safety zone could also be defined

as a much smaller region (e.g., a sphere 500 ft in diameter) inthe case of tactical collision alerting

systems. In any case, the underlying CDR functions are similar, although the specific models and

alerting thresholds would probably be different.

The goal for the CDR system is to predict that a conflict is going to occur in the future, assist

in the resolution of the conflict situation and communicate the detected conflict to a human operator.

Traditionally, absolute 4D trajectory-based air traffic management and control and relative

aircraft-to-aircraft-based spacing concepts have been investigated as alternative pathways. Prevot et

al. [200] describe research in European programs, such as PHARE and Co-space and in US, programs

such as DAG-TM, and they finally suggest to investigate combinations of these elements.

A recent paper by EUROCONTROL [102] specifies the requirements of Medium-Term con-

flict Detection (MTCD) (e.g. up to 20 minutes) for Air Traffic Management Systems in detail. The

MTCD system is required to detect and notify to the Air TrafficControl Officer (ATCO) a probable

loss of the required separation between two aircraft, or aircraft penetrating restricted airspace. This

paper assumes that flight data and trajectories are providedto the MTCD, where some uncertainty is

expected and has to be taken into account.

Magister [157] presents two different models: The first applies to conflict detection. The

second is related to conflict resolution to solving the conflict by lowering one of the two aircraft that

are taken into consideration in the conflict. In addition, the same author [158] describes the conflict

resolution problem in great detail and makes a quantitativeanalysis of avoidance procedures.

The remainder of this Chapter is organized as follows. Subsection 1.2 is devoted to the most

interesting papers existing in the literature on CollisionDetection. Section 1.3 is devoted to the main

categories of Conflict Resolution. Section 1.4 presents a few problems similar to CA in the airspace

and classifies the literature mentioned in this state of the art in a table. Finally, section 1.5 summarizes

the main contributions of this thesis on the CA problem.

1.2 Conflict Detection

Conflict Detection (CD) is the process of detecting conflictsamong two or more aircrafts, or

between an aircraft and some other airspace constraint suchas restricted airspace or regions of bad

weather.
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Let two aircrafts moving on the same horizontal plane, each following its individual flight

plan. The flight plan is assumed to consist of a sequence of waypoints (a waypoint is a reference

point in physical space used for purposes of navigation, it consists of a tupla with latitudinal and

longitudinal coordinates, plus altitude with respect to a reference geoid) on the plane and a sequence

of speeds for moving between them. One can then define the probability of conflict (PC) as the

probability where two aircraft will be within an unsafe distance from one another (typically 5 nm

outside the TRACON - Terminal Radar Approach Control - and 3 nautical miles inside the TRACON).

Conflict detection consists of estimating PC.

An early work, from Chiang et al. [61] use Delaunay and Voronoi Diagrams. With this re-

search, they reduce the conflict detection algorithm fromO(n2) toO(n log n). A contemporary work,

by Erzberger et al. [83] combines deterministic trajectoryprediction and stochastic conflict analysis

to achieve reliable conflict detection. They formulate error models for trajectory prediction, and de-

scribe an efficient algorithm for estimating conflict probability as a function of encounter geometry.

Prandini et al. [199] outline a framework for conflict detection and resolution for pairs of

aircrafts moving on the same horizontal plane, and they focuss on the prediction component. They

propose a probabilistic framework, thus allowing uncertainty in the aircrafts positions, and they solve

the problem resorting to appropriate randomized algorithms.

Prandini et al. [198] deal with aircraft conflict detection at the mid-range and short range

levels of the ATMS. Starting from an empirically motivated probabilistic description of the aircraft

motion, they propose stochastic models for mid-term and short term prediction of the aircraft posi-

tions, thus allowing the corresponding criticality measures to take into account the various sources

of uncertainty inherent in the environment. Although they focus on the planar case, they sustain that

the extension to the 3-D case is straightforward suggested.However, it is considerably harder to get

meaningful bounds for the error of such approximations.

Gandhi et al. [110] describe approaches to detect airborne obstacles on collision course and

crossing trajectories in video images captured from an airborne aircraft. The crossing target detection

algorithm was also implemented on a pipelined architecturefrom DataCube and runs in real time.

Their work has been successfully tested on flight tests conducted by NASA.

Hu et al. [128] study the problem that consists of evaluatingwhether the flight plan assigned

to an aircraft is safe. They introduce a kinematic model of the aircraft motion in a three dimensional

wind field with spatially correlated random perturbations.Then they propose an iterative algorithm

based on a Markov chain approximation scheme. The same authors [129] introduce a model of a
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two-aircraft encounter with a random field term to address correlation of the wind perturbations to

the aircraft motions. Based on this model, they estimate theprobability of conflict by using a Markov

chain approximation scheme

Jardin [140], presents some algorithms for strategic conflict detection, based on the use of

a 4-dimensional space and time grid to represent the airspace. This approach to compute conflict

detection was previously introduced by Jardin [138, 139], where he uses a 3-dimensional grid (two

horizontal spatial dimensions and time).

Prandini and Hu [197] present a stochastic approximation scheme to estimate the probability

that a single aircraft will enter a forbidden area of the airspace within a finite time horizon. A numer-

ical algorithm is also proposed for computing an estimate ofthe probability that the aircraft might

enter an unsafe region of the airspace or come too close to another aircraft.

1.3 Conflict Resolution

Several methods have been proposed to generate a solution toa conflict. Kuchar and Yang

[147] present a survey of CDR modeling methods with their ownclassification. Dowek and Muñoz

[78] present a mathematical framework for the formal specification and analysis of conflict detection

and resolution algorithms and their properties. For thisState of the Artsix categories have been picked

up, namely, Prescribed, Optimized, Force field, Manual, Neural Networks and Others. And finally

the works presented in two conferences of aviation that tookplace in 2009 are commented.

1.3.1 Prescribed

The studies of this category study the standard maneuvers that airborne aircraft are able to

carry out to avoid simple conflicts. Resolution maneuvers are fixed during system design based on

a set of predefined procedures. NASA [178] and Carpenter and Kuchar [56] assume that a fixed

climbing-turn maneuver is always performed to avoid trafficon a parallel runway approach. Pre-

scribed maneuvers may have the benefit that operators can be trained to perform them reflexively.

This may decrease response time when a conflict alert is issued. However, prescribed maneuvers are

less effective, in general, than maneuvers that are computed in real time since there is no opportunity

to modify the resolution maneuver. In many conflicts, it willbe necessary to adapt the resolution

maneuver to account for unexpected events in the environment, or to reduce the aggressiveness of the
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maneuver.

Peng and Lin in [187] study some horizontal maneuvers escapefor a traffic alert and collision-

avoidance system (TCAS), separately developing speed and flying direction changes.

1.3.2 Optimization

This type of approaches typically combine a kinematic modelwith a set of cost metrics.

An optimal resolution strategy is then determined by findingthe no-conflicts trajectories with the

lowest cost. For example, the Traffic alert and Collision Avoidance System (TCAS), which is an

implementation of the Airborne Collision Avoidance Systemmandated by the International Civil

Aviation Organization, searches through a set of potentialclimb or descent manoeuvres and selects

the least-aggressive one that still provides adequate protection; see [212]. This requires the definition

of appropriate cost functions, typically projected separation, or fuel or time, but costs could also

cover workload. Developing costs may be fairly straightforward for economic values but difficult

when modeling subjective human utilities. Since current interest in this field is generally centered

on strategic resolution of conflicts before immediate tactical evasion is required, economic costs and

operator workload will be important to the system design.

Some of the models denoted as using Optimized conflict resolution apply techniques such

as game theory, genetic algorithms, expert systems, or fuzzy control to the problem. Expert system

methods use rule bases to categorize conflicts and decide whether to alert and/or resolve a conflict.

These models can be complex and would require a large number of rules to completely cover all

possible encounter situations. Additionally, it may be difficult to certify that the system will always

operate as intended, and the “experts” used to develop or train the system may in fact not use the best

strategy in resolving conflicts. However, a rule base, by design, can be easier than it is an abstract

mathematical algorithm for a human to understand or explain.

Krozel and Peters [146] analyze collision avoidance problem in free flight context, taking eco-

nomics features into consideration. They use relative motion of two aircrafts in a horizontal plane and

vectorial and probabilistic calculations to detect if a conflict occurs, so the model is non-deterministic.

To solve the collision avoidance problem, first of all, they consider economic factors, like fuel con-

sumption, and time factors, like time required to execute the maneuver and return back to course. The

authors also order the different possible maneuvers relative to the cost of these ones, being altitude

changes the most economical, and speed changes the worst economical.
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Frazzoli et al. [108] solve a planar, multi-aircraft conflict resolution problem, formulated as

a nonconvex, quadratically constrained quadratic program, and then approximating it by a convex,

semidefinite program. The optimal solution to this convex program is then used to randomly generate

feasible and locally optimal conflict resolution maneuvers. Every individual aircraft should then be

able to express their preferences at regular time intervals; they are given always conflict-free, straight

paths.

Mao et al. [160] set out geometric constructions to solve theproblem, including aircraft one-

by-one until representing the total number of aircraft, considering the previous aircraft as obstacles

and making a sequential process.

Hu has devoted a series of papers and two Thesis to this problem. His work is very interesting

for us, since it tackles the most general case: many aircraftencounters in three dimensional space.

Particularly, in [126], Hu et al. study the problem of designing optimal conflict-free maneuvers (a

maneuver is defined to be a continuous and piecewiseC1 map) for multi-aircraft encounters in a three

dimensional environment, proposing an algorithm for solving the two aircraft nonlinear optimization

problem. For more than two aircraft, they consider what is called two-legged maneuvers approach,

such that a manoeuvre consists of two stages, moving at a constant speed and through a straight

line during both stages. The original optimization problemis then reduced to a finite dimensional

convex optimization problem with linearly approximated conflict-free constraints on the waypoints

and a quadratic objective function. Path flightability is taken into account by introducing an upper

bound on the speed and turning angle constraints, which can be expressed by using second order cone

expressions. So, the optimization problem becomes a SecondOrder Cone Programming (SOCP) one.

However, the assumptions on which the proposal are based (namely, every aircraft departs

and arrives at the same time, all aircraft move linearly except for one heading angle change in the

two-legged manoeuvre, etc.) force to apply the model recursively, which could make it unaffordable

as an option in most practical cases, due to the non-linearity of its constraints and objective function.

In [127], the same authors study the problem as above, although constrained to the plane, proposing a

randomized convex optimization algorithm to find numerically the optimal multi-legged manoeuvres

(with an arbitrary number of stages).

Finally, Hu [124], Hu and Sastry ([132], Hu [125], Hu et al. [130]) and Hu et al. [131]

study the more general problem of optimal collision avoidance and optimal formation switching for

multiple agents moving on a Riemannian manifold.

Pallottino et al. [185] propose two mixed integer models forCDR, the first one allows speed
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changes and the other one angle changes, both on the same plane. These models are based on a ge-

ometric approach. The second model assumes that the speed isthe same for all aircraft, such that

each one can manoeuvre only once with an instantaneous heading angle deviation that can be positive

(left turn), negative (right turn) or null (no deviation). It does not consider returning to the original

route, nor does it explain how the aircraft, after a manoeuvre, reaches its destination. Alonso-Ayuso

et al. [16] use the geometric idea proposed in [185], whose first model (velocity changes model) is

extended to permit aircraft changing both their speed and altitude levels, resulting in the so-called

Velocity and Altitude Changes(VAC) model, which is based onMixed Integer Linear Optimization

(MILO), thus infeasible situations caused by ”head to head”conflicts are avoided. Moreover, all

aircraft will be forced to return to the initial configuration when conflict situations are resolved and,

finally, a pathological case unresolved in [185] is avoided.These two approaches are intended to be

executed repeatedly, each execution within a short time horizon. The trajectories are assumed to be

linear over a horizontal plane (even though flight level changes are allowed). Notice that projecting the

trajectories onto a plane could appreciably change the actual angles, which makes these models suit-

able only for small airspace regions in the short term. Laterthey extended the VC model to a Mixed

Integer Non Linear Optimization (MINLO) model by includingcontinuity in the velocity changes,

since the original considers that all changes happen instantaneously, see [17]. Later on, in [18], they

presented an approximation for coordinating different AirTraffic Controllers Officers (ATCO) in dif-

ferent air sectors. In [19], a two-step approach is presented, the first step being a nonconvex MINLO

model based on geometric constructions aimed at minimizingthe weighted aircraft angle variations to

obtain the new flight configuration, and the second step consisting of a set of unconstrained quadratic

optimization models where aircraft are forced to return to their original flight plan as soon as pos-

sible once there is no aircraft in conflict with any other. In [22], the Variable Neighborhood Search

metaheuristic is used for solving the CDR by turn changes MINLO model previously proposed. In

[20], an exact MINLO model is presented and, finally, in [21],a multicriteria scheme based on Goal

Programming is presented and a Sequential Mixed Integer Linear Optimization (SMILO) approach is

proposed in order to provide a good solution in short computing time for solving the previous models.

Peyronne et al. [190] propose a trajectory using B-splines and a semi-infinite programming

formulation for solving the CDR problem via turn changes. Itonly uses continuous variables, but the

computational experiment is restricted to six aircraft in conflict.

Recently, Rey et al. [203] have presented a MILO model where speed changes are used for

avoiding conflict situations. Cafieri and Durand [50] also propose a MINLO model based on velocity

regulation considering different time instants for performing velocity changes.
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Cafieri and Durand [49] focus on mixed 0–1 nonlinear optimization (MINLO) models for

conflict avoidance based on speed regulation, while trajectories are kept unchanged and considering

different times for velocity changes.

Obstacle avoidance by using the linearized constrained Uninhabited Aerial Vehicle (UAV)

dynamic has been modeled by Richards and How [204]. Centralized Model Predictive Control has

been widely developed for constrained systems and has been applied to the co-operative control of

multiple vehicles. By augmenting the system with a binary ”target state”, that indicates whether the

target set is reached or not, the authors end up with a hybrid system at hand. Task completion is then

guaranteed by imposing a hard terminal equality constrainton the target state. See also [205].

Christodoulou and Costoulakis [62] propose a MINLP model for solving the conflict problem.

The method allows velocity changes and heading angle control to solve all potential conflicts by using

standard optimization software, but it can require more computational effort than what it could be

affordable.

Ma and Miller [156] present a MILP Trajectory Generation model applied to a rotorcraft

performing nap-of-the-earth flight in challenging terrainwith multiple known surface threats, i.e. they

work on a concrete application of optimal path planning for an autonomous vehicle in an obstacle field

in three dimensions.

Schouwenaars et al. [215] discuss the implementation, by using the state-of-the-art optimiza-

tion engine, of a guidance system based on MILP on a modified, autonomous T-33 aircraft equipped

with Boeing’s UCAV avionics package. Their formulation is presented for safe, real-time trajectory

generation in a partially-known, cluttered environment.

Mao et al. [162] tackle the problem using instantaneous heading changes as manoeuvres

between two aircraft. This paper extends the results of Mao et al. [160] in which the manoeuvres that

have been considered are not physically realistic.

A MINLP model proposed by Christodoulou and Kodaxakis [63],with linear objective func-

tion and nonlinear constraints only allows speed changes asmanoeuvres.

Treleaven [227] assumes that aircraft travel at the same altitude and with the same speed, and

uses only horizontal maneuvers for the conflict resolution.This analysis is extended to consider two,

three and multiple intersecting flows.

Pannequin et al. [186] present an approach to the problem with severe weather conditions by
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using a Nonlinear Model Predictive Control (NMPC) scheme.

Finally, Cetek [58] presents a model that takes into accountmany physical features like wind

speed, relative density at the given flight altitude, gravitational acceleration, mass of the aircraft,

aerodynamic drag force, etc. The model is non-linear and it is necessary a great effort to solve the

problem, in fact the computational experience that is reported shows very large resolution times (more

than 10 minutes), and it is not valid neither for imminent conflicts (short term) nor medium term. In

this model, vertical and heading maneuvers are not contemplated (only speed changes), being “head

to head” conflicts impossible to solve.

1.3.3 Force field

This type of approaches treat each aircraft as a charged particle and use modified electrostatic

equations to generate resolution maneuvers. The repulsiveforces between aircraft are used to define

the maneuver that each performs to avoid a collision. A forcefield method, while attractive in the

sense that a conflict resolution solution is continuously available by using relatively simple equations,

may have some pathologies that require additional consideration before they can be used in operation.

For example, force field methods may assume that aircraft continuously maneuver in response to the

changing force field, or that aircraft can vary their speed over a wide range. This requires a high level

of guidance on the flight deck and increases complexity beyond issuing simple heading vectors, for

example. Additionally, sharp discontinuities in the commanded resolution maneuvers may occur that

require additional processing or filtering to arrive at physically feasible solutions. Several human-in-

the-loop implementations of the force field method, however, appear to have resolved these problems

and have shown that the force field based on resolution can be effective when properly applied. See

Duong and Hoffman [79], Hoekstra, Van Gent and Ruigrok [121]and Zeghal and Hoffman [244].

It has also been suggested that potencial fields can be used inUAV navigation for obstacle and

collision avoidance applications. Sigurd and How [221] proposed a method that provides a way for

groups of UAVs to use the gradient of a potencial field to navigate through heavily populated areas

safely while still aggressively approaching their targets.

1.3.4 Manual

Some models allow the user to generate potential conflict resolution solutions and obtain feed-

back as to whether the trial solution is acceptable. These models are denoted as handling a manual
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solution in the table. The benefit of a manual solution is thatit is generally more flexible in the sense

that it is based on human intuition, using information that may not be available to the automation. For

example, weather information that is not available to the CDR system may be important when con-

sidering a conflict resolution maneuver. Automated solutions that do not take relevant environmental

information into account will likely produce nuisance solutions that the human finds unacceptable.

1.3.5 Neural Networks and metaheuristics

In the fifties, artificial neural networks began to be appliedto many fields in artificial in-

telligence like analysis and adaptive control, speech recognition, etc. These networks are based on

statistical estimation and optimization and control theory. This field has been used in the CA problem

together with other heuristics techniques like genetic algorithms.

Durand et al. [81] have built a neural network with unsupervised learning to compute new

trajectories that are close to the optimal trajectory in conflicts with two aircraft. This 3-layer neural

network modifies only the heading direction (not more than 45degrees) of the aircraft if there is a

conflict between them. To help the training of the neural network, the authors use a genetic algorithm.

This network is not valid for conflicts involving more than two aircraft, however they provide some

schemes to solve conflicts involving three aircraft, but notmore.

Alam et al. [7] have constructed a neural network that computes near optimal trajectories to

solve two aircraft conflicts in a 2D free flight environment, allowing only heading changes maneu-

vers, since they assume that the aircraft fly at constant speed. A three layer artificial neural network

architecture is used to lead the aircraft to the destinationpoint. This neural network does not confront

more than two aircraft in a same conflict, and it is not valid ina 3D environment. These are important

drawbacks for the problem.

Doshi [77] presents a neural network to predict the positionof the aircraft by using event his-

tory, being a long history a better choice than a short history since it reduces noise in the model. With

this neural network, the conflict detection is obtained by computing separation distances between

points of the prediction. An algorithm for determining the incursion distance between two aircraft is

presented. It is based on trigonometric analysis and yieldsSD values useful for danger detection, but

it only detects danger conflicts.

Christodoulou and Kontogeorgou [64] present a neural network to predict the optimal speed

change for two aircraft in order to avoid an imminent conflictin a 3D environment. The algorithm
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combines the neural network with non-linear optimization to obtain the optimal speed change. For

each conflict case there is an unique model based on non-linear optimization and it is solved in a 3D

environment, but only speed changes are allowed. Vertical maneuvers are not considered since it is

assumed that aircraft can fly out of a space divided in layers.It is also assumed that the aircraft fly at

constant speed and the motion direction is linear.

Other metaheuristic methods have been used to solve the problem as Ant Colony optimization

(see Durand and Alliot [80] and Meng and Qi [167] for solving the problem by performing angle

change maneuvers). Genetic Algorithms (see Medioni et al. [166] by also performing turn changes

and Vivona et al. [232] for prescribed maneuvers). ParticleSwarm optimization (see Gao et al. [111]

where again the turn change maneuver is used)

1.3.6 Others

Chiang et al. [61] solve the conflict problem with which they call theSpace-Time Flow(STF)

Method. It is based on an iterative procedure for adding tubes (aircraft) using a graph search in a

discretized space-time to route each tube amongst the already routed tubes, which are considered to

be obstacles.

Tomlin et al. [226] develop a method to solve the conflict problem by using both speed and

heading changes. The algorithm is based on Lie algebra and Hamilton-Jacobi-Isaacs equations.

Goodchild et al. [117] propose a cooperative optimal conflict resolution algorithm based on

distributed artificial intelligence, by using a dynamic optimization algorithm

Bicchi and Pallottino [40] use optimal control and game theory to solve the problem. The

model assumes that linear velocity is constant and allows tomaneuver all the aircraft including air-

speed, several angles, heading angle, longitude and latitude as parameters.

Bayen et al. [33] propose a Lagrangian model where the maneuvers are simple instructions

such as turn to heading angle, fly direct to a concrete point and speed increase. The model permits

aircraft to fly at different altitudes, but not to climb or descend. This model permits a shortcut or

detour maneuver that could either shorten or lengthen the flight plan.
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1.4 Similar problems and Review table

A problem applied in military aircrafts is presented by Sharma et al. [220] whose model

considers aircrafts flying in close proximity to terrain andthey have to avoid all fixed obstacles like

mountains. The problem is modeled in a 3D environment using aminimax optimal control problem

formulated as a nonlinear programming problem. This model has a nonsmooth cost function that is

transformed into a smooth cost by introducing additional inequality constraints.

There are other problems treated in the literature that are related to collision avoidance applied

in other fields like underwater or automobile routes where the machine have to avoid fixed obstacles

in its path. Neural networks have been used to tackle this type of problems, see Ishi et al. [135],

Nishida et al. [179] and Ishi et al. [134] applying this results to an underwater robot. Mukai et al.

[172] and [173] use their results to generate a new path avoiding the collision with a fixed obstacle

by using MILP. Finally, Kim et al. [144] model the same problem as a MILP model but by using a

piecewise polynomial approach which is a class of the hybriddynamical system.

In Table 1.1 the main features of the literature that has beenpreviously reviewed are presented.

The Collision Detection Problem (CDP) and Collision Resolution Problem (CRP) are distinguished.

With regard to the type of maneuver three types of maneuvers are classified: Horizontal (H), Vertical

(V) and Speed changes (S). The papers shown in the table are probably the most relevant among those

mentioned in this chapter.
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Table 1.1: Review table
Reference CDP CRP Maneuvers Number of aircrafts Dimension

[7] X X H 2 2D
[8] X N 3D
[33] X N 2D
[40] X X H N 2D
[56] X X H,V 2 2D
[58] X X S 2 2D
[61] X X HV N 3D
[62] X X HS N 2D
[63] X X S N 3D
[64] X X S N 3D
[72] X S,V N 1D
[77] X N 2D
[78] X X H,S,V N 3D
[81] X H 2 2D
[83] X X H,S,V N 3D
[110] X 1 2D
[117] X S N 2D
[124] X H,S N 2D
[125] X H,S,V N 3D
[126] X H,S,V N 3D
[127] X H,S N 2D
[128] X 2 3D
[129] X 2 3D
[131] X H,S,V N 3D
[130] X H,S,V N 3D
[132] X H,S,V N 3D
[138] X X H N 3D
[139] X H,S,V N 3D
[140] X N 4D
[146] X X H, V, S N 3D
[156] X X H,S,V 1 3D
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Table 1.2: Review table
Reference CDP CRP Maneuvers Number of aircrafts Dimension

[185] X X H, S N 2D
[186] X H,S,V N 3D
[197] X 1 2D
[198] X N 2D
[199] X 2 2D
[200] X H N 3D
[202] X S N 3D
[204] X X H,V N 2D
[205] X H,V N 2D
[221] X H N 2D
[226] X H 2,3 2D
[161] X H,S 3 2D
[160] X H N 2D
[162] X H N 2D
[178] X X H,V 2 2D
[190] X H 6 2D
[16] X H,V 6 3D
[49] X S 3D

1.5 Problem description

Conflict Avoidance has been widely studied as can be seen on this chapter. There are quite

a lot of different points of view from which the problem can betackled. Three different maneuvers

are considered to avoid a conflict, namely: velocity, altitude and heading angle changes. To begin

with, in this thesis we will consider two maneuvers: speed and altitude changes. But we will study

other alternatives in order to take into account independently heading angle changes. Heading angle

changes have a nonlinear nature, and most of the models that take them into account are nonlinear,

although some exceptions can be found, such as a paper of Pallottino, Feron and Bicchi (2002) [185]

that solves the problem with heading angle changes using mixed integer linear programming, but the

resulting model does not return aircrafts to their initial direction. And there are also a series of papers,

from Alonso-Ayuso et al. [16, 17, 18, 19, 20, 22, 21] extending the approach proposed by Pallottino et

al. in an interesting way, although nonlinearity is eventually reintroduced, some heuristics are applied

aimed at finding good solutions earlier.

The general approach is by developing a dynamic model tryingto predict the future aircraft

positions from their current situation and then deciding ifa conflict will take place. However, some
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uncertainty is inevitable and has to be taken into account inthe model at the risk of not offering a

reliable prediction. On the other hand, such models are typically non-linear and will be constrained

to consider just a few aircraft in order to be solved in a reasonable time. The approach proposed in

the next chapter is about basing the model on previous information like a flight plan. Notice that there

are models for finding the optimum trajectory for an airborneaircraft and they are efficient enough

(see, e.g. [222]), however, it is not easy to extend such models for dealing with more than one aircraft

and eluding conflicts among them. It would be relatively easyto create such model but it would be

computationally unmanageable.

In the next chapter we present a model based on mixed integer linear programming to solve

conflict avoidance problems, using only two maneuvers to avoid conflicts: velocity and altitude

changes. It is a dynamic model that can manage a great number of aircraft and that for each time

period under consideration yields the altitude (i.e. flyinglevel) and the speed the aircraft should fly

so that collisions are avoided.



Chapter 2

Conflict Avoidance: 0-1 linear
models for Conflict Detection &

Resolution

The Conflict Detection and Resolution Problem for Air TrafficFlow Management consists of decid-

ing the best strategy for airborne aircraft so that there is guarantee that no conflict takes place, i.e.,

all aircraft maintain the minimum safety distance at every time instant. In this chapter, two integer

linear optimization models for conflict avoidance between any number of aircraft in the airspace are

proposed, the first being a pure 0-1 linear which avoids conflicts by means of altitude changes, and the

second a mixed 0-1 linear whose strategy is based on altitudeand speed changes. Several objective

functions are established. Due to the small elapsed time that is required for solving both problems, the

approach can be used in real time by using state-of-the-art mixed integer linear optimization software.

The main contributions of this chapter are as follows:

1. A new point of view has been adopted, so that it does not tackle the CDR problem by directly

modeling the aircraft trajectories nor the physical laws under which the aircraft have to fly.

On the contrary, the approach rests on the idea of decomposing the problem, using the aircraft

trajectories that actually incorporate such physical lawsand the airlines preferences, and with

a (hopefully, small) room for maneuver proposes the needed conflict avoidance maneuvers, if

any. Additionally, only linear models are required which can be computed in very small elapsed

time.

2. Two novel optimization models are proposed. The first one is a pure 0-1 linear model, aimed

17
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at changing altitude levels (i.e., forcing the aircraft to climb or descend in order to avoid con-

flicts). The second model is a mixed 0-1 linear one that solvesthe problem by changing aircraft

altitude levels and speed. Both models are very tight and, then, require very small elapsed time

for solving even large-scale instances, so, they can be usedin real time for realistic conflict

detection and resolution problems.

3. The approach is flexible, allowing non-linear trajectories, which can be the beacon points of

the currently used flight plans, or the future freely decidedoptimal trajectories in the context of

”Free Flight”, or the simple straight-line extrapolation of the speed vector at a given instant, as

in [16, 185]. Speed is not restricted to be constant as it is the case in many other approaches

found in the literature.

4. Additionally, due to its really small elapsed times, our approach is specially suited for being

used in long term time horizons as well as in wider airspace regions that may comprise several

air traffic control areas in which the aerial space is divided.

5. Finally, both models are scalable and can be easily extended and improved with new features

or restrictions, e.g. allowing alternative routes as a third conflict avoidance maneuver, as will

be outlined later (although it is left for further research).

Based on the computational experience reported in Section 2.4, we can point out that our first

model is tighter than the second one (and, then, it requires smaller computational effort), so, it allows

considering wider aerial zones with a higher set of aircraftand a longer time horizon than the second

model. Nevertheless, this second model is quite efficient, according to the computational experience

to report below. On the other hand, the first model has the drawback of only allowing altitude level

changes, a manoeuvre that may not be the preferred choice by passengers because they are more

uncomfortable. Nonetheless, in most real-life cases very few of such altitude level changes should

be necessary and this model will be useful and enough in most practical situations. Further more, it

may be the preferred manoeuvre, as opposed to speed changes,since the latter may imply greater fuel

consumption and be more uncertain than the former. Actually, velocity changes are not considered

a very efficient maneuver in the literature; see Frazzoli et al. [108], Jardin [138] and Peyronne et

al. [190], among others. Moreover, in many papers aircraft velocity is assumed to be constant, see

Pallottino et al. [185], Christodoulou and Costoulakis [62], Treleaven [227], Gao et al. [111] and

Cafieri and Durand [50], among others. To summarize, the proposed models are both efficient and

useful in most real-life situations, the second being more comprehensive than the first one.

The remainder of the chapter is organized as follows: Section 2.1 technically introduces the
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problem and some notation. Section 2.2 presents the first model, its preprocessing and its pure 0-1

formulation. Section 2.3 presents the second model, with some new elements, its preprocessing and

its mixed 0-1 formulation. Section 2.4 reports the computational results for two testbeds of realistic

airborne aircraft conflict instances. In Section 2.5 further ideas and extensions are presented. And,

finally, section 2.6 concludes and outlines future work.

2.1 Problem description

A conflict is an event in which two or more aircraft are within an unsafe distance from one an-

other at a given instant. The minimum safety distance is typically 5 nm (nautical miles) of horizontal

distance between aircraft outside the TRACON (Terminal Radar Approach Control) and 3 nm inside

the TRACON, or at least 1000 feet of vertical separation (thecurrent en-route separation standard at

lower altitudes).

Let us consider a set of aircraftF . For each flightf ∈ F , a dynamic trajectory model is

required to project the states into the future in order to predict whether a conflict would occur. This

projection may be based solely on current state information(e.g., a straight-line extrapolation of the

current speed vector) or may be based on additional procedural information such as a flight plan. In

both situations there is generally some uncertainty in estimating the future trajectory. It is represented

via a finite sequence of waypoints,Wf . A waypoint is a reference point in the physical space that

consists of a tupla with latitudinal and longitudinal coordinates, generally with respect to a reference

geoid. At each waypoint, we also know the scheduled speed formoving to the next waypoint. Let

also defineW
′

f andW−
f as the sets of all waypoints but the first and the last ones, respectively, to

transverse by flightf .

Let us assume that the route path for each aircraft is broken down into segments (not nec-

essarily with equal size), altitude level and speed througheach one of these segments, such that the

number of waypoints for every aircraft is sufficiently representative of the route. Thus, the distance

between two given consecutive waypoints (i.e., the length of a segment) should be less than 5nm (ac-

cording to the current en-route separation standard at lower altitudes). So, 2nm can be a reasonable

distance. In order to justify this choice, assume the extreme situation where two aircraft approach

each other head-to-head from an initial distance of 5.1nm (so, no conflict occurs), but, after 1 nm of

each route they are at the distance of 3.1nm each other. At this time instant, assume that they turn

180 degrees and come back to their initial waypoints. Each aircraft has been flying 2nm, in total,

that is precisely the distance that we have assumed reasonable and no conflict has been detected, in
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spite that the aircraft have been in conflict since they have been at a distance of 3.1 nm one from the

other. However, this distance is big enough to consider the risk of a real collision. Notice that any

more realistic situation is more favorable than the case just described, since the minimum distance

between the aircraft would be greater than 3.1 nm. Moreover,the distance between two consecutive

waypoints, although important, is case dependent (and, then, an input to the model of choice) and,

then, it does not affect the tightness and, so, the validity of the models presented in this work.

Additionally, letLf
i = {zfi , z

f
i + 1, . . . , zfi } denote the set of the allowed altitude levels for

aircraft f to traverse waypointi, for f ∈ F , i ∈ Wf . In order to prevent infeasible altitude level

changes, let us defineV
f
i (V f

i ) as the max (min) number of altitude levels that aircraftf is allowed

to climb or descend from waypointi to the next one, forf ∈ F , i ∈ W−
f . Let also definetfi andzfi

as the scheduled time and altitude of aircraftf while traversing waypointi in its route, forf ∈ F ,

i ∈ Wf .

We will consider that a conflict takes place if two aircraft traverse two waypoints in their

respective routes that are too close to one another, within asmall interval of time. To determine the

bounds of such interval let us resort to a conservative strategy, and definemA
f,k
i,j = max{|tfi+1 −

tfi |, |t
k
j+1 − tkj |} as the smallest time interval that is allowed for aircraftf andk to reach their next

waypointsi+ 1 andj + 1 from the waypointsi andj, respectively,∀f, k ∈ F , (i, j) ∈ Wf ×Wk

So, the CDR problem to tackle consists of detecting all conflicts in thealert zone(being this

one an aerial sector or even the whole airspace) and avoidingthem by using a solution provided

by very tight 0-1 linear optimization models that are solvedby using a state-of-the art optimization

engine. The proposed models suggest some changes (as few as possible) in altitude and speed of the

aircraft scheduled trajectories.

2.2 Collision Avoidance via altitude level changes

2.2.1 Conflict Detection

The scheme proposed for aircraft conflict detection is similar for the two types of CDR prob-

lems to tackle in this work, namely, CA via altitude level changes and CA via altitude level and speed

changes. Obviously, it helps to decide if a conflict can be avoided, if any, but it also helps to finding

at which pair of waypoints a conflict would occur. Moreover, the conflict detection scheme have

some differences between both approaches. The basic idea for the altitude level change scheme is as
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follows.

For a pair of aircraft(f, k) ∈ F × F , there is apotential conflictat the pair of waypoints

(i, j) ∈ Wf ×Wk if the following conditions hold:

1. The waypointsi andj have a smaller distance than the minimum allowed.

2. The time instants are such thattfi < tkj+1 and tkj < tfi+1. In order to justify this condition,

suppose, on the contrary, that e.g., the second inequality does not hold, then, when aircraftk

reaches waypointj, aircraftf is at waypointi + 1, at least, and, so, no conflict between the

aircraftk andf is possible at the pair of waypoints(i, j)).

3. The altitude levels are such thatzfi 6 zkj andzkj 6 zfi since, otherwise, the aircraftf andk

cannot be at the same altitude level while traversing the waypointsi andj.

Let Pf,k ⊂ Wf × Wk denote be the set of allpotencial waypoint conflictsbetween the

aircraftf andk, andFf ⊂ F be the set ofpotential aircraft conflictswhere aircraftf is involved, for

f, k ∈ F . Notice thatk ∈ Ff iff Pf,k 6= ∅.

Finally, we can define a partition of the aircraft setF =
⋃

i∈I Fi, Fi ∩ Fj = ∅,∀i, j ∈ I,

wheref ∈ Fi ⇒ Ff ⊂ Fi,∀f ∈ F ,∀i ∈ I for splitting the problem into subproblems.

Similarly, for a pair of aircraft(f, k) ∈ F × F , there is acurrent conflictat the pair of

waypoints(i, j) ∈ Wf ×Wk if (i, j) ∈ Pf,k andzfi = zkj .

Finally, let CPf,k ⊂ Wf × Wk denote the set of allcurrent waypoint conflictsbetween

aircraft f andk, andCFf ⊂ F be the set ofcurrent aircraft conflictswhere aircraftf is involved,

for f, k ∈ F . Notice thatk ∈ CFf iff CPf,k 6= ∅.

As an illustration, let us consider the aerial zone depictedin Figure 2.1, where three aircraft

cross their paths. Particularly, we can observe that waypoint i2 is too close to the waypointsj5 andj6,

which are within the safety disc drawn around waypointi2. Suppose that aircraft 1 is scheduled to fly

through the waypointsi2 andi3 at time instants (e.g., seconds) 33 and 48, respectively, and aircraft 2

is scheduled to fly through the waypointsj5 andj6 at the time instances 54 and 71, respectively, (i.e.

t1i2 = 33, t1i3 = 48, t2j5 = 54, t2j6 = 71). Then, there is not a potential conflict nor a current conflict at

the pair of waypoints(i2, j5) (i.e., (i2, j5) 6∈ CP1,2 ⊂ P1,2), sincet2j5 > t1i3. However, there might

be a conflict at the waypoints(i2, j6). So, the valuest2j6, t2j7 , t1i2 andt1i3 should be checked to evaluate

it.
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Figure 2.1: Illustrative case for three flight routes
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Figure 2.2: Illustrative case for different altitude levels of the routes of the aircraft 1 and 3

On the other hand, we can observe in the figure that waypointi4 is too close to the waypoints

k4, k5 andk6. So, suppose that e.g.,t1i4 = 63, t1i5 = 78, t3k4 = 65 andt3k5 = 85. Then, we find out

thatt1i4 < t3k4 < t1i5 and, so, the first and second conditions given above hold for the pair of waypoints

(i4, k4) to belong to the setsP1,3 andCP1,3. To check if the third condition hold, the paths of the

aircraft 1 and 3 depicted in Figure 2.2 should be analyzed on the axesx andz (i.e., abscissa and

height). We can observe that both aircraft fly at different altitude levels and, so, no current conflict

takes place, thus(i4, k4) 6∈ CP1,3. However, suppose thatz3k4 = 1, z3k4 = 2 andz1i4 = 1, z1i4 = 1,

thenz3k4 = z1i4 = z1i4 < z3k4 and, thus,(i4, k4) ∈ P1,3, since aircraft 3 is allowed to fly at altitude

level 1 in waypointk4 and, so, a conflict may occur at the pair of waypoints(i4, k4) if such change is

introduced by the model given below.
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2.2.2 Model formulation for conflict resolution

The pure 0-1 model that we propose deals with the CDR problem by changing (i.e, climbing

or descending) altitude levels for the aircraft in order to avoid current conflicts. It considers two ob-

jectives in a composite form, i.e., the maximization of rewards for the aircraft flying on the scheduled

altitude levels and the minimization of penalizations of altitude level changes for the aircraft flying at

levels different from those scheduled ones. Both objectives are optimized at all the given waypoints.

So, the model assigns altitude level changes, if any, to the aircraft in order to guarantee that there will

be no conflict among them.

Parameters

cfi and hfi , reward and penalization for changing (i.e., climbing or descending) the scheduled alti-

tude level for aircraftf at waypointi, respectively,∀f ∈ F , i ∈ Wf .

0-1 variables

φfi,h, will take on the value 1 if aircraftf is at altitude levelh at waypointi in its route path and 0,

otherwise,∀f ∈ F , i ∈ Wf , h ∈ Lf
i .

νfi , will take on the value 1 if aircraftf changes its altitude level from waypointi to the next one and

0, otherwise,∀f ∈ F , i ∈ W−
f .

The objective function includes two terms, namely, the reward for having the aircraft flying

at the scheduled altitude levels and the penalization for flying at different levels than the scheduled

ones.

The model is as follows,

max
∑

f∈F ,i∈Wf ,h=z
f
i

cfı φ
f
i,h −

∑

f∈F ,i∈W−

f

hfi ν
f
i (2.1)
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subject to:

∑

h∈Lf
i

φfi,h = 1 ∀f ∈ F , i ∈ Wf (2.2)

φfi,h 6

V
f
i

∑

ℓ=V
f
i

φfi+1,h+ℓ ∀f ∈ F , i ∈ W−
f , h ∈ Lf

i (2.3)

φfi,h 6

V
f
i−1
∑

ℓ=V
f
i−1

φfi−1,h−ℓ ∀f ∈ F , i ∈ W
′

f , h ∈ Lf
i (2.4)

φfi,h − φfi+1,h 6 νfi ∀f ∈ F , i ∈ W−
f , h ∈ Lf

i (2.5)

φfi,h + φkj,h 6 1 ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,kh ∈ Lf
i ∩ Lk

j (2.6)

φfi,h, ν
f
i ∈ {0, 1} ∀f ∈ F , i ∈ Wf , h ∈ Lf

i . (2.7)

Constraints (2.2) guarantee that all aircraft traverse every waypoint at only one altitude level. Con-

straints (2.3)-(2.4) ensure “soft” altitude level changes. Constraints (2.5) give the number of altitude

level variations from one waypoint with respect to the next one. Constraints (2.6) avoid the conflicts.

Finally, the 0-1 character of the variables is given by (2.7).

Note1: It is assumed in the model that an aircraft can climb and descend without modifying

the speed, by an increase and reduction of power, respectively.

Note2: The integrality condition of variableνfi can be relaxed (i.e., letνfi ∈ R
+) since it only

appears in constraint (2.5), where it is forced to beνfi > 1 if and only if φfi,h = 1 andφfi+1,h = 0,

and zero otherwise, since it is penalized in the objective function and so it must take on the smallest

possible value.

2.3 Collision Avoidance via altitude level and speed change s

2.3.1 Definitions

Hereafter we expand the model presented in Subsection 2.2.2to take also into account speed

changes. To that end, the following additional parameters and variables are defined.

Parameters
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tfi and tfi , lower and upper bounds for the feasible time instant at whichaircraftf traverses the route

segmenti→ (i+ 1), respectively,∀f ∈ F , i ∈ W−
f .

sf,ki,j , reward for avoiding the conflicts between the aircraftf andk at the waypointsi andj due to

time coincidence,∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k.

Variables

τ fi , nonnegative rational variable that represents the time instant at which aircraftf transverses way-

point i, ∀f ∈ F , i ∈ Wf .

γf,ki,j , 0-1 variable that takes on the value 1 if there is no conflict between the aircraftf andk at the

waypointsi andj due to the timing (and, so, independently at which altitude level they traverse

their respective waypoints) and 0, otherwise,∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k.

βf,ki,j , instrumental 0-1 variable, it will take on the value 1 if aircraft k arrives at pointj before aircraft

f arrives at pointi, and it zero otherwise.

2.3.2 Conflict Detection

As we mention in Subsection 2.2.1, although the scheme for conflict detection is very similar

for the both models that we propose in this work, there are some differences. Let the following slight

modification: For a pair of aircraft(f, k) ∈ F×F , there is apotential conflictat the pair of waypoints

(i, j) ∈ Wf ×Wk if both the conditions 1 and 3 stated in Section 2.2.1 hold and, instead of condition

2, the following one holds too:

• The time instants are such thattf1 +
∑

i′<i t
f
i′ < tk1 +

∑

j′6j t
k
j′ and tf1 +

∑

i′6i t
f
i′ > tk1 +

∑

j′<j t
k
j′ . In order to justify this condition, suppose, on the contrary, that e.g., the second

inequality does not hold, then even if aircraftk reaches waypointj the soonest possible time

instant, aircraftf is at its waypointi + 1, at least, and no conflict between the aircraftk andf

is possible at the pair of waypoints(i, j).

Similarly to the problem with altitude level changes only, there is acurrent conflictfor a pair

of aircraft (f, k) ∈ F × F at the pair of waypoints(i, j) ∈ Wf × Wk if (i, j) ∈ Pf,k, tfi < tkj+1,

tkj < tfi+1 andzfi = zkj .
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2.3.3 Model formulation for conflict resolution

As in the pure 0-1 model, the first term in the objective function rewards the aircraft that do

not change their scheduled altitude level, the second term penalizes the number of ”jumps” (climbing

or descending) of the aircraft taken into consideration andthe third term rewards the number of con-

flict resolutions by avoiding time coincidence. Notice thatthe model presented in Section 2.2.2 does

only consider the first two terms.

The model is as follows,

max
∑

f∈F ,i∈Wf ,h=z
f
i

cfı φ
f
i,h −

∑

f∈F ,i∈W−

f

hfi ν
f
i +

∑

∀f∈F ,k∈Ff ,(i,j)∈Pf,k

sf,ki,j γ
f,k
i,j (2.8)

subject to constraints (2.2)-(2.5) and

τ f1 − tf1 6 µ ∀f ∈ F (2.9)

tf1 − τ f1 6 µ ∀f ∈ F (2.10)

τ fi+1 − τ fi 6 t
f
i ∀f ∈ F , i ∈ W−

f (2.11)

τ fi+1 − τ fi > tfi ∀f ∈ F , i ∈ W−
f (2.12)

τ f|Wf |
− tf|Wf |

6 ǫ ∀f ∈ F (2.13)

tf|Wf |
− τ f|Wf |

6 ǫ ∀f ∈ F (2.14)

γf,ki,j 6
(τ fi − τkj )

mA
f,k
i,j

+mf,k
i,j β

f,k
i,j ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.15)

γf,ki,j 6
(τkj − τ fi )

mA
f,k
i,j

+mf,k
i,j (1− βf,ki,j ) ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.16)

φfi,h + φkj,h 6 1 + γf,ki,j ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k, h ∈ Lf
Wf

∩ Lk
Wk

(2.17)

τ fi ∈ R
+ ∀f ∈ F , i ∈ W−

f (2.18)

φfi,h, ν
f
i ∈ {0, 1} ∀f ∈ F , i ∈ Wf , h ∈ Lf

i (2.19)

γf,ki,j , β
f,k
i,j ∈ {0, 1} ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k, (2.20)

where the parameterǫ in constraints (2.13) and (2.14) is half the length of the time interval around the

scheduled arrival time. Its purpose is to avoid to constrainthe aircraft arrival time to an isolated value.

The aim of this requirement is to avoid changing scheduled flight times in other air zones, which could

lead to new conflicts where they had previously been avoided.The parameterµ in constraints (2.9)
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and (2.10) is half the length of the time interval around the scheduled ”departure” time. It will allow a

small margin to decide when the aircraft fly into the conflict zone. The parametermf,k
i,j in constraints

(2.15) and (2.16) is the smallest possible value, big enoughto guarantee that the right-hand-side of

both constraints is positive, since their left-hand-side is a 0-1 variable.

Constraints (2.9) and (2.10) set the initial time instant for the aircraft to arrive to the conflict

zone. Constraints (2.11) and (2.12) ensure “soft” speed changes. Constraints (2.13) and (2.14) force

the aircraft to arrive at their destination waypoints at (almost) their previously assigned time instant.

Constraints (2.17) avoid the conflicts together with the auxiliary constraints (2.15) and (2.16), whose

purpose is to force the variablesγf,ki,j to be zero if aircraftf andk traverse the waypointsi andj,

respectively, within a small time interval (i.e., the difference of their time instants be smaller than

mA
f,k
i,j ). Finally, constraints (2.18)-(2.20) define the characterof the variables.

Note 1: As in the pure 0-1 model, the integrality condition ofvariableνfi can be relaxed (i.e.,

let νfi ∈ R
+), as it can be done with variableγf,ki,j for similar reasons.

Note 2: It is assumed in the model that in case of requiring e.g., a speed increase due to a

latitude level change the issue can be addressed via a carefully choice of the parameters of the model,

particularly the speed bounds to allow a speed in accordancewith the altitude level change.
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2.3.4 Tightening the model

Reducing the parametermf,k
i,j .

The easiest candidate for the parameter would be the total time considered in the problem, but

a tighter candidate can be calculated as follows,

mf,k
i,j =

max
{

|
∑

s<i t
f
s −

∑

t<j t
k
t |, |

∑

s<i t
f
s −

∑

t<j t
k
t |
}

mA
f,k
i,j

+ 1. (2.21)

Again, we can even reducemf,k
i,j by taking into account that so far, the aircraft are forced toar-

rive at their destination waypoints at their assigned arrival time instants. Then, let us use in expression

(2.21) the following formulae:inf
{

∑

s<i t
f
s , t

f
|Wf |

−
∑

s>i t
f
s

}

andsup
{

∑

s<i t
f
s , t

f
|Wf |

−
∑

s>i t
f
s

}

instead of
∑

s<i t
f
s and

∑

s<i t
f
s , respectively. Similarly, we can replace

∑

t<j t
k
t and

∑

t<j t
k
t with

analogous expressions.

Special set of constraints

The above model for collision avoidance via altitude level and speed changes just presented

above can be tightened by appending the constraints

βf,ki,j 6 βf,ki,j−1 ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.22)

βf,ki,j 6 βf,ki+1,j ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.23)

βf,ki,j = 1− βk,fj,i ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.24)

γf,ki,j + βf,ki,j 6 1 + γf,ki,j−1 ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.25)

γf,ki,j 6 βf,ki,j + γf,ki−1,j ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.26)

Constraints (2.22)-(2.26) tighten the model allowing an important improvement in the com-

puting time needed for solving the problem. Let us enlightentheir “meaning”:

(2.22), (2.23): if aircraft k arrives at pointj before aircraftf arrives at pointi, then it must arrive at

point j−1 earlier and soβf,ki,j−1 = 1. Likewise, aircraftf will arrive at i+1 later, soβf,ki+1,j = 1
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(2.24): if aircraft k arrives at pointj before aircraftf arrives at pointi (i.e. βf,ki,j = 1) then it cannot

be true the opposite (i.e.βk,fj,i = 1).

(2.25): if aircraftsf andk do not coincide on time at pointsi andj respectively (i.e.γf,ki,j = 1), and

aircraftk arrives at pointj before aircraftf arrives at pointi (i.e. βf,ki,j = 1), then aircraftsf

andk do not coincide on time at pointsi andj − 1 either (i.e.γf,ki−1,j = 1).

(2.26): if aircraftsf andk do not coincide on time at pointsi andj respectively (i.e.γf,ki,j = 1), and

aircraft f arrives at pointi before aircraftk arrives at pointj (i.e. βf,ki,j = 0), then aircraftsf

andk do not coincide on time at pointsi− 1 andj either (i.e.γf,ki−1,j = 1).

We have tried too with an alternative series of constraints:

γf,ki,j = γf,ki+1,j ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.27)

γf,ki,j = γf,ki,j+1 ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.28)

γf,ki,j = γf,ki−1,j ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k (2.29)

γf,ki,j = γf,ki,j−1 ∀f ∈ F , k ∈ Ff , (i, j) ∈ Pf,k. (2.30)

Constraints (2.27)-(2.30) actually reduce the LP feasiblespace, while exclude some non op-

timal 0-1 solutions, what produces a much tighter model and,then, allows to obtain a smaller elapsed

time for solving the problem. To understand their meaning and the reason based on which the ex-

cluded 0-1 solutions are not optimal, let us recall first how the variablesγf,ki,j work. If the waypoints

i andj are too close, the conflict between the aircraftf andk is avoided, since the time instant at

which each aircraft traverses the respective waypoint are sufficiently distant, thenγf,ki,j = 1 and zero,

otherwise. So, the above constraints force to avoid a particular set of possible conflicts between the

two aircraftf andk (i.e., conflicts in consecutive waypoints), by one and only one of the possible

manoeuvres, i.e. changing the altitude level or the speed. For an illustration, consider the situation

depicted in Figure 2.1, and suppose that(i4, k4), (i4, k5), (i4, k6) ∈ P1,3, then if e.g., the potential

conflict in (i4, k4) is avoided by delaying aircraft 3 so that both aircraft 1 and 3do not coincide on

time at that waypoint, then the potential conflict in(i4, k5) should be avoided taken advantage of such

delay and not forcing a new maneuver, e.g., forcing aircraft1 to descend an altitude level.
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2.4 Computational experience

We report the results of the computational experience obtained while optimizing the pure 0-1

model and the mixed 0-1 model presented in sections 2.2.2 and2.3.3, respectively. The models have

been implemented in a c++ experimental code and have been optimized by using the sate-of-the-art

engine CPLEX v12.1. The computations were carried out in a PCIntel Core 2 Duo 4, 2 GHz and 2

Gbytes of RAM.

Two sets of testbeds of randomly generated instances have been used in our experimentation,

24 instances for the first testbed and 25 instances for the thesecond one. For each instance 10

simulations have been performed, such that the averages of the computational results are reported.

The simulations differ one from the other for each instance in (1) the conflict zone and (2) the arrival

time instances of the aircraft (chosen at random throughouta uniform distribution) to the conflict

zone along the time horizon through any of the four sides of the conflict zone (all of them with

equal probability) and any waypoint of the sides (we have used a normal distribution with a standard

deviation equal to 1). A random number of potential altitudelevels ranges between 1 and 8 per

aircraft.

The second term in the objective function (2.1) has been usedfor the pure 0-1 model (i.e.,

minimizing the number of altitude level changes). The constraints (2.22)-(2.26) have been also ap-

pended to the mixed 0-1 model. The objective function (2.8) has the following parameters in the

testbed:cfi = 0, hfi = 1 andsf,ki,j = 10, so, the number of altitude levels is minimized and the number

of conflict resolutions by speed changing is strongly maximized.

Tables 2.1 and 2.2 show the problem dimensions in the 24 instances in the testbed for the pure

0-1 model and the 25 instances in the testbed for the mixed 0-1model. The headings are as follows:

|F|, number of aircraft;CZ, conflict zone side length (in nautical miles);|T |, time horizon (in secs.);

|
⋃

f∈F CFf |, number ofcurrent aircraft conflicts; |
⋃

f∈F Ff |, number ofpotencial aircraft con-

flicts; |
⋃

f∈F ,k∈CFf CPf,k|, number ofcurrent waypoint conflicts; and|
⋃

f∈F ,k∈Ff Pf,k|, number

of potencial waypoint conflicts. We can observe that the number of aircraft, conflict zone side length

and time horizon have realistic dimensions.

The number of conflicts that took place in the simulations foreach instance has been measured

in 4 different ways, namely, the number ofcurrent aircraft conflicts, the number ofpotential aircraft

conflicts, the number ofcurrent waypoint conflicts, and the number ofpotential waypoint conflicts.

Tables 2.3 and 2.4 show the dimensions of the pure 0-1 and mixed 0-1 models, respectively.
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The headings are as follows:m andm∗, number of constraints before and after CPLEX preprocess-

ing, respectively;rm: ratio (in %) betweenm andm∗ (i.e., m∗·100
m

); n01andnc, number of 0-1 and

continuous variables, respectively;n andn∗, number of variables before and after CPLEX prepro-

cessing, respectively;rn, ratio (in %) betweenn andn∗ (i.e., n
∗·100
n

). We can observe in these tables

how high are the dimensions of the models.

Tables 2.5 and 2.6 report the computational results. The headings are as follows:zlp, solution

value of the LP relaxation;zs, solution value of the stronger LP relaxation (i.e., the value of the LP

model after appending the cuts identified by CPLEX);zip, solution value of the original CDR prob-

lem;GAPlp andGAPs, related optimality gaps computed aszip−zlp
zip

% and zip−zs
zip

%, respectively;nn,

number of CPLEX branch-and-cut nodes;tlp, ts andtip, elapsed times (secs.) to obtain the solution

valueszlp, zs andzip, respectively;tt, total elapsed time from the starting of the optimization;nc,

total number of cuts identified and appended by CPLEX.

Note: Some results for the pure 0-1 model, namelyzlp, zs, zip, GAPlp, GAPs andnn, have

not been included in Table 2.5, since they are zero in all instances of the testbed. Additionally, the

model is so tight that the LP solution gives integer values for the (0-1) variables and then, the CPLEX

branch-and-cut phase is not been required in any of the instances, being the total elapsed time close

to zero in 21 out of 24 instances, and very small for the other three remaining instances.

Finally, it is worthy to point out the impressively good total timestt (in secs.) that have been

required for providing the optimal solution of the mixed 0-1models, see Table 2.6.

2.5 Further discussions and extensions for the proposed mod -
els

At this section we discuss some thoughts on theapplicability of our models and propose some

extensions to the proposed models.

2.5.1 On ascending or descending flight levels

We are assuming as a hypothesis that aircraft are exactly at agiven flight level while flying

through each waypoint, so if an aircraft climbs one level from a given waypoint, saya, to the next

one, sayb, the ascension must be executed completely while flying thesegmentfrom a to b. Thus

e.g. given a segment 2 miles long, the aircraft must be able toascend or descend 1000 ft. (the
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Table 2.1: Dimensions of the altitude level change problem for model 2.1-2.7
Case|F| CZ |T | |

⋃

f∈F CFf | |
⋃

f∈F Ff | |
⋃

f∈F ,k∈CFf CPf,k| |
⋃

f∈F ,k∈Ff Pf,k|

p01 25 50 300 15 43 36 270
p02 25 50 600 27 70 79 691
p03 25 100 300 8 20 29 177
p04 25 100 600 12 34 40 345
p05 25 200 600 5 12 18 145
p06 50 200 900 22 45 100 908
p07 50 200 1800 20 67 68 1295
p08 50 200 3600 18 77 65 1650
p09 50 400 1800 10 25 50 681
p10 50 400 3600 12 49 52 1301
p11 65 200 900 36 80 138 1338
p12 65 200 1800 37 125 132 2361
p13 65 200 3600 31 124 107 2588
p14 65 400 1800 20 49 89 1208
p15 65 400 3600 18 69 79 1861
p16 75 200 900 49 100 200 1826
p17 75 200 1800 46 168 187 3026
p18 75 200 3600 39 171 122 3398
p19 75 400 1800 26 58 125 1458
p20 75 400 3600 25 98 98 2471
p21 100 400 3600 43 177 173 4433
p22 100 600 3600 30 93 146 2682
p23 200 400 1800 195 463 868 11610
p24 200 400 3600 163 673 693 17665
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Table 2.2: Dimensions of the altitude level and speed changes problem for model 2.8-2.20
Case|F| CZ |T | |

⋃

f∈F CFf | |
⋃

f∈F Ff | |
⋃

f∈F ,k∈CFf CPf,k| |
⋃

f∈F ,k∈Ff Pf,k|

m01 10 50 300 2 7 6 48
m02 10 50 600 3 9 8 75
m03 10 100 300 1 3 3 21
m04 10 100 600 1 4 5 51
m05 10 200 600 1 2 4 40
m06 20 50 300 9 27 20 162
m07 20 50 600 17 46 48 406
m08 20 100 300 6 13 19 109
m09 20 100 600 6 15 24 203
m10 20 200 600 4 7 16 104
m11 25 50 300 15 43 36 270
m12 25 50 600 27 70 79 691
m13 25 100 300 8 20 29 177
m14 25 100 600 12 34 40 345
m15 25 200 600 5 12 18 145
m16 50 200 900 22 45 100 908
m17 50 200 1800 20 67 68 1295
m18 50 200 3600 18 77 65 1650
m19 50 400 1800 10 25 50 681
m20 50 400 3600 12 49 52 1301
m21 75 200 900 49 100 200 1826
m22 75 200 1800 46 168 187 3026
m23 75 200 3600 39 171 122 3398
m24 75 400 1800 26 58 125 1458
m25 75 400 3600 25 98 98 2471
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Table 2.3: Dimensions of the pure 0-1 model 2.1-2.7
Case m m* rm(%) n n* rn(%)
p01 3052 1493 48.9 1081 537 49.7
p02 5222 3758 72.0 1735 1264 72.9
p03 2265 1906 84.2 844 714 84.6
p04 3275 2385 72.8 1231 909 73.8
p05 2007 1428 71.2 787 562 71.4
p06 8634 7431 86.1 3115 2675 85.9
p07 6876 6596 95.9 2631 2509 95.4
p08 6668 5771 86.5 2564 2211 86.2
p09 5558 5425 97.6 2095 2035 97.1
p10 5071 4941 97.4 1941 1883 97.0
p11 11648 11376 97.7 4164 4048 97.2
p12 13082 12788 97.8 4777 4648 97.3
p13 10396 10024 96.4 3963 3799 95.9
p14 9240 8242 89.2 3427 3037 88.6
p15 6867 6698 97.5 2595 2520 97.1
p16 15032 14668 97.6 5296 5140 97.1
p17 16359 15942 97.5 6007 5828 97.0
p18 13847 13592 98.2 5178 5064 97.8
p19 11848 11529 97.3 4400 4262 96.9
p20 10838 9440 87.1 4054 3524 86.9
p21 17117 16583 96.9 6406 6179 96.5
p22 14893 14519 97.5 5519 5353 97.0
p23 67260 65831 97.9 22654 22058 97.4
p24 33092 32789 99.1 11681 11547 98.9
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Table 2.4: Dimensions of the mixed 0-1 model 2.8-2.20
Case m m* rm(%) n01 nc n n* rn(%)
m01 960 746 77.7 353 51 404 313 77.5
m02 1440 1064 73.9 503 71 574 424 73.9
m03 562 453 80.6 219 36 255 208 81.6
m04 1056 796 75.4 367 53 420 319 76.0
m05 957 795 83.1 333 51 384 318 82.8
m06 2783 2085 74.9 1002 136 1138 839 73.7
m07 6039 4215 69.8 2009 239 2248 1508 67.1
m08 2347 1907 81.3 875 131 1006 812 80.7
m09 3971 3064 77.2 1364 192 1556 1189 76.4
m10 2192 1665 76.0 793 117 910 699 76.8
m11 4570 3475 76.0 1612 214 1826 1361 74.5
m12 9918 7012 70.7 3204 365 3569 2412 67.6
m13 3295 2572 78.1 1207 171 1378 1054 76.5
m14 5976 4381 73.3 2054 273 2327 1697 72.9
m15 3265 2600 79.6 1181 178 1359 1084 79.8
m16 15897 12094 76.1 5339 705 6044 4539 75.1
m17 21321 14073 66.0 6920 866 7786 5289 67.9
m18 27032 17451 64.6 8584 1057 9641 6472 67.1
m19 12690 9302 73.3 4262 580 4842 3614 74.6
m20 21820 13947 63.9 7015 883 7898 5450 69.0
m21 29244 21485 73.5 9725 1215 10940 7891 72.1
m22 47939 32576 68.0 15320 1854 1717411780 68.6
m23 55906 36855 65.9 17455 2132 1958713376 68.3
m24 26502 19513 73.6 8847 1186 10033 7465 74.4
m25 41860 27504 65.7 13194 1651 1484510268 69.2

standard vertical distance between flight levels) i.e., fly with a climbing angleα such thattg(α) =

0.189/2 ⇒ α ≈ arctan(.095) ≈ 0.094 radians, or else5.42o, what seems reasonable. But situations

may present in which, for a particular aircraft, it would take more to ascend or descend a flight level

than the distance froma to b, (e.g., we may need to use much shorter segments, e.g. the aircraft might

difficulties to ascend 1000 ft. in half a mile, at an angle ofarctan(0.189 ∗ 2) ≈ 0.36rad = 20.70o).

There is an additional problem: our constraints guarantee that a particular pair of aircrafts

avoid all conflicts by flying at different flight levels in the waypoints, but how can we guarantee that

they do not come into a conflict between those points while oneis descending and the other one is



36 2.5. Further discussions and extensions for the proposed models

ascending. We will discuss this issue below and show how to solve the problem and how to relax the

hypothesis.

Ascending (descending) in more than one step:

We can take into account that it may take two or more steps to ascend (descend) a flight level,

by doing what follows:

re-define the variablesφfi,h asφfi,h = 1 if aircraft f traverses pointi at a height between flight

levelsh − 1 andh + 1. And constraints (2.2)-(2.4) could be replaced by some constraints that took

into account some “steps” for changing the altitude level, e.g., let us propose the following set of

constraints so that it takes up to twosegmentsto ascend or descend a level:

Table 2.5: Computational results for the pure 0–1 model 2.1-2.7
Case tlp ts tip tt nc
p01 < 0.01 0 < 0.01 < 0.01 < 0.01

p02 < 0.01 < 0.01 < 0.01 < 0.01 15
p03 < 0.01 < 0.01 < 0.01 < 0.01 1
p04 < 0.01 < 0.01 < 0.01 < 0.01 19
p05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

p06 < 0.01 < 0.01 < 0.01 < 0.01 44
p07 < 0.01 < 0.01 < 0.01 < 0.01 72
p08 < 0.01 < 0.01 < 0.01 < 0.01 166
p09 < 0.01 < 0.01 < 0.01 < 0.01 1
p10 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

p11 < 0.01 < 0.01 < 0.01 < 0.01 38
p12 < 0.01 < 0.01 < 0.01 < 0.01 10
p13 < 0.01 < 0.01 < 0.01 < 0.01 5
p14 < 0.01 < 0.01 < 0.01 < 0.01 54
p15 < 0.01 < 0.01 < 0.01 < 0.01 4
p16 < 0.01 1 1 1 80
p17 < 0.01 1 < 0.01 < 0.01 14
p18 < 0.01 < 0.01 < 0.01 < 0.01 37
p19 < 0.01 < 0.01 < 0.01 < 0.01 16
p20 < 0.01 < 0.01 < 0.01 < 0.01 19
p21 < 0.01 < 0.01 < 0.01 < 0.01 6
p22 < 0.01 < 0.01 1 1 80
p23 2 18 15 18 311
p24 < 0.01 4 3 4 58
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∑

h∈Lf
i

φfi,h 6 2 ∀f ∈ F , i ∈ Wf (2.31)

φfi−1,h 6

1
∑

ℓ=−1

φfi+1,h+ℓ ∀f ∈ F , i ∈ W
′−
f h ∈ Lf

i (2.32)

φfi+1,h 6

1
∑

ℓ=−1

φfi−1,h−ℓ ∀f ∈ F , i ∈ W
′

f h ∈ Lf
i (2.33)

φfi−1,h + φfi+1,h−1 6 φfi,h + φfi,h−1 ∀f ∈ F , i ∈ W
′−
f h ∈ Lf

i (2.34)

φfi−1,h + φfi+1,h+1 6 φfi,h + φfi,h+1 ∀f ∈ F , i ∈ W
′−
f h ∈ Lf

i (2.35)

φfi−1,h + φfi+1,h 6 φfi,h + 1 ∀f ∈ F , i ∈ W
′−
f h ∈ Lf

i (2.36)

Table 2.6: Computational results for the mixed 0-1 model 2.8-2.20
Case zlp zs zip GAPlp(%) GAPs(%) nn tlp ts tip tt nc
m01 442.02 25.00 25.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m02 702.86 44.00 44.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m03 197.56 20.00 20.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m04 486.63 50.00 50.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m05 387.03 31.00 31.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m06 1490.52 58.00 58.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 6
m07 3892.76 258.00 258.00 2080.65 0.00 0 < 0.01 < 0.01 < 0.01 < 0.01 10
m08 1005.62 33.00 33.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m09 1929.84 210.00 210.00 1405.56 0.00 0 < 0.01 < 0.01 < 0.01 < 0.01 14
m10 962.81 56.00 -56.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m11 2502.83 94.00 94.00 3090.24 0.00 0 < 0.01 < 0.01 < 0.01 < 0.01 2
m12 6635.38 544.00 544.00 1132.49 0.00 0 < 0.01 1 < 0.01 < 0.01 56
m13 1601.03 89.00 89.00 3297.22 0.00 0 < 0.01 < 0.01 < 0.01 < 0.01 0
m14 3254.44 437.00 437.00 772.58 0.00 0 < 0.01 < 0.01 < 0.01 < 0.01 22
m15 1375.16 169.00 169.00 - - 0 < 0.01 < 0.01 < 0.01 < 0.01 53
m16 8628.41 1244.65 1241.00 779.14 0.20 4 < 0.01 < 0.01 1 1 133
m17 12670.84 4914.69 4821.00 204.00 1.65 3 < 0.01 1 < 0.01 < 0.01 85
m18 16327.43 8069.55 7578.00 126.69 4.81 141 < 0.01 1 5 5 169
m19 6555.91 1993.00 1993.00 447.78 0.00 0 < 0.01 < 0.01 < 0.01 < 0.01 67
m20 12816.86 7624.00 7259.00 76.33 3.96 117 < 0.01 1 2 3 83
m21 17517.54 3214.14 3213.00 514.68 0.04 0 < 0.01 2 2 3 307
m22 29704.6712036.5311348.00 172.10 5.80 435 < 0.01 5 24 24 677
m23 33618.6118632.8417065.90 104.55 9.41 482 < 0.01 4 30 31 627
m24 14087.53 4059.69 3985.00 308.12 3.63 3 < 0.01 1 1 1 108
m25 24435.3913424.8512601.00 104.32 6.22 173 < 0.01 2 9 9 338
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Where (2.31) allows for a given aircraftf to traverse a given route pointi flying between two

flight levels, and constraints (2.32) - (2.36) are intended to guarantee “soft” level changes.

2.5.2 Rerouting

Here we present an idea for allowing the aircraft choosing alternative routes to avoid conflicts.

First, let the following additional parameters:

Rf , set of possible routes to follow for aircraftf , ∀f ∈ F .

Wf
n , set of ordered route points for aircraftf and routen, ∀f ∈ F ,∀n ∈ Rf .

Wf−
n = Wf

n \ {|Wf
n |} (all the points but the last one)

Wf ′

n = Wf
n \ {1} (all the points but the first one)

Wf ′−
n = Wf

n \ {1, |Wf
n |} (all the points but the first and the last ones)

crfn, cost for using the routen, ∀f ∈ F , n ∈ Rf .

and the following variables:

ρfn, 0-1 variable such that its value is 1 if the aircraftf follows the routen ∈ Rf and, otherwise, it is

zero,∀f ∈ F , ∀n ∈ Rf .

Finally, we propose the following model:

min
∑

f∈F ,n∈Rf ,i∈Wf−
n ,h=z

f
i

cfı · φfi,h +
∑

f∈F ,n∈Rf ,i∈Wf
n ,h∈L

f
i

hfi,h · ν
f
i +

∑

f∈F ,n∈Rf

crfn · ρfn (2.37)
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subject to:
∑

n∈Rf

ρfn = 1 ∀f ∈ F (2.38)

∑

h∈L
f
i

φfi,h = ρfn ∀f ∈ F , n ∈ Rf , i ∈ Wf
n (2.39)

φfi,h 6

V
f

i
∑

ℓ=V
f

i

φfi+1,h+ℓ ∀f ∈ F , n ∈ Rf , i ∈ Wf−
n , h ∈ Lf

i (2.40)

φfi,h 6

V
f

i−1
∑

ℓ=V
f
i−1

φfi−1,h−ℓ ∀f ∈ F , n ∈ Rf , i ∈ Wf ′

n , h ∈ Lf
i (2.41)

φfi,h − φfi+1,h 6 νfi + (1 − ρfn) ∀f ∈ F , n ∈ Rf , i ∈ Wf−
n , h ∈ Lf

i (2.42)

φfi,h + φkj,h 6 1 ∀f ∈ F , k ∈ CFf , (i, j) ∈ CPf,kh ∈ Lf
Wf

∩ Lk
Wk

(2.43)

(2.44)

φfi,h 6 ρfn ∀f ∈ F , n ∈ Rf , i ∈ Wf
n , h ∈ Lf

i (2.45)

φfi,h, ν
f
i , ρ

f
n ∈ {0, 1} ∀f ∈ F , i ∈ Wf , h ∈ Lf

i (2.46)

The third term in the objective function (2.37), allows us tointroduce preferences among

routes.

Constraint (2.38) guarantees that every aircraft follows only one route. Constraint (2.39) is to

ensure that all flights traverse every route point at only oneflight level, for the route selected.

Constraint (2.39) could be replaced by
∑

h∈Lf
i

φfi,h 6 1 ∀f ∈ F , n ∈ Rf , i ∈ Wf
n

(and constraints (2.38) and (2.45) can be removed to avoid using the variablesρfn). Constraints (2.38)

and (2.45) force to select only one route per aircraft. Both of them force variablesφfi,h to be0 when

the route they belong to is not selected. Using both constraints helps tightening the model. Finally,

the integrality condition for variableρfn can be relaxed.

2.5.3 Arriving at a different time

Constraints (2.13)-(2.14) force the aircrafts to arrive at(next to) the assigned arrival time. But

this may no be a requirement in some situations. In order to allow different arrival times, we could

replace constraints (2.13)-(2.14), by the following ones:
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τ f|Wf |
− tf|Wf |

6 ǫ+ λfd ∀f ∈ F (2.47)

tf|Wf |
− τ f|Wf |

6 ǫ+ λfa ∀f ∈ F (2.48)

Where variableλfd ∈ R
+ (λfa ∈ R

+) represent the number of seconds after (before) the arrival

time that aircraftf arrives to pointWf . These variables should be penalized in the objective function

with some weighting factor.ǫ in these constraints is the threshold.

2.5.4 Changing flight level might imply changing speed

As we said above, ascending, descending or maintaining the flight level might imply flying at

a different speed. To take this into account in the models, different lower bounds could be assigned to

τ fi+1 − τ fi as a function of the changes of flight level state. In other words, constraints (2.11)-(2.12)

could be replaced by the following ones:

(φfi+1,h + φfi,h−1 − 1) ·Af
i 6 τ fi+1 − τ fi ∀f ∈ F , i ∈ W−

f h ∈ Lf
i+1, h− 1 ∈ Lf

i (2.49)

(φfi+1,h + φfi,h+1 − 1) ·Df
i 6 τ fi+1 − τ fi ∀f ∈ F , i ∈ W−

f h ∈ Lf
i+1, h+ 1 ∈ Lf

i (2.50)

(φfi+1,h + φfi,h − 1) · Cf
i 6 τ fi+1 − τ fi ∀f ∈ F , i ∈ W−

f h ∈ Lf
i+1, h ∈ Lf

i (2.51)

If the upper bounds were also needed, the following variables and constraints could be added

to allow so:

αf
i , 0-1 variable that takes on value 1 if aircraftf is ascending through segmenti→ (i+ 1).

δfi , 0-1 variable that takes on value 1 if aircraftf is descending through segmenti→ (i+ 1).

ζfi , 0-1 variable that takes on value 1 if aircraftf does not change its flight level through segment

i→ (i+ 1).

∀f ∈ F , i ∈ W−

f .
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(φfi+1,h + φfi,h−1 − 1) 6 αf
i ∀f ∈ F , i ∈ W−

f h ∈ Lf
i+1, h− 1 ∈ Lf

i (2.52)

(φfi+1,h + φfi,h+1 − 1) 6 δfi ∀f ∈ F , i ∈ W−
f h ∈ Lf

i+1, h+ 1 ∈ Lf
i (2.53)

(φfi+1,h + φfi,h − 1) 6 ζfi ∀f ∈ F , i ∈ W−
f h ∈ Lf

i+1, h ∈ Lf
i (2.54)

αf
i + δfi + ζfi = 1 ∀f ∈ F , i ∈ W−

f (2.55)

τ fi+1 − τ fi 6 A
f
i · α

f
i +D

f
i · δfi + C

f
i · ζfi ∀f ∈ F , i ∈ W−

f (2.56)

Where (2.55) is redundant but it is intended to reinforce themodel.

2.6 Conclusions

Two novel tight integer linear optimization models for Conflict Detection and Resolution in a

set of aircraft in the airspace have been proposed. The first one is a pure 0-1 linear model which avoid

conflicts by means of altitude changes, and the second one a mixed 0-1 linear model whose strategy

is based on altitude and speed changes. The very small elapsed time for both models shows that they

can be used in real time, particularly in the medium and long term, and in wide airspace regions.

The approach is quite flexible and can be applied in the futurefreely decided optimal trajec-

tories in the context of ”Free Flight”.

Several extensions for improving the performance of both models can be proposed, particu-

larly the possibility of selecting alternative routes and allowing aircraft climbing or descending to the

next altitude level in more than one step as well as allowing to relate altitude level changes to speed.

It is a subject of future research work.





Chapter 3

Introduction to Stochastic
Programming and Parallel

Computing: State of the art

The remainder of this thesis aims to contribute to the field ofStochastic Programming (SP). Uncer-

tainty is the key ingredient in many decision problems and SPwas created to approach it. However,

SP problems are big sized and hard to solve. Here we present a sequential algorithm and a parallel

one, based onmetaheuristicsapproaches in order to help solving large scale optimization problems

under uncertainty (SP problems).

Basic concepts of Stochastic Programming are introduced, as well as a brief state-of-the-art

description of Stochastic Programming and current algorithms designed to solve stochastic mixed 0-1

multistage problems. Finally, since our approach involvesParallel Computing (PC), we outline a brief

introduction to this field at the end of this chapter.

Chapter 4 presents the Fix-and-Relax Coordination (FRC) version we have implemented for

this thesis and the FRC-J and FRC-PJ algorithms, which allowthe resolution of large scale stochastic

optimization problems by decomposing the original probleminto smaller subproblems and coordi-

nately solving them by keeping the so-called non-anticipativity principle. Since both algorithms are

metaheuristic, optimality is not guaranteed. Finally, Chapter 5 summarizes the results of a broad

computational experience that has been carried out using all these algorithms previously presented,

for a particular problem: Multi-period location-allocation problem under uncertainty.

The remainder of this chapter is organized as follows: Section 3.1 outlines a brief state of

the art on Stochastic Programming. Section 3.2 presents thefundamental concepts of modeling linear

43
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problems under uncertainty. Scenario tree modeling is explained in Section 3.3. Section 3.4 shows the

different ways of representing the Deterministic Equivalent Problem (DEM) and Section 3.5 shows

the concepts of Expected Value of Perfect Information (EVPI) and Value of the Stochastic Solution

(VSS). The main algorithms in Stochastic Linear Programming are presented in Section 3.6. And

Sections 3.7 and 3.8 are devoted to Stochastic Integer Programming and its main known algorithms,

respectively. The Branch-And-Fix (BFC) algorithm is treated separately in Section 3.9 . Finally,

Section 3.11 introduces some basics concepts on Parallel Computing and the libraries that will be

used for implementing the parallel algorithm presented in the next chapter.

3.1 Introduction

Optimization is a very useful mathematical decision aid tool and is widely applied in many dif-

ferent areas. Most traditional optimization models are deterministic. However, uncertainty is present

in many real problems where some parameters cannot be known apriori. Since the 50’s, it is well

known that deterministic optimization is not appropriate for capturing the uncertain behavior present

in most real situations. Very frequently, mainly in problems with a given time horizon to exploit,

some coefficients in the objective function, theright hand side(rhs) vector and the constraint matrix

are not known with certainty when the decisions have to be made, but some information is available.

Financial planning, airline scheduling and production anddistribution planning are just a few exam-

ples of areas in which ignoring uncertainty may lead to worseor even wrong decisions. Several ways

to formalize this uncertainty have been studied leading to different approaches to solve stochastic op-

timization problems. However, it is not until the 1980s thatSP is beeing broadly applied in real-world

applications, with the help of new advances in computer technologies that allowed the solution of big

size models. This increased the interest in SP, yielding newadvances in mathematical theory. New

problem formulations appear almost every year and this variety is one of the strengths of the field.

The need to incorporate uncertainty in mathematical programming models resulted in the field

of SP which, basically, deals with mathematical programs inwhich some parameters are random vari-

ables. Early work of Beale [34] and Dantzig [69] started thisfield in 1955, followed by Charnes and

Cooper in 1959 (see [60]). Their methods had their roots in statistical decision theory (Wald, 1950)

[234], althoug SP focuses on methods of solution and analytical properties instead of constructing

derivatives and updating probabilities.

The Deterministic Equivalent Problem (DEM) explained in Section 3.4 was coined by Wets

[239], and its first solution was due to Benders [35], by usingthe so-called Benders Decomposition
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(BD); see also Birge and Louveaux [45]; Laporte and Louveaux[150], among others. Sen and Sher-

ali in [219] have proposed a decomposition algorithm based on a branch-and-cut approach to solve

two-stagestochastic programs having first-stage pure 0-1 variables and 0-1 mixed-integer recourse

variables, where a modified BD method is developed. Escuderoet al. presented in [92, 93, 95] a

general algorithm to solvetwo-stagestochastic mixed 0-1 problems.

In themulti-stage stochastic integer optimization problem, at each stage a decision has to be

made. So, the decisions for a given stage yielded by the modelcannot anticipate the information not

yet available, i.e., the corresponding variables must takeon the same value under each scenario for a

given group of scenarios. In other words thenon-anticipativity constraints (NAC) must be satisfied

(see Wets [240] and Rockafellar and Wets [211]). NAC are further explained in Section 3.3.2.

Alonso-Ayuso et al. [14, 15] addressedmulti-stage stochastic mixed 0-1 problems where

both binary and continuous variables appear at any stage of the time horizon, and where uncertainty

appears only in the objective function coefficients and the rhs.

Large-scalemulti-stageStochastic mixed 0-1 Problems are in general hard to solve, requiring

large computing resources, and there are few approaches in the literature to solve up to optimality

such problems where both binary and continuous variables, and uncertainty, appear anywhere in

the model. A decomposition methodology (so-namedBranch-and-Fix Coordination (BFC)), was

introduced in Escudero [84] and further developed in Escudero et al. [94, 96, 97, 98, 89]. Moreover,

a parallel computing version of the BFC algorithm has been presented recently in Pagès-Bernaus

et al. [184]. Other decomposition methods have been proposed in Mulvey and Ruszczynski [177];

Vladimirou [233]; Blomval and Lindberg [48]; Blomval [47].The Stochastic Dynamic Programming

(SDP)metaheuristic introduced in Cristobal et al. [68] and Escudero et al. [99] yielded good results.

In Dias et al. [76] several parallelization strategies are proposed aimed at speed up the stochastic

dynamic programming solution.

The decomposition algorithms used to solve these kind of problems ease the job and, more-

over, they can be parallelized allowing the use of greater computer forces. Part of this thesis will

focus on this issue. Few papers have appeared onStochastic Programmingusing parallel program-

ming for stochastic continuous and mixed 0-1 programming, see Birge et al. [43]; Beraldi et al. [36];

Fragniere et al. [106]; Linderoth et al. [152]; Lucka et al. [154]; Al-Khamis and M’Hallah [6]; and

Pagès-Bernaus et al. [184], among others.

Classical models present as the objective function the expected value of the objective func-

tion over the set of finite scenarios, i.e. the so called risk neutral (RN) approach. However, RN
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solutions have the inconvenience of ignoring the variability of such objective function value over the

scenarios. So, it does not hedge against the low-probability/high-consequence events (the so-called

black swans). Alternatively, risk measures can be added in order to hedge against the impact of most

unwanted scenarios. Risk measures are currently been takeninto account by considering minimiz-

ing, for example, semi-deviations, excess of probability,conditional value-at-risk, expect shortfall

and others. These approaches are more convenient under the presence of binary variables than the

classical media-variance schemas.

Recently, new risk averse measures have appeared in the literature, e.g., the so-named first-

and second-order Stochastic Dominance Constraint (SDC) strategies for a set of profiles, each one

included by a threshold for a given function value and some types of shortfall related bounds on

reaching it. See [115] and [114] for first-order and second-order SDC integer-linear recourse, respec-

tively, and [89] for the mixture of both strategies in a multiperiod setting. In particular, the Time

Stochastic Dominance (TSD) strategy reduces the risk of wrong solutions in a better way than some

others under some circumstances, according to the computational comparison reported in e.g., [13].

The strategy also aims to minimize the objective function expected value, see also [90].

Other methodologies aimed at improving the decomposition algorithms currently used in SP

solving are Lagrangian Decomposition procedures. Among the most recent approaches, see in [88]

where a Multistage scenario Cluster Lagrangian Decomposition (MCLD) approach for obtaining

strong lower bounds on the solution value of large sized instances of the multistage stochastic mixed

0-1 problem is presented. The MCLD procedure outperforms the traditional Lagrangian Decom-

position scheme based on single scenarios in both the bound’s quality and elapsed time.An scheme

presented in [88], so-named Lagrangean Progressive Hedging Algorithm LPHA, has its roots in the

seminal paper [209] (see also [238]) where PHA is described for the first time. In [91] a specialization

of the so-called Cluster Lagrangean Decomposition for obtaining strong (lower) bounds on multistage

stochastic (minimization) is applied to a facility location problem under uncertainty.

For a deeper understanding of SP the books [191, 45, 142, 164,29] provide valuable re-

sources.The survey papers by Schultz et al. [216], Sen [217]and Ph.D. theses by Stougie [223], van

der Vlerk [229] and Carøe [55] among many others, are good resources on Stochastic Mixed Integer

Programming (SMIP).

Internationally, there is a research community interestedspecifically in stochastic optimiza-

tion which information can be found inhttp://www.stoprog.org. This group provides a reposi-

tory of electronic papers with recent results namedStochastic Programming E-Print Series, (URL
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http://edoc.hu-berlin.de/browsing/speps/) and information about international conferences, mainly

the triennial international conferences on SP, the next edition will be the 14th one, June, 2016 in

Buzios, Brazil.

3.2 Stochastic linear modeling

This section deals with the fundamental concepts of modeling mathematical programming

problems under uncertainty. The remainder of this thesis isbased on it.

3.2.1 Deterministic linear models

A deterministic Linear Programming (LP) problem consists of a set of linear constraints and

a linear objective function, such that the problem solutionmust be subject to such linear constraints

and take the optimum value for the objective function. In deterministic LP problems all parameters

are considered certain (this is, a controllable model). Such a deterministic problem has the following

expression:

Z = min c1x1 + c2x2 + . . . cnxn

s. t.a11x1 + a12x2 + . . . a1nxn = b1

a21x1 + a22x2 + . . . a2nxn = b2 (3.1)

...

am1x1 + am2x2 + . . . amnxn = bm

x1, x2, . . . , xn ≥ 0

or, using a matricial notation,

Z =min cTx

s. t. Ax = b (3.2)

x ≥ 0

wherex is then-vector of decision,c is then-vector of objective function coefficients,A is the

m × n matrix of constraints andb is them-dimensional column array of independent terms, and
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all c,A,b are real known data. The set of solutions that satisfy the model constraints, is defined as

X = {x : Ax = b,x ≥ 0}. An optimum valuex∗ is a feasible solution wherecTx ≥ cTx∗ for any

other feasible solutionx ∈ X .

According to the type of variables, linear optimization problems can be classified in:

General Linear Programming (LP) problems, where all decision variables are continuous, this is,

they take values in the space of real numbersR.

Integer Programming (IP) problems, where all decision variables take integer values. They are

known aspure integer linear problemsand they are denoted asIP. Particulary, it is a0–1

problem if all integers take values in{0, 1}.

Mixed Integer Programming (MIP) problems, if there are continuous and integer decision vari-

ables. They are known asmixed integer linear problems, and they will be denoted asMIP.

Particulary, if all integer variables take values in{0, 1} the problem is known asmixed 0–1

problem.

3.2.2 Decisions and stages

Stochastic programsare optimization problems in which some of the model parametersc,A,b

of the model (3.2) are considered uncertain.Recourse programsare those in which some decisions

or recourse actions can be taken after uncertainty is disclosed. The uncertain data in the problem can

be represented by random variables. An accurate probabilistic distribution of the random variables is

assumed known. Problems with these characteristic appear in multiple disciplines, for example, pro-

duction and distribution costs usually depend on oil cost, crop production depends on the uncertain

weather condition, etc.

It is often the case that making decisions is a matter of time.LetT = {1, 2, . . . , T} denote the

set of time periods in the time horizon. Notice that time periods can be grouped in different decision

stages depending on the structure of the problem.

Definition 3.1. A stageof a given time horizon, is a set of consecutive time periods in which the

realization of some uncertain parameters takes place.

The set of decisions is divided into two groups for thetwo-stageproblem:
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Figure 3.1: Traveling salesperson example

• Decisions that must be taken before the experiment takes place (first-stage decisions); the time

period when these decisions are taken is called thefirst stage. They are denoted byx.

• Decisions that must be taken after the experiment takes place (second-stage decisions). They

are denoted byy(ω). Since they depend on the result of the experimentω and the first stage

variables, they can be denotedy(ω,x).

The sequence of events and decisions is thus summarized as:x → ξ(ω) → y(ω,x).

Observe here that the definitions of first and second stages are only related to the moment in

which they are made, before and after the random experiment,and may in fact contain sequences of

decisions and events. For example, in agriculture farms, the first stage corresponds to planting and

occurs during the whole spring. Second-stage decisions consist of sales and purchases, and it can

occur during the summer.

An illustrative example is the following (see Birge and Loveaux, [44]). A traveling salesper-

son receives one item every day. She visits clients hoping tosell the item. She returns home when

a buyer is found or when all clients are visited. Clients buy or do not buy in a random fashion. The

decision is not influenced by the previous days’ decisions. The salesperson wishes to determine the

order in which to visit clients, in such a way as to be at home asearly as possible (seems reasonable).

Time spent involves the traveling time plus some service time at each visited client. To make things

simple, once the sequence of clients to be visited is fixed, itis not changed. Clearly the first stage

consists of fixing the sequence and traveling to the first client. The second stage has variable length

depending on the successive clients buying the item or not. Now, consider the following example.

There are two clients with probability of buying 0.3 and 0.8,respectively and traveling times (includ-

ing service) as in the graph of Figure 3.1 Assume the day starts at 8 a.m. If the sequence is (1, 2),

the first stage goes from 8 to 9:30. The second stage starts at 9:30 and finishes either at 11 a.m. if
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Client 1 buys or 2:30 p.m. otherwise. If the sequence is (2, 1), the first stage goes from 8 to 11:00,

the second stage starts at 11:00 and finishes either at 2:00 p.m. or at 2:30 p.m. Thus, if sequence (2,

1) is chosen, the first stage may sometimes end after the second stage were finished if sequence (1, 2)

where chosen instead (in case Client 1 buys the item).

Traditionally, stochastic problems are classified intotwo-stageandmulti-stageproblems(where

three or more stages are considered). In the remainder of this section these models are extended.

3.2.3 two-stage models

In many cases, two stages are enough to modeling a real problem. At the first stage, deci-

sions that cannot be postponed are made (this is, before knowing the uncertainty parameters actual

value). The second stage begins when new information about the unknown parameters is available, so

decisions are made taking into account the known value of these parameters. Therefore, first stage de-

cisions will be the same for all conceivable scenario, whilesecond stage variables are not anticipated

and they will depend on the realization of the uncertain parameters.

Stochastic linear problems with two stages full recourse were independently introduced by

Dantzig and Beale in 1955, and can be formulated as:

min
x

cTx+ E
[

Q
(

x, ξ(ω)
)]

s.t. Ax = b (3.3)

x ≥ 0

whereQ(x, ξ(ω)) is the optimal value of the second stage problem

min
y

qTy

s.t. Tx+Wy = h (3.4)

y ≥ 0

Here,x andy are vectors of first and second stage decision variables, respectively. The second stage

problem depends on the dataξ := (q,h,T,W), some (eventually all) elements of which can be

random. Therefore it is viewedξ = ξ(ω) as a random vector. The expectation in (3.3) is taken with

respect to the probability distribution ofξ(ω), which is supposed to be known. MatricesT andW

are called thetechnologyandrecoursematrices, respectively. If matrixW is fixed (not random), the
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above two-stage problem is called a problem withfixed recourse, since second stage problem (3.4)

can be viewed as a penalty term for violating the constraintTx = h, hence the namewith recourse.

For anyx andξ the functionQ(x, ξ), although not given explicitly, is a well defined extended real

valued function: it takes the value+∞ if the second stage problem (3.4) feasible set is empty, and

the value−∞ if the second stage problem is unbounded from below.

By the definition of the functionQ(x, ξ), this problem can be written asQ(x, ξ) = Q(h −

Tx), where

Q(χ) := inf{qTy : Wy = χ,y ≥ 0} (3.5)

andχ denotesh− Tx.

Using the duality theory of Linear Programming (LP) the optimal valueQ(χ) of the linear

program in the right hand side of (3.5) is equal tosup{πtχ : Wtπ ≤ q}, unless both systems:

Wy = χ,y ≥ 0 andWtπ ≤ q, are infeasible. Consequently,

Q(x, ξ) := sup
{

πT (h−Tx) : Wtπ ≤ q
}

(3.6)

The feasible setWtπ ≤ q of the dual problem is convex polyhedral. Therefore, for any

realization of random dataξ, the functionQ(·, ξ) is convex piecewise linear, whose properties have

been extensively studied. For more details, see [44], amongothers.

3.2.4 Multistage models

Thetwo-stagemodel is a special case of a more general structure, calledmulti-stagestochas-

tic programming model, in which the decision variables and constraints are divided into groups cor-

responding to stagest = 1, . . . , T . The fundamental issue in such a model isinformation structure:

what is known at staget when decisions associated witht are made.

Let x1, . . . ,xT be the decision vectors corresponding to time periods (stages)1, . . . , T . At

each stage some parameters are revealed, and the following sequence of actions take place:

decision (x1) → observationξ2 = (c2,A21,A22,b2)→ decision (x2) → . . .→ observation

ξT = (cT ,AT,T−1,ATT ,bT )→ decision (xT )
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So, the following LP problem is considered:

min cT1 x1 + cT2 x2 + cT3 x3 + · · ·+ cTTxT (3.7)

s.t. A11x1 = b1

A21x1 +A22x2 = b2

A32x2 +A33x3 = b3

...

AT,T−1xT−1 +ATTxT = bT

x1, x2, x3, . . . xT ≥ 0

It is called amulti-stage stochastic program ifc1,A11 andb1 are known, but some (eventu-

ally all) of cost vectorsc2, . . . , cT , matricesAt,t−1 andAtt, t = 2, . . . , T , and right hand side vectors

b2, . . . ,bT are random parameters.

The objective is to design the decision process in such a way that the expected value of the

total cost is minimized while optimal decisions are allowedto be made atevery staget = 1, . . . , T .

Let ξt denote the data which become known at staget. In the setting of themulti-stage

problem (3.7),ξt is assembled from the components ofct,At,t−1,Att,bt some (all) of which can

be random, andξ1 = (c1,A11,b1) is assumed to be known at the first stage of problem (3.7). Let

us denote byξ[t1,t2] = (ξt1 , . . . , ξt2), for 1 ≤ t1 ≤ t2 ≤ T , the history of the process from staget1

to staget2. In particular,ξ[1,t] represents the information available up to timet. The key idea in the

abovemulti-stageprocess is that every decision vectorxt may depend on the information available at

staget (that isξ[1,t]), but not on the information to be revealed at later stages. This differsmulti-stage

stochastic programs from deterministic multiperiod problems, in which all the information is assumed

to be available at the beginning of the time horizon.

There are several ways to formulate amulti-stage stochastic program in a precise mathe-

matical form. For instance,xt = xt(ξ[1,t]), t = 2, . . . , T , can be viewed as a function ofξ[1,t] =

(ξ1, . . . , ξt), and the minimization in (3.7) is performed over appropriate functional spaces. If the

number of scenarios is finite, this leads to a formulation of the linearmulti-stage stochastic pro-

gram as one large structured (deterministic) LP problem. Itis also useful to connect dynamics of the

multi-stage process starting from the end as follows.

Let us look at the problem from the perspective of the last stage T . At that time the val-

ues of all problem data,ξ[1,T ], are already known, and the values of the earlier decision vectors,
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x1, . . . ,xT−1, have been chosen. Our problem is, therefore, a simple LP problem

min
xT

cTTxT

s.t. AT,T−1xT−1 +ATTxT = bT (3.8)

xT ≥ 0.

The optimal value of this problem depends on the earlier decision vectorxT−1 and dataξT =

(cT ,AT,T−1,ATT ,bT ), and is denoted byQT (xT−1, ξT ). At stageT − 1 it is knownxT−2 and

ξ[1,T−1]. Therefore, let the followingtwo-stagestochastic programming problem

min
xT−1

cTT−1xT−1 +E[QT (xT−1, ξT )|ξ[1,T−1]]

s.t. AT−1,T−2xT−2 +AT−1,T−1xT−1 = bT−1 (3.9)

xT−1 ≥ 0.

The optimal value of the above problem depends onxT−2 and dataξ[1,T−1], and is denoted

QT−1(xT−2, ξ[1,T−1]).

In general, at staget = 2, . . . , T − 1, the problem is:

min
xt

cTt xt +E[Qt+1(xt, ξ[1,t+1])|ξ[1,t]]

s.t. At,t−1xt−1 +At,txt = bt (3.10)

xt ≥ 0.

Its optimal value is denotedQt(xt−1, ξ[1,t]) and is called thecost-to-gofunction. On top of

all these problems is the problem to find the first decisions,x1,

min
x1

cT1 x1 +E[Q2(x1, ξ2)]

s.t. A11x11 = b1 (3.11)

x1 ≥ 0.

Note that all subsequent stagest = 2, . . . , T areabsorbedin the above problem (3.11) into

the functionQ2(x1, ξ2) through the corresponding expected values.
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Thus, we obtain the followingnested formulation:

min
A11x1=b1

cT1 x1 +E
[

min
A21x1+A22x2=b2

cT2 x2

+E
[

· · ·+E[ min
AT,T−1xT−1+ATTxT=bT

cTTxT ]
]

]

, s.t.x1,x2, . . . ,xT ≥ 0.

Observe that the dimensions of this type of problems may become huge, making more difficult

the resolution. In the following section we revise the most relevant techniques to solve this type of

problems.

3.3 Modeling via scenario tree

3.3.1 Scenario tree

Scenario tree modeling is a technique used to model and interpret the uncertainty. The tra-

ditional approach for modeling the uncertainty implies theelection of a probability distribution, the

estimation of its parameters using historical data and finally the development of a stochastic model.

However, this approach may not be appropriate if, for instance, we do not have enough information.

In addition, in many applications, it is necessary and possible to consider information that is not

reflected in historical data.

Definition 3.2. A scenario is a particular realization of the uncertain parameters along the different

stages of the time horizon.

Definition 3.3. A scenario groupfor a given stage is the set of scenarios with the same realization

of the uncertain parameters up to the stage.

In most real problems, despite existing infinite possible realizations of a random variable,

these can be reduced to a finite number ofrepresentativerealizations (or events). Several methodolo-

gies are commonly used. Amongst others, we can cite:

1. Neuronal network (used in Supply Chain, Energy, Environmental models, see [39, 59, 165]).

2. Monte Carlo simulation (used in Financial model, see [141], among others).

3. Cluster analysis, (used in Supply Chains, Energy models,see [123] among others).
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Figure 3.2: Scenario tree

These and others methodologies can help in determining the representative set of events that

will be represented by the set of scenarios in the model, see the works of Dantzig and Glynn [70],

Dempster and Thompson [74] as well as Di Domenica’s PhD Thesis [75], among others.

Many of today approaches for stochastic programming are scenario tree-based approaches

(see [27]), to illustrate this concept consider Figure 3.2:each node represents a point in time where a

decision can be made. Once a decision is made, some contingencies can happen (e.g. , in this example

there are three contingencies for time periodt = 2), and information related to these contingencies is

available at the beginning of the stage (here, time period).This information structure is visualized as a

tree, where each root-to-leaf path represents one specific scenario and corresponds to one realization

of the whole set of the uncertain parameters. Each node in thetree can be associated with a scenario

group, such that two scenarios belong to the same group in a given stage, provided that they have the

same realizations of the uncertain parameters up to the stage. Accordingly to thenon-anticipativity

principle, see e.g. Birge and Louveaux (1997) [44], both scenarios should have the same value for the

related variables with the time index up to the given stage.

Let the following notation related to the scenario tree:

T , set of stages along the time horizon.T − ≡ T \ {|T |}, beingT the last stage in the time horizon.

Ω, set of scenarios.

R, set of scenario groups, so that we have a tree whereR is the set of nodes.
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Rt, set of scenario groups in staget, for t ∈ T (Rt ⊆ R).

Ωr, set of scenarios in groupr, for r ∈ R (Ωr ⊆ Ω).

γ(r), immediate ancestor node of noder, for r ∈ R.

Vr, set of ancestor scenario groups to groupr, including itself, forr ∈ R. Notice that(Vr ⊂ R).

Notice also thatVr can be defined as the set of scenario groups such thatΩr ⊆ Ωr′ .

Vr, set of successor scenario groups to groupr, for r ∈ R. Notice again thatVr can be defined as

the set of scenario groups such thatΩr′ ⊆ Ωr∀r
′ ∈ Vr

wω, likelihood that the modeler associates with scenarioω, P (ξ = ξω) = wω, for ω ∈ Ω, and
∑

ω∈Ω w
ω = 1.

wr, weight factor representing the likelihood associated withscenario groupr, for r ∈ R. Note:

wr =
∑

ω∈Ωr
wω and

∑

r∈Rt
wr = 1∀t ∈ T .

Once the scenario tree is generated, it is necessary taking into account the structure of the

tree to extend the problem model. Alternatively, we can solve the deterministic problem associated to

each scenario:

Zω =min cωxω

s.t. Aωxω = bω (3.12)

xω ≥ 0

In model (3.12), the criterion to select an optimal solutionis not clear. Feasible solutions

can appear for one scenario and not for another. A solution can have a better value in the objective

function for a specific scenario and not for another, etc.

However,scenario treemethodology provides feasible solutions under each scenario, but

without being subordinated to any of them and with the best objective function expected value for all

them.

The most prominent features of a stochasticmulti-stage model with full recourse are:

• Deterministic models for different scenarios differ some from others, in the objective function

coefficients, constraints coefficients and the independentterm.

• The number of variables that relate different stages is not significant.
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• Constraint matrix is a quasi-stair type.

3.3.2 Non-anticipativity principle

The decisions outcomed by the model must satisfy the non-anticipativity principle that guar-

antees the independence of the solutions with respect to theinformation not yet available. The

non-anticipativityprinciple, see Birge and Louveaux [44] and Rockafellar and Wets [210],says that

if two different scenariosω andω
′

are identical until stageτ as to as the disponible information in

that stage, then the decisions in both scenarios must be the same too until stageτ .

For each realization of the uncertain parameters in different stages considered along the time

horizon, and lettingξω = (ξω1 , ξ
ω
2 , . . . , ξ

ω
n ), it has been seen that it can be associated a sequence of

decisionsxω = (xω
1 ,x

ω
2 , . . . ,x

ω
n), for ω ∈ Ω. But these decisions are not independent one to the

other.

Thenon-anticipativityprinciple requires that

xω
t = xω

′

t if ξωτ = ξω
′

τ , ∀τ = 1, . . . , t,

Figure 3.3 represents an example of thenon-anticipativityprinciple with |Ω| = 4 scenarios,

S = 3 decision stages andT = 3 time periods. Node 1 of the scenario tree represents the stage,

or instant of time in which the first decision must be made. In this first stage the information about

uncertain parameters is known with precision,ξ1. This knowledge is expressed asξ1 : ξ11 = ξ21 =

ξ31 = ξ41 . That is, the realizations of the uncertain parameters under each scenario are equivalent in the

first stage. So, decisions must be the same too in the first stage for each scenario. These equalities,

x1 : x1
1 = x2

1 = x3
1 = x4

1 are represented by the discontinued circle that includes each point stage

1. Once the first decision has been made, two perspectives cantake place and the information about

the uncertain parameters is available at the beginning of the second stage. Thenon-anticipativity

means that it can be found only two versions about the realization of stochastic parameters (and so,

the decisionx2). In the figure appears represented the equalitiesx1
2 = x2

2 andx3
2 = x4

2.

3.4 Deterministic Equivalent Model

Optimization techniques for treating the uncertainty, based on scenario analysis that describes

partial or full recourse, constitutes theStochastic Optimization. The scheme of modeling is based on
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Figure 3.3: Non anticipativity principle

thenon-anticipativity principlefor expressing relationships between the stochastic parameter realiza-

tion for a given stage and the corresponding decision. The solutions to be obtained are not determined

to any particular scenario, but they take into account all ofthem.

Definition 3.4. TheDeterministic Equivalent Model (DEM)associated to the full recourse version of

the stochastic model associated to problem (3.2), is definedas:

Z =min
∑

ω∈Ω

wωcωxω

s.t. Aωxω = bω ∀ω ∈ Ω (3.13)

xω ≥ 0 ∀ω ∈ Ω

xω ∈ N ∀ω ∈ Ω,

whereN is the set of solutions that satisfy thenon-anticipativityprinciple.

Thenon-anticipativityconstraints can be represented by different forms. One of them consists

of considering them implicitly into the variables’ definition, it is known ascompact representation.

This representation reduces the size of the model in relation to the number of variables. Another
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way is asplitting variable representation, that can be very amenable depending on the optimizing

algorithm to use.

3.4.1 Compact representation

Let us consider amulti-stage model with two types of variables:

• which only appear in first stage

• which relate two consecutive stages, so-calledtwo-staged linked variables.

For example, the deterministic model with three stages is considered:

min hT
1 x1 + hT

12x12 + hT
2 x2 + hT

23x23 + hT
3 x3

s.t. A1x1 +A1
12x12 = b1

A2
12x12 +A2x2 +A2

23x23 = b2

A3
23x23 +A3x3 = b3

x1, x12, x2, x23, x3 ≥ 0
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Figure 3.5: Compact representation

where variables with subscriptxe only appear in stagee, while variables with two subscriptsxe,e+1

relate to the stagese ande+1. For example, consider the scenario tree represented in Figure 3.4. The

compact representation of the deterministic equivalent model is given by the model,

minhT
1 x1 +hT

12x12+
∑

k(h
k
2)

Txk
2+

∑

k(h
k
23)

Txk
23+

∑

k,l(h
kl
3 )

Txkl
3

s.t.A1x1+A1
12x12 = b1

A2
12x12 +A2x

k
2 +A2

23x
k
23 = bk

2 ∀k

A3
23x

k
23 +A3x

kl
3 = bkl

3 ∀k, l

x1, x12, xk
2 , xk

23, xkl
3 ≥ 0 ∀k, l

In first stage there is only one node in the scenario tree and the same variable is used for all

scenarios, say,x1, in stage 2 there are three nodes and variablex2 is replaced by three variablesxk
2

k = 1, 2, 3. Finally, in stage3 there are 6 nodes and variablex3 is replaced by 6 variablesxkl
3 for

k = 1, 2, 3, l = 1, 2. Linking two-staged variables arex12 andxk
23 for k = 1, 2, 3. Figure 3.5 shows

the matrix structure for the compact representation.

3.4.2 Representation with splitting variables by scenario groups

In the splitting variable representation, the constrains of the non-anticipativityprinciple are

explicitly represented. This allows the decomposition of the model inseparated blocks, which is
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frequently an advantage for the resolution of the problem.

Definition 3.5. An scenario group for a given stage is the scenario set whose realization of the

uncertain parameters is the same until that stage.

To build the splitting variables representation for problem (3.13), we need:

• To create a new variable for each scenario group.

• To include equality constraints among these new variables.
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Figure 3.6: Representation with splitting variables by groups of scenarios

The representation with splitting variables by scenarios groups can be expressed:

min hT
1 x1 + hT

12x12 +
∑

k

(hk
12)

Txk
12 +

∑

k

(hk
2)

Txk
2 +

∑

k

(hk
23)

Txk
23+

∑

k,l

(hkl
23)

Txkl
23 +

∑

k,l

(hkl
3 )

Txkl
3

s. t.

A1x1+A1
12x12 = b1 ∀k

x12 −xk
12 = 0 ∀k

A2
12x

k
12+A2x

k
2+A2

23x
k
23 = bk

2 ∀k

xk
23− xkl

23 = 0 ∀k, l

A3
23x

kl
23+A3x

kl
3 = bkl

3 ∀k, l

x1, x12, xk
12 xk

2 , xk
23, xkl

23, xkl
3 ≥ 0

(3.14)

Figure 3.6 shows the structure of this formulation, corresponding to the first scenario group. Complete

structure is obtained when it is aggregated into two equals blocks.
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3.4.3 Representation with splitting variable by scenarios

This representation is similar to the previous one, but, in this case, new variables for each

scenario are created. Explicitly, this can be represented for the problem:

min
∑

ω∈Ω

pω
[

hT
1 x

ω
1 + hT

12x
ω
12 + hωT

2 xω
2 + hωT

23 vx
ω
23 + hωT

3 xω
3

]

s.t. A1x
ω
1 +A1

12x
ω
12 = bω

1 ∀ω ∈ Ω

A2
12x

ω
12 +A2x

ω
2 +A2

23x
ω
23 = bω

2 ∀ω ∈ Ω

A3
23x

ω
23 +A3x

ω
3 = bω

3 ∀ω ∈ Ω

xω
1 − xω′

1 = 0 ∀ω, ω′ ∈ Ω

xω
12 − xω′

12 = 0 ∀ω, ω′ ∈ Ω

xω
2 − xω′

2 = 0 ∀ω, ω′ ∈ Πr,
r ∈ {2, 3, 4}

xω
23 − xω′

23 = 0 ∀ω, ω′ ∈ Πr,
r ∈ {2, 3, 4}

xω
1 , xω

12, xω
2 , xω

23, xω
3 ≥ 0 ∀ω ∈ Ω

wherepω is the weight (i.e., probability) assigned to scenarioω, r ∈ {2, 3, 4} is the set of scenario

groups related to stage 2, andΠ2 = {1, 2},Π3 = {3, 4},Π4 = {5, 6} are the set of scenarios within

the groups 2,3 and 4, respectively. Figure 3.7 shows the structure of this formulation.

3.5 The value of information in stochastic models

Stochastic programs have the reputation of being computationally difficult to solve. Many

people faced with real-world problems are naturally inclined to solve simpler versions. Frequently

used simpler versions are, for example, to solve the deterministic program obtained by replacing all

random variables by their expected values or to solve several deterministic programs, each corre-

sponding to one particular scenario, and then to combine these different solutions by some heuristic

rule.

A natural question is whether these approaches can sometimes be nearly optimal or whether

they are totally inaccurate. The theoretical answer to thisquestion is given by two concepts, namely,

the expected value of perfect information and the value of the stochastic solution, see [44] as we

presented above.
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Figure 3.7: Splitting variables representation by scenarios
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3.5.1 The Expected Value of Perfect Information

Theexpected value of perfect information(EV PI) measures the maximum amount a deci-

sion maker would be ready to pay in return for expected complete (and accurate) information about

the future. The concept ofEV PI was first developed in the context of decision analysis and can

be found in a classical reference such as Raiffa and Schlaifer in 1961 [201]. In the 2-stage stochas-

tic programming setting, we may define it as follows. Supposethat the uncertainty can be modeled

through a number of scenarios. Letξ be the random variable each of whose realizations correspond

to one of the different scenarios. Define

min z(x, ξω) = cTx+min{qTy|Wy = h−Tx,y ≥ 0} (3.15)

s.t. Ax = b,x ≥ 0,

as the optimization problem associated with one particularscenarioω. Letx(ξω) be optimal

solution of this problem and letz(x(ξω), ξω) be the value of the objective function. So, we are in

position to compute the expected value of the optimal solution, known in the literature as thewait-

and-see (WS)solution where:

WS = Eξ

[

min
x
z(x, ξ)

]

= Eξ

[

z(x(ξ), ξ)
]

. (3.16)

We may now compare the wait-and-see solution to the so-called here-and-nowsolution cor-

responding to the recourse problem(RP)defined earlier in (3.15) and which we now write as:

RP = min
x
Eξz(x, ξ), (3.17)

with an optimal solution,x∗.

The expected value of perfect information is, by definition,the difference between the wait-

and-see and the here-and-now solution, namely,

EV PI = RP −WS. (3.18)

3.5.2 The Value of the Stochastic Solution

For practical purposes, many people would believe that finding the wait-and-see solution or,

equivalently, solving the distribution problem is still too much work (or impossible if perfect informa-

tion is just not available at any price). This is especially difficult because the wait-and-see approach

delivers a set of solutions instead of one solution that would be implementable.
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A natural temptation is to solve a much simpler problem, namely, the one obtained by replac-

ing all random variables by their expected values. This is called theexpected value problem or mean

value problem, which is simply

EV = min
x
z(x, ξ), (3.19)

whereξ = E(ξ) denotes the expectation ofξ. Let us denote byx(ξ) an optimal solution to

(3.19), called theexpected value solution. Anyone aware of some stochastic programming concepts

or realizing that uncertainty is a fact of life would feel at least a little insecure about advising to make

the decisionx(ξ). Indeed, unlessx(ξ) is somehow independent ofξ, there is no reason to believe that

x(ξ) is in any way near to the solution of the recourse problem (3.17).

The value of the stochastic solution is the concept that precisely measures how good or, more

frequently, how bad a decisionx(ξ) is in terms of (3.17). We first define theexpected result of using

the EV solutionto be

EEV = Eξ

[

z(x(ξ), ξ)
]

. (3.20)

The quantity,EEV, measures howx(ξ) performs, allowing second-stage decisions to be cho-

sen optimally as functions ofx(ξ) andξ. The value for the stochastic solution is then defined as

V SS = EEV −RP. (3.21)

A high VSSvalue indicates great advantage using stochastic models inopposition to tradi-

tional models based on averages. A smallVSSvalue indicates similar solutions in stochastic model

and in traditional models.

It is immediate to verify the following inequalities:

0 ≤ EV PI and 0 ≤ V SS.

Under general conditions the following inequalities are also verified:

EV ≤ RP ≤ EEV (3.22)

WS ≤ RP ≤ EEV (3.23)

EV ≤WS (3.24)

EV PI ≤ EEV − EV (3.25)

V SS ≤ EEV − EV (3.26)
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Results of (3.22)–(3.24) are proved in [159], inequality (3.25) is proved in [31] and inequality

(3.26) is proved in [42]. See in [42] some other strong lower and upper bounds on the optimal value

RP.

3.6 Algorithms in Stochastic Linear Programming

3.6.1 L-Shaped method for two-stage problem

The basic idea of the L-Shaped method, introduced by Van Slyke and Wets in 1969 [231],

consist of making an approximation to the non linear term of the objective function. It is well known

that calculating this term implies solving all linear problems corresponding to the second stage; this

is the reason for trying to avoid several evaluations of the recourse function. The proposed method

consists of using that term to build amasterproblem inx and to evaluate the recourse function only

as a subproblem.

It is based in the Benders Decomposition, a classical methodin Mathematical Programming

developed by Benders in 1962, which allows solving linear problems with big dimensions.

This decomposition consists of splitting the model in two linear problems: The Relaxed Mas-

ter Problem (RMP), with a set of general constraints, and, the Auxiliar Problem (AP). RMP provides

a cost coefficient set for AP, and it receives a new constraintset based on those coefficients. This

separation makes easier the dimensional aspect, because atthe end there are smaller problems.

Besides, the application of this decomposition strategy allows a lot of scenarios and stages,

bigger than the allowed dimension in classic optimization of the global compact problem.

Let us consider the following two-stage stochastic problem:

min z = cTx+
∑

ω∈Ω

pωqωTyω

s. a Ax = b (3.27)

Tωx+Wyω = hω ∀ω ∈ Ω

x, yω ≥ 0 ∀ω ∈ Ω

Figure 3.8 shows the matrix structure for this model.
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Figure 3.8: Matrix structure for the two stage compact representation

The resolution of (3.27) is equivalent to the resolution of the master problem (3.28):

min z = cTx+Q(x)

s. a Ax = b (3.28)

x ≥ 0,

with the recourse functionQ(x) defined as:

Q(x) =
∑

ω∈Ω

pωQω(x) =
∑

ω∈Ω

pω minqωTyω

s. a Wyω = hω −Tωx ∀ω ∈ Ω (3.29)

yω ≥ 0 ∀ω ∈ Ω

Forx fixed, the recourse functionQ(x) is decomposable in|Ω| independent problems (see Figure3.9

Qω(x) = min qωTyω

s.a Wyω = hω −Tωx

yω ≥ 0

Using basic duality theory,Qω(x) is equivalent to:
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Figure 3.9: Two stage Benders decomposition

Qω(x) = max σ(hω −Tωx)

s.a σWT = qω

Let us assume this problem has solutionθωi achieved at dual valueσω
i , ∀ω ∈ Ω.

The recourse function trivially satisfies the following constraint:

Qω(x) ≥ σ
ω
i (h

ω −Tωx).

Linearizing around the point of interestx, the next equivalent expression is obtained

Qω(x) ≥ σ
ω
i (h

ω −Tωx) =σ
ω
i (h

ω −Tωx+Tωx−Tωx) =

=σ
ω
i (h

ω −Tωx) + σi(T
ωx−Tωx)

=θωi + σi(T
ωx−Tωx).

Therefore:

Q(x) =
∑

ω∈Ω

pωQω(x) ≥
∑

ω∈Ω

pω(θωi + σi(T
ωx−Tωx)).

This expression is known in the literature as Benders optimality cut.

If Qω(x) is infeasible for someω ∈ Ω, x is not a valid first-stage solution. Applying the

Farkas’ Theorem, a cut can be generated for separatingx. This cut is known as Benders feasibility

cut. One cut can be obtained for each infeasible subproblem.
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The master problem is replaced by a Relaxed Master Problem:

min cTx+ θ

s. t. Ax = b

Dtx ≥ dt ∀t = 1, . . . , r (feasibility cuts)

Etx+ θ ≥ et ∀t = 1, . . . , s (optimality cuts)

x ≥ 0, θ∈ R

This cuts are added at each iteration of the procedure, usinginformation from the Auxiliary second

stage problem.
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Algorithm: Benders decomposition

Step 0. Setr = s = ν = 0.

Step 1. Setν = ν + 1. Solve the linear problem:

min cTx+ θ

s. t. Ax = b

Dtx ≥ dt ∀t = 1, . . . , r

Etx+ θ ≥ et ∀t = 1, . . . , s

x ≥ 0, θ∈ R

and let(xν , θν) denote an optimal solution.

Step 2. Forω = 1, . . . , |Ω|, solve the linear problem

min z′ω = eTυ+ + eTυ−

s.t. Wy + Iυ+ − Iυ− = hω −Tωxν

y ≥ 0, υ+, υ− ≥ 0,

whereeT = (1, . . . , 1),

If z′ω = 0 ∀ ω, then go to Step 3.

If z′ω > 0 for somew, add a feasibility cut:

• let σν the multipliers of the associated simplex.

• DefineDr+1 = (σν)TTω anddr+1 = (σν)Thω.

• Add the so-called feasibility cutDr+1x ≥ dr+1.

• Setr := r + 1 and return to step 1.

Step 3. Forω = 1, . . . , |Ω|, solve the linear problem

Q(xν)ω = min z = qωTy

s.t. Wy = hω −Tωxν

y ≥ 0

Letσν
ω denote the multipliers associated to the optimal solution for problemω.

DefineEs+1 =

|Ω|
∑

ω=1

pω(σν
ω)

TTω andes+1 =

|Ω|
∑

ω=1

pω(σν
ω)

Thω.
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Build the optimality cut:Es+1x+ θ ≥ es+1.

If (xν , θν) verifies the cut: STOP,xν is the optimal solution.

Otherwise, sets := s+ 1, add the cut and go back to Step 1.

⋄♦⋄

In the previous algorithm, only an optimality cut is added ateach iteration. However, the

stochastic problem structure allows to introduce several cuts (one por scenario). Birge (1988) propose

a multiple cuts version for the L-Shaped method, in which onecut for each realization is added.

3.6.2 Lagrangean decomposition

A methodology available for solving problems with high dimensions is the Lagrangean relax-

ation. Geoffrion [112] and Fisher [104] apply this method tosolve integer programming problems.

This technique is based on the dualization of those equations that make more difficult the resolution

of the problem. See also Guignard [120]

Let us consider the following splitting variable formulation for a two-stage stochastic pro-

gram:

min z =
∑

ω∈Ω

pω
(

cTxω + qωTyω
)

s. a Axω = b ∀ω ∈ Ω

Tωxω +Wyω = hω ∀ω ∈ Ω (3.30)

xω − xω+1 = 0 ∀ω ∈ Ω

xω,yω ≥ 0 ∀ω ∈ Ω

The non-anticipativity constraints destroy the block structure of the matrix and do not allows to de-

compose the problem in smaller subproblems. In this case, weconsider aLagrangean Relaxationof

(3.30), obtained by deleting dualization of thenon-anticipativityconstraints results in the following
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model:

min z =
∑

ω∈Ω

pω
(

cTxω + qωTyω
)

+
∑

ω∈Ω

πωT (xω − xω+1)

s. a Axω = b ∀ω ∈ Ω

Tωxω +Wyω = hω ∀ω ∈ Ω (3.31)

xω,yω ≥ 0 ∀ω ∈ Ω

whereπ is the vector of the Lagrange multipliers andω′ ∈ Ωr. Generally, we may not be able to find

a vectorπ such that (3.31) coincides with the optimal of the original mixed integer model. However,

it is known that (3.31) is a lower bound, for which the best solution is obtained by solving

max
π

L(π)

which is namedLagrangian dual.

It is observed that, for fixed values of the dual variables vector π, (3.31) is separable in sub-

problems which can be solved independently. From the solution obtained, the multipliers are updated

and the dual lagrangean is again optimized with the new values. These multipliers are updated with,

e.g., the subgradient method among others (see below).

3.6.3 Obtaining Lagrangean multipliers: Subgradient meth od

Let πi denote the value ofπ at iterationi, so it is obtained iteratively according to the rule:

πωi+1 = πωi + β(xω
i − xω+1

i ). (3.32)

wherevω
i − v

ω′

i−1 is thestepdirection(here the subgradient) andβ is a scalar which represents the

steplength. The most used expression forβ is as follows,

β =
δ(L∗ − Lπi

)

||xω
i − xω+1

i ||2
,

whereLπi
is the optimal solution of the Lagrangean relaxation at iteration i, δ is a scalar which

satisfies the inequality0 < δ ≤ 2 andL∗ is an upper bound for (3.31). Often the succession values

of δ is obtained by fixingδ = 2 at the beginning and if the valueLπi
does not increase after a given

number of iterations, the value ofδ is reduced to the half.
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Algorithm: Lagrangean decomposition

Step 1. Initializei = 0, πi = 0.

Step 2. For the multipliers valueπi, solve the Langrangean Relaxation (RL) and letvi denote the

solution of each problem.

Step 3. If for a tolerance valueǫ ≥ 0, it is verified that:

||xω
i − xω+1

i ||2 ≤ ǫ

stop, the optimal solution for the dual Lagrangean originalmodel is computationally found.

Otherwise, go to Step 4.

Step 4. Seti = i + 1, and update the multipliers vector by using the subgradientmethod and go

back to Step 2.

⋄♦⋄

As an alternative we favor the Dynamically Constrained Cutting Plane scheme for updating

the Lagrange multipliers.

3.6.4 Augmented Lagrangean Decomposition

The Augmented Lagrangean Decomposition (ALD) introduced by [176] and [213] improves

the Lagrangean decomposition in order to force the convergence of the problem by adding an infeasi-

bility penalty term to the objective function. Let us consider the problem (3.30), where the variablex

is split in the variablesxω andxω+1. By dualizing the non-anticipativity constraints the Lagrangean

decomposition is obtained. In order to increase the convergence speed, the following quadratic term

is added
ρ

2

∑

ω∈Ω

∥

∥xω − xω+1
∥

∥

2

to the objective function, whereρ > 0 is a penalty weight. Thus, the Augmented Lagrangean decom-

position (ALD) becomes,

Lρ(π) = min
∑

ω∈Ω

pω
(

cTxω+qωTyω
)

+
∑

ω∈Ω

πωT (xω − xω+1) +
ρ

2

∑

ω∈Ω

∥

∥xω − xω+1
∥

∥

2

s. a Axω = b ∀ω ∈ Ω

Tωxω +Wyω= hω ∀ω ∈ Ω

xω, yω≥ 0 ∀ω ∈ Ω

(3.33)
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Observe that, in contrast to the Lagrangean decomposition,this problem is not completely separable

but, fortunately, it is quasi-separable quadratic.

ALD Algorithm

Step 1. Initializei = 0

Step 2. For the multipliers valueπi, solve the problem (3.33) and let̄xω
i denote the optimal value.

Step 3. If, for given a tolerance valueǫ ≥ 0, it is verified:

||x̄ω
i − ¯

xω+1
i ||2 ≤ ǫ

stop, the optimal computational solution has been found. Otherwise go to Step 4.

Step 4. Update the penalty weightρ, and the multipliers vector by using, e.g., the subgradient

method. Seti = i+ 1 and go back to Step 2.

⋄♦⋄

This algorithm can be applied to solve a stochastic completerecourse problem formulated by splitting

variables in scenario groups as well as in scenarios.

3.7 Stochastic Integer Programming

The general formulation of aStochastic Integer Programming(SIP) problem is basically

equivalent to the linear problem formulation. It is required that some of the variables are integer.

Furthermore, in many real applications some or all of the variables are binary, this is, only take 0-1

value.

Just a few properties of stochastic integer problems are known, which is the reason why there

are not many efficient methods. However, some techniques proposed in SIP to solve specific problems

have been successful. In any case, SIP is very much a field under development.
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Formally, a stochastic integer problem in two stages is expressed as:

min cTx+Eξ[minqωT

yω]

s.t. Ax = b

Tωx+Wyω = hω

x ∈ X , yω ∈ Y

whereX andY may have integrality or binary constraints. Using this definition, the equivalent

deterministic integer problem can be formulated as:

min cTx+Q(x)

s.t. Ax = b

x ∈ X

whereQ(x) represents the expected value at the second stage.

Clearly, if integrality constraints only appear inX , the properties ofQ(x) and the feasible

regionK2 = {x : Q(x) < ∞} are the same as the continuous case. But when there are integrality

constraints in the second stage, these properties are not usually true.

Proposition 3.1. The expected recourse function of a stochastic integer problem, generally, is not

convex and is discontinuous.

The next simple example illustrates this proposition:

Let us consider the problem with only a variablex ≥ 0 in the first stage and an integer

recourse function in the second stage:

Q(x, ξ) = min{2y1 + y2 : y1 ≥ x− ξ,y2 ≥ ξ − x}

Let us suppose thatξ takes the values 1 or 2 with the same probability,1
2 . For ξ = 1, the optimal

solution at the second stage is:

y1 = 0, y2 = ⌈1− x⌉ if x ≤ 1,

y1 = ⌈x− 1⌉, y2 = 0 if x ≥ 1,

where⌈a⌉ denotes the minor integer value greater or equal than a. Then, Q(x, 1) is discountinous in

x = 1 and non convex.
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In the feasible regions case, the convexity property does not apply either. Since in the con-

tinuous case it is defined a feasible regionK2 of second stage for a fixed valueξ asK2 = {x :

existy such thanWy = h(ξ)−T(ξ)x,y ∈ Y}, then the next result applies:

Proposition 3.2. The feasible region of the second stageK2(ξ) = {x : Q(x, ξ) < ∞} is generally

non convex.

Proof

GivenK2 = {x : Q(x) < ∞}, if Q(x, ξ) is no convex, then, in general,K2 is not convex

either. ✷

In some special cases, it is possible to calculate or approximate the functionQ(x) in a reason-

able time. However, these cases are exceptions, and, in fact, one of these cases is the recourse simple

integer case.

There are three levels of difficulty in solving stochastic integer programs of the above form:

• Evaluating the second-stage cost for a fixed first-stage decision and a particular realization of the

uncertain parameters. Note that this involves solving an instance of the second-stage problem

which may be an NP-hard integer program and involve significant computational difficulties.

• Evaluating the expected second-stage cost for a fixed first-stage decision. If the uncertain pa-

rameters have continuous distribution, this involves integrating the value functionQ(x, ·) of

an integer program, and is in general impossible. If the uncertain parameters have a discrete

distribution, this involves solving a (typically huge) number of similar integer programs.

• Optimizing the expected second-stage cost. It is well knownthat the value function of an integer

program is non-convex and often discontinuous. Consequently, the expected second-stage cost

function E[Q(·, ω)] is non-convex inx. Figure 3.10 illustrates the non-convex nature of the

objective functioncTx+E[Q(x, ω)] for a small stochastic integer programming problem with

two first-stage variables, see [1]. The optimization of sucha complex objective function poses

severe difficulties.
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Figure 3.10: Objective function of a small Stochastic Integer problem

3.8 Algorithms in Stochastic Integer Programming

3.8.1 L-Shaped method for integer problems

In this section a general scheme for solving stochastic integer problems is presented. First, let

us remember the two-stage definition problem:

min cTx+ EξQ(x, ξ)

s.t. Ax = b

x ∈ X ,

whereQ(x, ξ) = min{qTy|Wy = h − Tx,y ∈ Y}. In this case,X and/orY have integrality or

binary constraints inx and/ory, respectively.

The deterministic equivalent problem is defined as:

min cTx+Q(x)

s.t. Ax = b

x ∈ X ,

whereQ(x) is the expected value of the second stage. LetX̄ denote the constraints set inX which

does not defined the type of variables at the first stage.
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In a given stage of the algorithm, the following problem is considered:

min cTx+ θ

s.t. Ax = b

Dlx ≥ dl ∀l = 1, . . . , r

Elx+ θ ≥ el ∀l = 1, . . . , s

x ≥ 0, θ ∈ R

This problem is obtained by performing the three following relaxation in the deterministic equivalent

model:

1. Integrality conditions are changed tox ≥ 0

2. The constraintsx ∈ X̄ are replaced byfeasibility cutsand

3. The exact definition ofQ(x) is replaced by a polyhedral representation inθ and the so-called

optimality cuts.

The first stage constraint comprisesAx = b andx ∈ X̄ . Constraints inX̄ are generally relaxed. This

is the case when these constraints are not previously known.Also when they are known but there are

so many that is not realistic to impose all of them at the beginning.

Definition 3.6. A feasibility cut set is valid inx if there is a finite numberr such that

x ∈ {x : Dtx ≥ dt, l = 1, . . . , r}

impliesx ∈ X̄

The L-Shaped and Benders Decomposition changes the exact representation ofQ(x) by a

polyhedral representation. Later the extension to SIP willbe shown .

Definition 3.7. A optimality cuts set is valid inx if there is a finite numbers such that

(x, θ) ∈ {(x, θ) : Elx+ θ ≥ el, l = 1, . . . , s}

implies thatθ = Q(x).

It is assumed that, for a fixedx, Q(x) can be calculated in a finite number of steps.
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Integer L-Shaped algorithm

Step 0. Setr = s = ν = 0, z̄ = ∞. Fix θ value to∞ or to a smaller appropriate bound. Make a list

of pending nodes which contain only one node corresponding to the initial subproblem.

Step 1. Choose a node from the list as current problem, if there is not, stop.

Step 2. Setν = ν + 1. Solve current problem. If there is not a feasible solution,discard the actual

node and go to Step 1. Otherwise, let(xν , θν) denote an optimal solution.

Step 3. Verify if some of the relaxed constraints are violated. If some of them are violated, add a

feasibility cut , setr = r + 1 and go back to Step 2. IfcTxν + θν > z̄, discard the actual

problem and go back to Step 1.

Step 4. Verify whether or not some of the integrality constraints are violated. If it is true, create

two branches, following theBranch and cutprocedure, append new nodes to the set of pending

nodes and go back to Step 1.

Step 5. ObtainQ(xν) andzν = cTxν +Q(xν). If zν < z̄, updatēz = zν .

Step 6. Ifθν ≥ Q(xν), then discard the actual node and go back to Step 1. Otherwise, impose an

optimality cut, sets = s+ 1 and go back to Step 2.

⋄♦⋄

Proposition 3.3. Whenever valid feasibility and optimality cuts set exist for a problem, then the L-

Shaped method with integer variables finds an optimal solution if it exists, and in a finite number of

steps.

Proof Each one of the three relaxations can be recovered in a finite number of steps. In addition,

according to Definition 3.7,Q(x) can be calculated in a finite number of steps, so Step 5 is finitetoo.

✷

The first application of the L-Shaped method for integer variables was proposed by Laporte

and Louveaux, [149] for 0–1 variables in the first and second stages. A complete description can be

found in Carøe and Tind [54]. A stochastic version of thebranch and cutmethod used in the statistic

estimation of the recourse function instead of its exact evaluation can be found in Norkin, Ermoliev

and Ruszczynski [180].
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3.8.2 Integer simple recourse

A two-stage stochastic problem with simple integer recourse can be written as:

min cTx+ Eξ[minq+T

y+ + q−T

y−]

s.t. Ax = b

y+ ≥ ξ −Tx (3.34)

y− ≥ Tx− ξ

x ∈ X ,y+ ∈ Z
m
+ ,y

− ∈ Z
m
+

whereT andq are known and fixed and whereX defines the set of decision variables at the first

stage, which can be continuous or integers and non negative.The expected value functionQ(x) can

be aproximated by a separable sum inm components. This is, definingχ = Tx:

Q(x) =
m
∑

i=1

ψi(χi)

where

ψi(χi) = Eξiψi(χi, ξi)

Generally, it is known that the expected recourse function is non convex and, ifξ has a discrete dis-

tribution, it can be discontinuous. However, there is convexity among values of functionψ evaluated

in non necessarily integers, but separated by an integer distance.

Let x0 denote a point inRn and leti ∈ Z
n. Let us definex1 = x0 + i and for allj ∈ Z

n,

j ≤ i,xλ = x0 + j. Equivalently,

xλ = λx0 + (1− λ)x1

λ =
(i− j)

i

Now, without lost of generality,x is used as an argument of the functionψ (doingTx = Ix = χ). It

is possible to show that

ψ(xλ) ≤ λψ(x0) + (1− λ)ψ(x1)

see Birge and Louveaux [44]. It means that a convex linear piecewise function can be written, with

points separated by an integer distance. This convex function will be called aρ− approx in x if it is

formed joining pointsx± k, k a integer.
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Particular case: χ = Tx binary

If the first stage decisions are integer, it is enough thatT has integer coefficients in order to

ensure thatχ satisfies the integrality condition. By definition ofρ− approx, solving problem (3.34)

is equivalent to solving:

min
{

cTx+

m2
∑

i=1

ρi(χi)|Ax = b, χ = Tx,x ∈ X
}

.

Since this objective function is piecewise linear and convex, the problem can be solved by a decom-

position method such as the L-Shaped method.

3.8.3 Stochastic Branch-and-Bound

The algorithm so-calledStochastic Branch and Boundwas developed by Norkin, Pflug and

Ruszczynski in 1998, [181]. Its application requires the determination of a estimation of the cost

function value. Let a general SIP problem:

min F (x) = E[f(x, ω)]

s.t. x ∈ X

whereX is a finite set of decisions andω represents posible realizations of the random variable. The

Stochastic Branch and Boundapproach consists of:

• Performing a partition of feasible regionX in subsets of minor size and

• estimating lower bounds of the objective functionF (x) inside these subsets.

In each step of the algorithm, a subset with the minor estimated lower bound is chosen for a later

partitioning in minors subsets. In contrast to traditionalBranch and Boundthis method does not

contain a step in which the algorithm ends with an exact solution, but one stop criteria is chosen and

an approximate solution is attained.

Let X p denote the actual subsets in which the original setX has been divided. These subsets

are a partitionP of X . So, the original problem is divided into the subproblems:

min F (x) = E[f(x, ω)]

s.t. x ∈ X p
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and let

F ∗(X p) = min
x∈X p

F (x)

The following hypothesis are considered:

• There is a function lower boundL of the set of subsets ofX such than for allX p ∈ P :

L(X p) ≤ F ∗(X p)

and ifX p is a unitary set then

L(X p) = F ∗(X p)

• There is a sequence{ξ(X p)}l of random estimators ofL(X p) which tends toL(X p) when l

tends to∞, with probability one.

Stochastic Branch and Bound algorithm

Step 0. Setr = 0,Pr = {X} and estimate a lower boundξ0(X).

Step 1. If the stop criteria is satisfied, stop. Otherwise, choose a subset of lower bound:

Y r = argmin{ξp(X
p) : X p ∈ Pr}

and a approximated solutionxr ∈ Yr.

Step 2. If Y r is unitary, setPr+1 = Pr. Otherwise, build a partition of subsetYr:

Pr(Y
r) = {Yr

i : i = 1, . . . , nr}

and from here build a new partition:

Pr+1 = (Pr − Yr) ∪ Pr(Y
r)

Step 3. Setr = r + 1, estimateξp(X p) for all subsetsX p ∈ Pr, go back to Step 1.

⋄♦⋄
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Observe that in the Stochastic Branch and Bound method, the word bounddoes not have the same

meaning as in the deterministic Branch and Bound. In this other method, some branch of the tree

are cut when the lower bound are bigger than the actual upper bound of the optimal value of the cost

function. However, in the stochastic Branch and Bound approach no branch is deleted definitely, but

all branches can be evaluated again in next iterations. A branch can be cut only if it is possible to

obtain deterministic lower and upper bounds.
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3.9 BFC. Definitions and algorithmic framework for pure 0-1 p rob-
lems

TheBranch-and-Fix Coordination (BFC) methodology was introduced by Alonso-Ayuso,

Escudero and Ortuño in 2003 [26]. The instances of the mixed0-1 Deterministic Equivalent Prob-

lem (DEM) can have such large dimensions that the plain usingof a state-of-the-art optimization

engine can make it unaffordable. Alternatively, we can use avariety of schemes, see [85] and ref-

erences therein. The BFC is aimed at solvingmulti-stage linking constraints in a mixed0 − 1

Stochastic Programmingproblem, and provides an algorithmic scheme for solving large-scale prob-

lems.

It is applied to a stochastic model via scenario tree with complete recourse. Let the splitting

variable representation of the deterministic equivalent model (DEM):

min
∑

ω∈Ω

wω(cωxω + aωyω) (3.35)

s.t.Axω +Byω = bω ∀ω ∈ Ω (3.36)

vωt − vω+1
t = 0 ∀ω ∈ Ωr, r ∈ Gt, t ∈ T \ (3.37)

xω ∈ {0, 1}n, ∀ω ∈ Ω. (3.38)

wherev = (x,y), andx andy are, respectively, the vectors of 0–1 and continue variables.

In this representation, it is possible to obtain|Ω| independent problems if thenon-anticipativity

constraints (3.37) are relaxed:
min cωxω + aωyω

s.t.Axω +Byω = bω

xω ∈ {0, 1}n,

So, |Ω| Branch-and-Fix (BF)trees are created, one for each scenario. Instead of obtaining

the optimal solution for each problem independently, BFC isspecially designed to coordinate the

selection of the branching variable and branching node for each scenario-related BF tree, such that

the relaxednon-anticipativity constraints (3.37) are satisfied when fixing the appropriatevariables

to either one or zero. The approach also coordinates and reinforces the scenario-related BF node

pruning, the variable fixing and the objective function bounding of the subproblems attached to the

nodes.
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Twin Node Families (TNF) in the BFC scheme

For the presentation of theBFCapproach, letQω denote theBF tree associated with scenario

ω, Aω be the set of nodes inQω for ω ∈ Ω, I the set of indices of the variables in any vectorxω
t , and

(xωt )i thei-th variable inxω
t , for t ∈ T , i ∈ I, ω ∈ Ω.

Definition 3.8. Two variables, say,(xωt )i and(xω
′

t )i are said to becommonvariables for the scenarios

ω andω′ in scenario groupr, if ω, ω′ ∈ Ωr, r ∈ Rt, for ω 6= ω′, t ∈ T −, i ∈ I. Notice that two

commonvariables have nonzero elements in thenon-anticipativity constraint related to the given

scenario group.

Definition 3.9. Any two nodes, say,a ∈ Aω anda′ ∈ Aω′

are said to betwin nodes with respect

to a given scenario group if the paths from their root nodes toeach of them in their ownBF trees

Qω andQω′

, respectively, either have not yet been branched on / fixed attheir commonvariables

or they have the same 0–1 values for their branched / fixedcommonvariables(xωt )i and(xω
′

t )i, for

ω, ω′ ∈ Ωr, r ∈ Rt, t ∈ T1, i ∈ I.

Definition 3.10. A Twin Node Family (TNF), say,Jf is a set of nodes such that any node is atwin

node to all the other node members in the family, forf ∈ F , whereF is the set of (indexes of) the

families.

Definition 3.11. A candidate TNFis aTNF whose members have not yet branched on / fixed at all

their commonvariables.

Definition 3.12. A TNF integer setis a set ofTNFswhere all variables take integer values, there is

one node per eachBF tree and thenon-anticipativity constraints(xωt )i − (xω
′

t )i = 0 are satisfied,

∀ω, ω′ ∈ Ωr, r ∈ Rt, t ∈ T −, i ∈ I.

Let us consider the scenario tree and theBF trees shown in Figure 3.11, wherexωh denotes a

given variable subscriptedh under scenarioω andxh gives the generic notation for the variable. For

illustrative purposes, let the branching orderingx1, x2, . . . , x6. We can see that the firstcandidate

TNF is J1, since the variables from stage 1 arecommonvariables to all nodes. Additionally,J2 is

a family that has already been branched on the same value of the commonvariablex1. It is also a

candidate TNFsince thecommonvariablex2 has not been branched on (and, suppose that it has not

been fixed either). Similarly,J3 is anothercandidate TNF. However,J4 is not acandidate TNFsince

all thecommonvariables for their node members have been already branchedon. The familyJ4 is

split into the familiesJ5 andJ6 to branch independently on the variablesx3 andx4, since the nodes

10 and 11 aretwin nodes for these variables, while node 12 is not. Finally, note thatJ7 andJ8 are
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alsocandidate TNFs, since the variablex4 is not yet branched and, on the other hand, it is acommon

variable for the node members of those families.
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Figure 3.11: Branch-and-Fix Coordination (BFC) scheme
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Therefore, the aim is to execute|Ω| phases ofbranch and fix, one for each scenario in a

coordinated way. One master problem (MP ) is considered which choose the selection of the variable

to branch and node to branch. And|Ω| subproblems are considered, one for each scenario. Figure 3.11

illustrates the Branch-and-Fix trees.

BFC algorithm

Step 1. Solve|Ω| linear model associated with the scenarios. If the integrality and thenon-anticipativity

conditions are satisfied, then the solution is optimal for the stochastic 0-1 problem, stop. Oth-

erwise, go to Step 2.

Step 2. Storing inMP the fractional values of variables and the solution value ofeach linear prob-

lem. Choose in theMP the node and the variable to branch.

Step 3. Use same branching-and-fix variables in all actives twin nodes, this is, active nodes of dif-

ferent trees to satisfy thenon-anticipativity constraints on thex-variables. Optimize|Ω| sub-

problems in each iteration, one for each active node.

Step 4. Update the solution and the active nodes set, if it is empty, stop, the optimal solution has been

obtained. Otherwise, go to Step 2.

⋄♦⋄

Note that the last previous sequence must be executed if somenon-anticipativity constraint is vio-

lated, although all variables are 0-1.
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3.10 Applications of Stochastic Programming

Due to the fact that many real-life problems have inherent uncertainty, applications for Stochas-

tic Programming (SP) are vast. In this section we simply highlight a few of the applications where

both stochastic linear programming (SLP) and stochastic mixed integer programming (SIP) have seen

significant success and provide references for further reading. Unlike SLP models, most SIP models

started appearing in the literature only in the last few years, due mainly to lack of practical algorithms

to tackle these problems. For instance, Bertsimas [37] presents a variety of SP problems with discrete

decision variables. A lot of practical problems, such as capacity planning and strategic supply chain

planning under uncertainty often involve discrete decision variables. Thus applications for SIP will

continue to grow as more practical solution methods for these problems are derived and implemented.

Next it is discussed applications of SP to finance [52, 65, 148, 175, 105, 116, 174, 113, 122],

telecommunication [4, 46], and more recently [30, 73], transportation [192, 193], Air Traffic Flow

Management [25], electricity power generation [118, 145, 86, 183, 182, 76], facility location [11, 9,

238, 91], and production, supply chain and scheduling [2, 14, 15, 27].

See also several applications in Birge [41], Dantzig and Glynn [71].

3.10.1 Transportation

Many transportation models are commonly formulated as SP models starting from the Fergu-

son and Dantzig [103] model. In particular, dynamic vehicleallocation has been one of the prominent

areas in which SP has been applied. It involves routing a set of vehicles (e.g. trucks, freight cars,

planes) to meet demand along routes and to position them for anticipated future demands (loads).

The objective is to maximize the total expected returns overgiven time horizons. See for example

Powell [192], and [193], Frantzeskakis and Powell [107] andPowell [194] for various SP dynamic

vehicle allocation models. Over the last few years, Powell and Gittoes (1996) [195] and Powell et

al. [196] have developed approximations and an adaptive labeling algorithm that effectively approx-

imate the value function at each time period and yield a form of dynamic approximation. Other SP

models in transportation include the widely studied stochastic vehicle routing problem. For example

Laporte et al. [150] propose the integer L-shaped method forthe capacitated vehicle routing problem

with stochastic demands, Kenyon and Morton [143] study the stochastic vehicle routing with random

travel times, and Laporte et al. [153] propose an exact solution for thea priori optimization of the

probabilistic traveling salesman problem.
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ATFM: Air Traffic Flow Management

Alonso-Ayuso et al. [25] develop an stochastic air traffic Flow Management Model based on

the Bertsimas and Stock deterministic model proposed in [38]. The objective of these models is to find

a flight planning without violating the capacity of the airports and air-sectors with a minimum delay

expected cost. Airport capacities may change depending on weather conditions. On the other hand,

the model requires 0–1 variables that model situations as, for example, a flight is going to take off in a

given period of time or not, and a flight will be cancelled or not, among others. So, the model is a SIP

model. The algorithmic approach is a predecessor of theBranch-and-Fix Coordinationmethodology,

presented in Chapter 6.

3.10.2 Telecommunication

The system traffic, performance and reliability of telecommunications systems planning and

operations naturally involve uncertainties. Therefore, Stochastic Programming naturally renders itself

a viable approach to problems that arise in this field. Sen et al. [218], for example, applied the

Stochastic Programing (SP) planning methodology to an industrial-sized network planning problem

for Sonet-Switched Network (SSN), and demonstrates improved network performance due to the SP

model. This particular problem involves making network design and configuration decisions that

require consideration of random point-to-point demands with high variance forecasts in the network.

The authors used the stochastic decomposition (SD) method to solve the problem.

Another problem in telecommunications system that is amenable to the SP approach is the

server location problem under uncertainty. This type of problems find many real-life applications

in situations where facilities orservershave to be located at some given potential sites in order to

provide some service to potentialclients. In such problems uncertainty appears not only in the client

demands, but also in the client availability and server location costs. For example, Wang et al. in 2003

[236] study the facility location problem for immobile servers with continuous stochastic demands.

They present several models and provide heuristics for their solutions. Riis et al. in 2004 [206] study

a server location problem for the deployment of mobile switching centers in a telecommunications

network and report on the solution of a real large-scale problem instance using the SP approach.
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3.10.3 Electricity Power Generation

Electricity power generation is one of the most common areasof application and source of

developments for SP methods. One of the problems, usually, referred to as the unit commitment,

aims at finding a fuel cost optimal scheduling of startup/shutdown decisions and operation levels

for power generation units over some given time horizon. Carøe [55] and Carøe and Schultz [53]

study a unit commitment problem in the presence of uncertainty in the load profiles and develop a

two-stageSIP model with integer first-stage and mixed-integer recourse. They apply a Lagrangean-

based decomposition algorithm to solve a problem with real data for a German utility company. The

problem has a total of 20.000 integer and 150.000 continuousdecision variables with up to 180.000

constraints.

Other examples include the contributions of Pereira and Pinto [188, 189], where decompo-

sition procedures are used for models of the Brazilian powersystem; Takriti et al. [224] apply the

progressive hedging algorithm to a model of the Michigan power system designed for daily schedul-

ing. They report achieving a convergence to near optimal solutions quickly with potential savings

over a deterministic procedure of almost $150.000 in generation costs for one sample week.

The recent deregulation of the electricity market has also led to the development of new SP

models in this area. For example, Sen et al. [217] develop a SP-based model for power portfolio

optimization called DASH. This model is designed to help decision-makers to coordinate production

decisions with opportunities in the wholesale power markets. They report that the model selects

portfolio positions that perform well on a variety of scenarios generated through statistical modeling

and optimization.

3.10.4 Finance

Finance problems inherently involve uncertainty due to thefuture time nature of financial

returns and are therefore, amenable to the SP approach. The goal of SP is to provide a strategy for

making decisions that hedge against unforseen scenarios and thus avoid potential losses. An excellent

example of SP application to finance is the Russel-Yasuda Kasai Model reported in Cariño et al. in

1994 [51], which won second prize in the 1993 Franz Edelman Award Competition for Management

Science Achievement. In the model decisions are made for a Japanese insurance company on how to

optimally invest in assets to meet an uncertain liability stream over time. The investment returns are

also random and the model includes legal constraints about the use of income to meet liabilities. The
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authors model the problem as amulti-stage SLP problem and report that the model yield $79 million

in its first year of use.

For a list of other successes of application of SP to finance see [67]. Other finance models can

be found in [163, 148]. For more recent works, see [207, 208, 228].

3.10.5 Manufacturing

Manufacturing usually involves complex operations in which randomness cannot be ignored.

The cost of raw materials, production capacity and demand ofproducts are often random. In fact,

uncertainty is inherent in manufacturing operations. In recent years the interest has increased in

applying SP to tackle problems in this area, particularly incapacity-planning and expansion and

strategic supply chain management under uncertainty.

Eppen et al. [82] provide a capacity-planning model at General Motors formulated as a

Stochastic Linear Program aiming to determine the capacityfor various products at a series of plants.

They maximize the expected profit with a downside risk constraint. Ahmed and Garcia [214] study

the dynamic capacity acquisition and assignment problem under uncertainty using the SP approach.

Given a set of resources and tasks, this problem seeks to find aminimum cost schedule of capacity

acquisitions for the resources and the assignment of resources to task over a given planning horizon.

This problem arises, for example, in the integrated planning of locations and capacities of distribution

centers (DCs), and the assignment of customers to the DCs, insupply chain applications. The ran-

domness in the problem appear in the assignment costs and theprocessing requirements for the tasks.

They formulate a SIP model and apply a decomposition based branch-and-bound method (Ahmed et

al. in 2004, [3]) to solve numerous instances of the problem.

Application of SP to strategic supply chain management under uncertainty seems to have

gained interest only in the last few years. Strategic supplychain planning involves the determination

of production topology, plant sizing, product selection, product allocation among plants and vendor

selection for raw materials. The goal is to maximize the expected profit over a given time horizon for

the investment depreciation and operations costs. Uncertainty in strategic supply chain planning may

appear in the product net price, product demand, raw material supply cost and production cost. Some

recent work in this area include that of Escudero et al. [87],MirHassani et al. [168], Ahmed et al.

[2]. In particular, Alonso-Ayuso et al. [26] presents atwo-stageSP approach for the problem, derive

a branch-and-fix coordination (BFC) method and report on the solution of large-scale SIP problem

instances.
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3.10.6 Other Applications

OtherStochastic Programmingapplications include the military (Morton et al. [169], Baker

et al. [32]) and network interdiction (Cormican et al. [66],and Woodruff [242]). See too the book

from Wallace and Ziemba [235] for moreStochastic Programmingapplications.
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3.11 Parallel Computing

This section presents a basic introduction to Parallel Computing and the libraries that are

going to be used for implementing the parallel algorithm presented in the next chapter.

3.11.1 A brief introduction to Parallel Computing

Computing consists of running programs by carrying several(ideally, many) computations

simultaneously, the underlying idea is dividing large problems into smaller ones, which are then

solved concurrently.

The first multiprocessor computers appeared early in the 50sduring the last century, but it

is not until recent years that interest in parallel computing has grown. For many years computer

hardware has been experiencing continuous performance gains. In 1965, Intel co-founder Gordon

Moore made the prediction now calledMoore’s Law, that states: “the number of transistors in a dense

integrated circuit doubles approximately every two years”. However, the physical and mechanical

constraints on individual processor speed have been reached, and manufacturers are turning to another

solution: multiple processors.

Nowadays, parallel computing is mainly based on multi-coreprocessors and clusters. Com-

puting clustering technology emerged as a result of convergence of a number of computing trends

including the availability of low cost microprocessors, high speed networks, and software for high-

performance distributed computing. Computer clusters aretypically much more cost-effective than

single computers of comparable speed or availability. Thisexplains its increasing importance in high

performance computing.

As far as software is concerned, several concurrent programming languages, libraries and

APIs have been created for programming parallel computers.These can generally be classified based

on the assumptions they make about the underlying memory architecture: shared memory (shared

between all processing elements in a single address space) and distributed memory (in which each

processing element has its own local address space). Some authors distinguish between concurrent

(or parallel) computation (when memory is shared among processes), and distributed computation

(when memory is distributed among interconnected independent computers).

In a shared memory environment, variables, objects, and data structures are accessible to all

the processes. This allows inter-processor communicationto be quite faster than the message passing
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paradigm used in memory distributed systems, since such communication can be accomplished by

just writing data into a memory location where another processor can read from. However, this

introduces the problem of guaranteeing the consistency of data that can be accessed by concurrent

processes in an indeterminate order. Moreover, shared memory supercomputers are expensive and do

not scale easily. This is why, as mentioned above, parallel computing is currently mainly based on

memory distributed computer clusters, which are cheaper and easily scalable.

POSIX Threads and OpenMP are two of most widely used shared memory APIs (CUDA

is also growing paradigm that takes advantage of GPUs), whereas Message Passing Interface is the

most widely used message-passing system API (used in distributed memory architectures). MPI

has become a de facto standard for communication among processes that model a parallel program

running on a distributed memory system and remains the dominant model used in high-performance

computing today.

3.11.2 Message Passing Interface

In this thesis the parallel code has been implemented using C++ and the MPI library, since we

understand MPI is the standard in distributed memory programming, and C++ is the best choice when

the goal is getting the best computing times. The Message-passing approach makes the exchange of

data cooperative among processes. Data must both be explicitly sent and received. An advantage

is that any change in the receiver’s memory is made with the receiver’s participation, thus data is

interchanged securely and easily. MPI is a message-passinglibrary specification designed by a group

of researchers from academia and industry to function on a wide variety of parallel computers, it

defines the syntax and semantics of a core of library routines. MPI uses Language Independent

Specifications (LIS) for calls and language bindings, sinceit is intended for use with any programming

language. There are several well-tested and efficient MPI implementations mainly for C, C++ and

Fortran, and it has been used too with Python, Perl, java, Matlab, . . . .

In an MPI environment every process runs independently a copy of the program, and tasks

are allocated to processes by their ranks, i.e. each processis assigned a rank and then an instruction

can be assigned to it by identifying its rank. MPI library functions include point-to-point send/receive

operations, collective communications, combining partial results of computations (gather and reduce

operations), synchronizing nodes (barrier operation) as well as obtaining network-related information

such as the number of processes in the computing session, current processor identity that a process

is mapped to, choosing a graph-like logical process topology, neighboring processes accessible in a
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logical topology, and so on. Communication operations can be synchronous and asynchronous.

MPI-2’s LIS specifies over 500 functions, however, most applications use only a subset of

that standard of no more than 25 functions. In this work we will be concerned with no more than 15

functions. Anyway, the list of indispensable functions, the ones that a programmer cannot do without,

are 6 (see Table 3.1), while the others are just to add flexibility, modularity, efficiency, etc. See Gropp

et al. [119] for more on MPI.

MPI Init Initialize MPI
MPI Comm size Find out how many processes there are running
MPI Comm rank Find out which process I am
MPI Send Send a message
MPI Recv Receive a message
MPI Finalize Finalize the MPI environment

Table 3.1: six MPI functions

3.11.3 Speedup

Ideally, parallelizing a known algorithm and using p processes to run it shouldget the job

donep times faster. Reality, however, is more complex and many forces oppose this ideal situation.

Message passing inevitably introduces some overhead, and most algorithms include steps that cannot

be parallelized, sometimes bottlenecks appear that force some processors to remain idle while waiting

for others to finish their calculi. Hence, the use of several processors is not always as efficient as

desired. To analyze the efficiency in parallelizing an algorithm, let us outline some ideas taken from

the computer science field.

A Turing machine is a simple abstract computational device (due to the mathematician Alan

Turing) devoted to understand and analyze the extent of whatcan be computed on a sequential com-

puter. Additionally, it enables to define the cost of an algorithm (by estimating the number of opera-

tions needed to complete it) precisely and is the basis forcomplexityanalysis. More advanced models

of abstract computing machines have been developed in the field of computer science. Among them,

the Parallel Random-Access Machine (PRAM) comprises a shared central memory that can be ac-

cessed by the different processors orprocessing units(PUs). All PUs execute the same algorithm

synchronously and they may access the same memory areas. As the Turing machine, neither the

number of PUs nor the memory size are bounded, and any PU is allowed to access any memory

location in a time unit. With this baggage, the efficiency of aparallel algorithm can be analyzed.
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Let P be a problem of size n, letts(n) be the time (alternatively, the number of operations)

needed to solve P by the best known sequential algorithm. Nowlet tp(p, n) be the time needed by a

PRAM algorithm usingp PUs to solve P. Thespeedupof such PRAM algorithm for problem P is then

defined ass(p, n) = ts(n)
tp(p,n)

and expresses how many times faster is the parallel algorithm compared

to the sequential one. Theefficiencyis defined ase(p, n) = s(p,n)
p

, and can be seen as the proportion

(from 0 to 1) of the total number of processors that are fully taken advantage of. The speedup and

efficiency are widely used to analyze thegoodnessof a parallel algorithm.

For more on parallel programming, see Casanova et al. [57].



Chapter 4

Metaheuristic algorithms for solving
large-scale multistage stochastic

mixed 0-1 problems

4.1 Introduction. Fix-and-Relax Coordination

The aim of this chapter is to present several frameworks for solving large-scale multistage

mixed 0-1 problems under uncertainty in the coefficients of the objective function, the right-hand-

side vector and the constraints matrix. A scenario tree scheme is used to represent the Deterministic

Equivalent Model of the stochastic mixed 0-1 program with complete recourse. Constraints are mod-

eled by a splitting variable representation via scenarios.

Traditionally, special attention has been given to optimizing the DEM by maximizing the ob-

jective function expected value over the set of finite scenarios, subject to the satisfaction of all the

problem constraints in the defined scenarios. Currently, small and medium-scale mixed 0-1 DEM are

solved by using different types of decomposition approaches. In this chapter, different approaches

based on the Fix-and-Relax (FRC) algorithm, are consideredfor solving large-scale stochastic mixed

0-1 problems. In Section 4.1.1 FRC algorithm is presented. Section 4.3 presents an improved ver-

sion for FRC algorithm, Jumping Fix-and-Relax Coordination algorithm is introduced for obtaining,

hopefully, better results. Finally, Section 4.4 concludeswith a parallel version of FRC-J.

Solving the model (3.9) for a given scenario by plain using ofstate-of-the-art optimization

engines may not require too much computing time for solving small and medium scale problems.

However, given the potential dimensions of the stochastic version of the problem it is unrealistic to

99
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solve the instances with numerous scenarios as typical dimensions of real-life cases. As an alternative,

we propose using a BFC based heuristic approach, so-called Fix-and-Relax Coordination (FRC) that

without, obviously, guaranteeing the optimality of the solution, provides good feasible bounds for the

optimal one.

4.1.1 On the Fix-and-Relax scheme

Let Pr denote the set of (indexes of the) variables with subscriptr (i.e., the variables associ-

ated with scenario groupr).

As stated in [28], the optimization to be carried out at any time stage of the original problem

can be decomposed, by nature, in as many independent models as the number of scenario groups in

that stage. Each independent model will be a two-stage modelwith continuous and 0-1 variables.

The first stage submodel will be included by the variables associated with the related scenario group,

and the second stage submodel will also be included by the variables associated with the successor

scenario groups, such that their nonanticipativity constraints are relaxed. The integrality of the 0-1

variables in setPr will not be relaxed while optimizing the model attached to scenario groupr. The

variables associated with the ancestor scenario groups arealready fixed for the problem to solve at

each scenario groupr. The integrality of the variables associated with the second stage will be re-

laxed. Moreover, theFix-and-Relax Coordination (FRC)approach must satisfy the constraints (3.37)

related to the first stagecommonvariables in the independent model attached to the scenariogroup.

Notice that the two stage model will be solved up optimally atthe so-calledFR levelr.

4.1.2 Fix-and-Relax model

Let us consider the following MIP model

(MIP ) : min
x∈X ,y∈Y

cx+ ay

s.t.xj ∈ {0, 1} ∀j ∈ Pr, r ∈ R,
(4.1)

whereX andY are the polytopes of the 0-1 variables and continuous variables, respectively, that

define the feasible set, andPr ∀r ∈ R is a partition of|R| elements of the set of the variablesP, such

thatP = ∪r∈RPr andPr ∩ Pr′ = ∅, ∀k, k′ ∈ R r 6= r′.
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Problem (4.1) can be approximated by model

(MIPr) : min
x∈X ,y∈Y

cx+ ay

s.t. xj = xj ∀j ∈ P ′
r, r

′ < r,

xj ∈ {0, 1} ∀j ∈ Pr,

xj ∈ [0, 1] ∀j ∈ P ′
r, r < r′,

(4.2)

where the valuesxj for j ∈ P ′
r, r

′ < r in the so-calledFR levelr > 1 are retrieved from the solution

to the related modelsMIPr′ , r′ = 1, . . . , r − 1.

Since only a reduced subset of (non-fixed) 0-1 variables is kept integer atFR levelr, MIPr

can be solved with relative time efficiency. See [100, 11].

4.1.3 Branching strategy

We have chosen thedepth firststrategy, see Wolsey (1998) [241], for theTNF branching

selection and, then, the criterion for branching consists of choosing the candidateTNF following the

smallest deteriorationcriterion (see section 4.1.6 below for the details) among the two sons of the

last branchedTNF. When there is a guarantee that the incumbent solution couldnot be produced by

the successor of both nodes, then abacktrackingto the immediate ancestor node is performed.

4.1.4 Associated models to scenario group r

Here we present the models to deal with while solving a given FR levelr (remind that each

FR level is associated to a particular scenario groupr).

Mixed integer model for scenario groupr (FR level r)
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The model to be solved atFR levelr is as follows,

min
∑

r′∈Vr∪{r}

∑

ω∈Ωr′

wω(cωr′x
ω
r′ + aωr′y

ω
r′)

s.t.Aωxω +Bωyω = bω ∀ω ∈ Ωr

vωr′ = vωr′ ∀r′ ∈ Vr/{r}

vωr − vω+1
r = 0 ∀ω, ω + 1 ∈ Ωr

xωr ∈ {0, 1} ∀ω ∈ Ωr

0 ≤ xωr′ ≤ 1 ∀ω ∈ Ωr′ , r
′ ∈ Vr

yωr′ ≥ 0 ∀ω ∈ Ωr′ , r
′ ∈ Vr ∪ {r}

(4.3)

wherev = (x, y), vωr′ is such thatv = (vωr′ ∀ω ∈ Ωr′, r
′ ∈ R) and the valuesvωr′ ∀r′ ∈ Vr/{r}

are retrieved from the solution to the models (4.3), wherer is replaced byr′, beingr′ an ancestor

scenario group (i.e.,FR level) to groupr. Notice that thenon-anticipativity constraints (3.37) for

scenario groupr arevωr − vω+1
r = 0 ∀ω, ω + 1 ∈ Ωr.

Scenario set models by relaxing thenon-anticipativity constraints

The|Ωr| independent scenario models while relaxing thenon-anticipativity constraints from

scenario groupr are as follows, for each scenarioω ∈ Ωr,

min =
∑

r′∈Vr∪{r}

wω(cωr′x
ω
r′ + aωr′y

ω
r′)

s.t.Aωxω +Bωyω = bω

vωr′ = vωr′ ∀r′ ∈ Vr/{r}

xωr ∈ {0, 1}

0 ≤ xωr′ ≤ 1 ∀r′ ∈ Vr : ω ∈ Ωr′

yωr′ ≥ 0 ∀r′ ∈ Vr ∪ {r} : ω ∈ Ωr′

(4.4)

On the LP optimal solution for TNF integer sets

The splitting variable representation for solving the model attached to a given TNF integer set
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for scenario groupr can be expressed as follows,

min
∑

r′∈Vr

∑

ω∈Ωr′

wωcωr′x
ω
r′ +

∑

r′∈Vr∪{r}

∑

ω∈Ωr′

wωaωr′y
ω
r′

s.t.Aωxω +Bωyω = bω ∀ω ∈ Ωr

vωr′ = vωr′ ∀r′ ∈ Vr

yωr − yω+1
r = 0 ∀ω, ω + 1 ∈ Ωr

0 ≤ xωr′ ≤ 1 ∀ω ∈ Ωr′ , r
′ ∈ Vr

yωr′ ≥ 0 ∀ω ∈ Ωr′ , r
′ ∈ Vr ∪ {r}

(4.5)

4.1.5 Two-stage BFC algorithm

The following procedure is executed for each scenario groupr to solve the model (4.3), for

r ∈ Rt, t ∈ T . Notice that the problem to solve at eachFRC iteration, see below, is atwo-stage

problem with continuous and 0-1 variables in the first stage and continuous variables in the second

stage. See [84] for more details.

Step 1: Solve the|Ωr| MIP submodels (4.4) in order to analyze theTNFthat comprises the root nodes

in theBF treesQω ∀ω ∈ Ωr associated withFR levelr. If the non-anticipativity constraints

(3.37) are satisfied then stop, the optimal solution forFR levelr mixed 0-1 model has been

obtained. Otherwise,

Step 2: Selection of the branching variable. We will see later different possible strategies at this step,

according to thelargest small deteriorationcriterion. See parameterµ in section 4.1.6.

Step 3: Selection of theTNFby branching on the chosen 0-1 variable, according to thesmallest dete-

rioration criterion. Bounding the just createdTNF by solving the appropriate scenario related

models (4.4). If the bounding value is not better (in this case, smaller) than the incumbent

solution value, say,ZMIP then theTNF is pruned and goto Step 6.

Step 4: If the solution that has been obtained in Step 3 satisfies thenon-anticipativity constraints

(3.37) for thex commonvariables atFR levelr (i.e., theTNFsbelong to an integer set), any of

the two following situations has happened:

(a) Thenon-anticipativity constraints (3.37) for they commonvariables atFR levelr have

also been satisfied and, then, a new solution has been found for the mixed 0-1 model

(4.3) attached toFR levelr. The incumbent solution valueZMIP can be updated and,

additionally, the updating of the active sets at the trees BFQω ∀ω ∈ Ω can also be

performed. In any case, the TNF is pruned. Goto Step 6.
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(b) Thenon-anticipativity constraints (3.37) for they commonvariables have not been sat-

isfied. Goto Step 5.

Otherwise, goto Step 2.

Step 5: Optimize the LP model that results from fixing thex variables related toFR levelr in model

(4.3) to the values given in the TNFs whose associated model has been optimized in Step 3; see

model (4.5), whereZTNF
LP denotes the solution value. IfZTNF

LP < ZMIP , then the updating of

the active node sets andZMIP is performed. Prune the TNF and continue to Step 6.

Step 6: If the sets of active nodes are empty, then stop since the optimality of theincumbentsolution

for FR levelr model has been proved, if any. Otherwise, goto Step 2.

4.1.6 FRC algorithm implementation

TheFRCalgorithm may have different implementations. Here we present the implementation

that we are using in our computational experience. For the presentation of the pseudocode of theFRC

procedure, let the additional notation:

xri, ith 0-1 variable whose index is in setPr.

xωri, value of theith 0-1 variable obtained as the solution of the scenario related model (4.4), for

r ∈ R, ω ∈ Ωr.

ZMIPr , solution value of theMIPr mixed integer model defined in (4.3) forFR levelr.

ZFRC
MIP , solution value of the original problem given by the proposedapproach.

Let us introduce the elements that we use for selecting the variable (following thelargest

small deteriorationcriterion) and the two descendantTNF from a given one (following thesmallest

deteriorationcriterion), whereµri is the selection parameter for theith 0-1 variables to branch jointly

in the scenario BF trees in the problem 4.3 for scenario groupr.

µri = min
{

∑

ω∈Ωr

xωri, |Ωr| −
∑

ω∈Ωr

xωri

}

∀i ∈ Pr.

Additionally, h<i> will denote theith variable in setPr in a non-increasing order of the
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µ-parameter. Let the branching parameterλri be such that

λri =







0, if
∑

ω∈Ωr

xωri ≤ |Ωr| −
∑

ω∈Ωr

xωri

1, otherwise.
∀i ∈ Pr.

ProcedureFRC

ZFRC
MIP := 0, t := 1

While t ≤ |T | do:

For r ∈ Rt, do:

Build FR levelmodelMIPr (4.3), where the continuous and 0-1 variables for the an-

cestorFR levelsare fixed, the 0-1 variables for the model associated with scenario groupr are

restricted to be 0-1 valued, the integrality constraint is relaxed for the 0-1 variables of the suc-

cessor scenario groups, and the nonanticipativity constraints for the successor scenario groups

are also relaxed.

ObtainZMIPr by executing the procedureBFC2

If ZMIPr = +∞ then stop

If t = |T | thenZFRC
MIP := ZFRC

MIP + ZMIPr

Endfor

t := t+ 1

Endwhile

ProcedureBFC2 for FR levelr

Step 1: Initializei := 0 andZMIPr := +∞.

Step 2: Solve the LP relaxations of the|Ω| models (4.4). It can be done in parallel. If the variables

from setPr have 0-1 valuesxωri ∀ω ∈ Ω and the constraints (3.37) are satisfied, then update the

solution valueZMIPr and the related solution and return to the main program sincethe optimal

solution forFR levelr has been obtained.
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Step 3: Updatei := i+ 1.

Step 4: Seth<i> = argmaxj∈Pr

{

µrj,
}

, such that variablej has not been previously branched on,

nor fixed at in the current branching path.

Branchxrh<i>
:= λrh<i>

, for all scenario in scenario groupr.

Step 5: Solve the LP problemsLPω
r ∀ω ∈ Ωr and computeZLPr. It can be done in parallel.

If ZLPr ≥ ZMIPr then goto Step 7.

If there is any 0-1 variable in setPr that either takes continuous values or it takes different

valuesxωri for some of the scenario models (4.4) in groupr then goto Step 3.

If all the y variables in setPr take the same value for all scenario model (4.4) in groupr, then

updateZMIPr := ZLPr, and goto Step 7.

Step 6: Solve LP model (4.5) for satisfying the constraints (3.37) for thecommony variables in given

FR levelr. Notice that the solution value is denoted byZTNF
LP .

UpdateZMIPr = min{ZTNF
LP , ZMIPr}.

If i < |Pr| then goto Step 3.

Step 7: Prune the current branch.

If xrh<i>
= λrh<i>

, then goto Step 10.

Step 8: Updatei := i− 1.

If i = 0 then save the solution valueZMIPr and the related solution, if any, and return.

Step 9: Ifxrh<i>
= 1− λrh<i>

, then goto Step 8.

Step 10: Branchxrh<i>
:= 1− λrh<i>

, for all scenarios in groupr.

Goto Step 5.

4.2 Break stage scenario clustering

The relaxation of thenon-anticipativityconstraints (3.37) in the model (3.35) results in a set

of |Ω| independent mixed 0–1 models. This way the original problemis decomposed into smaller

independent subproblems easier to solve separately, but they may be more subproblems than needed.

There are other ways to divide the problem in subproblems andone of them is scenario clustering.

Let us the following definition:
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Definition 4.1. A scenario clusteris a set of scenarios where thenon-anticipativity constraints are

implicitly defined in the model.

A scenario-cluster partitioning allows a combination of compact and splitting variable repre-

sentations in the different stages of the problem, keeping thenon-anticipativityconstraints implicitly

defined in the compact representation for each cluster, while those relating different cluster’s variables

are explicitly represented in the splitting variable representation.

It is clear that the relaxation of the constraints (3.37) is not required for all pairs of scenarios

in order to obtain computational efficiency. By consideringscenarioclustering the quality of the

relaxation’s solution is reinforced. Moreover, some efficiency in finding the solution can be lost, as

we will see later.

By scenarioclusteringthe original problem is decomposed in less (though bigger) subprob-

lems, corresponding the extreme cases to the complete scenario partitioning (where each cluster is

comprised by just a single scenario) and the original DEM problem with only one cluster containing

all scenarios. Finding which scenario clustering is the best option is an open problem and pretty much

instance dependent.

Although the criterion for scenario clustering is instance-dependent, we will favor the ap-

proach that shows higher scenario clustering for greater number of scenario groups in common,

this way there are morenon-anticipativity constraints to be implicitly satisfied, see Escudero et al.

[97, 98, 96]. That is why we choose thebreak stage scenario cluster decompositionmethodology for

partitioning the scenario setΩ with respect to a given fixed stage, called break stage, by therelaxation

of thenon-anticipativity constraints up to that stage. The concept of break stage thatwas introduced

in [97], see also [90].

Let Ωc denote the set of scenarios that belong to clusterc, such thatΩc ∩ Ωc′ = ∅, c, c′ ∈

C : c 6= c′ andΩ = ∪c∈CΩ
c, and letCr be the set of clusters associated to scenario groupr, i.e.

p ∈ Cr ⇔ Ωr ∩ Ωp 6= ∅.

Definition 4.2. A break staget∗ is a stage such that the set ofscenario clusters C is defined by the

set ofscenario groupsRt∗ as follows:∀c : (c ∈ C ⇔ ∃!r ∈ Rt∗ : Ωr = Ωc).

Model (3.35) is thus decomposed into submodels by relaxing the non-anticipativity con-

straints until the break staget∗. Notice that fort∗ = 0, there is only one cluster that corresponds to

the original DEM. So, no decomposition takes place, all the constraints remain implicit, the FRC al-
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gorithm will run a single level and the optimum solution willbe found. On the opposite, fort∗ = T−1

the original DEM is decomposed into the full scenario tree, each cluster comprises a single scenario

and the FRC algorithm will run T levels. In general, fort∗ = t whent > 0, the original DEM is

decomposed into|Rt∗ | submodels, the FRC algorithm will runt + 1 levels and it is easy to see that

the solution found, sayZt is such thatZt >= Zt−1. Thus, for higher break stages, more efficiency

should be achieved (in terms of time and computational resources needed) thanks to decomposition,

but worse solutions could be found. Both results have to be balanced when choosing thet∗. Several

break stages will be chosen in the computational results presented in Chapter 5 to address this issue.

Given the generalmultilinking compactmodel for the SP problem:

min QE =
∑

r∈R

wr(crxr + aryr)

s.t.
∑

r′∈Vr

(Ar
t(r′)xr′ +Br

t(r′)yr′) = br ∀r ∈ R

xr ∈ {0, 1}, yr ≥ 0 ∀r ∈ R,

(4.6)

wherecr andar are the row vectors of the objective function coefficients,Ar
t andBr

t are the constraint

matrices related to staget, br is the rhs vector, andxr andyr are the vectors of the variables for

scenario groupr, such thatcr = cpt , ar = apt , Ar
t = Ap

t , B
r
t = Bp

t andbr = bpt , for r ∈ Rt, t ∈

T , p ∈ Cr.

The model to consider for each scenario clusterp ∈ C can be expressed:

min
∑

r∈R:p∈Cr

wr(crxr + aryr)

s.t.
∑

r′∈Vr

(Ar
t(r′)xr′ +Br

t(r′)yr′) = br ∀r ∈ R : p ∈ Cr

xr ∈ {0, 1}, yr ≥ 0 ∀r ∈ R : p ∈ Cr

(4.7)

4.2.1 Associated models to FR level r

Here we present the models to deal with while solving a given FR level r. Notice that the

non-anticipativity constraints are explicitly declared until staget∗, while they keep implicit fort >

t∗ since forr ∈ Rt : t > t∗, |Cr| = 1.

Mixed 0-1 model for scenario groupr (FR level r)
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The model to be solved atFR levelr is as follows,

min
∑

r′∈Vr∪{r}

∑

p∈Cr′

wp(cpr′x
p
r′ + apr′y

p
r′)

s.t.Apxp +Bpyp = bp ∀p ∈ Cr

vpr′ = vpr′ ∀p ∈ Cr, r′ ∈ {Vr\{r}}

vpr − vp
′

r = 0 ∀p, p′ ∈ Cr

xpr ∈ {0, 1} ∀p ∈ Cr

0 ≤ xpr′ ≤ 1 ∀p ∈ Cr, r′ ∈ {Vr\{r}}

ypr′ ≥ 0 ∀p ∈ Cr, r′ ∈ Vr ∪ {r}

(4.8)

wherewp is the probability attributed top, i.e. wp =
∑

ω∈Ωp wω, andv = (x, y), vpr are such that

v = (vpr ∀r ∈ R, p ∈ Cr) and the valuesvpr′ ∀r
′ ∈ Vr\{r} are retrieved from the solution to the

models (4.8), wherer is replaced byr′, such thatr′ ∈ Vr\{r}. Notice that thenon-anticipativity

constraints are

vpr − vp
′

r = 0 ∀p, p′ ∈ Cr (4.9)

Cluster models by relaxing thenon-anticipativity constraints

When relaxing thenon-anticipativity constraints from model (4.8) for FR levelr, the result-

ing model can be split into|Cr| independent cluster models. Each of such models can be optimized

separately and concurrently in a different process, and thenonanticipativityprinciple will be satisfied

by applying the BFC algorithm. The resulting model for a cluster, sayp, is as follows,

min
∑

r′∈Vr∪{r}:p∈Cr′

wp(cpr′x
p
r′ + apr′y

p
r′)

s.t.Apxp +Bpyp = bp

vpr′ = vpr′ ∀r′ ∈ Vr\{r}

xpr ∈ {0, 1}

0 ≤ xpr′ ≤ 1 ∀r′ ∈ Vr\{r} : p ∈ Cr′

ypr ≥ 0 ∀r′ ∈ Vr ∪ {r} : p ∈ Cr′

(4.10)

On the LP optimal solution for TNF integer sets
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The splitting variable representation for solving the LP model attached to a given TNF integer

set (see Section 3.9) for FR levelr can be expressed as follows,

min
∑

r′∈Vr\{r}

∑

p∈Cr′

wpcpr′x
p
r′ +

∑

r′∈Vr∪{r}

∑

p∈Cr′

wpapr′y
p
r′

s.t.Apxp +Bpyp = bp ∀p ∈ Cr

vpr′ = vpr′ ∀p ∈ Cr′ , r′ ∈ Vr\{r}

xpr = xpr ∀p ∈ Cr

ypr − yp
′

r = 0 ∀p, p′ ∈ Cr

xpr ∈ {0, 1} ∀p ∈ Cr

0 ≤ xpr ≤ 1 ∀p ∈ Cr, r′ ∈ Vr ∪ {r}

ypr′ ≥ 0 ∀p ∈ Cr′ , r′ ∈ Vr ∪ {r}

(4.11)

4.3 Jumping Fix-and-Relax Coordination (FRC-J)

FRC algorithm drastically reduces the computational effort for solving large-scale multi-stage

mixed 0-1 SP problems. However, there are still very large-scale problems which remain hard to solve

even for this algorithm. This is why we have tried an improvedversion of FRC. In this section we

introduce such algorithm, which we have called Jumping Fix-and-Relax Coordination (FRC-J). The

algorithm is based on some metaheuristics aimed at finding earlier solutions and reducing the number

of visited nodes at each FRC-J level.

First, let us present the main ideas on which FRC-J is based. Our first objective is to find a

feasible solution as fast as possible, i.e, we follow adepth firststrategy. Then we try to reduce the

number of visited nodes at each level and the computing time at each of those nodes.

These are the strategies to follow at each FRC-J level:

1. At each iteration of the Jumping Branch-and-Fix Coordination (BFC-J), when branching, all

those variables not yet branched that follow thenon-anticipativity constraints are fixed to

their values (in some sense, we could say that their corresponding TNFs arejumped downthe

BF tree). Thisjumping downstrategy aims to find fastly a feasible solution to get an incumbent

that will help pruning as many TNFs as possible.

2. Then, when the branching value is selected, instead of ordering variables in a non-increasing

order of theµ-parameter, as in Section 4.1.6, an increasing ordering is done, and thus a variable
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with the least frequent value is selected (i.e thelargest small deteriorationcriterion):

h<i> = argminj∈Pr

{

µri

}

s.t. µri = min
{

∑

p∈Cr

xpri, |C
r| −

∑

p∈Cr

xpri

}

∀i ∈ Pr.

.

The branching parameterλrh<i>
is, as before,

λrh<i>
=











0, if
∑

p∈Cr

xprh<i>
≤ |Cr| −

∑

p∈Cr

xprh<i>

1, otherwise.

3. Once the branching variable has been selected, it is fixed to xrh<i>
= λrh<i>

. Then, there is

no need to find again the MIP solution for those cluster models(4.10) for which the chosen

variable already takes on that value (xrh<i>
= λrh<i>

) at the last TNF. Then, only a few (half,

at most) of the models need to be solved again, saving a lot of computational effort at this point.

Moreover, for the way the branching variable and its value are chosen (h<i> andλri, see item

2), only the minimum number of such models need to be solved again.,

4. Finally, to help reducing drastically the number of visited nodes, when pruning, all those vari-

ables that were beforejumped down, are nowjumped backand the previously branched vari-

able is fixed to the opposite value. Notice that doing thisbackjumpingeludes searching some

branches of theBF treeand this excludes the guarantee of finding the optimal solution at each

FRC level since it can be skipped, though as we will see later,in the testbed we have worked

with in the computational experience, when there is a GAP between FRC-J and FRC, it is very

low.

Besides, we are going to use a stack, sayS, that serves as a collection of elements, with

two principal operations: push, which adds an elementi to the collection (let us symbolize it by

S → push(i)), and pop (S → pop(i)), which removes the last element that was added (this behavior

is usually coined as LIFO (last in, first out)). Since the new branching strategy will imply fixing

all those variables that already follow thenon-anticipativity constraints, and the selected variable

h<i>, this variable will be pushed to the stack. This way, when pruning, the last selected TNF can be

retrieved and the previouslyjumpedTNFs can bejumpedback.

Now let us present the FRC-J procedure:
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ProcedureFRC-J

ZFRC
MIP := 0, t := 1

While t ≤ t∗ do:

For r ∈ Rt, do:

Build FR levelmodelMIPr (4.8), where the continuous and 0-1 variables for the an-

cestorFR levelsare fixed, the 0-1 variables for the model associated with scenario groupr

are restricted to be 0-1 valued, the integrality constraintis relaxed for the 0-1 variables of the

successor scenario groups, and thenon-anticipativity constraints for the successor scenario

groups are also relaxed.

ObtainZMIPr by executing the Subprocedure forFR levelr

If ZMIPr = +∞ then stop

If t = t∗ thenZFRC
MIP := ZFRC

MIP + ZMIPr

Endfor

t := t+ 1

Endwhile

Subprocedurefor FR levelr

Step 1: Initializei := 0, ZMIPr := +∞, the stack of fixed variablesS = ∅.

Step 2: Solve the MIP| ∪r∈Rr Kr| models (4.10). It can be done in parallel. If the constraints(4.9)

are satisfied, then update the solution valueZMIPr and the related solution and return to the

main program.

Step 3: Branch all thek TNFs fixing the variables that follow thenon-anticipativity constraints.

UpdateS → push(i) andi := i+ k + 1.

Step 4: Seth<i> = argminj∈Pr

{

µrj ,
}

, such that variablej has not been previously branched on,

nor fixed at in the current branching path.

Branchxrh<i>
:= λrh<i>

, for all scenario in scenario groupr. Let us remind that there will be

no need to solve again the model for the majority of the scenarios.
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Step 5: Solve the MIP problemsMIP p
r ∀p ∈ Cr and computeZ ′

MIPr =
∑

p∈Cr MIP p
r . It can be

done in parallel.

If Z ′
MIPr ≥ ZMIPr then goto Step 7.

If there is any 0-1 variable in setPr that takes different valuesxpri for some of the scenario

models (4.10) in groupr then goto Step 3.

If all the y variables in setPr take the same value for all scenario model (4.10) in groupr, then

updateZMIPr := Z ′
MIPr, and goto Step 7.

Step 6: Solve LP model (4.11) for satisfying the constraints(4.9) for thecommony variables in given

FR levelr. Notice that the solution value is denoted byZTNF
LP .

UpdateZMIPr = min{ZTNF
LP , ZMIPr}.

Step 7: Prune the current branch.

If xrh<i>
= λrh<i>

, then goto Step 10.

Step 8: UpdateS → pop(i).

If i = 0 then save the solution valueZMIPr and the related solution, if any, and return.

Step 9: Ifxrh<i>
= 1− λrh<i>

, then goto Step 8.

Step 10: Branchxrh<i>
:= 1− λrh<i>

, for all scenarios in groupr.

Goto Step 5.

4.4 Parallel Jumping Fix-and-Relax Coordination (FRC-PJ)

At this section we present the Parallel Jumping Fix-and-Relax Coordination, a parallel ver-

sion of the sequential FRC-J algorithm presented in Section4.3. As we previously mentioned, the

process of solving the submodels (4.10) can be parallelized, allowing an important reduction of the

computing time needed to solve the algorithm.

Several processes will be working concurrently, all of themperforming the same type of tasks

except for one special process, which we will callMaster. The Master will coordinate the whole

execution of the program, deciding which subproblems are tobe solved, which variables to be fixed,

when and how to prune, and so on. Meanwhile, for each scenariocluster to be considered, there is a

process dedicated to solve that cluster’s model.
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4.4.1 Speedup

Let us try to analyze thespeedupof the FRC-PJ algorithm: Firstly, simplifying the most, let

us suppose that all the subproblems were equally hard to solve and it took us the same computing

time to solve each of them, and suppose too that this were all the computational effort that we need

to take into account, while the time needed to complete the instructions of the algorithm and the extra

computing effort added to allow the communications betweenthe different processes were negligible.

Then we could conclude that thespeedupachieved by parallelizing the FRC-J algorithm would be

strictly proportional to the number of processes we used, i.e., if there were e.g.|C| = 10 clusters, it

would take FRC-PJ a tenth of the time needed by FRC-J to solve the main problem. Of course this is

the ideal situation and in the real world we will get lower efficiency.

To dig a bit deeper on the analysis, let us defined:

• tjf and tpjf , respectively, time needed to solve the problem by the FRC-Jand the FRC-PJ

algorithms.

• tnp, total computing time needed to carry out the notparallelizableinstructions when solving

a particular problem by the FRC-J algorithm,

• tp, time added by the extra instructions needed to communicateand coordinate the different

processes by the FRC-PJ.

• Ci ⊂ C, set of clusters that need to be solved again at iterationi

• tpi , computing time needed to solve the subproblem for clusterp ∈ C at iterationi ∈ {1 . . . n},

where we suppose that FRC-J needs to solve the|C| subproblemsn times.

Then,tjf = tnp +
∑

0≤i≤n

∑

p∈Ci t
p
i . If for each cluster, times were similar (tpi ⋍ tp

′

i ∀p ∈

C, i ∈ {1, . . . , n}), then, reminding that for some iterations in FRC-J, at least half of the subproblems

do not need to be solved again, let us approximate:

tjf = tnp +
∑

0≤i≤n

∑

p∈C
t
p
i

2

For FRC-PJ we get the following computing time:

tpjf = tnp + tp +
∑

0≤i≤n maxp∈C

{

tpi

}

.

Parallelization efficiency depends ontnp andtp values, which are usually low, but for small

problems they may be significant. Notice that some of the subproblems may take a lot longer to
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be solved than the other ones (we have observed this behaviorin the testbed we present in the next

chapter), in such cases, it is possible thattpi ≥
∑

p∈Ci t
p
i . So the efficiency will highly depend on the

variability of the computing times needed to solve the different subproblems, the more heterogeneous,

the less efficient will be the parallel algorithm.

Anyway, we have explored two ways to tackle this problem and improve thespeedupof the

parallelization:

• Instead of keeping the fastest processes idle, waiting for the other processes to finish their

calculation for solving their problems, we could try to go onbranching or pruning. However,

the slight improvement this strategy could deliver does notmake up for the difficult, almost

unmanageable, overhead that it would add to the algorithm.

• Another strategy could be settingλrh<i>
= xpri s.t.p = maxk∈C{t

k
i }. So, the slowest processes

would remain idle whenever possible. However, it is not easyto predict which will be the

slowest subproblem to solve a priori. We tackled this problem by using the first iteration time

as a reference, but usually, the first solution is the one thattakes longer to find, and once we

fix one (some) variable(s) and solve again, CPLEX manages to find a solution quite faster.

Moreover, after fixing some variables, thatslowestproblem may become thefastestone. To

summarize, we have tried this strategy with no significantspeedupimprovement, but we believe

it should be explored deeper in a later work, particularly involving larger problems that really

represent a challenge for the FRC-PJ algorithm.

4.4.2 FRC-PJ

Let us introduce the FRC-PJ procedure. By slightly abusing the notation, let us use clusterp to

refer to the process that works with its model, as well as scenario groupr to refer to the corresponding

level of the algorithm. At a given moment, every processp may be working on a different levelr,

let us call itrp. The steps executed by all processes but by the Master are marked with a “ ’ ” (as in

Step 3’), while the steps not marked (as inStep 3) are all executed by the Master except the first step,

which is executed by all processes.

ProcedureFRC-PJ for FR levelr

Step 1: Initialize MPI environment and variables.
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Step 2’: Each process reads the particular instance of its subproblem and initializes variables. Set

rp := 0.

Step 3: Master waits for any message from the other processes.

Step 3’: Each one of the processesp ∈ Cr solves itsMIP p
r problem (4.10) concurrently. When

finished solving sends the solution to the Master.

Step 4: Master receives the message from a process, sayp. If the subproblem was infeasible prune

the current branch, i.e., goto Step 10. Otherwise save the solution found and update the value of

Z ′
MIPr+ = Zp

MIPr. If Z ′
MIPr ≥ ZMIPr then prune, i.e. goto Step 10. If not all the processes

working on levelrp have yet sent their solutions for the current TNF, goto Step 3. Check if

constraints (4.9) are satisfied, and if so, goto Step 8. Otherwise, branch the current TNF:

Step 5: Branch all thek TNFs fixing the variables that follow thenon-anticipativity constraints.

UpdateS → push(i) andi := i+ k + 1.

Step 6: Seth<i> = argminj∈Pr

{

µrj ,
}

, such that variablej has not been previously branched on,

nor fixed at in the current branching path. Branchxrh<i>
:= λrh<i>

,. SetZ ′
MIPr := 0. Send a

message to all clusters in scenario grouprp. Goto Step 3.

Step 7’: All clusters in scenario grouprp shall fix thek + 1 variables mentioned in the previous step

on their respective models, and goto Step 3’.

Step 8: If all they variables in setPr take the same value for all scenario model (4.10) in groupr,

then updateZMIPr := Z ′
MIPr, and goto Step 10.

Step 9: Solve LP model (4.11) for satisfying the constraints(4.9) for thecommony variables in

given FR levelr. Notice that the solution value is denoted byZTNF
LP . UpdateZMIPr =

min{ZTNF
LP , ZMIPr}.

Step 10: Prune the current branch.

If xrh<i>
= λrh<i>

, then goto Step 13.

Step 11: UpdateS → pop(i).

If i = 0 then save the solution valueZMIPr and the related solution, if any, and return.

Step 12: Ifxrh<i>
= 1− λrh<i>

, then goto Step 11.

Step 13: Branchxrh<i>
:= 1− λrh<i>

, send the message to all scenarios in groupr. Goto Step 3.

Step 14’: All clusters in scenario grouprp shall unfix the variablesjumpedin the previous step on

their respective models and fix the variablexrh<i>
:= 1− λrh<i>

, and goto Step 3’.



Chapter 5

Computational Experience

In this chapter, a broad computational experience is presented for assessing the quality of the algo-

rithm frameworks introduced in previous chapter. A set of computational experiments have been run

for large-scale instances of the NP-hard Multistage Stochastic Facility Location Problem (MSFLP)

The remainder of this chapter is organized as follows: The Multistage Stochastic Facility Location

Problem is firstly introduced in Section 5.1. Section 5.2 formally states theMSFLP and introduces

a pure0− 1 DEM associated with it and Section 5.3 reports computational experience, for the algo-

rithms presented, solving a testbed randomly generated.

5.1 Multi-period location-allocation problem under uncer tainty

Discrete facility location decisions can be planned as a setof sequential actions to be im-

plemented at different moments of a given time horizon. Multi-period location problems look for

sequential location/allocation decisions that fulfil certain coverage levels of demand in some places at

each time period. When focusing on essential services, population demand must be serviced from the

first time period. However, some applications have been found in which non-essential facilities have

to be located, and full coverage is only required at the end ofthe planning horizon. This is the case,

for instance, for the location of libraries, nursing homes,kinder gardens, parking lots, supermarkets,

banks, etc. Usually, in these cases budget limitations prevent from imposing full coverage from the

first time period, and minimum coverage levels at the different time periods are imposed instead. Dif-

ferent types of multi-period facility location problems have been studied in the literature by numerous

authors. The interested reader is referred to [10, 12, 155, 136, 170, 137, 109, 243, 171, 230, 237], to

mention just a few.

117
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In this problems, there are several elements that evolve with time, like costs, availability of

resources or demands. Historical data is typically used to forecast their values but the fact is that the

actual behavior of the system is not deterministic and should be addressed as Stochastic Programming

(SP) problems. In theMSFLP, we are given a set of potential facilities (e.g., production plants) and

a set of customers. At each time period, customers demand of service must be satisfied from an open

facility. Thus, at each time period, two types of decisions must be made: the location of the facilities

to open and the allocation of customers to open facilities. Uncertain data include facility set-up and

maintenance costs as well as customers assignment costs. Furthermore, requests for service from

the customers, as well as the minimum number of facilities toopen, and the minimum number of

allocated customers for open facilities are also uncertain. The objective in theMSFLP is to minimize

the overall expected costs (i.e. we consider a risk neutral strategy), which in our case, in addition to

the above mentioned costs, include penalties for unsatisfied service requests.

The deterministic version of theMSFLP is already NP-hard (see [10, 12]). Therefore, the

MSFLP is an interesting and difficult application of Stochastic Integer Programming since, in prac-

tice, very frequently it is an stochastic problem. See [10] for an extensive computational compari-

son of three formulations for the deterministic version of theMSFLP, where the formulation using

impulse-step variables produced the best results, that is why this is the formulation used herein.

5.2 Multistage Stochastic Facility Location Problem

In theMSFLP a set offacilities must be selected (opened) from a given set of potential spots

to give service to a given set ofcustomers. Let I denote the index set of facilities,J the index set of

customers, andT the index set of time periods. Next we describe the modeling hypotheses and the

notation:

• At each periodt ∈ T a decision must be made on the set of facilities to open. Once afacility is

opened it remains open until the end of the time horizon.

• There is alatency, τ , that represents the number of periods required to make available a fa-

cility from the moment it is decided to open it. Throughout wewill distinguish between the

time period when the decision is made to open a facility and the time period when it becomes

available. We assume the latency is the same for all facilities over the time horizon. We further

assume that the decision to open the facilities to be available at the firstτ−1 periods in the time

horizon has been made before the beginning of it. Notice that, otherwise, no facility would be
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available during the firstτ − 1 periods. Additionally, letT ∗ ⊆ T and the subsetR∗ ⊆ R of

scenario groups such thatT ∗ ≡ T \ {T − τ + 1, ..., T} andR∗ ≡ ∪t∈T ∗Rt.

• The index set of facilities that are open at some period before the beginning of the time horizon

is denoted byI− ⊆ I.

For eachi ∈ I−, ti, (−τ ≤ ti ≤ −1) denotes the period (before the beginning of the time

horizon) at which it was decided to open facilityi.

Furthermore, for eachi ∈ I, R+
i denotes the index set of nodes of the scenario tree where it

can be decided to open facilityi. This definition depends on whether or not facilityi is open

before the beginning of the time horizon. That is:

R+
i =

{

R∗ ∀i ∈ I \ I−,

R∗ ∪ {ti, ti + 1, ...,−1} ∀i ∈ I−.

• Customers are progressively assigned to open facilities. At each periodt ∈ T a minimum

number of customers must be assigned to each open facility. Once a customer is assigned it

must continue to be assigned in all subsequent periods, although the customer assignment may

change from period to period. Moreover, at a given period a customer cannot be assigned to

more than one facility. All customers must be assigned at theend of the time horizon.

• Each customer may demand service at any subset of periods. These requests will only be served

if the customer is already assigned. Assigned customers do not necessarily have demand at all

periods after their first assignment.

• There are set-up and maintenance costs for the open facilities. Assigning a customer to a facility

at a given period incurs a cost, even if the customer does not have demand at that period. In

addition, a penalty is paid for not servicing unassigned customers with demand. Forj ∈ J , let

ρj denote the penalty for not servicing the demand of customerj.

• Service requests are assumed to be binary, uncertain and independent. In addition to the de-

mand, other parameters can also be uncertain as the minimum number of customers to be

assigned to a facility at each period, the minimum number of facilities to be opened at each

period, and the set-up, maintenance and assignment costs. In particular, the following data are

assumed to be uncertain:

drj : coefficient that takes the value 1 or 0 depending on whether ornot customerj has demand

at periodt(r) under scenario groupr, ∀j ∈ J , r ∈ R−.

nr : minimum number of customers to be serviced at periodt(r) under scenario groupr, ∀r ∈

R−.
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ℓri : lower bound on the number of customers to be assigned to facility i, if it is available at

periodt(r) under scenario groupr, ∀r ∈ R−.

mr : minimum number of facilities to be opened at periodt(r) under scenario groupr, ∀r ∈

R∗.

fSr

i : set-up cost for facilityi at periodt(r) under scenario groupr, ∀i ∈ I, r ∈ R+
i .

Note: As mentioned before, the facilities opened at periodt(r) will become available at

periodt(r) + τ (thus, at the nodesRt(r)+τ of the scenario tree).

fMr

i : maintenance cost for facilityi at periodt(r) under scenario groupr, ∀i ∈ I, r ∈ R−.

Note that, if it is decided to open a facility at time periodt, then its maintenance costs will

be incurred from periodt+ τ to periodT .

crij : assignment cost of customerj to facility i under scenario groupr, ∀i ∈ I, r ∈ R−.

The objective in theMSFLP is to minimize the expected overall cost throughout the time

horizon. This cost includes facilities set-up and maintenance costs, as well as assignments costs and

penalties for unserved customers.

We have followed the so-calledscenario dependent location decision, where location deci-

sions are gradually made along the planning horizon. This strategy is suitable for situations where

both the location and the assignment decisions are considered operational, and it leads to a multi-stage

stochastic programming model. This allows high flexibilityin the decision process but, on the other

hand, comes at the expenses of a DEM which is difficult to solve.

5.2.1 0-1 DEM

Next, we present a DEM for the scenario-dependent location strategy for theMSFLP that uses

a mixture of impulse and step variables (see [10] and references therein), which is the combination

of variables that gave the best numerical results for the deterministic version of the problem. In

particular, let us the following sets of binary variables:

yri =















1, if by periodt(r) it has been decided

to open facilityi, under scenario groupr

0, otherwise

∀i ∈ I, r ∈ R+
i
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and

xrij =















1, if customerj is assigned to facilityi

at periodt(r), under scenario groupr

0, otherwise

∀i ∈ I, j ∈ J , r ∈ R−.

Remarks:

1. For coherence, we fixytii = 1, ∀i ∈ I− and then,yri = 1, ∀r ∈ R+
i . Additionally, we consider

thatyγ(0)i = 0, ∀i ∈ I \ I−.

2. Recall thatyri = 1 means that facilityi is open by periodt(r), but does not necessarily mean

that it is yet available at that period.
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The compact representation of theMSFLP for the scenario-dependent location strategy is as

follows,

min
∑

i∈I−

fS0

i y0i +
∑

r∈R∗

[

pr
∑

i∈I\I−

fSr

i (yri − y
γ(r)
i ) +

∑

i∈I

(

∑

r′:r=γτ (r′)

pr
′

f
Mr′

i

)

yri

]

+

∑

r∈R−

pr
∑

j∈J

(

∑

i∈I

crijx
r
ij + ρjd

r
j

(

1−
∑

i∈I

xrij
)

)

(5.1)

subject to
∑

i∈I

∑

j∈J

xrij ≥ nr ∀ r ∈ R− (5.2)

∑

j∈J

xrij ≥ ℓri y
γτ (r)
i ∀ i ∈ I, r ∈ R− : γτ (r) ∈ R+

i (5.3)

∑

i∈I

xrij ≤ 1 ∀ j ∈ J , r ∈ R− : t(r) ∈ T \ {T} (5.4)

∑

i∈I

xrij = 1 ∀ j ∈ J , r ∈ RT (5.5)

∑

i∈I

x
γ(r)
ij ≤

∑

i∈I

xrij ∀ j ∈ J , r ∈ R : t(r) > 1 (5.6)

xrij ≤ y
γτ (r)
i ∀j ∈ J , i ∈ I, r ∈ R− : γτ (r) ∈ R+

i (5.7)

xrij = 0 ∀j ∈ J , i ∈ I, r ∈ R− : γτ (r) /∈ R+
i (5.8)

∑

i∈I\I−

(yri − y
γ(r)
i ) ≥ mr ∀r ∈ R∗ \ {0} (5.9)

∑

i∈I\I−

y0i = m0 (5.10)

y
γ(r)
i ≤ yri ∀ i ∈ I \ I−, r ∈ R∗ \ {0} (5.11)

yri = 1 ∀i ∈ I−, r ∈ R+
i (5.12)

xrij ∈ {0, 1} ∀ i ∈ I, j ∈ J , r ∈ R− (5.13)

yri ∈ {0, 1} ∀ i ∈ I \ I−, r ∈ R+
i . (5.14)

The expression (5.1) consists of minimizing the total expected location-allocation cost over

the scenarios, according to a risk neutral strategy. Constraints (5.2) force that a minimum number of

customers is assigned at periodt, for t ∈ T −. Constraints (5.3) guarantee that a minimum number of

customers are assigned to each available facility at each period. Constraints (5.4) ensure that, at each

period, each customer is assigned to one facility at the most, whereas Constraints (5.5) force all cus-

tomers to be assigned at the end of the time horizon. By constraints (5.6), a customer already assigned
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at periodt − 1 will also be assigned at periodt, although the facility to whom it is assigned is not

necessarily the same at both periods. Constraints (5.7) and(5.8) model that, at any period, customers

can be assigned only to available facilities. Constraints (5.9) guarantee that a minimum number of

facilities are opened from a time period to the next one alongthe time horizonT ∗. Constraint (5.10)

sets the number of facilitiesm0 to be opened at periodt = 0. Finally, constraints (5.11) and (5.12)

ensure that if a facility is open at a given periodt, then it remains open at all subsequent periods.

5.3 Computational experience

To illustrate the performance and assess the quality of our algorithms we have run a series of

computational experiments based on . For these experimentswe have implemented the algorithms in

C++, using the MPI libraries for the parallel code. We run allprograms inSolstorm, a cluster placed

in the Norwegian University of Science and Technology (NTNU), in Trondheim, Norway. Solstorm

has 2732 CPUs of different types (132 cores at 1.6GHz Intel, 192 cores at 3.0GHz Intel, 984 cores

at 2.4GHz Opteron, 1536 cores at 2.2GHz Opteron). CPLEX is used as an auxiliary LP/MIP solver,

particularly its version v12.61. In all the experiments a computing time limit of 48h was set. An issue

we have had to deal with is that the computational resources of this cluster are shared and, hence,

the elapsed times vary from one execution to another. Thus, the algorithms have been run twice and

written down the media for each case in the testbed. For each process running FRC-PJ, a single core

has been assigned. Likewise, CPLEX was run on a single core.

5.3.1 Testbeds description

To test the formulations and the algorithm, a series of instances have been used, taken from

the computational experience reported in Albareda-Sambola et al. [11], where stochastic optimization

is used to address a multistage location problem for the firsttime, to the best of our knowledge. For

that work, the computational experiments were conducted ina different type of machine, particularly

a PC Intel Core 2 Duo, 2.60 GHz, 3 Gb RAM, Microsoft Visual Studio C++ compiler v6.0., and

a computing time limit of 24h was set. These instances were randomly generated. In the testbed,

the demands of the customers (drj ) and the number of customers that need to be serviced at each

time period (nr) vary among scenario groups in the same time period, while the remaining uncertain

parameters (facility and distribution costs, and lower limit on the number of assigned customers to

each facility, if open) are generated as deterministic data(i.e., for all scenario groupsr, r′ ∈ Rt then

fSr

i = f
Sr′

i , fMr

i = f
Mr′

i , etc.).
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Four time periods are considered, except for the last three instances, that include five time

periods. The number of customers ranges in{25, 50, 75}, and the number of facilities in{8, 10, 15}

(see Table 5.1). Also, in all cases, the latency is taken to beτ = 1 since, for the considered lengths of

the time horizon, larger latencies would require to make about half of the location decisions a priory

regardless the location strategy.

Facility setup costs (fSr

i ) are uniformly drawn from[200, 400], while allocation costs (crij)

are drawn from[10, 100] and maintenance costs (fMr

i ) are uniformly drawn from[0, 15 |I|
T
]. Penalties

for not serving a customer:ρj = 1
T

∑

t∈T
max
i∈I

cijt. To generate the rest of the data, a tentative number

of open facilities at each time period was first generated, asπt ∈ {1, . . . , ⌊2 · |I|/T ⌋} for t ∈ T . If
∑

t∈T π
t > |I|, the set of values was discarded and regenerated. The minimum number of customers

to be assigned at each time period has been generated asnr =
⌊

(π1 + · · ·+ πt)/(π1 + · · · + πT )
⌋

·

|J |

(Note that, forr with t(r) = T this expression leads tonr = |J |). Minimum number of facilities to

be opened at each time period:mr = 1. Probability of demand: the same probability of demand has

been considered for all customers at all time periods. This probability, q, ranges in{0.1, 0.5, 0.9} and

its value is given in Table 5.1 for all the generated instances.

To build the scenario trees we proceeded as follows. From each node, starting from the root,

the number of successor nodes have been randomly selected from{1, 2, 3}. Then, at the first successor

the customer demandsdrj were randomly generated from a Bernoulli distribution withprobability q

defined above. In the second and third successors (if they exist) a larger and a smaller probability,

respectively, was used. The actual probability of each set of demands is computed assuming that

customers requests follow independent Bernoulli variables with probabilityq and a total weight of1

is proportionally distributed among the successor nodes. For each set of costs three different regular

scenario trees have been generated.

Among the different possible alternatives for the set-up and maintenance facility costs, as well

as the minimum number of facilities to open at each time period, the one where the user considers

their expected values has been selected, computed as follows:

f
St

i =
∑

r∈Rt

prfSr

i ∀i ∈ I, t ∈ T +
i

f
Mt
i =

∑

r∈Rt

prfMr

i ∀i ∈ I, t ∈ T \ {0}

mt = max
r∈Rt

{mr} ∀t ∈ T ∗
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Table 5.1: Testbed. Problem and model dimensions.

Instance |J | |I| |T | q |Ω| |R| n m nel dens (%)
C9-T4 75 15 6 0.9 94 153 171885 196917 1092525 ǫ
C9-T3 75 15 6 0.9 158 250 281505 322533 1785585 ǫ
C9-T2 75 15 6 0.9 153 248 279300 320004 1775610 ǫ
C8-T4 75 15 6 0.5 141 223 250980 287608 1593330 ǫ
C8-T3 75 15 6 0.5 268 429 483915 554541 3076035 ǫ
C8-T2 75 15 6 0.5 117 188 211440 242271 1343520 ǫ
C7-T4 75 15 6 0.1 112 175 196695 225365 1246095 ǫ
C7-T3 75 15 6 0.1 98 158 177525 203384 1127535 ǫ
C7-T2 75 15 6 0.1 120 186 209115 239606 1324065 ǫ
C6-T4 50 10 6 0.9 165 267 134020 163273 851210 ǫ
C6-T3 50 10 6 0.9 213 339 170260 207481 1080890 ǫ
C6-T2 50 10 6 0.9 122 201 100790 122787 641130 ǫ
C5-T4 50 10 6 0.5 95 151 75560 92061 479210 0,01
C5-T3 50 10 6 0.5 147 233 116860 142441 742230 ǫ
C5-T2 50 10 6 0.5 203 319 160160 195161 1015290 ǫ
C4-T4 50 10 6 0.1 292 450 226080 275575 1432280 ǫ
C4-T3 50 10 6 0.1 167 266 133490 162677 847580 ǫ
C4-T2 50 10 6 0.1 184 297 149130 181705 947450 ǫ

As we stated above, the criterion for clustering scenarios in sets is instance dependent, and a

trade-off between the size of model (4.10) and the number of NAC (4.9) is needed. Moreover, it has

to be taken into account that when the number of scenario groups in common for the scenarios in the

same cluster increases, the results tend to improve (see [151]).

5.3.2 Numerical results

Table 5.1 show the dimensions and probabilities of demand ofour medium and large scale

instances included in the Testbed as well as the dimensions of the associated DEMs. The headings

are as follows:xx − yy, name of the instance, wherexx is the case number andyy is the scenario

tree number (see Section 5.3.1 for Testbed trees);|J |, number of customers;|I|, number of facilities;

|T |, number of periods in the time horizon;q, probability of demand;|Ω|, number of scenarios under

consideration;|R|, number of scenario groups;n, number of (0-1) variables;m, number of constrains;

nel, number of nonzero coefficients in the constraint matrix; and dens, constraint matrix density (in

%). An entry ofǫ in thedens column indicates that the density of the instance is below a threshold

value of0.01.

Tables 5.2-5.5 show the main computational results for the instances presented in Table 5.1.
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Let us present them in turn.

Analysis of the dimensions and results of Tables 5.1-5.2

Table 5.2 compares the solution values and elapsed times between CPLEX and FRC. The

headings are as follows:ZLP , solution value of the LP relaxation of the DEM;Z
CPLEX

andZ
FRC

,

solution values (i.e., expected total cost) of the incumbent solutions obtained by CPLEX and our FRC

algorithm for DEM, respectively;TCPLEX andTFRC , elapsed times (secs) to obtain the associated

incumbent solutions;GG, goodness gap between the solution valuesZ
FRC

andZ
CPLEX

, defined

as Z
FRC

−Z
CPLEX

Z
CPLEX (in %); TG, time gap betweenTCPLEX andTFRC , defined asT

CPLEX

TFRC ; GC

andGF , quasi-optimality gaps for the solution values obtained byCPLEX and FRC, defined as
Z

CPLEX
−ZLP

ZLP
(in %) and Z

FRC
−ZLP

ZLP
(in %), respectively;t∗f , break stage used to decompose the

original DEM into clusters for that particular instance to be solved by the FRC;ncf , number of

clusters in which the original DEM has been decomposed for that particular instance to be solved by

the FRC algorithm.

Notice thatGC = 0 would mean that the optimal solution is obtained by CPLEX, andGG =

0 would mean that both approaches being compared in the corresponding table, have obtained the

same solution value. As we have explained above, the break stage t∗f determines the number of

clusters and, for the FRC algorithm (as well as for FRC-J and FRC-PJ,as we will see later), there is

a trade-off between the quality of the solution and the elapsed time. For highert∗f , lower computing

times are needed, but on the other hand worse solutions are found (expressed by higher goodness

gap,GG). This is why we have tried different break stages for each instance, and we have selected

the solutions that we consider give the better trade-off between the quality of the solution and the

computing time. Given the small values ofGG and the highly positive value ofTG for most of the

instances where a CPLEX solution is given, it seems that the FRC option is the most reasonable one.

The cases C4 to C6, with 3 rows each, correspond to medium-size instances with 10 facilities

and 50 customers, whose uncertainty in the main parameters is represented by up to 292 scenarios.

Their associated DEM have up to 226000 (binary) variables and over 275000 constraints. CPLEX

proves the optimality of the solution in all the 9 instances by requiring up to 13854 of elapsed time

(instance C6-T3). Notice that this instance has one of the largest probability of demand among the

customers. FRC obtains very frequently near-optimal solution with an optimality gap not higher than

3.6%. However, the elapsed time requirements of FRC are very small, being usually one order of

magnitude smaller than those required by CPLEX, reaching anoutstanding improvement ofTG =
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Table 5.2: Computational results. CPLEX vs FRC

Instance ZLP Z
CPLEX

TCPLEX Z
FRC

TFRC GG (%) GC (%) GF (%) TG t∗f ncf

C9T4 19159,02 19644,09 17276419712,09 8963 0,35 2,53 2,89 19,282 4
C9T3 19322 19817,52 17250620439,74 3175 3,14 2,56 5,78 54,334 60
C9T2 19082,51 19580,18 17275419724,45 8005 0,74 2,61 3,36 21,582 8
C8T4 18077,72 18569,88 17239019237,75 4760 3,60 2,72 6,42 36,224 53
C8T3 18988,45 19714,56 17275419531,52 7037 -0,93 3,82 2,86 24,553 38
C8T2 17459,53 17936,94 17236418441,02 1593 2,81 2,73 5,62 108,204 45
C7T4 18998,82 19368,61 13002919693,88 1809 1,68 1,95 3,66 71,884 39
C7T3 18779,62 19058,21 2494419499,45 1436 2,32 1,48 3,83 17,374 38
C7T2 18696,9 19064,1 15031819507,27 2015 2,32 1,96 4,33 74,603 15
C6T4 12931 13096,69 3876 13282,77 678 1,42 1,28 2,72 5,72 3 25
C6T3 13076,12 13260,04 1385413390,33 470 0,98 1,41 2,40 29,484 78
C6T2 12897,23 13024,14 2046 13072,13 448 0,37 0,98 1,36 4,57 2 7
C5T4 12655,5 12845,5 1567 13096,63 288 1,96 1,50 3,49 5,44 3 13
C5T3 12535,82 12676,38 2327 12705,2 380 0,23 1,12 1,35 6,12 3 20
C5T2 13138,6 13272,14 2905 13572,03 1150 2,26 1,02 3,30 2,53 4 74
C4T4 12829,75 12983,22 6242 13277,91 339 2,27 1,20 3,49 18,413 38
C4T3 12906,62 13097,14 3404 13405,85 366 2,36 1,48 3,87 9,30 4 62
C4T2 12926,51 13079,39 3745 13139,92 379 0,46 1,18 1,65 9,88 3 28
Elapsed time limit: 172800 secs (48 hours).

108.2 times faster (instance C8-T2).

The cases C7 to C9, with 3 rows each correspond to large-scaleinstances, with 15 facilities

and 75 customers, whose uncertainty in the main parameters is represented by up to 268 scenarios,

for which the associated DEM has up to 483000 (binary) variables and 554000 constraints. FRC

was able to find good quality solutions for all the instances in less than 3 hours. On the other hand,

CPLEX reaches the time limit of 48 hours in 7 out of these 9 instances. Note that the worst time for

FRC is for instance C9-T4, that took 8963 seconds to find the incumbent solution, with a goodness

gap GG=0.35% and an elapsed time improvement (TG = 19.28). In the remaining instances, FRC

yields very small goodness gaps. The largest one was3.6%, for instance C8-T4, which required

almost 2 days (172390 seconds) to be solved by CPLEX. Notice that for instance C8-T3, it took FRC

2 hours to find a better solution than CPLEX in 2 days (as we can see forGG < 0). Additionally, for

instances C9-T4 and C9-T2, the goodness gapGG is not higher than1%.
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Analysis of the results of Table 5.3

Table 5.3 compares the solution values and elapsed times between FRC and FRC-J. As FRC-J

is an improved version for FRC algorithm, we want to compare its strengthnesses.

The headings are as follows:ZLP , solution value of the LP relaxation of the DEM;Z
FRC

and

Z
FRCJ

, solution values (i.e., expected total cost) of the incumbent solutions obtained by FRC and

FRC-J, respectively;TFRC andTFRCJ , elapsed times (secs) to obtain the associated incumbent solu-

tions;GG, goodness gap between the solution valuesZ
FRCJ

andZ
FRC

, defined asZ
FRCJ

−Z
FRC

Z
FRC (in

%); TG, time gap betweenTFRC andTFRCJ , defined asT
FRC

TFRCJ ;GF andGJ , quasi-optimality gaps

for the solution values obtained by FRC and FRC-J, defined asZ
FRC

−ZLP

ZLP
(in %) and Z

FRCJ
−ZLP

ZLP

(in %), respectively;t∗f andt∗j break stages used to decompose the original DEM into clusters for that

particular instance to be solved by the FRC and FRC-J algorithms, respectively;ncf andncj, number

of clusters in which the original DEM has been decomposed forthat particular instance to be solved

by the FRC and FRC-J algorithms, respectively.

Notice again thatGG = 0 would mean that both approaches being compared in the corre-

sponding table, have obtained the same solution value. The quality of the solutions found and the

elapsed times, let us insist, are concerned with the break stages,t∗f and t∗j , selected to solve each

instance. And again, we have tried different break stages for each instance, in order to get what we

consider the better trade-off between the quality of the solution and the computing time for comparing

both algorithms. While FRC tends clearly to improve its elapsed times for higher break stages and on

the other hand FRC-J improvement has a peak and then declines, for some instances. That is why for

such instances a different break stage has been selected forboth algorithms.

FRC-J finds almost always the same solutions than FRC. Noticethat we have selectedt∗f = t∗j

for 14 out of the 18 instances in the testbed, and for all but two of those 14 instances, both algorithms

found the same solution (GG = 0). For instance C5-T3, instead of selecting the same break stage,

FRC finds a slightly better solution (GG = 0.01) and the elapsed times are the closest among all the

instances, being FRC-JTG = 1.22 times faster, which does not seem a significant improvement.On

the contrary, for instance C5-T4, FRC-J solution is better (GG = −0.46), and the elapsed time is

quite better too (TG = 1.71).

For instances C9-T3 and C8-T4, the elapsed time needed by FRC-J to find the solution was

significantly better fort∗j = 3 than fort∗j = 4, this is why we have selectedt∗j = 3 for both instances.

Thus, it is no surprise that, in these cases,GG < 0. Anyway, it is of interest to note that FRC-J
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Table 5.3: Computational results. FRC vs FRC-J

Instance ZLP Z
FRC

TFRC Z
FRCJ

TFRCJ GG (%) GF (%) GJ (%) TG t∗f ncf t∗j ncj

C9T4 19159,0220054,12 315320054,12 804 0,00 4,67 4,67 3,923 13 3 13
C9T3 19322 20439,74 317520377,29 1294 -0,31 5,78 5,46 2,454 60 3 20
C9T2 19082,5120082,76 244520082,07 1320 0,00 5,24 5,24 1,853 22 3 22
C8T4 18077,7219237,75 4760 19134 1160 -0,54 6,42 5,84 4,104 53 3 19
C8T3 18988,4519531,52 703719531,53 3147 0,00 2,86 2,86 2,243 38 3 38
C8T2 17459,5318441,02 159318441,02 905 0,00 5,62 5,62 1,764 45 4 45
C7T4 18998,8219693,88 180919693,88 480 0,00 3,66 3,66 3,774 39 4 39
C7T3 18779,6219499,45 143619499,45 747 0,00 3,83 3,83 1,924 38 4 38
C7T2 18696,9 19507,27 201519507,27 535 0,00 4,33 4,33 3,773 15 3 15
C6T4 12931 13282,77 678 13282,76 231 0,00 2,72 2,72 2,943 25 3 25
C6T3 13076,1213390,33 470 13390,09 235 0,00 2,40 2,40 2,004 78 4 78
C6T2 12897,2313072,13 448 13071,88 289 0,00 1,36 1,35 1,552 7 2 7
C5T4 12655,5 13096,63 288 13036,03 168 -0,46 3,49 3,01 1,713 13 3 13
C5T3 12535,82 12705,2 380 12706,89 312 0,01 1,35 1,36 1,223 20 3 20
C5T2 13138,6 13572,03 115013572,03 272 0,00 3,30 3,30 4,234 74 4 74
C4T4 12829,7513277,91 339 13277,91 207 0,00 3,49 3,49 1,643 38 3 38
C4T3 12906,6213405,85 366 13405,85 207 0,00 3,87 3,87 1,774 62 4 62
C4T2 12926,5113230,94 301 13230,94 170 0,00 2,36 2,36 1,774 71 4 71
Elapsed time limit: 172800 secs (48 hours).

is capable of getting better solutions in significantly smaller elapsed times (e.g.TG = 4.1 and

GG = −0.54%, for C8-T4), particularly for large sized problems. Concluding, notice that, for all

the instances in the testbed, FRC-J is faster than FRC (up toTG = 4.1), being the elapsed time

less than a half (TG ≥ 2%) for 9 out of 18 instances, and what is more important, there are 6 out

of the 9 large-scale instances (C7 to C9), whereTG ≥ 2, even improving the solution for C8-T4,

whereGG = −0.54% andTG = 4.1%. For all the preceding, it seems that the FRC-J is the most

reasonable option faced to FRC.

Analysis of the results of Table 5.4

Table 5.4 compares the solution values and elapsed times between FRC-J and FRC-PJ. As we

will see, FRC-PJ gets outstanding better elapsed times.

The headings are as follows:ZLP , solution value of the LP relaxation of the DEM;Z
FRCJ

andZ
FRCPJ

, solution values (i.e., expected total cost) of the incumbent solutions obtained by FRC-J

and FRC-PJ, respectively;TFRCJ andTFRCPJ , elapsed times (secs) to obtain the associated in-

cumbent solutions;GG, goodness gap between the solution valuesZ
FRCPJ

andZ
FRCJ

, defined
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as Z
FRCPJ

−Z
FRCJ

Z
FRCJ (in %); TG, time gap betweenTFRCJ andTFRCPJ , defined asTFRCJ

TFRCPJ ; GJ

andGP , quasi-optimality gaps for the solution values obtained byFRC-J and FRC-PJ, defined as
Z

FRCJ
−ZLP

ZLP
(in %) andZ

FRCPJ
−ZLP

ZLP
(in %), respectively;t∗j andt∗p, break stages used to decompose

the original DEM into clusters for that particular instanceto be solved by the FRC-J and FRC-PJ

algorithms, respectively;ncj andncp, number of clusters in which the original DEM has been de-

composed for that particular instance to be solved by the FRC-J and FRC-PJ algorithms, respectively;

E, efficiency of the parallelization, defined asTG
ncp

(remind from Chapter 3.11.1 thate(p, n) = s(p,n)
p

).

For this table we let the same break stagest∗j than in Table 5.3, but for solving the instances

with FRC-PJ we have chosent∗p = 4 for almost all the instances, except for C8-T3 and C4-T4, since

the improvement in elapsed time was not significant.

The goodness gap is quite small, no more than theGG = 1.75% for instance C5-T3 where,

however, the elapsed time improvement is quite high (TG = 19.5), which is the highest of all the

instances. In it is the improvement in the elapsed times whatstands out clearly from this table, being

TG ≥ 10 for 14 out of the 18 instances, andTG = 7.28 the least improvement accomplished by

FRC-PJ (instance C8-T3). Let us point out that both algorithms always find the same solutions, so the

gapsGG > 0% that can be seen in 9 out of the 18 instances are due to the fact thatt∗j < t∗p, but if we

had chosen a higher break stage for FRC-J the elapsed time (TFRCJ ) would have been worse. Thus,

it seems that when the computational resources needed are available, the FRC-PJ is clearly the best

option. FRC-PJ can solve large instances in a few seconds when CPLEX needs hours, even days. We

can point out cases as C8-T3, where FRC-PJ finds a better solution than CPLEX in 432 seconds vs 2

days.

Notice that efficiency is below50% (E < 0.5) for all the instances, although there are 5 of

them that get more than33% (E ≥ 0.33), i.e. C9-T4, C7-T4, C7T3, C6-T2 and C5-T3. And the

least efficient instance is C6-T3, withE = 0.18. These are not big values but it has to be taken into

account that many processors have been used, what implies more inter-processor communications.

Another important factor that affects parallelization efficiency is the mentioned difference among the

subproblems resolution times. Great differences have beenobserved among those times for some

instances. Nevertheless, there is room for further research in order to improve the efficiency of the

proposed algorithm.
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Table 5.4: Computational results. FRC-J vs FRC-PJ

Instance ZLP Z
FRCJ

TFRCJ Z
FRCPJ

TFRCPJ GG (%) GJ (%) GP (%) TG t∗j ncj t∗p ncp E

C9T4 19159,0220054,32 804 20259,04 61 1,02 4,67 5,74 13,183 13 4 39 0,34
C9T3 19322 20377,29 1294 20439,74 77 0,31 5,46 5,78 16,813 20 4 60 0,28
C9T2 19082,5120082,07 1320 20166,96 74 0,42 5,24 5,68 17,843 22 4 61 0,29
C8T4 18077,72 19134 1160 19237,75 76 0,54 5,84 6,42 15,263 19 4 53 0,29
C8T3 18988,4519531,53 3147 19531,53 432 0,00 2,86 2,86 7,283 38 3 38 0,19
C8T2 17459,5318441,02 905 18441,02 67 0,00 5,62 5,62 13,514 45 4 45 0,30
C7T4 18998,8219693,88 480 19693,88 35 0,00 3,66 3,66 13,714 39 4 39 0,35
C7T3 18779,6219499,45 747 19499,45 51 0,00 3,83 3,83 14,654 38 4 38 0,39
C7T2 18696,9 19507,27 535 19624,06 56 0,60 4,33 4,96 9,553 15 4 42 0,23
C6T4 12931 13282,76 231 13312,83 13 0,23 2,72 2,95 17,773 25 4 63 0,28
C6T3 13076,1213390,09 235 13390,09 16 0,00 2,40 2,40 14,694 78 4 78 0,19
C6T2 12897,2313071,88 289 13228,61 15 1,20 1,35 2,57 19,272 7 4 49 0,39
C5T4 12655,5 13036,03 168 13071,72 19 0,27 3,01 3,29 8,843 13 4 35 0,25
C5T3 12535,8212706,89 312 12929,08 16 1,75 1,36 3,14 19,503 20 4 55 0,35
C5T2 13138,6 13572,03 272 13572,03 18 0,00 3,30 3,30 15,114 74 4 74 0,20
C4T4 12829,7513277,91 207 13277,91 23 0,00 3,49 3,49 9,003 38 3 38 0,24
C4T3 12906,6213405,85 207 13405,85 13 0,00 3,87 3,87 15,924 62 4 62 0,26
C4T2 12926,5113230,94 170 13230,94 11 0,00 2,36 2,36 15,454 71 4 71 0,22
Elapsed time limit: 172800 secs (48 hours).

Analysis of the results of Table 5.5

Finally, Table 5.5 shows the computational results reported in Albareda-Sambola et al. ([11]),

which are compared to the results obtained by the FRC-PJ algorithm.

The headings are as follows:ZLP , solution value of the LP relaxation of the DEM;Z
FRC−S

andZ
FRCPJ

, solution values (i.e., expected total cost) of the incumbent solutions obtained by imple-

mentation of the FRC used in that paper and FRC-PJ, respectively; TFRC−S andTFRCPJ , elapsed

times (secs) to obtain the associated incumbent solutions;GG, goodness gap between the solution

valuesZ
FRCPJ

andZ
FRC−S

, defined asZ
FRCPJ

−Z
FRC−S

Z
FRC−S (in %); GJ andGP , quasi-optimality

gaps for the solution values obtained by FRC and FRC-PJ, defined asZ
FRC−S

−ZLP

ZLP
(in %) and

Z
FRCPJ

−ZLP

ZLP
(in %), respectively;t∗p break stage used to decompose the original DEM into clusters

for that particular instance to be solved by FRC-PJ.

The aim is to compare the goodness of the solutions found, it makes no sense comparing the

elapsed times since the algorithms were run in different machines. Anyway, for this table we have

chosen smaller break stages to get better solutions, and theelapsed times are included to show that

even for these cases good times were achieved.
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Table 5.5: Computational results. FRC-SLOC vs FRC-PJ

Instance ZLP Z
FRC−S

TFRC−S Z
FRCPJ

TFRCPJ GG (%) GFS (%) GP (%) t∗p

C9T4 19159,0219957,05 6656 19712,09 872 -1,23 4,17 2,89 2
C9T3 19322 20277,86 9524 20272,28 912 -0,03 4,95 4,92 2
C9T2 19082,5119856,18 8821 19724,45 1562 -0,66 4,05 3,36 2
C8T4 18077,7219039,68 7415 19035,88 1007 -0,02 5,32 5,30 2
C8T3 18988,4519991,31 15575 19531,53 432 -2,30 5,28 2,86 3
C8T2 17459,5318367,62 7678 18607,08 126 1,30 5,20 6,57 3
C7T4 18998,8219627,87 3274 19601,23 113 -0,14 3,31 3,17 3
C7T3 18779,62 19307,6 4040 19534,06 108 1,17 2,81 4,02 3
C7T2 18696,9 19548,97 6914 19277,25 959 -1,39 4,56 3,10 2
C6T4 12931 13323,31 807 13312,83 13 -0,08 3,03 2,95 4
C6T3 13076,1213364,56 1084 13390,09 16 0,19 2,21 2,40 4
C6T2 12897,2313176,96 715 13071,88 97 -0,80 2,17 1,35 2
C5T4 12655,5 13016,12 381 13036,03 29 0,15 2,85 3,01 3
C5T3 12535,8212880,07 642 12706,89 49 -1,34 2,75 1,36 3
C5T2 13138,6 13272,15 659 13287,56 74 0,12 1,02 1,13 3
C4T4 12829,7513007,08 1606 13277,91 23 2,08 1,38 3,49 3
C4T3 12906,6213101,12 976 13333,35 30 1,77 1,51 3,31 3
C4T2 12926,5113194,78 660 13139,92 30 -0,42 2,08 1,65 3

As we can see, the solutions found are very similar, being better for FRC-PJ in 11 out of 18

instances (GG < 0), with a gap of down to−2.3% for instance C8-T3 and up to2.08% for instance

C4-T4. Notice that even for these good solutions the elapsedtimes are small, from 16 seconds for

the medium sized instance C6-T4 up to the 25 minutes of the large C9-T2. And notice too the gap

deviation against FRC-PJ for 7 out of 9 of the largest instances.



Chapter 6

Conclusions, contributions and
future research

In this final chapter the conclusions from the research developed in this thesis are explained. The

original contributions achieved while pursuing the goals of this thesis are collected. Finally, some

future research lines are identified.

Some of the main results of this thesis have been published in[23, 24] and presented in several

national and international meetings:

• XXXIII National Congress of Statistics and Operations Research.A parallel computing meta-

heuristic for solving multistage stochastic mixed integerprograms. Madrid (Spain), 2012.

• 12th International Conference on Stochastic Programming.FRC: A heuristic extension of the

BFC approach for solving very large scale multistage mixed 0-1 stochastic programs.Halifax

(Canada), 2010.

• ECCO XXIII-CO2010 European Chapter on Combinatorial Optimization. On The Conflict

Avoidance for Air Traffic Flow Management Problem, two models. Málaga (Spain), 2010.

• 24th European Conference on Operations Research.FRC: A heuristic extension of the Branch-

and-Fix Coordination approach for solving very large scalemultistage mixed 0-1 stochastic

problems.Lisbon (Portugal), 2010.

• 24th European Conference on Operations Research.Conflict Avoidance for Air Traffic Flow

Management Problem, pure and MIP models.Lisbon (Portugal), 2010.
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• 4th workshop on Optimization and Variational Analysis.On solving large-scale stochastic

mixed 0-1 linear problems. Seminario invitado.Elche (Spain), 2010.

• 23rd European Conference on Operational Research.On the collision avoidance for air traffic

management problem, a large scale mixed 0-1 program approach. Invited Session. Bonn

(Germany), 2009.

• 23rd European Conference on Operational Research.On the air traffic flow management prob-

lem. A stochastic integer programming approach. Invited Session.Bonn (Germany), 2009.

• Workshop CORAL 2009 (Conference on Routing and Logistics).Air traffic flow management.

Airports and sectors constraints, with en route problem.Elche (Spain), 2009.

6.1 Conflict Avoidance in the Air Traffic Flow problem CA

With the objective in mind of tackling the CA problem to develop a tool that could help in

eluding conflicts both flexible and efficiently, a broad research has been conducted through the vast

literature on the subject.

A new point of view has been adopted, based on given aircraft trajectories, that allows devel-

oping a linear model capable of detecting conflicts and propose maneuvers for avoiding them. The

aim of this new approach is inspired in decomposing the problem. Since it is already at our hand to

obtain the flight trajectories in a realistic and efficient way, a good solution could be a model that,

taking into account the flight routes, be able of detecting and avoiding all conflicts. Ideally, such

trajectories would come with some parameters adding some room for correctly maneuvering, i.e. for

reducing or augmenting the speed and for climbing or descending a flight level (this is left as fur-

ther research). Nevertheless, even with the actual flight plans, and considering a few maneuvers (e.g.

climb-descend just one flight level), it is possible to avoidconflicts in a coherent and, in our opinion,

as realistic fashion as the approaches currently presentedin the literature on the subject, in addition

to the benefit of allowing a wide range of action.

Two novel models have been proposed: a pure 0-1 and a mixed 0-1linear, the first of which

avoids conflicts by means of altitude changes, while the second’s strategy is based on altitude and

speed changes.

Based on the computational experience reported in Section 2.4, it can be said that both models

are tight and can be solved in really small elapsed times, being the first, pure 0-1 model, the most
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efficient. Although this model only considers flight level changing maneuvers, opposed to the two

maneuvers allowed by the second model (flight level and speedchanges), it has to be pointed out that

speed changes are not considered a very efficient maneuver inthe literature (see Frazzoli et al. [108],

Jardin [138] and Peyronne et al. [190], among others). Moreover, in many works aircraft are assumed

to fly at constant speed (see Pallottino et al. [185], Christodoulou and Costoulakis [62], Treleaven

[227], Gao et al. [111] and Cafieri and Durand [50], among others). In addition, in many real cases

just a few flight level changes will solve the problem easily.

The approach is also flexible, it allows non-linear trajectories. These given trajectories can

be based on procedural information such as a flight plan, as well as the optimal trajectory decided in

the future “Free Flight” (see [222]), or a straight-line extrapolation of the current speed vector as in

[185, 16, 17].

To summarize, both models can be solved in really small elapsed times, even for large-scale

instances, so, the approach can be used in real time with the help of a state-of-the-art mixed integer

linear optimization software, and the approach can be used in long term time horizons as well as for

wide airspace regions that may comprise several air traffic control areas in which the aerial space

is divided. Finally, the presented models can be easily extended with new features or restrictions,

in particular a third conflict avoidance maneuver has been proposed (selecting alternative routes),

although its implementation has been left for further research.

6.2 Stochastic Programming

Two new algorithms have been proposed, one being sequentialand the other, based on the

first, parallel. They use some heuristics that have proven its effectiveness previously in addition to

new heuristics proposed in this thesis. Although both algorithms do not guarantee the solution to be

optimum, it can be seen in the computational experience presented in Chapter 5 the quality of the

solutions, which improve even CPLEX in some instances.

Both algorithms have been tested by solving a series of large-scale instances of the Multi-

period location-allocation problem under uncertainty, a strategic and tactical decision problem which

objective is deciding the optimum allocation of locations to fulfil certain coverage levels of demand

in some places at each time period. The instances have up to half a million variables and are hard

to solve. However, both algorithms manage to solve them in considerably small computing times,

specially when compared with the elapsed times required by CPLEX and the FRC algorithm.
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The elapsed times required by the FRC-PJ algorithm are particularly good, proving that par-

allel computing and decomposition algorithms work really well together.

Finally, it has to be taken into account that these kind of algorithms not only allow perfor-

mance improvements in computing time, but also in memory consumption, since decomposing the

main problem in several subproblems reduces the system memory requirements.

6.3 Future work

This thesis yields a series of future lines of research that hopefully will produce interesting

results. Some of them are examined below.

Extending the CA models

The models for CA presented in Chapter 2 can be extended and its performance improved.

In particular, choosing alternative routes as avoidance maneuver; allowing aircraft climbing or de-

scending to the next altitude level in more than one step; as well as relating altitude level changes to

speed.

Computing the aircraft trajectories

An intermediate level to feed the proposed models with the parameters they need from the

actual data used by the aerial companies and traffic control centers, yielding the trajectories as well

as the constraining parameters for changing speed and altitude levels.

Lagrangean Decomposition

The Lagrangian Decomposition procedures can help to improve the algorithms presented in

this thesis. In particular, the specialization of the so-called Cluster Lagrangean Decomposition pre-

sented in [91]. In that work it is applied to a facility location problem under uncertainty. The FRC-J

and the FRC-PJ algorithms can be improved by using this technique that will allow obtaining strong

(lower) bounds at each iteration and so improving the pruning mechanism.

Risk Measures
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The models considered so far present as the objective function the expected value of the ob-

jective function over the set of finite scenarios, i.e. the socalled risk neutral (RN) approach. However,

RN solutions have the inconvenience of ignoring the variability of the objective function value over

the scenarios. So, it does not hedge against the low-probability/high-consequence events (the so-

called black swans). Alternatively, risk measures can be added in order to hedge against the impact

of the most unwanted scenarios. Risk measures are currentlybeen taken into account by consider-

ing, for example, semi-deviations, excess of probability,conditional value-at-risk and others. These

approaches are more convenient under the presence of binaryvariables than the classical media-

variance schemas. However, due to the large number of additional 0-1 and continuous variables and

constraints required by these strategies, problems becomelarger and harder to solve. In particular, the

Time Stochastic Dominance (TSD) strategy reduces the risk of wrong solutions in a better way than

others under some circumstances, according to the computational comparison reported in e.g., [13].

The strategy also aims to minimize the objective function expected value, see also [90]. It would be

of interest solving such problems with the help of the algorithms presented in this thesis.

Computational experience

The algorithms presented in this thesis, as well as the improved versions that will be devel-

oped, should be tested by applying them for the resolution ofvery large-scale problems.

Improving the the parallel approach

As it has been mentioned in Section 5.3.2, the efficiency of the parallel algorithm FRC-PJ

leaves room for improvement. To do so, observe that in many instances it has been noticed that some

subproblems need considerably higher elapsed times to be solved than the others. As mentioned in

Chapter 4, particularly in Section 4.4, it can be “avoided” to solve such subproblems very frequently.

Such heuristic would consist in, when branching to a new variable, fixing the value that took that

variable in the solution of the hardest problem, so it would not be required solving it again. This

approach can be studied in a future work.

Besides, other parallel programming approaches can be tried, such as dividing each subprob-

lem in more subproblems by fixing some variables to differentvalues, and assigning each subproblem

to a different process. This will allow more “parallelization” and, hopefully, a greater improvement

in computing time.

Library
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It would be of great interest developing a library for solving general large-scale multistage

stochastic mixed 0-1 problems, by using either of the algorithms that have been implemented for this

thesis, namely FRC, FRC-J and FRC-PJ. Some different strategies could also be parameterizable,

such as the strategies for selecting the branching variable, the value it has to be fixed at, etc.
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Glossary

MSFLP Multi-Period Stochastic Facility Location Problem.. xxiii, 117, 118, 120, 122, 123

Stochastic Programming the field of Mathematical Programming that considers and deals with un-

certainty, incorporating it in the mathematical models. 45, 85, 94

expected value of perfect information(EV PI) Theexpected value of perfect informationmeasures

the maximum amount a decision maker would be ready to pay in return for expected complete

(and accurate) information about the future.. 44, 65

metaheuristic A metaheuristicis ahigher-levelprocedure designed as an efficient approach to a hard

optimization problem, aimed at finding a sufficiently good solution. It is especially appropriate

for problems with incomplete or imperfect information or limited computation capacity. 43, 45

multi-stage multi-stage problems are stochastic problems in which there are more than two dis-

tinguished stages (time periods, such that at the beginningof each stage the values of some

uncertain parameters are revealed) where decisions are taken. xxii, 45, 50–52, 56, 59, 85, 93

non-anticipativity In the general formulation of a multi-stage stochastic integer optimization prob-

lem, decisions are made stage-wise. At each stage, there arevariables corresponding to deci-

sions that have to be made without anticipating the values ofsome future problem data, i.e.,

they take on the same value under each scenario in a given group. 45, 55, 57, 85, 86, 89,

102–104, 106–112, 116

scenario cluster A scenario clusteris a set of scenarios where thenon-anticipativityconstraints are

implicitly defined in the model.. 107

scenario group A scenario groupfor a given stage is the set of scenarios with the same realization

of the uncertain parameters up to the stage.. 54, 107

140
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scenario A scenariois a particular realization of the uncertain parameters along the different stages

of the time horizon.. 54

two-stage problems where decisions are taken in one of two distinguished stages or time periods

(named first and second stage, where first stage is the time period before the uncertain param-

eters values are known, and the second stage is the time period after such values are revealed).

45, 48, 50, 51, 53, 92, 93, 103

BFC Branch-and-Fix Coordination. 44, 45, 85, 110

BFC-J Jumping Branch-and-Fix Coordination. 110, 112

CA Conflict Avoidance. xxi, xxii, 1, 3, 11, 15, 134, 136

CDR Conflict Detection and Resolution. 1, 2

DEM Deterministic Equivalent Problem. 44, 85, 99, 107, 108, 117, 120, 125–131

FRC Fix-and-Relax Coordination. xiv, xv, xvii, xviii, 43, 99, 100, 103, 104, 107, 108, 110, 111,

126–129, 131, 135, 138

FRC-J Jumping Fix-and-Relax Coordination. xv, xviii, xxiii, 43,99, 110–114, 126, 128–131, 136,

138

FRC-PJ Parallel Jumping Fix-and-Relax Coordination. xv, xvii, xviii, xxiii, 43, 113–115, 123, 126,

129–132, 136–138

IP Integer Programming. 48

LP Linear Programming. xxi, 47, 48, 51

Master Master Process, responsible for coordinating all the concurrent processes during the parallel

algorithm.. 113, 115, 116

MIP Mixed Integer Programming. 48, 100, 103, 111–113

MPI Message Passing Interface. xv, xxiii, 96, 97, 115, 123

SP Stochastic Programming. xxi–xxiii, 43, 44, 46, 90, 93, 108,110, 118
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speedup The speedup and efficiency of an algorithm are widely used to analyze thegoodnessof a

parallel algorithm. The speedup of a parallel algorithmp for a problem P of sizen is defined

ass(p, n) = ts(n)
tp(p,n)

, wherets(n) is the time (alternatively, the number of operations) needed to

solve P by the best known sequential algorithm, andtp(p, n) the time needed by algorithm p to

solve P. 98, 114, 115

stage A stageof a given time horizon, is a set of consecutive time periods in which the realization of

some uncertain parameters takes place.. 48

TCAS Traffic Alert and Collision Avoidance System. 2

TNF Twin Node Family. 86, 101, 103, 104, 110–112, 116
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tion and plant dimensioning under uncertainty.Journal of Global Optimization, 33:307–318,

2005.

[16] A. Alonso-Ayuso, L.F. Escudero, and F.J. Martı́n-Campo. Collision avoidance in the air traffic

management: a mixed integer linear optimization approach.IEEE Transactions on Intelligent

Transportation Systems, 12(1):47–57, 2011.

[17] A. Alonso-Ayuso, L.F. Escudero, and F.J. Martı́n-Campo. A mixed 0–1 nonlinear approach

for the collision avoidance in atm: velocity changes through a time horizon. Computers &

Operations Research, 93(12):3136–3146, 2012.

[18] A. Alonso-Ayuso, L.F. Escudero, and F.J. Martı́n-Campo. On modeling the air traffic control

coordination in the collision avoidance problem by mixed integer linear optimization.Ann.

Op. Res., 2013.

[19] A. Alonso-Ayuso, L.F. Escudero, and F.J. Martı́n-Campo. Exact and approximate solving of

the aircraft collision resolution problem via turn changes. Transportation Science. Published

online, 2014.



BIBLIOGRAPHY 145

[20] A. Alonso-Ayuso, L.F. Escudero, and F.J. Martı́n-Campo. An exact multi-objective mixed

integer nonlinear optimization approach for aircraft conflict resolution. TOP, pages 1–28,

2015.

[21] A. Alonso-Ayuso, L.F. Escudero, and F.J. Martı́n-Campo. Multiobjective optimization for air-

craft conflict resolution. a metaheuristic approach.European Journal of Operational Research,

248:691–702, 2016.

[22] A. Alonso-Ayuso, L.F. Escudero, F.J. Martı́n-Campo, and N. Mladenovic. A vns metaheuristic

for solving the aircraft conflict detection and resolution problem by performing turn changes.

Journal of Global Optimization, 63:583–596, 2015.

[23] A. Alonso-Ayuso, L.F. Escudero, P. Olaso, and C. Pizarro. Frc: A heuristic extension of

the branch-and-fix coordination approach for solving very large scale multi-stage mixed 0-1

stochastic problems.Technical Reports on Statistics and Decision Sciences. URJC, 2009.

[24] A. Alonso-Ayuso, L.F. Escudero, P. Olaso, and C. Pizarro. Conflict avoidance: 0-1 linear

models for conflict detection & resolution.TOP, 21:485–504, 2013.

[25] A. Alonso-Ayuso, L.F. Escudero, and M.T. Ortuño. A stochastic 0-1 program based approach

for the air traffic flow management problem.European Journal of Operational Research,

120:47–62, 2000.

[26] A. Alonso-Ayuso, L.F. Escudero, and M.T. Ortuño. BFC,a Branch-and-Fix Coordination

algorithmic framework for solving some types of stochasticpure and mixed 0-1 programs.

European Journal of Operational Research, 151:503–519, 2003.

[27] A. Alonso-Ayuso, L.F. Escudero, and M.T. Ortuño. Modeling production planning and

scheduling under uncertainty. In S.W. Wallace and W.T. Ziemba, editors,Applications of

Stochastic Programming, pages 217–252. MPS-SIAM-Series in Optimization, 2005.

[28] A. Alonso-Ayuso, L.F. Escudero, M.T. Ortuño, and C. Pizarro. On a stochastic sequencing and

scheduling problem.Computers and Operations Research, 34:2604–2624, 2007.

[29] A. Alonso-Ayuso, L.F. Escudero, and C. Pizarro.Introduction to Stochastic Programming.Ed.

Dikinson, 2009.

[30] J.A. Audestad, A. Gaivoronski, and A. Werner. Modelingmarket uncertainty and competi-

tion in telecommunication environment: Network providersand virtual operators.Telektronik,

97:46–64, 2002.



146 BIBLIOGRAPHY

[31] M. Avriel and A.C. Williams. The value of information and stochastic programming.Opera-

tions Research, 18:947–954, 1970.

[32] S. Baker, D. Morton, R. Rosenthal, and L. Williams. Optimizing military airlift. Operations

Research, 50:582–602, 2002.

[33] A. M. Bayen, P. Grieder, G. Meyer, and C. J. Tomlin. Lagrangian delay predictive model for

sector-based air traffic flow.Journal of Guidance, Control and Dynamics, 28(5):1015–1026,

September-October 2005.

[34] E.M.L. Beale. On minimizing a convex function subject to linear inequalities.Journal of the

Royal Statistical Society Series B, 17:173–184, 1955.

[35] J.F. Benders. Partitioning procedures for solving mixed variables programming problems.

Numerische Mathematik, 4:238–252, 1962.

[36] P. Beraldi, L. Grandinetti, R. Musmanno, and C. Trik. Parallel algorithms to solve two-stage

stochastic linear programs with robustness constraints.Parallel Computing, 26:1889–1908,

2000.

[37] D. Bertsimas. A mathematical programming approach to stochastic and dynamic optimization

problems.technical report. Technical report, OperationsResearch Center, MIT, Cambridge,

MA, USA, 1994.

[38] D. Bertsimas and S. Stock-Patterson. The air traffic flowmanagement problem with enroute

capacities.Operations Research, 46:406–422, 1998.

[39] B.Fritzke. http://www.ki.inf.tu-dresden.de/ fritzke/javapaper/. 1997.

[40] A. Bicchi and L. Pallottino. On optimal cooperative conflict resolution for air traffic manage-

ment systems.IEEE Transactions on Intelligent Transportation Systems, 1(4):221–232, 2000.

[41] John R. Birge. Stochastic programming computation andapplications.INFORMS J. Comput.,

9(2):111–133, 1997.

[42] J.R. Birge. The value of the stochastic solution in stochastic linear programs with fixed re-

course.Mathematical Programming, 24:314–325, 1982.

[43] J.R. Birge, C.J. Donohue, D.F. Holmes, and O.G. Svintsitski. A parallel implementation of

the nested decomposition algorithm for multistage stochastic linear programs.Mathematical

Programming, 75:327–352, 1996.



BIBLIOGRAPHY 147

[44] J.R. Birge and F.V. Louveaux.Introduction to Stochastic Programming. Springer, 2nd edition,

2011.

[45] J.R. Birge and F.V. Louveaux.Introduction to Stochastic Programming. 2nd edition.Springer,

2011.

[46] S. Bjornestad, A. Hallfjord, and K.O. Joernsten. Discrete optimization under uncertainty, the

scenario and policy aggregation technique.European Journal of Operational Research, 1992.

[47] J. Blomval. A multistage stochastic programming algorithm suitable for parallel computing.

Parallel Computing, 29:431–445, 2003.

[48] Jörgen Blomvall and Per Olov Lindberg. A Riccati-based primal interior point solver for mul-

tistage stochastic programming—extensions.Optim. Methods Softw., 17(3):383–407, 2002.

Stochastic programming.

[49] S. Cafieri, P. Brisset, and N. Durand. A mixed-integer optimization model for air traffic de-

confliction. Proceedings of TOGO (Toulouse Global Optimization). Toulouse, France, pages

27–30, 2010.

[50] S. Cafieri and N. Durand. Aircraft deconfliction with speed regulation: New models from

mixed-integer optimization.J. Global Optim., 58(4):613–629, 2014.

[51] D. Cariño, T. Kent, D. Meyers, C. Stacy, M. Stylvanus, A. Turner, K. Watanabe, and

W. Ziemba. The Russel-Yasuda Kasai Model: An asset/liability model for a japanese insurance

company using multistage stochastic programming.Interfaces, 24:29–49, 1994.

[52] D. Cariño and W. Ziemba. Formulation of the Russell-Yasuda Kasai financial planning model.

Operations Research, 46:433–449, 1998.

[53] C.C. Carøe and R. Schultz. A two-stage stochastic program for unit commitment under un-

certainty in a hydro-thermal power system.Echtzeit-Optimierung groer Systeme, preprint, SC

98-11, 1998.

[54] C.C. Carøe and J. Tind. L-shaped decomposition of two-stage stochastic programs with integer

recource.Mathematical Programming, 83:451–464, 1998.

[55] Claus C. Carøe.Decomposition in stochastic integer programming. Ph.d. thesis, University of

Copenhagen, Denmark, 1998.



148 BIBLIOGRAPHY

[56] B. Carpenter and J. Kuchar. Probability-based collision alerting logic for closely-spaced par-

allel approach. In35th AIAA Aerosp. Sci. Meet. Exhibit, Reno, NV, Jan. 1997. paper AIAA-

97-0222.

[57] H. Casanova, A. Legrand, and Y. Robert.Parallel Algorithms. Chapman & Hall/ CRC Press,

2009.

[58] C.Cetek. Realistic speed change maneuvers for air traffic conflict avoidance and their impact

on aircraft economics.International Journal of Civil Aviation, 1(1):62–73, 2009.

[59] S. Cerisola. Descomposicion de Benders para problemas enteros mixtos: Application to a

medium term hydrothermal coordination model. PhD thesis, Universidad Comillas de Madrid,

Madrid, 2003.

[60] A. Charnes and A.A. Cooper. Chance constrained programming. Management Science, 6:73–

79, 1959.

[61] Y. Chiang, J. T. Klosowski, C. Lee, and J. S. B. Mitchell.Geometric algorithms for conflict

detection/resolution in air traffic management. InIn 36th IEEE Conference on Decision and

Control., pages 10–12, 1997.

[62] M. A. Christodoulou and C. Costoulakis. Nonlinear mixed integer programming for aircraft

collision avoidance in free flight.IEEE Melecon 2004, Dubrovnik, (Croacia), 1:327–330,

2004.

[63] M. A. Christodoulou and S. G. Kodaxakis. Automatic commercial aircraft-collision avoidance

in free flight: The three-dimensional problem.IEEE Transactions on Intelligent Transportation

Systems, 7(2):242–249, 2006.

[64] M.A. Christodoulou and C. Kontogeorgou. Automatic collision avoidance in commercial air-

craft three dimensional flights, using neural networks and non-linear programming. In C.H.

Skiadas, editor,Chaotic Modeling and Simulation, 2008.

[65] K.J. Cohen and S. Thore. Programming bank portfolios under uncertainty.Journal of bank

research, 1:42–61, 1970.

[66] K. Cormican, D.P. Morton, and R.K. Wood. Stochastic network interdiction. Operations

Research, 46:184–197, 1998.

[67] P. Coy. The cfo goes 3d.Business Week, 1996. October 28.



BIBLIOGRAPHY 149

[68] M.P. Cristobal, L.F. Escudero, and J.F. Monge. On stochastic dynamic programming for solv-

ing large-scale production planning problems under uncertainty. Computers & Operations

Research, 36:2418–2428, 2009.

[69] G.B. Dantzig. Linear programming under uncertainty.Management Science, 1:197–206, 1955.

[70] G.B. Dantzig and P.W. Glynn. Parallel processors for planning under uncertainty.Annals of

Operations Research, 22:1–21, 1990.

[71] George B. Dantzig and Peter W. Glynn. Parallel processors for planning under uncertainty.

Ann. Oper. Res., 22(1-4):1–21, 1990. Supercomputers and large-scale optimization: algo-

rithms, software, applications (Minneapolis, MN, 1988).

[72] P. Dell’Olmo and G. Lulli. A new hierarchical architecture for air traffic management: Op-

timization of airway capacity in a free flight scenario.European Journal of Operational Re-

search, 144:179–193, 2003.

[73] M.A.H. Dempster and E. Medova. Envolving system architectures for multimedia network

design.Annals of Operations Research, 104:163–180, 2001.

[74] M.A.H. Dempster and R.T. Thompson. Parallelization ofEVPI based importance sampling

procedures for solving multistage stochastic linear programs on MIMD architectures. InPar-

allel Optimization Colloquium. Laboratoire PRISM, University Versalles,Versalles (Francia),

1996.

[75] N. di Domenica.Stochastic Programming and scenario generation: DecisionModelling sim-

ulation and information systems persepective. PhD thesis, Department of Mathematical Sci-

ences, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom, 2004.

[76] B.H. Dias, M.A. Tomin, A.L.M. Mercato, T.P. Ramos, R.B.S. Brandi, I.Ch. da Silva jr., and

J.A.P. Filho. Parallel computing applied to stochastic dynamic programming for long term op-

eration planning of hydrothermal power systems.European Journal of Operational Research,

229:212–222, 2013.

[77] A. Doshi. Aircraft Position Prediction Using Neural Networks. PhD thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2005.

[78] G. Dowek and C. Mu noz. Conflict detection and resolutionfor 1,2,. . . ,n aircraft. Seventh

AIAA Aviation Technology, Integration and Operations conference, Belfast (Northern Ireland),

2007.



150 BIBLIOGRAPHY

[79] V. N. Duong and E. G. Hoffman. Conflict resolution advisory service in autonomous aircraft

operations. In16th Digital Avion. Syst. Conf., pages 9.3–10–9.3–17, Irvine, CA, Oct. 1997.

[80] N. Durand and J. Alliot. Ant colony optimization for airtraffic conflict resolution. In8th

USA/Europe air traffic management research and developmentseminar (ATM2009), 2009.

[81] N. Durand, J.M. Alliot, and F. Médioni. Neural nets trained by genetic algorithms for collision

avoidance.Applied Intelligence, (13):205–213, 2000.

[82] G.D. Eppen, R.K. Martin, and L. Schrage. A scenario approach to capacity planning.Opera-

tions Research, 37:517–527, 1989.

[83] H. Erzberger, R. A. Paielli, D. R. Isaacson, and M. M. Eshow X. Conflict detection and

resolution in the presence of prediction error, June 1997. prepared for the 1st USA/Europe Air

Traffic Management RD Seminar, Saclay, France.

[84] L.F. Escudero. On a mixture of the Fix-and-Relax Coordination and lagrangean substitution

schemes for multistage stochastic mixed integer programming. TOP, 17:5–29, 2009.

[85] L.F. Escudero. On branch-and-fix coordination and lagrangean substitution and decomposition

for multistage stochastic mixed integer programming.TOP, 17:5–29, 2009.

[86] L.F. Escudero, J.L. de la Fuente, C. Garcı́a, and F.J. Prieto. A parallel computation approach for

solving multistage stochastic network problems.Annals of Operations Research, 90:131–160,

1999.

[87] L.F. Escudero, E. Galindo, C. Garcı́a, E. Gómez, and V.Sabau. Schumann: A modelling
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cluster partitioning and twin node families branching selection and bounding for multi-stage

stochastic mixed integer programming.Computers & Operations Research, 37:738–753, 2010.

[97] L.F. Escudero, M.A. Garı́n, M. Merino, and G. Pérez. Analgorithmic framework for solv-
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[226] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management: A study

in multiagent hybrid systems.IEEE Transactions on Automatic Control, 43(4):509–521, 1998.



162 BIBLIOGRAPHY

[227] K. Treleaven. Conflict Resolution and Traffic Complexity of Multiple Intersecting Flows of

Aircraft. PhD thesis, Faculty of the School of Engineering. University of Pittsburgh, USA,

2007.

[228] S. Uryasev and P.M. Pardalos.Stochastic Optimization: Algorithms and Applications. Kluwer

Academic Publishers, 2001.

[229] Maarten H. van der Vlerk.Stochastic programming with integer recourse. PhD thesis, Univer-

sity of Groningen, The Netherlands, 1995.

[230] T.J. van Roy and D. Erlenkotter. A dual-based procedure for dynamic facility location.Man-

agement Science, 28:1091–1105, 1982.

[231] R. Van Slyke and R-J.B. Wets. L-shaped linear programswith application to optimal control

and stochastic programming.SIAM Journal on Applied Mathematics, 17:638–663, 1969.

[232] R. Vivona, D. Karr, and D. Roscoe. Pattern based genetic algorithm for airborne conflict

resolution. AIAA Guidance, Navigation and Control Conference Exhibition, AIAA, Keystone,

CO, USA,, 2006.

[233] Hercules Vladimirou. Computational assessment of distributed decomposition methods for

stochastic linear programs.European Journal of Operational Research, 108:653–670, 1998.

[234] A. Wald. Statistical Decision Functions. J. Wiley, 1950.

[235] S.W. Wallace and W.T. Ziemba.Applications of Stochastic Programming. MPS-SIAM Series

in Optimization, 2005.

[236] Q. Wang, E. Batta, and C.M. Rump. Facility location models for immobile servers with

stochastic demand.Naval Research Logistics. To appear, 2003.

[237] A. Warszawski. Multi-dimensional location problems. Operational Research Quarterly,

24:165–179, 1973.

[238] J.P. Watson and D. Woodruff. Progressive hedging innovations for a class of stochastic mixed

integer resource allocation problems.Computational Management Science, 8:355–370, 2011.

[239] Roger J.-B. Wets. Stochastic programs with fixed recourse: the equivalent deterministic pro-

gram.SIAM Rev., 16:309–339, 1974.



BIBLIOGRAPHY 163

[240] Roger J.-B. Wets. On the relation between stochastic and deterministic optimization. InCon-

trol Theory, numer. Meth., Computer Syst. Mod.; internat. Symp. Rocquencourt 1974, Lecture

Notes Econ. math. Syst. 107, 350-361, 1975.

[241] L.A. Wolsey. Integer Programming. John Wiley, 1998.

[242] D.L. Woodruff. Stochastic Integer Programming and Network Interdiction Models. Kluwer

Academic Press, 2002.

[243] J. Puerto Y. Hinojosa and F.R. Fernández. A multiperiod two-echelon multicommodity capac-

itated plant location problem.European Journal of Operational Research, 123:45–65, 2000.

[244] K. Zeghal and E. Hoffman. Design of cockpit displays for limited delegation of separation

assurance. In18th Digital Avion. Syst. Conf., St. Louis, MO, Oct. 1999.


	Resumen
	Preface
	Conflict Avoidance: State of the art
	Conflict Avoidance Introduction
	Conflict Detection
	Conflict Resolution
	Prescribed
	Optimization
	Force field
	Manual
	Neural Networks and metaheuristics
	Others

	Similar problems and Review table
	Problem description

	Conflict Avoidance: 0-1 linear models for Conflict Detection & Resolution
	Problem description
	Collision Avoidance via altitude level changes
	Conflict Detection
	Model formulation for conflict resolution

	Collision Avoidance via altitude level and speed changes
	Definitions
	Conflict Detection
	Model formulation for conflict resolution
	Tightening the model

	Computational experience
	Further discussions and extensions for the proposed models
	On ascending or descending flight levels
	Rerouting
	Arriving at a different time
	Changing flight level might imply changing speed

	Conclusions

	Introduction to Stochastic Programming and Parallel Computing: State of the art
	Introduction
	Stochastic linear modeling
	Deterministic linear models
	Decisions and stages
	two-stage models
	Multistage models

	Modeling via scenario tree
	Scenario tree
	Non-anticipativity principle

	Deterministic Equivalent Model
	Compact representation
	Representation with splitting variables by scenario groups
	Representation with splitting variable by scenarios

	The value of information in stochastic models
	The Expected Value of Perfect Information
	The Value of the Stochastic Solution

	Algorithms in Stochastic Linear Programming
	L-Shaped method for two-stage problem
	 Lagrangean decomposition
	Obtaining Lagrangean multipliers: Subgradient method
	Augmented Lagrangean Decomposition

	Stochastic Integer Programming
	Algorithms in Stochastic Integer Programming
	L-Shaped method for integer problems
	Integer simple recourse
	Stochastic Branch-and-Bound 

	BFC. Definitions and algorithmic framework for pure 0-1 problems
	Applications of Stochastic Programming
	Transportation
	Telecommunication
	Electricity Power Generation
	Finance
	Manufacturing
	Other Applications

	Parallel Computing
	A brief introduction to Parallel Computing
	Message Passing Interface
	Speedup


	Metaheuristic algorithms for solving large-scale multistage stochastic mixed 0-1 problems
	Introduction. Fix-and-Relax Coordination
	On the Fix-and-Relax scheme
	Fix-and-Relax model
	Branching strategy
	Associated models to scenario group r
	Two-stage BFC algorithm
	FRC algorithm implementation

	Break stage scenario clustering
	Associated models to FR level r

	Jumping Fix-and-Relax Coordination (FRC-J)
	Parallel Jumping Fix-and-Relax Coordination (FRC-PJ)
	speedup
	pjfrc


	Computational Experience
	Multi-period location-allocation problem under uncertainty
	Multistage Stochastic Facility Location Problem
	0-1 dem

	Computational experience
	Testbeds description
	Numerical results


	Conclusions, contributions and future research
	Conflict Avoidance in the Air Traffic Flow problem ca
	Stochastic Programming
	Future work

	Glossary
	Bibliography

