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Resumen

El principal objetivo de esta Tesis Doctoral, en el campo del procesamiento
digital de señales biomédicas, es el desarrollo de métodos robustos de análisis
cardiaco. La Tesis tiene dos objetivos específicos, a saber, (1) caracterizar la
fibrilación auricular y ventricular (FA, FV), y (2) evaluar, de forma no inva-
siva, el control del ritmo cardiaco por parte del Sistema Nervioso Autónomo
(SNA) y el barorreflejo.

El análisis espectral de electrogramas (EGM) se ha utilizado para carac-
terizar el ciclo medio (periodicidad) y la regularidad de la FV. Sin embargo,
mediante este enfoque se descarta información relevante del espectro, como
puede ser, la estructura armónica o la envolvente espectral. En el Capítulo 1 2
se presenta un método paramétrico basado en una extensión del desarrollo
en serie de Fourier, que incorpora componentes para caracterizar fluctuacio-
nes de banda estrecha. Este enfoque, llamado Fourier Organización Análisis
(FOA), se utiliza para caracterizar la periodicidad e irregularidad, así como
para proporcionar información detallada sobre el contenido espectral tanto
de EGMs simulados como reales. Se estudiaron EGMs, registrados egistra-
dos en desfibriladores automáticos implantables, en distintas condiciones, a
saber, ritmo sinusal, taquicardia supraventricular, taquicardia ventricular y
FV. Los parámetros obtenidos utilizando FOA mejoraron las mediciones de
organización y regularidad obtenidas mediante los métodos clásicos. De es-
ta forma, se puede concluir que FOA proporciona una descripción espectral
detallada y más robusta.

El análisis avanzado de la FA en EGM intracardiacos tiene como objetivo
determinar las zonas más apropiadas para la ablación. Los métodos basados
en el dominio de la frecuencia estiman la frecuencia dominante con el ob-
jetivo de identificar regiones cardiacas de rápida activación como objetivos
de ablación. Sin embargo, a menudo, descartan información relevante del
espectro y proporcionan una caracterización incompleta de las señales de FA
complejas. En el Capítulo 3 se propone un método para estimar la frecuencia
fundamental de la FA basado en una generalización , utilizando kernels, de la
función de correlación para procesos estocásticos, llamado Correntropy. Este
enfoque proporciona una estimación robusta de la periodicidad de señales
complejas de FA y, combinado con FOA, proporciona una caracterización
completa de la regularidad y del contenido espectral de la FA. Se utilizaron
EGM intracardiacos en FA durante estudios electrofisilógicos con diferentes
grado de complejidad, seleccionados visualmente por un experto. La estima-
ción de la frecuencia fundamental utilizando Correntropy, combinado con un
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vi Resumen

enfoque de componentes múltiples mediante FOA, permitió establecer una
caracterización completa de señales de FA complejas.

El análisis espectral de las series temporales latido-a-latido para evaluar
la Variabilidad de la Frecuencia Cardiaca (VFC) ha sido ampliamente uti-
lizada en la literatura. Sin embargo, esta aproximación es muy sensible a
la presencia de ruido, artefactos y falsas detecciones de latidos, que son un
problema común en los registros Holter. En el Capítulo 4, se propone un
método robusto para interpolar series temporales muestreadas de forma no
uniforme, como es el caso de la señal de VFC, basado en Support Vector
Machine (SVM). Se propone utilizar un núcleo de Mercer espectralmente
adaptado, basado en la autocorrelación de la serie temporal latido-a-latido.
Este enfoque permite realizar un análisis espectral robusto de la señal de
VFC, y podría evitar la costosa tarea de corrección manual, habitual en los
registros Holter, necesaria para obtener índices espectrales fiables.

La Turbulencia de la Frecuencia Cardiaca (TFC), que es la respuesta
provocada por un Complejo Ventricular Prematuro (CVP), ha demostrado
ser un fuerte criterio útil de estratificación de riesgo en pacientes con enfer-
medad cardiaca. A fin de reducir el nivel de ruido de TFC, las mediciones
convencionales de TFC utilizan el promedio todos los CVP en un paciente.
Sin embargo, este enfoque proporciona índices de largo plazo, con informa-
ción promediada de todo el registro, y no tiene en cuenta las condiciones
fisiológicas locales. En el Capítulo 4 5 se propone un método para eliminar
el ruido de los CVPs individuales usando una técnica de procesamiento de
señales basado en SVM. Se utilizaron CVPs estimulados durante estudio
electrofisiológico como estándar de bajo ruido. El enfoque propuesto propor-
ciona mediciones de TFC, en base de datos de Holter, con una reducción
significativa en sesgo y varianza. Por lo tanto, la eliminación de ruido en
TFC mediante SVM permite obtener mediciones a corto plazo, a la par que
mejora el nivel de ruido de las medidas a largo plazo.

La TFC está afectada por varios factores fisiológicos, principalmente por
la frecuencia cardiaca (FC) y el intervalo de acoplamiento (IA) del CVP. La
hipótesis fisiológica para explicar la TFC es la respuesta barorrefleja después
de un CVP. Sin embargo, varios estudios han proporcionado resultados con-
tradictorios sobre la relación entre el IA y los índices de TFC. En algunos
casos, los resultados fueron incluso contrarios a la hipótesis del origen ba-
rorreflejo de la TFC. En el Capítulo 6 se propone un modelo de regresión
no lineal para evaluar la influencia del IA y de la FC sobre la TFC tanto
en datos de estudio electrofisiológico y de registros Holter. Los resultados
mostraron que el modelo de regresión no lineal es capaz de explicar la in-
fluencia del IA sobre la TFC ,en pacientes sanos, de una forma acorde con
la hipótesis barorrefleja.



Abstract

The main objective of this doctoral Thesis, in the field of biomedical signal
processing, is to develop robust methods for cardiac signal analysis. It has
two specific objectives, namely, (1) to characterize atrial and ventricular
fibrillation (AF, VF), and (2) to assess, noninvasively, the baroreflex and
the Autonomic Nervous Systems (ANS) control of the heart rate.

Spectral analysis of electrograms (EGM) has been used to characterize
the average cycle (periodicity) and regularity of VF. However, relevant infor-
mation of the spectrum has been often discarded in this approach, such as
the harmonic structure or the spectral envelope. In Chapter 2, a parametric
method based on an extension of Fourier Series that accounts for narrow
band fluctuations is presented. This approach, called Fourier Organization
Analysis (FOA), is used to characterize the periodicity and irregularity, as
well as to provide detailed information about the spectral content of EGM
simulated in a computer model, and actual EGM recorded in Implantable
Cardioverter Defibrillator (ICD). Different conditions are studied, namely,
sinus rhythm, supraventricular tachycardia, ventricular tachycardia and ven-
tricular fibrillation. Parameters obtained using FOA improved the organiza-
tion measurements with respect to the classic approaches. Therefore, FOA
yields a more detailed and robust spectral description of EGM.

Advanced analysis of AF intracardiac EGMs aims to establish clinical
targets for ablation. Frequency domain methods estimate the dominant fre-
quency to identify cardiac sites with high activation rates as ablation targets.
However, they often discard relevant information in the spectrum, and they
might provide an incomplete characterization of complex AF signals. In
Chapter 3, a method to estimate the AF fundamental frequency based on
a kernel generalization of the correlation function for stochastic processes,
called Correntropy, is proposed. This approach provides a robust estima-
tion of AF periodicity, which could be a difficult problem in complex AF
signals. Complete characterization of the regularity and spectral content is
provided using FOA. AF intracardiac EGMs recorded during Electrophysi-
ological Studies (EPS) with different degree of complexity, visually selected
by an expert, are studied. Correntropy estimation of fundamental frequency,
combined with FOA, allowed to estimate the periodicity as well as to char-
acterize complex AF signals by using a multicomponent approach to FOA.

Spectral analysis of beat-to-beat time series to assess Heart Rate Vari-
ability (HRV) has been widely used in the literature. However, this approach
is very sensitive to the presence of noise, artifacts and false beat detections,
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which are a common problem in Holter recordings. In Chapter 4, a ro-
bust method is proposed to interpolate time series nonuniformly sampled, as
in HRV, based on Support Vector Machine (SVM) regression. A spectrally
adapted Mercer kernel, based in the autocorrelation of the beat-to-beat time
series, is proposed. This approach allows to perform a robust spectral analy-
sis of HRV signals, and it might avoid the time-consuming task of manually
correction of beat-to-beat time series from Holter recordings, which is needed
to obtain reliable spectral measurements.

Heart rate turbulence (HRT) response after a Ventricular Premature
Complex (VPC) has been shown to be a strong risk stratification criterion
in patients with cardiac disease. In order to reduce the noise level of the
HRT signal, conventional measurements use a patient-averaged of VPCs.
However, this approach provides only long-term HRT indexes and it does
not take into account local physiological conditions. In Chapter 5, a method
to denoise individual VPCs is proposed using a signal processing technique
based on SVM regression. HRT stimulated during EPS is used as a low-
noise gold standard. This approach provided HRT measurements, in a 24-h
Holter patient database, with significant reduction in the bias and the vari-
ance. SVM denoising yields short-term HRT measurements and improves
the signal-to-noise level of long-term HRT measurements.

HRT is known to be affected by several physiological factors, mainly heart
rate (HR) and coupling interval (CI) of VPC. The physiological hypothesis
to explain the HRT is a baroreflex response after the VPC. However, sev-
eral studies showed different results about the relationship between CI and
HRT parameters. In some cases results were contrary to the hypothesis of
baroreflex source of HRT. In Chapter 6, a nonlinear regression model is pro-
posed to assess the influence of CI and HR on HRT using data from EPS
and from Holter recordings. Results showed that the nonlinear regression
model is able to explain the influence of CI on HRT for healthy patients in
accordance with the baroreflex hypothesis.
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Introduction

This doctoral Thesis is in the field of biomedical signal processing. Physi-
ological signals, specifically cardiac electrical ones, are in general the result
of a complex process and they are contaminated with different sources of
noise and other physiological processes. This poses a real challenge for the
biomedical engineer who is faced with the trade-off of developing methods to
characterize biomedical signals and, at the same time, methods easy to in-
terpret. Generally, signal processing methods are either very simple, leading
to incomplete characterization but easy interpretation, or are very complex
and lead to correct solutions but difficult interpretation, so their actual clin-
ical applicability is doubtful. The aim of this doctoral Thesis is to develop
robust signal processing methods in cardiac analysis with the constrain to
be methods that provides interpretable and meaningful results. The Thesis
has two specific objectives (SO), namely: (1) to characterize atrial and ven-
tricular fibrillation (AF, VF); and (2) to assess, noninvasively, the Baroreflex
and the Autonomic Nervous System (ANS) control of the Heart Rate (HR).

Part I of this Thesis deals with the SO-1. In Chapter 2, a novel para-
metric method to characterize the spectral components of VF Electrograms
(EGM) is proposed. Two complementary approaches have been mainly fol-
lowed in spectral analysis to characterize VF signals, namely Dominant Fre-
quency Analysis (DFA) and Organization Analysis (OA). The former aims
to characterize the EGM periodicity, whereas the latter quantifies the signal
irregularity that remains unexplained by that periodicity [1]. However, these
descriptions have often discarded relevant information of the spectrum, such
as the harmonic structure or the spectral envelope. Moreover, it is not al-
ways guaranteed that a dominant frequency will give a good estimation for
the average cycle (periodicity). In this chapter, a unified, simple, and auto-
matic processing algorithm to provide a more detailed information about the
spectral EGM structure is proposed. The method, called Fourier Organiza-
tion Analysis (FOA), uses a Least Squares (LS) approximation of the EGM,
based on a modified harmonic Fourier Series model, closely related to the
OA description, accounting for narrow band fluctuations of each component
in the EGM Fourier Series. The work developed in this chapter has been
published in:

• Óscar Barquero-Pérez, José Luis Rojo-Álvarez, Antonio J. Caamaño,
Rebeca Goya-Esteban, Estrella Everss, Felipe Alonso-Atienza, Juan
José Sánchez-Muñoz and Arcadi García-Alberola Fundamental Fre-
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quency and Regularity of Cardiac Electrograms with Fourier Organi-
zation Analysis. Vol 57, Num 9, Pag 2168-2177. IEEE Transactions
on Biomedical Engineering. Sep 2010.

In Chapter 3, an extension of the method proposed in Chapter 2, to deal
with AF signals is proposed. It aims to take into account multiple compo-
nents and a robust estimation of the fundamental frequency. AF signals have
been often characterized with the same methods (DFA and OA) proposed
for the analysis of VF [2, 3]. However, some AF signals show a complex
structure which could not be completely characterized using the classical
approach. Hence, a new method is proposed to estimate the periodicity
of the AF signal using a kernel generalization of the correlation function
for stochastic processes, called Correntropy. Also, an extension of the FOA
method to account for multiple components contributing to the signal at
independent fundamental frequencies is proposed. The work of this chapter
has been published in the international conference:

• Óscar Barquero-Pérez, Leif Sörnmo, Rebeca Goya-Esteban, Inmacu-
lada Mora-Jiménez, Arcadi García-Alberola, José Luis Rojo-Álvarez.
Fundamental Frequency Estimation in Atrial Fibrillation Signals us-
ing Correntropy and Fourier Organization Analysis. 3rd International
Workshop on Cognitive Information Processing (CIP), Pag 1-6, Baiona
(Spain) 28-30 May 2012.

Part II of this Thesis deals with the SO-2. In Chapter 4, a novel method
is developed to interpolate the nonuniformly sampled beat-to-beat (RR-
interval) time series, based on support vector machine (SVM) regression.
RR-interval time series are used to study the Heart Rate Variability (HRV),
which, in turn, allow to noninvasively assess the control of the HR and its re-
lationship with cardiovascular mortality. HRV analysis is usually performed
on 24-h ambulatory ECG recordings (Holter). Spectral analysis of HRV
allows to identify the different oscillatory components involved in the HR
control, and it is usually identified with the activity of the ANS branches
(sympathetic and vagal) [4]. However, Holter recordings suffer from high
noise, which induces the presence of artifacts and beat misclassifications.
Conventional spectral analysis is very sensitive to these problems in Holter
recordings. In this chapter, a novel robust method is proposed for nonuni-
form interpolation based on SVM regression with the autocorrelation of the
observed sequence as a high performance kernel. The work developed in this
chapter has been published as a part of:

• Carlos Figuera, Óscar Barquero-Pérez, José Luis Rojo-Álvarez, Manel
Martínez-Ramón, Alicia Guerrero-Curieses, Antonio J. Caamaño.
Spectrally Adapted Mercer Kernels for Support Vector Nonuniform
Interpolation, Signal Processing, Vol 94, Pag 412-433, Jan 2014.

In Chapter 5, a method is proposed for denoising RR-interval segments
of 15-20 samples after ventricular premature contractions (VPC), so called
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VPC-tachograms, to study the Heart Rate Turbulence (HRT). In healthy
subjects, HRT shows an early acceleration and a late deceleration of the
HR. In patients with cardiac conditions, HRT is attenuated or even com-
pletely suppressed. Therefore, HRT has been used to assess the baroreflex
and ANS control of the HR after a VPC (non-sinusal beat). The usual pro-
cedure to assess HRT involves to average all the available VPC-tachograms
in a Holter recording, aiming to filter the noise present on individual VPC-
tachograms [5, 6]. However, this procedure needs a large number of VPC-
tachograms, and has the implicit assumptions of statistical independence on
the noise, which could be questioned from an electrophysiological point of
view. In this chapter, a robust denoising method based on SVM regression is
proposed. This approach allows to provide reliable assessment of HRT even
with few VPC-tachograms. Also, a new index to assess the HRT on sin-
gle denoised VPC-tachograms, called Turbulence Length, is proposed. The
work developed in this chapter has contributed to following publications:
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cardiac failure, Sep 2011.

In Chapter 6, the influence of several physiological variables on the HRT
is explained by means of a nonlinear regression model. The physiological
fundamentals of the HRT are based on a baroreflex source and, accordingly,
several physiological factors affect the HRT response. Namely, the HR and
the VPC prematurity are important factors affecting the HRT. The HR
influence on HRT has been explained and demonstrated in the literature,
so that, high HR yields an attenuation on the HRT response. However, the
study of the VPC prematurity influence on HRT has led to conflicting results
in the literature [6, 7]. In this chapter, a nonlinear ridge regression model is
proposed that is able to account for nonlinear relationships and interaction
terms. Results provided by the model in data from healthy subjects, as
well as in cardiac condition patients with good prognostic, agreed with the
baroreflex source of HRT hypothesis. The contributions of this chapter are
published in:

• Óscar Barquero-Pérez, Carlos Figuera, Rebeca Goya-Esteban, Inmac-
ulada Mora-Jiménez, José Luis Rojo-Álvarez, Javier Gimeno-Blanes,
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Chapter 1

Background

In this chapter an overview of the research field is presented. First, a brief
introduction to the cardiovascular system, and in particular to the heart, is
outlined. Second, the electrical activity of the heart to generate a coordi-
nated contraction (a beat) is outlined, as well as a brief introduction to the
ECG. Following, a description of the physiological background is presented
to understand the different problems tackled in this Thesis is presented,
namely VF, AF, HRV, and HRT.

1.1 Anatomy of the Heart
The cardiovascular system has as main function to facilitate the exchange
of oxygen, carbon, dioxide and nutrients between the cells and the outside
environment. The cardiovascular system ensures that adequate blood flow is
delivered to organs, so that this exchange can take place. The cardiovascular
system consists on two separate circulatory subsystems: the systemic and the
pulmonary. The heart connects both subsystems acting as a double pump,
one for each circulatory subsystem. The systemic circulation transports
the blood with oxygen and nutrients to the various muscles and organs,
where oxygen is partially exchanged with carbon dioxide, resulting in a blood
partially deoxygenated. The blood returns to the heart by the veins, and is
redirected to the pulmonary circulation, in which the partially deoxygenated
blood is carried to the lung tissues, where the carbon dioxide is exchanged
for oxygen in the alveoli. Finally, this oxygened blood returns back to the
heart and into the systemic circulation again, performing a complete cycle
on the cardiovascular system [8, 9].

The heart can be defined as a muscle organ whose main function is to
propel the blood into the cardiovascular system. The anatomy of the heart
is divided into two sides, right heart and left heart. Each side consists of
two chambers, the atrium where the blood enters from the veins, and the
ventricle where the blood is propelled into the arteries. The right heart
receives the blood from the systemic circulatory system and pumps it into
the pulmonary circulatory systems, whereas the left heart receives the blood
from the pulmonary system and pumps it into the systemic system [10, 11].

7
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Figure 1.1: Anatomy of the heart and electrical conduction system. Taken
from [11].

Figure 1.1 (left) represents a picture of the anatomy of the heart.

1.2 Electrical Activity of the Heart Electrocar-
diogram

The function of the heart as a blood pump is achieved by cardiac contrac-
tion, which is triggered by the propagation of an electric impulse through the
heart muscle (myocardium). Cardiac contraction is effective only if it is syn-
chronized, which is achieved by the electrical conduction system that allows
electrical impulses to spread rapidly, and in an organized way, throughout
the heart [11, 12], see Figure 1.1 (right).

Each cardiac cycle is triggered by an electrical impulse originated in
the sinoatrial (SA) node, which is a collection of cells with the ability to
automatically generate an electrical impulse, which spreads across the atria,
causing them to depolarize, and eventually, to contract impelling the blood
to the ventricles. The electrical impulse has only available one pathway to
enter the ventricles, which is the atrioventricular (AV) node. Here, a delay
is introduced a delay in the conduction for two reasons. First, it allows a
complete atrial depolarization-contraction, and therefore a complete passage
of blood from the atria to the ventricles. Second, it limits the frequency
of impulses travelling through AV node to the ventricle to prevent high
ventricular rates in some atrial arrhythmias. The electrical impulse leaving
the AV node enters the ventricle at the bundle of His, and then follows the left
and right bundle branches. Then, the impulse is conducted by the Purkinje
fibers at high velocity throughout the ventricles. These fibers conduct the
electrical impulse to the muscular walls of the ventricles, which contract and
force the blood out of the heart. This represents a complete electrical cycle
of a heartbeat.

The whole conduction system of the heart is very important because it
permits rapid, organized, and synchronized depolarization and contraction



Chapter 1. Background 9

0 200 400 600 800 1000 1200 1400

-1

0

1

2

P
duration

PQ interval

QRS
duration

ST
segment

QT interval

RR interval

P

R

Q

R

T

S

J

Time (ms)

A
m

p
li
tu

d
e 

(m
V

)

-2

Figure 1.2: Waves and intervals in a heart beat recorded in an ECG. Taken
from [11].

of the ventricles, which eventually allows for an efficient ventricular contrac-
tion [8].

The ECG is recorded by a number of electrodes attached to the body
surface. The standard 12-lead ECG is acquired using ten electrodes, three are
located on the wrists and ankle joints, and the remaining six are located on
the chest. When recording the ECG continuously over long periods of time,
only three electrodes are often used. During normal Sinus Rhythm (SR),
each heartbeat in the ECG signal consists of a P wave, a QRS complex and
a T wave. The P wave corresponds to atrial activation, the QRS complex to
activation of the ventricles, and the T wave to ventricular recovery [11, 12].
Figure 1.2 shows the different waves and intervals in a heart beat.

1.3 Fibrillatory Arrhytmias

Cardiac fibrillation is the rapid acceleration and spatial desynchronization
of mechanical contractions of the heart, and it is the leading cause of death
in the industrialized world [13, 14]. Cardiac fibrillation can occur both in
the atria and in the ventricles, called AF and VF, respectively. ECG record-
ings of fibrillation are characterized by rapid, irregular electrical activity.
Figure 1.3 shows examples of AF and VF. VF is a lethal arrhythmia and
leads to death if not stopped within minutes. Although AF is not immedi-
ately lethal, it is the most common sustained cardiac arrhythmia in clinical
practice [13, 15].

Spectral analysis of cardiac fibrillation signals has increased in the recent
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(a) AF ECG recording

(b) VF ECG recording

Figure 1.3: AF and VF ECG recordings. ECG recording in AF presents
the complex QRS since the electrical impulse reaches the AV node, and then
propagates normally in the ventricles. Arrow highlights the absence of P
wave.

years [16, 17]. Basically, spectral analysis aims to characterize the regularity,
the averaged cycle of the signal, and the organization, in the sense of how
different is the signal from pure sinusoidal behaviour.

In the remaining of the section, AF and VF are explained in more detail,
as well as the usual signal processing techniques.

1.3.1 Atrial Fibrillation

AF is the most common sustained cardiac arrhythmia, occurring in 1 –
2% of the general population. Over 6 million Europeans suffer from this
arrhythmia, and its prevalence is estimated to at least double in the next 50
years as the population ages [15].

In AF, the origin of the electrical impulses can be at different areas in the
atria, instead of the sinusal node. Several impulses originated at different
locations in the atria spread throughout the atria causing uncoordinated
rapid atrial contractions. As a consequence of the rapid atrial rate during
AF, the ventricular response is rapid and irregular. According to [15], one
in five of all strokes is attributed to this arrhythmia. Ischaemic strokes in
association with AF are often fatal, and those patients who survive are left
more disabled and more likely to suffer a recurrence than patients with other
causes of stroke.

The electrophysiological mechanisms of AF are not yet completely under-
stood. Three main mechanisms have been proposed to explain the initiation
and perpetuation of AF:

Focal mechanisms. Haïsaguerre et al. [18] reported that AF is often trig-
gered by a focal activity. Pulmonary veins, because of shorter refrac-
tory periods and abrupt changes in myocite fiber orientation, have a
strong potential to perpetuate AF.

Multiple wavelet hypothesis. Moe et al. [19] proposed that AF is per-
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Figure 1.4: Bipolar EGMs from a patient in AF during an EPS.

petuated by continuous conduction of several independent wavelets
propagating through the atria in a chaotic way. Fibrillation wave-
fronts continuously undergo wavefront–waveback interactions, result-
ing in wavebreak and the generation of new wavefronts, which in some
conditions allow to sustain the AF.

Wandering rotors. Jalife et al. [20] proposed that AF can be the result of
the interaction between self-sustaining rotors, this is vortices of elec-
trical spiral waves. Such rotors are self-sustained and may be station-
ary, or they may drift but subsequently anchor to anatomical hetero-
geneities in cardiac muscle.

In AF, the atria depolarize in an uncoordinated fashion, which is reflected
in the ECG by the replacement of the P wave by an undulating baseline,
where the waves are called f-waves, see Fig. 1.3(a). Several techniques have
been proposed to remove ventricle activity to analyze the AF in ECG record-
ings [21].

Intracardiac recordings, EGMs , of AF are usually obtained during Elec-
trophysiological Studies (EPS). The usual procedure is to insert several
catheters, with several recording electrodes, into the heart through the veins.
Atrial activity is recording by electrodes from the catheter, usually the elec-
trical potential measured between two adjacent electrodes, 2-5 mm distance,
is recorded in bipolar EGMs. Figure 1.4 shows three bipolar EGM intracar-
diac signals in AF from a patient in an EPS.

There has been a recent increase interest on the analysis of AF in the
frequency domain and in its application to the clinical environment. In-
deed, several clinical targets for AF ablation use the EGM spectral repre-
sentation. These targets aim to give a regular description in the frequency
domain in terms of low Cycle Length (CL) and/or high regularity regions.
Therefore, the identification of sites with high dominant frequency, fd, have
been proposed as ablation targets [2, 22]. Bipolar and monopolar EGMs can
have very sharp waveforms corresponding with rapid depolarization, and this
morphology can cause problems identifying fd in spectral analysis. A set of
preprocessing steps has been proposed to condition the signal [3, 23]:

• Bandpass filtering at 40-250 Hz.
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(a) Original AF EGM (b) Preprocessed AF EGM

Figure 1.5: Comparison between the original (a) and the preprocessed (b)
bipolar EGM during AF.

• Rectification.

• Lowpass filtering at 20 Hz.

Figure 1.5 shows a bipolar EGM during AF (a) and the corresponding
preprocessed signal (b).

Additionally, regularity analysis is used aiming to measure the relative
contribution of the almost-periodic component of an EGM in terms of its
signal power. Conventional organization parameters are defined in the fre-
quency domain. The power of the components in a predetermined narrow
band (around either the fd peak or the harmonic peaks) is often used to
account for the relevance of the almost-periodic component. Two parame-
ters are typically used. First, The Regularity Index, ri, which was originally
defined as the ratio of power in the fd bandwidth, and the total power in
the band [2–30] Hz [2, 24]. And second, the Organization Index, oi, which
is another measure defined as the ratio of the power in the fd bandwidth,
combining up to four harmonic peaks, and the total power in the band [2–30]
Hz [25, 26].

1.3.2 Ventricular Fibrillation

VF is one of the major arrhythmias associated with Sudden Cardiac Death
(SCD). In the United States alone, approximately 300, 000 patients die sud-
denly each year because of VF. In Europe, the overall rates are similar to
those in United States, with significant geographic variations reported [27].

Ventricular fibrillation (VF) is one of the major arrhythmias associated
with cardiac arrest. During VF the ventricles do not beat in a coordinated
way, leading to inefficient beats and no cardiac output [12]. Consequently,
the arterial pressure suddenly drops to exceedingly low levels, and death
usually ensues within less than ten minutes as a result of lack of oxygen
delivery to vital organs [28].

The mechanisms underlying VF are not yet completely understood.
There exists two different theories to explain the initiation and maintenance
of VF: the multiple wavelet theory proposed by Moe for the AF, which
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(a) ECG VF recording

(b) EGM-ICD VF recording

Figure 1.6: VF recording from an ECG (a) and a monopolar EGM from an
ICD (b).

states that the VF dynamics are the cause of multiple interaction between
multiple wavefronts [19]; and the rotor theory, which explains the activation
of the ventricles at exceedingly high frequency by the existence of rotors
that may drift at high speeds producing changes in the beat activations
sequences, or may be quasi–stationary and their wavefronts breakup at
varying distances [28].

Recordings of VF, both in ECG and EGM signals, are characterized by
irregular changes in the morphology complexes, namely in amplitude and
frequency [28]. Figure 1.6 shows examples of VF on ECG (a), and on EGM
from an Implantable Cardioverter Defibrillator (ICD) (b).

Even though VF is usually described as a fractionated and chaotic heart
activity, some studies state that there is some spatial-temporal organiza-
tion [29]. Frequency domain analysis of VF characterize the periodicity and
irregularity of the VF in a similar way as in the AF. VF is characterized by
a spectral distribution concentrated in the band between 3 and 7 Hz. VF
signals have to be preprocessed to remove base wander line and high fre-
quencies, above 15-20 Hz [30]. The main measures used in the VF frequency
domain analysis are: fd, which is the frequency for which the absolute value
of the Power Spectral Density (PSD) occurs [23, 30, 31]; and ri is defined
as the ratio power in a 75% bandwidth around the fd, to the power of the
[1–15] Hz band [2].

1.4 Heart Rate Variability

HRV is the term used to describe the variations in the time intervals be-
tween consecutive heart beats. HRV is usually studied by analyzing the
RR-interval time series (beat-to-beat time interval) derived from the ECG.
The extraction of the RR-intervals from the ECG can be achieved by mea-
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Figure 1.7: RR intervals time series extracted from an ECG. The N label
means normal beat. The time intervals between successive beats are in mil-
liseconds.

suring the time intervals between QRS complexes, which are the electrical
marks registered in an ECG when a cardiac beat occurred. RR-interval time
series (sometimes called RR tachogram) is usually constructed as a function
of the interval number [32] see Figure 1.7.

HRV is due to the activity of the SA node, as the source of the repeti-
tive impulses that generate the normal beats [33]. The SA node is in turn
influenced by the ANS, namely by the parasympathetic and sympathetic
branches, which interact in a complex way with a variety of reflexes and
systems [34]. The general behavior is outlined in Fig 1.8. HRV has been
suggested as a noninvasive tool to assess the state of the system that con-
trols the heart rhythm and its relationship with cardiovascular mortality [4].

The clinical relevance of the HRV has been established in several studies.
Hon and Lee reported in 1965 that fetal distress was preceded by alterations
in the interbeat intervals. Wolf et al. established in 1977 an association of
higher risk of post-infarction mortality in patients with reduced HRV [4, 35].
Indeed, it has been shown that low HRV is associated with some cardiac
illness: myocardial infarction, atherosclerosis, heart failure, and even with
ageing [36].

The underlying assumption, when studying HRV, is that short-term and
long-term variations in HR have different physiological origins and the mag-
nitude of these variations has been shown to be indicative of the autonomic
state of the subject [37]. For instance, after a myocardial infarction, the in-
nervation level of the heart decreases, and part of the nervous control of this
organ can be lost. The HRV reflects this control loss and it makes possible
the classification of SCD risk groups [35]. The degeneration of the ANS due
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Figure 1.8: HRV is due to the SA node activity which is modulated by the
complex interactions between various systems.

to the ageing can also be inferred by the analysis of the HRV. Therefore,
it would be possible to characterize different cardiovascular states by just
measuring the HRV.

The methods used in HRV analysis can be very roughly divided into
three main groups, namely, time-domain methods, frequency-domain meth-
ods, and nonlinear methods.

Time-domain methods are the simplest ones in computational terms.
They treat the RR-interval sequence as an unordered set of intervals and
employ different techniques to express the variance of such data. They can
be split into two categories [4]: statistical descriptors, and geometrical de-
scriptors. Table 1.1 summarizes the most common time-domain descriptors
for characterization of HRV, whereas Table 1.2 summarizes the most com-
mon geometrical descriptors.

Frequency-domain methods are based on PSD estimation, which provides
the basic information on how the power (i.e. the variance) is distributed as
a function of frequency [38]. The different systems modulating the HR (i.e.
modulating the behavior of the ANS) oscillate spontaneously with specific
frequencies. Thus, when the PSD is taken from a HRV signal, it is expected
to extract information on those systems related to cardiac autonomic func-
tion, that is, to identify the harmonic frequency components that correspond
to each system. It is possible, for example, to quantify the power of the dif-
ferent spectral components in PSD as a measurement of the contribution of
each system to the global variability [11, 39, 40].

PSD is generally estimated from the RR-Interval time series. Since it is a
representation of the beat-to-beat variability, it is inherently a discrete and
uneven time series (this is the reason for the variability). However, almost
all of the PSD estimation methods require evenly sampled data. The two
usual approaches are:
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Descriptor Units Description

AVNN ms Mean of RR intervals.

SDNN ms Standard deviation of all RR intervals.

SDANN ms Standard deviation of the averages of RR intervals

in all 5 minute segments of the entire recording.

SDNNindex ms Mean of the standard deviations of RR intervals

for all 5 minute segments.

RMSSD ms The Square root of the mean of the sum of the squares

of differences between adjacent RR intervals.

NN50 Number of pairs of adjacent RR intervals differing

by more than 50 ms in the entire recording.

pNN50 % NN50 divided by the total number of NN intervals.

Table 1.1: Statistical descriptors of the HRV.

Descriptor Units Description

Triangular index ms Total number of all NN intervals divided by the

maximum of the histogram of all RR intervals.

TINN ms Base width of the minimum square difference

triangular interpolation of the highest peak

of the histogram of all RR intervals.

Lorenz plot scattering ms Representation of each RR interval duration versus

the duration of the previous interval.

Differential index ms Difference between the widths of the histogram

of differences between adjacent RR intervals

measured at selected heights.

Logarithmic index Coefficient ϕ of the negative exponential curve

K exp−ϕt best approximation of the histogram

of absolute differences between adjacent intervals.

Table 1.2: Geometric descriptors of HRV.

• To assume that the data are, in fact, evenly sampled, and then apply
the PSD techniques directly to the RR-Interval time series. However,
the units in frequency domain are not anymore Hz. It has been called,
instead, beatquency domain [41]

• To interpolate and re-sample the RR-Interval time series in order to
obtain an evenly sampled time series and then apply PSD techniques
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Figure 1.9: PSD estimation of the same RR-tachogram. Comparison between
nonparametric methods (fine line) and parametric methods (bold line), Welch
periodogram and AR model respectively.

on evenly data [11]. In this approach, the units are Hz.

The spectral analysis of HRV may be applied to short-term recordings, of-
ten 5 minutes segments, or to long-term recordings, usually 24 hours record-
ings, which is the standard for Holter recordings in clinical environment. In
short-term recordings, the PSD estimation shows three main spectral com-
ponents [4, 42, 43]:

1. Very Low Frequency (VLF): dc–0.04 Hz.

2. Low Frequency (LF): 0.04–0.15 Hz.

3. High Frequency (HF): 0.15–0.4 Hz.

Table 1.3 shows indices in the frequency domain.
The PSD measures in the LF and HF bands are closely associated with

autonomic balance. An increase in parasympathetic activity is primarily re-
lated to an increase of the HF power, whereas an increase in sympathetic
activity is related to an increase of the LF power. However, it is also accepted
that the LF band has influences from the parasympathetic activity [11, 39],
see Figure 1.9. The ratio between the power corresponding to the two com-
ponents serves as an index of autonomic balance [4].

Power spectral analysis of the HRV in long-term recordings (24 hours) in-
cludes an ultra-low frequency component (ULF), in addition to VLF, LF, and
HF components. The oscillations in the ULF and VLF bands are thought
to be due to long-term regulatory mechanisms such as the thermoregula-
tory system, the renin-angiontensin system and other factors, but the exact
relation is not clear [39].
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Descriptor Units Description Frequency range

5-min total power ms2 The variance of RR-intervals ≤ 0.4 Hz

VLF ms2 Power in VLF band ≤ 0.04 Hz

LF ms2 Power in LF band 0.04− 0.15 Hz

LFnorm n.u Normalize LF power

HF ms2 Power in HF band 0.15− 0.4 Hz

HFnorm n.u Normalize HF power

LF/HF Ratio LF[ms2]/HF[ms2]

Table 1.3: HRV frequency domain indices.

Descriptor Description

Chaos Theory

Correlation Dimension Fractal dimension of the attractor in the sate space.

Lyapunov exponents Sensitive dependence on initial conditions.

Fractal time series

1/f spectrum Long-term correlation analysis frequency domain.

Dentrended fluctuation analysis Long-term correlation analysis.

Entropy

Approximate Entropy Irregularity assessment.

Sample Entropy Irregularity assessment.

Multiscale entropy Irregularity assessment at different time scales.

Table 1.4: HRV Nonlinear indices.

Nonlinear methods to assess the HRV have been proposed recently. The
rational can be explained because the irregular and complex HR fluctuations
observed during normal SR in healthy subjects, even at rest, are due in part
to deterministic chaos, and that a variety of diseases may involve a (paradox-
ical) decrease in this type of nonlinear variability [44, 45]. Linear methods
do not provide information on nonlinear structures, since they assume that
the time series under study is the output of a linear system. Therefore,
the methods based on chaos theory and nonlinear theory have gained recent
interest, in order to extract all the information that the HRV signal conveys.

Nonlinear measures used in HRV analysis can be divided into three cat-
egories, namely, chaos theory indices, fractal indices and indices from infor-
mation theory. Table 1.4 shows a short list of indices commonly found in
HRV literature.
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Figure 1.10: Example of an ECG with the presence of a VPC (top) and the
RR-Interval time series representation (bottom).

1.5 Heart Rate Turbulence

The term HRT was firstly used by Schmidt et al. [5] to describe the short-
term fluctuations in sinus HR that occur following VPCs [6]. Figure 1.10
shows an example of an ECG with a VPC (top) and the RR-interval time
series (bottom). Even with the presence of noise, it is clearly visible the
biphasic response of the HR on the RR-interval time series after the VPC
and the compensatory pause.

In normal subjects, sinus rate initially accelerates and then decelerates
compared with the HR previous to the VPC. Finally, the HR returns to
the baseline. Figure 1.11 shows a, somewhat, clean example of RR-interval
time series and the different parts of the HRT. This RR-intervals sequences
comprising 5 sinus RR-intervals before VPC, the compensatory pause, and
subsequent 15 (or 20) sinus RR-intervals, is usually called VPC-tachogram.

The physiological mechanism of HRT is supposed to be based on a barore-
flex source, which has been confirmed in the literature [5, 6]. According to
this, systolic blood pressure produced by the VPC is lower than previous
beats, which leads to an inefficient baroreflex input. In turn, it causes vagal
inhibition, increasing the HR [6]. Subsequent deceleration is due to the en-
suing compensatory pause and the increase in blood pressure, which induce
a vagal stimulation and sympathetic withdrawal [46].

HRT is usually assessed in Holter recordings. A previous step to remove
inadequate VPC-tachograms is required for obtaining accurate HRT mea-
surements. The guidelines indicate to remove a VPC-tachogram when one
of the following conditions are fulfilled [47]:

• The five sinus beats preceding the VPC and the 15 sinus beats following
the compensatory pause include some arrhythmia, artifacts or false
classifications.
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Figure 1.11: Biphasic response after a VPC in an RR-interval time series.
After the VPC there exists a compensatory pause following by the HRT re-
sponse: early acceleration and late deceleration.

Figure 1.12: Example of the averaging procedure to improve the signal-to-
noise ratio. The thick line represents the average of all available individual
VPC-tachograms.

• RR-intervals < 300 ms.

• RR-intervals > 2000 ms.

• Difference between consecutive RR-intervals higher than 200 ms.

• Difference between any RR-interval and the reference interval (mean
of the five sinus intervals preceding the VPC) higher than 20%.

• Prematurity smaller than 20% of the reference interval.

• Compensatory pause smaller than 20% of the reference interval.

The next processing step is to remove background effects and noise
present on individual VPC-tachograms. The usual procedure is to aver-
age all the available VPC-tachograms to improve the signal-to-noise ratio.



Chapter 1. Background 21

(a) TO (b) TS

Figure 1.13: TO (a) and TS (b) HRT parameters. TO quantifies the early
acceleration, while TS quantifies the late deceleration.

(a) Healthy (b) High− risk

Figure 1.14: Averaged VPC-tachogram for a healthy subject (a), and for
a patient at high-risk after a myocardial infarction (b), in which HRT is
blunted.

A minimum of five VPC-tachograms is required to perform the average [47],
see Fig. 1.12.

The first phase of the HRT (early acceleration) is quantified by Turbu-
lence Onset (TO), which is calculated using the following equation:

TO =
(RR1 +RR2)− (RR−2 +RR−1)

RR−2 +RR−1
× 100[%] (1.1)

where RR−2 and RR−1 are the two RR-intervals immediately preceding the
VPC coupling interval, and RR1 and RR2 are the RR-intervals immediately
following the compensatory pause, see Figure 1.13(a). The second phase of
the HRT (late deceleration) is quantified by Turbulence Slope (TS), which
is the slope of the steepest regression line observed over any sequence of five
consecutive RR-intervals within the first 15 sinus rhythm RR-intervals after
the compensatory pause, see Figure 1.13(b).

Patients at high risk showed an attenuated HRT or even entirely miss-
ing. This difference on the HRT response has been proven to be a powerful
predictor of mortality and SCD [5, 48]. Figure 1.14 shows two averaged
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VPC-tachograms, the left (right) panel corresponding to a healthy subject
(to a patient at high-risk after miocardial infarctin). High-risk patients are
characterized by depressed HRT, expressed as the lack of an immediate ac-
celeration, or even deceleration of a sinus rhythm (positive values of TO),
and an attenuated subsequent deceleration with lower TS values (flattened
slope) [49]. It has been suggested that HRT, being a vagally-dependent ef-
fective measure of baroreflex sensitivity related to the advancement of heart
failure, might be used as a marker of congestive heart failure progression.
Indeed, in patients with heart failure regardless of etiology, HRT consistently
predicted heart failure progression and all cause mortality [49]. HRT seems
to be particularly useful in identifying high-risk patients with preserved left
ventricular function, the group not covered by current indications for ICD.
ISAR-HRT [48] was the first study that showed independent role of the HRT
in predicting mortality not only in patients with significantly decreased Left
Ventricular Ejection Fraction (LVEF), but especially in those with LVEF
above 30%.
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Chapter 2

Ventricular Fibrillation
Characterization with Fourier
Organization Analysis

2.1 Introduction

Analysis of intracardiac EGMs in cardiac electrophysiology has often been
addressed by using time domain parameters, such as activation times and
voltage amplitudes [50, 51]. Early descriptions of EGM in the frequency
domain had few implications for clinical practice [29, 52], however, there
has been a recent increase in interest in its application to the clinical envi-
ronment, and several clinical targets for AF ablation use the EGM spectral
representation. These targets aim to give a regular description in the fre-
quency domain in terms of low CL and/or high regularity regions [2, 22].
Such spectral features have been used both in electrical and in optical map-
ping recordings, during AF and VF [16, 53, 54, 55, 56]. In [57], EGM from
ICDs were also analyzed during SR and ventricular tachycardia (VT).

Two complementary approaches have been mainly followed in spectral
analysis applied to cardiac mapping systems: DFA and OA [16, 25]. The
former aims to characterize the EGM periodicity using the averaged CL of a
non-purely periodic rhythm (usually AF or VF), whereas the latter quantifies
the signal energy that remains unexplained by that periodicity. However,
these descriptions have often discarded relevant information of the spectrum,
such as the harmonic structure or the spectral envelope. Moreover, it is not
always guaranteed that a dominant frequency will give a good estimation of
the averaged CL. In [58], the authors show that there is a poor correlation
between the EGM average CL and the dominant frequency in patients with
persistent AF. These drawbacks can lead to incomplete understanding of the
information in DFA and OA spectral parameters, which are further explored
in this chapter.

A unified, simple, and automatic processing algorithm is proposed for:
(1) improving the parameters estimated from DFA and OA; and (2) giving
more detailed information about the spectral EGM structure. The proposed

25
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method, called FOA, uses a LS approximation of the EGM using a modified
harmonic Fourier Series signal model, closely related to the OA description,
accounting for narrow band fluctuations of each component in the Fourier
Series. The fundamental frequency, used in our method as an estimation of
the inverse of the CL, is first estimated according to the best LS fit to the
EGM as a function of the signal model in terms of this parameter. Then,
a set of parameters from the best model is used to describe the spectral
structure and organization of the signal.

2.2 Background

Spectral parameters for DFA and for OA have been defined under the im-
plicit assumption that the underlying signal consists of an almost-periodic
component plus an irregular component [16, 25]. On the one hand, DFA aims
to determine the averaged CL of the almost-periodic component in an EGM,
and for this purpose, fd has been defined as the frequency of the maximal
absolute value of its spectrum P (f). The parameter fd is obtained either
directly from the EGM spectrum, or by using an auxiliary signal, obtained
by filtering and rectifying the EGM [23]. This last method is commonly
used as an automatic procedure for obtaining the averaged CL estimation
of an EGM. An additional parameter, called dominant frequency bandwidth
bw(fd), is sometimes obtained. This parameter is defined as the difference
between the upper and lower frequencies for which the spectral maximum
peak falls to 75% of its value.

OA takes a different approach and aims to measure the relative contri-
bution of the almost-periodic component of an EGM in terms of its signal
power. Conventional organization parameters are defined in the frequency
domain. The first step of the calculation is to estimate the underlying CL
(usually from DFA). Next, the power of the components in a predetermined
narrow band around either the fundamental peak or the harmonic peaks, is
used to account for the relevance of the almost-periodic component. Typ-
ically two parameters are used. The parameter ri, which was originally
defined as the ratio of power in the dominant frequency bandwidth, and the
total power in the band of interest. In this work we use the the B band
(2–30 Hz for AF, and 2–15 Hz in VF) [2, 24]. Later, oi was defined. This is
the ratio of the power in the fundamental frequency bandwidth, combining
up to four harmonic peaks, and the total power in the B band [25, 26].

Though highly informative, the parameters yielded by DFA and OA (fd,
bw(fd), oi, and ri) give an incomplete spectral description of the signals.
Another important descriptor is the spectral envelope, which for a purely
periodic signal is given by the Fourier Transform of a single cycle. For
an almost-periodic signal, the spectral envelope is still (roughly) related to
the averaged Fourier Transforms of consecutive cycles. For EGM analysis
purposes, the spectral envelope can be seen as the spectrum of an isolated
arrhythmia complex, which is dependent on the morphology of the EGM,
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but independent from its CL.
In a purely periodic signal, harmonic frequencies are the integer multiples

of fundamental frequency f0, that is, fk = kf0. DFA and OA parameters
have been used to analyze the differences between spontaneous and induced
VF episodes [59], and to study the self-termination of VF episodes [60] in
ICD stored EGM. The spectral envelope yields a spectral representation that
has no harmonic structure, and hence it contains explicit information about
the underlying physiological phenomena, as well as about the acquisition
characteristics. In some works, the spectral profile of the harmonics showed
significant differences between patients with inferior and anterior myocar-
dial infarction, whereas the differences in fd, fd from DFA, hereafter called
fd_DFA, and oi were non-significant [61]. There are other works where the
spectral envelope is used as a feature in a discrimination scheme of ventric-
ular arrhythmias [62, 63].

Parameters from DFA and OA can even become inaccurate in some con-
ditions, given that fd will not always be the same as f0. This risk holds,
even when using the automatic algorithm in [23]. An operating definition
for f0 in the presence of harmonic structure was presented in [59, 60, 61].
It is defined as the averaged inter-harmonic separation. According to the
theoretical properties of the Fourier Transform of periodic signals this yields
an estimation of the inverse of the CL, when harmonic structure is present
in the EGM [64]. This definition of fundamental frequency, however, has not
yet been implemented in an automatic signal processing algorithm.

2.3 Fourier Organization Analysis

In this section, FOA algorithm is proposed, as a generalized version of both
DFA and OA, by using the well-known principles of spectral analysis and
signal approximation. First, the signal model and the approximation using
LS principles are presented. Then, strategy for automatic estimation of f0 is
detailed. Finally, periodicity and organization EGM parameters used within
the FOA algorithm are described.

2.3.1 Fourier Organization Analysis Signal Model

Let EGM(t) be a continuous time EGM signal. If it was a purely periodic
signal with fundamental period T0, its Fourier Series representation would be
given by EGM(t) =

∑K
k=1Ak cos (2π (kf0) t+ φk), where f0 = 1/T0 is the

fundamental frequency. Ak and φk representing the amplitude and phase
for each harmonic component respectively. K represents the number of har-
monics.

Three additional elements can be introduced into this signal model. First,
additive noise can be present, denoted by e(t). Second, a digitized version
of EGM(t) during a given acquisition time interval is used, which yields N
samples acquired at a rate of fs samples per second. Under these conditions,
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the spectral resolution of a nonparametric Fourier-based spectral analysis
procedure is about ∆ = fs/N Hz. Third, EGM(t) will not be purely peri-
odic in real recordings, but it will be almost or near-periodic. This can be
observed by the presence of narrow-band structure (harmonic peaks) in the
signal spectrum.

In the case of OA parameters, spectral components in a narrow band-
width of the spectral peaks contribute to the quantification of the signal
regularity, e.g., ri, as defined in [2]. It is computed by taking into account
the power at the dominant frequency and at its adjacent frequencies. In a
Fourier-based spectral analysis this correspond to the spectral resolution ∆.
A similar idea can be included in our model, by considering two additional
sinusoidal components for each harmonic peak, whose frequencies are the
harmonic component plus and minus ∆ Hz. The signal model for EGM(t)
is given by:

EGM(t) =
K∑
k=1

Ak cos (2π(kf0)t+ φk)

+
K∑
k=1

A−k cos
(
2π(kf0 −∆)t+ φ−k

)
+

K∑
k=1

A+
k cos

(
2π(kf0 + ∆)t+ φ+

k

)
+ e(t)

(2.1)

where A+
k , A

−
k , φ

+
k , φ

−
k , are the amplitudes and phases related to the near-

periodicity associated with the harmonics. This signal model can be ex-
pressed in an abbreviated form, EGM(t) = sf0(t) + e(t), where sf0(t) de-
notes the organized or near-periodic component of EGM(t) that is asso-
ciated with f0. Recall that f0 corresponds to the inverse of the averaged
CL, or fundamental period T0, in the time domain. The model parameters
{Ak, A+

k , A
−
k , φk, φ

+
k , φ

−
k } can be estimated by using the discrete-time version

of the EGM, (2.1), i.e, EGM [n] = EGM(n/fs), where n ∈ Z is a discrete-
time integer index, by using a LS projection onto a Hilbert signal space
of sampled sinusoids containing the fluctuations. Therefore, a Fourier Se-
ries expansion is proposed that considers two additional sinusoidal neighbour
components for each harmonic component, the coefficients for this expansion
being estimated using LS.

In order to use the FOA signal model in (2.1), the following steps are
necessary:

1. Estimation of f0 and periodicity description. This step provides the
estimation of the main rhythm. An automatic method is proposed
that searches for the argument that minimizes the Mean Square Error
(MSE) for FOA signal model in (2.1) as a function of f0.

2. Signal model fitting and organization description. In this step, FOA
signal model is fitted to the EGM, using f ∗0 as estimated in the pre-
vious step. The coefficients of the signal model are again computed
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by LS procedure. Therefore, coefficients are estimated by minimiz-
ing, ‖Sa − EGM‖2, where a are the coefficients of the model, a =
{Ak, A+

k , A
−
k ; k = 1, . . . , K}; S is the matrix of sine and cosine base sig-

nals, and EGM is the column vector EGM. Coefficients are estimated
by using the Moore-Penrose pseudoinverse, a = (STS)−1STEGM .

These steps are further explained in the next subsections.

2.3.2 Automatic Estimation of f0
FOA signal model has assumed that f0 is known, but in practice f0 is also
an unknown parameter and it has to be estimated. A simple automatic
estimation method is proposed using the FOA signal model, consisting of
fitting the signal model in (2.1). Fitting means, it is needed to calculate
coefficients using LS, for a set of values of f0 in an adequate frequency range
for search, f0 ∈ [fl, fh] Hz. Let us denote the signal model fitted for each f0
in that range, by ŝf0(t). The MSE between the signal and the fitted model
is computed as a function of f0, this is, MSE(f0) = ‖EGM [n] − ŝf0 [n]‖2.
The best value of f0 is then the argument that minimizes MSE(f0):

f ∗0 = arg min
f0

MSE(f0), f0 ∈ [fl, fh] Hz. (2.2)

where f ∗0 is the optimum value to be used as the fundamental frequency for
the FOA signal model (see Fig 2.2).

In some cases, subharmonics of f0 have been observed to give low MSE
values, yielding inadequate f ∗0 estimations. These cases can be readily iden-
tified and corrected by noting that the spectral profile becomes a strongly
oscillating series.

2.3.3 Fourier Organization Parameters

The implicit relationship between the signal model in (2.1) and parameters
oi and ri, allows us to define an index for quantifying the regularity of the
signal. This is given by the power ratio between the near-periodic component
and the EGM. For the estimated fundamental frequency f ∗0 , the model is
fitted to the signal using LS procedure, and then, the EGM can be modeled
as:

EGM [n] = ŝf∗0 [n] + e[n] (2.3)

Take energy ratios, and then regularity coefficients are calculated as:

p1 =
‖ŝf∗0 [n]‖2
‖EGM [n]‖2 , pe =

‖e[n]‖2
‖EGM [n]‖2 (2.4)

Note that p1 is just a generalization of oi and ri parameters. Note also that
pe accounts not only for the noise, but also for any additional component
not included in p1 and not related to f ∗0 . Previous parameters quantifying
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organization (oi and ri) implicitly assume a defined periodicity in the sig-
nal, hence organization being referred to the quantification of the agreement
with that periodicity. A similar framework is followed for parameter p1 mea-
suring the agreement of the signal with periodicity in f0. This represents
an operative definition for the organization concept, in which periodicity
and organization are jointly searched, and the chosen periodicity is given
by the higher organization that can be obtained from the adjustment of the
near-harmonic signal model.

Other spectral parameters can be readily obtained from signal model
(2.1). Trivially, dominant frequency is simply the frequency for which the
maximum spectral amplitude occurs, this is, fd = arg max

f
{A−k , Ak, A+

k ; k =

1, . . . , K}. The set of modulus parameters as Mk = A−k + Ak + A+
k can

also be defined, which represents the modulus for the kth component, taking
into account the kth harmonic and its corresponding sinusoidal fluctuation
components.

A good estimation of f ∗0 is a fundamental step in the spectral analysis of
EGM signal recordings, since not only does this parameter accounts for the
CL, but also all the other organization parameters are directly related to it.
This holds also for DFA and OA parameters. As previously stated, the use
of fd instead of f ∗0 can be misleading in EGM with non-low-pass spectral
envelopes, and even the use of the automated algorithm in [31] can give
incorrect estimates if it is not subsequently supervised. In particular, when
applying FOA, slight deviations from an adequate value of f ∗0 will reduce the
value of the p1 coefficient, leading to inaccurate interpretations of the EGM
organization and irregularity. The number of harmonics (K) to be used in
the model is also a practical issue, and it has to be previously fixed. Is is
estimated by dividing the signal bandwidth to the value of f ∗0 .

In summary, FOA is closely related to conventional nonparametric spec-
tral analysis and to DFA and OA. Its main advantage is that FOA gives
a unified and detailed description of the spectrum and organization by the
application of an automatic algorithm.

2.4 Simulations

2.4.1 Computer Model

A computer model [65] was used to simulate examples of monopolar and
bipolar EGM recorded in different and simple electrophysiological condi-
tions (see Fig. 2.1). In brief, a rectangular grid of 1 × 2 cm (80 cell groups
per cm) was constructed for discretizing a 2-dimensional tissue model. Exci-
tation dynamics were given by a cellular automaton with three states (rest,
activated, refractory), where transitions were controlled by static restitution
curves of the action potential duration and of conduction velocity in terms
of the diastolic interval. Voltage levels were calculated by using a prototype
action potential, whose time duration was modified according to restitution
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(a) (b)

(c) (d)

Figure 2.1: Simulation results: EGM and spectra, for bipolar and monopolar
recordings in each simulated electrophysiological condition: (a) Plane wave-
front; (b) Focal activation; (c) Anchored rotor; (d) Fibrillatory conduction.
Spectral peaks are denoted by crosses (fd_DFA), solid circle (fd), and 3rd to
5th harmonics (empty circles) estimated by DFA-OA method. Dotted vertical
lines in the spectra indicate bw(fd_DFA) and bw(fd). Solid vertical lines in
the spectra indicate f0 estimated by FOA method. Inbox subpanels show a
snapshot of the action potential simulation (upper) and the simulated EGM
(lower).

properties. Diffusion rules yielded action potential propagation along the
tissue. An EGM recording model, according to the volume conductor equa-
tion in a homogeneous medium [66], was tuned for modeling simultaneous
monopolar and bipolar recordings. A monopolar electrode was placed at
x = 1.5 cm, y = 0.5 cm, 0.2 cm height. The bipolar electrode configuration
consisted of that electrode at the positive pole, and a negative electrode at
x = 1.52 cm, y = 0.52 cm, 0.2 cm height. Simulated EGM were recorded at
1600 samples per second (see [65] for details).

Several electrophysiological conditions were simulated: (1) Sustained line
stimulation from the left border (pacing rate of 400 ms), yielding a plane
wavefront; (2) Point stimulation (pacing rate of 400 ms) from a focal point at
x = 1 cm, y = 0.5 cm; (3) Anchored rotor around a circular obstacle (0.4 cm
diameter infarcted region); (4) Fibrillatory activity. The two last conditions
were generated by using a standard S1 − S2 stimulation protocol, and the
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Figure 2.2: Example of MSE for estimating f ∗0 in plane wavefront EGM
simulation with FOA procedure. Note that the better the f0 estimation, the
lower MSE.

Plane wavefront Fibrillatory conduction

Figure 2.3: Simulation results: Spectral envelope using amplitude and modu-
lus components from FOA, for bipolar (up) and monopolar (down) recordings
in Plane Wavefront and Fibrillatory Conduction. Parameters Mk have been
interpolated with splines for visualization and comparison purposes.

simple tissue and acquisition model contained all the necessary information
for an easy comparison between the tissue activity and the recorded EGM
in these example conditions [65]. Each simulation was run for 2 seconds, as
this was long enough duration to include several cycles of tachycardia and
fibrillation in all cases.

2.4.2 Analysis Methods

The FOA algorithm applied to the simulated EGM signals consisted of the
steps described previously in Sec. 2.3. Specifically, f ∗0 was first estimated,
the signal model in (2.1) was then fitted using LS, and organization (p1 and
pe) and spectral envelope (Mk, fd, Ak, A

+
k , A

−
k ) parameters were obtained.

Figure 2.2 shows an example of MSE as a function of f0 in FOA procedure,
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Plane Focal Anchored Fibrillatory

M B M B M B M B

MFR (Hz) 2.48 2.50 3.88 7.12 / 7.08∗

T
im

e CL (ms) 400 400 400 400 250 250 143 125

CL−1 (Hz) 2.5 2.5 2.5 2.5 4.0 4.0 6.9 8

D
FA

an
d

O
A

fd_DFA (Hz) 2.54 2.44 2.54 2.44 3.81 3.91 4.69 3.61

fd (Hz) 4.98 4.98 4.98 4.88 3.91 3.91 6.45 7.52

Pn(fd) 63 34 56 43 93 39 50 34

Pn(fd_DFA) 43 11 50 20 85 39 2 2

Pn(f2) 63 34 56 44 11 19 32 34

Pn(f3) 6 6 4 6 2 3 14 13

Pn(f4) 8 24 7 26 0.5 11 1 1

Pn(f5) 2 18 1 17 0.3 .3 0.3 0.7

bw(fd_DFA) (Hz) 0.49 0.68 0.59 0.59 0.68 0.59 0.49 0.59

bw(fd) (Hz) 0.49 0.58 0.59 0.59 0.59 0.59 0.49 0.78

oi 0.99 0.80 0.99 0.92 0.83 0.66 0.53 0.47

ri 0.45 0.26 0.41 0.30 0.69 0.31 0.32 0.30

F
O

A

f0 (Hz) 2.47 2.43 2.50 2.50 3.87 3.90 7.49 7.53

M0 0.63 0.30 0.55 0.39 0.99 0.50 0.76 0.67

M2 0.87 0.44 0.53 0.49 0.50 0.47 0.10 0.12

M3 0.29 0.21 0.17 0.18 0.31 0.50 0.04 0.05

M4 0.38 0.45 0.20 0.38 0.15 0.28 0.03 0.02

M5 0.23 0.44 0.10 0.30 0.11 0.17 0.01 0.01

p1 0.98 0.90 0.96 0.96 0.89 0.77 0.59 0.52

pe 0.02 0.10 0.04 0.04 0.11 0.23 0.41 0.48

Table 2.1: Results of DFA, OA, and FOA, in simulated EGM. Parameters
from Pn(f) are reported as its value ×103. ∗ The second value was computed
averaging action potentials from a square of 9 cells right below the recording
electrode.

for the case of the plane wavefront.
For conventional parameters, the automatic procedure in DFA was used

to calculate fd_DFA in a filtered and rectified auxiliary signal obtained from
the EGM [23, 25, 26, 31], which estimates fd in the auxiliary signal. This
estimated fd_DFA was used for estimating the CL and to compute OA pa-
rameters. A spectral representation P (f) was obtained for each EGM by
using Welch periodogram with rectangular windowing, 2048 samples, 50%
overlapping. These settings were used because previous experiments (not
included here) showed that oi is reduced when time averaging is made us-
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ing any windowing different from a rectangular structure. Hence, fd was
obtained as the maximum in the spectral representation of the EGM, and
Pn(f) as the unit-area normalized power spectrum at frequency f . Other
conventional parameters were bw(fd_DFA), bw(fd), Pn(f0), Pn(fd), Pn(fk),
oi and ri.

The mean firing rates (MFR) of the cell directly below the recording
electrode were computed using the action potentials, for each simulated con-
dition. For fibrillatory conduction, the MFR was also calculated using a
square of 9 cells directly below the recording electrode. MFR values can also
be used as a gold standard for the main rhythm of the simulated EGM.

The averaged CL was also obtained in the time domain by an expert
counting the EGM relevant peaks, aiming to establish their relationship with
the spectral parameters, and also a means of evaluate the quality of the fd
and fd_DFA from the classical approach and f0 from FOA.

2.4.3 Simulations Results

Results on Periodicity Parameters. Simulated EGM and their spectra are
shown in Fig. 2.1, and Table 2.1 contains their measured spectral parameters
for both DFA-OA and FOA procedures. A narrow-line spectral structure
was observed in all cases, and a harmonic structure was present in all the
recordings, except for fibrillatory conduction.

There was high agreement among f0 and fd_DFAas estimated by FOA
and by DFA, the inverse of CL, and the MFR, for the cases of plane wave-
front, focal activation, and anchored rotor. The interharmonic separation
between successive peaks in the spectra was also about f0 Hz in these cases.
Parameter fd, when estimated directly from EGM spectrum, was the same
as f0 and fd_DFA only in the anchored rotor, but in plane wavefront and
focal activation fd corresponded to the second harmonic of f0.

For fibrillatory conduction, a clear harmonic structure was not observed,
and a less narrow-band spectra was present. The inverse of the manually
determined CL (6.9 Hz for monopolar, 8 Hz for bipolar) were more related
to fd (6.45 Hz, 7.52 Hz) and f0 estimated by FOA (7.49 Hz, 7.53 Hz) than to
fd_DFA estimated by DFA (4.6 Hz, 3.1 Hz). The agreement between f0 from
FOA, in both monopolar and bipolar, and MFR (7.08 Hz) is an additional
indication of the robustness of the proposed method when estimating the
main rhythm of EGM in complex conditions. The automatic algorithm for
estimating fd_DFA using DFA was seen to fail here. Taking into account that
it was still a narrowband spectrum, it could be seen as a single-harmonic
spectrum, and hence, the averaged CL would be consistently explained by
fd in this example. The values obtained for f0 estimated by FOA were very
similar for both monopolar and bipolar recordings.

Results on Spectral Envelope. The previously observed differences be-
tween f0 and fd were explained by the spectral envelopes of the EGM.
As seen in Table 2.1 and Figs. 2.1 and 2.3, the harmonic peaks followed a
smooth variation in the frequency domain, approximately corresponding to



VF Characterization with Fourier Organization Analysis 35

the spectral envelopes. In fibrillatory conduction, the spectral envelope was
significantly different from the profile of the spectral peaks, given that the
beat-to-beat variations were considerably higher. Nevertheless, the relative
amplitude of the spectral lines was determined by the spectral envelope, and
hence, this feature caused fd to be different from f0. As shown in Table 2.1,
the harmonic peaks followed a profile similar to the FOA modulus.

Spectral envelope mainly depended on two causes, namely, the setting
configuration of the acquisition lead system, and the underlying electrophys-
iological process during each cycle. In our simulations, the same underlying
electrophysiological process had a very different spectral shape, depending
on the electrode configuration. As an example, the spectral envelope of
bipolar EGM in the plane wavefront had a higher spectral content around
12 Hz when compared to the monopolar EGM. These differences between
envelopes of different configurations were less evident in fibrillatory conduc-
tion, where the underlying electrophysiological activity was a faster, more
high-frequency process, enough to partially compensate the effect of the lead
configuration on the spectral envelope. Obviously, similar underlying elec-
trophysiological activations will exhibit similar spectral envelopes under the
same lead configuration (e.g., plane wavefront vs focal activation examples),
but different envelopes with different electrophysiological activations (e.g.,
plane wavefront vs fibrillatory activity examples).

Results on Organization Parameters. Table 2.1 also shows the parameters
related to OA (oi and ri), and parameters p1 and pe from FOA. Bandwidth
tended to be higher in bipolar than in monopolar EGM. For regular rhythms,
organization, as quantified with oi and p1, was high both for monopolar and
for bipolar recordings, with a trend in monopolar EGM to be higher than
in bipolar EGM. However, organization was much lower in these recordings
as quantified by ri, since this parameter does not consider the organized ac-
tivity contained in the harmonics. Irregular rhythms exhibited dramatically
lower oi and p1, as expected in fibrillatory conduction. However, since oi
is computed from the estimation of f0, it is necessary to be sure that f0 is
correctly estimated, otherwise the interpretation of oi values could be mis-
leading. The high irregularity of the fibrillatory conduction can be observed
from the FOA amplitude components {A−1 , A+

1 } in Fig. 2.3, being very sim-
ilar to the FOA amplitude component A1. However, these components were
considerably lower than component A1 for more regular rhythms.

2.5 Results on Clinical Databases

2.5.1 Databases

Two different databases with EGM recordings stored in ICD were used in
this study. All the EGM recordings were obtained from patients undergoing
the implant of a Medtronicr device in Hospital Universitario Virgen de la
Arrixaca of Murcia and in Hospital General Universitario Gregorio Marañón
of Madrid, Spain. For each analyzed episode, two simultaneously recorded
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Figure 2.4: Spectral envelopes (using spline interpolated amplitudes) of the
FOA signal model for the database with different rhythms.

EGM were available in the device, with pseudo-monopolar (from can to coil)
and bipolar (from tip to ring) configurations, at 128 samples per second.
Recordings included in the study were revised and classified by an specialist.

There is little information in the literature about regularity measure-
ments for other rhythms than VF, as given by the ECG or the EGM wave-
forms. However, it is widely known that the SR has a fluctuating magnitude
due to HRV, and also, VT are known to be less stable in instantaneous
rhythm than SVT.

The first clinical database consisted of EGM during four different
rhythms, namely, 5 SR, 8 SupraVentricular Tachycardia (SVT), 8 VT,
and 7 VF. AF recordings were discarded for this study, whereas SVT and
VT were collected by requiring relatively stable episodes along the whole
recording. Additionally, SVT were considered in which a similar morphology
to sinus rhythm could be observed, and VT were recognized by an expert
in those episodes with very different morphology from SR. Only one episode
per patient was considered, and small yet balanced groups were assembled.
The analysis in this database aimed to assess the performance of FOA pro-
cedure in sustained and non-sustained rhythms, with some similarity to the
simulation conditions in the preceding sections. All EGM recordings in this
database had the same length (6 seconds), except for one of the 5 SR sig-
nals, which had 4.8 seconds length. The second clinical database consisted
of EGM only from VF, specifically, up to 240 VF episodes in 99 patients, for
which all the available time recorded for each EGM signal was used. This
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set of recordings aimed to check whether failures of the automated algorithm
used for estimating fd_DFA in DFA and OA to estimate the CL could have
an impact on a larger set of measurements, and to check whether FOA,
using f0, could give high quality measurements in those same conditions.

Each EGM in both clinical databases was analyzed following the same
methodology used in the preceding section, both for conventional analysis
given by DFA and OA, and for the proposed FOA method. The averaged
1/CL in the time domain was also obtained for each EGM given by manual
annotation by an expert, which allowed us to establish a gold standard for
comparison with periodicity estimations from the classical and the proposed
method.

2.5.2 Results on Database with Different Rhythms

Table 2.2 contains the averaged 1/CL from manual annotation for each EGM
in the database with different rhythms, and the measured spectral parame-
ters when computed with both DFA and FOA approaches (mean ± standard
deviation for all of them). There was a high agreement between 1/CL and f0
computed using FOA method for all rhythms, both in monopolar an bipolar
recordings, indicating that FOA method is more suitable in the estimation of
the main rhythm, whereas fd_DFA computed using DFA and fd showed only
good agreement in VF recordings. Moreover, as shown in Figure 2.5, the
proposed FOA was more accurate than DFA when estimating the averaged
1/CL for every single VF episode.

There was also visible discrepancy between fd_DFA (DFA) and f0 (FOA)
in SR recordings. Given that DFA gave higher values of both in monopolar
and bipolar than FOA. Another suggestion that FOA gave better estimates
was the agreement between f0 when computed in monopolar and in bipolar
recordings. Also, f0 computed by FOA allowed coherent comparisons be-
tween different rhythms. The slowest CL was for SR and the fastest was for
VF, as trivially expected, whereas SVT and VT were very similar in terms of
CL. Figure 2.4 shows the spline interpolated, normalized, and averaged spec-
tral envelopes for the four rhythms. Bipolar recordings generally contained
more power in high frequency components than monopolar recordings, and
there was a crossing point in the spectral envelopes in SR, SVT, and VT,
but not in VF. Table 2.2 also shows parameters oi and ri from OA, and pa-
rameters p1 and pe from FOA. Interpretation of the EGM organization has
to be done with caution when using OA parameters, since they are based
on fd_DFA estimation and, as previously stated, the automatic estimation
procedure in conventional DFA failed in several cases. According to oi, SR
was more irregular than SVT, than VT, and also than VF when obtained
from OA. FOA approach made it possible to establish a more coherent orga-
nization comparisons. According to p1 in FOA, VF was the most irregular
rhythm, as expected, whereas SVT was the most organized, even more than
SR, which can be explained by the well known heart rate variability due to
the autonomous system control of cardiac cycle in healthy conditions.
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Figure 2.5: Relationship between fd, fd_DFA from DFA and f0 FOA, and
1/CL for every single one VF EGM in first database with different rhythms.

2.5.3 Results on Database with Ventricular Fibrillation

Table 2.3 shows the spectral parameters measured by DFA and by FOA
in the database with VF episodes. Periodicity, as characterized by f0, was
slightly different when estimated by DFA and by FOA. Further details can
be seen in Figure 2.6, which shows fd_DFA as estimated by DFA vs f0 as
estimated by FOA, allowing us to compare both estimations without the
averaging effect in Table 2.3. Note that, though in general terms there was
a high agreement between both estimations, however, in some cases the
estimation of fd_DFA and f0 were dramatically different. Moreover, there
was higher agreement between fd and f0 estimated by FOA than between
fd and fd_DFA. This result is consistent with previous results in simulated
signals and first database of real signals, showing that for non-harmonic
structure, e.g. VF recordings, f0 estimated by FOA is related to fd. The
differences between fd_DFA f0, and between fd and fd_DFA were significant
(paired t-test, p < 0.05); whereas the differences in f0 by FOA and fd were
non-significant, both in monopolar and bipolar recordings. Therefore, FOA
yields better estimations of f0 than the automatic procedure in DFA for VF
recordings stored in ICD.

Organization parameters, namely oi and ri in OA, and p1 and pe in
FOA, showed again and consistently that bipolar recordings are in general
less organized than monopolar recordings.

2.6 Discussion and Conclusions

A new algorithm has been presented as a generalization of conventional DFA
and OA, so-called FOA, which allows us to obtain automatically the spectral
structure and features in EGM recordings. Controlled electrophysiological
substrates have been simulated, and synthetic EGM have been obtained. A
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(a) (b)

Figure 2.6: Estimation of fd_DFA by DFA (a) and fd (b) vs f0 estimated by
FOA for each EGM recording in VF Database. The red line represents the
y = x line, points in this line representing both methods yielding the same
estimated frequency.

small database with four different rhythms, and a extensive VF database,
have also been analyzed. The database with different rhythms aimed to
evaluate the performance of the two different approaches, the classical DFA
and the proposed FOA, in real EGM recordings with different electrophysi-
ological and well-known situations. On the other hand, VF database aimed
to evaluated the performance of both approaches in a real database with a
large number of EGM recording. This was necessary to determine that the
failures associated with the algorithm used in conventional DFA for estimat-
ing f0, had some visible impact on the estimated regularity in a populational
analysis. It also showed that the use of FOA alleviated the impact of these
failures. This methodology allowed us to give a principled understanding
of the meaning and limitations of the different indices currently used in the
DFA and OA literature, and also to check the improvement given by the
FOA spectral description.

Fundamental and Dominant Frequency. Due to a number of factors, f0
and fd can be different, and in that case, the use of fd as a surrogate for
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the CL is not guaranteed. This is because it might be just a harmonic of
f0. It is clearly shown in our results, suggesting that a distinction between
fd and f0 should be maintained, in order to avoid errors in the determina-
tion of the EGM approximate CL. The virtually universal use of fd in the
electrophysiology literature should not lead to the erroneous concept that
fd always corresponds to the CL of the EGM. When harmonic structure is
present, the inter-harmonic separation can confirm the estimated CL.

A usual procedure in DFA consists of estimating fd from an auxiliary sig-
nal, obtained by filtering and rectification of the original EGM [23, 25, 26,
31]. In these references, this auxiliary signal was used to calculate fd_DFA in
the bipolar EGM, either for calculating the CL or as complementary infor-
mation for the calculation of the oi. If the calculations have been successful,
fd in the auxiliary signal will correspond to f0 in the original EGM. However,
this will not be always the case, and sometimes an error in this automatic
algorithm will yield incorrect CL estimations. In [31], an example is pre-
sented (Fig. 5-B in the reference) of an irregular EGM in which DFA gives
a 10 Hz peak. In this case, the comparison to the activation interval pointed
out by the authors, together with the evident presence of harmonic struc-
ture, indicates that the periodicity was given by f0 at the 5 Hz peak, and
that fd was just its second harmonic. In a study examining the effect of
changes in atrial EGM during AF on the fd [1], good agreement was in gen-
eral obtained between the (inverse of the) averaged CL and the fd, except
for varying amplitude and activation interval conditions (Fig. 3-D in the
reference). Problems in the estimation of the CL therein can be explained
by the automatic algorithm failing to extract the peak from the auxiliary
signal, and they are similar to the ones observed in our experiments with
VF recordings (Section 2.5).

The procedure presented here to estimate f0 using FOA gave better re-
sults than the classical DFA procedure due to the fact that FOA is implic-
itly based on the harmonic structure presented in the signal to model it.
FOA also accounts for fluctuations in the harmonic components, and the
inter-harmonic spacing of the spectral peaks can give relevant information
about the averaged CL of an EGM. The estimated CL in the spectral do-
main could also be cross-checked with the time-domain estimated in case
of doubts. However, cross-checking with time-peaks counting can introduce
some subjectivity or doubts, whereas MSE minimization is an objective and
quantitative criterion. In fibrillatory recordings, FOA also performs well,
because the LS projection gives a relevant weight only to the f0 component,
which in this case corresponds to fd.

It should be noted that when a nonharmonic spectral structure is present,
the f0 parameter estimated with FOA can be similar to the fd parameter,
which will be a common situation in VF. Still, aiming to give an automated
procedure, it was decided to always look for f0 parameter in the EGM to
capture the periodicity of the main rhythm. Taking into account the results
of Table 2.2 (VF column), even in those cases of VF with one main narrow
component and widespread activity, f0 is often coincident with fd, and both
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parameters keep a marked coherence with 1/CL as marked by an expert.
Hence, for the algorithm giving a unified solution, it can be consider that
in those cases with one single narrow main component, that is harmonic
structure with one single harmonic. This unification in the result of the
algorithm for periodicity estimation, clearly has to be complemented with a
parameter for regularity characterization.

Acquisition in Bipolar and Monopolar Recordings. Because the spectral
envelope is simultaneously determined by the underlying physiological pro-
cess and by the characteristics of the acquisition system, its quantification,
either in terms of the power of the harmonics or by a more detailed and
sophisticated technique, can yield a more detailed spectral description of
the EGM under study. In general, fd and f0 are more likely to be coinci-
dent in monopolar than in bipolar recordings. The monopolar EGM can be
said to have a mostly low-pass (band-pass) spectral envelope. Optical map-
ping recordings during AF and VF have usually a low-pass spectral envelope
[24, 67], and hence, f0 and fd were usually the same in these recordings,
which avoided the need of using the auxiliary signal processing. However,
monopolar and bipolar atrial EGM during AF will have low-pass and band-
pass envelopes, respectively, and comparisons between spectral parameters
obtained from different systems can be problematic, given that small differ-
ences in the acquisition system (such as inter-electrode spacing or electrode
size) could produce significant differences in the spectral envelope.

Organization and Harmonics. In the presence of harmonic structure,
an appropriate signal model of organization should take the harmonics into
consideration. Given that ri parameter was initially defined for optical map-
ping recordings, it could have some interpretation problems when straightfor-
wardly applied to EGM during AF. This is due to the presence of harmonics.
In this case, a redefinition of organization according to the spectral charac-
teristics of the analyzed EGM is convenient. This is done in [25] where the
authors defined oi. A theoretical study on OA for bipolar EGM [68] showed
that the calculation of ri could be affected by harmonics, and concluded
that the ri is not a valid measure for organization. The conclusion might
have changed if the harmonic structure of the bipolar EGM had been con-
sidered. FOA in our simulation and real data studies shows that regularity
measurements have to account for the harmonics in its definition. Otherwise,
misleading low values of organization can be obtained from organized EGM
recordings. The use of oi is more robust in this sense than ri, but still it can
be affected by poor previous estimation of the periodicity parameter.

Additional Considerations. One possible improvement for the method
proposed is to look for ∆ in a narrow frequency interval around the harmonic
peaks, in order to capture more wide-band behaviors. However, the useful-
ness of this modification was not significant in our database (not shown).
Arrhythmia discrimination capabilities of the parameters was also analyzed,
keeping in mind the limited size of the first data set. In this setting, param-
eters from the FOA approach, f0 and p1, were the only ones that seemed
to offer a coherent trend for rhythm classification. Further the effect of
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the recording length in the second database was analyze, and it was found
that the averaged differences between a fixed length for all the recordings
(6 seconds) and the actual length of the episode being considered were not
relevant. However, in some few cases some problems could arise when using
a different frequency grid for the same EGM, which is an effect to be taken
into account in the algorithm.

Limitations of the Study. The mathematical model that has been used
in the present study is approximated and highly simplified. The simulation
of complex electrophysiological conditions could lead to inaccurate morphol-
ogy for the extracellular signals, since in complex conditions, the amplitude
and morphology of the action potentials may be highly variable. The use
of computer models based on differential equations would be more appro-
priate when simulating and analyzing a wider variety of VF mechanisms.
Accordingly, extrapolation of the results to the clinical environment should
be made cautiously. Results on ICD recordings were significant, but their
extrapolation to electrical and optical mapping recordings should be specifi-
cally addressed. FOA algorithm can be used for analyzing atrial fibrillation
EGM, which is an interesting research direction. Also of interest is the con-
sideration of several periodic components in the signal under analysis. These
two relevant issues are beyond the scope of this paper.

Conclusions. DFA and OA of EGM have been used in cardiac electro-
physiology for characterizing almost-periodic activation and high regularity
regions, respectively. The rationale under the mathematical definition of
these indices has not always been fully considered, thus leading to interpre-
tation problems. Our results show that the proposed FOA yields a more
compact and reliable organization description of cardiac EGM than DFA
and OA alone in ICD stored EGM signals.
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DFA FOA

Monopolar Bipolar Monopolar Bipolar

fd_DFA (Hz) 4.68± 0.73 4.67± 0.84 — —

f0 (HZ) — — 4.85± 0.82 4.85± 1.00

p1 — — 0.50± 0.20 0.37± 0.20

pe — — 0.50± 0.21 0.63± 0.20

fd (Hz) 4.90± 1.07 4.90± 1.71 — —

ri (OA) 0.56± 0.18 0.37± 0.18 — —

oi (OA) 0.73± 0.16 0.62± 0.15 — —

Table 2.3: Results of DFA, OA, and FOA, in clinical EGM signals from VF
Database.



Chapter 3

Atrial Fibrillation
Characterization using
Correntropy and Fourier
Organization Analysis

3.1 Introduction

AF is nowadays the most usual sustained arrhythmia. Catheter ablation
is a useful method to prevent recurrences in patients with paroxysmal or
persistent AF, and recently, analysis of intra–cardiac EGMs has been used
as a criterion for selecting efficient ablation targets [51, 69]. Two main ap-
proaches have been used to guide the ablation procedure to date, namely,
time domain [70] and frequency domain methods [2], the former based on
activation rate, and the latter based on fd representing the inverse average
CL. Both methods aim to estimate the EGM periodicity properties with
the objective of finding those regions with the shortest average CL. A usual
technique used to perform the frequency domain analysis of AF EGMs is
the so-called DFA [3, 31], which aims to estimate the average excitation rate
(inverse of mean CL) based on the fd of a preprocessed AF signal. However,
such descriptions have often discarded relevant information of the spectrum,
e.g., the harmonic structure or the spectral envelope. Additionally, it is not
guaranteed that fd will always provide a good estimation of the averaged CL,
given that there are several controversial studies about these issues [58, 71].
More, it has been pointed out that DFA may not give a correct description
when dealing with complex fractionated AF EGMs [72, 73].

A new method to estimate the f0 of AF signals is proposed, instead of
fd, in order to characterize the activation rates, hence giving a quality esti-
mation of the average CLs. The reason for this is that in purely sinusoidal
signals, the f0 is the frequency at which the maximum of the power spectral
density (PSD) occurs. Nevertheless, if the signal has harmonic structure,
which is very common in regular AF signals, it could happen that an har-
monic, and not the fundamental, would correspond to the value which gives

45
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the maximum of the PSD. Since the harmonic magnitude distribution de-
pends, among other parameters, on the morphology of the waveform that is
repeated, it is more likely that signals with a bandpass character show the
maximum of the PSD (fd) in an harmonic component.

The method proposed here is based on a generalization of the correla-
tion function for stochastic processes, called Correntropy [74]. This method
proposes a similarity measurement defined in terms of inner products in a
kernel parameter space. The Correntropy function has been applied success-
fully in previous medical research [75]. To deal with complex fractionated
AF EGMs, a combination of Correntropy function with FOA is proposed.

3.2 Methods
In this Section, the Correntropy is defined. DFA and FOA methods, to
characterize the periodicity of AF signals, were defined in Chapter 2.

3.2.1 Correntropy Definition

It is assumed that {x(n), n = 0, · · · , N−1} is a discrete stochastic process of
length N . The Correntropy function, denoted V (τ), is defined as [74, 76, 77]:

V (τ) = E [κσ (x(n)− x(n− τ))] (3.1)

where E is the statistical expectation operator and κσ is a symmetric positive
definite kernel. The kernel used in this study is the Gaussian kernel, which is
one of the most commonly used in different areas, such as machine learning,
support vector machines, or density estimation [78]:

κσ(x(n), x(n− τ)) =
1

σ
√

2π
exp

[
−(x(n)− x(n− τ))2

2σ2

]
(3.2)

where σ is the kernel width parameter, or kernel size.
The Correntropy function partially characterizes higher order moments

of a stochastic process. This property is clearly shown expanding the Cor-
rentropy function using Taylor series:

V (τ) =
1

σ
√

2π

∞∑
k=0

(−1)k

2σ2kk!
E
[
(x(n)− x(n− τ))2k

]
(3.3)

therefore, V (τ) contains all even-order moments of x(n). The emphasis given
to the higher order moments is controlled by kernel width σ. In this study,
unless otherwise stated, the value assigned to σ is determined by Silverman’s
rule of density estimation [74], as follows:

σ = 0.9AN−0.2 (3.4)

where A is the smallest value between standard deviation of data samples
and data interquartile range scaled by 1.34, and N is the number of data
samples. Although this rule is for probability density estimation, it is simple
and provides reasonable results.
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Figure 3.1: Real AF signal (left, note that time is in vertical axis), and its
PSD signal (right-top) and CSD signal without preprocessing (right-bottom).
The f0 is marked in dotted line.

3.2.2 Fundamental Frequency Estimation

PSD based on the Correntropy function, denoted as Correntropy Spectral
Density (CSD), is used to estimate the fundamental frequency in AF signals:

Px(f) =
N−1∑

m=−(N−1)

V (m)e−j2πfm (3.5)

The procedure to estimate f0 with Correntropy is the following:

• Preprocess the AF signal, x(n): bandpass filtering at 40-250 Hz, rec-
tification, and lowpass filtering at 20 Hz.

• Estimate the CSD using Welch’s method.

• Identify peaks in CSD higher than a threshold.

• Estimate f0 as the argument of the first identified peak in CSD.

The usual preprocessing method, according to the algorithm proposed
in [3], can be summarized as follows [23]:

• Bandpass filtering at 40-250 Hz.

• Rectification.

• Lowpass filtering at 20 Hz.

• Windowing (Hanning).
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This preprocessing method is the same used in DFA method. fd_DFA is
estimated by using the preprocessed AF signal.

The preprocessing stage aims to modify the band-pass nature of the AF
signal, mainly in bipolar EGMs, in order to emphasize the spectral compo-
nents near the fundamental frequency and to attenuate the spectral com-
ponents due to the harmonics. This step facilitates the f0 estimation. A
second goal is to obtain reliable FOA models, which are more feasible when
the signal has a limited bandwidth and a low-pass nature.

Some AF signals show a complex time structure. One of the possible
causes of this complexity may be the interaction of two fibrillatory wave-
fronts, known as type II AF signals [79]. The strategy proposed in this
paper to characterize this type of signals is to estimate two different funda-
mental frequencies, f0,1 and f0,2, assuming that there is only two wavefronts,
showing there is an improvement in the FOA model constructed using both
fundamental frequencies. The steps are listed below:

• Estimate f0,1 with the previous procedure.

• Fine search for f0,1 using a FOA model approach, minimizing p1e, and
fit a FOA model foa1(n).

• Remove foa1(n) from the original signal x(n) (or preprocessing ver-
sions); y(n) = x(n)− foa1(n).

• Estimate f0,2, with the previous procedure, using y(n) as input signal.

• Fit a FOA model, foa12(n) with the two estimated fundamental fre-
quencies, f0,1 and f0,2, and compare the parameter p12e from this model
with p1e, from the model using only f0,1, to evaluate the improvement.

Figure 3.1 shows a real AF EGM and both the PSD of the original signal
and the CSD of the Correntropy function. It can be seen that AF signal
has a band-pass nature. Figure 3.2 shows the CSD computed in an AF
signal without and with preprocessing. In AF signals with a clear harmonic
structure and a very regular period, the Correntropy function would lead to
similar results with and without preprocessing. Anyhow, the preprocessing
would allow to obtain more reliable FOA models, and hence it would improve
the estimation of f0 in less regular and noisy signals.

3.3 Pseudo–Real Experiments
In order to test the performance of the Correntropy–FOA approach when
estimating the f0 in AF signals, a set of experiments using a pseudo-real AF
signal with known f0 was designed. The model used to generate the pseudo-
real signal was based on the formerly proposed in [68]. Basically, the AF
synthetic signal is built by replicating a template waveform in a periodic way,
allowing to introduce some irregularity both in amplitude and in periodicity
cycle from one beat to another. This model was modified by changing the
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Figure 3.2: Real AF signal (inside plots) and its corresponding CSD signal
for different preprocessing methods.

synthetic template waveform for a real beat extracted from an AF bipolar
signal. Three different experiments were designed:

• Pseudo-real AF for estimation of the f0 under noise conditions. AF
signals with different f0, ranging from 3 to 10 Hz in 0.5 Hz steps, and
contaminated with white Gaussian noise for 2 signal to noise ratios
(SNR) 0 dB, and 5 dB, were simulated. For each f0, and for each
SNR, 100 realizations were generated.

• Pseudo-real AF signals plus random cycle uncertainty for evaluation of
robustness. AF signals, with a f0 of 12 Hz, plus a uniformly distributed
random cycle uncertainty varying from 5 to 20 ms, were simulated in
steps of 5 ms. For each value of the uncertainty, 100 realizations were
performed.

• Pseudo-real AF signals with two wavefronts. AF signals resulting from
the composition (sum) of two signals with different fundamental fre-
quency, f0,1 and f0,2, were simulated. The first component f0,1 was
previously fixed by hand, whereas the second component was randomly
selected in the usual range between 3 and 15 Hz. Table 3.1 shows the
pairs of values used in this experiment.

3.4 Experiments with Real Signals

A set of 17 5-seconds AF bipolar EGMs during EPS were collected. All
EPS were conducted in the arrhythmia unit at Hospital Universitario Virgen
de Arrixaca, Murcia, Spain. EGM signals were recorded in a polygraph
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f0,1 Hz f0,2 Hz

5.0 12.9; 8.5; 6.3

10.0 13.4; 6.3; 8.2

12.0 4.7 ; 5.1; 14.5

Table 3.1: Experiment with pseudo-real AF signals with two components
and two fundamental frequencies. f0,1 was prefixed by hand, and f0,2 was
randomly selected between 3 and 15 Hz.

Cardiolab by GE Medical Systems Information Technology, using the bipolar
signals obtained from a decapolar catheter placed in the coronary sinus and
a duodecapolar catheter placed in the right atrium around the tricuspid
annulus. The signals were recorded at 977 Hz sampling frequency.

The AF EGMs were visually selected by a cardiologist and separated
into two different groups: one group with very regular (periodic) and uniform
morphology signal, and another group with complex and fragmented signals.
The first group, called Type-I, contained 8 recordings, and the second group,
called Type-II, contained 9 recordings.

The Type-I group was studied to evaluate the behaviour of the proposed
Correntropy method to characterize organized signals, where the mean CL
can be readily calculated manually in the time domain, and therefore a com-
parison with a gold standard can be achieved. For this group, an automatic
method to compute the CL was implemented and manually supervised when
necessary. The mean CL computed by the previous procedure was compared
with the f0 estimated with Correntropy on a preprocessed signal, and with
fd_DFA estimated using DFA. The Type-II group was selected to study the
performance of the proposed Correntropy method to characterize complex
AF signals, with two or more wavefronts interacting. Therefore, it could
be necessary more than only one f0 for complete characterization. For this
group, a comparison with a semi-automatic CL calculation would introduce a
bias, due to the difficulty to identify the fiducial points, mainly because of the
high irregularity in period and also the complexity in morphology. For this
experiment, f0,1 and f0,2 were estimated by using the proposed Correntropy-
FOA method. Also, the parameter p1e from the FOA model when using only
the first component, and p1,2e from FOA model by using both components si-
multaneously were used to evaluate the improvement when using more than
one f0. Also, fd_DFA obtained using DFA was also reported.
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f0
SNR = 0 dB SNR = 5 dB

f̂d_DFA DFA f̂0 Corrent f̂d_DFA DFA f̂0 Corrent

3 3.78(±1.46) 3.65(±1.25) 3.20(±0.72) 3.42(±1.10)

4 4.40(±1.21) 4.00(±0.02) 4.00(±0.00) 4.00(±0.00)

5 5.20(±1.00) 5.00(±0.02) 5.00(±0.00) 5.00(±0.00)

6 6.00(±0.00) 6.00(±0.00) 6.00(±0.00) 6.00(±0.00)

7 7.00(±0.00) 7.00(±0.00) 7.00(±0.00) 7.00(±0.00)

8 8.00(±0.00) 8.00(±0.00) 8.00(±0.00) 8.00(±0.00)

9 9.00(±0.00) 9.00(±0.00) 9.00(±0.00) 9.00(±0.00)

10 10.00(±0.00) 10.00(±0.00) 10.00(±0.00) 10.00(±0.00)

Table 3.2: Experiment with pseudo-real AF signals with additive Gaussian
white noise. Comparison between real f0 and estimated f̂0 using Correntropy
and fd_DFA using DFA (mean ± standard deviation). Units are Hz.

3.5 Results on Pseudo-real Signals

3.5.1 Pseudo-real Atrial Fibrillation Signals with Addi-
tive Noise

In this experiment, f̂0 estimated using the Correntropy method and fd_DFA
by DFA were compared to the real f0 in pseudo-real AF signals with Gaus-
sian noise. Table 3.2 shows the results as mean±standard deviation for two
different SNR. Both methods provided good-quality results, with the Cor-
rentropy approach yielding lower standard deviation.

3.5.2 Pseudo-real Atrial Fibrillation Plus Cycle Ran-
dom Uncertainty

Table 3.3 shows the results when analysing the pseudo-real AF with cycle
random uncertainty. Original signal (without uncertainty) had f0 = 12 Hz.
The results showed that both methods (Correntropy and DFA) were robust
when estimating the periodicity in conditions where signals are not purely
periodic, with slightly lower standard deviation for the DFA method.

3.5.3 Pseudo-real Atrial Fibrillation Signals with Two
Wavefronts

This experiment aimed to emulate complex signals where the AF signals
correspond to an interaction between two wavefronts with different funda-
mental frequencies. This is a deterministic experiment, without stochastic
part, in order to evaluate the feasibility of the proposed Correntropy-FOA
method to deal with two components in controlled conditions.
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Uncertainty f̂d_DFA DFA f̂0 Correntropy

ms Hz Hz

5 12.00(±0.00) 12.00(±0.00)

10 12.00(±0.00) 12.00(±0.00)

15 12.00(±0.00) 12.00(±0.01)

20 12.00(±0.02) 12.00(±0.04)

Table 3.3: Experiment with pseudo-real AF signals with random uncertainty
in cycle with a real fundamental frequency of 12 Hz (mean ± standard devi-
ation). Correntropy method using preprocessing.

[f 1
0 , f

2
0 ] Correntropy-FOA [f̂0,1, f̂0,2]

[ 5.0, 12.9] [ 5.0, 12.9]

[ 5.0, 8.5 ] [ 5.0, 8.5 ]

[ 5.0, 6.3 ] [ 4.9, 6.3 ]

[10.0, 13.4] [10.0, 13.4]

[10.0, 6.3 ] [10.0, 6.3 ]

[10.0, 8.2 ] [10.0, 8.2 ]

[12.0, 4.7 ] [12.0, 5.0 ]

[12.0, 5.1 ] [12.0, 5.1 ]

[12.0, 14.5] [12.0, 14.5]

Table 3.4: Experiment with pseudo-real AF signals using two fundamental
frequencies. Correntropy-FOA method using preprocessing. Units are in Hz

Figure 3.3: Analysis of a real AF signal (top-left). The periodicity of the sig-
nal was estimated in the time domain by computing the average CL (bottom-
left), and the f̂0 using Correntropy (top-bottom-right).
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Figure 3.4: Comparison between periodicity estimated in time domain (CL),
and estimated using Correntropy and DFA.

Table 3.4 shows the original values of the two pseudo-real components
forming the complex AF electrogram, and the estimated fundamental fre-
quencies when using the proposed method. It can be checked that in these
simple conditions, without noise, the method was able to extract both com-
ponents precisely.

3.6 Results on Real Signals

3.6.1 Type-I Atrial Fibrillation Signals

In order to evaluate the performance of Correntropy method in periodic and
simple morphology AF signals, the inverse of the average CL was compared
with f̂0 when estimated with Correntropy method, and f̂d using DFA. The
CL was computed using a semi-automatic algorithm, which basically detects
the activation peaks in the preprocessed signal. This result was visually
inspected to avoid false detections. Figure 3.3 shows an example of both
estimation of CL and f̂0 using the Correntropy method.

The results for the 8 recordings are summarized in Figure 3.4, represent-
ing a comparison between the inverse average CL and f̂0 using Correntropy
method and f̂d using DFA. This analysis shows that both methods performed
in a similar way, with high matching with the time domain estimation.
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Recording f̂0,1 f̂0,2 p1e p1,2e fd_DFA

Recording 1 7.53 7.30 0.46 0.36 7.60

Recording 2 7.06 14.60 0.48 0.45 7.30

Recording 3 7.41 7.50 0.55 0.45 7.5

Recording 4 6.57 6.80 0.62 0.52 12.80†

Recording 5 4.80 3.30 0.40 0.32 4.80

Recording 6 5.43 5.10 0.57 0.34 5.20

Recording 7 4.00 4.00 0.22 0.17 4.00

Recording 8 10.38 11.20 0.63 0.59 10.30

Recording 9 9.69 10.20 0.86 0.80 9.50

Table 3.5: Analysis of real AF signal from Type-II dataset. f̂0,1, f̂0,2 and
p1e, p1,2e from Correntropy-FOA was computed for each recording. Reduction
from p1e to p1,2e in more than 0.1 units.

3.6.2 Type-II Atrial Fibrillation Signals

This set of signals was selected to study how well, the proposed Correntropy-
FOA method, characterizes complex signals, under the assumption that their
complex nature may be due to the interaction of different wavefronts at differ-
ent activation rates (CL). The proposed method estimated two fundamental
frequencies and assessed their adequacy modelling the signal. If the residual
energy was reduced by more than 0.1 units using a second component in the
model, that is using f0,2, then it was assumed that there was more than one
wavefront interacting.

Table 3.5 shows the results of the Correntropy-FOA method applied on
the Type-II dataset. The analysis using DFA was also reported. Note that
there was one value (marked by †) where f̂d_DFA was estimating nearly the
second harmonic (2× f0). This error can arise when DFA is applied to some
complex signals [31]. The analysis suggested that at least 4 out of the 9
recordings were better characterized using two different components. High
values of pe suggested that more than two components would be needed for
a more complete characterization.

Figure 3.5 shows how a complex AF signal is well modelled using two
different components.

3.7 Conclusions

A new method based on the Correntropy function was proposed to estimate
the f0 of AF signals to assess its periodicity. A combination of this method
with the FOA approach to model fibrillatory signals was proposed to an-
alyze complex AF signals, under the assumption that the complexity may
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Figure 3.5: An example of a complex AF, which is best modelled using two
different fundamental frequencies. The original AF signal is plotted in the
interior panel.

be originated by the interaction of two (or more) wavefronts with different
f0. Both methods were compared with the classic approach based on DFA,
which characterized the periodicity of the AF signal by means of the fd cal-
culated on a preprocessed signal. A set of experiments with pseudo-real AF
signals were designed. In addition, two different dataset were assembled, one
with regular and homogeneous AF signals, and another one with complex
AF signals. The proposed method allowed, on one hand, to characterize the
periodicity of regular AF signals, and on the other hand, to improve the
characterization of more complex ones. In the future, a more comprehen-
sive analysis with larger real datasets must be done to assess the adequacy
of these promising methods characterizing AF signals. From the technical
point of view, a more robust technique to identify the statistical relevance of
using more than one component in FOA model has to be devised, what could
allow also to identify more than two components to give a complete char-
acterization. Different spectral resolutions ∆ must be tested to ensure that
the model is capable of correctly handling irregularity in the periodicity.
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Chapter 4

Spectrally Adapted Mercer
Kernels for Support Vector
Nonuniform Interpolation of
Heart Rate Variability

4.1 Introduction

Shannon’s work on uniform sampling [80, 81] states that a noise-free, band-
limited, uniformly sampled continuous-time signal can be perfectly recovered
whenever the sampling rate is larger or equal than twice the signal band-
width. These initial results have been extended both in theoretical studies
[82, 83, 84, 85] and in practical applications [86, 87, 88]. However, the inter-
polation problem when these assumptions are not met becomes a very hard
one, and many approaches have been proposed by extending Shannon’s orig-
inal idea.

A seminal work in this setting was Yen’s algorithm [89]. In that work
an expression for the uniquely defined interpolator of a nonuniformly sam-
pled bandlimited signal is computed by minimizing the energy of the recon-
structed signal. The solution is given as the weighted sum of sinc kernels
with the same bandwidth as the signal. This algorithm suffers from ill posing
due to the degrees of freedom of the solution [87]. This limitation is alle-
viated with the inclusion of a regularization term[90]. Other interpolation
algorithms using the sinc kernel have been proposed [87, 91, 92], in which the
sinc weights are obtained according to the minimization of the maximum er-
ror on the observed data. These algorithms, which use the sinc kernel as their
basic interpolation function, implicitly assume a band-limited signal to be
interpolated. For non band-limited signals, other algorithms have considered
a non band-limited kernel, such as the Gaussian kernel [84]. Finally, very
efficient methods have been recently developed to reduce the computational
complexity of the interpolator, for example by using filter banks [93, 94], or
a modified weighted version of the Lagrange interpolator [95] (see also refer-
ences therein). It is interesting to note that the well-known Wiener filter has
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received less attention than the use of Gaussian or sinc kernel expansions
for nonuniform-sampled signal interpolation problems [96].

On a different theoretical framework, SVMs have been proposed in re-
cent years as learning-from-samples tools for a number of problems, includ-
ing classification and regression [97], and in many practical applications [98].
SVM algorithms have been recently proposed for nonuniform-sampled sig-
nal interpolation [99], using sinc and Gaussian kernels, and showing good
performance for low-pass signals in terms of robustness, sparseness, and reg-
ularization capabilities. SVM algorithms have to be formulated in terms of
Mercer kernels, and a well-known theoretical result is that any autocorrela-
tion function is a valid Mercer kernel [100]. However, the suitability of using
the autocorrelation of the observed process as the SVM kernel for interpola-
tion problems has not been analyzed so far. Moreover, no previous analysis
can be found on the SVM kernel choice which takes into account the spectral
adaptation between the observed signal, the kernel itself, and the Lagrange
multipliers yielded by the model.

HRV has been suggested as a noninvasive tool to assess the state of the
ASN and its relationship with cardiovascular mortality [4]. RR-interval time
series are used to study the HRV, and it is usually analyzed on 24-h ambu-
latory ECG recordings (Holter). Spectral analysis of HRV allows to identify
the different oscillatory components involved in the HR control, and it is
usually identified with the activity of the ANS branches (sympathetic and
vagal) [4, 101]. However, Holter recordings suffer from high noise, which
induces the presence of artifacts and beat misclassifications. Conventional
spectral analysis is very sensitive to these problems in Holter recordings.
Additionally, PSD is generally estimated from the RR-Interval time series,
which is a representation of the beat-to-beat variability. Therefore, it is in-
herently a discrete and nonuniform time series (this is the reason for the
variability). The usual procedure implies to interpolate and re-sample the
RR-Interval time series in order to obtain a uniformly sampled time series
and then apply PSD techniques. In this chapter, the use of SVM algorithms
is proposed to solve the nonuniform sampling interpolation problem by ex-
ploring several Mercer kernels that are spectrally adapted to the signal to
be interpolated. To accomplish this task, first the relationship between the
Wiener filter and the SVM algorithm is analyzed for this problem, using the
spectral interpretation of both algorithms. Then, according to this analy-
sis, different SVM interpolation kernels are explored accounting for different
degrees of spectral adaptation and performance, namely, band-pass kernels,
estimated signal autocorrelation kernels, and actual signal autocorrelation
kernels. This approach is tested on two different 24-hour Holter recording
from a healthy and a Congestive Heart Failure subjects.



Spectrally Adapted Kernels for SVM Nonuniform Interpolation of HRV 61

4.2 Algorithms for Nonuniform Interpolation

In this section, first notation and definition of the problem to solved are intro-
duced. Second, three nonuniform interpolation algorithms, namely, Wiener
filter [96], Yen regularized interpolator [89, 90], and SVM interpolator [99]
are described. Although much more interpolation methods have already been
proposed in the literature, the limitation to these three cases has two reasons:
(i) they are representative cases of optimal algorithms (with a different op-
timality concept for each case), and (ii) they have a straightforward spectral
interpretation, which allows an interesting comparison with the algorithms
proposed.

Let x(t) be a continuous-time signal with finite-energy, consisting of a
possibly band-limited signal z(t), which can be seen as a realization of a
random process, corrupted with additive noise w(t), i.e., x(t) = z(t) + w(t),
where the noise is modeled as a zero-mean Wide Sense Stationary (WSS)
process. This signal has been observed on a set of N unevenly spaced
time instants, {tn, n = 1, . . . , N}, obtaining the set of observations x =
[x(t1), · · · , x(tn), · · · , x(tN)]T .

Then, the nonuniform interpolation problem consists in finding a continuous-
time signal ẑ(t) that approximates the noise-free interpolated signal in a set
of K time instants, {t′k, k = 1, . . . , K}.

4.2.1 Wiener Filter for Nonuniform Interpolation

Time Domain Analysis. As described in [96], a Bayesian approach to solve
this problem amounts to the Wiener filter [102]. Assuming that z(t) is zero
mean, the linear estimator is given by:

ẑ(t′k) = aTkx for k = 1, . . . , K (4.1)

The scalar Linear Minimum Mean Square Error (LMMSE) estimator is ob-
tained when ak is chosen to minimize the MSE and takes the following
form [96]:

ẑ(t′k) = rTzkC
−1
xxx for k = 1, . . . , K (4.2)

Vector rzk contains the cross covariance values between the observed signal
and the signal interpolated at time t′k, that is rzk = [rzz(t

′
k − t1), · · · , rzz(t′k − tN)]T ,

where rzz(τ) is the autocorrelation of the noise-free signal for a time shift
τ . Cxx is the covariance matrix of the observations and, assuming WSS
data with zero mean, it is computed as Cxx = Rzz + Rww, where Rzz

is the autocovariance matrix of the signal with component i, j given by
Rzz(i, j) = rzz(ti − tj), and Rww is the noise covariance matrix. For the
i.i.d. case, Rww = σ2

wIN , with σ2
w the noise power and IN the identity

matrix of size N ×N . Thus, ẑ(t′k) is given by:

ẑ(t′k) =
[(
Rzz + σ2

wIN
)−1

rzk

]T
x (4.3)
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Although the solution in (4.3) is optimal in the MSE sense, two main
drawbacks can arise when using it for practical applications: (1) it implies
the inversion of a matrix that, specially for high SNR, can be almost singular,
so the problem can become numerically ill-posed; and (2) the knowledge of
the autocorrelation of the signal rzz(τ) at every τ = ti − tj is needed, so it
must estimated from the observed samples if it is not known.

Frequency Domain Analysis. The solution of the LMMSE estimator given
by (4.2) can be seen as the convolution of the observations with a filter with
impulse response h(k)W [n] = a[k − n]. For a finite number of nonuniform
samples, the solution cannot be converted into a time-invariant filter since
it depends on k index, which is a significant different with the uniform-
sampling case. However, in order to provide a simple spectral interpretation
of the interpolator it is assumed that N →∞ and then (4.3) can be approx-
imated as the convolution of the observations with a time-invariant filter
with response hW [n], which does not depend on the time index k [96]:

ẑ(t′k) =
∞∑

n=−∞

hW [n]x(tk − tn) (4.4)

In this case, the coefficients of the filter hW [n] can be computed using the
Wiener-Hopf equations [102]. By applying the Fourier transform to these
equations, the transfer function of the filter is finally obtained:

HW (f) =
Pzz(f)

Pzz(f) + Pww(f)
=

η(f)

η(f) + 1
(4.5)

where Pzz(f) and Pww(f) are the PSD of the original signal and the noise
respectively, and η = Pzz(f)

Pww(f)
represents the local SNR in a frequency f .

Obviously, 0 < HW (f) < 1, tending to 1 (to 0) in spectral bands with
high (low) SNR. Hence, the Wiener filter enhances (attenuates) the signal in
those bands with high (low) SNR, and the autocorrelation of the process to
be interpolated is a natural indicator of the relevance of each spectral band
in terms of SNR.

4.2.2 Yen Regularized Interpolator

Time Domain Analysis. Inspired by Shannon’s sampling theorem, a priori
information can be used for band-limited signal interpolation by means of a
sinc kernel. In this case, the signal is modeled with a sinc kernel expansion
as:

x(t′k) = z(t′k) + w(t′k) = aTsk + w(t′k) for k = 1, . . . , K (4.6)

with sk a N × 1 column vector with components sk[n] = sinc(σ0(t′k − tn)),
where sinc(t) = sin(t)

t
and parameter σ0 = π

T0
is the sinc function bandwidth.

Then, the interpolator can be stated as follows:

ẑ(t′k) = aTsk for k = 1, . . . , K (4.7)
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When LS strategy is used to estimate a, Yen’s solution ([89], Theorem IV)
is obtained. If a regularization term is used to prevent numerical ill-posing,
a is obtained by minimizing:

Lreg =
1

2
‖x− Sa‖2 +

δ

2
‖a‖2 (4.8)

where S is a square matrix with elements S(n, k) = sinc(σ0(tn − t′k)), and
δ tunes the trade-off between solution smoothness and the errors in the
observed data. In this case, a is given by:

a =
(
S2 + δIN

)−1
Sx (4.9)

The use of the regularization term leads to solutions that are suboptimal in
the MSE sense.

Frequency Domain Analysis. An asymptotic analysis similar to the one
presented for the Wiener filter can be done based on (4.9) and (4.7). Using a
continuous time equivalent model for the interpolation algorithm (see Section
4.3 for further details) the interpolation algorithm can be interpreted as a
filtering process over the input signal, this is:

ẑ(t) = hY (t) ∗ x(t) (4.10)

where ∗ denotes the convolution operator. Now, the transfer function of the
filter is given by:

HY (f) =
Pss(f)

Pss(f) + δ
(4.11)

where Pss(f) is the PSD of sinc(σ0t) (since this one is deterministic, Pss(f) ≡
|S(f)|2 with S(f) the Fourier transform of the sinc function), which is a
rectangular pulse of width σ0. HY (f) takes the value 1

1+δ
inside the passband

of Pss(f) and 0 outside. Therefore, if σ0 is equal to the signal bandwidth,
the filter attenuates the noise outside the signal band and does not affect the
components inside the band. A comparison between (4.11) and (4.5) reveals
that both interpolators can be interpreted as filters in the frequency domain,
but in the case of Yen’s algorithm the local SNR η(f) is approximated by
the sinc kernel PSD, Pss(f).

4.2.3 Support Vector Machine Interpolation

An alternative to the use of LS criterion in nonuniform interpolation is the
SVM approach [103]. Next the procedure presented in [99] is summarized,
in order to use the most relevant results in the next section.

Let us assume a nonuniform interpolator of the form:

ẑ(t′k) = aTϕ(t′k) (4.12)

where a is a N × 1 weight vector which defines the solution and ϕ(t′k) is a
nonlinear transformation of the time instants to a Hilbert space H, provided
with a dot product:

ϕ(t1)
Tϕ(t2) = K(t1, t2) (4.13)
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with K(·, ·) being a kernel that satisfies the Mercer’s Theorem [97]. The
solution of the SVM is stated in terms of dots products of the transformed
input samples. Hence, (4.13) indicates that the nonlinear transformation in
(4.12) will be done implicitly by means of a kernel function.

In order to construct the interpolator, vector a must be found. For this
purpose, following the structural risk minimization principle, a cost function
on the errors in the sampling instants plus a regularization term should be
minimized [97]. In this work, a ε-Huber cost [104] function is used:

LεH(en) =


0, |en| < ε
1
2γ

(|en| − ε)2, ε ≤ |en| < ε+ γC

C(|en| − ε)− 1
2
γC2, |en| ≥ ε+ γC

(4.14)

where en = x(tn) − ẑ(tn), and ε, γ and C are free parameters to be ad-
justed using a priori knowledge (see [105] for further details). Using this
cost function, the primal functional to be optimized in order to obtain a is:

Lp =
1

2
‖a‖2 +

1

2γ

∑
n∈I1

(ξ2n + ξ∗2n ) + C
∑
n∈I2

(ξn + ξ∗n)−
∑
n∈I2

γC2

2
(4.15)

subject to the constraints:

xn − aTϕ(tn) ≤ ε+ ξn

−xn + aTϕ(tn) ≤ ε+ ξ∗n
(4.16)

where ξ(∗)n = max{0, |en|− ε} are the error magnitude outside the insensitiv-
ity region for positive and negative errors, respectively, and sets I1 and I2
contains the indices of errors that lie in the quadratic and linear sections of
the cost function, respectively [104].

The SVM approach allows to control the estimator smoothness through
the first term of (4.15) . Also, due to the insensitivity region of the cost
function the solution is sparse, meaning that only a subset of the original
signal samples are used for building the solution, and hence the computa-
tional burden of the interpolator is reduced. Finally, the cost function ap-
proaches maximum likelihood (ML) for Gaussian noise and is robust against
non-Gaussian interferences as impulsive noise [104].

Using the Lagrange method for solving the problem in (4.15)-(4.16), the
solution is:

a =
N∑
n=1

(αn − α∗n)ϕ(tn) =
N∑
n=1

βnϕ(tn) (4.17)

where βn = αn−α∗n are the Lagrange multipliers for constraints in (4.16) [99].
Finally, by combining (4.12) and (4.17), and expanding the scalar product
into a summation, the interpolated signal is given by:

ẑ(t′k) =
N∑
n=1

βnϕ(tn)Tϕ(t′k) =
N∑
n=1

βnK(tn, t
′
k) =

N∑
n=1

βnK(tn − t′k). (4.18)
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where for the last equality it has been assumed that the kernel fulfills the
condition K(x, y) = K(x − y). In that case, the kernel can be thought as
a time-invariant system that provides a convolutional model for the solu-
tion [106]. Conversely, it is known that for a function K(·, ·) to be a valid
shift invariant kernel, it is a necessary and sufficient condition that it has a
non negative Fourier transform [107].

4.2.4 Some Comparative Remarks

It can be seen that both Yen and Wiener filter algorithms use the LS (regu-
larized for Yen method) criterion. However, Wiener algorithm is linear with
the observations, and it does not assume any a priori decomposition of the
signal in terms of building functions. Instead, it relies on the knowledge of
the autocorrelation function, which can be hard to be estimated in a number
of applications. Alternatively, Yen algorithm is nonlinear with respect to the
observations and assumes an a priori model based on sinc kernels. Hence,
the knowledge of the signal autocorrelation is not needed. The SVM inter-
polation uses a different optimization criterion, which is the structural risk
minimization, and its solution is nonlinear with respect to the observations
since it assumes a signal decomposition in terms of a given Mercer kernel.

4.3 Spectrally Adapted Mercer Kernels

In this section,a Continuous-time Equivalent System for Nonuniform Inter-
polation (CESNI) is presented, which represents the solution of the inter-
polation problem based on the SVM approach. The objective of presenting
a continuous-time equivalent system is to establish a frequency domain de-
scription of the interpolation SVM algorithm. Based on the analysis of the
CESNI model, several effective Mercer kernels are proposed for SVM-based
nonuniform sampling interpolation. These kernels account for different de-
grees of spectral adaptation to the observed data.

Definition 1 (CESNI) Given the SVM procedure described in Section 4.2.3,
its continuous-time equivalent system is defined as:

ẑ(t) = T {x(t)} (4.19)

with x(t) = z(t) + w(t), ẑ(t) the estimation of z(t), and T {·} a continuous
time non-linear feedback system. If T {·} is evaluated in a set of N time
instants {tn, n = 1, . . . , N} taken from a uniform random distribution, the
system defined by the solution in Section 4.2.3 is obtained.

In order to define T {·}, recall that Lagrange coefficients are related with
the observed data by the derivative of the cost function, i.e. βn = L′εH(en) ≡
dLεH(en)

de
(proof can be found in [105]) and that en = x(tn)−ẑ(tn). Using these

results, it can be seen that the solution defined in (4.18) can be modeled
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z(t)

ω(t)

ẑ(t)

βe(t)

β(t)

s(t)

e(t) L′
εH(·)

K(·)

· · ·
t1 t2 tk tN t

Figure 4.1: CESNI for the SVM interpolation algorithm. The interpolated
signal ẑ(t) is built by filtering the continuous-time sampled version of the
Lagrange coefficients β(t) with the SVM kernel K(t).

as a feedback system, and it will be defined T {·} as its continuous time
version, which is represented in Figure 4.1. CESNI elements are subsequently
scrutinized.

Property 1 (Residual Continuous Time Signal) Given the CESNI of SVM
algorithm for unidimensional signal interpolation, the residual continuous
time signal is given by:

e(t) = x(t)− ẑ(t) (4.20)

and it corresponds to the continuous time signal from which the residuals are
sampled.

Property 2 (Model Coefficient Continuous-time Signal) In the CESNI of
SVM algorithm for unidimensional signal interpolation, the Model Coeffi-
cient Continuous-time Signal is given by the following set of equations

βe(t) = L′εH (e(t)) (4.21)

s(t) =
N∑
n=1

δ(tn) (4.22)

β(t) = βe(t)× s(t) =
N∑
n=1

βnδ(tn) (4.23)

where βe(t) is the equivalent continuous signal for the Lagrange coefficient
sequence, β(t) is its sampled version, and δ(t) represents the Dirac’s delta
function. Hence (4.23) represents the discrete set of the model coefficients
given by the SVM algorithm as obtained by random sampling of a continuous
time signal βe(t).

Property 3 (Recovered Continuous-time Signal) In the CESNI of SVM algo-
rithm for unidimensional signal interpolation, the recovered continuous-time
signal is given by:

ẑ(t) = K(t) ∗ β(t) (4.24)

which shows that the kernel works as a linear, time-invariant filter and that
the Lagrange coefficients are the inputs to that filter.
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Consequently, denoting the PSD of ẑ(t), K(t), and β(t) as PẐ(f), PK(f),
and PB(f), respectively, the recovered signal PSD is given by PẐ(f) =
PK(f)PB(f), and hence it can be concluded that the kernel is shaping the
output in the frequency domain. On the one hand, an appropriate adapta-
tion of the kernel spectrum to the one of the original signal shall improve
the interpolation performance. On the other hand, if the signal and kernel
spectra are not in the same band, the performance shall be really poor. This
would be the case of the sinc or the Gaussian kernels when used for band-
pass signal interpolation. This suggests that Mercer kernels represent the
transfer function which should emphasize the recovered signal in those bands
with higher SNR. Looking at the Wiener filter transfer function in (4.5) it
can be seen that the signal autocorrelation could be used for this purpose,
since its Fourier transform is the PSD of the signal.

Nevertheless, despite these are well known principles of signal processing,
little attention has been paid to the possibility of using spectrally adapted
Mercer kernels in SVM-based interpolation algorithms. According to these
considerations, several Mercer kernels are proposed with different degrees of
spectral adaptation, namely, modulated and autocorrelation kernels.

Property 4 (Modulated Kernels) If z(t) is a bandpass signal centered at f0,
modulated versions of RBF and sinc kernels given by

K(tn, t
′
k) = sinc(σ0(tn − t′k)) sin (2πf0(tn − t′k)) (4.25)

K(tn, t
′
k) = exp

(
−(tn − t′k)2

2σ2
0

)
sin (2πf0(tn − t′k)) (4.26)

are suitable Mercer kernels. Moreover, their spectra are adapted to the signal
spectrum. Note that in this case, an additional free parameter ω0 has to be
settled for the kernel.

Property 5 (Autocorrelation Kernels) Similarly to the Wiener filter, the au-
tocorrelation of the signal to be interpolated (z(t)) or its noisy observations
(x(tn)) can be used to define the following kernels:

Kideal(tn, t
′
k) = rzz(tn − t′k) (4.27)

Kest(tn, t
′
k) = rxx(tn − t′k) (4.28)

which are the ideal (actual) autocorrelation function computed from the un-
derlying process and autocorrelation function estimated from the observa-
tions, respectively.

If the second order statistics of the process are known, the kernel de-
fined in (4.27) can be used. When the autocorrelation of the process is not
known, an estimation procedure must be used. Note that this problem is not
exclusive of the SVM interpolator, but is also present in the Wiener case.
However, as shown in the experiments, due to the robustness of the SVM al-
gorithm, simple procedures for estimating the autocorrelation functions can
be used.
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Figure 4.2: Illustration of the spectral adaptation of the kernels to the obser-
vations for a band pass signal: (a) with RBF kernel, (b) with sinc kernel,
(c) with modulated sinc kernel, and (d) with autocorrelation kernel.

Figure 4.2 illustrates the effect of using different kernels. The signal
to be interpolated is band-pass, so its interpolation with low-pass kernels,
either RBF (a) or sinc (b), can be a loose spectral adaptation which indeed
emphasizes the noise in the low-pass band. In (c), the use of a modulated
band-pass sinc kernel allows us to enhance the transfer function spectral
adaptation to the signal spectral profile, which is further refined in (d) when
using the estimated autocorrelation as interpolation kernel.

4.4 Experiments

In this section, the described algorithms are experimentally assessed. Their
performance are analyzed when interpolating a band-pass signal. Then, the
interpolation of two signals is evaluated with very different spectra, to assess
the impact of the kernel spectral adaptation. Different levels of nonunifor-
mity are also tested in the sampling process, different number of training
samples, and non-Gaussian noise. In a second set of experiments, the algo-
rithms with several one-dimensional functions are tested with different and
representative spectral profiles. Finally, the applicability of SVM algorithms
is illustrated by interpolating a set of Heart Variability Rate (HRV) signals,
which are nonuniformly sampled time series by construction.

4.4.1 Experimental Setup

The interpolation algorithms is benchmarked that are summarized in Ta-
ble 4.1, including all the methods described above and the functionally
weighted version of the Lagrange interpolator described in [95].

For Wien and SVM-Corr algorithms the autocorrelation function had to
be estimated from the observed samples. Note that the autocorrelation had
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Algorithm description Label

Yen algorithm with regularization Yen
Weighted Lagrange interpolator WLI
Wiener filter with estimated autocorrelation Wien
Wiener filter with actual (ideal) autocorrelation Wien-Id
SVM with low-pass RBF kernel SVM-RBF
SVM with low-pass sinc kernel SVM-Sinc
SVM with estimated autocorrelation kernel SVM-Corr
SVM with actual (ideal) autocorrelation kernel SVM-CorrId

Table 4.1: List of algorithms benchmarked in the experiments.

to be computed for every time shift τ = tn − t′k, so it had to be estimated
over a grid with a resolution much higher than that of the observed samples.
Hence, two steps might be carried out: (1) estimating the autocorrelation
from the observed samples and (2) interpolating it for every time shift τ =
tn − t′k. Although many methods exist for this purpose, a simple procedure
is used based on frecuency-domain interpolation. The main reason for this
choice is that the overall procedure is simple and well-stablished. Specifically,
the method consist of (1) a Lomb Periodogram to estimate the PSD of the
signal [108], and (2) a zero padding technique in the frequency domain to
carry out the interpolation step. Finally, and inverse Fourier transform of
the zero padded PSD was used for computing the autocorrelation function.

For the synthetic experiments, a one-dimensional signal with spectral in-
formation contained in [−B/2, B/2] was interpolated. This signal is sampled
in a set of L unevenly time instants, different for each realization, with an
average sampling interval T , such that BT = 1. The interpolation instants
lied on a uniform grid with step Tint = T/F , with F the interpolation factor.
The nonuniform sampling time instants were simulated by adding a random
quantity taken from a uniform distribution in the range [−u, u] to the equally
spaced time instants tk = kT, k = 1, 2, . . . , L. In order to simplify the com-
putation of the kernels, each time instant was rounded to be a multiple of
Tint. The performance of each algorithm was measured by using the S/E
indicator, that is, the ratio between the power of the signal and the power
of the error in dB. Each experiment was repeated 50 times.

4.4.2 Interpolation of Band-Pass Signals

To get a first insight of the impact of the kernel spectral adaptation on the
algorithms performance, they are compared when interpolating a test signal
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Figure 4.3: Example of the spectra of the original and reconstructed signals
(left) and the error of the reconstructions (right) for the Modulated Sinc
Squared Function. T = 0.5 s, L = 32, SNR = 10 dB and u = T/10.

consisting on a modulated squared sinc function (MSSF), defined by:

f(t) = sinc2
(
π

T0
t

)
cos (2πf1t) (4.29)

where T0 and f1 are chosen in order that the signal bandwidth fulfills BT
= 1. The spectrum of this signal is a triangle centered at f1. The exper-
iment was carried out with L = 32 samples, T = 0.5 s, a non-uniformity
parameter u = T/10, and for Gaussian noise with different values of SNR.
Figure 4.3 shows the spectra of the original and reconstructed signals and
the error of reconstruction of the Yen and the SVM algorithms. The error
at low frequencies (where there is no significant signal power) is high for the
SVM with low-pass kernels, since in this band the noise is enhanced by the
kernel spectrum. On the contrary, it can be seen that the error produced
by the autocorrelation kernel is quite lower, since it is adapted to the signal
spectrum.

Table 4.2 represents the performance of all the algorithms for different
SNRs. It can be observed that both SVM-CorrId and Wien-Id methods,
which are based on the perfect knowledge of the signal autocorrelation,
clearly outperform the other algorithms. Although the solution presented
in (4.3) is optimal in the MSE sense, it suffers from numerical ill-posing
due to the inversion of the correlation matrix, which usually presents a very
high condition number. The SVM with estimated autocorrelation kernels
also has a good performance, only 1 to 2 dB lower than the ideal version.
Note that it clearly outperforms the non-ideal version of the Wiener filter.
WLI algorithm provides intermediate S/E values, although it computational
complexity is the lowest one. Finally, SVM with low pass kernels and Yen
algorithms provide a performance lower than that of the others.
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Alg. 40 dB 30 dB 20 dB 10 dB

Yen 35.1 (0.5) 29.3 (0.9) 20.3 (1.1) 10.4 (1.3)
Wien 39.8 (1.2) 30.0 (1.0) 20.2 (1.1) 10.1 (1.3)
WLI 38.4 (2.4) 29.4 (1.2) 20.1 (1.3) 10.0 (1.4)
Wien-Id 41.2 (1.2) 32.3 (1.4) 22.6 (1.7) 13.1 (1.8)

SVM-Corr 39.5 (1.9) 30.9 (1.4) 22.0 (1.3) 12.6 (1.6)
SVM-CorrId 41.7 (1.4) 32.9 (1.4) 23.5 (1.6) 14.9 (1.6)

SVM-RBF 27.4 (1.0) 26.1 (0.7) 19.2 (0.7) 10.8 (1.2)
SVM-Sinc 34.1 (0.7) 28.9 (1.1) 20.2 (1.1) 10.9 (1.2)

Table 4.2: Mean S/E and (std) with SNR for a band-pass signal interpolation,
T = 0.5 s, L = 32 and u = T/10. Two best in bold.

4.4.3 Effect of the Sampling Process and the Noise

Nonuniform sampling

Now, the effect of increasing the nonuniformity parameter u from very small
values to half of the sampling period is examined. The sampling for u very
small is almost uniform, while with u = T/2 the samples can be placed
at any time instant. For this purpose, it is used the MSSF and a set of
logarithmically spaced values for u, from 0.001 to T/2, using SNR = 20dB,
and with the rest of parameters as in Section 4.4.2.

Figure 4.4 shows the mean and standard deviation of the S/E for all the
algorithms for each value of u. SVM-CorrId is the most robust algorithm
respect to the nonuniform sampling. When u takes its maximum value,
the difference between the SVM-CorrId and the rest of algorithms is also
maximal and rises up to 5 dB. Interestingly, Wien-Id behaves similar to
SVM-CorrId for low values of u, which was the expected behavior since
both of them use the same prior knowledge about the second order statistics
of the signal. However, when u exceeds 10−2, the performance of the Wiener
filter degrades fast, which can be explained by the loss of stationarity caused
by the nonuniform sampling. The robust nature of SVM interpolation is not
affected in the same manner by this effect. Finally, SVM-Corr algorithm
shows an intermediate performance, between SVM-CorrId and the rest of
the algorithms.

Robustness Against Impulse Noise

SVM algorithms have shown good performance when impulse noise is present
at the data [99]. All the proposed algorithms are tested with this noise,
which was generated with the Bernouilli-Gaussian (BG) function nBGn = vnλn
where vn is a random process with Gaussian distribution and power σ2

BG and
where λn is a random process which takes the value 1 with probability p and
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Figure 4.4: S/E ratio for different values of the nonuniformity parameter (u)
SNR = 20 dB, T = 0.5 s, L = 32.

the value 0 with probability 1 − p. A value of p = 0.1 was considered. In
order to compare the robustness of each algorithm when this type of noise
was present, the signal to impulse noise ratio (SIR) indicator is used, defined
by:

SIRdB = 10 log10

(
E{xn − nGn − nBGn }

σ2
BG

)
(4.30)

Table 4.3 shows the performance (in terms of S/E) of the proposed algo-
rithms for different values of SIR, SNR = 10dB, and the rest of parameters
as in Section 4.4.2. In this case, due to the inherent robustness to outliers
of the SVM formulation, all the SVM algorithms are robust against impulse
noise, while the performance of the two Wiener filter algorithms degrades for
very low SIR, hence confirming the superiority of the SVM-based solution in
the case of non-Gaussian noise. Again, SVM-CorrId provides de best results
for all SIR values, and hence shows an interesting robustness with different
types of noise.

4.4.4 Performance for Different Type of Signals

In this experiment the performance of the analyzed algorithms is tested with
a database of functions with different kinds of spectrum. Figure 4.5 shows the
spectra of the eight functions which have been used for this purpose. In this
case, the number of samples is L = 64, with T = 0.24s and u = T/10. The
noise was Gaussian with SNR = 10dB. Table 4.4 shows the mean S/E and its
standard deviation in brackets. SVM-CorrId with the ideal autocorrelation
kernel performs well in all the cases, followed by SVM-Corr most of the
times. In the case of the chirp function, the SVM-Sinc behaves better than
the SVM-Corr, since its spectrum is similar to the one of that function.
However, the performance of this algorithm degrades for other functions
(like PST or POL). Based on these results, it can be concluded that the SVM
with autocorrelation kernels have very good performance independently of
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Figure 4.5: Spectra of the band-limited signals used for comparing the algo-
rithms. A diversity of spectral profiles have been used for this set of experi-
ments.

the signal spectrum, since they are able to adapt the kernel spectra.

4.4.5 Interpolation of Hear Rate Variability RR-Interval
Time Series

Introduction

HRV, as described in Section 1.4, is a relevant marker of the (ANS) control
on the heart. This marker has been proposed for risk stratification of lethal
arrhythmias after acute myocardial infarction (AMI), as well as for prog-
nosis of sudden death events [4]. When analyzing the HRV time series, the
sequence of time intervals between two consecutive beats (called RR-Interval
time series) is often used, which is by nature sampled at unevenly spaced
times instants. Advanced methods for spectral analysis have shown that the
HRV signal contains well defined oscillations that account for different phys-
iological information. The spectrum of the HRV could be divided into three
bands: VLF band, between 0 and 0.03 Hz; LF, between 0.03 and 0.15 Hz; and
HF, between 0.15 and 0.4 Hz. LF and HF bands have been shown to convey
information about the ANS control on the heart rhythm, representing the
balance between the sympathetic and parasympathetic contributions. Spec-
tral based methods, such as Fourier Transform or Auto-regressive Modeling,
require the RR-interval time series to be resampled into a uniform sampling
grid.

The analysis of the HRV is often performed on 24 hours Holter recordings,
and a common procedure is to divide the RR-Intervals time series into 5
minutes segments, in order to study the evolution of the spectral components
along time. Classic techniques for computing the spectrum of HRV signals
aim to obtain a good estimate of LF and HF components, but due to the
nonuniform sampling and the noisy nature of the measurements, estimating
the HRV spectrum is a very hard problem, specially in LF and HF ranges.
In this experiment, the SVM algorithms are applied for interpolating two
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HRV signals with this purpose.

Methodology

A 24 hours Holter recording from a patient with Congestive Heart Failure
(labelled with a D) and another one from a healthy patient (labelled with an
H ) have been used for this experiment. These recordings were divided into
5-minute segments, and two preprocessing steps were done: (1) discarding
the segments with more than a 10 % of invalid measurements, usually due
to low signal amplitude or ectopic origin of the beat; (2) applying a detrend-
ing algorithm to subtract the mean value and the constant trend of each
segment, which introduces distortion in the VLF region. Two algorithms
were compared: SVM-Corr and SVM-RBF. Both algorithms were used to
interpolate each segment, by using the RR-intervals in each segment as the
training samples, and interpolating the signal over a uniform grid of 500 ms.

The autocorrelation kernel for each patient was estimated as follows: (1)
a set of segments (around 20) with low noise and high power in the LF and
HF regions were previously selected; (2) an estimate of the autocorrelation
of each of these segments was computed by using the method described in
Section 4.3, over a fine grid with a step of 5 ms; and (3) a mean autocorre-
lation was calculated from this set of estimates, in order to reduce the noise
level. A subjective evaluation based on the spectrograms and some examples
have been used to compare them.

Results

The autocorrelation kernels and their spectra for both patients D and H are
shown in Figure 4.6. Although they are still noisy, note that in patient D
only one peak is present (probably due to the disease) and both peaks LF
and HF are present in patient H. Using the SVM-RBF and the SVM-Corr
with these kernels each segment was interpolated. The main effect was that
SVM-Corr was able to filter the noise in order to highlight the LF and HF
peaks better than the RBF algorithm, specially where the density of noise
was very high in frequency bands out of the regions of interest, as can be
seen in the examples for both patient shown in Figure 4.7(a) for patient D
and Figure 4.7(b) for patient H. For this last one, two details for a region of
interest and for a region with noise are shown in lower plots. In the three
examples it can be checked that the SVM-Corr was able to reduce the noise
level better than the RBF algorithm.

Figure 4.8 shows the spectrograms of the original and interpolated sig-
nals. For both patients, LF and HF peaks were clearer with the SVM-Corr
than with the SVM-RBF. A short period of the original and estimated sig-
nals is shown in Figure 4.9, in which two peaks can be identified which
correspond to non-ventricular beats or bad measurements. Note that the
SVM-Corr algorithm is able to filter this misleading measurements much
better than SVM-RBF
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Figure 4.6: Autocorrelation kernels in time and frequency for the HRV seg-
ments of patients D and H.
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Figure 4.7: Examples of HRV segments of patients D (a) and H (b). Two
details of the HRV spectrum for patient H are shown in the lower plots.

4.5 Discusion and Conclusions

This chapter resented an SVM framework for nonuniform interpolation based
on spectrally adapted Mercer kernels. An spectral interpretation of the clas-
sical Yen interpolator was first provided, the Wiener filter, and the SVM
interpolation, which motivated us to analyze spectrally adapted kernels for
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the SVM algorithm. Among them, the actual and estimated kernels can
be computed without a significant increase in complexity, though the actual
autocorrelation can be determined in advance only in some specific cases (as
in the Wiener filter case).

Several experiments were carried out in which the spectrally adapted ker-
nels were compared with low-pass kernels and with other techniques. The
results showed that the SVM with the autocorrelation kernels outperformed
the other methods regardless the spectrum of the observed signal. Algo-
rithms for several degrees of sampling nonuniformity, for different amount of
samples, and for non-Gaussian noise were also tested, again concluding that
the SVM with the autocorrelation kernels were the most robust method.
Finally, the proposed algorithm was tested in a real-life problem, which is
the interpolation of HRV signals. In this case, the filtering process carried
out with the autocorrelation kernel allowed to attenuate the noise level while
enhancing the signal power in the frequency bands of interest.

The proposed method can be especially useful when the signal bandwidth
is not known. Also, SVM-based algorithms have shown to provide high
performance when the number of available samples is low, which is usual in
many interpolation scenarios. With respect to the adjustment of the free
parameters, it should be noted that, from a Statistical Learning Theory
point of view, there is a training stage in which the signal model is built,
but free parameters should be checked to be adequate in a validation set
given by a different realization. There is evidence in the literature that SVM
interpolation algorithms can be approximately adjusted with free parameters
in advance (see [95, 103]). Note that the use of autocorrelation kernel avoids
tuning the kernel parameters.

Results obtaining using SVM-Corr approach to interpolate RR-interval
time series provided robust estimation of PSD. Conventional spectral analy-
sis to assess HRV is very sensitive to noise, artifacts in Holter recordings. The
proposed method in this chapter, provided reliable spectral estimations with-
out the needed to perform a complete manually correction of the RR-interval
time serie to remove artifact and correct beat misclassification. The main
effect was that SVM-Corr was able to filter the noise in order to highlight
the LF and HF peaks better than the SVM-RBF method, specially where
the density of noise was very high in frequency bands out of the regions of
interest.
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Chapter 5

Heart Rate Turbulence Denoising
using Support Vector Machines

5.1 Introduction

HRT has been defined as the behavior of the HR after a VPC. Under normal
and healthy conditions, HRT consists of a brief increase in HR after the VPC,
that is immediately followed by a slower decrease in HR. Measurements on
HRT characteristics in long-term (24 hour) Holter recordings have shown
a high predictive power for identifying patients with high-risk of cardiac
disease [5, 47]. The two parameters that have been mostly used for measuring
HRT are the TO and the TS, see Section 1.5. Given that the average
VPC-tachogram is usually computed on 24-hour Holter recordings, indices
obtained from this template are a long-term measurement of the global state
of the patient during a day, and this processing has been shown to be a
powerful risk stratifier not only for AMI [5], but also for other diseases such
as Chagas [109] or heart failure [110].

Nevertheless, relevant information could be masked by the long-term
averaging in this calculation procedure, both from a clinical and from a
signal analysis points of view. First, relevant short-time fluctuations in the
TS along the day [111] could be hidden by the 24-hour template averaging.
Second, several influences of the physiological state can affect the HRT, such
as the described effect of HR level that precedes to the VPC on the HRT
oscillation amplitude [112, 113]. More specifically, the vegetative tone is
probably controlling both the HR level and the HRT oscillation amplitude,
but nevertheless, averaging along the different states during the day could
result in a reduction of the true magnitude of the HRT fluctuation and in
a smoothing not only in noise level, but also in signal level [111, 114]. And
third, averaging precludes the comparison of HRT in a given moment to other
fluctuating physiological variables. For instance, comparison of long-term
Heart Rate Variability (HRV) to long term HRT has been reported [115],
but the short-term regulation of the autonomous nervous system on HR can
not be studied jointly with the HRT.

Therefore, our hypothesis is that efficient cancelation of physiological

81
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noise from each isolated VPC-tachogram will allow the short-term quantifi-
cation of TS. This would allow us also to measure the HRT in a higher
number of patients, beyond the current limits given by the exclusion crite-
ria for TS averaging with a minimum number of available VPC-tachogram.
Accordingly, a signal processing method capable of canceling the noise in
a single VPC-tachogram will be a valuable tool to evaluate the short-term
HRT, and the development of such method is the purpose of this Chapter.
Two main technical issues appear when addressing the signal denoising of a
single VPC-tachogram. First, the VPC-tachogram has a very short duration,
15 to 20 samples, and hence, a very robust signal processing method will be
required. Second, the HRT is usually measured from 24-hour Holter record-
ings, which are surely influenced by a variety of noise sources, including the
daily activity and the changes in the physiological state of the patient. But
a clear gold-standard for HRT behavior and measurement will be needed to
benchmark and compare the performance of any proposed denoising algo-
rithm.

To overcome the first issue, the use of SVM is proposed, in particular,
the SVM regressor [97]. The SVM framework has been shown specially
advantageous in problems with few samples available, due to their excellent
generalization performance. The SVM regression based on a robust cost
function (the ε-Huber cost), together with the use of bootstrap resampling
techniques for tuning the free parameters of the algorithm [104, 116], can
provide us with an efficient HRT denoising technique.

Study the performance of the denoising procedure is proposed in a gold
standard given by HRT induced with cardiac electrical stimulation (pacing)
during EPS, which can be considered an almost noise-free environment, be-
cause the patient is maintained at rest. Pacing-induced HRT has started to
receive increasing interest, and conditions for its measurement have been es-
tablished [7, 117, 118, 119, 120]. This gold standard will allow us to quantify
the HRT shape in the temporal and spectral domain in an almost noise-free
environment, an then to compare the performance of the signal processing
algorithms used for HRT denoising in Holter recordings.

5.2 Heart Rate Turbulence Denoising

5.2.1 Support Vector Machine Denoising Algorithm

The signal model considered here uses the RR intervals from an ECG or EGM
recording. A VPC has happened at discrete time instant n = −1, which is
then followed by a compensatory pause at n = 0, so that the following RR
intervals (from n = 1 to n = 20) represent the VPC-tachogram under study.
Assume that the observed VPC-tachogram is given by {yn, n = 1, . . . , 20}
contains two contributions: one is the actual HRT as the metabolic response
to the VPC perturbation, given by {xn, n = 1, . . . , 20}, and the other one
consists of noise contributions from different sources, and is given by {en, n =
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1, . . . , 20}. The HRT model is then:

yn = xn + en (5.1)

for n = 1, . . . , 20. A first approach for denoising {yn} and obtaining an
estimate of HRT, denoted by {x̂n}, is to use linear filtering. For instance,
a Qth order moving-average filter can be used, which will be given by the
following signal model:

x̂n =

Q∑
q=1

bqyn−q+1 (5.2)

where bq are fixed as the coefficients for an adequate filter in the frequency
domain. Independently of the kind of filter used, this denoising scheme relies
on the assumption of HRT being a band-limited process. Alternatively, a
Qth median filter can be used, given by:

x̂n = median{yn−bQ
2
c, . . . , yn+dQ

2
e} (5.3)

where b·c and d·e denote the rounding up and down to zero, respectively.
This denoising scheme is known to be more appropriated whenever impulse
noise can be present.

Note that these basic filtering schemes rely on the distribution of noise
being known to some extent, which is an a priori information that we do
not have yet. According to this fact, it is proposed to use a SVM modeling
approach. The SVM regressor can be seen as a nonparametric procedure,
in the sense that it does not rely on any specified form of the HRT. Also,
it is proposed to consider the ε-Huber cost [105], which represents a cost
function that can adapt itself to the noise distribution. Finally, given that the
extremely short VPC-tachogram signal can not be split into a training and a
validation subset, it is proposed to use nonparametric bootstrap resampling,
which has been previously used in SVM classifiers for the same purpose of
previously tuning of the SVM free parameters [116].

The SVM model for HRT denoising can be described as follows. The
nonlinear regression model is given by:

yn = xn + en = 〈w, φ(n)〉+ b+ en (5.4)

where φ(n) is a nonlinear application of n to a possibly high-dimensional
(say P -dimensional) feature space F, where a linear approximation is built
by the dot product with vectorw ∈ F. This model can be seen as a nonlinear
interpolation. Following the conventional SVM methodology, a regularized
cost function of the residuals is to be minimized. In [105], the following
robust cost function of the residuals was proposed:

L(en) =


0, |en| ≤ ε
1
2δ

(|en| − ε)2, ε ≤ |en| ≤ eC

C(|en| − ε)− 1
2
δC2, |en| ≥ eC

(5.5)



84 Signal Processing Methods to Study Baroreflex and ANS

where eC = ε + δC; ε is the insensitive parameter, and δ and C control
the trade-off between the regularization and the losses. The ε-insensitive
zone ignores errors lower than ε; the quadratic cost zone uses the L2-norm
of errors, which is appropriate for Gaussian noise; and the linear cost zone
controls the effect of outliers. The SVM coefficients are estimated by mini-
mizing the previous loss function regularized with the squared norm of model
coefficients:

1

2

P∑
p=1

w2
p +

1

2δ

∑
n∈I1

(ξ2n + ξ?2n ) + C
∑
n∈I2

(ξn + ξ?n)−
∑
n∈I2

δC2

2
(5.6)

with respect to wp, {ξ(?)n } (notation for both {ξn} and {ξ?n}), and b, and
constrained to:

yn − 〈w, φ(n)〉 − b ≤ ε+ ξn (5.7)
−yn + 〈w, φ(n)〉+ b ≤ ε+ ξ?n (5.8)

ξn, ξ
?
n ≥ 0 (5.9)

for n = 1, · · · , 20; {ξ(?)n } are slack variables or losses, which are introduced to
handle the residuals according to the robust cost function; and I1, I2 are the
sets of samples for which losses have a quadratic or a linear cost, respectively.

Similar derivations of the dual functional can be found in the litera-
ture [98, 105]. In brief, by including linear constraints (5.7)-(5.9) into (5.6),
the primal-dual functional (or Lagrange functional) is obtained:

LPD =
1

2

P∑
p=1

w2
p +

1

2δ

∑
n∈I1

(ξ2n + ξ?2n ) + C
∑
n∈I2

(ξn + ξ?n)−

−
∑
n∈I2

δC2

2
−

20∑
n=1

(βnξn + β?nξ
?
n)− ε

20∑
n=1

(αn + α?n) +

+
20∑
n=1

(αn − α?n) (yn − 〈w, φ(n)〉 − b− ξn)

(5.10)

constrained to α(?)
n , β

(?)
n , ξ

(?)
n ≥ 0. By making zero the gradient of LPD with

respect to the primal variables [105], it is obtained α
(?)
n = 1

δ
ξ
(?)
n (n ∈ I1),

α
(?)
n = C − β(?)

n (n ∈ I2), to be fulfilled, and if these constrains are included
into (5.10), primal variables can be removed. The correlation matrix of input
space vectors can be identified, and denoted as R(s, t) ≡ 〈φ(s), φ(t)〉. The
dual problem can now be obtained and expressed in matrix form, and it
corresponds to the maximization of:

−1

2
(α−α?)T [R+ δI] (α−α?) + (α−α?)Ty − ε1T (α+α?) (5.11)

constrained to C ≥ α
(?)
n ≥ 0, whereα(?) = [α

(?)
1 , · · · , α(?)

20 ]T ; y = [y1, y2, . . . , y20]
T ;

and 1 denotes a column vector of ones. After obtaining Lagrange multipliers



HRT Denoising using SVM 85

α(?), the time series model for a sample at time instant m is:

x̂m =
20∑
n=1

(αn − α?n) 〈φ(n), φ(m)〉+ b (5.12)

which is a weighted function of the nonlinearly observed times in the fea-
ture space. Note that only a reduced subset of the Lagrange multipliers is
nonzero, which are called the support vectors, and the HRT solution is built
in terms of them.

A Mercer’s kernel is a bivariate function that is equivalent to calculate a
dot product in a possibly infinite dimensional feature space [97]. Examples
of valid Mercer’s kernels are the linear kernel, given by K(s, t) = 〈s, t〉, and
the (nonlinear) Gaussian kernel, given by:

KG(s, t) = exp

(
−(s− t)2

2σ2

)
(5.13)

where σ is the width of the Gaussian kernel, and it must be properly chosen.
For a fixed value of σ, it is fulfilled that KG(s, t) = 〈φ(s), φ(t)〉 in some
unknown feature space. However, it is not needed to know explicitly neither
the feature space nor the nonlinear application, but still the dot products in
the feature space can be readily calculated by means of the kernel. Thus,
the final solution of SVM for HRT denoising can be expressed simply as:

x̂m =
20∑
n=1

(αn − α?n)KG(n,m) + b (5.14)

which is just a linear combination of shifted Gaussian kernels of a given
width.

5.2.2 Bootstrap Tuning of the Free Parameters

Note that several free parameters need to be previously tuned in the de-
scribed SVM denoising algorithm, namely, width σ of the Gaussian ker-
nel, and the free parameters of the cost function (ε, δ, C). Cross-validation
techniques are often used for this purpose in SVM approaches, but in our
case only 20 observations are available, and splitting them involves dramat-
ically reducing the amount of information in the training set. Search using
bootstrap resampling techniques is proposed for finding the bootstrap bias-
corrected error as a function of each free parameter, and then fixing the free
parameters and training a machine with the whole 20-samples set of the
VPC-tachogram.

Bootstrap resampling techniques are useful for nonparametric estima-
tion of the pdf of statistical magnitudes, even when the observation set is
small. A detailed description and discussion on bootstrap resampling can
be found in [121]. The procedure used here is described in [116] for SVM
classification, its extension to the regression case being straightforward. In
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brief, be θ = {ε, δ, C} is the set of free parameters of the SVM for time
series yn. The estimated SVM coefficients are α̂ = [α̂1− α̂∗1, . . . , α̂20− α̂∗20] =
s({yn}, θ), where s(, ) denotes the SVM estimation operator. Empirical risk
R̂emp = t(α̂, {yn}), where t() is the estimation operator, can be defined as
the averaged cost in the training set of samples. A bootstrap resample is
a data subset drawn from the training set by following its empirical distri-
bution, and accordingly, it consists of sampling with replacement the time
samples of yn, this is, {y∗n(b)} = {y∗1, y∗2, . . . , y∗20}, and the resampling pro-
cess is repeated for b = 1, ..., B times. Note that, for each resample, {y∗n(b)}
contains samples of {yn} appearing none, one, or several times. A partition
of {yn} set of samples can be done in terms of resample y∗n(b), given by
{yn} = {y∗n,in(b)} ∪ {y∗n,out(b)}, according to the time samples included (in)
and excluded (out) in resample b. The SVM coefficients from each resample
will be given by α̂(b) = s({y∗n,in(b)}, θ).

An acceptable approximation to the actual risk (i.e., not only empir-
ical, but total risk) can be obtained using R̂act = t(α̂(b), {y∗n,out(b)}). A
bias-corrected estimate of the actual risk is obtained by simply taking the
replication average. Furthermore, this average estimate can be achieved for
a grid of values of the SVM free parameters, hence allowing us to determine
their suitable values to train the SVM with the whole training set. A good
range for B is typically 200 to 500 resamples. SVM free parameters are not
usually mutually independent, however, a good heuristic approach is to start
with an intermediate value of C, γ, set ε = 0, then giving an initial guess of
the kernel parameter, and then re-estimate again each the other parameters,
continuing until a stable set of parameters is obtained.

5.3 Experiments

Practical issues for the application of the proposed HRT denoising tech-
niques were studied and are next presented, first by analyzing the suitability
of bootstrap resampling for tuning the free parameters in SVM interpolation
algorithm. Then, the clinical EPS database that was used as gold standard
for HRT measurements is described, and application examples of denoising
are used in order to show the following points: (1) pacing-induced HRT
during EPS can be considered as almost noise-free recordings; (2) The cycle
length previous to the HRT onset can be physiologically related to the HRT
oscillation amplitude, which should be taken into account when measuring
TS parameter; And (3) the spectral domain representation of HRT can yield
the shape of the denoised gold standard HRT. Next, measurements on TS
parameter are studied in the gold standard EPS patient database. After
summarizing the clinical data of Holter database, denoising examples are
considered both in the time and in the frequency domains, and poblational
measurements of TS are studied in this setting. Finally, denoising meth-
ods are statistically compared in terms of a new parameter, the Turbulence
Length, which allows us to quantitatively determine the effectiveness of the
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Figure 5.1: Example of free parameters selection for the SVM denoising al-
gorithm. (a) Bootstrap estimated MSE in a single VPC-tachogram example.
Each free parameter is subsequently explored in a rank of possible values while
fixing the other ones. (b) Histograms of the obtained values of the free pa-
rameters for a set of VPC-tachogram in a single patient. Note the trend of
γ and ε towards lower values, and of C and σ towards higher values.

denoising procedures in the time domain.

5.3.1 Support Vector Machine Free Parameter Selec-
tion

One of the key issues when using SVM algorithms is setting appropriate
values for the free parameters. In this problem, where only 20 discrete-time
samples are available, bootstrap resampling was used for this purpose. For
each VPC-tachogram, the Mean Squared Error (MSE) was estimated with
Bootstrap resampling on the time series for each tested combination of SVM
free parameters (C, γ, ε, and σ). Bootstrapped MSE (200 resamplings)
was obtained for values of each free parameter in its search interval, while
freezing the other parameters, using a sequential search and with two rounds.
Figure 5.1(a) shows an example of the bootstrapped MSE for searching the
free parameters in a VPC-tachogram of a patient, and panel (b) depicts the
histograms of the free parameters obtained for all the VPC-tachogram in the
same patient. An appropriate rank of searched values was set by reviewing
the histograms in a subset of the EPS and Holter database, which was found
to be γ ∈ (10−3, 0.32), C ∈ (1, 600) and σ ∈ (1.5, 6) (on a logarithmic scale),
and ε between 0 and the standard deviation of the signal divided by 10 (on
a linear scale). These ranks were found to be appropriate for individually
tuning in each VPC-tachogram the SVM interpolator throughout the study.

5.3.2 Electrophysiological Study Patient Database

VPC-tachograms were induced by pacing in 10 patients with structurally
normal heart during EPS under mild sedation at rest and were used as the
HRT gold standard by assuming that under these conditions the electrophys-
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Figure 5.2: EPS database: Relationship with preceding cycle length. (a)
VPC-tachograms for basal and for low and high isoproterenol dose controling
the heart rate. (b) Effect of cycle in frequency domain. (c) Effect of cycle
in frequency domain, with normalized units. (d) Normalized spectra for a
patient (mean and 95% CI), for raw and denoised VPC-tachogram.

iological noise would be minimized. The VPCs were induced by cyclic pacing
from the right ventricular apex, after every twenty one spontaneous beats
during sinus rhythm, according to the procedure suggested in [119]. The
intracardiac EGM and the surface ECG were simultaneously recorded on a
conventional digital polygraph and the beat-to-beat intervals were extracted
from the ECG.

Figure 5.3 shows an example of denoising a VPC-tachogram in a pa-
tient from EPS database. A clear smoothing effect can be observed, and the
turbulence oscillation pattern (this is, initial acceleration followed by a decel-
eration) is clearly recovered with the three methods, i.e., SVM, linear (FIR),
and median (MED) filtering. According to its proposal as gold standard,
low noise level is expected in these signals, and hence, they hardly differ
from the denoised version with any of the proposed algorithms. This can be
also checked in the frequency domain representation of the HRT. The spec-
trum using a Fast Fourier Transform (FFT) of 512 samples was obtained
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Figure 5.3: EPS database: Examples of HRT denoising, in time (left) and
frequency (right) domains. (a,d) SVM filtered. (b,e) FIR filtered. (c,f)
Median filtered.

for the VPC-tachogram recording. Note the extremely low length of the
HRT time series (20 samples), which makes a strong windowing effect to be
present. Figure 5.3 also shows the power spectral density for denoised VPC-
tachograms. It can be seen that the power in low frequency (about < 0.18
Hz) is maintained in all cases, whereas the high frequency components are
filtered and smoothed, aiming to cancel the high frequency noise. The SVM
denoised signal has a slightly lower level in the high frequency band (about
> 0.18 Hz) and a less distorted low frequency band, when compared to the
spectrum of the other denoising methods.

The relationship with previous cycle length was observed in the gold
standard HRT. Figure 5.2 shows an example of the effect of the preceding
cycle in a patient with three different conditions: basal, low, and high doses
of isoproterenol, yielding different levels of HR acceleration preceding the
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Figure 5.4: Examples in Holter database, in time (left) and frequency (right)
domains: (a,d) SVM denoised; (b,e) FIR denoised; (c,f) Median denoised.

HRT. In order to clearly observe the relationship between the HR and the
HRT, a number between 9 and 11 VPC were stimulated for each of these
states. Figure 5.2(a) shows the relationship between preceding HR and HRT
oscillation amplitude in the time domain. According to previously reported
results in the literature [112], the increase in HR is related to a decrease in
the turbulence oscillation amplitude. Figure 5.2(b) shows the same effect
in the frequency domain, in which the spectral envelope clearly decreases
with cycle length. Note also that there is a slight, yet visible, shift in the
power towards lower bands. Figure 5.2(c) shows the normalized spectra, in
which the shift is still more patent. Accordingly, filtering the averaged VPC-
tachogram, while being adequate for noise reduction, may mask the potential
changes of the VPC-tachogram response over time, thus precluding to assess
oscillations of the autonomic balance in an individual patient. Figure 5.2(d)
shows the averaged spectrum and 95% confidence intervals for normalized
spectrum in a patient of EPS database, for raw and denoised signals. Spectra
of each VPC-tachogram have been separately normalized, and average and
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Figure 5.5: Examples from Holter database in the frequency domain. Aver-
aged normalized spectra and 95% confidence intervals for two patients with
24 VPC-tachogram (a) and 8 VPC-tachogram (b) in their 24-hours Holter
recordings.

standard deviation have been subsequently calculated.
Note that filtering does not change significantly the spectral content of

the turbulence in physiological rest with any of the denoising methods, which
allows us to consider pacing induced HRT during EPS as a gold standard
for comparison with the denoising algorithms in the Holter database.

5.3.3 Results on the Electrophysiological Study Patient
Database

Table 5.1 shows the number of VPC (VPC-tachogram) obtained for each pa-
tient in the EPS database, together with the mean and standard deviation of
the TS parameter in each VPC-tachogram (TSV PC−tach), both for unfiltered
and for filtered conditions. Right columns in the table present the values of
the TS parameter for each patient, and for each denoising algorithm (SVM
TS, FIR TS, Median TS), as well as for the raw signal. Parameter TS was
here obtained according to the conventional procedure, i.e., by calculating
the TS for the averaged VPC-tachogram signals. It can be seen that param-
eter TS has lower values when obtained from the averaged template than
when averaged in each VPC-tachogram. Nevertheless, in both cases the TS
has similar values (yet slightly lower for the denoised VPC-tachograms) for
all the denoising methods.

5.3.4 Holter Database

VPC-tachograms were also obtained in 61 post-myocardial infarction pa-
tients included in a prospective study at Hospital Universitario Virgen de la
Arrixaca (Murcia, Spain) [122]. A 24-hour ambulatory electrocardiographic
monitoring was performed in patients with stable sinus rhythm between 2
and 6 weeks after infarction and 61 with at least 1 VPC during the moni-
toring period were included in the analysis (age 64.3 +/- 9.0 years, 26 men).
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Mean±Std Median [Max,Min]

# VPC-tachogram 50.7± 104.8 12 [474, 1]

TS 7.8± 6.0 6.1 [29.1, 0.4]

SVM TS 6.9± 4.4 6.1 [20.3, 0.4]

FIR TS 6.8± 6.3 5.2 [37.3, 0.2]

Median TS 6.8± 6.3 5.2 [37.3, 0.2]

TSV PC−tach 14.7± 9.8 12.1 [174.0, 0]

SVM TSV PC−tach 11.3± 6.0 10.6 [145.4, 0.02]

FIR TSV PC−tach 11.9± 8.3 9.6 [146.1, 0.002]

Median TSV PC−tach 13.2± 10.0 10.7 [171.5, 0]

Table 5.2: Holter Database: Number of VPC-tachogram per patient and val-
ues for the TS parameter (raw and denoised). Conventionally calculated
and averaged values for individual TS from denoised HRT (TSV PC−tach) are
reported.

The average number of VPC-tachograms per patient was 50.7 (median 12,
rank 1-474).

Figure 5.4 shows a denoising example in one of these patients. It can be
seen that SVM obtains a denoised signal with a clearer turbulence pattern in
the time domain in comparison with the other two filtering methods. With
respect to the frequency domain, SVM is better than the other denoising
methods at cancelling the noisy components in high frequency, while pre-
serving an spectral shape that is quite similar to the previously observed
in the gold standard. Averaged normalized spectra and 95% confidence in-
tervals with all the methods are shown in Figure 5.5, in two patients with
moderate and low (24 and 8) number of VPC-tachograms in the 24-hour
recording. The unfiltered spectra show an extremely high noise level that is
partially reduced by the median and FIR algorithms. However, the narrower
confidence interval and shape coherence with the gold standard spectra is
obtained with the SVM denoising.

5.3.5 Results on the Holter Database

Table 5.2 shows the number of VPC-tachograms in the Holter database.
Also, the values of TS parameter when obtained from conventional process-
ing for both raw and denoised signals were compared with its calculation
from each isolated VPC-tachogram (TSV PC−tach) in all cases. As expected,
higher TS values were obtained for isolated and denoised VPC-tachogram,
and in both procedures, SVM denoised values yielded the lowest standard
deviation.

An additional parameter was calculated, aiming to quantify the similar-
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Figure 5.6: Holter Database: Examples of Turbulence Length calculation.
(a) When Turbulence Length is measured in a single VPC-tachogram, larger
values correspond to a clearer correspondence with the oscillation expected
by the HRT mechanism, whereas shorter values are in general due to noise
still present in the signal. (b) Example of Turbulence Lengths in a patient
with high number of VPC-tachogram, and effect of the denoising algorithms.

Tach. SVM FIR Med.

EPS 5.2±1.7 10.9±3.0* 9.7±2.5* 7.2±2.4*
Holter 3.0±0.7 11.2±2.6* 7.6±2.7* 5.3±1.6*

Table 5.3: EPS and Holter Databases: Turbulence Lengths for the patients
in the study and for the denoising algorithms.

ity in the time domain between the (raw or denoised) actual VPC-tachogram
and the expected according to the physiological definition of HRT. There-
fore, for each VPC-tachogram the following sequence was obtained: first
minimum, first maximum, and second minimum, for the raw and for the
filtered VPC-tachogram. This sequence gives a measurement of the similar-
ity between the turbulence waveform and the postulated mechanism in the
HRT definition (deceleration, acceleration, and oscillation). The Turbulence
Length parameter was calculated as the difference between the discrete times
corresponding to the second and to the first minimum, and hence it has units
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of number of beats.
Figure 5.6 shows an example in a patient with a high number of VPC-

tachogram, and it can be observed therein that the Turbulence Length is
extremely short in raw VPC-tachogram, because the first and second relative
minima usually correspond to the noise present in the signal. An increase in
the Turbulence length can be obtained for denoising VPC-tachogram, which
is more visible with the SVM denoising. Table 5.3 shows the values of the
Turbulence Length both in the gold standard and in the Holter databases,
in which a significant increase can be observed (*p<0.001 when compared
with unfiltered tachograms, paired t-Student test).

5.4 Conclusions

A new signal processing method, the SVM interpolation, has been proposed
for denoising PPT signals in HRT. The use of a gold standard database
with pacing induced VPC-tachogram during EPS has been used for compar-
ison of the HRT behavior both in the time and in the spectral domains. In
low-noise conditions, the SVM algorithm yielded results that were similar
to other conventional filtering methods, and in all cases the results were ac-
cording to the expected mechanism of the HRT. For VPC-tachograms in this
EPS database, denoising algorithms also were shown to yield similar spec-
tral profiles of HRT. In the presence of noise, i.e., in the Holter database,
the tested algorithms yielded denoised VPC-tachogram signals containing
lower noise level. However, SVM algorithm obtained a higher performance
when compared to the median and to the FIR filters. As seen in the exam-
ples, the oscillations that are expected in the HRT were better preserved,
the spectral profile of the denoised VPC-tachogram was more similar to the
observed in the gold standard, standard deviation was lower, and the signif-
icantly higher values of Turbulence Length suggest that the noise was more
efficiently removed from the turbulence.

The proposed SVM algorithm allows to perform the HRT analysis even
when a low number of VPCs are available. This characteristic has clinical
implications, because one of the current requirements for suitability of a
patient to be studied in terms of TS is a sufficient number of VPCs being
available. Thus, HRT denoising will help to extend the HRT analysis to a
higher number of patients. The SVM algorithm gives a better description
of the dependence with the HR previous to the VPC-tachogram, and allows
the analysis of the changes of HRT with time. These possibilities should be
explored in additional studies with other databases of patients with different
cardiac diseases.

We can conclude that it is possible to obtain time-local HRT measure-
ments without averaging, by using robust digital signal processing, as shown
by the analysis on the EPS database. The SVM denoising allows us to mea-
sure the HRT in noisy conditions, such as in patients with Holter, which is a
usual situation in the clinical practice. Finally, this denoising can give new
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approaches to HRT analysis, such as evaluation of the changes of HRT with
time, or the evaluation of patients with a low number of VPC. Hence, the
application of SVM denoising in series with clinical events could improve the
predictive value of the classical HRT methods for risk stratification. Finally,
other similar problems can be found in Electroencephalography literature,
like event-related potentials [123, 124], which could be addressed by following
the approach used here to HRT denoising.



Chapter 6

Influence of Coupling Interval
and Heart Rate on Heart Rate
Turbulence

6.1 Introduction

The baroreflex hypothesis for the HRT origin would imply that the more
premature the VPC (the less hemodynamically efficient the contraction),
the stronger the HRT response [6]. Nevertheless, a number of precedent
works studying the relationship between CI and HRT present conflicting
results, as summarized in Section 6.2.

The usual procedure to assess the HRT implies averaging all the available
isolated VPC-tachograms in order to construct the average VPC-tachogram,
on which TS and TO are computed. This averaging aims to improve the
SNR, and it has provided positive results in several clinical studies [5, 48,
125]. However, it could mask the influence of different physiological factors
on the HRT, and more, if these factors are not independent, then averaging
could be a biased or inaccurate processing stage for HRT parameter estima-
tion.

The aim of this chapter is to propose a procedure to systematically assess
the interaction between VPC prematurity (as given by its coupling interval,
CI) and the underlying HR on the HRT. Instead of conventional averag-
ing, HRT was measured by computing TS parameter on each individual
VPC-tachogram and comparing it with the corresponding CI and HR phys-
iological values.

For this purpose, a population of patients with structurally normal heart
undergoing EPS was considered in the present Thesis. A clinical protocol
was designed so that CI was controlled with a programmed cardiac pacing
protocol, and HR was controlled by using isoproterenol. The EPS protocol
consisted of two substudies, one to analyze the relationship between HR and
HRT, and another to analyze the combined effect of HR and CI on HRT.
These interactions were also studied by using Holter recordings from patients
after an AMI episode, in order to compare data registered in low physiological

97
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noise conditions (EPS) with those in real-world conditions (Holter out-of-
hospital monitoring).

Several data analysis methods have been used to determine the cross-
effect and interactions of CI and HR on TS parameter, namely:

1. Simple linear regression analysis (HR vs TS, and CI vs TS), on EPS
database separated into HR and CI controlled patients, respectively,
was used to replicate results in previous studies [119, 126, 127, 128] in
our database.

2. Nonlinear ridge regression models fitted on EPS database with all pa-
tients altogether, and on AMI database divided into high risk and low
risk patients, according to HRT usual thresholds [6]. This methods
was used to provide a model that is able to explain the influence of CI
and HR on HRT.

6.2 Background
HRT probably reflects the baroreflex activity triggered by the low pulse pres-
sure due to a hemodynamically inefficient ventricular contraction [6]. Several
physiological factors modulate and can affect the HRT pattern, namely, the
HR, the VPC prematurity (or CI), and circadianity [112, 129, 130]. On the
one hand, the dependence of HRT on HR is attributed to a shared sym-
pathovagal modulation, hence the HRT response is attenuated at high HR
conditions. Some studies support this physiological hypothesis by showing
a strong dependence between HR and HRT across individuals [131, 132],
however, only weak correlations have been found within individuals [47].

Authors in [133] found that prematurity of VPC was linearly correlated
only with TO, but TS was not affected at all, whereas studies [127] and [134]
reported strong linear correlations of both TO and TS with prematurity of
VPC. Interestingly, this effect was less pronounced in patients with left ven-
tricular dysfunction [127]. However, authors in [119] found no correlation
between HRT parameters and prematurity of VPC, either in pooled pop-
ulation or in individual patients. In summary, existing studies provide us
with contradictory results, sometimes even apparently opposed to the HRT
physiological hypothesis. Conflicting results among different studies about
correlations between HRT parameters and CI have been usually attributed
to the effect of basal HR. According to [135] if HR is high then, regardless
of CI, HRT will be low and unlikely to be correlated with CI. The author
in [135] stated:

“The effect of coupling interval as separate from HR seems de-
batable, and awaits further study.”

There had been some attempts to characterize HRT parameters by using
simultaneously the information of CI and HR, by representing TS and TO as
a function of CI and HR [128, 136], but no clear pattern could be observed,
likely due to the low SNR in Holter monitoring signals.
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Figure 6.1: (a) Superposition of individual VPC-tachograms from a patient
in Protocol–I. Phase–I (no-isoproterenol) shows high SCL values (low HR),
and Phase–II (isoproterenol) shows lower SCL values (high HR). HRT is
clearly attenuated at high HR. (b) Example of consecutive VPC-tachograms
for a patient in Protocol–II, showing the change of prematurity of the VPC.

6.3 Clinical Datasets

In this Section, the EPS and AMI databases are described. The protocol to
stimulate VPC on EPS patients is explained with detail.

6.3.1 Electrophysiological Studye Database

A database of 11 patients with structurally normal heart referred for EPS in
Hospital Universitario Virgen de la Arrixaca (Murcia, Spain) was assembled.
A protocol to induce VPC was approved by the local Ethics Committee
and all participants granted a signed informed consent. The protocol was
performed during SR at the end of the EPS and after ablation procedures.
Sequences of 10 single induced VPC were delivered every 20 seconds from
the apex of the right ventricle. VPC-tachograms were reviewed to discard
those with atrial or ventricular ectopy. The study was structured into two
protocols: Protocol–I, designed to study the influence of HR on HRT, with
5 patients, and Protocol–II, designed to study the combined influence of
HR and prematurity of VPC (CI) on HRT, with 6 patients. The HR was
controlled by isoproterenol, which emulates the general activation of beta-
1 receptors in the heart by the sympathetic nervous system [137], whereas
the CI was controlled by modifying the prematurity of the VPC. Table 6.1
summarizes the demographic variables of the 11 EPS patients.

Age (mean±std), [min,max] years Sex (Male/Female)

50.45± 15.82 [24, 76] 4/7

Table 6.1: EPS database demographic variables.
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Protocol–I. Hear Rate Influence on Heart Rate Turbulence

The purpose of this protocol was to assess the influence of HR on the HRT,
under the assumption that high HR reduces the HRT response, i.e. pro-
duces lower TS values. Protocol–I had two phases. Phase–I , in which 10
VPC were delivered without isoproterenol. Phase–II , in which 10 VPC were
delivered with isoproterenol. HR was high (low Sinus Cycle Length, SCL)
in Phase–II , due to administration of isoproterenol. Figure 6.1(a) shows
individual VPC-tachograms from a patient on Protocol–I. Note that HRT
is clearly attenuated at high HR, which corresponds with Phase–II .

Protocol–II. Influence of Heart Rate and Coupling Interval on
Heart Rate Turbulence

The purpose of this protocol was twofold: (1) to verify that CI modulates
the HRT, under the assumption that lower CI (more premature VPC) leads
to stronger HRT response; (2) to corroborate that HR moderates or interacts
with the CI modulation of the HRT, under the assumption that high HR will
affect it. Protocol–II was also structured into two phases: Phase–I without
isoproterenol and Phase–II with isoproterenol. In each phase, 10 VPC were
delivered with extraestimuli prematurity starting at 95% of the preceding
sinusal RR-Interval, and decreasing prematurity of each extrastimuli by 70
ms. Figure 6.1(b) shows an example for a patient on Protocol–II.

The design of Protocol–II aimed to decouple the effect of HR and CI on
the modulation of HRT, considering two scenarios with HR as constant as
possible: one scenario with low HR (Phase–I ); another one with high HR
(Phase–II ). In both, CI was modified to evaluate the isolated influence of
the VPC prematurity.

6.3.2 Acute Myocardial Infarction Database

This database contained 61 AMI patients that underwent emergency coro-
nary angiography, and when appropriate, percutaneous revascularization of
the infarct. This data were collected in a prospective study at Hospital
Universitario Virgen de la Arrixaca (Murcia, Spain) [122] to evaluate the
impact of primary angioplasty on the indication for implantable defibrillator
in patients with AMI. A 24-hour Holter was done in patients with stable SR
between 2 and 6 weeks after infarction, and 61 patients with at least 1 VPC
during the monitoring period were included in the analysis. The average
number of VPC-tachograms per patient was 50.7 (median 12, rank 1-474).

AMI database was split into two different subsets: (1) one subset com-
prised patients with normal HRT parameters values: TS ≥ 2.5 ms/RR− interval
& TO ≤ 0 %, hereafter called AMI low-risk. (2) The another subset com-
prised patients with abnormal HRT parameters values TS < 2.5 ms/RR− interval
& TO > 0 %, hereafter called AMI high-risk. TS and TO cutoff values are
commonly used in most clinical studies, where TS > 2.5 ms/RR− interval
and TO < 0 % are considered normal. They were proposed using data
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from different post-infarction studies [6]. Table 6.2 shows the demographic
statistics.

Age (mean±std), [min,max] years Sex (Male/Female)

AMI low-risk 62.65± 11.87 [34, 82] 12/5
AMI high-risk 70.00± 5.61 [62, 77] 1/4

Table 6.2: AMI database demographic variables.

6.4 Simple Linear Regression and Nonlinear
Ridge Regession Models

Simple linear regression models were used to assess, independently, the rela-
tionship between TS and SCL, and between TS and CI, on EPS database.
The goal was to reproduce the analysis in the literature using data from a
specifically designed protocol to decouple the effect of HR and CI. Nonlinear
ridge regression model was proposed to take into account possible interac-
tions between SCL and CI. Finally, a bootstrap procedure was used to
estimate the standard error of the parameters in the nonlinear ridge regres-
sion model, which, in turn, allow to estimate confidence intervals and test the
significance of the parameters. The advantages of the boostrap procedure
are that no assumption about the distribution of the residuals is made and
that the estimation of standard error is reasonable even if the assumption of
the nonlinear regression model is wrong [138].

Note that in this Chapter, as in most previous works in the literature [119,
132], HR is represented as SCL in milliseconds for calculation purposes.

6.4.1 Simple Linear Regression

Relationship among physiological factors HR and CI with TS was assessed
by means of a simple linear regression model driven by data. A regression
line is constructed by using LS, hence allowing to measure the correlation
between response and explicative variables. This simple analysis would allow
to determine whether these physiological variables are related with HRT in
the same way as explained by the baroreflex source hypothesis. The following
linear regression model was used:

TS = wC,1 CI + wC,0 + εC (6.1)

where wC,0, and wC,1 are the coefficients of the linear model, and εC accounts
for the model residuals. To isolate the influence of CI from the effect of
HR as much as possible, the normalized coupling interval (CIn) was also
considered [126], defined as:

CIn =
Coupling Interval

Preceding Sinus Interval
(6.2)
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and the results were compared by using both CI and CIn as independent
variable in (6.1).

Clearly, the slope coefficient wC,1 quantifies the attenuation of HRT due
to the CI. The statistical significance of this coefficient was evaluated by
using F-test and Pearson’s correlation coefficient, R.

The influence of HR on HRT was also assessed using a linear regression
model given by:

TS = wH,1 SCL+ wH,0 + εH (6.3)
where wH,0, and wH,1 are the model coefficients, and εH accounts for the
residuals.

6.4.2 Nonlinear Ridge Regression Model

Given that conflicting results in the literature could be due to possible non-
linear relationships among physiological variables and the HRT, an extension
of the previous models was proposed by including nonlinear transformations
of explicative variables and an interaction term. Regularization was used to
avoid overfitting.

Accordingly, the nonlinear regression model assumes that TS parameter
could be a nonlinear function of the SCL and CI: T̂ S = f(SCL,CI). It
can be stated as follows:

T̂ S = w0 + w1SCL+ w2CI + w3SCL
2 + w4SCL

3

+ w5CI
2 + w6CI

3 + w7SCL · CI (6.4)

where independent variables can be arranged in a vector ϕ as:

ϕ =



1

SCL

CI

SCL2

SCL3

CI2

CI3

SCL·CI


(6.5)

and they allow nonlinear transformation of SCL and CI. Terms have been
included up to the third degree of both SCL and CI, together with an
interaction term to characterize interaction effects. The corresponding model
coefficients are arranged in w, such that the linear regression model can be
formulated as:

TSi = wTϕi + εi; for i = 1, . . . , N (6.6)
where N is the total number of individual tachograms. In matrix notation,
previous equation can be rewritten as:

TS = Φw + ε (6.7)
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Figure 6.2: Bootstrap procedure to estimate distribution of weights

where Φ is the physiological matrix, defined as follows:

Φ =


— ϕT

1 —
— ϕT

2 —
...

— ϕT
N —

 (6.8)

To compute w, the MSE cost function is minimized. Additionally, the
original cost function is modified to include a penalty term (regularization)
depending on the model coefficients. The objective of the regularization term
is to find a trade-off between a smooth solution at the same time providing
low error [139, 140]. The influence of the regularization term is controlled
by regularization parameter λ, so that the modified MSE cost function is:

min
w

∥∥TS −Φw
∥∥2
2

+ λ ‖w‖22 (6.9)

Thus, the solution is given by:

w =
(
ΦTΦ + λI

)−1
ΦT
TS (6.10)

6.4.3 Model Performance Evaluation and Bootstrap for
Characterization of Variable Relevance

In order to estimate the accuracy of the nonlinear regression model, the MSE
and the R2 statistic were computed using cross-validation. In this approach,
a fair evaluation of both quantities is obtained using data different from
those used to construct the model. The quantity MSE is defined, here, as:

MSE =
1

N

N∑
i=1

(T̂ Si − TSi)2 (6.11)
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and R2 defined as:
R2 = 1− RSS

TSS
(6.12)

where RSS = N ·MSE is the Residual Sum of Squares, and TSS, Total
Sum of Squares, is defined as:

TSS =
N∑
i=1

(TSi − TS)2 (6.13)

where TS is the average of all TSi values. R2 measures the proportion of
variability in the response variable that can be explained by the explanatory
variables.

A 10-fold cross-validation procedure typically used in the literature was
used [141]. In this procedure, the dataset is randomly divided into 10 groups
of equal size named folds, and 10 nonlinear regression models are constructed.
Each model is constructed using data from 9-folds, while remaining fold is
used as a validation set to compute accuracy measures. This process is
repeated 10 times, so that the validation set correspond to a different fold
every time. Final estimation of the measures is computed by averaging the
results obtained for the 10 validation sets.

Empirical distributions of coefficients for the nonlinear ridge regression
model were computed using a bootstrap procedure. Bootstrap resampling
is a powerful statistical tool that allows to emulate the process of obtaining
new datasets [138]. This approach can be used to estimate the coefficients
distribution in a linear regression model. The idea is to obtain coefficients
estimations from different datasets by repeatedly sampling observations from
the original dataset [141].

Let us denote an observation as the pair (TSi,ϕi), where, i = 1, . . . , N ,
and N is the number of observations on the original dataset. The com-
plete original dataset is, therefore, Z = (TS,Φ). The bootstrap procedure
consists in randomly selecting N observations, with replacement, from Z to
obtain a bootstrap dataset Z∗1. Since resampling is performed with replace-
ment, one observation can occur more than once in the bootstrap dataset.
Coefficients are estimated using Z∗1, leading to a bootstrap estimate for w,
called ŵ∗1. This procedure is repeated B times to produce B bootstrap
data sets, {Z∗i}Bi=1, and accordingly, to obtain B bootstrap estimates of the
coefficients {ŵ∗i}Bi=1, see Figure 6.2.

The empirical distribution of the coefficients, being estimated with the
previously explained procedure, allows us to perform a statistical hypothesis
test to evaluate the relevance of every variable in the model. The null hy-
pothesis is that wj = 0, meaning that the associated variable is not relevant
to explain TS. The alternative hypothesis is that wj 6= 0, meaning that the
corresponding variable is relevant, i.e. there is a linear relationship between
variable and response. This can be stated as follows:{

H0 : wj = 0

H1 : wj 6= 0
(6.14)



Influence of CI and HR on HRT 105

200 400 600 800 1000 1200 1400
−10

0

10

20

30

40

50

60

70

SCL (ms)

T
S

 (
m

s
/R

R
−

In
te

rv
a

l)

All pats in protocol

TS = −11.82 + 0.04 SCL

R = 0.59 p−value < 0.05

(a)

400 600 800 1000 1200
−10

0

10

20

30

40

50

60

70

SCL (ms)

T
S

 (
m

s
/R

R
−

In
te

rv
a

l)

Protocol I

TS = −31.20 + 0.06 SCL

R = 0.77 p−value < 0.05

(b)

200 400 600 800 1000
−10

0

10

20

30

40

50

60

70

CI (ms)

T
S

 (
m

s
/R

R
−

in
te

rv
a

l)

All pats in protocol

TS = −2.21 + 0.03 CI

R = −0.44 p−value < 0.05

(c)

100 200 300 400 500 600 700 800 900
−10

0

10

20

30

40

50

60

70

CI (ms)

T
S

 (
m

s
/R

R
−

in
te

rv
a

l)

Protocol II CI (ms)

(d)

0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

CI
n
 (%RR−Interval)

T
S

 (
m

s
/R

R
−

in
te

rv
a

l)

All pats in protocol

(e)

0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

60

70

CI
n
 (%RR−Interval)

T
S

 (
m

s
/R

R
−

in
te

rv
a

l)

Protocol II CI
n
 (%RR−Interval)

TS = 23.95 −20.99 CI
n

R = −0.38 p−value < 0.05

(f)

Figure 6.3: Linear regression of TS parameter vs SCL, vs CI, and vs CIn
in a population with all patients from both protocols (a),(c), and (e), and in
separated protocols: (b) Protocol-I, (d) and (f) Protocol-II.

This hypothesis test is performed from the bootstrap empirical distribu-
tion of parameter wj, so that whenever the 95% confidence interval contains
the zero value H0, is accepted, otherwise H0 is rejected.
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Figure 6.4: Analysis of the interaction between HR and CI using data from
patients in Protocol–II, Phase–I (a,c), and Phase–II (b,d). Mean and stan-
dard deviation of SCL for each phase is reported.

6.5 Data Analysis and Results

In this section, the analysis of data using the simpler linear regression and
nonlinear ridge regression models are presented. First, simple linear regres-
sion models are fitted using all the available data on the EPS database
(aggregated data), aiming to reproduce the results in the literature [119].
Then, simple linear regression models are fitted using data separated into
Protocol–I and Protocol–II, aiming to check whether the design of the pro-
tocol allows to verify the influenc of CI on HRT. Finally, nonlinear ridge
regression models are fitted on EPS databases (aggragated data) and on
AMI databases, aiming to verify if the proposed model is able to explain the
influence of HR and CI on HRT. Additionally, the nonlinear ridge regression
models are extended to take into account the AGE and SEX of patients.
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6.5.1 Simple Linear Regression Analysis

Analysis on Aggregated Data

In order to establish a comparison with previous results in the literature,
variables involved in simple linear regression models were first analyzed (TS-
CI and TS-SCL), see Section 6.4.1. To reproduce results in the literature,
aggregate data from EPS database are used.

Left panels in Figure 6.3 show the simple linear regression models given
by Eqs. (6.3) and (6.1). Specifically, Figure 6.3(a) shows that the linear
relationship between SCL and TS is significantly positive (TS = −11.82 +
0.04 SCL, R = 0.59, p < 0.05). Figure 6.3(c) shows, also, a significantly
positive relationship between CI and TS (TS = −2.21 + 0.03 CI, R =
−0.44, p < 0.001). The last result is apparently in contradiction with the
HRT baroreflex source hypothesis, and it is consistent with previous work
in [119], where TS was also found to be positively correlated with com-
pensatory pause. Additionally, authors in [119] analyzed the relationship
between CIn (see Eq. (6.2)) and TS, and found no correlation. Accordingly,
Figure 6.3(e) shows the same conclusion with our data (R = −0.06, p not
significant).

Authors in [119] suggested, according to their experiments, that correla-
tions were in fact due to strong influence of HR on HRT (low HR–high TS,
and high HR–low TS), rather than an inherent relationship between HRT
and CI. However, no further analysis was presented therein.

Isolated Effects of SCL and CI

Since EPS protocols (Protocol–I and Protocol–II) defined in Section 6.3.1
were designed to decouple the interaction between HR and CI, simpler linear
regression models were fitted using patients from Protocol–I and Protocol–II
separately.

Figure 6.3(b) shows the simple linear regression model between TS and
SCL considering only data from patients in Protocol–I, where HR is con-
trolled with isoproterenol. TS was positively correlated with SCL (TS =
−31.20 + 0.06 SCL, R = 0.77, p < 0.01).

Figure 6.3(d) shows the simple linear regression model between TS and
CI with considering data from patients in Protocol–II, where CI was exter-
nally modified, as explained in Section 6.3.1. Results indicated that TS was
uncorrelated with CI (R = −0.04, p not significant). However, as it is shown
in Figure 6.3(f), linear regression between TS and CIn yielded a significantly
negative correlation (TS = 23.95−20.99 CIn, R = −0.38, p < 0.001). Nor-
malization allowed to decouple the effect of SCL on CI using only data from
patients in Protocol–II, revealing the expected physiological modulation of
CI on TS.
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Figure 6.5: Scatter 3D plots of TS vs SCL and CI for EPS subjects (a),
AMI low-risk patients (b) and AMI high-risk patients (c).

Effect of SCL on CI in Protocol–II

Protocol–II was divided into two phases, allowing to study the effect of SCL
on CI. Then, simpler linear regression models betwen TS and CI were fitted
in both phases (I and II) of Protocol–II. Patients in Phase–I were not given
isoproterenol, hence their chronotropic state corresponded to high SCL (low
HR), whereas patients in Phase–II were under isoproterenol intervention and
hence their state corresponded to low SCL (high HR).

Figure 6.4 shows results of simple linear regression models for Phase–I
and –II. It showed no significant relationship (p > 0.05) between TS and
CI (R = −0.16 and R = −0.006, respectively). However, using CIn yielded
TS models with significant negative slope, namely, TS = 25.48− 21.56 CIn
with R = −0.37, and TS = 19.24− 16.74 CIn with R = −0.36, respectively,
both p < 0.001. This behavior was consistent with the HRT baroreflex
hypothesis source, and it was a confirmation that EPS protocol accounted
for interactions. Moreover, the slope coefficient was lower with high HR
(low SCL), showing an interaction effect of HR on SCL according to some
previous results [136, 142].
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EPS SCL CI AGE

SCL 1 0.85 0.05
CI 0.85 1 0.07

AGE 0.05 0.07 1

AMI low-risk SCL CI AGE

SCL 1 0.32 -0.03
CI 0.32 1 0.22

AGE -0.03 0.22 1

AMI high-risk SCL CI AGE

SCL 1 0.92 -0.93
CI 0.92 1 -0.92

AGE -0.93 -0.92 1

Table 6.3: Correlation matrix for variables SCL, CI, AGE on EPS, AMI
low-risk, and AMI high-risk databases.

6.5.2 Nonlinear Ridge Regression Analysis

Nonlinear ridge regression models were fitted to the whole EPS database
(aggregated data) and to both AMI low-risk and AMI high-risk databases.
The model proposed in Section 6.4.2 was extended to include AGE and
SEX variables. Since SEX is a qualitative variable with only two levels
(male/female), its incorporation into the model is straightforward. A dummy
SEX variable was created taking two possible numerical variables: SEX =
−1 corresponds to male, SEX = 1 corresponds to female. The notation
used to represent the nonlinear ridge regression models has three elements:

XXX aX sX

where the first three characters represent the order of the model, second
(2nd) or third order (3rd), the second group of characters indicates whether
the variable AGE is included in the model (a1) or not (a0), and finally, the
third group of characters indicates whether the variable SEX is included in
the model (s1) or not (s0). The nonlinear ridge regression models used and
the corresponding notation is presented following:

• Second order models:

– 2nd a0 s0: ϕ =
[
1, SCL, CI, SCL2, CI2, SCL·CI

]T
– 2nd a1 s0: ϕ =

[
1, SCL, CI, SCL2, CI2, SCL·CI, AGE

]T
– 2nd a1 s1: ϕ =

[
1, SCL, CI, SCL2, CI2, SCL·CI, AGE, SEX

]T
• Third order models:

– 3rd a0 s0: ϕ =
[
1, SCL, CI, SCL2, SCL3, CI2, SCL3, SCL·CI

]T
– 3rd a1 s0: ϕ =

[
1, SCL, CI, SCL2, SCL3, CI2, SCL3, SCL·CI, AGE

]T
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Figure 6.6: Mean and 95% confidence intervals of coefficients for the non-
linear ridge regression models with AGE and SEX variables for EPS, AMI
low-risk, and AMI high-risk databases.

– 3rd a1 s1: ϕ =
[
1, SCL, CI, SCL2, SCL3, CI2, SCL3, SCL·CI, AGE, SEX

]T
Table 6.3 shows the correlation matrices between SCL, CI, and AGE

variables for EPS, AMI low-risk, and AMI high-risk databases. SCL and
CI showed strong correlation in EPS database. However, these are not free
variables since they are controlled according to the Protocol proposed in
Section 6.3. On the other hand, the correlation between them on AMI low-
risk database was weaker. AGE was strongly negative correlated with both
SCL and CI in AMI high-risk database.

Figure 6.5 shows a 3D scatterplot for TS in terms of SCL and CI,
on EPS, AMI low-risk, and AMI high-risk databases. It can be pointed
out that EPS and AMI low-risk presented similar point distributions, with
higher variance than AMI high-risk.

Since some of the features are powers or combinations of SCL and CI,
the ranges of values vary widely. Thus, features with large values may have
larger influence in the cost function. To overcome this problem, a usual
approach is to scale the data by subtracting the mean and dividing by the
standard deviation [143]. Therefore, coefficients are presented in normalized
units (n.u.).

Table 6.4 shows coefficients values of the nonlinear ridge regression mod-
els fitted to EPS database. The best models, in terms ofMSE and R2, were
2nd a0 s0 and 3rd a0 s0, this is without AGE and SEX variables. In
both models, coefficient of CI variable was significant and with a negative
correlation with TS, in agreement with the hypothesis of baroreflex source
of HRT. Coefficients relating SCL variables with TS were significant and
positive. Interaction term SCL · CI was also significant for these models,
and for all models. Table 6.5 shows coefficient values of the best models
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2nd a0 s0 and 3rd a0 s0, refitted by removing iteratively nonsignificant
variables until all the variables were significant. However, the hierarchical
principle states that if we include an interaction in a model, the main effects
should also be included, even if the p-values associated with their coefficients
are not significant [141]. Table 6.6 shows coefficient values of the complete
model (3rd a1 s1) but without regularization term (setting λ = 0) showing
the necessity for using the regularization term.

Table 6.7 shows coefficient values of the nonlinear ridge regression models
fitted to AMI low-risk database. All the variables except SEX were signif-
icant in all the models. Even more, variables relating CI and TS showed
negative relationship in agreement with the baroreflex source. Similarly,
variables relating SCL and TS showed positive relationship. AGE had a
negative significant relationship with TS. Table 6.8 shows coefficient values
of the nonlinear ridge regression models fitted to AMI high-risk database.
The relationship between variables and TS was completely different than in
EPS and AMI low-risk database. The coefficient values were always smaller
than 1.8 units.

Figure 6.6 shows mean and 95% confidence interval, estimated with boot-
strap, of coefficients of nonlinear ridge regression model (3rd a1 s1) fitted
to EPS, AMI low-risk, and AMI high-risk database.

6.6 Discussion and Conclusions
Previous studies [119, 127, 133, 134] showed conflicting results when assessing
the effect of the CI on HRT parameters, and even contrary to the baroreflex
origin hypothesis of the HRT. In this chapter, an EPS protocol to stimulate
VPC on patients with with structurally normal heart was designed. HR and
CI were controlled in order to decouple the interaction on HRT. Simple lin-
ear regression analysis confirmed previous results about the influence of CI
on HRT. A nonlinear ridge regression model was proposed in order to take
into account interaction terms and nonlinear relationship between variables
and HRT. Nonlinear ridge regression models were used to analyze EPS, AMI
low-risk and AMI high-risk databases. The model proposed was able to ex-
plain the influence of HR and CI on HRT in agreement with the baroreflex
source hypothesis on EPS and AMI low-risk database. AMI high-risk pa-
tients showed a completely different relationship, that might be viewed as a
breakdown of the physiological control on the HRT response.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this Thesis, different robust signal processing to characterize cardiac fib-
rillations and baroreflex and ASN control of the HR have been proposed.

Part II of the Thesis addressed the problem of characterizing spectral
properties of VF and AF. Specifically, in Chapter 2 a parametric method
to study VF has been proposed. The method, called FOA, is an extension
of Fourier Series expansion that accounts for the irregularity present in the
VF signals. To test the proposed method, controlled electrophysiological
substrates have been simulated, and synthetic EGM have been obtained.
Also, a small database with four different rhythms, and an extensive VF
database, have been analyzed. The database with different rhythms aimed
to evaluate the performance of the two different approaches, the classical
DFA and the proposed FOA, in real EGM recordings with different electro-
physiological and well-known situations. VF database aimed to evaluated
the performance of both approaches in a real set with a large number of EGM
recordings. Results showed that FOA provides better results estimating the
periodicity than the DFA approach. This methodology allowed us to give
a principled understanding of the meaning and limitations of the different
indices currently used in the DFA and OA literature, and also to check the
improvement given by the FOA spectral description.

In Chapter 3, a new method based on the Correntropy function was pro-
posed to estimate the f0 of AF signals. A combination of this method with
multicomponent FOA was proposed to model complex AF signals, under the
assumption that the complexity may be originated by the interaction of two
(or more) wavefronts with different fundamental frequencies. Both methods
were compared with the classic approach based on DFA, which character-
izes the periodicity of the AF signal by means of the fd calculated on a
preprocessed signal. A set of experiments with pseudo-real AF signals were
designed to verify the adequacy of the proposed approach. In addition, two
different datasets were assembled, one with regular and homogeneous AF
signals, and another one with complex AF signals. The proposed methods
allowed, on the one hand, to characterize the periodicity of regular AF sig-
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nals, and on the other hand, to improve the characterization of more complex
signals.

Part III addressed the problem of assessment of baroreflex and ANS con-
trol of the heart rhythm. Specifically, in Chapter 4 a SVM framework for
nonuniform interpolation based on spectrally adapted Mercer kernels was
proposed. Several experiments were carried out to compare the spectrally
adapted kernels approach with low-pass kernels and with other techniques.
The results showed that the SVM with the autocorrelation kernels outper-
formed the other methods regardless the spectrum of the observed signal.
Finally, the proposed approach was tested in a few Holter recordings from
healthy and congestive heart failure patients. In this case, the filtering pro-
cess carried out with the autocorrelation kernel allowed to attenuate the
noise level while enhancing the signal power in the frequency bands of in-
terest, which might avoid the time-consuming task of manual correction on
Holter recordings.

In Chapter 5, a denoising method based on SVM interpolation has been
proposed for VPC-tachograms signals in HRT. The use of a gold standard
database with pacing induced VPC during EPS has been used for compari-
son of the HRT behavior, both in the time and in the spectral domains. In
low-noise conditions, the SVM algorithm yielded results that were similar
to other conventional filtering methods, and in all cases the results were ac-
cording to the expected mechanism of the HRT. For VPC-tachograms in this
EPS database, denoising algorithms also were shown to yield similar spectral
profiles of HRT. In the presence of noise, i.e., in the Holter database, the
tested algorithms yielded denoised VPC signals containing lower noise level.
However, SVM algorithm obtained a higher performance when compared to
the median and to the FIR filters. SVM algorithm preserved oscillations
expected in the HRT, the spectral profile of the denoised VPC-tachogram
was more similar to the observed in the gold standard, standard deviation
was lower, and the significantly higher values of Turbulence Length suggest
that the noise was more efficiently removed from the turbulence. The pro-
posed SVM algorithm allows to perform the HRT analysis even when a low
number of VCPs are available. This characteristic has clinical implications,
because one of the current requirements for suitability of a patient to be
studied in terms of TS is a sufficient number of VPCs being available. Thus,
HRT denoising will help to extend the HRT analysis to a higher number of
patients. The SVM algorithm gives a better description of the dependence
with the HR previous to the VPC-tachogram, and allows the analysis of the
changes of HRT with time.

In Chapter 6, a nonlinear regression model to characterize the influence
of CI and HR on HRT responses was proposed. The model was used in a
database of healthy patients with pacing induced VPC during EPS. Also, a
database of Holter recordings from patients that had suffered an AMI was
used. The nonlinear regression model was able to explain the influence of
CI and HR on the HRT in healthy subjects, and in patients with low risk
of SCD (measured by HRT parameters). Evenmore, the results agreed with



the baroreflex source of HRT hypothesis.

7.2 Future work
In this section some future directions are itemized, aiming to propose differ-
ent threads to explore further the methods proposed in this Thesis.

Regarding fibrillatory arrhytmias we propose:

• To develop a robust method to statistically select components in the
multicomponent FOA approach. According to this, a new component
should be included in the final FOA model only if the improvement
explaining the signal is statistically significant. This can help to better
characterize complex AF and VF signals.

• To extend the multicomponent FOA approach to provide time-variant
track evolution of the irregularity of AF and VF signals.

• To validate proposed approaches in relevant database to evaluate the
clinical impact, and the correlation with different clinical variables. In
VF, study the impact of the location of the myocardial infarction on
the FOA measurements. In AF, study of the correlation of FOA ap-
proach and the different types of AF, namely, paroxysmal, permanent,
persistent.

Regarding the assessment of the baroreflex and ANS we propose:

• To further study the applicability of SVM nonuniform interpolation
of HRV long recordings, namely 7 and 21 days. An excellent gold
standard would be a database of long recordings manually corrected
by cardiologists. This would allow to compare raw with cleaned HRV
signals, and even to create HRV pseudo-real signals with the presence
of different level of noise, artifacts and miss-detections.

• To develop a method to include local physiological information on the
assessment of HRT. As shown by our results, the HRT response is
closely linked to the local physiological condition, and including this
information should provide with better characterization. Also, the pro-
posed methodology would allow to easily incorporate additional and in-
formation, such as the correlation between HRT from individual VPCs
and the previous HRV assessment. This would lead to a complete
characterization of the baroreflex and ANS control of the HR.
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