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Resumen

El desarrollo alcanzado en las Tecnologías de la Información y las Comunicaciones en las

últimas décadas, ha traído consigo la recopilación y almacenamiento creciente de datos en

ámbitos tan diversos como pueden ser marketing, salud o seguridad. La disponibilidad de grandes

cantidades de datos hace necesaria la búsqueda de nuevos paradigmas de aprendizaje máquina,

capaces de abordar el análisis automatizado de los mismos con la consiguiente extracción de

información.

En concreto, las técnicas de aprendizaje máquina permiten diseñar modelos estadísticos

no paramétricos que aprendan las relaciones existentes entre un conjunto suficientemente

representativo de ejemplos, cada uno de ellos formado por unas variables observadas

(características), y su correspondiente salida. Se desea que el modelo construido pueda

generalizar, es decir, obtener una salida adecuada ante ejemplos de entrada no considerados

durante la fase del diseño. En los últimos años, estas técnicas han experimentado un avance

espectacular, tanto en fundamentos teóricos como en su aplicación a distintos y numerosos

dominios de conocimiento.

El objetivo general de esta Tesis es el desarrollo teórico y la implementación de métodos

de aprendizaje máquina, con énfasis en las etapas de selección de características y diseño del

modelo predictivo, de forma que permita abordar el análisis de grandes cantidades de datos de

naturaleza diversa, creando procedimientos específicos para cada etapa pero al tiempo aplicables

en distintos ámbitos.

En esta Tesis se han abordado tres áreas específicas de creciente interés económico y

social: (a) el modelado de las interacciones entre productos de consumo diario y su eficiencia

promocional; (b) el apoyo a la toma de decisiones para la predicción temprana de complicaciones

tras la cirugía de cáncer de colon; (c) la estratificación de riesgo de muerte súbita cardíaca a

partir de índices predictores obtenidos de las señales eléctricas del corazón, utilizando un modelo

de conocimiento clínico y una terminología estandarizada. El análisis de datos de cada una de

estas aplicaciones presenta como denominador común la utilización de técnicas de aprendizaje
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máquina, de acuerdo con el objetivo general. Sin embargo, la naturaleza tan diversa de dichas

aplicaciones hace que cada una represente por sí misma un objetivo específico de la presente

Tesis.

El primer objetivo específico consiste en profundizar en la evaluación y análisis de las ventas

promocionales, tradicionalmente basado en técnicas de estadística clásica. Un apoyo sustancial

en la toma de decisiones ha de venir necesariamente del análisis sistemático de datos masivos

sobre el control y monitorización de las promociones y sus complejas interacciones. Por ello se

propone el análisis y la comparación estadística de distintas técnicas de aprendizaje máquina.

Otro ámbito de naturaleza muy diversa al anterior, pero de indudable interés social, es el

de la salud. El análisis de datos clínicos, tanto estructurados (constantes vitales o análisis

de sangre) como no estructurados (texto libre en documentos clínicos), recogidos longitudinal

y sistemáticamente en las historias clínicas electrónicas (HCEs) de un conjunto numeroso de

pacientes, permite incrementar sustancialmente el conocimiento clínico y apoyar la toma de

decisiones. Sin embargo, las técnicas de aprendizaje máquina y el análisis de datos han tenido,

hasta la fecha, un alcance limitado en este ámbito. Esta situación se debe principalmente a

la dificultad de extraer información útil de datos clínicos procedentes de fuentes heterogéneas.

Además, existen muy pocos precedentes de sistemas que permitan la explotación automática de

la información a nivel agregado entre diferentes entidades hospitalarias y existe gran necesidad de

disponer de datos que sirvan de base para el avance científico, con mayor impacto en la práctica

clínica. En esta Tesis se analizan dos dominios del ámbito salud de gran prevalencia en el mundo

occidental, a saber, el cáncer de colon y las enfermedades cardíacas.

El segundo objetivo específico consiste en la adaptación y aplicación de métodos de aprendizaje

máquina para la detección temprana de complicaciones tras la cirugía de cáncer de colon,

analizando tanto individual como conjuntamente variables procedentes de fuentes heterogéneas,

extraídas todas ellas de la HCE.

El tercer objetivo específico consiste en la creación de modelos de conocimiento clínico que

permitan intercambiar datos y comprender semánticamente la información clínica de distintas

HCEs. En los últimos años se han propuesto numerosos índices predictores del riesgo cardíaco.

En concreto, en esta Tesis se analiza el dominio de la turbulencia del ciclo cardíaco por ser un

predictor de muerte súbita cardíaca con guías clínicas claras y concisas.

El análisis de grandes cantidades de datos y el desarrollo teórico de nuevos algoritmos de

aprendizaje estadístico representan hoy, sin duda, un área de investigación muy activa en distintos

dominios. Esta Tesis contribuye a mejorar el conocimiento y la toma de decisiones en aplicaciones

reales de muy diversa naturaleza, y al tiempo con claros denominadores comunes.
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Abstract

The development achieved in Information and Communications Technologies in recent

decades has brought an enormous growth in the collection and storage of data in such diverse

fields as marketing, health, or safety. The availability of large amounts of data makes

necessary the search for new machine learning paradigms, capable of addressing their automated

analysis and the subsequent information extraction. Specifically, given a number of training

examples (also called samples or observations) associated with desired outcomes, the machine

learning techniques learn the relationship between them. In recent years, these techniques have

experienced spectacular advances in both theoretical foundations and their application to a wide

range of different knowledge domains.

The general objective of this Thesis consists on the theoretical development and

implementation of machine learning methods, with emphasis on the feature selection and

predictive model design stages, allowing to tackle with the analysis of data of diverse nature,

and creating specific procedures for each stage but at the same time applicable in various fields.

This Thesis has addressed three specific areas of increasing economic and social interest:

(a) interaction modeling between everyday products and promotional efficiency; (b) clinical

decision support for early detection of complications after colorectal cancer surgery; (c) risk

stratification of sudden cardiac death from predictive indices obtained from the electrical signals

of the heart, using a clinical knowledge model and a standardized terminology. The data analysis

in these applications shares the use of machine learning techniques according to the general goal.

However, the diverse nature of these applications represents by itself a specific goal of this

Dissertation.

The first specific objective consists on further evaluation and analysis of promotional sales,

traditionally based on classical statistical techniques. A substantial support decision making must

necessarily come from the systematic analysis of massive data on the control and monitoring of

promotions and their complex interactions. Therefore, a statistical analysis and comparison of

various machine learning techniques is proposed.
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Another area of very different nature respect to the previous one, but with strong social

interest, is healthcare. The analysis of clinical data, both structured (vital signs or blood tests)

and unstructured (text-based documents), systematically and longitudinally collected from the

electronic health record (EHR) of a large group of patients, can substantially increase the clinical

knowledge and support decision-making. However, machine learning techniques and massive

data analysis have provided, nowadays, a limited impact in the healthcare area. This situation

is mainly due to the difficulty of extracting useful information from clinical data recorded in

heterogeneous sources. In addition, there are few precedents of systems enabling the automatic

analysis of information at the aggregated level among different hospital entities. There is a great

need for suitable and relevant data as a basis for scientific advance, with greater impact on

the clinical practice. In this Thesis, two healthcare domains highly relevant in most developing

countries are analyzed, namely, colorectal cancer and cardiovascular diseases.

The second specific objective is the adaptation and application of machine learning methods

for early detection of complications after colorectal cancer surgery, analyzing both individually

and jointly data from heterogeneous sources recorded in the EHR.

The third specific objective is to build clinical knowledge models to enable data exchange and

semantical understanding of clinical information from different EHR. In recent years, numerous

predictors of cardiac risk indices have been proposed. Specifically, in this Thesis, the heart rate

turbulence is analyzed to be a predictor of sudden cardiac death with clear and concise guidelines.

Nowadays, the analysis of large amounts of data as well as the theoretical development of

new machine learning algorithms undoubtedly represent a very active area of research in different

domains. This Thesis contributes to improve knowledge and decision making in real-world

applications of diverse nature which still share remarkable common denominators.
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Chapter 1
Introduction

1.1 Background and Motivation

Over recent years, there has been an enormous growth in available data which is getting ever

vaster and ever more rapidly in a wide range of different fields. Analyzing data allows us to

obtain knowledge and support decision-making in a number of real-world applications. Machine

Learning (ML) methods [1, 2, 3, 4] have been proposed as key tools to lead new breakthroughs

that will improve the human abilities for analyzing many data types. ML techniques allows to

learn the relationships among a number of input training samples (observation or examples) and

a desired output [4, 5, 6], each sample being described by a number of binary, continuous, or

categorical variables (features). The goal of the learning process is to predict the outcome value

for a new sample (test sample), and a predictive model is built towards that end.

The elements of the predictive modeling pipeline, as shown in Fig. 1.1, are feature extraction,

model design, and prediction model [7]. Feature extraction is very domain specific, and expert

knowledge is required to come up with a useful number of features. Sometimes, raw features

are directly used as input variables in the model design whereas, in other cases, features are

built from the original variables after a preprocessing or engineering stage. This corresponds to

the first element of the model design, so-called feature engineering. The second element, feature

selection, is primarily performed to select relevant and informative features [8]. The main idea of

the model exploration consists on choosing a mathematical method for prediction of the desired

outputs from a set of variables [4]. Once the model is developed, expert interpretation and

useful conclusions obtained from the prediction model are needed to support decision-making in

real-world applications.

Despite the large amount of theoretical work developed on the previously described elements,

there is no universal statistical framework to be used in all the applications. Hence, many

design decisions are taken either heuristically, or guided by the vast experience of the ML
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Figure 1.1: Predictive modeling pipeline.

systems, or founded on complex statistical backbones for specific elements. Therefore, it would

be highly desirable a statistical framework for decision-making in these elements during the

design stage, allowing the expert to make design decision on clear or at least operative cut-off

tests, but supported by statistical well-founded principles keeping easy to use. In this scenario,

nonparametric statistical approaches can be used because they do not assume any restriction

associated with the data distribution, only considering general assumptions about the nature of

the distribution. The use of nonparametric statistics to modify the previous stages, as well as

to propose new ML techniques, can be an operative, useful, and adaptable methodology to work

with.

On the other hand, ML methods have been applied in a large number of practical areas

such as neuroscience, bioinformatics, intelligent systems, finance, or behavioral targeting [3, 4].

Examples of specific applications are optical character recognition [9], speech recognition [10, 11],

or web page ranking [12]. In this Dissertation, ML methods are applied in two separate domains

of great interest nowadays, namely, promotional efficiency and healthcare.

Marketing and sales have been some of the most active applications of statistical learning [3,

13], due to the recent increased technology capabilities to store huge amounts of customer

information [14]. ML techniques aim to find recurrent patterns, trends, or rules, which can

explain the data behavior in a given context, and then allow the user to extract new knowledge

on the consumer behavior, to improve the performance of marketing operations [15, 16, 17].

Empirical models for analyzing sales promotions effects have been used in the literature. However,

more recent works focus on ML techniques as powerful tools to extract information from existing

recorded data [18, 19]. A vast amount of knowledge has been extracted using ML techniques,

although not all the promotional behaviors have been definitely studied and there is still room

for deep and further analysis [15, 16, 17]. More specifically, operational problems arise in

ML promotional modeling for evaluating their working hypothesis [19, 20, 21, 22, 23, 24, 25].

The use of conventional parametric tests are often not appropriate due to the heavy tails and
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heteroscedasticity for the prediction residuals are often no longer supported.

A very different nature domain, but with undoubtedly increasing importance, is healthcare.

Healthcare analytics are based on data extracted from Electronic Health Records (EHRs), which

are collections of health information in digital storage format conveying the relevant information

of a patient [26], and they contain routinely amassed quantitative data (e.g., laboratory tests),

qualitative data (e.g., text-based documents), and transactional data (e.g., records of medication

delivery). A considerable amount of literature exists on knowledge extraction from the EHRs,

aimed to support clinical decision-making in several domains [27, 28, 29, 30, 31, 32, 33]. In

this Thesis, we focus on two relevant clinical problems, namely, colorectal cancer (CRC) and

cardiovascular diseases. On the one hand, according to the American Cancer Society, colorectal

cancer is the third most common cancer in men and women in developed countries, and the third

leading cause of cancer death. On the other hand, according to World Health Organization,

cardiovascular diseases are the leading causes of death worldwide.

Recent studies shown that surgery is the only curative treatment for CRC [34]. However,

standard elective colorectal resection is usually associated with a complication rate of 20-30%,

which has severe implications for the patient [35]. Anastomosis leakage (AL) is among the most

dreaded complications after CRC surgery. It is reported to occur in 5-15% of all patients who

underwent colorectal cancer surgery, and it is recognized as an important quality indicator of the

surgery procedure [36]. AL may be a lethal condition, therefore its early detection is vital [36, 37].

Authors in [38] showed that the risk of AL as determined by surgeons’ risk assessment appeared

to have low predictive value. A colon leakage score was developed in [39] to predict the risk of

AL based on information from the literature and experts opinions, showing that this score is a

good predictor for AL. However, novel methods to identify and detect this complication at an

early stage are needed, specially to deal with the common heterogeneity and sparsity of EHR

data.

On the other hand, advanced data processing methods that extract useful diagnostic

information often do not reach the medical practice and that research effort does not benefit

the society. For example, ML techniques and massive data analysis have had, to date, a limited

impact in healthcare. This situation is due to the difficulty of extracting useful information from

heterogeneous clinical sources that are not easy to process jointly. In addition, there are very few

precedents of actual systems that allow the exploitation of aggregated information from different

hospital entities. The use of standards aims to allow the interoperability among different systems,

in order to provide to citizens and professionals with the access to clinical information anywhere.

The definition of clear and standardized connections among the current scientific knowledge, its

availability for the care community, and the actual patient databases, are becoming fundamental

needs for the clinical practice.
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Cardiovascular risk stratification (CVRS) is a key element to raise population awareness of

diseases causing a significant burden of morbidity and mortality, as well as to identify and assess

the correct diagnosis and therapy [40]. A wide variety of indices, such as heart rate variability

(HRV) or T-wave alternants presence, can be obtained from the electrocardiogram (ECG)

recordings and can be used as cardiovascular risk predictors, but they are not established in the

clinical practice yet. To overcome this situation, standards and clinical knowledge management

tools are required to achieve the interoperability in this domain.

1.2 General and Specific Objectives

The general objective of this Thesis is to develop new tools to adjust the predictive modeling

pipeline to real-world data characterized by high dimensionality, sparsity, temporal dynamics,

and scarcity in the number of samples. Specifically, a nonparametric feature engineering

technique, a smoothing regression method based on covariance properties, three different feature

selection (FS) strategies, and a methodology to benchmark predictive models, are proposed.

These theoretical contributions are applied in three different domains, thus, three specific

objectives are defined:

1. To perform a novel data-driven approach to characterize promotional efficiency at both

store and chain level. The new economic conditions have led to innovations in retail

industries, such as more dynamic retail approaches based on flexible strategies. The

assessment of promotional sales with models constructed by ML techniques can be readily

used for agile decision-making. A reliable quantification tool is proposed in this work as

an effective information system leveraged on recent and historical data that provides the

managers with an operative vision.

2. To infer new knowledge from complex heterogenous patient longitudinal records for

supporting the early detection of several complications after CRC surgery. In this

Dissertation, unstructured (text-based documents) and structured data (laboratory tests

and clinical signs) are extracted from EHR and analyzed to improve clinical outcomes and

detect post-surgery complications at an early stage. ML techniques are used to deal with

the sparsity and irregular sampling presented in this kind of data, as well as to build the

predictive models.

3. To open the road towards achieving the interoperability in EHR data exchange and

follow-up, the standardization of CVRS based on heart rate turbulence (HRT) domain

is considered as a first step according to its clear and well-defined guidelines. Towards
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that end, a prototype based on clinical knowledge modeling tools is built to enable the

interoperability of HRT domain as well as the continuous improvement and research on it.

1.3 Thesis Structure and Contributions

The remainder of this Dissertation starts dealing with the general objective, in which an

introduction to ML theory, as well as the proposed theoretical contributions, are presented. The

three following chapters present in detail the specific objectives addressed for each domain. In

the last chapter, conclusions and future lines are discussed.

In Chapter 2, the second step (model design) of the predictive modeling pipeline shown in

Fig. 1.1 is presented. An overview of the state of the art, as well as the theoretical contributions in

each stage, are described. Regarding feature engineering, a nonparametric technique is proposed:

(1) to describe the individual behavior of each feature; and (2) to estimate the statistical

distribution of the output conditioned to the input features. A new smoothing regression method

based on the properties of the covariance matrix, called Covariance Kernel Series, is proposed.

Later, the three proposed FS strategies in this Dissertation are explained. Figures of merit and

generalization evaluation are explained for both classification and regression methods. Finally,

a strategy based on nonparametric bootstrap resampling approach is developed to benchmark

prediction models.

Chapter 3 presents the first application, whose objective is the development of a data-driven

model to characterize promotional efficiency at store and chain levels for different product

categories. The proposed method is based on ML techniques, as a useful way to analyze the

multiple and simultaneous effects coexisting in promotional activities in retail markets when using

real-world data. Different ML methods are analyzed and benchmarked by using an operative

and simple statistical method based on bootstrap resampling proposed in this Thesis.

Chapter 4 presents the healthcare analytics applied for early detection of complications

after CRC surgery, and for predicting surgical site infections at both pre-operative and

post-operative stages. Towards that end, heterogeneous structured (laboratory tests and vital

signs) and unstructured (text-based documents) data from the EHR are individually and jointly

analyzed. Clinical data are sparse, high dimensional, scarce in terms of number of samples and

time-dependent, which represent several challenges to deal with. First, clinical notes extracted

from the EHR are used for early detection of complications after CRC surgery. It is informative

to know whether the discriminatory power for identifying unhealthy patients increases when

heterogenous sources, such as laboratory tests and vital signs, are considered in an incremental

way. Finally, different methods to deal with sparsity are benchmarked.

Chapter 5 presents the contribution related to knowledge management in EHR for the CVRS
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domain. The design and use of a standard clinical terminology and a clinical knowledge model

are proposed to get a standardized tool for clinical decision support, providing with technically

straightforward inclusion of the HRT domain in the EHR. In addition, a web prototype is built

in order to support HRT recordings allowing a simple follow-up by the medical community.

Chapter 6 is devoted to general conclusions and future work.

Since this Thesis presents a multidisciplinary work with a combination of both theoretical

and practical approaches, specific introduction as well as topic devoted conclusions are presented

for each application.
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Chapter 2
Theoretical Fundamentals and Contributions
in Machine Learning

2.1 Introduction

The term Machine Learning (ML) has been widely studied in the literature for reproducing

and improving the human capabilities to recognize patterns in the data by using automated

and intelligent systems. Examples of applications using ML methods are marketing (e.g., sales

promotion or client segmentation), web content search (e.g, social networks, page ranking or text

categorization), or healthcare (e.g., diagnosis, early detection of complications, or phenotype

discovery). ML methods allow to learn relationships among samples (observations, examples or

data points) [4, 5, 6], each one described by a set of input features and the corresponding output.

Towards that end, a statistical model is built to predict the desired output. If the output consists

in one or more continuous variables, then the learning task is called regression [4]. When the

output only consists in a finite number of discrete categories, it is called classification [4, 41].

In this Thesis, the ML predictive modeling schema presented in Fig 1.1 is followed [7], which

consists of three different stages, namely, feature extraction, model design, and prediction model.

The first stage, feature extraction, is very domain specific and often requires to be supported by

domain experts. At this first stage, expert knowledge is needed to collect the features that

are relevant to the problem and that can be used to feed the estimation model. Once the

features have been extracted, the next stage is the model design, consisting of three different

steps, namely, feature engineering, feature selection, and model exploration. Sometimes, data

are sparse, high dimensional, scarce in terms of number of samples, or time dependent. In this

scenario, a feature engineering stage is necessary to deal with missing values and to characterize

the temporal dynamic of the features. Several strategies have been proposed ranging from simple

27
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methods to sophisticated ones. Feature selection methods select a reduced number of features

that maintain or improve the prediction model performance. In the model exploration step,

a mathematical model is designed for prediction [4]. Finally, and using the built prediction

model, expert interpretation and useful conclusions are obtained to support decision making in

real-world applications.

In this Dissertation, several applications from widely different domains are addressed.

However, the same ML techniques, and specifically the ones related to model design stage, can be

used to analyze data from these different nature applications. Thus, the theoretical fundamentals

and contributions in ML for feature engineering, feature selection, and model exploration, are

first briefly described in this chapter. The complete predictive modeling pipeline is presented

individually for each application in devoted chapters.

For the remaining of this Thesis, let D = {xi, yi}ni=1 denote the data set, where xi ∈ RN and

yi is the observed output, being yi ∈ {−1, +1} for a binary classification task or a continuous

value yi ∈ R for a regression task.

2.2 Feature Engineering

2.2.1 Background

Data are described by a number of binary, continuous, or categorical features. Sometimes

these features can be sparse, high dimensional, scarce in terms of number of samples, and time

dependent. In these cases, a feature engineering approach is required to characterize the dynamic

of each feature. This stage is one of the major aspects to consider when building predictive models

in domains with different nature.

Data preprocessing (feature engineering) is an important step and usually the most time

consuming stage in the whole predictive modeling pipeline. The complexity of data preprocessing

depends on the amount of redundant information and noise that are present in the data sources.

Outlier removal, normalization, or missing values handling, are examples of data preprocessing.

An outlier is an observation that is extremely distant from the other observations and that be due

to variability in the measurement. As a rule of thumb, sometimes a threshold based on a number

of times the standard deviation is used to roughly identify them [42], but this is not a statistically

founded criterion, and rather the expert inspection is the approach to be followed in most cases

to identify and deal with outliers. They can seriously distort the learning process, thus, outliers

are normally removed. On the other hand, some ML methods are very sensitive to the chosen

scale of input variables (e.g., distance-based methods) since the influence of each variable can

be different. To avoid that, a normalization step is normally considered independently for each

variable, for example, by transforming each feature so that its statistic is mean zero and standard
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desviation one.

When using observational data from secondary sources such as the EHR, one also needs to

take into account that data are usually sparse and irregularly sampled, i.e., certain features for

some samples are missing. For example, blood tests are taken at a mixture of predefined stages

in a patient pathway and by a clinically driven sampling. Thus, if predictive analytics relies

on regularly sampled data, specific imputation methods need to be employed such that regular

sampling is retrieved, and hence, sparse data can be treated as missing data. Most traditional

techniques for dealing with missing data include replacing the missings with zero values, with the

mean of the available values of each feature, with the last observed value (called Last Observation

Carried Forward, LOCF), or based on the k nearest neighbors technique, as proposed in [43].

Alternatively, Lasko et al. [44] suggested using Gaussian Processes (GP) followed by a warped

function as a methodology to deal with sparse data. The warped function is intended to adjust

for the fact that rapid changes in temporal variables in connection with active treatment is often

followed by long periods of apparent stability, leading to highly non-stationary processes. The

time warping function can be constructed as

d′ = d1/α + β (2.1)

where d is the original distance between two adjacent observations, and α and β are free

parameters to be tuned. This function converts non-stationary data into a stationary process

which allows the use of a GP to deal with sparsity. GP are described in detail in Sec. 2.3.1.

Thus, it is a challenge working with data characterized by sparsity, irregular sampling,

temporal structure and changing dynamics. New strategies are required, at least, to evaluate

the performance and the information provided by each feature individually independently of the

imputation method considered. The proposal of a temporal statistical analysis to individually

characterize each feature is here addressed, aiming to provide with the following advantages in our

different application scenarios: (1) more knowledge about the temporal dynamics of each feature;

(2) a comparison among the behavior of the features and the previous studies in the literature;

(3) the temporal trend of each feature, in some cases, before and after a reference time point

(e.g., surgical intervention); and (4) a tool to define the uncertainty of each feature, specifically,

after applying methods to deal with missing values when data are sparse and irregularly sampled.

The reconstruction of input spaces with time dependence requires to deal with FS and

imputation methods, while maintaining the temporal properties. To deal with it, statistical

moments and other summary parameters can be considered as inputs to the predictive models,

however, temporal information is certainly lost. In this work, we pay special attention to the

temporal properties of the input space to be conserved as much as possible, and two different

approaches are considered. On the one hand, we characterize the temporal evolution of each

feature with its mean and confidence interval (CI) after considering an imputation approach. On
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the other hand, once a multivariable model has been built, it can be difficult to characterize the

complex interactions and the underlying statistical properties among the inputs and the output.

Thus, the second approach consists in studying the distribution of the output conditioned to the

input features.

In this work, the use of nonparametric resampling techniques is proposed for providing with

statistical processing methods to characterize the uncertainty, either in input spaces individually,

or for them jointly with the output.

2.2.2 Contribution 1. Statistical Characterization of Features

In this Thesis, two approaches are proposed to define statistically each feature. In the first

one, a statistical method is proposed for analyzing individually temporal features, whereas in

the second one, the joint distribution of the input feature with the desired output is analyzed by

considering a nonlinear multidimensional model, as described next.

Statistical Method for Characterizing Temporal Features

A nonparametric approach based on bootstrap resampling is proposed to individually

characterize the temporal statistics of the j-th feature. Bootstrap resampling techniques can

provide a useful framework for empirical and nonparametric estimation of the probability density

function (pdf ) of statistical entities from a set of observations [45].

Let xj(t) (j = 1, . . . , N ; t = 1, . . . , T ) be a feature vector where xj ∈ RT , with T the number

of samples for a given temporal feature at a regularly sampled grid. Its statistical distribution is

defined as pxj(t) and can be approximated by an empirical estimation, obtained from sampling

with replacement the set of observations in j(t). Thus, a new set X∗,j(t) is first built, where

superscript * represents, in general terms, any observation of the feature j in the time t from the

bootstrap resampling process. Therefore, the set X∗,j(t) contains elements of {xj(t)i }ni=1 which

are included none, one, or several times. The resampling process is repeated B times, yielding

{X∗,j(t)(b)}Bb=1. A bootstrap replication of an estimator is obtained by using a given operator

with the elements in the bootstrap resample, so that the bootstrap replication of the statistical

magnitudes of interest is given by x̂∗,j(t)(b) = F (x∗,j(t)(b)). Statistic operator F (·) can be used

to estimate the statistical distribution of the replicated magnitude, such as the average and the

standard error. Note that this procedure respects the possible presence of temporal dynamics in

data.

Distribution of the Output using the Input Features

On the other hand, and again based on bootstrap technique, the statistical distribution of the

output as a function of the input features can be obtained as py(x). In our scenario, estimating
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this multivariate distribution allows us to characterize multidimensional feature spaces by simply

bootstrapping the available observations.

Let V = {xi, yi}ni=1 be a set consisting of the input and output vectors. Thus, py(x) is

approximated by an empirical estimation, obtained from sampling with replacement observations

in V. First, a new set V∗ = {x∗i , y∗i }ni=1 is built, where superscript * represents, in general terms,

any observation from the bootstrap resampling process. Therefore, set V∗ contains elements

of V which are included none, one, or several times. We repeat the resampling process B

times, yielding {V∗(b)}Bb=1. A bootstrap replication of an estimation u is calculated from the

observations in the bootstrap resamples, thus is, u∗(b) = F (V∗(b)). Then, we can estimate p∗y(x)

for the statistical distribution py(x), and used it to readily estimate the quality and the reliability

of the output.

The influence of the simulated regular sampling to characterize individually each feature by

its mean and CI obtained after considering a nonparametric resampling approach, is computed

in Application 4.1 (Sec. 5.2) and in Application 4.3 (Sec. 4.4). The characterization of the

output conditioned to the input features using a nonlinear multidimensional model is computed

in Application 3.2 (Sec. 3.3).

2.3 Predictive Modeling

In this Thesis, several predictive models are first studied, ranging from classical methods

to more complex ones, such as artificial neural networks (ANN) or GP. Then, a smoothing

regression method based on the properties of the covariance matrix, called Covariance Kernel

Series, is proposed

2.3.1 Machine Learning Methods

There are in the ML literature several classification and regression methods for linear

and nonlinear tasks. In this Thesis, Fisher’s discriminant analysis (FDA), naive bayes (NB)

and support vector machines (SVM) are briefly described for classification, whereas k-nearest

neighbors (k-NN), general regression neural networks (GRNN), multilayer perceptron (MLP),

SVM, and GP are studied for regression. Furthermore, multi source and composite kernels are

presented.

The general linear estimation model is given by y = 〈x,w〉+b, where x is the input (column)

vector, w is the weight vector, b is the bias term, y is the desired output and 〈·, ·〉 denotes the

inner product.

Fisher Criterion. The goal of FDA in the two-class problem [46] is to find a discriminating



32
CHAPTER 2. FUNDAMENTALS AND CONTRIBUTIONS IN MACHINE

LEARNING

linear projection 〈w,x〉, by simultaneously maximizing the between-class scatter and minimizing

the within-class scatter on the projected output given by the cost function

J(w) =
w>SBw

w>SWw
(2.2)

where SB and SW denote the between-class scatter matrix and the within-class scatter

matrix in the original space, and > denotes transposed vector. These are defined by

SB =
∑2

c=1 nc(µc−µ)(µc−µ)> and SW =
∑2

c=1

∑
iεCc

(xi−µc)(xi−µc)
>, respectively. Here,

nc is the number of samples in class Cc, with c = 1, 2. Furthermore, µc = 1
nc

∑
iεCc

xi and

µ = 1
n

∑n
i=1 xi. In order to classify the projected points, a threshold has to be determined.

There is no general rule for finding this threshold, but a common choice is the average between

the class-conditional means.

Naive Bayes. The NB classifier [18] estimates the class-conditional probability density functions

assuming conditionally independent features, i.e.,

p(x|y = c) =
N∏
m=1

p(xm|y = c) (2.3)

where x = [x1, . . . , xN ]> is the input feature vector and c = 1, 2 denotes the class.

The model is called naive since input features are expected to be independent, even

conditional on the class label. Despite this assumption, classifiers based on NB have been

successful in many applications, sometimes giving competitive results with respect to other

more sophisticated methods [47, 48].

k-NN. The k-NN is a nonparametric procedure which provides an estimation of the output,

f(x∗), from the k input samples in the training set closest to x∗ according to a measurement of

similarity or distance [18, 49]. Conventional distance measurements are L1 and L2 norms, and

many different measurements have been proposed according to the nature of the data [18]. The

k-NN estimator output is given by

y = f(x∗) =

∑k
i=1wiyi∑k
i=1wi

(2.4)

where wi is a weighting function that depends on the distance of new input sample x∗ to the

i-th nearest training sample, and parameter k has to be previously fixed during the design

procedure.

MLP based models. ANNs are multiparametric nonlinear models, capable of learning from

samples and discovering complex relationships among variables. Neurons are the basic elements
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of ANN, and they represent simple, highly interconnected processing units, usually grouped

in several layers (input layer, hidden layers, and output layer). Each interconnection has a

numeric weight, which has to be adjusted during the training stage. In the MLP network, one

of the mostly used ANN, there is one input neuron for each variable in input sample x, and

as many output neurons as output variables to be estimated (i.e., y can be a multivariable

output). Hence, the number of hidden layers and the number of neurons in each have to

be chosen during the design process. Hidden layer neurons in MLP correspond to global

functions, so-called activation functions, such as linear or sigmoid, and the MLP is a universal

approximator (a single hidden layer is capable of approximating any continuous, smooth, and

bounded function) [50]. During the learning process, weights among neurons connections {w}
are adjusted, according to a given cost function. The most widespread training algorithm is

back-propagation [4], which consists of an iterative process starting in a given initial solution

and a gradient-descent optimization based on first-order derivatives. For nonconvex functions,

local minima can be present, which can be alleviated by the consideration of the second-order

derivatives, as for instance in the Levenberg-Marquardt algorithm [51].

GRNN based models. Another ANN which has received much attention, also used in this

work, is the GRNN, a nonparametric estimator given by the minimization of the squared error

on the set of available examples [52]. Function f(x) minimizing this error is

f(x) = E[y|x] =

∫
yp(x, y)dy∫
p(x, y)dy

(2.5)

where E denotes statistical expectation, and p(x, y) is the joint pdf of x and y. Given that p(·)
is often unknown, it can be estimated by using nonparametric estimation techniques, such as

Parzen windows with Gaussian kernels. In this case, the GRNN estimator is given by

f(x) =

∑n
i=1 yie

− D2
i

2σ2∑n
i=1 e

− D2
i

2σ2

=

n∑
i=1

hiyi (2.6)

where σ is the kernel width, D2
i (x) = (x − xi)

>(x − xi) is the squared Euclidean distance

between input sample x and design example xi. For high values of the kernel width, the output

depends on too distant examples, and it is an over-smoothed estimation of the actual value,

whereas for very low values, the network limits to estimate the value from the closest example

to x [52]. Parameter σ has to be tuned during the training procedure.

SVM for classification and regression. We focus first on the SVM classifier (see e.g. [53, 54]),

integrating regularization in the same classification procedure, such that model complexity is

controlled, and the upper bound of the generalization error is minimized. These theoretical

properties make the SVM an attractive approach for several data tasks.
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The SVM classification algorithm seeks the separating hyperplane with the largest margin

between two classes. The hyperplane optimally separating the data is defined from a subset

of training data (also called support vectors), and it is obtained by minimizing ‖w‖2, as well

as the classification losses in terms of a set of slack variables {ξi}ni=1. Considering the ν-SVM

introduced by Schölkopf et al. [55] and a potential nonlinear mapping φ(·), the ν-SVM classifier

solves

min
w,{ξi},b,ρ

{
1

2
‖w‖2 + νρ+

1

n

n∑
i=1

ξi

}
(2.7)

subject to:

yi(w
>φ(xi) + b) ≥ ρ− ξi ∀i = 1, . . . , n (2.8)

ρ ≥ 0, ξi ≥ 0 ∀i = 1, . . . , n (2.9)

Variable ρ adds another degree of freedom to the margin, and the margin size linearly increases

with ρ. Parameter ν ∈ (0, 1) acts as an upper bound on the fraction of margin errors, and it is

also a lower bound on the fraction of support vectors. Appropriate choice of nonlinear mapping

φ guarantees that the transformed samples (input vector) are more likely to be linearly separable

in the (higher dimensional) feature space.

The primal problem in Eq. (2.7) is solved by using its dual formulation, yielding

w =
∑n

i=1 yiαiφ(xi) (see [54] for further details), where αi are Lagrange multipliers

corresponding to constraints in Eq. (2.8). Thus, the decision function for any test vector x∗

is given by

f(x∗) =

(
n∑
i=1

yiαiK(xi,x∗) + b

)
(2.10)

In order to predict the label of x∗, the sign of f(x∗) is used. The so-called support vectors are

those training samples xi with corresponding Lagrange multipliers αi 6= 0. The bias term b is

calculated by using the unbounded Lagrange multipliers as b = 1
k

∑k
i=1(yi −w>φ(xi)), where k

is the number of non-null and unbounded Lagrange multipliers.

The use of Mercer kernels allows to handle the nonlinear algorithm implementations as

K(xi,x∗) = 〈φ(xi), φ(x∗)〉. In this work, two well-known Mercer kernels are used: the linear

kernel, given by K(x, z) = 〈x, z〉, and the Radial Basis Function (RBF) kernel, given by

K(x, z) = exp
(
−‖x−z‖2

2σ2

)
, where σ is the width parameter, to be tuned together with free

parameter ν.

Given a test sample x∗, the traditional SVM classifies it according to the value of decision

function f(x∗). However, it is also possible to convert the output of the classifier into a posterior

probability of class membership by using a sigmoidal function mapping approach [56] as follows,

Pr(y = 1|x∗) ≈
1

1 + exp(af + c)
(2.11)
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where f = f(x∗), and a and c are estimated by minimizing the negative log-likelihood function

(see [56] and references therein for details).

Conventional SVM regression uses the regularized ε-insensitive cost (or Vapnik’s cost) [53].

Parameter ε has not a compact support, and then its practical tuning can become inaccurate,

resulting in an extensive scanning for the cases with unknown accuracy of the approximation.

Alternatively, the ν-SVM has been proposed for automatically tuning ε through a new free

parameter ν with bounded range (0, 1) [57]. The ν-SVM algorithm for non linear regression

optimizes the following primal functional for ε-insensitive cost:

L =
1

2
||w||2 + C

(
νε+

1

N

n∑
i=1

(ξi + ξ∗i )

)
(2.12)

where ξi, ξ∗i are the slack variables, C is the regularization parameter, and ν allows to give

an approximate ratio of the number of support vectors with respect to the number of training

examples. The following constrains must hold:

(w>xi + b)− yi ≤ ε+ ξi (2.13)

yi − (w>xi + b) ≤ ε+ ξ∗i (2.14)

and ξi, ξ
∗
i ≥ 0, ε ≥ 0 for ∀i = 1, . . . , n. The Lagrangian functional can be written, by using

Lagrange multipliers α, α∗, η, η∗ and β, given

L =
1

2
||w||2 + Cνε+

C

N

n∑
i=1

(ξi + ξ∗i )− βε−
n∑
i=1

(ηiξi + η∗i ξ
∗
i )

−
n∑
i=1

αi(ξi + yi −w>xi − b+ ε)−
n∑
i=1

α∗i (ξi − yi + w>xi + b+ ε) (2.15)

By minimizing this functional with respect to primal variables, the Karush-Khun-Tucker

conditions are obtained, and after their substitution, the final solution is given by

f(x) =

[
n∑
i=1

(α∗i − αi)x>i

]
x + b (2.16)

Dual variables αi and α∗i will be nonzero whenever samples xi give a residual either in the

boundary or out of the insensitivity region. By introducing the nonlinear mapping and then

substituting the dot products by kernel functions the following dual problem is obtained:

maxαi,α∗
i

n∑
i=1

(αi − α∗)yi −
1

2

n∑
i,j=1

(α∗i − αi)(α∗j − αj)K(xi,xj) (2.17)

constrained to
n∑
i=1

(αi − α∗i ) = 0,

n∑
i=1

(αi − α∗i ) ≤ Cν (2.18)

αi, α
∗
i ∈

[
0,
C

n

]
(2.19)
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The nonlinear estimator has the following form:

f(x) =
n∑
i=1

(α∗i − αi)K(x,xi) + b (2.20)

where b is obtained from Eq. (2.13) and (2.14) when ξi = ξ∗i = 0.

From above summary of the ν-SVM algorithm for both regression and classification, it is

clear that there are several free parameters to be tuned. With respect to the cost function,

parameter ε can be readily substituted by ν, and C is the linear cost parameter which is only

tuned in classification tasks. With respect to the kernels, parameter σ has to be previously

tuned when using a RBF kernel.

Sources fusion using kernels. The performance of a prediction system can be improved by

including heterogenous data sources. One influential way to do this is by exploiting the so-called

composite kernels, which combine different kernels, each associated with a different data source.

Some properties of Mercer’s kernels are relevant for this work. Let K1 and K2 be Mercer kernels

over X × X , with x, z ∈ X ⊆ RN . Then, the following are valid Mercer’s kernels [58],

K(x, z) = K1(x, z) +K2(x, z) (2.21)

K(x, z) = K1(x, z) ·K2(x, z) (2.22)

K(x, z) = µK1(x, z) (2.23)

K(x, z) = x>Az (2.24)

where A is a symmetric positive semi-definite (N ×N) matrix, and µ > 0. The Mercer’s kernels

properties, together with simple vector concatenation, allow us to create composite kernels in

several ways [58]. This gives a framework for exploring the most convenient way of combining

different data sources. Among them, the stacked and composite kernels are next described.

Stacked Kernel. A common way to combine data is obtained by following a stacked approach.

The main idea of the stacked input vector kernel [58] consists in merging different data sources

xsi , where s = 1, . . . , S, being S is the number of sources. The new input vector x̃i is given by

x̃i = [(x1
i )
>, (x2

i )
>, . . . , (xSi )>]>, (2.25)

and its dimension is obtained as the sum of dimensions of the S sources under consideration.

Then, a single kernel can be used, given by

Kst = K(x̃i, x̃j) (2.26)

Composite Kernels. Commonly, input data are originated from sources of different nature.

A viable approach is to affiliate different kernels to each source, and combine them using a
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composite kernel approach [58, 59, 60]. A simple composite kernel combining heterogenous data

sources can be obtained by concatenating linear and nonlinear transformation for each xsi . Let

ϕ(·) be a linear or a nonlinear transformation into its corresponding Hilbert space H, and let As

be a linear transformation from Hs to H, respectively. Thus, the mapping to H can be described

as follows:

φ(xi) = {A1ϕ1(x1
i ),A2ϕ2(x2

i ), . . . ,ASϕS(xSi )} (2.27)

and the corresponding inner product can be easily computed:

Kck(xi,xj) = 〈φ(xi), φ(xj)〉 =
S∑
s=1

ϕs(x
s
i )
>A>s Asϕs(x

s
j) =

S∑
s=1

Ks(x
s
i ,x

s
j) (2.28)

where the property from Eq. (2.24) is exploited in the last step. Previous composite kernel is a

simple sum of the individual samples’ kernel-based similarities for each data source, and is know

to be robust against overfitting. Furthermore, in the weighted summation kernel, the importance

of each data source can be modified by further exploiting Eq. (2.23), yielding

Kws(xi,xj) =

S∑
s=1

µsKs

(
xsi ,x

s
j

)
(2.29)

where weight µs gives different relevance to each data source. In this work, each µs is a free

parameter to be tuned.

Gaussian Process Regression. A random process f(x) is a GP if, for any finite set of values of

{x1, x2, . . . , xn}, the variables of the corresponding random vector f = [f(x1), f(x2), . . . , f(xn)]>

are jointly normal (Gaussian). Element Kij of the covariance matrix K of f is k[f(xi), f(xj)]

where k[·, ·] is a covariance (kernel) function, such as the RBF, or the squared exponential

function. Using Bayes Theorem, the posterior density function for random variable f∗ = f(x∗)

conditioned on the observed f becomes

p(f∗|f) =
1√

2πσ̂2
exp

[
−(f∗ − f̂)2

2σ̂2

]
, (2.30)

where the posterior mean value is given by f̂ = kTK−1f ; and the posterior variance is σ̂2 =

κ− kTK−1k. In this expression, element i of the vector k is k[f(x∗), f(xi)], ∀i = 1, . . . , n, and

κ = k[f(x∗), f(x∗)]. In GP regression, f̂ is used as the estimate, or prediction, of f∗, while σ̂2

provides the level of confidence in the prediction.

2.3.2 Contribution 2. Covariance Kernel Series for Regression

The aim of this contribution is to establish a theory for covariance smoothed weakly stationary

stochastic processes over RN to be used in regression problems. While classical theory of
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stochastic process deals with random variables over time, we will focus on a potentially broader

class of stochastic processes, inspired by covariance properties used in GPs. Let F (x) be a

wide sense stationary real stochastic process where the stochastic process F (x) at location x

represents a random variable. The feature vector x ∈ X is the set of possible inputs, which

could be more general than time. The goal of this contribution consists in approximating F by

S(x) =
∫
wF (x′)dx′, considering a weighting factor w defined as a smoothing correlation term,

as follows

w = kF (x,x′) = E[F (x)F (x′)] = kF (x− x′), (2.31)

where kF is the autocorrelation function. The covariance function must be symmetric positive

semi-define (psd) such that kF (0) = maxxkF (x).

In practice, we have available a set D of n observations D = {(xi, fi)|i = 1, . . . , n}, where x

denotes an input vector (covariates) of dimension N and where the realization f = f(x) of F (x)

constitute the dependent variable. The focal point of this study will be a stochastic process

defined as a weighted average, i.e. a smoothing over F (x), where the weighting is defined in

terms of the covariance structure of F (x) as follows,

S(x) =

∫
kF (x− x′)F (x′)dx′, (2.32)

The are several reasons why it may be interesting to study S(x). First of all, if the underlying

process F (x) is corrupted by additive noise, i.e. F (x) + N(x), where N(x) is a noise process,

then the covariance smoothing may lower the influence of the noise. Secondly, when working

with sparse data, covariance smoothing can be considered as an interpolation approach.

Mean and covariance properties of S(x). Some properties of S(x) are established below.

Mean Function. The mean function of S(x) is given by

mS(x) = E

[∫
kF (x− x′)F (x′)dx′

]
=

∫
kF (x− x′)E[F (x′)]dx′ =

∫
kF (x− x′)mF (x′)dx′

(2.33)

and mS(x) = 0 if mF (x) = 0 as assumed here.

Covariance function. The covariance function of S(x) is given by

kS(x,x′) = E

[∫
kF (x− x̃)F (x̃)dx̃

∫
kF (x′ − x̆)F (x̆)dx̆

]
=

∫ ∫
kF (x− x̃)E[F (x̃)F (x̆)]kF (x′ − x̆)dx̃dx̆

=

∫ ∫
kF (x− x̃)kF (x̃− x̆)kF (x′ − x̆)dx̃dx̆ = kS(x− x′).

(2.34)

Eigenvalue and eigenfunction expansion of S(x). Since the covariance function is psd, it

may be expressed in terms of the following series expansion [61]:

kF (x− x′) =

NF∑
k=1

λkφk(x)φk(x
′), (2.35)
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whereNF is the number of eigenvalues λk and eigenfunctions φk satisfying
∫
kF (x−x′)φk(x

′)dx =

λkφk(x). Hence, we have

S(x) =

∫ NF∑
k=1

λkφk(x)φk(x
′)F (x′)dx′ =

NF∑
k=1

∫ √
λkφk(x

′)F (x′)dx′
√
λkφk(x) =

NF∑
k=1

βkψk(x)

(2.36)

where βk =
∫
λkφk(x

′)F (x′)dx′ =
√
λk〈φk(x′)F (x′)〉 and ψk(x) =

√
λkφk(x). Note that the

process F (x) enters explicitly only in the computation of the coefficient βk. These coefficients

weight the functions ψk(x), depending on the covariates x and the covariance function k(·, ·),
constituting the orthogonal series in Eq. (2.36).

Analyzing function ψi(x). A smoothing version of the process F (x) is obtained by weighting

it by the covariance function. In Eq. (2.35), the covariance function is expressed in terms of

eigenvalues and eigenvectors. However, it is relevant to study what happens when the original

process F (x) is close to one of the eigenfuctions, i.e., F (x) ' φk(x). Let S(x) be defined as

S(x) = kF (x − x′)F (x′)dx′, and following Eq. (2.36), the smoothing process can be expressed

as:

S(x) =

NF∑
k=1

√
λk〈φk(x′), F (x′)〉

√
λkφk(x). (2.37)

By definition:
∫
ψj(x)ψk(x)dx = 0 and

∫
||ψk(x)||2dx = 1, and considering them in Eq. (2.37)

when F (x) = φk(x), it is obtained,

S(x) =

NF∑
k=1

√
λk〈φk(x′), φj(x′)〉

√
λkφk(x) =

NF∑
k=1

λk〈φk(x′), φj(x′)〉φk(x′) (2.38)

Thus, if the eigenfunction represents the process itself, i.e, F (x) is very close to φk(x) a scaling

factor of 1
λk

is necessary to obtain the original process.

Several conclusions can be obtained from these assumptions: (1) for βk = λk〈 φk(x′), F (x′)〉,
if βk is small, it means that the eigenfunction is not able to represent the original process. Thus,

the k-th component should not be considered to obtain a smoothed version of the original process

F (x); and (2) the scaling factor is only reasonable for high values of βk, i.e., for eigenvalues which

can represent the process; otherwise, only noise will be add to the system.

Empirical estimation from data. Given covariates xi for i = 1, · · · , n, λi and φi(x) may

be estimated from the eigenvalues δi and eigenvectors ei of the psd covariance (kernel) matrix

K : Kij = k(xi − xj), i, j = 1, · · · , n; yielding λi ≈ δi
n and φi(x) ≈

√
nei,t, where ei,t is the t-th

element. Hence, the estimation of S(x) is given by

Ŝ(x) =

NF∑
k=1

β̂k
√
δkek,t, (2.39)

where β̂k =
√
δkf
>ek and f = [f1, . . . , fn]>.
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Out of sample extension. Using the covariance smoothing approach proposed in this work, the

estimate for a test input x∗, when the labels for the training examples are known, is computed.

Although mapped samples φ(x) are unknown, the projection πk(x∗) of a testing point x∗ can be

obtained as the inner product of φ(x∗) with the eigenvector uk of the covariance matrix. Hence,

following Nystrom approximation [62, 63, 64]:

φ̂i(x∗) =

√
n

δk

n∑
i=1

ei,tK(xi,x∗), (2.40)

Then, the estimate for a test input x∗ is given by,

Ŝ(x∗) =

NF∑
k=1

√
δkf
>ek
√
λφk(x∗)

=

NF∑
k=1

√
δkf
>ek

√
δk
n

√
n

δk

n∑
i=1

ei,tK(xi,x∗)

=

NF∑
k=1

f>ek

n∑
i=1

ei,tK(xi,x∗)

(2.41)

Since the covariance function is psd, it can be estimated by the covariance (kernel) matrix

as:

kF (x− x′) = K(x,x′). (2.42)

The kernel matrix is commonly computed based on a parametrized function such as RBF, being

this one used in this Thesis.

Experiments. The proposed method has been evaluated in two databases previously analyzed

by GP. In the first one, we study a seven-degrees-of-freedom SARCOS anthropomorphic robot

arm (downloaded from http://www.gaussianprocess.org/gpml/). This data set was used for

regression tasks in [65, 66]. We have in this case D = {(xi, fi)|i = 1, . . . , 1000} where each x

input vector is 21-dimensional (7 joint positions, 7 joint velocities, 7 joint accelerations), and

the target variable f = f(x) is one of the 7 joint torque. The main idea here is to illustrate

that information related to the process F (x) may be extracted from the process S(x), depending

solely on the covariate x and covariance function k(·, ·). In the second analyzed database, the

training data were collected during the SPARC − 2003 and SPARC − 2004 campaigns, in

Barrax, La Mancha in Spain [67]. The output training data is the actual chlorophyll content.

The chlorophyll content was measured for certain crops (garlic, alfalfa, onion, sun power, corn,

potato, sugar beet, vineyard and wheat) in Barrax. In both examples, Covariance Kernel Series

method performs better in terms of accuracy than GP. Covariance Kernel Series method was

used in Application 3.1 (Sec. 3.2), but the performance was worse that the one obtained with

SVM. The scarcity in the number of samples and the dimensional of the data, having only 43
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examples and 8 features, may provide these results. Future work may improve the previous

limitations.

2.4 Feature Selection

2.4.1 Conventional Methods

Feature selection is defined as a series of actions in order to choose a subset of features that

are relevant, while holding or improving the learning method performance. The task of FS is

well known in the ML literature (for a review, see [6, 68, 69]) and it is specially relevant when

working with high dimensional input spaces, due to: (1) the computational complexity, when the

number of features is larger, the number of parameters (as weights in the linear SVM or neurons

in the MLP) is also larger, and thus, the time and the complexity for designing the estimation

model also increase; (2) the generalization problems, the higher the number of training samples

related to the number of free parameters in the estimation model, the lower the possibility of

overfitting the model; (3) mutual correlation, one feature can add value to the predictive model

when it is analyzed individually, however, the information carried by this feature can be lower

in combination with another one.

Three different types of FS are common in the literature [69]. First, filter methods select

features as a pre-processing step performed independently of the classifier. Second, wrapper

methods evaluate the performance of the classifier based on subsets of features. An third,

embedded methods integrate FS and classifier performance into the training procedure of the

classifier [68, 69]. Examples of previous FS methods range from feature-ranking techniques

based on correlation, to sensitivity analysis [70], and to maximum margin criteria [68, 71]. FS

in text documents have focused on criteria such as the document frequency, the term frequency,

mutual information, information gain, odds ratio, χ2 statistic, and term strength, to name a few

[72, 73, 74].

FS set depends on both the method used to select the relevant features, and on the selection

criterion to select them. In the FS literature, some works considered a criterion which attempt

to maximize the class separability [68], whereas in others, the criterion tried to retain the

discriminating power of the data defined by original features [75]. Thus, random subsets can

be obtained depending on both the method and the criterion considered. To our best knowledge,

there are no studies which try to defined this randomness. Thus, in this work, three different

FS methods are proposed to deal with the randomness in this stage by taking advance of the

statistical properties of the data.

Of particular interest is FS based on the weights obtained by a maximum margin SVM

linear classifier, which we pursue in this exposition. There are several reasons for this: (i) the
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robustness of the linear SVM in high-dimensional and noisy low sample size problems; and (ii)

the one-to-one relationship between the weights of the linear classifier and the features (words),

which enables the interpretation of the features. The latter is a significant advantage when

compared to classifiers such as Gaussian maximum likelihood or ANN [76, 77], where the direct

connections to the features are lost. The previous literature on SVM-based FS is to a large

degree concentrated on the Recursive Feature Elimination (RFE) method [68], which has been

shown to compare very favorably to many of the classical FS methods. RFE puts a threshold

on the amplitudes of the weights obtained by the SVM. Hence, the user must either pre-specify

the number of features to obtain, or alternatively, to engage in a computationally demanding

cross-validation procedure, whereby features are eliminated recursively, thus requiring numerous

SVM re-training procedures on subsets of features of decreasing size. This may be very time

consuming, even for small sample sizes.

2.4.2 Contribution 3. Statistical Feature Selection Strategies

We propose a further research on FS strategies based on the statistical nature of the weights of

the linear SVM, by investigating: (a) a simple statistical criterion based on leave-one-out; (b) an

intensive-computation statistical criterion based on bootstrap resampling; and (c) an advanced

statistical criterion based on kernel entropy, as explained below.

Leave One-Out Based Test

The Leave one-out (LOO) cross-validation method has been shown to give an almost unbiased

estimator of the generalization properties of statistical learning models [78]. The concept can be

used for estimating the pdf for each feature m.

The process is to create a matrix of weights W with n rows and N columns, where n is

the number of samples and N is the number of features. Each row of W is a weight vector

corresponding to the linear SVM solution by using LOO cross-validation. The LOO technique

partitions the original data set into n subsets, one for validation and the remaining n − 1 for

training. This process is repeated n times, setting apart for evaluation each of the n subsets just

once, hence yielding W. For the m-th feature with m = 1, . . . , N , a given linear classifier yields

a weight vector wm, whose statistical distribution can be approximated with different empirical

resampling criteria, denoted as p̂wm .

The estimated Confidence Interval (CIm) is built for each wm, which has all the LOO

estimations for the m-th feature, in order to determine wether this feature is relevant. Then,

CIm is used to perform a hypothesis test on the m-th feature, with H0 : 0 ∈ CIm (feature m is

irrelevant for the model) vs alternative hypothesis H1 : 0 6∈ CIm (feature m is relevant for the

model).
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Bootstrap Resampling-Based Test

Bootstrap resampling methods [79] are very useful approaches for nonparametric estimation

of the distribution of statistical magnitudes. We propose a bootstrap resampling scheme (see

Fig. 2.1) for building a statistical test for FS, as follows. We use W to provide a statistical

description of the noise assuming its variance is globally dependent on the weight magnitude, and

locally constant for weights with similar magnitude. Under these conditions, for each feature m

with m = 1, . . . , N , a local window of δ radius encompassing the 2δ nearest features is considered

to build the set of weights given by Rm = {wm−δi , . . . , wm−1
i , wm+1

i , . . . , wm+δ
i }ni=1. Hence, Rm

represents a noisy set of weights, with low (still non-null) probability of including representative

weights. Then, for each m-th feature, the set Sm = {wmi }ni=1 represents the weight set to be

tested for significance.

Weight sets Rm and Sm are used to estimate the marginal distribution of noisy and potentially

relevant weights for the m-th input feature, respectively, by constructing bootstrap resamples.

A bootstrap resample is a new set obtained from sampling with replacement the elements of the

original set (Rm and Sm in our case), providing resamples R∗,m and S∗,m, respectively. The

resampling process is repeated B times, with b indexing the resampling number (b = 1, . . . , B).

Thus, the b-th resamples S∗,m(b) and R∗,m(b) contain 2δn and n elements of Sm and Rm,

respectively, appearing zero, one, or several times. A bootstrap replication of an estimator is

constrained to the elements in the bootstrap resample. The bootstrap replication of the statistics

of interest is ∆∗,m(b) = s∗,m(b) − r∗,m(b), where s∗,m(b) and r∗,m(b) are elements, randomly

chosen, from S∗,m(b) and R∗,m(b), respectively. The B bootstrap replications for each feature m

allow us to estimate the Confidence Interval (CI∗,m) for the statistics ∆∗,m. Then, CI∗,m is used

to perform a hypothesis test on the m-th feature, with H0 : 0 ∈ CI∗,m (feature m is irrelevant

for the model) vs alternative hypothesis H1 : 0 6∈ CI∗,m (feature m is relevant for the model).

Note that we only sample one pair of s∗,m(b) and r∗,m(b) for each b, producing one ∆∗,m(b) for

each b, and that the process results in a feature being found relevant if it has a large absolute

value compared to the mostly noise weights that have mostly smaller absolute weights.

Kernel Entropy Inference Test

The basic idea behind the proposed kernel entropy inference test for feature selection, is to

select those features that correspond to the high entropy part of a pdf, describing a random

variable considered to generate the features. The high entropy part of a pdf represents the most

informative part, and it is associated with the tails of the pdf. Fig. 2.2 (a) illustrates a pdf, where

the sum of the areas represented by the black regions represent the tail probability.

In order to achieve the entropy-based feature selection, we concentrate on Renyi’s second
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Figure 2.1: Schema of the proposed bootstrap resampling-based test: (a) Matrix of weights W;

(b) 2δ nearest features represents a noisy set of weights Rm, whereas Sm is the weight set to be

tested for significance; (c) bootstrap resamples; and (d) bootstrap replication and hypothesis test.

(a) (b) (c)

Figure 2.2: Kernel Entropy Inference Test: (a) The tail probability refers to the sum of the areas

corresponding to the black regions under the probability density function p(w). (b) Illustration

of the role of the bandwidth, σ, in kernel density estimation (KDE). A large bandwidth (red)

provides more smoothing compared to a small bandwidth (blue). (c) KECA is related to principal

components in a RKHS corresponding to the positive semi-definite kernel function used in KDE.

order entropy [80] for a random variable w, given by

H(p) = − log V (p), V (p) =

∫
p2(w′)dw′ (2.43)
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where p(w) is the pdf of w. The reason for this choice is that this measure is easily estimated

using the modern technique known as kernel entropy component analysis (KECA) [81]. KECA

estimates the entropy using a kernel density estimator (KDE),

p̂(w) =
1

N

N∑
m=1

kσ(w,wm) (2.44)

Here, wm, m = 1, . . . , N, are elements of w and the kernel function provides a smoothing

of the histogram, where the bandwidth parameter σ governs the amount of smoothing. A

common choice of kernel, which we also pursue in this paper, is kσ(w,wm) = 1√
2πσ

e−
1

2σ2 (w−wm)2

.

Figure 2.2 (b) illustrates the role of σ. A relatively big σ will tend to produce a too smooth density

estimate and vice versa. Note that w is in this approach considered a one-dimensional random

variable, and in that case reliable data-driven (automated) procedures exist for the selection of

σ, meaning that a different σ is computed for different samples (data sets), see Section 4.2.3

for details. Furthermore, in the current exposition, the elements in the SVM weight vector w

represent the samples wm of the random variable w. Based on one particular such w, the left

panel in Fig. 2.2 (b) (best viewed in color) shows the KDE based on an automated bandwidth

selection procedure (blue), corresponding to the most narrow function shape. The broadest

function (red) shows a Gaussian best fit. The right panel shows the histogram for w indicating

that the KDE performs better than the Gaussian model. In addition, the middle function (black)

shows a kernel density estimate where we have manually doubled the selected σ. Note how the

function becomes more smooth, in this case deviating more from the peaky shape.

When inserting Eq. (2.44) into Eq. (2.43), the KECA estimator for the Renyi entropy becomes

V̂ (p) = 1
N2

∑N
m=1

[√
λme>m1

]2. Here, λm and em are eigenvalues and eigenvectors of the so-called

kernel matrix K where Kt,m = kσ(wt, wm) and 1 is a vector of ones. We have experienced

robust estimates of V (p) using only the top component (eigenvalue), such that in our case

V̂ (p) =
[√
λ1e
>
1 1
]2 (leaving out eigenvectors may be considered a de-noising process).

There is a one-to-one relationship between the elements in the vector e1 and the features

stored in the SVM vector w, and we use this in the FS. Since the kernel function is positive

semidefinite, it computes an inner-product in a reproducing kernel Hilbert space (RKHS) [61].

That is, w 7→ φ(w) such that the RKHS inner-product is kσ(wt, wm) =
〈
φ(wt), φ(wm)

〉
. It is

furthermore known, that in RKHS, the projection of the jth point φ(wm) equals e1(m), i.e.

the jth element of the eigenvector e1. This is the RKHS principal component corresponding to

φ(wm). Hence, the feature wm corresponds to the m-th element of e1. This is illustrated in Fig.

2.2 (c).

The kernel entropy FS idea is the following. The tails of p(w) contribute the most to the

entropy of the random variable w and the features corresponding to the tail are represented by the

smallest principal components in the RKHS (i.e, the smallest principal components contribute
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the most to V̂ (p)). In the FS, we fix a tail probability, for example to the value 0.05, and select

those features that correspond to the tail by identifying the corresponding smallest principal

components (elements of e1). Note that the number of selected features by this proposed

procedure is not pre-specified, but it depends on the chosen tail probability.

The FS strategies previously described are used in Application 4.1 (Sec. 5.2) and

Application 4.2 (Sec. 4.3), see them for more details.

2.5 Model Selection

In this section, we first present several merit figures to evaluate the obtained model quality for

both classification and regression methods. Next, the generalization capabilities of the developed

models are analyzed. Finally, when more than one predictive model are evaluated, a statistical

comparison is required to select the one which provides better performance. However, often,

a description of the differences between them is not considered, or models are benchmarked

using, t-student or ANOVA test or even nonparametric statistical tests such as Wilcoxon signed

rank test [82]. In some studies, statistical assumptions of independence and gaussianity are

not verified for its proper application. Therefore, this motivates the proposal of an operative

benchmark methodology based on a cut-off nonparametric statistical test, both to characterize

the generalization of the model as well as its comparison with other predictive models.

In this work, a nonparametric resampling test based on bootstrap is presented as a way

to evaluate the models in terms of average and scatter measurements, for a more complete

efficiency characterization of the predictive models. These statistical characterizations allow us to

readily work with the distribution of the actual risk, in order to avoid overoptimistic performance

evaluation in the ML based models. Apart from that, we propose a simple nonparametric

statistical tool, based on the paired bootstrap resampling, to allow an operative result comparison

among different learning-from-samples models. The use of bootstrap resampling in this setting

is supported by the previous observation of heavy tails in the residuals distribution when using

ML models, as well as by bimodalities, and other non-Gaussian effects [45], which make the use

of conventional statistics a non-operative tool when working with ML models.

2.5.1 Merit Figures and Generalization Evaluation

Model quality obtained when applying learning techniques can be evaluated by means of

informative merit figures. It is a well-known fact that the evaluation of merit figures in the

training set is highly suboptimal, as far as generalization capabilities of the model are not

considered at all. This is the main reason why it is necessary the adequate characterization

of any merit figure for model benchmarking, and this characterization needs to be performed
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using an independent data set of examples, i.e., a set ntest of data that not used during the

training stage. Several merit figures can be used for benchmarking models in learning from

samples techniques. We limit ourselves here to the Mean Absolute Error (MAE), given by

MAE =
1

ntest

ntest∑
i=1

|f(xi)− yi| (2.45)

Performance measures in binary classification problem may be constructed based on the

confusion matrix (CM), as follows,
Real diagnosis

Positive Negative

Predictive diagnosis
Positive TP FP

Negative FN TN

where TP and TN denote true positives and true negatives, and FP and FN denote false

positives and false negatives, respectively [83]. The performance measures considered in this

work are the following: error probability, Pe = FP+FN
TP+FN+FP+TN ; sensitivity, Se = TP

TP+FN ;

specificity, Sp = TN
TN+FP ; and balanced error rate, BER = 1

2(Se+ Sp).

Once the merit figure is selected, we need to analyze the generalization capabilities of

the developed models. In that sense, cross-validation techniques are statistical methods for

quantifying and measuring the generalization error [84]. In this work, a cross-validation

technique is used for benchmarking ML techniques, by considering two subsets of the available

examples, namely, a training set (for weights adjustment), and a validation set (for generalization

benchmarking) [85]. Three widely used cross-validation techniques are: (a) Holdout, where data

are split into 2 subsets for training (often 70%) and validation; (b) K-fold, where examples set

is randomly divided into K subsets with the same size, one for validation and the remaining

K − 1 for training, the process is repeated K times (each corresponding to a different subset

being used for validation), and the generalization is obtained by averaging the merit figures of

the K models; and (c) leave-one-out (LOO), a particular case of K-fold where K is the number

of available examples. Note that the computational burden of LOO is much higher than other

cross-validation techniques, however, in this work, we use LOO for the free parameter tuning in

each technique, due to its advantage when the available data set is scarce.



48
CHAPTER 2. FUNDAMENTALS AND CONTRIBUTIONS IN MACHINE

LEARNING

2.5.2 Contribution 4. Bootstrap Resampling for Benchmarking Machine
Learning Models

Actual Risk Estimation with Bootstrap Resampling

One of the main limitations of current ML techniques is the difficulty in establishing clear

cut-off tests for model comparison, hence, systematic procedures for establishing FS, significance

levels, and confidence intervals for model diagnosis, are developed. An interesting approach

to the model diagnosis and FS can be given by bootstrap resampling techniques, which were

first proposed as nonparametric procedures for estimating the pdf of a statistical estimation

from a limited, yet informative enough, set of observations [45]. Bootstrap resampling has been

successfully used before for selecting the design parameters of SVM classifiers [86], and due to

their simplicity of use, we propose here to extend their use to model benchmarking in predictive

modeling problems.

For a given set V of n observations, the dependence between the explanatory variables and

the response variable can be fully described by means of the distribution of the output,

py(x) → V = {(yi,xi); i = 1, . . . , n}, (2.46)

In order to obtain a ML model, a set of R weights {ωr, r = 1, . . . , R}, has to be estimated

according to an optimization process denoted by operator s(·), and it depends on observations

V and on the model design parameters that have been fixed a priori, which can be grouped in a

vector θ for a given ML technique. The model weights obtained by using the observations and

a previously fixed θ are given by

ω = {ωr} = s(V,θ) (2.47)

The model performance can be evaluated with the empirical risk, defined as a certain figure of

merit of the model that is evaluated at the observations used for building the model, and it can

be expressed as

R̂emp = t(ω,V), (2.48)

where t(·) represents the operator that stands for the figure of merit calculation.

Given that the ML based models do not rely on any a priori distribution of the data, it is not

easy to know the functional form of the pdf of the merit figures. Moreover, the sample estimators

of the merit figures can be optimistically biased, especially for some degenerate choices of the

design parameters, e.g., when too much emphasis is put on the cost of the residuals, or when

a too small neighborhood parameter is used. A method for estimating the pdf of the output is

given by bootstrap resampling, and it can be used for compensating the optimistic bias in the

figures of merit estimators [86].
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A bootstrap resample is a data subset that is drawn from the observation set according to

their empirical distribution p̂y(x). Hence, the true pdf is approximated by the empirical pdf of

the observations, and the bootstrap resample can be seen as a sampling with replacement process

of the observed data, this is,

p̂y(x) → V∗ = {(y∗i ,x∗i ); i = 1, . . . , n} (2.49)

where superscript ∗ represents, in general terms, any observation, functional, or estimator arising

from the bootstrap resampling process. Therefore, resampled set V∗ contains elements of V

which are included none, one, or several times. The resampling process is repeated B times.

Accordingly, a partition of V in terms of resample V∗ can be done, which is given by

V = {V∗in(b),V∗out(b)}Bb=1, (2.50)

where V∗in(b) and V∗out(b) are the subsets of observations that are and are not included in resample

b, respectively.

A bootstrap replication of an estimator is given by its calculation constrained to the

observations in the bootstrap resample. The bootstrap replication of the empirical risk estimator

is

R̂∗emp(b) = t(ω,V∗in(b)). (2.51)

The normalized histogram obtained from B resamples is an approximation to the pdf of the

empirical risk. However, further advantage can be obtained by calculating the bootstrap

replication of the risk estimator on the non-included observations, and rather than estimating

the empirical risk, we are in fact obtaining the replication of the actual risk,

R̂∗act(b) = t(ω,V∗out(b)). (2.52)

The bootstrap replication of the averaged actual risk can be obtained by just taking the average

of R̂∗act(b), and scatter measurements can be readily obtained from the same histogram. A typical

range for B in practical applications can be in (50, 2000) bootstrap resamples.

Paired Benchmarking of Actual Risk with Bootstrap Resampling

For giving a clear cut-off test allowing us to benchmark the significance of the performance

differences between two different ML based predictive models, we use here the previously

described bootstrap nonparametric resampling procedure. We present the operative procedure

in two complementary stages: first, the bootstrap based characterization of the residuals of a

single model is introduced, allowing the detailed statistical characterization of the figures of merit

under analysis; and second, the performance comparison between two models is described from
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paired bootstrap resampling, which allows us to control for the standard error of the estimates of

the differential figures of merit, giving moderate standard errors and allowing to establish cut-off

tests for model comparison purposes.

The characterization of the pdf of the residuals for a single model can be summarized as

follows:

• Given the original residual vector for a given model, e = [e1, e2, . . . , en], where the actual

risk is evaluated from these residuals, then B independent bootstrap resamples are built,

e∗(1), e∗(2), . . . , e∗(B), each given by n data resampled with replacement from the original

residual set.

• For each resample, the value of a given figure of merit R̂∗act is calculated, and used as an

estimation of the figure of merit under study, by using operator t, this is,

R̂∗act(b) = t(e∗(b)). (2.53)

Note that R̂∗act can be given by any of the figures of merit previously described.

• A sample distribution is built for the replications of statistic R̂∗act(b), which stands for an

approximation to the actual distribution for statistic Ract, and it can be an estimation of

either average or scatter statistical description of the figure of merit.

From the sample distribution of R̂∗act, the 95% CI can be obtained, and its empirical value

belonging to this interval will allow us to assume that the empirical estimator does not present

a significant bias due to overfitting.

The previous procedure can be readily modified in order to benchmark the performance of

two different ML techniques (or the same technique with different settings), by using a paired

bootstrap resampling, with the same resamples considered in the benchmarked models. The

procedure can be summarized as follows:

1. The residuals or the figures of merit yielded by two different ML based models, r and

s, are considered, given by r = [r1, r2, . . . , rn], and s = [s1, s2, . . . , sn] and the differential

resamples are built for the magnitude increments of these figures of merit, this is, ∆ = |r|−
|s|, hence the differential increment resamples are ∆∗(1),∆∗(2), . . . ,∆∗(B).

2. From these resamples of the increments, the increment in performance measurement

∆R̂∗act(b) is calculated, to be used as an estimator of the populational figure of merit

under study, this is,

∆R̂∗act(b) = t(∆∗(b)). (2.54)
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The normalized histogram of the incremental performance is built for the statistic under analysis,

which represents an approximation of the actual distribution of its pdf.

In this work, when resampling two different ML models model1 and model2, results will be

compared in terms of average and scatter measurements according to three different statistics,

namely,

∆MAE = MAE(model1)−MAE(model2), (2.55)

∆CI(modeli) = CIsup(modeli)− CIinf (modeli) (2.56)

∆CI = ∆CI(model1)−∆CI(model2), (2.57)

∆CIsup = CIsup(model1)− CIsup(model2), (2.58)

where CI has been obtained for 95% confidence level, CIsup (CIinf ) are the superior (inferior)

CI limits. These statistics give a description not only in terms of the average magnitude of

the error, but also in terms of its scatter. Given that inference-based closed forms for CI

scatter measurements are often a mathematically complex problem, it comes clear that bootstrap

resampling represents a useful approximation for making it possible.

This theoretical contribution is applied in several applications. For example, in

Application 3.1 (Sec. 3.2) both actual and paired risk estimation with bootstrap resampling

are computed to evaluate the statistically significant differences among the considered ML

techniques. In Application 3.2 (Sec. 3.3) and Application 4.1 (Sec. 5.2), several estimation models

are considered and benchmarked using the paired bootstrap resampling approach presented in

this section.
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Chapter 3
Machine Learning for Promotional
Decision-Making

3.1 Introduction

The current economic landscape, characterized by financial instability and the consequent

changes in consumer behavior, is driving a transformation in retailer decision, bringing to a new

and more aggressive promotional perspective [87]. As an example of this situation, the dramatic

sales reduction of some products in Spain, which has led retailers in the industry to implement

new approaches, such as the intense use of private label products, can be mentioned. In

addition, it has been also searched to increase consumer’s frequent purchases through promotional

activities, such as promotional discounts, feature advertising, and promotional packs (e.g., “buy 3

and get 1 free”) [87]. Therefore, sales promotions have become in recent years a fundamental

tool for retailers’ strategies, and the investment in this setting has highly increased in the

marketing strategy, with percentage even above 50% [88]. The better understanding of the

sales promotion dynamics has received growing attention from ML and data mining techniques,

which are powerful tools to extract information from recorded examples [17].

Existing models for analyzing sales promotions effects can be classified into two separate

groups. In the first group, namely theoretical models, consumer behavior is basically evaluated by

considering a sociological and psychological perspective, whilst in the second group of empirical

models, promotional structures based on empirical information extracted from historical

databases are usually built. Within that last group, the efforts have been focused during the last

decades on the understanding of sales promotion dynamics based on classical statistical analysis

methods, and more recent works are concentrated towards ML and data mining techniques, as

powerful tools to extract information from existing recorded data [18, 19]. ML techniques aim to

53
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find recurring patterns, trends, or rules, which can explain the data behavior in a given context,

and then allows to extract new knowledge on the consumer behavior, to improve the performance

of marketing operations. In particular, a vast amount of knowledge has been extracted from ML

techniques, although not all the promotional behaviors have been studied and there is still room

for further studies [15, 16, 17]. More specifically, operational problems arise in ML promotional

modeling, when based on nonlinear estimation techniques, for evaluating and demonstrating

working hypothesis [19, 20, 21, 22, 23, 24, 25]. First, conventional parametric tests are often not

appropriate, because given the heavy tails and heteroscedasticity for the prediction residuals,

Gaussianity is no longer a working property for them. Second, special attention has to be paid

in order to be sure when working with hypothesis tests in terms of actual risk comparisons,

and not of empirical risk comparisons, to avoid as much as possible the unawared presence of

overfitting in the ML based models. And third, as an indirect consequence of not having a clear

cut-off test, their results cannot always be easily compared across studies, even when they have

been made on the same data set.

Therefore, the objective of the first application of this chapter, Application 3.1, is to propose

an operative procedure for model diagnosis using ML techniques for promotional efficiency

applications at store level. An empirical approach, based on ML techniques, is used for analyzing

the sales dynamics for two representative databases with different promotional behavior, namely,

a non-seasonal stable category (milk) and a heavily seasonal category (beer). Four well-known

ML techniques with increasing complexity are benchmarked, specifically, k-NN, GRNN, MLP,

and SVM. The nonparametric statistical tool based on the paired bootstrap resampling approach

(see Sec. 2.5.2) is used for establishing a clear statistical comparison among them.

In addition, in Application 3.2, an operative and reliable analysis tool for promotional decision

making based on retail aggregated data is also proposed. The main contribution from a digital

signal and data processing viewpoint is the proposal of a new data-driven model based on a

new set of indicators for evaluating the reliability and stability of a data model in terms of

multidimensional feature space rather than a single merit figure for the model (e.g., the mean

absolute error). These indicators allow the user to identify the uncertainty of different feature

space regions, for example, unusual promotion conditions. Using the statistical processing

available, the performance of different methods and different feature spaces is studied. The

use of aggregate data in suitable conditions yields moderate and acceptable confidence intervals

in these feature spaces.
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3.2 Application 3.1: Promotional Efficiency at Store Level

3.2.1 Introduction

Though many definitions have been published for the term sales promotion [88, 89, 90], none

of them are generally accepted, but general consensus suggests that sales promotions consist

basically in short-time sales incentives [88, 89]. For instance, the American Marketing Association

defines sales promotion as a media and non media marketing pressure applied for a predetermined,

limited period of time in order to stimulate trial, increase consumer demand, or improve product

availability [91]. Some researches [88] consider sales promotion not just a marketing element, but

instead included within the strategic activity undertaken by the company. The sales promotion

strategy adopted by the grocery retailer must be consistent with the general pricing policy. In

fact, some strategic aspects of the retailer’s pricing policy cover certain considerations related to

the appropriateness of the use of promotions and discounts. For this reason, when under certain

circumstances the use of deals and discounts are considered adequate, the specific discount rate

must be determined attending to timing, frequency, and magnitude of the promotional discounts,

[92, 93, 94, 95, 96].

Some studies suggest that the pricing policy adopted by retailers is influenced by many

diverse aspects [97], among them factors related to the industry, the company itself, and other

elements derived from the competitive situation and consumer demand. When referring to a

specific activity of sales promotions, such as price promotion, it is important to make reference

to the deal effect curve DEC, which shows the representation of actual sales volume against price

discounts applied during a certain period. Hence, the DEC shows pricing and volumes, and

depicts pricing promotions effects over different products, such us private label and/or normal

brands. Effects illustrated by the DEC can be basically grouped into three categories:

1. The first category is related to direct discount effects. Two fundamental effects can be

showed as far as this category is concern, namely, threshold and saturation. Threshold

stands for the minimum discount that has to be applied to ignite sales growth [98], while

saturation effect could be defined as the discount level that does not generate additional

sales. This second effect can be justified either from the maximum number of product units

that consumers can stock at home (especially with perishables products) [15], or from the

consumer perception of discount itself, which has been shown to be lower than the real

discount [99].

2. A second category relates to the cross-effect generated from other products promotions.

The cross-effects appear when other brands and categories promotion indirectly imply

variation on the volume sold of a certain product. This variation could be different

depending on the value assigned by consumer to the promoted brand (providing a
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much higher effect as the value perceived by the brand is higher) [23], and also

depending on whether simultaneous promotions are inside the same category or substitutive

products [100].

3. And finally, a third category is related to the number of concurrent promotions and their

special characteristics, especially the different media used for the promotion, what implies

different outcome (i.e. combination of an especial exhibition and temporary discount

provides additional effectiveness to the promotion).

An increasing attention is being paid to the potential explanatory possibilities of ML

techniques in promotional effectiveness. In [20], an algorithm based on historical transactions

data, and yielding self and cross-effects for promotional sales prediction, was presented to

estimate the promotions sales profits in retail sales and other business applications. In [25], Rough

Sets and SVM techniques were used to establish a pricing model based on hedonic price improving

prediction capabilities. In [19, 23, 24], sales promotion was modeled by means of semiparametric

regression and semiparametric SVM, with no further comparison to other possibly relevant ML

techniques, partly due to the lack of a suitable cut-off test, capable of dealing with non Gaussian,

heteroscedastic prediction residuals, and actual risk comparisons.

ML Techniques for Promotional Sales Modeling

ML techniques have emerged as powerful tools to extract relevant quantitative

information [17, 18]. Two different types of regression methods have been mostly used in

the sales promotion literature to analyze the sales response to price promotions discounts:

parametric regression and nonparametric regression. Parametric regression assumes a certain

functional form underlying the data, namely linear, exponential, or logarithmic. The simplest

parametric regression model is the linear model, where the parameters can be easily estimated

using ordinary least squares, assuming the presence of additive, uncorrelated, and Gaussian white

noise. However, in the presence of heteroscedasticity, generalized least squares methods are more

appropriate [101]. In addition, maximum likelihood models assume a given statistical distribution

linking the parameters and the data [102]. Nonparametric regression does not assume any a

priori functional form, but it rather relies on approximating the observations locally. Examples

of nonparametric methods are spline regression, k-NN, or kernel estimators [102]. The main

advantages of nonparametric methods are flexibility and consistency, which are established under

much more general conditions than for parametric modeling.

General data model for promotional sales. In order to support the model architecture

that is capable of learning from the relationships between inputs (x, column vector) and outputs

(y), it is required a finite number of paired observations. In sales promotion modeling, the input
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Table 3.1: Products under analysis in the milk and beer product category.
Model Product (Milk) Product (Beer)

Model 1 Asturiana Amstel 25 cl x 6

Model 2 Ato Amstel 33 cl

Model 3 Private brand Bavaria 33 cl

Model 4 Pascual Calcio Cruzcampo 33 cl

Model 5 Pascual Clásica Estrella 25 cl x 6

Model 6 Puleva Calcio Estrella 25 cl x 12

Model 7 - Estrella 33 cl

Model 8 - Heineken 25 x 6

Model 9 - Private brand 33 cl

Model 10 - San Miguel 25 cl x 6

Model 11 - San Miguel 25 cl x 12

Model 12 - Voll Damm 25 cl x 6

Model 13 - Xibeca 25 cl x 6

Model 14 - Xibeca 33 cl

pattern may consist of information about price changes and promotion characteristics, whereas

the output would correspond to the number of sold units for a given product. The model f(·)
for the relation y = f(x), has been mainly estimated in the marketing research literature by

using two different families of regression methods. Regarding to the first of them, in parametric

methods, it is assumed a previously known shape or structure for functional relation f(·). In this

case, the functional is often defined by a simple relationship (linear), while the nonparametric

method does not assume any prior structure in terms of data model, instead, it is built the

estimated relationship based on kernels (for instance, the Gaussian kernel) [4].

3.2.2 Database

Two real databases from the milk and beer product categories were analyzed. These two

categories represent products with different promotional dynamics, in particular, milk is a daily

used product, while beer is a highly seasonal product. We used the information extracted

from both product categories, obtained from digital archives of sold units in the same retailer

(supermarket) during one year, excluding weekends. Up to 304 examples (samples) were available

for each category, corresponding to the days when transactions were recorded in the supermarket.

Information was aggregated into 43 weeks, to avoid weekly seasonality effects that were clearly

present in the data.

On the one hand, the milk category database was studied separately from beer products, in

order to compare daily products. Hence, 6 brands were analyzed within this product category,

corresponding to 6 different promotional models, as indicated in Table 3.1. On the other hand,
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the beer database was assembled, as a reference of a strong seasonal product along the year.

This separate structure of databases allowed the benchmark between categories with different

behavior, as well as a benchmark among all models inside each category in order to compare with

a strongly along the year seasonal product. In this second category, the promotional behavior

of 14 different models were analyzed, as shown in Table 3.1. For some brands, different formats

were considered (i.e. for Amstel beer a distinction was made between the 33 cl. can and the 25

cl. 6 units pack). In all models, exogenous variables were given by the set of price indices (PI)

for the different items in each category. The price index for a given product is given by

PI(i, t) =
Pprom(i, t)

Preg(i, t)
(3.1)

where PI(i, t) is the price index of product i at week t, Preg(i, t); and Pprom(i, t) are the

regular and promotional prices of product i at week t, respectively. Hence, the price index

gives the relative variation between the promotional price and the regular price, and its value

is 1 whenever both are equal. This index allows a clearer comparison of the magnitude of

the discounts, and so it is often considered as a more informative exogenous variable than the

promotional price. In addition to the price index of all the competing brands in a category for

each model, other exogenous variables were also considered. First, a variable for direct discount

(DD) (or equivalently, price reduction) was considered as a dichotomic variable (1 for existing

direct discount and 0 otherwise). Second, a pre-processing algorithm was used for distinguishing

between two possible seasonality-dependent behavior, by splitting each database into two possible

periods. The first period was identified with 0 and the second with 1, allowing a natural way

either for identifying the low from the high season, or for canceling its effect in the model.

This dichotomic variable was called baseline (BL). Baseline sales is a key concept in marketing

research and it is typically defined as the sales of a given product when there are neither marketing

promotions for this product, nor promotions for other interacting products [103, 104]. Graphical

representation of these assessments can be found in Fig. 3.1 where the PI for each model in both

product categories, as well as the weekly sold units, are shown.

The promotional models for both databases share some characteristics, namely, the input

sample is given by a combination of both price indices and dichotomic variables, and also the

output of each model is given by the sold units for that particular product in the database.

Hence, the promotional model can be expressed as:

y(i, t) = f(xM (i, t), xD(i, t), BL(t)) (3.2)

where y(i, t) is the number of sold units for product i during week t;

xM = [PI1(i, t), . . . , P Inm(i, t)]> is a vector with the price indices of product i during

week t, with nm = 6 for milk database and nm = 14 for beer database; xD(i, t) is the direct
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(a) (b)

(c) (d)

Figure 3.1: Time evolution of price indices (a,b) and sold units (c,d) for mil database (a,c) and

beer database (b,d).

discount dichotomic variable for product i during week t; and BL(t) is the baseline for the

dichotomic variable at week t.

3.2.3 Experiments and Results

Limitations of DEC Characterization with the Own-Effect

In order to verify whether a complex model is really required to analyze the existing data, the

DEC was estimated by considering only each price index own-effect, and estimation was executed

by calculating the average units of products sold as a function of the pricing index, without

considering presence of simultaneous promotional effects by other competing or substitutive

products.

Individual own-effect for models corresponding to milk category, and for beer category were

obtained. In both cases DECs corresponds only to the effect, over each product, due to the

discount applied, without taking into account any further interactions with other competitor

products, which ended not been a fair approximation attending to results obtained. In many cases

DECs shapes found could be explained according to direct effects such as threshold, saturation

and price/demand standard elasticity, although other situations are also identified. In an attempt
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Averaged price index as a function of sold units for milk database. Models 1 to 6

correspond to panels (a) to (f).

to identify those effects in the individual DEC curves for milk category, it could be said that the

largest elasticity effect can be found for the product presented in Fig. 3.2 (a), while the smallest

one is detected in Fig. 3.2 (d). Threshold effects could be observed in Figs. 3.2 (c) and (d) at

levels of discount of 2%, whilst the saturation effects could be detected in Figs. 3.2 (a), (c), (e)

and (f) at levels of discounts of 3%, 8%, 3% and 4% respectively. Similar conclusions could be

extracted from DEC simple estimations for the beer category.

Therefore, it seems reasonable to assume that, apart from threshold and saturation effects,

other phenomena are taking place simultaneously, for instance, cross-price effects and differential

interactions among promotional initiatives. Therefore, the DEC own-effect should be considered

with caution, as it does not allow to identify or detect cross-effects in real data, more complex

and sophisticated modeling techniques must be used. This is the motivation for applying ML

techniques in order to detach and characterize existing simultaneous promotional effects.

Selection of Design Parameters for ML methods

The design parameters selection was just dependent on the ML method. In summary,

four nonparametric regression/estimation techniques were used for comparison purposes: k-NN,

GRNN, MLP and the linear and nonlinear ν-SVM. Fundamentals of the four techniques are
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explained in Sec. 2.3.1. LOO was selected as the cross-validation approach due to the reduced

number of available samples (see Sec. 2.5.1).

k-NN design parameter selection. As summarized in Sec. 2.3.1, the number k of

neighbors considered for local-averaged estimation is the design parameter of this technique.

Best value for k depends on the size and dimension of the database, and must be chosen so that

the model is neither sensitive to atypical samples nor provides over-averaging, since both cases

give poor quality estimations. For each model, parameter k is explored in the range (1, 40). Note

that there is often a noticeable plateau, giving a stable working zone for the design parameter

selection. In addition, it is worth to note that k tends not to be a low value, hence indicating

that smoothing is necessary to yield better models with this technique and database.

GRNN design parameter selection. The implemented GRNN architecture is a multiple

output scheme (Sec. 2.3.1) such that every output corresponds to one predictor variable

(sold-units of a product in the database). The width σ of the symmetrical Gaussian kernel

is the design parameter for the GRNN. Though from a mathematical point of view, outputs are

uncoupled (they do not model cross-interactions among outputs), and hence the implemented

architecture is equivalent to a set of independent individual models, the multiple output

implementation has operational and computational advantages. Parameter σ was explored in

the interval (0.01, 0.5).

MLP design parameter selection. The chosen MLP architecture (see Sec. 2.3.1 for

details) has one hidden layer and multiple output so that optimization is simultaneously

performed for all outputs, which are now coupled along with the design process. The design

parameter to be selected was the number of neurons in the hidden layer, denoted as n0. Weights

of the MLP were determined by applying the iterative Levenberg-Marquardt algorithm. To avoid

overfitting an early-stopping procedure with holdout cross validation was performed.

SVM design parameter selection. As explained in Sec. 2.3.1, different free parameters

have to be tuned in the ν-SVM. When working with linear kernels, two design parameters

are necessary: ν ∈ (0, 1) to control training errors and regularization parameter C (C > 0).

The kernel width σ has to be also tuned when Gaussian kernels are considered. In the linear

case, the (ν,C) space is explored. In the nonlinear approach, and to reduce the computational

burden required by an exhaustive three-dimensional exploration, the following iterative procedure

starting from an initial value of C was applied: (1) for a given C, the (ν,σ) space is explored; (2)

pair (ν,σ) providing a minimum MAE is found; (3) with values of (ν,σ) obtained in previous step,

parameter C is explored and the best conditional value is chosen; and (4) the obtained MAE is

stored, and first and third steps are repeated until MAE becomes stable. The previous procedure

was performed four times, each with a different initial value for C, with C = [10, 50, 100, 1000].



62
CHAPTER 3. MACHINE LEARNING FOR PROMOTIONAL

DECISION-MAKING

Table 3.2: MAE for individual models in milk database. For each cell, empirical and

bootstrap-averaged MAE (first row), and 95% CI (second row).Bold emphasizes the method with

the best performance for each model.
k-NN GRNN MLP RBF SVM Linear SVM

Model 1 366.44 || 365.50 366.44 || 365.50 320.75 || 320.56 322.15 || 320.68 389.43 || 388.00

[269.95,465.16] [269.95,465.16] [247.23,407.72] [231.08,422.75] [282.24,512.49]

Model 2 205.21 || 205.56 205.21 || 205.56 198.89 || 198.22 166.09 || 166.13 240.07 || 240.68

[156.94,257.97] [156.94,257.97] [154.57,244.11] [123.03,214.02] [185.46, 301.55]

Model 3 164.62 || 165.11 164.62 || 165.11 151.23 || 151.83 136.12 || 135.86 160.58 || 160.38

[131.26,199.64] [131.26,199.64] [122.15,182.68] [109.63,165.34] [124.98,199.50]

Model 4 63.27 || 63.18 63.27 || 63.18 72.41 || 72.85 50.64 || 50.41 71.73 || 71.72

[48.61,79.27] [48.61,79.27] [58.06,89.09] [37.87,65.05] [51.25,93.84]

Model 5 178.99 || 178.49 178.99 || 178.49 196.36 || 196.83 192.59 || 193. 03 380.79 || 380.89

[131.93,226.97] [131.93,226.97] [151.58,248.20] [134.98,257.77] [282.89,494.88]

Model 6 119.68 || 119.54 119.68 || 119.54 127.68 || 127.64 105.13 || 105.24 238.90 || 238.85

[92.13,148.40] [92.13,148.40] [99.38,157.79] [80.24,132.32] [178.34, 307.87]

Benchmarking Prediction Models

The first analysis to be made is the benchmarking among different ML techniques (k-NN,

GRNN, MLP, linear and nonlinear SVM) in terms of LOO-based MAE, for each product and

both databases. For the milk database, the promotional model considered 8 input variables,

namely, 6 metric variables corresponding to the price indices of itself and of competitor items,

and 2 dichotomic variables (direct discount indicator and seasonality). The number of model

outputs was dependent on the technique, this is, 6 product models with 1 single output each for

k-NN and ν-SVM, and one joint model with 6 outputs for GRNN and MLP. Table 3.2 shows the

results of the empirical MAE (recall again that it has been obtained with LOO and averaging),

together with the bootstrap-averaged MAE. Note that consistence between these two values is an

indicator that generalization capabilities are properly quantified with the merit figure, whereas a

reduced empirical MAE compared to the bootstrap-averaged will be an indication of overfitting.

The 95% CI is also summarized, in order to give a nonparametric measurement of scatter for

each method. Bold typeface emphasizes the best ML technique, in terms of averaged MAE. From

the values in the table, we can observe that RBF SVM seems to be the best ML technique for

Models 2, 3, and 4, whereas k-NN seems to be the best one for Model 5.

For the beer database, the promotional model considers 16 input variables (14 metric

variables, and two dichotomic variables for direct discount and seasonality), with the same

considerations as before for the number of outputs and models in each technique. Results in

terms of MAE are shown in Table 3.3, where it can be observed that RBF SVM seems to be the

best method for all the models, except for Models 2 and 7, where k-NN seems to be the best
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Table 3.3: MAE for individual models in beer database. For each cell, empirical and

bootstrap-averaged MAE (first row), and 95% CI (second row).Bold emphasizes the method with

the best performance for each model.
k-NN GRNN MLP RBF SVM Linear SVM

Model 1 7.85 || 7.85 11.85 || 11.90 13.86 || 13.75 6.98 || 6.96 12.93 || 12.92

[5.16,10.94] [9.07,14.83] [10.33,17.50] [4.77,9.16] [8.85, 17.34]

Model 2 33.77 || 33.61 47.56 || 47.43 49.76 || 49.42 34.52 || 34.53 48.50 || 48.57

[25.67,42.11] [38.10,57.32] [39.08,62.28] [27.33,42.32] [36.61,59.32]

Model 3 15.10 || 14.96 14.92 || 14.70 14.33 || 14.28 14.08 || 14.11 15.40 || 15.46

[11.48,19.38] [10.94,19.35] [10.49,18.60] [10.48,18.67] [11.53, 20.29]

Model 4 25.75 || 25.74 27.51 || 27.58 26.74 || 26.42 21.40 || 21.40 29.53 || 29.36

[19.59,32.09] [22.34,33.32] [20.15,34.00] [16.36,27.01] [22.81,36.04]

Model 5 12.21 || 12.05 13.67 || 13.67 13.62 || 13.54 10.27 || 10.25 12.85 || 12.87

[8.82,15.92] [10.67,16.49] [10.28,16.77] [7.54,13.19] [10.38, 15.31]

Model 6 31.10|| 30.89 32.33 || 32.15 31.59 || 31.65 26.82 || 26.86 32.21 || 32.41

[23.82,39.15] [24.29,40.91] [25.15,38.95] [18.92,35.37] [24.67,41.85]

Model 7 78.86 || 78.57 97.54 || 96.86 103.53 || 102.14 89.50 || 89.53 102.08 || 102.20

[61.13,99.64] [72.26,123.36] [72.98,136.63] [64.13,118.31] [75.92,130.58]

Model 8 36.90 || 36.92 36.19 || 36.19 47.42 || 47.15 34.59 || 34.71 36.03 || 36.25

[29.91,48.91] [26.89,46.31] [38.34,57.09] [26.83,43.39] [27.42, 46.24]

Model 9 20.77 || 20.64 32.93 || 32.85 28.92 || 28.70 19.58 || 19.62 31.36 || 31.43

[16.04,25.67] [26.50,39.82] [21.18,38.62] [14.48,25.02] [23.87,39.84]

Model 10 17.98 || 17.88 24.12 || 24.02 26.08 || 26.22 12.85 || 12.84 21.69 || 21.82

[11.54,26.99] [16.44,34.14] [18.29,35.32] [8.39,19.15] [13.09, 32.44]

Model 11 13.65 || 13.62 17.48 || 17.42 13.60 || 13.62 11.48 || 11.43 17.62 || 17.63

[9.74,17.73] [12.51,23.41] [9.86,18.06] [7.92,15.18] [13.29,22.93]

Model 12 109.58 || 109.69 102.62 || 102.00 146.30 || 146.07 96.85 || 97.06 99.46 || 99.85

[83.88,140.81] [77.19,130.96] [107.64,183.87] [71.72,126.61] [72.24,130.99]

Model 13 16.49 || 16.45 22.83 || 22.69 26.16 || 25.92 14.91 || 14.94 22.23 || 22.32

[12.88,20.21] [18.21,27.91] [18.84,34.56] [11.47,18.78] [16.96, 28.41]

scheme.

In general terms, it can be concluded that, for MAE as merit figure, RBF SVM is the

technique with better performance. This advantage is more patent in the case of beer database

products, and occasionally, k-NN yields better performance than RBF SVM. With respect to the

remaining ML techniques, it is often complicated to benchmark in terms of averaged MAE. For

instance, in the milk database, GRNN gives lower MAE than k-NN and MLP for Models 2 and

3, but not for the remaining products. Therefore, in order to give a clear cut-off test allowing

the comparison, the next step is to use the proposed bootstrap paired test.

Table 3.4 shows the paired comparison of k-NN vs GRNN, k-NN vs RBF SVM, GRNN vs RBF

SVM and linear SVM vs RBF SVM. Bootstrap resampling allows us to calculate the 3 different
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Table 3.4: Paired bootstrap for milk Database using three statistics for MAE merit figure in each

cell, namely, ∆MAE (first row), ∆CI (second row), and ∆CIsup (third row), with mean and 95%

for each. Bold emphasizes the technique comparison with statistically significant differences at

95%.
k-NN vs GRNN k-NN vs ν-SVM GRNN vs RBF SVM Linear vs RBF SVM

Model 1 -33.26 [-107.37,43.21] 45.14 [-6.46,106.76] 76.78 [20.21,133.73] 21.51 [-45.62,91.75]

150.41 [-453.69,749.42 ] 231.63 [-344.72,706.90] 86.76 [-469.78,431.90] 90.12 [-176.88,535.20]

-54.43 [-499.08,438.29] 8.06 [-247.29,163.40] 158.71 [-304.17,300.46] 101.64 [-173.43,537.06]

Model 2 25.60 [0.09,54.63] 38.22 [10.13,68.02] 12.13 [1.04,23.53] 80.98 [29.29,130.67]
-1.98 [-135.32,121.75]] 21.14 [-169.14,226.54] 18.35 [-21.31,93.62] 162.70 [20.73,454.97]
21.94 [-106.26,194.54] 59.74 [-13.31,234.87] 29.16 [2.40,109.07] 195.66 [50.14,489.21]

Model 3 16.95 [-1.18,33.74] 27.40 [7.47,48.29] 10.40 [2.19,19.08] 8.15 [-4.57,21.04]

141.97 [46.41,246.08] 159.73 [39.62,260.05] 15.92 [-37.84,104.71] 14.68 [-40.09,74.93]

92.05 [14.20,142.75] 95.50 [-22.02,180.99] 4.50 [-33.02,39.79] 16.92 [-38.42,76.60]

Model 4 1.74 [-15.80,14.41] 13.64 [3.43,23.68] 15.49 [4.53,26.47] 65.14 [-24.80,115.85]

-12.40 [-129.01,144.81] 67.71 [-11.58,130.99] 82.00 [-13.82,122.43] 4.33 [-6.73,15.37]

-52.49 [-122.24,98.23] 10.79 [-35.07,74.79] 64.60 [-32.74,92.66] 66.58 [-22.95,114.04]

Model 5 -15.22 [-55.52,28.75] -11.40 [-52.92,31.54] 2.86 [-39.87,44.85] 226.28 [147.89,303.90]
70.56 [-142.65,255.19] -41.69 [-417.52,251.53] -110.44 [-353.20,148.94] 268,40 [152.12,413.05]
1.10 [-63.07,57.34] -202.82 [-401.77,-3.48] -203.46 [-407.88,23.06] 275.29 [177.14,407.94]

Model 6 4.04 [-19.98,27.76] 7.28 [-21.99,36.11] 2.62 [-12.44,17.51] 192.47 [137.81,240.53]
46.78 [-106.24,163.55] 55.53 [-92.50,169.06] 9.87 [-112.51,104.06] 21.37 [-134.94,221.37]

29.39 [-36.50,111.73] 13.35 [-24.32,60.57] -15.63 [-51.16,38.43] 77.20 [-24.26,240.90]

statistics previously described in Sec. 2.5.2, namely, the difference of averaged MAE (∆MAE,

first row), the difference in the width of CI of the MAE distribution (∆CI, second row), and the

difference between the upper limits of the CI (∆CIsup, third row), for paired-benchmarked ML

methods. Recall that the two last measurements give a quantification of the scatter, whereas

the first one gives a quantification of centering. Consistently with both conventional statistics,

we can say that the performances of 2 methods are statistically different whenever the CI of the

increment of the statistic does not overlap the zero level. Hence, in terms of CI limits, in the case

both limits were simultaneously negative, it will indicate that the first technique significantly

outperforms the second; both limits with positive values will indicate that the second technique

significantly outperforms the first one. Trivially, a negative limit together with a positive limit

indicates that no significant difference can be given to any of the compared methods.

Table 3.4 presents the results of analysis for dairy products using the 3 statistics. This

structure of data studied, i.e. generating and analyzing the 3 statistics for paired comparisons

and statistical testing, was extended throughout this research. However, the results obtained for

the 2 statistics related to the scattering were consistently equivalent, and therefore, the remaining
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Table 3.5: Paired bootstrap for beer Database using three statistics for MAE merit figure in each

cell, namely, ∆MAE (first row), ∆CI (second row), and ∆CIsup (third row), with mean and

95% for each. Bold emphasizes the technique comparison with statistically significant differences

at 95%.
k-NN vs GRNN k-NN vs ν-SVM GRNN vs ν-SVM Linear vs RBF SVM

Model 1 -4.07 [-6.88,-1.01] 0.85 [-0.61,2.43] 4.89 [2.08,7.85] 5.93 [1.97,10.26]
-2.42 [-8.79,12.76] -6.73 [-13.01,7.88] -6.53 [-10.03,5.16] 19.62 [8.29,31.29]

Model 2 -13.51 [-24.07,-4.29] -0.75 [-4.40,2.89] 13.01 [3.43,23.07] 14.04 [4.16,24.88]
-11.33 [-51.85,19.99] -13.20 [-24.47,-1.24] 0.68 [-26.16,38.10] 32.36 [-5.94,67.87]

Model 3 0.27 [-3.22,4.04] 1.00 [-2.06,4.11] 0.87 [-1.43,3.27] 1.32 [-1.57,4.37]

-12.19 [-20.08,19.58] -12.04 [-26.49,17.23] -1.61 [-17.07,10.44] 3.89 [-5.26,14.04]

Model 4 -1.78 [-7.06,3.04] 4.30 [0.96,7.34] 6.08 [0.92,11.16] 10.72 [-6.30,50.22]

8.76 [-17.53,20.85] 0.91 [-23.05,12.03] -7.07 [-27.73,16.90] 8.29 [2.47,14.34]

Model 5 -1.16 [-4.43,1.71] 1.88 [0.12,3.75] 3.36 [0.55,5.99] 2.62 [0.43, 4.70]
7.02 [-1.55,17.34] 0.68 [-10.08,14.4] -6.78 [-13.52,1.50] -5.89 [-17.70,4.58]

Model 6 -0.93 [-9.70,7.70] 4.26 [1.82,6.93] 5.50 [-4.14,14.83] 5.41 [-3.84,14.47]

-9.67 [-44.34,20.41] -3.32 [-41.07,24.58] 3.35 [-33.54,31.77] 4.52 [-30.69,64.74]

Model 7 -18.25 [-43.59,3.21] -10.67 [-35.21,11.45] 7.94 [-5.48,20.40] 12.81 [-0.60,25.69]

-76.33 [ -171.02,31.78] -47.81 [-261.81, 63.56] 7.89 [-127.94,118.44] 18.64 [-66.96,81.47]

Model 8 0.83 [-6.60,8.17] 2.25 [-2.97,6.98] 1.61 [-3.86,7.24] 1.51 [-5.05, 7.98]

-13.11 [-46.22,13.68] -19.78 [-44.14,-3.42] -8.97 [-32.16,16.40] 17.25 [-0.79,32.86]

Model 9 -12.14 [-19.99,-4.32] 1.21 [-1.28,3.70] 13.30 [6.45,20.67] 11.81 [4.23,19.70]
-23.08 [-42.88,0.98] -1.11 [-15.95,6.42] 17.54 [-4.85,41.78] 32.49 [7.70,55.29]

Model 10 -6.19 [-13.24,0.53] 5.10 [0.69,10.34] 11.17 [5.49,17.63] 55.21 [20.70,70.61]
-11.69 [-46.93,17.99] -7.95 [-15.95,6.43] 5.98 [-20.11,37.46] 8.93 [2.68,16.33]

Model 11 -3.65 [-8.58,0.27] 2.19 [-0.73,5.30] 6.03 [2.68,9.41] 6.15 [3.03,9.72]
-14.88 [-43.21,1.57] 0.66 [-13.85,13.62] 16.23 [1.44,33.81] 10.42 [2.65,18.40]

Model 12 6.47 [-20.01,30.79] 13.04 [-18.12,44.29] 5.73 [-1.99,14.50] 2.45 [-12.58,18.47]

82.44 [-153.18,146.97] 15.96 [-174.49,109.52] -31.25 [-126.57,16.92] 8.74 [-91.51, 71.80]

Model 13 -6.31 [-11.29,-1.8] 1.62 [-2.11,5.07] 7.90 [2.40,13.23] 7.29 [1.84,13.06]
-18.75 [-36.99,9.57] -29.97 [-44.63,-3.48] -11.61 [-36.42,18.84] 25.72 [-4.74,56.5]

Model 14 -0.71 [-8.51,6.23] 3.67 [-2.24,9.36] 4.83 [-1.04,10.46] 12.81 [5.37,21.23]
0.24 [-30.71, 14.10] -20.96 [-81.49,-4.77] -17.78 [-51.68,5.46] 38.62 [7.00,52.91]

results of this work will show only the first one (∆CI). For this particular case, from the third

column in Table 3.4, it can be concluded that it is better to estimate the number of sold units

with RBF SVM for Models 1, 2, 3, and 4. However, in terms of ∆CI, there are no significant

differences between GRNN and RBF SVM, and all histograms are centered on zero. Models

2 and 3 correspond to ATO brand and distributor brand, respectively. These two models gave

significantly better performance when using RBF SVM than when using k-NN or GRNN in terms

of averaged MAE, but there were no differences in terms of scatter merit figures.
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When comparing the paired bootstrap test for analyzing the differences between k-NN and

RBF SVM, the last one was significantly better for Models 2, 3, and 4. It can be also observed

that in Model 5, the upper limit of CI is lower with k-NN scheme. Regarding linear and RBF

SVM comparison, it can be concluded that RBF SVM yields better performance for Models 2, 5

and 6. This conclusion suggests that is better to use a nonlinear approximation to characterize

the promotional efficiency in dairy product.

As a summary, for milk category, RBF SVM results performed better than k-NN in some

models, and no significant difference was obtained in the rest of the cases, in terms of ∆MAE.

GRNN performance mainly overcame k-NN, while ν-SVM, in general terms, also overcame

GRNN. So, as a key result it could be mentioned that for milk category RBF SVM was the

best performing method.

Paired bootstrap tests for beer database are shown in Table 3.5. When comparing k-NN

vs GRNN, there are significant performance differences in ∆MAE for Models 1, 2, 9, and 13,

k-NN yielding significantly better quality for the estimation. For the distributor brand (Model

9), the upper lower of CI was significantly lower when using k-NN. When comparing k-NN vs

RBF SVM, in terms of MAE it was better to use RBF SVM for Model 4, 5, and 6, however, the

scatter was lower when designing the models with k-NN, specifically, in Models 2, 8, 13, and 14,

both for ∆CI. When comparing GRNN vs RBF SVM, it can be said that RBF SVM yielded a

significantly better MAE for Models 1, 2, 4, 5, 9, 11, and 13. In terms of scatter, ∆CI was only

significantly different for Model 11. Regarding linear and nonlinear SVM, it can be concluded

that nonlinear approach performs better for most of the products.

As a summary conclusion of this experiment, we could state that using MAE merit figure, in

absolute terms, RBF SVM method provided a better performance, although occasionally k-NN

overcame SVM in the case of beer database, while in some cases it is GRNN the preferred method

for milk database.

3.2.4 Discussion and Conclusions

In this study, two separate types of conclusions can be distinguished. First, those ones related

to the evaluation of the different ML methods, and secondly, those related to promotion of a

specific product. From a marketing point of view, it has been evidenced that it is essential

to better understand not only the consumer behavior in terms of their response to price deals,

but also an in depth study of the adequate methodologies. Thus, the tendency is to evolve to

nonparametric regression methods, which allow more flexibility and a higher ability to adapt

to the specific promotional features. This is really important in the scenario of the present

study, where two databases corresponding to different food product categories with specific

characteristics. Milk is a daily used product, while beer has a high level of seasonality. On
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the other hand, milk is consumed by a higher range of consumers segments, whereas beer is

consumed by adults.

Main contribution of this work is the proposal of an operative method to evaluate the

promotional efficiency, based on ML, as a valid method to analyze the multiple and simultaneous

effects coexisting in promotional activities in retail markets when using real-world data.

Justification for the use of ML tools is based on the fact that real data are subject to a large

number of factors (namely, consumer idiosyncratic behavior, multiple simultaneous promotions in

the same category, promotions in complementary/ substitute products and categories, and even

consumer share of wallet), and hence simple models would not be able to trace all concurrent

events or even extract complex multivariable characteristics.

As far as method evaluation is concerned, initial results showed that very often it comes

complicated to identify significant differences in the model quality for the ML techniques

presented (k-NN, GRNN, MLP and SVM). Final results showed that RBF SVM presented

a significant better performance, followed by k-NN and GRNN, for milk category. For beer

category, results were also better in general terms for RBF SVM, although in some cases a

better result was obtained using k-NN.

3.3 Application 3.2: Promotional Efficiency at Chain Level

3.3.1 Introduction

From a retail manager’s viewpoint, sales forecasting is essential not only to set the right

pricing for an individual product [105] but also to define the promotional structure that maximizes

benefits within a category as a whole [106]. The same rationale applies to individual customer

behavior with regard to the total impact of a certain promotional strategy [106, 107, 108, 109,

110]. As a consequence, promotional models built on market-level data are considered as the

best suited to describe the market behavior. Executive decisions are mainly based on this

kind of information, especially for those retail chains accounting for a significant market share.

Although it is evident that aggregated retail sales forecasting could potentially improve store

sales prognosis [111], nevertheless, many authors have warned against the biasing risk during the

aggregation process [112].

For a decision-making tool to be an efficient instrument for promotional retail management,

it must be designed to be operative and reliable. To be operative, the retail management tool

should be able to handle data models that: (1) can be better described time series (TS) dynamics,

static paradigms, or even by both; and (2) can be better represented by linear or by nonlinear

dynamics. To be reliable, the tool must be more robust when working with aggregated data

than working with store level data, but also must ensure an adequate aggregation process. We
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describe next relevant data aggregation precedents and summarize conventional TS dynamic for

promotional sales models. Static DEC and learning-based nonlinear methods were described

previously in Application 3.1, thus, we avoid to repeat them in this application.

Data aggregation at chain level. Previous research has considered three levels of

aggregation: store, chain, and market levels. At the store-level, data can characterize consumers’

behavior (by considering buying habits such as products, and units to evaluate loyalty and churn

rates), as well as brand or product sales (by aggregating sales). Household information for each

product category can also be used to analyze the individual brand sales behavior and pricing

effects can also be analyzed [113]. Further aggregation at chain-level, or even at market-level,

integrates the information for brands or categories to provide accumulative effects [114].

According to published research analysis, each level of aggregation may introduce bias, which

depends to a great extent on the aggregation method, thus limiting the generalization capabilities

of the forecasting model. In [115], the authors analyze bias effect by comparing sales estimates

at both store and chain level, and conclude that bias may be related to heterogeneous marketing

strategies within stores. The authors also note that relevant information, such as marketing

strategies followed by competitive retailers, is not reported or registered through scanner datasets.

Other studies use different approaches to address model heterogeneity and bias among stores. For

example, authors in [116] proposes a random coefficient demand model to avoid bias when data

aggregated across stores with heterogeneous promotional activity are considered. However, bias

may not be fully removed due to substitutive effects, competing products and heterogeneity;

therefore, in the current study, we followed the methodology in [117], in which bias can be

mitigated by aggregating data across stores with homogeneous marketing activities.

TS for promotional modeling. Promotional activities typically exhibit a strong temporal

dependence, which suggests that certain models taking into account temporal variations could

yield better results than static DEC. In this setting, the statistically well-founded TS analysis,

has received a great deal of attention in the last decade of the twenty-first century, due to the vast

amount of data available from electronic records and media (e.g., scanner data), which allows

both the cross-sectional and longitudinal analyses [118]. Researchers have used TS techniques for

forecasting marketing variables and for evaluating specific situations [119]. New tools based on TS

have proliferated in recent years to support general decision-making and especially in marketing

activities [118]. For example, autoregressive moving-average (ARMA) modeling provides a

well-developed general framework to analyze time series. It can be further extended to take into

account exogenous variables (so-called ARMAx models) to improve their predictive capabilities.

A multivariate version of ARMA models, the vector ARMA, allows adjusting models in which

the dependent variable can be explained by multiple TS [119].

In this Thesis, we propose an operative analysis tool for promotional decision making based on
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Figure 3.3: Schematic of the proposed chain-level analysis.

retail aggregated data. Using the statistical processing available, we can study the performance

of different methods and different feature spaces.

3.3.2 General Forecasting Promotional Model

A three stages chain-level analysis as shown in Fig. 3.3 is proposed. First, we use a

signal preprocessing method to aggregate data from store-level to chain-level, based on a-priori

considerations and simple morphological analysis. Second, we propose a generic promotional

sales forecasting tool that can account for static and time-varying dynamics models in a

given product, while maintaining a simple and compact mathematical form. Decisions about

different plausible models are determined by their comparative benchmarking by means of

nonparametric resampling statistical tests (formally introduced in Sec. 2.5.2). Finally, the new

proposed statistical indices are defined in the feature space and calculated for each product using

resampling techniques.

We will generally consider data available at discrete time t, mostly consisting of prices and

sold units in a weekly time period. Accordingly, Pi,k(t) (si,k(t)) denotes the price (the number

of sold units) for the i-th product at store k during week t, where i ∈ {1, . . . , I}, k ∈ {1, . . . ,K}
and t ∈ {1, . . . , T}, with I,K and T being the total number of products, stores and weeks,

respectively. Recall that Pi(t) represents the price proposed by headquarters (HQ), which should

be identical for the same product and week in all stores, however, day-by-day knowledge shows

that prices are often different at each store due to promotional local decisions. This variability

may be related to human errors during scanning process at cashier, special discounts applied

due to damaged items, errors in the information systems, or even changes in prices due to local

strategies. Store and central prices can be related by the following expression,

Pi,k(t) = Pi(t) +Xi,k(t) (3.3)

where X is an uncertainty term.
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Because we are interested in decision making according to central prices, we will need to

approximate them by an adequate estimation operator Φ, this is,

P̂i(t) = Φ{Pi,k(t)} (3.4)

In contrast, sold units can be readily aggregated at the chain-level (Si(t)) by the accumulative

sum across stores, that is,

Si(t) =
K∑
k=1

si,k(t) (3.5)

After data preprocessing, a general forecasting model for the i-th product can be written as

Si(t) = Ŝi(t) + ei(t) (3.6)

Ŝi(t) = F (Θi{P̂i(t)},Ξi{Si(t)}) (3.7)

where Ŝi(t) are the forecasted values of aggregated sold units at time t for the i-th product; ei
are the model residuals; operator F stands for the method used for estimation, such as DEC

analysis, linear TS, or nonlinear statistical learning algorithms; and Θi,Ξi, denote the features

extracted from prices and sold units series for the i-th product. Note that operator F gives a

data description in the so-called feature space, defined by Θi and Ξi feature (column) vectors,

which can be concatenated in a simple feature vector given by Ψi = [Θ>i , Ξ>i ]>. In the following,

we will use both Ŝi(t) and Ŝi(Ψi(t)) to denote the estimated number of sold units at time t for

the i-th product.

The DEC model with just self-product effects can be readily expressed by Ψi(t) = [P̂i(t)], as

follows,

Ŝi(P̂i) = E{Si(t)|P̂i(t) ∈ ε(P̂i)} (3.8)

The expectation operator is used to smooth the number of sold units with respect to observed

pairs of price and sold units within a neighborhood of a given price, ε(P̂i). Note that operator

F in Eq. (3.7) is given by the price expectation within the P̂i neighborhood.

AR(p) and ARx(p, q) models, with p autorregresive terms and q + 1 exogenous input terms,

can be written as follows,

Ŝi(t) =

p∑
r=1

φtSi(t− r) (3.9)

Ŝi(t) =

p∑
r=1

φtSi(t− r) +

q∑
j=0

θjP̂i(t− j) (3.10)

where φt, θj are the model parameters [120, 121], and Eq. (3.7) is readily adapted by generating

the following feature spaces,

Θi{P̂i(t)} = [P̂i(t), . . . , P̂i(t− q)]> (3.11)

Ξi{Si(t)} = [Si(t− 1), . . . , Si(t− p)]> (3.12)
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Table 3.6: Price level, brand and regular and promotional sold units (%) for each product.
Regular Promotional

Product Price level Brand Sold Units Sold Units
(%) (%)

Product 1 0.3426 Brand 1 43.82 % 51.99 %

Product 2 0.2860 Brand 1 43.82 % 51.99 %

Product 3 0.2489 Brand 2 7.62 % 12.20 %

Product 4 0.2181 Brand 2 7.62 % 12.20 %

Product 6 0.1810 Brand 3 5.22 % 5.38 %

Product 5 0.1522 Brand 3 5.22 % 5.38 %

Product 7 0.1455 Brand 4 1.86 % 1.62 %

Product 10 0.1372 Private label 17.19 % 8.74 %

Product 8 0.1004 Brand 5 2.24 % 0.00 %

Product 9 0.0836 Brand 5 2.24 % 0.00 %

Thus, we can simply use F (Θi,Ξi) = φ>Ξi + θ>Θi for the ARx model accounting for past

prices as exogenous variables, and F (Θi,Ξi) = φ>Ξi for the AR model, which is only built on

the self-dynamics of the observed time series without information about prices.

In addition, nonlinear data models can readily be taken into account with the model nomenclature

in Eq. (3.7). For the current study, k-NN technique is used as a nonlinear method for promotional

sales forecasting, due to its extreme simplicity and acceptable performance in many applications.

The k-NN estimator in t0 is a nonparametric procedure that just consider the k nearest data to

Ψi(t0), according to a given similarity or distance measurement [49], where k has to be previously

fixed during the design procedure. Conventional distances are L1 and L2 norms, though different

measurements have been proposed according to the nature of the data [18].

The k-NN estimator assumes that data close in the feature space Ψ provide similar values

for the independent variable. Therefore, to estimate the number of sold units at any time t0,

Ŝi(t0), the k-NN estimator uses a local neighborhood κ(t0) to provide the estimation as

Ŝi(t0) = Fκ(t0){Si(t)/t ∈ κ(t0)} (3.13)

where Fκ(t0) is the weighted average operator that depends on distance and parameter k, and it

is given by: Fκ(t0) =
∑k
l=1 wlSi(tl)∑k

l=1 wl
, where wl = 1/dl depends on the distance to the l-th nearest

neighbor (dl).

3.3.3 Database

Our database contains the weekly consolidated information from all electronically recorded

data from scanners at cash registers for a Spanish store chain. The information is from 118 stores

(K = 118), during 105 weeks (T = 105) between 2008 and 2009 for 10 products (I = 10).
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Table 3.7: Top ten retail stores in terms of sold units.
Stores Regular Promotional

Sold Units (%) Sold Units (%)

Store 1 2.72 % 2.61 %

Store 2 2.43 % 2.07 %

Store 3 2.16 % 1.95 %

Store 4 2.02 % 1.88 %

Store 5 1.80 % 1.20 %

Store 6 1.71 % 1.16 %

Store 7 1.65 % 1.75 %

Store 8 1.60 % 2.35 %

Store 9 1.59 % 1.37 %

Store 10 1.56 % 1.83 %
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Figure 3.4: Number of stores with a given price for Product 10 during two consecutive weeks,

t = 76 (a) and t = 77 (b).

We selected Laundry detergent as the best category to be analyzed in this study for several

reasons: (1) it is an easily storable product with almost no expiration date; (2) almost all

customers buy products of this category, and it is considered a basic household product; and (3)

it was one of the largest products in the database in terms of sales. We assembled a database

consisting of six brands in this category, including a private label (Table 3.6), and sold units were

almost equal across stores (Table 3.7). The largest store in terms of sold units accounted only

for the 2.72% of the total sales; however, this scenario is adequate for aggregation purposes.

Promotional activities are carried out by HQ, which means that prices are assumed to be

identical for each product in every single store. Consequently, chain-level decisions and global

strategies were considered as the main source of promotional activity, rather than store-level

marketing strategies. However, database information showed remarkable variability in terms of

pricing being applied across stores (Fig. 3.4), which reveals that real databases always incorporate
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Figure 3.5: Prices for Product i = 1, where central prices are stated as regular (a,c) or

promotional (b,d). The prices before (a,b) and after (c,d) preprocessing are also shown.

uncontrolled effects on actual pricing, regardless how strict a HQ’s pricing is. As an example,

Fig. 3.4 represents bar graphs for prices versus stores for one product in our database. These

graphs demonstrate that the existence of a well-known statistical distribution shape is not a

sustainable assumption. The high variability shown in these graphs suggests that information

provided by cross-stores should be considered.

Apart from that, a subsequent step in preprocessing aimed to identify whether the analyzed

week could be considered as a promotional or a regular pricing-week. This categorization was

performed for each product, by setting the week as promotional (or regular) when at least 40%

of the stores had promotional prices (or regular) prices). Figure 3.5 (a) and Figure 3.5 (b) show

that prices are scarce and corrupted by impulsive noise for both promotional and regular prices.

To overcome these problems and get the same prices for all stores according to HQ pricing policy,

a twofold preprocessing is performed. First, the well-known median filter has been used as the

estimation operator, denoted as Φ{Pi,k(t)} = mediank{Pi,k(t)}. This filter is robust with respect

to the statistical distribution of the uncertainty term in Eq. (3.3). We empirically chose a size
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window of 5 elements, and the filter was applied every week for all the available stores (i.e. one

dimensional filtering). Second, the mode of every week was computed in order to have only one

price per week. Two examples of the preprocessing results are shown in Fig. 3.5 (c) and (d) for

regular and promotional prices, respectively.

3.3.4 Experiments and Results

In this section, a set of experiments for analyzing the suitability of the methodology presented

in Fig. 3.3 are first described. Specifically, the quality of models with increasing algorithmic

complexity (DEC, TS, nonlinear models), are benchmarked and compared, as well as with

different feature spaces. Then, model quality and reliability are proposed and applied to laundry

category database.

Data Model Analysis in a Multidimensional Feature Scale

DEC static model. DEC static model is estimated by considering only each price index

own-effect after preprocessing. The sold units’ estimator requires a smoothing operator

(Eq. (3.8)); to do so, we implemented two methods. The average, obtained as a function of the

discrete set of prices, and the k-NN estimator, which provides a statistically more effective effect,

limiting the impact of outliers. The k-NN method depends on the number of neighbors considered

for local-averaged estimation, explored in the range (1,30) and selected the one minimizing MAE

(Eq. (2.45)).

Recall that this DEC estimation does not take into account neither simultaneous promotional

effects in related products nor temporal structure. For the rest of this section, DEC model

based on the k-NN estimator is considered for several reasons: (1) we experimentally checked

that it is robust to outliers; and (2) sold units were estimated for the whole range of prices,

not only for a discrete set of prices, being able to benchmark results with those provided by

other models proposed in this work. Table 3.8 shows the average obtained from bootstrap

resampling for merit figures MAE and ∆CI when using DEC k-NN estimator. It can be seen

that this method performs similarly in terms of mean and scatter. Results interpretation based

on consumer behaviors suggest that, in general, sales estimations for products with a higher

number of promotions have worse quality (e.g., Product 1). Note also that good performance is

achieved for the private label (Product 10).

DEC approach can be suitable for promotional sales forecasting, though several limitations

can be observed. First, the expected effects of demands with respect to prices are not clearly

evidenced, even when we use a high rotation category without seasonal effects. Second, according

to the observed data, similar prices can yield very different number of sold units, and sometimes

lower prices seem to result in lower demand. However, it could be argued that static models for



3.3 Application 3.2: Promotional Efficiency at Chain Level 75

Table 3.8: Bootstrap test for k-NN DEC. For each cell, the table shows free parameter k in

parentheses (first row), average of MAE (second row) and ∆CI (third row) obtained from

bootstrap resampling.
Model i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

DEC (1) (1) (11) (7) (30) (27) (24) (30) (3) (13)

78.38 32.67 20.78 156.80 273.32 34.92 30.87 34.52 29.15 28.27

187.39 83.47 55.11 675.75 1079.84 103.51 101.20 78.53 90.67 81.01

non-perishable products can obviate temporal conditions. For example, consumers could easily

defer laundry detergent purchase, or they could accumulate a number of laundry detergents in

a single purchase when prices are low. However, on the whole, these apparently contradictory

results raise doubts about the suitability of the DEC promotional model for fitting the products

in our database.

Intrinsic and exogenous TS dynamic models. Two different TS promotional models were

considered, namely, an AR description (Eq. (3.9)), and an ARx promotional model (Eq. (3.10)).

In both cases, we used a two hold-out technique (50% for training) to estimate their out-of-sample

performance. We explored orders p and q up to 10 lags, selecting the ones which minimize MAE

(Eq. (2.45)).

Table 3.9 shows the p-th and q-th selected orders in terms of MAE for the AR and ARx

models, respectively; and the average obtained from bootstrap resampling for merit figures

MAE and ∆CI for each product. We obtained non parsimonious models with high orders

for both p and q, which highlights a mismatch between the model proposed by TS and the

data dynamics. For some products (3, 4, 7, 8, and 9), the time series of the sales volume

seemed self-related and with limited correlation with the exogenous variable (prices), whereas

for the other products, the performance improved significantly when the exogenous variable was

considered. Nonparametric paired bootstrap resampling method was applied to test whether the

differences in the benchmarking comparison in the table were statistically significant.

Furthermore, Table 3.9 presents the following comparisons: (1) DEC versus AR; (2) DEC

versus ARx; and (3) AR versus ARx. From the first comparison, we can conclude that there

were significant performance differences in ∆MAE for most products (except Products 8 and 9),

indicating that DEC yielded significantly better quality for the estimations, and the scatter was

lower when DEC was considered for Products 2, 6, 7 and 8. The second comparison indicated

significant performance differences in ∆MAE for Products 3, 4, 5, 6, 7, 8 and 9, showing that

DEC yielded better quality for the estimation, in contrast, for Product 1 ARx yielded significantly

better quality. However, the scatter was lower when we used DEC for Product 1, indicating

significantly better predictions in terms of scatter. The third comparison indicated significant

performance differences were found in ∆MAE for the Products 3, 7, 8 and 9, demonstrating that
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Table 3.9: Individual and paired bootstrap tests for TS (AR, ARx). Individual: For each cell,

the table shows p-th and q-th selected orders (first row), the average MAE (second row), and 95%

CI (third row) from bootstrap resampling. Paired bootstrap between DEC and TS methods, and

between AR and ARx: average of ∆MAE (first row) and ∆CI (second row). For each product,

boldface emphasize that in the comparisonModel1 vsModel2, best performance is achieved with

Model1 (negative values) or with Model2 (positive values).
Model i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

In
di
vi
du

al

AR (p) (10) (10) (10) (9) (10) (10) (10) (10) (10) (9)

132.26 59.46 30.14 221.99 373.92 72.92 67.85 37.48 20.80 42.16

156.87 126.48 72.04 1050.68 1376.73 227.44 150.44 85.32 54.01 102.58

ARx (p, q) (10,10) (10,10) (10,10) (10,10) (10,10) (10,10) (10,10) (10,10) (10,10) (10,10)

64.75 33.20 43.25 233.05 313.11 56.87 93.91 97.88 56.04 24.79

246.07 74.89 172.68 860.55 876.86 183.60 332.07 598.53 296.87 64.77

P
ai
re
d

DEC vs AR -53.72 -26.88 -9.28 -65.54 -98.90 -37.81 -37.01 -2.77 8.24 -13.94
30.38 -43.00 -17.39 -391.09 -290.65 -121.53 -49.34 -6.85 36.48 -21.20

DEC vs ARx 13.84 -0.63 -22.24 -77.27 -39.54 -22.01 -63.65 -63.61 -26.80 3.58

-129.16 33.12 2.98 -60.97 153.75 92.95 2.86 19.01 -42.78 4.97

AR vs ARx 67.29 26.40 -13.05 -11.66 60.51 15.83 -26.57 -61.73 -35.24 17.43
-89.21 51.89 -100.50 199.32 499.59 43.64 -176.22 -516.22 -244.36 37.95

AR methods performed significantly better for the estimation, whereas for Products 1, 2, 6 and

10 ARx yielded a better quality. The scatter was lower when AR was considered for Products

2, 5 and 10, yielding significantly better predictions in terms of scatter, and ARx for Products

1, 3, 7, 8 and 9. In summary, no clear trend in terms of general behavior and prediction of the

promotional models could be observed in this set of models.

Improvements from nonlinear methods. k-NN method for nonlinear promotional modeling

was used. Its design depends on a free parameter, k, which stands for the number of neighbors

considered for local-averaged estimation. In this study, the range (1,30) was explored and selected

the value which provided the minimum MAE.

Different feature vectors to characterize temporal evolution in terms of exogenous and/or

endogenous variables were explored. The notation for the feature space in this experiment, for a

temporal depth n0, in terms of the feature space, is as follows:

Ξt0 = [P̂ (t), · · · , P̂ (t− t0)] (3.14)

Θt0 = [S(t− 1), · · · , S(t− t0)] (3.15)

Ψt0 = [Ξt0 ,Θt0 ] (3.16)

According to Eq. (3.14), which addresses different temporal depths for past prices, five

models were benchmarked, i.e. Ξ1,Ξ2,Ξ3,Ξ4,Ξ5. Results showed that the estimated performance
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Table 3.10: Individual and paired bootstrap tests for k-NN. Individual: For each cell, the free

parameter k (first row), the average MAE (second row), and 95% CI (third row) from bootstrap

resampling. Paired bootstrap between k-NN and DEC, k-NN and TS, and k-NN with different

temporal depth: average of ∆MAE (first row) and ∆CI (second row). For each product, boldface

emphasize that in the comparisonModel1 vsModel2, best performance is achieved withModel1

(negative values) or with Model2 (positive values).
Model i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

In
di
vi
du

al

k-NNΞ1 (k) (2) (30) (9) (1) (30) (30) (22) (30) (2) (20)

75.25 33.74 21.13 88.89 292.55 35.85 30.10 33.60 28.92 25.25

170.12 87.95 56.96 350.75 1251.68 135.27 95.47 74.84 87.22 61.13

k-NNΨ1 (k) (2) (2) (3) (8) (17) (5) (1) (3) (2) (20)

67.42 47.67 21.70 208.75 268.92 67.68 38.00 39.57 33.93 28.67

141.17 107.98 53.45 580.44 1053.12 152.35 85.50 93.84 73.47 73.87

P
ai
re
d

DEC vs k-NNΞ1 6.77 -2.35 0.07 4.06 23.76 -7.08 2.20 0.90 0.00 -0.69

14.11 -8.12 1.83 -17.45 36.80 -57.74 8.51 -10.43 -4.25 7.73

AR vs k-NNΞ1 57.62 26.10 9.12 133.21 83.07 36.44 38.01 3.63 -8.26 16.56

-15.14 45.81 15.67 700.05 123.79 105.61 54.34 11.10 -33.67 40.72

ARx vs k-NNΨ1 -3.98 -14.72 21.71 24.16 47.60 -10.78 56.31 59.47 22.64 -3.82

103.81 -24.77 118.69 260.35 -166.01 44.98 240.22 501.94 225.12 -8.58

P
ai
re
d

k-NNΞ1 vs k-NNΨ1 8.08 -14.13 -0.59 -120.94 24.07 -32.01 -7.66 -5.92 -4.89 -3.54
28.57 -19.67 3.33 -237.22 200.80 -18.69 10.58 -19.08 13.96 -13.30

k-NNΨ1 vs k-NNΨ2 3.71 0.77 -0.00 0.64 -11.29 -0.52 -0.38 0.19 -0.31 -0.59

13.75 -0.82 0.22 -11.95 -40.21 -0.71 -17.87 0.18 0.13 -7.22

improved when including in the model information over two consecutive weeks, current and

past. Thus, Ξ1 was a suitable feature space for nonlinear promotional models, when considering

only the exogenous variable. A similar analysis using a set of consecutive temporal depths n0

for exogenous and endogenous variables simultaneously was performed, observing better results

when considering information over coupled consecutive weeks, this is, for Ψ1.

Table 3.10 shows the individual bootstrap tests in terms of MAE and CI when considering

Ξ1 and Ψ1 since both are the feature spaces that provide the minimum error.

Table 3.10 also shows the results when comparing static, dynamic, linear and nonlinear models

with paired bootstrap tests. First, regarding static and dynamic models (DEC vs k-NNΞ1),

significant performance differences in ∆MAE were observed for Products 1 and 7, for which

the dynamic approach yielded better estimation quality, whereas for Product 6, the static model

performed better. Secondly, we compared linear and nonlinear models, namely, AR vs Ξ1,

obtaining better quality in terms of scatter for Products 2, 4, 6, 7 and 10 when the nonlinear

model is considered. Regarding linear and nonlinear models with past sold units and prices, it
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is observed significantly better estimation quality in ∆MAE for Products 3, 7, 8 and 9, whereas

nonlinear models showed better results for Product 2. It is noteworthy that the scatter was lower

when nonlinear models were considered for Products 1, 3, 7, 8 and 9.

Thus, it can conclude that, for modeling the sold units of laundry detergent products in

this database, the consideration of modeling promotional sales with nonlinear methods yields a

significant performance improvement for most of the products. Therefore, we benchmarked new

feature vectors with different temporal depths, which indicated that including additional past

sold units and prices did not improve sales forecast. Table 3.10 also shows that, for Products 2,

4, 6, 7, 8 and 9, it was significantly better to exclude the endogenous variable (sales).

Model Quality and Reliability Indicators

In contrast to conventional approaches, which use a single value of a merit figure to evaluate

model performance, it is proposed in this Thesis the use of a new set of indicators to characterize

both quality and reliability in a given region R ∈ Ψi (ΨR
i ). Note that different values for the

same indicator can be obtained for different regions. As an intuitive example, indicators may be

less reliable in regions with scarce, noisy or non-informative data.

A set of four quality indicators will be calculated using the B estimations u∗i (b) = F (V∗(b)),

obtained through the B resamples {V∗(b)}Bb=1. These indicators are proposed to measure the

reliability of model F , and are defined as follows.

(1) Variation Coefficient (VC) Index. V C measures dispersion in relation to mean value. It

is a useful statistic for comparing the degree of variation between two datasets, even when their

means are drastically different. The lower the V C, the more reliable our predictions are. It can

be written as

V CR
Ŝi

(Ψi) =
σR
Ŝi

(Ψi)

µR
Ŝi

(Ψi)
(3.17)

where σR
Ŝi

(Ψi) and µRŜi(Ψi) are the standard deviation and mean, respectively, of sales estimations

in region R.

(2) Confidence Intervals Variation (∆CI). We particularize ∆CI previously defined in

Eq. (2.57) to calculate the reliability of the estimated sales in region R for the i-th product.

The narrower the confidence interval, the lower the variability is, hence ∆CI can be used as a

reliability measurement in a region R of the feature space, denoted as

∆CIR
Ŝi

(Ψi) = CIR,u
Ŝi

(Ψi)− CIR,lŜi
(Ψi) (3.18)

where CIR,u
Ŝi

(Ψi) and CIR,l
Ŝi

(Ψi) denote the upper and lower limits of the confidence interval,

respectively.

(3) Baseline Relative Index (BLRI). Marketing managers widely use baseline sales to assess

the profitability and effectiveness of marketing activities by investigating how promotions can
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affect baseline sales over time. In this setting, it is necessary the creation of a new index to assess

the accuracy of a promotional model in not only absolute but also in relative terms respect to the

baseline. This can be achieved by normalizing the number of estimated sold units with respect

to the baseline sales, and we define it as

BLRIRi (Ψi) =
ŜRi (Ψi)−BLRi (Ψi)

BLRi (Ψi)
(3.19)

where BLRi (Ψi) is the estimated baseline sales in region R of the feature space for the i-th

product. Note that BLRI = 0 indicates that the estimated number of sold units is similar to

baseline, whereas BLRI > 1 indicates that estimated sold units are greater than baseline.

(4) Dynamic Range Index (DRI). It is based on dynamic range DRi, defined as the difference

between the maximum and minimum values of a variable, for us, estimated sales for the i-th

product. We define it as follows:

DRIRi (Ψi) =
ŜRi (Ψi)−DRRi (Ψi)

DRRi (Ψi)
(3.20)

This way, DRI provides an idea of the accuracy in terms of the forecasting variability. The

greater the DRI, the lower the variability is.

The four previous indices allow us to check for the reliability and uncertainty of a given model

for promotional sales depending on the feature space. Note that the two first (two last) indices

are absolute (relative) magnitudes, and that the statistical distribution of Ŝi has to be estimated

in the feature space.

As described in Sec. 3.3.4, the statistical distribution of estimated sold units Ŝ for the i-th

product in the space defined by feature input vector Ψ, i.e., pŜ(Ψ), can be readily estimated by

using bootstrap resampling, and it is denoted as p∗
Ŝ(Ψ)

. Its statistical average is a hypersurface of

the sales as a function of the feature space, and more general, it provides useful information for

both reliability and decision-making point of views by allowing us to obtain the indices previously

defined in Eq. (3.17), (3.18), (3.19), and (3.20).

For this database, it was checked that better results were obtained when sold units predictions

were made with a nonlinear model considering two consecutive weeks. With this forecasting

model, we checked the reliability and stability of results when working with one or two years.

This experiment presents the proposed indices in the feature space for two illustrative example

products, namely, Product 1 and Product 5. Figure 3.6 shows the predicted sales units Ŝi as a

function of the feature space for both products, when using two years (a,c) and one year (b,d). As

previously described, changes in the dynamics and the promotions in the available time periods

were determinant for the model forecasting capabilities. V C was larger in general for Product 1

with two years data, but also it was larger, in general, in promotional regions of the feature space

(e,f). For Product 5, V C was quite constant throughout the feature space, but lower when only
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.6: Estimated sold units and reliability indices. Columns 1 (two years) and 2 (one year)

for Product 1; Columns 3 (two years) and 4 (one year) for Product 5. Estimated sold units:

(a) - (d); V C: (e) - (h); ∆CI: (i) - (l); BLRI: (m) - (p); DRI: (q) - (t).

considering the last year. ∆CI was strongly dependent of the region in the feature space (i,k),

and higher for promotional regions. BLRI for Product 1 indicated a higher efficiency, relative
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to the baseline, of the promotional activity when data from one year was used (m,n). DRI

was larger in promotional regions for Product 5 using the data from two years, whereas it was

reduced and became near constant for the data from one year (s,t).

The significant differences among estimated sold units and reliability indices in one year

versus two years, indicating that memory effect may not be justified to be larger than one year,

and so, proposed models would not necessary provide stability and reliability capabilities, adding

information beyond one year historical data.

It is also remarkable the higher stability and more solid behavior of Product 5 in all analyzed

statistics over a wider range of different prices. This situation contrasted against Product 1,

indicating that for this kind of product significant effects are led by price change.

3.3.5 Discussion and Conclusions

A promotional chain-level analysis and data modeling based on retail aggregated data to

support retail marketing decisions is proposed. Figure 3.3 depicts the necessary steps for the

reliability and stability analysis of promotional models from a chain-level point of view. First,

retail data were aggregated at the store-level using simple preprocessing tools, to come to a

market-level decision. Second, linear and nonlinear prediction engines using nonparametric

bootstrap resampling based on performance statistics were benchmarked and optimized. Third,

we took into account the reliability and stability of the promotional models built with the

products in the database using a set of new indicators based on bias and scatter measurements

in the feature space.

The economic downturn that began in 2008 is one of the largest in history, at least in some

countries; thus, it is more necessary than ever for retailers to effectively evaluate short to medium

term promotional effects. It is possible that traditional promotional models do not accurately

reflect the actual complexity in the real time because of the increasing amount of concurrent

aspects that affect consumer behavior. Therefore, researchers should focus on new models that

can capture and statistically represent this new scenario.

Limitations of DEC Static Analysis. Our experiments showed that the DEC analysis could

not provide consistent results in terms of unequivocal demand for a certain pricing level in our

data. Note that laundry detergent category is not subjected to short expiration date, thus,

it could be argued that households may stockpile the product if prices justify doing so. This

assumption is one of several behind the “buy two and get one free” promotional offers, which

are common for many long-expiration date products. The present study shows that the static

DEC model does not provide a direct statistical match between the endogenous (demand) and

exogenous (price) variables.

Limitations of TS Linear Models. The existence of communication networks and consumer
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networking may change the market dynamics, resulting in a large and increasing number of

concurrent effects. Accordingly, retailers have used dynamic TS models based on historical and

current data to guide the promotional strategies. In our data, TS linear models with intrinsic and

exogenous variables had an acceptable fit to the data, but only at the expense of non-parsimonious

models. Although previous research shows that future demand is forecasted better by considering

memory for both pricing and demand data, paradoxically, our data set contained several products

for which the incorporation of the exogenous variable into the AR analysis significantly worsened

forecasting performance.

Scope of Nonlinear Models. In general, non-linear models’ predictive capability was more

effective than that of linear models. Although the results were not uniform for all the products,

we obtained consistently parsimonious promotional nonlinear models that yielded acceptable

forecasting performance in all the products with up to one lag for both the exogenous and

endogenous variables. In some cases, TS linear models performed similarly to nonlinear ones,

which is consistent with the fact that linear TS models are specific cases of nonlinear models.

We observed most behavioral singularities in the premium product (higher price, Product 1)

and in the most competitive products (private label and low prices, Products 7, 8, 9, and 10).



Chapter 4
Machine Learning for Healthcare Analytics

4.1 Introduction

Electronic Health Records (EHRs) are collections of health information in digital storage

format, which can in theory be shared among systems to convey the relevant information of a

patient [26]. EHRs have three levels of medical understanding, namely, data storage, information,

and knowledge [122]. While technology seems to have successfully covered the data storage

level, the others are currently intensive research tasks. In the last decades, a considerable

amount of literature exists on knowledge extraction from the EHRs, aimed to support clinical

decision-making in several domains [27, 28, 29, 30, 31, 32, 33]. In this chapter, EHR data related

to the gastrointestinal surgery domain are analyzed to address different goals: (1) to detect

complications after CRC at an early stage; and (2) to predict surgical site infections (SSI) at

both pre-operative and post-operative stages for patients admitted for gastrointestinal surgery.

According to American Cancer Society, CRC is the third most common cancer diagnosed in

both men and women in developed countries, being the surgery the only curative treatment [34].

Nevertheless, the elective colorectal resection is normally associated with a complication rate

of 20-30% [35], being reported that AL occurs in 5-15% of all patients who underwent CRC

surgery [36]. Early diagnosis and intervention can minimize systemic complications, and can be

vital in the case of AL due to it may be a lethal condition. However, it is hindered by current

diagnostic methods that are non-specific and often uninformative [37], thus, novel methods are

required to identify and detect this complication at an early stage using EHR data.

On the other hand, SSIs are among the most common hospital-acquired infections. In fact,

they represent up to 30% of all hospital acquired infections [123, 124]. SSIs are associated

with considerable morbidity and mortality. A mortality rate of 3%, prolonged stay up to 10

days and a significant decrease in quality of life, are reported. Similarly, readmissions related

to SSIs are associated with a considerable increase in healthcare cost, up to 27,000 USD per

83
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readmission [125]. This persistent in-hospital morbidity is particularly associated with surgery

for CRC [126, 127, 128].

In this Thesis, we first focus on the task of early detection of AL using free text extracted

from EHRs. Then, we propose a learning system architecture capable of jointly exploiting

heterogeneous sources for AL early detection. We used linear and non-linear kernel methods

individually for each data source, and leveraging the powerful composite kernels for their effective

combination. Finally, we built a prediction model for pre-operative and post-operative SSI using

different methods to manage the sparsity of the EHR data sources.

4.2 Application 4.1: Early Detection of Anastomosis Leakage

from Bag-of-Words

4.2.1 Introduction

A considerable amount of literature exists on extraction of knowledge from EHRs to

support clinical decision-making (see [30] and references therein). Specifically, analysis of the

(unstructured) EHR free text may potentially extract a large amounts of information regarding

patient health status and medical history, which may not be fully available in the structured

data that are also available in EHRs [31, 32].

ML methods have recently demonstrated great potential at free text analysis for decision

support and medical information retrieval. Several such methods are based on the simple,

but often powerful, Bag-of-Words (BoW) model. Wright et al. [32] used this model to

identify relevant documents in EHRs pertaining to a user’s query on progress notes in

diabetes, and in [129], a system for automatic case identification was proposed for observational

epidemiological studies. Using various levels of sophistication in the BoW model, the authors

in [31] developed a framework for general-purpose automatic diagnosis in traditional Chinese

medicine. Furthermore, the authors in [130] derived a semi-supervised SVM, for automated

identification of primary care records from the General Practice Research Database, with

applications to retrieval of coronary angiogram and ovarian cancer diagnoses, and in [131] a

comprehensive bag-of-concepts system was proposed for quantifying a patient’s risk of mortality

and complications. The interested reader can also see reference [132] for a recent review of

natural language processing techniques for analysis of free text in EHRs, in addition to [133] for

a review on extracting information from textual documents in EHRs, including the advances in

the field from 1995 to 2008. However, few studies have explored systematic FS criteria for ML

based applications using EHR data, or principled knowledge extraction from the ML engines.

In this Thesis, the detection of AL using a BoW model extracted from an EHR is analyzed.

This work was based upon a patient database (QUAKE, quality control of surgical performance
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with unstructured EHR data) which was extracted from the Department of Gastrointestinal

Surgery at the University Hospital of North Norway. First, different ML techniques are

benchmarked using pre-operative and post-operative data. Then, the early detection of AL was

further explored. Several novel FS strategies described in detail in Sec. 2.4.2, that are capable of

automatically identifying the relevant words, while permitting easy knowledge extraction from

the system, are applied.

A vast general literature exists on FS, see Sec. 2.4 for examples. As novel alternatives to

the RFE, innovative FS methodology in order to avoid numerous SVM re-training procedures is

proposed in Sec. 2.4. Our present work introduces statistically principled FS methods, capable of

working on the linear classifier weight amplitudes in an easy way with extremely high dimensional

input spaces. The proposed methods require no pre-specification of the number of features to

obtain, and are based on three different criteria (see Sec. 2.4.2 for details).

After adjusting for imbalanced classes, which is a well-known challenge in medical

classification applications [129, 134], the proposed FS strategies are shown to significantly improve

the detection of AL. Also, the results provide useful knowledge of the relevant words (without

need of their pre-selection by clinicians) and their temporal evolution.

4.2.2 Database

The database used in the current study consisted of unstructured Norwegian text extracted

from the EHR used at the Department of Gastrointestinal Surgery at the University Hospital of

North Norway. All documents related to both inpatient and outpatient visits between 2004-2012

were extracted. The most frequent document types that were extracted were nurses’ notes,

journal notes, outpatient notes, radiology reports, referrals, discharge letters and admission notes.

A clinician manually reviewed the EHR of 402 patients admitted for CRC surgery in 2006-2011,

and 31 patients with AL were identified. The negative class consisted of the 371 remaining

patients.

A BoWmodel was subsequently built, by counting all unique words appearing in the database.

There were a total of 65328 unique words in the database. Hence, the database is represented as

D = {xi, yi}ni=1 where each xi, representing the i-th patient, is 65328-dimensional. For compact

notation, we collect the data samples xi, i = 1, . . . , n, in the matrix X = [x1, . . . ,xn]. In the

linear SVM y = 〈w,x〉+ b, each element, or feature, in x hence corresponded to the number of

appearances in a EHR for a given patient of one of the unique words.

Preprocessing. Initially all words were transformed to lowercase and all grammatical symbols

were removed. Furthermore, all numbers and stop words were filtered out. Apart from

that, advanced natural language processing procedures, such as combining words with identical

meanings or corrections of obvious misspellings, were not considered in this work.
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These unique words represent the "bag" in the BoW model. The bag cardinality was reduced

by keeping only those words appearing at least a certain number of times (assuming that, for

instance, misspelled words appear relatively infrequently). In this work, we empirically kept only

words appearing at least 10 times, reducing the dimensionality of the vectors xi from 65328 to

13188. Of course, enforcing a threshold may lead to information loss. Note that enforcing a too

high threshold may lead to information loss. In the remainder of this work, the data set consists

of the resulting 13188 words.

In previous general-purpose text classification studies using SVM [135, 136, 137, 138],

normalization has been suggested for preprocessing. Normalization may be obtained in several

ways. Term frequency - inverse document frequency (TF-IDF) representation [139] is a common

method. Here this and other normalization strategies, such as standardization to mean zero

and unit variance, were considered. Alternatively, feature vectors may be normalized to equal

(Euclidean) length. In this study, such normalizations did not influence the results much, and

they were not pursued further.

Finally, the feature set can be represented on a binary basis, by the presence or absence of each

word, so that the influence of high frequency words that do not necessarily exhibit discriminatory

power is reduced. This binary dataset is denoted by Xbin.

4.2.3 Experiments and Results

Experimental Setup

This experiments section starts by analyzing and discussing the tuning of the free parameter

ν in the SVM, and then comparing the SVM AL classification performance on the dataset X

without FS, with those of FDA and NB (see Sec. 2.3.1 for more details). We subsequently analyze

in detail the effect of the proposed FS strategies, and show that results improve significantly.

Finally, a temporal analysis explores the viability of early detection of AL by means of the BoW

model.

Parameter Tuning. The linear ν-SVM algorithm requires the tuning of a single free parameter

ν ∈ (0, 1), which has to be tuned. This parameter must be tuned based on the available training

set. We adopted a LOO strategy for the tuning of ν, ensuring that the parameter tuning was

always based on out-of-sample performance. For completeness, we evaluated several different

performance measures, namely, Pe, Se, Sp, and BER (see Sec. 2.5.1).

Classification problems are frequently imbalanced. For example, in the binary case, the

number of samples in the positive class may be substantially smaller than the number of samples

in the negative class. Several previous ML studies have shown that balanced classes in the

training data set provide improved overall classification performances (see e.g. [140] and references

therein). Common strategies to balance the classes include undersampling, i.e., removing samples
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(a) (b)

Figure 4.1: Free parameter (ν) tuning in terms of several figures of merit (Pe, Se, Sp and BER)

for random (thick) and resampling (fine and filled, CI shaded) downsampling, evaluated for X

and Xbin in (a) and (b), respectively.

from the majority class, at the risk of information loss, or oversampling the minority class has

also been studied, at the risk of overfitting.

The training set was constructed using an undersampling strategy in order to enforce balanced

classes. Towards that end, a random subset (31 samples) of the negative class was selected,

together with the 31 positive samples in the database. This random subset was used for the

tuning of ν. The results, one for each performance measure, are shown in Fig. 4.1, indicated

by the thick line (see figure text for further explanation). Observe that the best performance

was obtained for a relatively wide range of smaller values of ν, independently of the figure of

merit used. CM was computed for ν ∈ [0.05, 0.4] (not shown) finding that the error rates were

basically the same over this range of ν. In the end, a value of ν = 0.05 was used in subsequent

experiments (see below). The reason for this choice was that ν represents an upper bound on

the fraction of margin errors and a lower bound of the fraction of support vectors relative to

the total number of training examples. As few support vectors as possible, while maintaining

performance, is in general considered a positive property of any SVM method.

In order to analyze the appropriateness of the particular random subset used here, in a

statistical sense, we extracted further 50 random resamples (with replacement) from the negative

class. Figure 4.1 shows the mean performance (fine line, see figure text) and the CI (filled tube)

for each of the figures of merit. It is important to note that the results corresponding to the

initial random sample lie well within the CI, and may therefore be considered representative for

the negative class.

The test or generalization performance of the SVM received special attention in this work.

The key element when evaluating the generalization ability is to keep the training and the testing
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Figure 4.2: Number of features, Se and Sp depend on the size of a local window δ of neighbor

weights for X (upper panel) and Xbin (lower panel).

process independent, as far as possible in the given database. For this purpose, the overall data

set was divided in two parts, one part in which there is a balance between positive and negative

instances (balanced part), and a second part consisting of the remaining negative instances.

The generalization ability was measured by a two-stage process. The first stage invokes a LOO

cross-validation scheme on the balanced part. In the second stage, a SVM classifier is constructed

using the whole balanced set and it is used to classify the remaining negative instances. Results

in two stages are combined. Table 4.1 shows CM for the SVM, together with the FDA and

NB methods (using the two-stage process), for both feature spaces X and Xbin (SVM only).

First of all, the table shows that FDA and NB performances are clearly lower to those of the

SVM. Interestingly, for the SVM, results were better on Xbin compared to X. We used a paired

bootstrap resampling test as proposed in Sec. 2.5.2 to establish statistical significance of the

different performances across methods, obtaining that Xbin performs better than the other ones.

When using FDA, it is well-known that the inherent matrix inversion is problematic when

the number of features, i.e. the dimensionality, is greater than the number of samples. For that

reason, the dimensionality of the feature vectors was forced to be less than 402, which was the

number of samples, by considering the 350 most frequently occurring words. A problem when

using NB, is that some of the most infrequent words, or features, are not appearing in both

classes. In order to avoid this problem, only those features appearing in both classes were kept.

In the testing phase, the classes were imbalanced. For this reason, we also display the

performance, or generalization ability, of the SVM in terms of Se and Sp in Table 4.1. The SVM

results on Xbin also stand out with respect to Se measures.
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Table 4.1: Performance for ν-SVM, FDA, and NB classifiers.
ν-SVM, X ν-SVM, Xbin FDA, X NB, X

CM

[
25 56

6 315

] [
26 52

5 319

] [
15 208

16 163

] [
10 28

21 343

]
Se 81% 84% 48% 32%

Sp 85% 86% 42% 92%

Feature Selection

In this section, the attention is turned to the analysis of the proposed FS strategies, namely,

a simple statistical criterion (LOO based test), an intensive-computation statistical criterion

(bootstrap resampling), and an advanced statistical knowledge criterion (kernel entropy), see

Sec. 2.4.2. The core idea is the following: 1) a subset of relevant features was selected by one

of the proposed algorithms, and 2) the linear ν-SVM classifier was retrained with the selected

features and used to classify test samples. As shown below, the performance of the classifier

increases as a result of the FS.

First, a brief discussion on the selection of free parameters in the FS algorithms is provided.

For bootstrap resampling, the free parameter corresponds to the size of a local window δ of

neighbor weights. Small δ values provide higher number of selected features, whereas the opposite

is true for larger δ values. This is illustrated in Fig. 4.2 where Se and Sp results are shown based

on bootstrap FS retraining over a range of δ values. Results suggest that good performance was

obtained when considering δ = 10, which is the value used in subsequent experiments.

Kernel entropy component FS requires the selection of the tail probability and the kernel size

(σ value). We have experienced that a tail probability of 0.05 provides good results. Furthermore,

since w is a one dimensional random variable, Silverman’s rule [141] for kernel size selection is

known to be reliable, and for that reason that criterion was used in the remainder. With this

approach, kernel size is obtained as follows: σ = 1.06std(w)N−1/5, where std is the standard

deviation and w is the weight vector obtained for each dataset.

Table 4.2 shows the benefit of FS in terms of CM , Se, Sp and the number of selected features

obtained by the LOO based test, the bootstrap resampling, and the kernel entropy criterion for

both databases X and Xbin. The power of the proposed FS methods can be observed by noting

that all of them improve Se and Sp measures. Furthermore, these improvements were obtained

by using far fewer features, compared to the original dimensionality of the data.

Results suggest that the best performance is obtained with the bootstrap resampling approach

for both X (Se 100%, Sp 89%) and Xbin (Se 100%, Sp 89%). The number of features selected

to obtain these results were 196 for X and 292 for Xbin.

For completeness, the proposed FS strategies were compared with the RFE method [68].
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Table 4.2: FS criteria analysis. CM , Se, Sp and number of selected features obtained by LOO

based test, bootstrap resampling, and kernel entropy criterion (Keca) for X (upper) and Xbin

(lower) inputs spaces.
All LOO Boot (δ = 10) Keca

CM

[
25 56

6 315

] [
28 52

3 319

] [
31 39

0 332

] [
25 55

6 316

]
Se 81% 90% 100% 81%

Sp 85% 86% 89% 85%

] features 13188 6896 196 212

CM

[
26 52

5 319

] [
29 52

2 319

] [
31 42

0 329

] [
31 45

0 326

]
Se 84% 94% 100% 100%

Sp 86% 86% 89% 88%

] features 13188 8073 292 189

Table 4.3: Proposed FS benchmarked with RFE for non-binary (X, upper) and binary (Xbin,

lower) input feature spaces.
LOO RFE Boot RFE Keca RFE

Se 90% 87% 100% 87% 81% 80%

Sp 86 % 86% 89% 82% 85% 82%

] features 6896 6896 196 196 212 212

Se 94% 90% 100% 100% 100% 100%

Sp 86% 86% 89% 88% 88% 88%

] features 8073 8073 292 292 189 189

Results obtained using the proposed FS methods and RFE are shown in Table 4.3, using for

clarity the same number of features for RFE as the number of features selected by the proposed

methods, respectively. Recall that RFE requires the training of multiple classifiers on subsets of

features of decreasing size, and for this reason, it does not trivially provide the optimum number

of features to be selected. We also implemented the RFE cross-validation procedure (requiring

up to 12 hours run-time on a standard research-purpose laptop for one data set) obtaining results

which were very similar to those displayed in Table 4.3. This shows that the proposed FS methods

may extract useful information from the EHRs, similarly or better when compared to the RFE,

however, it is based on statistical criteria requiring no pre-specification of the number of features

to be selected, nor any computationally demanding cross-validation.

Early AL Detection Experiments

The early detection of AL was further explored. Towards that end, several additional

databases were created. The databases Xop and Xbin
op represented the BoW based on all journal
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Table 4.4: Temporal analysis (CM and number of features) for different data time slots: up

to and including day of surgery; four days after surgery or until patients leave the hospital, for

non-binary and binary input feature spaces.
FS Xop X+4 X Xbin

op Xbin
+4 Xbin

All

[
19 186

12 185

] [
17 126

14 245

] [
25 56

6 315

] [
20 145

11 226

] [
22 112

9 259

] [
26 52

5 319

]
Se 61% 55% 81% 65% 71% 84%

Sp 50% 66% 85% 61% 70% 86%

] features 5409 6858 13188 5409 6858 13188

LOO

[
28 193

3 178

] [
25 118

6 253

] [
28 52

3 319

] [
29 131

2 240

] [
30 93

1 278

] [
29 52

2 319

]
Se 90% 81% 90% 94% 97% 94%

Sp 48% 68% 86% 65% 75% 86%

] features 2840 3912 6896 2991 3992 8073

Boot

[
30 196

1 175

] [
30 130

1 241

] [
31 39

0 332

] [
31 105

0 266

] [
31 82

0 289

] [
31 42

0 329

]
Se 97% 97% 100% 100% 100% 100%

Sp 47% 65% 89% 72% 78% 89%

] features 107 102 196 120 142 292

Keca (5%)

[
29 181

2 190

] [
30 146

1 225

] [
25 55

6 316

] [
29 125

2 246

] [
31 85

0 286

] [
31 45

0 326

]
Se 94% 97% 81% 94% 100% 100%

Sp 51% 61% 85% 66% 77% 88%

] features 90 110 212 86 106 189

notes up to and including the day of surgery. At this point in time, none of the patients who

eventually experienced AL, had developed the condition. Furthermore, the BoW databases X+4

and Xbin
+4 were created, where “+4" indicates that this BoW is based on all journal notes up to

and including post-operative day four.

Table 4.4 shows CM , Se, Sp, and the number of selected features for all the considered

databases. The area under the curve was also explored, but similar results were obtained.

Note that discriminatory power is revealed, even for Xop and Xbin
op . In particular, for Xbin

op ,

the results show that given that the patient will eventually experience AL, our FS method

detects that in 100% of the cases. On the other hand, given that the patient does not eventually

experience AL, our FS method correctly reveals that in about 72% of the cases. This means

that the FS approach advocated in this application, has capacity for detecting AL patients at

an early stage. Note also that the number of features selected in order to achieve these results

is dramatically lower than the cardinality of the input feature space. As one would expect, the

discriminatory power in the data increases with time.
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Table 4.5: Words associated with selected (bootstrap) SVM positive weights corresponding to Xbin
op

(first column) and Xbin (second column).
Xbin
op Xbin

anastomosis anastomosis leakage

shaved anastomosis

easy re-operated

relieving re-operation

low butt

localized insufficiency

air saline

info anterior

up vatan

anterior colorectal

peripheral some

far drainage

anesthesia sigmoidostomi

evt suture

stapler stapler

loop ileostomy furix

coloanal localized

Interpretation of Selected Words

One of the major advantages of training a linear SVM on the EHR is that each weight in

the weight vector w corresponds to a particular word in the BoW database, enabling knowledge

extraction by analyzing the weights. In this section, those words that correspond to the dominant

SVM weights are presented, and interpreted the words in the context of AL detection.

The databases Xbin
op and Xbin are analyzed in detail due to the promising AL detection results

presented in the previous section. These databases contained only positive elements (binary

numbers), such that a positive weight corresponded directly with the positive class (AL) and a

negative weight was associated with the negative class, since the classification into the positive

or negative class is based on the sign of w>x.

Those weights with the largest positive values correlate the most with the positive class,

and vice versa for the negative class. Table 4.5 (first column) shows the words corresponding

to some of the largest positive weights (in order) for Xbin
op . These were the words which SVM

associates with the positive class, i.e., the class of patients experiencing post-operative AL. For

some surgeons in the University Hospital of North Norway, the appearance of several of these

words in association with AL seemed reasonable from a clinical perspective. Some examples are

presented below.

Tumors located in the lower part of the rectum are known to increase the risk of AL, and
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are removed by the surgical procedure known as low anterior resection. Similar reasons may

explain the appearance of the word anterior in Table IV (first column). The word air may be

an indicator of a leakage, since the presence of air outside of the bowel will be due to a leakage.

A diverting loop iliostomy will be performed in patients with the highest risk of AL (low rectal

cancer with coloanal anastomosis and after neoadjuvant treatment with irradiation).

Some examples regarding the words associated by the SVM to the negative class, are the

following: amputation, abdominoperineal, endcolostomy, proximal, sonor percussion sound. One

of the words is amputation. This word simply refers to the removal of the whole rectum and

anus in order to remove a distal rectal tumor oncologically safe. In that case the problem of AL

is completely avoided and the patient will have a permanent endcolostomy. Abdominoperineal

amputation is the name of the operation. Patients with proximal (means located in the upper

part of rectum) rectal cancer do not need deep pelvic surgery and are thereby less exposed to

AL. The expression sonor percussion sound is used when the physician describes the normal

sounds that appear before the operation, when he/she carefully knocks on a finger placed on

the patient’s chest in order to detect pleural fluid collections or abnormal air distribution in the

chest. AL is often followed by lung and heart complications.

We also analyzed the selected (bootstrap) SVM weights corresponding to the databases Xbin
+4

and Xbin. The distribution of positive and negative weights change for these databases, compared

to Xbin
op . We focus here on the words corresponding to Xbin. Table 4.5 (second column) shows

the words corresponding to some of the largest positive weights (in order) for Xbin. Several of

the words from Table 4.5 in the first column reappear in the second column. However, there

are differences. For example, the weight associated with the word anastomosis leakage is now

the largest of all the weights. Furthermore, words like re-operation and re-operated are also

associated with large weights.

This analysis shows that the selected words, obtained by the proposed FS strategies based

on the BoW model, may be reasonably interpreted in the medical context of AL. Future work

may consider highlighting words of particular medical relevance when training decision support

systems, or flag certain selected words as indicators of the AL complication.

4.2.4 Discussion and Conclusions

In this work, it is demonstrated that the clinical narrative contains relevant information for

early detection of AL following surgery for CRC. The discriminatory power in the data is based

on a simple BoW model, where classification and FS is based on a linear ν-SVM.

Results show that both binary and non-binary approaches have discriminatory power. A

binary input space yields a sensitivity of 100% and specificity of 72% at an early stage, while

performance worsens when using a non-binary input space, to 97% and 47% respectively.
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The number of relevant features is also lower in the latter case. In multidisciplinary studies

like the present one, validation by clinicians is highly necessary in order to extract correct and

useful knowledge. The set of words shown in Table 4.5 was therefore validated by a group of

surgeons who concluded that several words (in bold) appear to have relevance for identification

of patients with increased risk of AL after CRC surgery.

The study has some limitations. In particular, the number of cases is low, and hence prone to

over-fitting, such that external validation of the results would be desirable. A manual annotation

process as used here is likely to provide accurate labels, but is very time consuming. By using

automated phenotyping [142] of the EHR, one can effectively gather larger cohorts at the loss

of some accuracy. The extracted text does not contain all information about the patient, and

notably the surgery notification form is unavailable. Thus there is much information missing

about patient’s preoperative status, which could be important additional indicators of subsequent

complications and could improve accuracy.

In studies of risk assessment models there is always the concern that the signal may be

censored when a clinician spots a pattern leading to a complication and takes appropriate action

to avoid the complication [143]. This would result in a significant number of cases where the

pattern leading to the adverse event is present but not the event itself as that was successfully

averted, effectively constituting mislabeled cases. This might be a concern in the current study,

and would, if the classifier is good, lead to a decreased specificity. In the work a BoW model

was used, which is arguably the simplest possible model for text processing. Nevertheless it was

demonstrated potential for FS for improving the AL detection.

This innovate study describes the development of an early computerized warning system

that, when fully developed, will be a useful supplement for the clinician to be alerted at an

early stage and act promptly to avoid potentially lethal post-operative outcomes. It is important

that the information provided by the system is actionable on the part of the physician, in

that there is an option to change the course of action for patients with increased risk. In the

case where the risk is evident prior to the index surgery, potential courses of action can be to

postpone the surgery until all known risk factors are corrected or to protect the anastomosis by

a diverting stoma or avoid any anastomosis by giving the patient a permanent stoma in the first

place. Additionally, the patient can be involved in the preoperative decision-making and sign an

informed consent form based on a better understanding of the preoperative risk-assessment for

AL. In the case of increased risk post-operatively, potential actions in the case of alarm signals

indicating an anastomotic leakage would be emergency CT scans, diagnostic laparoscopy, or

laparotomy. The latter two are resource demanding and not without potential complications. It

is therefore beneficial to have additional computerized algorithms as described in this application,

in addition to sound clinical judgment.
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We have shown that there is information in the clinical narrative that can be used to predict

AL after CRC surgery. Thus, the text can be a piece of the input to a clinical information system

that warns clinicians of the potential for complications in individual patients. Experimental

results corroborate the feasibility and sustainability of the proposed framework, although future

work could further enhance results to support early diagnosis decisions.

4.3 Application 4.2: Early Detection of Anastomosis Leakage

using Heterogeneous Sources

4.3.1 Introduction

In the previous application, one of the data sources, namely the free text clinical narratives,

discovered a potential for detecting AL after CRC surgery based on this source [144, 145].

However, several works in different contexts have concluded that the combination of heterogenous

sources of information enhances classification and regression results in many applications, such

as intelligent transportation systems [146], multibiometric face recognition application [147], and

remote sensing [148]. The combination of heterogenous sources from EHRs have been only

moderately studied in the literature, likely due to the fact that the availability of the EHR

information is limited, in some cases for privacy issues. However, some previous works concluded

that the use of heterogenous data improved clinical decisions. For example, the combination

of structured EHR data (diagnostic codes, vital signs etc.) combined with free-text analysis in

order to detect acute respiratory infections was analyzed in [29], enhancing sensitivity values in

unhealthy patients. Merging heterogenous clinical data from five databases improved Alzheimer’s

diagnosis [28].

In the ML literature, the so-called composite kernel methods have been used for combining

heterogenous sources in several applications [59]. For example, the task of hypertext

categorization exploring words and links information individually and by using composite

(combined) kernels was analyzed in [149], obtaining better performance by a combined kernel

approach. Composite kernels were also used for hyperspectral image classification [148] and for

the classification of very high resolution urban images [150]. Regarding clinical applications, the

use of the composite kernel framework provided the highest classification rate for diagnosis of

cancer based on colon cancer and leukemia datasets in combination with proteome patterns of

a stomach cancer dataset [27], for the improvement of Alzheimer’s diagnosis [28], and for the

automatic diagnosis of pathological myopia [33], among others.

In this application, a prediction model based on structured and unstructured clinical data

from the EHR is proposed for early detection of AL. The novelty of the present work is found

in: (1) the exploitation of heterogenous data sources for AL detection; (2) the leverage of the
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power of composite kernels for this purpose; and (3), the assessment of a temporal risk score in

order to control the patient status and detect AL complication at an early stage.

4.3.2 Database

In this section, three different data sources (free text, blood tests, and vital signs) are

presented, which have been jointly analyzed in order to perform early detection of AL. First, it

is explained how these data sources were recorded in the EHR and the specific characteristics of

each data set. Later, the extraction and preprocessing stages needed to obtain a suitable input

space to be treated by the classifiers proposed in this work are discussed. The specific nature of

each data source required the development of different preprocessing strategies.

The same database described in the previous application, Application 4.1, is also used in this

one, although more clinical documents were considered. In the current study, data from two

heterogenous sources, namely, blood tests and vital signs, are also analyzed. A summary of the

new sources is given next.

Blood tests. In this work, structured data from nine different laboratory tests, namely, albumin,

C-reactive protein (CRP), glucose, hemoglobin, potassium, creatinine, leukocytes, sodium, and

thrombocytes were analyzed. These blood tests were recorded for a period of 10 days before the

surgery and up to 20 days after the surgery.

Blood tests measurements are in general highly irregularly extracted in time. This is

illustrated in Figure 4.3 for the CRP blood test, showing that available data are characterized by a

strongly irregular time sampling pattern. Hence, the observed data matrix is sparse over patients

and time. This poses challenges in the data processing. From a data processing perspective, the

data sparseness is equivalent to missing data, and must be handled. The irregular sampling and

resulting sparseness of data is even higher for some of the other tests (not shown here).

Despite the efforts made to develop statistical methods for handling missing data, there is no

global best approach because the different approaches depend on different assumptions. When

a relatively small number of samples are missing, skipping features or patients can be an option,

but this was not the case in our problem. An imputation method based on the k-NN algorithm

as in [43] was followed, which allowed us to work with a database denoted as Xblood from now

on.

Vital signs. Three vital signs (temperature, blood pressure -high and low values-, and pulse)

were extracted from different types of nurse’s notes using several layered regular expressions

working on a specific part of the different documents where this information was noted down.

Vital signs were normally recorded at least three times per day for each patient, for a period of

10 days before the CRC surgery up to 20 days after the surgery. Since these data are by nature

irregularly sampled, thus, an imputation method based on the k-NN algorithm was applied to
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Figure 4.3: CRP laboratory test measurements for each patient (the first 31, from the top,

correspond to AL cases) for a period of 10 days before the colorectal surgery and up to 20 days

after the surgery (Day 0). The data matrix is sparse over patients and time, constituting a

challenging data set to work on.

obtain daily measures.

Temperature. The extraction process restricts it to be between 30.0 and 41.0 as normal values.

In some cases, the analyzed text contained words indicating that the patient was afebrile, febrile

or subfebrile.

Blood pressure. It measures the diastolic and systolic blood pressure of a patient, given as

two integers separated by a /, that is for instance 120/80. The extraction process restricts it to

be: (1) first integer larger than second integer; (2) first integer (overpressure) larger than 60 and

lower than 250; and (3) second integer (underpressure) larger than 30 and lower than 200. The

analyzed free text sometimes contained words telling that the patient had normal, low, or high

blood pressure.

Pulse. The number of heart beats per minute was given as an integer. The extraction process

restricts it to be between 41 and 250. Choosing 41 as the lower limit makes sense medically,

though there might be rare cases of lower pulses than this. In these cases, the patient was

probably anyway kept under tight control. Free text sometimes contained words indicating that

the patient had normal pulse, irregular heart beat, or irregular heart beat with an approximate

number of beats per minute given in the text. Only a really small number of patients had

irregular beats, so this characteristic was discarded and only was analyzed the number of heart

beats per minute.

Data from vital signs were represented as a concatenation of four values (temperature, high

and low pressure, and pulse), in matrix Xsigns from now on.
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4.3.3 Experiments and Results

In this section the individual contribution of each data source is presented, as well as the

results obtained after combining heterogeneous sources using composite kernel. The experimental

setup followed in this application is the same as the one described in the previous one. Thus, it

is not repeated here.

Individual Contribution of Each Data Source

The potential to predict AL based on data from individual sources recorded in the EHR

was explored. Towards this end, the performance of linear and non-linear SVM classifiers

was evaluated. First, we automatically selected the free parameters following a LOO strategy.

The linear ν-SVM method requires the tuning of a single free parameter, ν ∈ (0, 1). For the

RBF-based ν-SVM, the tuning of the width σ is also necessary. Furthermore, results after

evaluating RFE and bootstrap FS methods were provided. The first one was computed for linear

and non-linear SVM classifier, whereas the second was only computed for the linear case.

Free text. A BoW model analysis based only on data up to and including the day of the

surgery identified AL patients with Se = 97% and Sp = 66% using a linear kernel after a FS

strategy (see Table 4.6). Note that the performances enhanced when more information was

considered (Se = 100%, Sp = 68% for X+4, and Se = 100%, Sp = 87% for X). A linear SVM

classifier considering the features subset after a bootstrap resample strategy provided the best

predictions when only free text data set was evaluated. A RBF SVM classified all patients in the

same class. For this reason, and in order to avoid the high dimensional input space in the BoW

model, we decided to focus only on the features subset obtained after considering a bootstrap

FS method from now on.

Blood tests. For this data source, Se and Sp improved when a non-linear SVM classifier was

considered. More specifically, the application of the non-linear RFE FS strategy enhanced the

performance for all time slots.

Physiological data. We also evaluated to what extent AL can be detected based only on vital

signs. A linear classifier did not performance properly, but non-linear SVM classifiers provided

reasonable Se and Sp values. Results improved when using a non-linear RFE FS method.

In summary, the linear SVM performed the best when a BoW model was considered, yielding

Se = 97% at an early stage. However, a higher Sp was obtained when blood tests data for

Xop were analyzed. As indicated in Application 4.1, the clinical narrative provided the best

performance when all available data were considered separately.
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Table 4.6: Classification sensitivity (first value, in %), specificity (second value, in %), and

number of features (in brackets) for linear and non-linear kernels when individually applied on

free text data set, blood tests and vital signs. Best values are shown in bold.
BoW Xop X+4 X

Linear kernel 65 58 (5409) 74 68 (6858) 84 85 (13188)

Linear & boot 97 66 (0158) 100 66 (0186) 100 87 (00389)

Linear & RFE 65 58 (5406) 74 68 (6476) 84 85 (13180)

Blood tests Xop X+4 X

Linear kernel 71 74 (99) 77 72 (135) 77 76 (279)

Linear & boot 68 76 (96) 71 70 (128) 77 77 (186)

Linear & RFE 71 74 (98) 81 73 (108) 77 75 (234)

RBF kernel 87 60 (99) 87 71 (135) 94 63 (279)

RBF & RFE 87 68 (93) 90 72 (130) 97 77 (040)

Vital Signs Xop X+4 X

Linear kernel 61 20 (44) 61 39 (60) 52 49 (124)

Linear & boot 55 29 (42) 45 41 (55) 65 40 (118)

Linear & RFE 61 25 (33) 42 42 (52) 52 41 (108)

RBF kernel 68 65 (44) 61 56 (60) 94 52 (124)

RBF & RFE 65 62 (33) 68 48 (21) 81 71 (093)

Heterogenous Data Sources Combination

Previously, it was concluded that free text provides the higher Se values. In this section, it is

analyzed whether clinical results can be improved by combining different data sources available

in the EHR. Towards that end, the classification performance when using a stacked kernel and

a composite kernel method were benchmarked. Results are shown in Table 4.7.

Stacked input vectors kernel. Features from pairs of two sources were first stacked in an

input vector using a single kernel, obtaining three different combinations, namely, BoW with

blood test, BoW with vital signs, and blood tests with vital signs. Then, all features from the

three sources were stacked in an input vector, using a single kernel. In this case, the new vector

dimension is obtained as the sum of the three datasets dimensions, evaluated for Xop, X+4,

and X, respectively. After the new input vector was built, linear and non-linear classifiers were

designed, both with and without a FS strategy.

Results showed improved AL detection in general when combining heterogenous sources. In

general, clinical narrative had good discriminatory power itself, and also after combining it with

blood tests or vital signs. More specifically, free text and vital signs fusion was promising in

order to detect AL at an early stage (Se = 100% and Sp = 72%). Using only structured data

provided some reasonable classification results, however, they were inferior compared to those

obtained when considering free text.
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Table 4.7: Classification sensitivity (first value, in %), specificity (second value, in %), and

number of features (in brackets) for linear and non-linear kernels when combining free text, blood

tests and vital signs data sources. Best values are shown in bold.
BoW & Blood Xop X+4 X

Stacked (linear) 97 68 (257) 100 69 (321) 100 87 (668)

Linear & boot 77 61 (244) 97 66 (300) 100 85 (615)

Linear & RFE 97 68 (256) 100 69 (318) 100 87 (668)

Stacked (RBF) 90 63 (257) 97 59 (321) 68 42 (668)

RBF & RFE 77 71 (093) 97 73 (226) 100 87 (614)

BoW & VS Xop X+4 X

Stacked (linear) 93 63 (242) 100 70 (250) 100 88 (513)

Linear & boot 90 64 (227) 97 68 (243) 100 86 (482)

Linear & RFE 97 64 (239) 100 69 (243) 100 88 (443)

Stacked (RBF) 90 70 (242) 97 57 (250) 68 46 (513)

RBF & RFE 100 72 (238) 100 74 (249) 100 88 (457)

Blood & VS Xop X+4 X

Stacked (linear) 58 73 (143) 61 76 (195) 77 73 (403)

Linear & boot 54 69 (140) 65 75 (189) 71 71 (333)

Linear & boot 64 57 (142) 58 59 (188) 81 74 (360)

Stacked (RBF) 81 74 (143) 65 83 (195) 81 73 (403)

RBF & RFE 87 80 (125) 84 68 (187) 87 77 (392)

BoW & VS Xop X+4 X

& Blood

Stacked (linear) 97 67 (301) 100 75 (381) 100 87 (792)

Linear & boot 84 67 (306) 100 74 (372) 100 86 (755)

Linear & RFE 97 66 (250) 100 73 (165) 100 88 (691)

Stacked (RBF) 90 57 (301) 87 56 (381) 68 41 (792)

RBF & RFE 100 69 (277) 97 77 (327) 100 87 (730)

Composite kernel 100 76 (301) 100 73 (381) 100 88 (792)

Composite kernels. It was evaluated whether results improved by exploiting a combination of

different kernels for all the available sources. After analyzing individually the three data sources,

the conclusion was that the best classifier scheme for free text data were a linear SVM, whereas

for blood test and vital signs data sets, a non-linear scheme enhanced detection performances.

Thus, the used composite kernel can be expressed as:

K = Kblood + µ1K
BoW + µ2K

signs (4.1)

where K represents the composite kernel, KBoW is the linear kernel based on BoW model, and

Kblood and Ksigns represent the RBF kernel when considering blood test and vital signs data

sets, respectively. First, the kernel free parameters were tuned, and then, a LOO cross-validation

optimization procedure was developed to select µ1 and µ2 values, obtaining the optimized
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Figure 4.4: ROCs using Xop and individual data sources XBoW , Xblood, and Xsigns with

‘Linear & boot’, ‘RBF & RFE’ and ‘RBF kernel’ classifiers, respectively. ROCs using Xop

and combination of the three individual data sources with the composite kernel in Eq. (4.1).

composite kernel. The search ranges for µ1 and µ2 was (0,10).

Composite kernel results are shown in the very last row of Table 4.7. Note how already at the

day of surgery, sensitivity and specificity are at 100% and 76%, respectively, clearly indicating

an improved capability for early detection of AL. This is promising, and it shows that composite

kernels have a potential for extracting useful information from the heterogeneous data sources

which are considered in this work.

For a visual interpretation, the Receiver Operating Characteristic (ROC) was represented.

The ROC curve is generated by varying the threshold parameter in the classifier which controls

the trade-off between sensitivity and specificity. In this case, the soft output for yielding

a statistical decision parameter on which moving the threshold was used. Figure 4.4 shows

individual ROCs for XBoW , Xblood, Xsigns and after combining them using a composite kernel

when considering data up to and including the day of the surgery. For XBoW , the ROC was

calculated after considering a linear SVM classifier with a bootstrap FS method, whereas for

Xblood and Xsigns, a non-linear SVM and a RFE FS method were considered.

Temporal Risk Assessment for Early Detection of AL

Previous experiments showed the AL prediction performance for the 402 patients at different

time slots. However, a more complete patient risk assessment may be useful. For example in

order to warn clinicians to be alerted at an early stage and act promptly to avoid complications.
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Figure 4.5: Estimation of posterior probabilities for each patient (infected in red, not infected

in blue). Upper panels: using XBoW and linear SVM with FS for Xop (a), and X (b). Lower

panels: using the three heterogenous sources and a composite kernel for Xop (c), and X (d).

When the risk is evident, potential courses of action can be applied to avoid AL. Towards that

end, we proposed a temporal risk score using several heterogenous data sources. Following the

same two-stage procedure, as explained in Sec. 4.2.3, the risk score is based on the estimated

posterior probabilities of AL, obtained after training the SVM classifier, i.e, given the i-th patient

with feature vector xi, the goal is to estimate Pr(y = 1|xi), for i = 1, . . . , n (see Sec. 2.3.1). The

higher/lower (infected/not infected) the posterior probability is, the higher the confidence in the

classification will be, and thus, improving the likelihood of better clinical decision support.

Figure 4.5 shows the posterior probability estimation for each patient; red points are

associated to infected cases (positive class), while blue points correspond to negative cases.

Fig. 4.5 (a) and Fig. 4.5 (b) represent the estimated posterior probability when only free text is

considered to predict AL, both using Xop and X, respectively. In order to compare these results

with those obtained when several heterogenous sources are considered, the estimated posterior

probability for Xop and X (Fig. 4.5 (c) and Fig. 4.5 (d)) is represented. Note that, in general,
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lower posterior probabilities of AL are reported for the negative cases (controls) when using more

sources.

4.3.4 Discussion and Conclusions

In this work, we demonstrated that the combination of heterogenous data sources (i.e. free

text, blood tests, blood pressure, pulse and body temperature) from the EHR using SVM and

composite kernels may predict AL at an early stage. Free text, laboratory tests, and vital signs,

have been simultaneously used in order to deal with both unstructured and structured data.

The impact of each data source individually, as well as their combination using weighted kernel

summations, were studied.

Our results show that improved classification performance was obtained when clinical

narrative was used. Nevertheless, the individual analysis of laboratory tests and vital signs also

provided with additional discriminatory power. An increase in sensitivity classification is clearly

obtained when combining these heterogenous data sources. Furthermore, the risk assessment

status of the patient improved when using multisource information from the EHR. This result

is specially relevant to detect AL complications at an early stage, and its inclusion in an on-line

prediction system might be used to predict patients risk of AL.

For the sake of simplicity, an imputation method based on the k-NN algorithm was used

to deal with missing data, though other imputation strategies will likely yield more accurate

classifiers. Different methods to deal with observations at non-uniform time points have been

grouped in three different categories [151]: (1) smoothing or interpolation techniques to fill

missing observations; (2) spectral analysis tools, such as wavelets or Lomb-Scargle Periodogram;

and (3) kernel methods. All of them depend on the considered assumptions on the data, and

are sensitive to the time series dynamics. Furthermore, for the cases with several heterogenous

data sources recorded with different criteria, more specific and elaborated methods have to be

developed to this end. On the other hand, we only used a state-of-art non-linear FS method in

this work, but more theoretical and experimental work should be devoted to the topic of large

input spaces in the EHR data sources. Note also that sample imputation and FS are strongly

coupled problems in this kind of sparse temporal data, so it is recommendable to develop methods

for their joint assessment. Finally, we used state-of-art posterior probability estimation, and

given the suitability of this type of output in the clinical environment and the improvement

of the detection capabilities in our results, further theoretical and experimental effort is also

encouraged in this setting.

The suitability of vital signs to diagnose an AL after intestinal resection was analyzed in [152],

showing that it represents a quite challenging problem, and low prediction capabilities were

obtained therein. However, CRP showed promising diagnostic value in excluding patients without
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AL [153]. Furthermore, both vital signs and laboratory tests data were also combined into a

clinical score system [154], in order to identify patients with higher risk of AL using statistical

tests, such as Mann-Whitney and ANOVA, hence improving the prediction. In this work, and

based on kernel methods, it was able to combine vital signs and laboratory tests data together

with free text, yielding higher discriminative power.

4.4 Application 4.3: Data-driven Temporal Prediction of Surgical

Site Infection

4.4.1 Introduction

When using observational data from secondary sources such as the EHR one needs to take

into account that the information is rarely recorded in a systematic way. Indeed, the data are

often sparse, and gathered at a clinician’s discretion. For example, blood tests are taken at

a mixture of predefined stages in a patient pathway and clinically driven sampling. Thus, if

predictive analytics relies on regularly sampled data, imputation methods need to be employed

such that regular sampling is simulated. However, in the case of very irregular sampling a

classical imputation approach may not be sufficient. In this work, prediction models are studied

for real time evaluation of patients admitted for gastrointestinal surgery with respect to surgical

site infection (SSI) post-operatively.

The American College of Surgeons Surgical Quality Improvement Program and the Centers

for Disease Control and Prevention divide SSI into three subtypes based on the anatomical

location of the infection, i.e. superficial, deep incisional and organ space [126]. Superficial

infections can usually be cured with per oral antibiotics and surgical debridement. In contrast,

deep and organ space SSI require intravenous antibiotics, percutaneous drainage and lapratomies.

The patient specific risk factors for SSI are well documented and reported. A recent study

by Lawson et al [126] identified open surgery, ulcerative colitis, older age, overweight, smoking,

disseminated cancer and prolonged operation time as factors contributing to an increased risk

of SSI. However, they found that different risk factors were associated with superficial and deep

SSI. High body mass index and revision of an osteomy were associated with superficial SSI,

whereas prolonged operation time and perioperative transfusions were associated with organ

space SSI [126, 128].

Using blood test results as predictive features in a data-driven decision support system is

useful since these are performed relatively often with little burden to the patient. Therefore

it is, e.g., possible to estimate the expected information content of a blood test at stages in a

patient trajectory [155]. However combining different tests performed at different stages in the

trajectory, which is necessary when observational data are used, presents challenges which are
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Figure 4.6: Overview of the processing pipeline.

Table 4.8: Demographic characteristics of the patient groups.
Overall Controls Cases

Female (%) 477 (47.4) 441 (48.7) 36 (35.6)

Age [Mean±SD] 57.0 ± 20.7 56.9 ± 21.2 57.4 ± 15.2

addressed here. The information from tests may be further combined with other data such as

textual features that are predictive of complications [145].

For the purpose of this Thesis, we denote the sparsity of the clinical data as missing

data. Missing data percentages are even larger for some studies such as clinical laboratory

measurements or biomarkers. Despite of the efforts made to develop statistical methods for

handling missing data, there is no global best approach because they inevitably depend on

stated assumptions.

In this work methods for predictive modeling in a context of features that have strongly

irregular sampling patterns are presented. Different smoothing and interpolation/imputation

techniques and different input spaces to predict SSI using blood tests are analyzed. Finally

linear and non-linear classifiers are computed to do the predictive modeling. Figure 4.6 shows

an overview of the data-driven decision support system used in this work for SSI prediction.

4.4.2 Database

A cohort of patients based on relevant International Classification of Diseases (ICD10) or

NOMESCO Classification of Surgical Procedures (NCSP) codes related to severe post-operative

complications, and in particular to SSI, was extracted from the EHR of the department of

Gastrointestinal surgery at the University Hospital of North Norway. The selection of codes

was guided by input from clinicians at the hospital. The cohort identified as control was
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Figure 4.7: Available laboratory test measurements for one control (a) and another infected (b)

patient. The y-axis shows the available tests for a patient, with no specific order, as each patient

can have different number of tests. The x-axis represents the day when each test was recorded,

being Day = 0 when the first test was recorded. Vertical black line indicates the surgery day,

whereas red line indicates the infection day.

matched with patients that did not have any of these codes but were otherwise similar in

terms of which blood tests were performed. Additionally, a text search was performed to

ensure that the controls did not have the word “infection” in any of their post-operative text

documents. This resulted in a cohort of 101 cases and 904 matched controls. Patients with codes

indicating superficial infections were excluded. A set of 10 different types of blood tests, namely,

hemoglobin, leucocytes, CRP, potassium, sodium, creatinine, alanine aminotransferase (ALAT),

thrombocytes, albumin and alkaline phosphatase (ALP), were defined as clinically relevant and

extracted for all patients from their EHRs. All tests were not available every day, which results in

a high percentage of missing values when analyzing data on that scale, yielding to a non-uniform

time sampling description for each patient (Fig. 4.7). The data matrix is hence sparse over

lab tests and time, therefore constituting a challenging data set to work on. The proposed

method in this Dissertation, denoted as bootstrap nonparametric resampling, was designed to

statistically describe the influence of imputation (see Sec. 2.5.2). Thus, the population mean and

corresponding 95% CI was computed on a daily basis for each test, obtaining an averaged trend.

The data represent a diverse group of patients undergoing gastrointestinal surgery such that

results can generalize across this group. The basic demographics of the cohort are given in

Table 4.8.
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4.4.3 Experiments and Results

Predictive Analytics of SSI

Feature engineering for sparse clinical data. Working with complete datasets is the

standard scenario for most statistical and ML methods. In the literature, there are works

that simply omit patients with any missing data, but it is not a reasonable approach with

high-dimensional data. To avoid this situation, different methods have been proposed to deal

with observations at non regular sampling. These methods can be categorized into: [151] (1)

smoothing or interpolation techniques; (2) spectral analysis tools such as wavelets or Lomb-Sargle

Periodogram; and (3) kernel methods.

Regarding interpolation methods, the well-known Last Observation Carried Forward (LOCF)

scheme imputes the last non-missing value for the following missing values [156]. Alternatively,

Lasko et al. [44] suggest using GP followed by a warped function [44], and this approach is

followed in this work. The warped function explained in Sec. 2.2.1 is intended to adjust for the

fact that rapid changes in temporal variables in connection with active treatment is often followed

by long periods of apparent stability leading to highly nonstationary processes. This function

converts non-stationary clinical data into a stationary process which allows the use of a GP (see

Sec. 2.3.1 for details) to deal with sparsity. Thus, we use this approach in this manuscript to

deal with sparse data.

(a) (b)

Figure 4.8: Population mean and corresponding 95% CI per day for CRP (a) and Potassium (b)

tests, being Day = 0 the day of the surgery. LOCF imputation and a nonparametric resampling

strategy have been used.

Experimental Setup. First, the capabilities of different ways to deal with sparse data and

to show the effects on performance results are evaluated. Furthermore, linear and non-linear

classifiers are benchmarked to predict SSI when using different laboratory tests data obtained
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Table 4.9: Pre-operative and post-operative accuracy (mean and 95% CI) for each test individually

and different classifiers: Logistic regression (first row), linear SVM (second row), and non-linear

SVM (third row). The best accuracy values for pre-operative and post-operative are shown in

bold.
LOCF Warped-GP

Lab test Pre-operative Post-operative Pre-operative Post-operative

Hemoglobin 0.48 [0.43,0.53] 0.47 [0.44,0.75] 0.60 [0.54,0.64] 0.60 [0.54,0.64]

0.58 [0.50,0.69] 0.62 [0.51,0.69] 0.52 [0.40,0.62] 0.55 [0.46,0.63]

0.70 [0.56,0.84] 0.89 [0.77,0.95] 0.71 [0.64,0.81] 0.79 [0.65,0.85]

Leucocytes 0.50 [0.43 0.56] 0.47 [0.43,0.51] 0.54 [0.48,0.59] 0.54 [0.48,0.59]

0.50 [0.38,0.59] 0.61 [0.50,0.71] 0.45 [0.30,0.55)] 0.53 [044,0.65]

0.75 [0.62,0.85] 0.77 [0.65,0.85] 0.75 [0.61,0.87] 0.81 [0.73,0.93]

CRP 0.49 [0.44, 0.55] 0.48 [0.44,0.54] 0.62 [0.51,0.73] 0.44 [0.41,0.50]

0.51 [0.43,0.60] 0.79 [0.71,0.87] 0.50 [0.39,0.67] 0.60 [0.47,0.71]

0.61 [0.52,0.69] 0.90 [0.84,0.94] 0.79 [0.66,0.94] 0.79 [0.67,0.88]

Potassium 0.48 [0.44, 0.54] 0.47 [0.44,0.54] 0.52 [0.49,0.60] 0.48 [0.51,0.44]

0.58 [0.49,0.66] 0.64 [0.46,0.72] 0.59 [0.52,0.69] 0.53 [0.63,0.43]

0.73 [0.60,0.84] 0.88 [0.77,0.95] 0.66 [0.60,0.83] 0.74 [0.64,0.86]

Sodium 0.48 [0.44, 0.54] 0.47 [0.44,0.54] 0.49 [0.45,0.57] 0.48 [0.42,0.53]

0.53 [0.43,0.68] 0.55 [0.34,0.73] 0.54 [0.42,0.70] 0.52 [0.46,0.58]

0.66 [0.56,0.74] 0.76 [0.67,0.89] 0.71 [0.55,0.90] 0.68 [0.63,0.79]

Creatinine 0.46 [0.40,0.53] 0.46 [0.44,0.50] 0.49 [0.47,0.57] 0.41 [0.34, 0.45]

0.55 [0.46,0.62] 0.61 [0.44,0.67] 0.50 [0.36,0.59] 0.52 [0.38,0.64]

0.79 [0.73,0.86] 0.69 [0.56,0.82] 0.68 [0.55,0.74] 0.75 [0.69,0.83]

ALAT 0.50 [0.44, 0.53] 0.49 [0.44,0.53] 0.57 [0.49,0.64] 0.54 [0.48,0.58]

0.61 [0.53,0.69] 0.54 [0.43,0.66] 0.63 [0.56,0.59] 0.49 [0.40,0.59]

0.69 [0.50,0.82] 0.61 [0.47,0.71] 0.76 [0.63,0.88] 0.67 [0.63,0.75]

Thrombocytes 0.57 [0.48,0.63] 0.56 [0.470.62] 0.57 [0.49,0.65] 0.57 [0.54,0.60]

0.56 [0.45,0.70] 0.66 [0.59,0.73] 0.61 [0.40,0.75] 0.49 [0.43,0.56]

0.73 [0.62,0.83] 0.73 [0.66,0.89] 0.65 [0.58,0.70] 0.68 [0.58,0.74]

Albumin 0.53 [0.41,0.65] 0.50 [0.41,0.64] 0.56 [0.52,0.60] 0.47 [0.42,0.50]

0.55 [0.40,0.66] 0.70 [0.44,0.84] 0.79 [0.55,0.92] 0.63 [0.54,0.69]

0.71 [0.48,0.89] 0.82 [0.69,0.93] 0.91 [0.88,0.92] 0.83 [0.77,0.92]

ALP 0.49 [0.38,0.54] 0.49 [0.41,0.53] 0.41 [0.36,0.54] 0.33 [0.31,0.36]

0.55 [0.43,0.67] 0.58 [0.53,0.65] 0.69 [0.64,0.75] 0.55 [0.44,0.71]

0.69 [0.50, 0.84] 0.63 [0.47,0.76] 0.69 [0.44,0.87] 0.74 [0.69,0.79]

from the EHR. Firstly, each laboratory test was used separately to predict SSI using linear and

non-linear classifiers after dealing with sparse data. Secondly, the use of multiple blood tests

to check the impact of combining them as well as the temporal-feature relative importance was

analyzed.

The database in this application was imbalanced, with 101 and 904 cases in the positive and
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negative classes, respectively. This is a common situation for clinical databases, where different

number of patients are assigned to each class. Since previous studies have demonstrated that

balanced classes in the training set often improve the overall classification performance [140].

An undersampling strategy (discarding samples from the majority class) was considered, such

that the training set was built by enforcing balanced classes. In order to represent correctly the

population, we selected a different number S of subsets of the negative class with 101 samples in

each, and computed classification performances in terms of the mean and the standard deviation

of the results for each subset.

A cross-validation strategy was used to ensure the generalizability of the prediction analytics.

After balancing the classes, data were split into training and test subsets (80%-20%). A LOO

cross-validation was carried out on the training subset of the balanced set for selecting the

classifier free parameters.

Effect of the imputation methods on the performance. Two different strategies, namely,

LOCF and warped-GP, were considered to deal with the extreme sparsity present in the input

space as given by different tests measured in a patient at different days.

LOCF. The last observed non-missing value was used to fill in the missing values into a

regular time sampling grid with a daily time basis, i.e., if there is a missing value, the previous

value is considered if it exists. A nonparametric resampling method to represent the averaged

trend was applied to statistically describe the influence of imputation. See two examples in

Fig. 4.8 (a) for CRP and Fig. 4.8 (b) Potassium tests. It is well known that CRP is a good

predictor for complications after colorectal surgery, and the pattern of CRP levels following

surgery (see Fig. 4.8 (a)) is consistent with that observed by Singh et al. [157]. Note that the

higher mean CRP levels before surgery reflects the smaller group size (cases) and thus larger

variance in this case. For most blood tests, a wider CI after LOCF imputation was obtained for

patients with SSI. Specifically, the data recorded at the day of surgery are highly noisy, as it can

be seen in Fig. 4.8. For this reason, we excluded these values from our analysis, and we focused

only on pre-operative and post-operative periods.

Warped function and GP. Using the time warped function Eq. (2.1), for each test we selected

values of α and β parameters which maximize the accuracy of the predictive system. For this

purpose, a grid search over values α ∈ [1, 10] and β ∈ [0, 100] was evaluated. A LOO strategy was

considered to ensure generalizability. The use of GP regression allows us to transform a set of

finite measurements contained in the EHR from each blood tests into a continuous longitudinal

function. In this way, missing values are inferred, allowing pre-operative and post-operative

feature extraction.

Prediction of SSI. Table 4.9 shows the pre-operative and post-operative classification

performance in terms of accuracy (mean and 95% CI) for each blood test individually when
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considering a LOCF strategy and warped function with GP methodology. Pre-operative stage

was defined as four days before surgery (i.e., N = 4), and four days immediately after surgery

were considered in the post-operative stage (i.e., N = 4). Linear and non-linear SVM classifiers

were considered for the prediction of SSI, and results were benchmarked with a simpler logistic

regression classifier [158]. Results suggest the presence of strong non-linear relationship among

input features for the analyzed tests, as given by consistently achieving the best performances

when a non-linear SVM was considered. Note also that the post-operative predictive power is in

general higher than pre-operative, which is to be expected.

Table 4.9 also shows that performance depends on the method used to deal with sparsity. In

general, the combination of warped function and GP improved results, however, it can be seen

that for some tests LOCF is better.

Feature Selection

Taking into account that nonlinear classifier provides a better prediction of SSI, the accuracy

using a non-linear SVM classifier was obtained for both pre-operative and post-operative stages.

First, all blood tests were considered together, i.e., N = 40 (first row in Table 4.10) and then

the FS method denoted as RBF RFE was applied (second row in Table 4.10). Comparison of

Table 4.9 and Table 4.10 shows that the model built with all tests provide in general higher

accuracy. Note also that a similar or tending to higher accuracy is obtained with the FS method,

so it is appropriate for addressing the interpretation of the relevance and meaning of the input

space.

Figure 4.9 summarizes the results of FS with non-linear SVM (with RBF kernel) in terms of

relevance of blood tests. Towards that end, how many times every feature is selected (frequency of

relevance) was calculated, separately for the pre-operative and post-operative stages. From these

values, a relevance index for each blood test is obtained as the normalization of the cumulative

frequency of relevance by number of days (N = 4) times the number of subsets (S = 5). Note

that a comparison with baseline level is remarkable for all tests (excepts sodium), indicating the

relevance of the intra-patient pre-operative levels on each test. In general terms, thrombocytes

reached the highest prediction information, together with ALP, CRP, albumin, creatinine and

leucocytes, most of them being consistent with previous results. Although less relevant in the

pre-operative state, the other tests (potassium, ALAT, and hemoglobin) also included highly

relevant information in the post-operative state.

4.4.4 Discussion and Conclusions

The results clearly demonstrate the utility of blood tests for predicting SSIs both pre-

and post-operatively. These results will potentially be useful as part of a data-driven online
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Figure 4.9: Pre-operative and post-operative relevance index for each blood test using LOCF (a)

and Warped-GP (b).

Table 4.10: Pre-operative and post-operative accuracy (mean and 95% CI), using all tests (RBF

SVM) and after considering RBF RFE FS method.
LOCF Warped-GP

Pre-operative Post-operative Pre-operative Post-operative

All tests 0.81 [0.76,0.86] 0.89 [0.92,0.97] 0.88 [0.79,0.92] 0.90 [0.87,0.92]

FS 0.83 [0.67,0.90] 0.91 [0.90,0.92] 0.87 [0.76,0.94] 0.92 [0.90,0.94]

clinical decision support system that can enable clinicians to improve post-surgical recovery

rates. With proper warning, necessary actions such as closer follow up and risk stratification can

be performed.

Laboratory tests are often done at the discretion of the clinician, and often not driven by

formulaic rules. This is part of the reason for the irregular sampling in the data, leading to the

problem formulation in this application. Thus, the blood tests pattern for patients in inpatient

care itself may be an informative feature of post-operative complications independent of the test

results. By generating the cohort by matching blood tests patterns, this information is largely

lost and only the test results remain as the informative features.

In retrospective EHR studies, there is inevitably the chance of a censoring effect where a test

result informs the clinician of a possible complication and the clinician takes appropriate and

successful action to avoid the complication. Then the pattern for complication will be present,

but not the complication itself, which leads to effectively mislabeled data, known as confounding

medical interventions [159]. In our case this is unlikely to be a large issue since there is little

information to act on to avoid a SSI such that most cases are likely to be correctly coded.

Using ICD10 and NCSP codes to phenotype a cohort there is a significant chance of miscoding
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leading to labeling errors. However, there is a far greater chance of false negatives (i.e., missing

coding) than false positives. In this case, the positive class will be correct while the negative

class may contain erroneous labels. When generating the cohort by matching we alleviate this

since a minority of patients get SSIs, and additionally we check for the Norwegian equivalent of

the word “infection" in the post-operative notes, which would almost surely appear if the patient

actually got an SSI.

In the literature several approaches for reducing SSI have recently been described. One of

the most popular existing risk models for SSI is the National Nosocomial Infection Surveillance

Basic SSI Risk Index [160]. Also, recently, a logistic regression model for predicting SSIs was

developed by van Walraven et al. [161]. A more data driven approach has been used by Gbegon

et al. predicting SSIs in real time within 30 days of the operation [162]. However, these studies

rely on clinical data, demographic and other information but does not take blood tests into

account. There exists validated risk assessment tools for post-operative complications, including

the Surgical AGPAR Score [163] and the POSSUM score [164]. Both of them assess the immediate

post-operative risk based on a number of variables. The American College of Surgeons’ NSQIP

risk calculator was developed as a preoperative risk stratification tool [165].

We have shown that our model has a potential for real time prediction and identification of

patients at risk for developing SSI. This can give decision support to clinicians, and treatment

plans can be adjusted taking into account the identified increased risk.



Chapter 5
Knowledge Management in Electronic Health
Record

5.1 Introduction

Health care providers require rapid and reliable decision-making processes in patient

diagnosis, treatment, and follow-up. In recent decades, not only the importance of clinical

decision support (CDS) systems has been widely studied [166, 167, 168], but also it is undergoing a

change from traditional medical approaches based on clinicians’ experiences to innovate methods

based of signal and image processing for supporting clinical decisions. On the other hand, medical

informatics provides a large variety of resources to healthcare community to improve many

issues of their clinical daily practice [169]. In this setting, EHR can be very useful to provide

access to the vast amount of clinical information and to share data among heterogenous Hospital

Information Systems (HIS) [170]. However, the ability to exchange data and to understand

clinical information from EHR with independence on the system (semantic interoperability) is a

major challenge in this field, specially in public health systems [171] .

The use of standards aims to allow the interoperability among different systems, in order to

provide to citizens and professionals with the access to the same clinical information anywhere.

The definition of clear and standardized connections among the current scientific knowledge,

its availability for the care community, and the actual patient databases, is becoming a

fundamental need for the clinical practice. In this scenario, ontologies and formal definition

of clinical concepts (archetypes) can be very useful to provide a structured access to the

vast amount of information in EHR, enabling the systems interoperability and the access to

heterogenous sources of information [172]. First, they are useful to formalize the design of a model

coping with connections among bio-signals, their representation, and the underlying anatomical,

113
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electrophysiological, and clinical concepts. Second, they can offer advanced interoperability

capabilities and foster the sharing of scientific and clinical information into a new level. And

third, medical and technological knowledge can be seamless translated into decision-support tools

in EHR.

On the other hand, Cardiovascular Risk Stratification (CVRS) constitutes a patient

classification technique widely used in clinical practice, allowing cardiologist to focus resources

on patients with higher cardiac morbidity and mortality risk. This patient classification has

impact not only on the patient diagnose and treatment decision-making, but also on cost

analysis, billing/funding, and clinical quality assessment. Last decade, many clinical, scientific

and technical research has been devoted to CVRS [173], and many risk estimators, based on

complex signal processing techniques, have been proposed to compute a set of indices from the

electrocardiogram (ECG) signal included in EHR. Standardization of the CVRS domain is a

complex and long-term task, not only due to the complexity of the domain itself, but also to

the enormous variety of signal processing techniques proposed in the literature to calculate these

indices.

In this context, SNOMED-CT (Systematized Nomenclature of Medicine - Clinical Terms) is

the most comprehensive and precise clinical health terminology in the world, and it is accepted as

a common global language for health terms. Most of current EHRs are adopting SNOMED-CT

as their standard for the electronic exchange of clinical information [174] in the health systems

of different countries [175, 176, 177, 178].

On the other hand, the goal of CEN/ISO EN13606 standard is to achieve the semantic

interoperability in the EHR following a Dual Model architecture. The main advantage of the Dual

Model is that knowledge is upgraded when it changes, whereas the Reference Model (information)

remains unaltered. Archetypes are formal definitions of clinical concepts in the form of structured

and constrained combinations of the entities of a Reference Model, providing a semantic meaning

to a Reference Model structure [179, 180, 181].

Ontologies and archetypes can be used for developing a CVRS standardization framework, in

close connection to the EHR, and including relevant cardiac signal processing techniques. Thus,

given the generality and vastness of the CVRS domain, the Heart Rate Turbulence (HRT) is

studied as indicator of CVRS, since it represents a very well established domain, with concise

guidelines and clear procedures to obtain cardiac indices [173].

5.1.1 Heart Rate Turbulence

The HRT evaluation has been found to be one of the most promising noninvasive predictors

in CVRS after acute myocardial infarction [173]. The term HRT describes the phenomenon of

short-term fluctuation in the heart sinus cycle length over about 20 beats following a Ventricular
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(a)

(b)

Figure 5.1: HRT analysis and parameters extraction: (a) ECG recording with identification of

VPC (the coupling interval of the VPC in red) and a posterior CP (in blue); (b) HRT tachogram.

Premature Complex (VPC). The HRT is usually assessed from the ECG monitoring for 24 hours

(24-h Holter recordings) in which the VPCs are identified and one tachogram (representation of

the RR intervals versus the number of RR interval) per VPC is built. For the HRT analysis, the

tachogram is built by taking 5 sinus RR intervals, the VPC coupling interval, the compensatory

pause (CP, at the zero value of the abscissa-axis in the tachogram), and the subsequent 15 to

20 sinus RR interval, in this same order. An example of ECG recording, the VPC, and its

corresponding HRT tachogram are shown in Fig. 5.1.

Conventionally, the HRT is quantified by two parameters, namely, the turbulence onset (TO)

and the turbulence slope (TS). TO reflects the amount of sinus acceleration after a VPC, and it

is calculated as the following relative difference:

TO =
(RR1 +RR2)− (RR−2 +RR−1)

(RR−2 +RR−1)
× 100 [%] (5.1)

where RR1 and RR2 are the two RR intervals immediately preceding (following) the VPC

coupling. TS measures the rate of sinus deceleration following sinus acceleration, and it is

defined as the maximum positive regression slope assessed over any five consecutive sinus RR

intervals within the first 15 or 20 sinus RR interval after the VPC [173].

From the obtained set of VPC tachograms during 24h, the HRT analysis can be conducted

in two ways: (1) estimating parameters TO and TS from each individual VPC tachogram;

and (2) averaging all individual tachograms and then estimating the HRT parameters from

the averaged tachogram, according to the guidelines [173]. Note that the averaging process

in the VPC-tachogram calculation could be masking physiological effects, in addition to the

expected denoising. Accordingly, several advanced signal processing procedures, including SVM

nonlinear regression, have been proposed for denoising individual VPC-tachograms [182]. These
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methods have proven to be effective for denoising from a technical and physiological point of view,

however, their impact on the CVRS capabilities has not been benchmarked with the averaged

VPC-tachogram, and hence it remains an open research issue.

The HRT quantification has also been tackled with other different approaches from the signal

processing point of view, such as turbulence timing, turbulence jump, TS correlation coefficient

[183], or statistical detectors based on integral pulse frequency modulation model [184, 185].

On the other hand, authors in [173] reported and summarized the influence of several clinical

characteristics on TO and TS parameters. As an example, left ventricular ejection fraction

(LVEF) influences significantly in HRT. Furthermore, HRT is abolished at vagal blockade with

atropine, and is reduced at high heart rate. Angiotension-converting receptor blockers have

shown to increase both TO and TS parameters, but HRT is unaffected by beta-blockade. All

these clinical characteristics have been included and represented as concepts in the proposed

HRT ontology, described in detail in Sec. 5.2.1.

Absence of HRT is a noninvasive predictor of cardiac mortality following myocardial

infarction. However, in other non-ischemic cardiac pathologies, HRT can remain without

modification, or can exhibit demonstrable reduction but without proven value for risk

stratification purposes. Watanabe and Schmidt examined in [186] whether HRT is a suitable

risk predictor for mortality on patients with other non-ischemic cardiac pathologies. To cite

some examples, HRT has not been determined to be a risk predictor in patients with Chagas,

whereas in patients with dilated cardiomyopathy, it was significantly reduced. In contrast, HRT

was not shown to be a risk predictor in hypertrophic cardiomyopathy patients. Finally, a

study of 50 patients of Congestive Heart Failure (CHF) found that TS was a good predictor

of rehospitalization and death.

5.1.2 The Conceptual Model of SNOMED-CT

A representation of biomedicine domains is currently being provided by the increasing use

of different ontologies. For example, Unified Medical Language System (UMLS) is a repository

of biomedical vocabularies developed by the United State National Library of Medicine. The

Foundational Model of Anatomy Ontology (FMA) represents concepts related to the phenotypic

structure of the human body in a form that is interpretable by machines [187]. The GALEN

ontology contains many medical concepts, though not strongly specialized on the cardiac

domain [188]. Recently, SNOMED-CT has become probably the most comprehensive biomedical

terminology, with a centrally standardized and maintained clinical terminology commercially

available [178]. Previous works on ECG ontologies ([189, 190, 191, 192]) aimed to give a principled

approach to the cardiac domain, but their standardization with EHR is not yet warrantied and

they are not oriented to CVRS. The controlled vocabulary of SNOMED-CT was used in [193] to
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create a patient profile ontology facilitating the semantic interoperability and the contribution of

new knowledge in an heterogeneous domain. SNOMED-CT has also been used in [194] to create

an ontology for the lung domain.

SNOMED-CT is an standardized and multilingual vocabulary of clinical terminology,

resulting from the merging of SNOMED Reference Terminology (SNOMED RT) and Clinical

Terms Version 3. Currently the not-for-profit International Health Terminology Standards

Development Organization (IHTSDO) maintains the SNOMED-CT technical design, its core

content, and the related technical documentation. Members of IHTSDO can be either agencies of

national government, or other bodies endorsed by an appropriate national governments authority

within the country it represents (19 countries are current members). IHTSDO distributes two

releases of SNOMED-CT per year (January and July) [178].

SNOMED-CT probably represents the most complete classification for clinical use, being the

reference to terminologies for different health professionals. It consists of a structured collection

of health care terms, which are attached to concept codes with multiple definitions per code.

SNOMED-CT is composed of concepts, descriptions (terms) and relationships, as well as other

components (including extensions, reference sets, cross maps, and historical tables) [178]. A

concept is a clinical meaning identified by a unique identifier (ConceptID) that never changes.

Concept attributes can be used to create a new relationship among concepts. Some attribute

examples are “associated with”, “severity” or “has interpretation”. The January version of 2012

includes more than 295.000 active concepts, with formal logic-based definitions organized into

19 top-level hierarchies (axes) representing body structure, clinical findings, geographic location,

pharmaceutical or biological products. Descriptions (or terms) are the phrases used to name a

concept, hence identifying a description with a unique DescriptionID. The January 2012 release

contains more than 769.000 active English-language descriptions. Concepts in SNOMED-CT are

logically defined through their relationships. Each active concept has at least one is a relationship

to a super type concept (except for the SNOMED-CT root concept). It is important to note

that is a relationships are the basis of SNOMED-CT hierarchies. There can be multi-hierarchies

when a concept has more than one is a relationship. The January 2012 release provides more

than 837.000 logically defined relationships (from a total of 1.444.673).

The SNOMED-CT conceptual model is used to specify logical definitions of concepts. It

is based on a combination of formal logic and a set of rules determining the permitted attributes

and values.

Although SNOMED-CT includes more than 295.000 active concepts, this impressive number

can be not enough for representing many clinical expert domains, and for this reason, local

and national extensions can be created. This way, contents (such as subsets of concepts) may

be locally delivered by an specific clinical expert group, with the possibility to be moved to a
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national extension and then to the international core.

SNOMED-CT is distributed as a set of tab-delimited text files that can be imported into a

relational database. Owing to the huge number of concepts and relationships, several software

tools have been developed to browse the whole terminology. CliniClue [195] is the browser used

in this work.

5.1.3 CEN/ISO EN13606 standard

According to Institute of Electrical and Electronics Engineers (IEEE) interoperability is

defined as the ability of two or more systems or components to exchange information and to

use the information that has been exchanged. Two types of interoperability can be defined,

namely, syntactic and semantic interoperability [179]. The first one refers to the capacity of

communicating and exchanging data among two or more systems. Towards that end, specified

data formats and communication protocols such as XML or SQL are required. This type of

the interoperability is the base for any attempts of further interoperability. On the other hand,

semantic interoperability is the ability to automatically interpret the information exchanged

meaningfully and accurately in order to produce useful results as defined by the end users of

both systems.

In healthcare domain, semantic interoperability is even a more important and difficult

task, specially due to both scientific and technological field are changed, making necessary the

development of new methodologies of information management. Among them, the dual model

approach is the most promising approach. CEN/ISO EN13606 standard is to achieve the semantic

interoperability in the EHR following a Dual Model architecture. The main advantage of the

Dual Model is that knowledge (archetypes) is upgraded when it changes, whereas the Reference

Model (information) remains unaltered.

A Reference Model is an object oriented model which compromises a small set of classes that

define the generic building blocks to construct EHRs. It is used to represent the generic and

stable properties of health record information [179]. The elements of the Reference Model are

the following [179]: (1) a set of primitive types; (2) a set of classes that define the building blocks

of EHRs, being any annotation in an EHR an instance of one of these classes (called entities).

Specifically, the EN13606 standard defines six types of entities, namely, folder, composition,

section, entry, cluster and element; and (3) a set of auxiliary classes that describe the context

information such as the versioning to be attached to an EHR annotation.

On the other hand, archetypes are formal definitions of clinical concepts in the form of

structured and constrained combinations of the entities of a Reference Model, providing a

semantic meaning to a Reference Model structure [179, 180, 181]. They represent a specific

clinical concept, such as blood pressure measurement. Archetypes are composed of three main
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sections: header, definition and ontology [181]. The first one contains metadata such as authoring

information. In the definition section, the clinical concepts is described by containing the

Reference Model entities on: the range of attributes of primitive types; the existence of attributes,

i.e. whether a value is mandatory for the attribute in run time data or the cardinality of

attributes, i.e. whether the attribute is multi-valuate or not, among others [181]. The last

section, ontology, the the entities defined in the previous section are described and bound to

terminologies. Note that archetypes should be define by health domain experts.

Archetype Definition Language (ADL) is a formal language to express standard archetypes

for any reference model [196, 197] using two main syntaxes: Data definition syntax (dADL)

and constraint definition syntaxes (cADL). The basic structure of an ADL file consists of three

main sections: (1) header, which includes specialized data and metadata about the archetype

such as author, version, and status; (2) body, which contains the main formal definition of the

archetype and the constraints created from the Reference Model; and (3) terminology section,

which contains the ontology, the term definitions, and the map from archetype nodes to standard

terminology concepts (binding). The body includes the structure and constraints of the clinical

concept defined by the archetype.

In this Thesis, we focus on the standardization of the CVRS based on HRT to achieve the

semantic interoperability among different EHRs. Towards that end, a HRT ontology and various

archetypes were built. Furthermore, a web prototype, based on the ontology and archetypes,

was created to overcome the technical limitations found when working with different HIS.

5.2 Application 5.1: Ontology for Clinical Decision Support in

EHR

This work has been devoted to create a HRT ontology yielding a well defined representation of

the HRT domain in the EHR context. Two possible uses for the HRT ontology in the EHR context

are next addressed: (1) clinical HRT recordings, often maintained by scientific societies, with

simple access to conventional and new EHR fields by means of SNOMED-CT periodic updates;

(2) retrospective and/or prospective scientific research studies, involving the patient information

in EHR, including further patient detailed information and enabling signal processing capabilities.

Recall that, since HRT indices are not fully established, their current use is not feasible in the

medical routine yet. In this sense, this work aims to be a contribution towards its extensive use

and exploitation in the clinical practice.

Two use studies are next presented. The first one corresponds to the practical implementation

of the HRT ontology for its support to regional and national recordings in medical scientific

societies. It can be considered as a prototype, and has been implemented in the HIS of the
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Figure 5.2: Schema of some concepts and the corresponding Concept Id for the proposed HRT

ontology. Circles (rectangles) indicate original (extended) concepts. Arrow direction indicates a

relation is-a between origin and destination.

Table 5.1: Some SNOMED-CT Object Properties in HRT ontology. Local extended concepts

are in italic.

Concept 1 Object Property Concept 2

Normal heart rate_78663003 Interprets_363714003 Cardiac conducting system structure_24964005
Disorder of cardiac function_105981003 Finding site_363698007 Heart structure_80891009
Disorder of cardiac ventricle_415991003 Finding site_363698007 Cardiac ventricular structure_21814001
24 hour ECG_252417001 Method_260686004 Monitoring-action_360152008
24 hour ECG_252417001 Using device_424226004 Electrocardiographic monitor and recorder_74108008

HRT_971000888107 is a measurement of_161000888104 Baroreceptor_reflex_28001007
TO_641000888108 is influenced by_191000888105 Left_ventricular_ejection_fraction_250908004
TS_731000888107 is influenced by_191000888105 Left_ventricular_ejection_fraction_250908004
TS_731000888107 is calculated in_101000888100 Averaged tachogram_491000888104

University Hospital of Fuenlabrada (Madrid, Spain). The second use study is a simple application

example for medical data support involving EHR and signal processing techniques. Note that the

number of hospital centers that can be joined to this research study can increase in relation to

just using conventional follow-up mechanisms (such as handwritten documental support or web

technology server support). Both studies are based on the HRT ontology, thus, its construction

is first described.
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(a) (b)

Figure 5.3: Software tools for ontology design support and SNOMED-CT browser: (a) CliniClue

Xplore screenshot, with ECG feature concept and its hierarchy, status and identificator; (b)

Protégé screenshot remarking one concept and its corresponding SNOMED-CT concept identifier.

5.2.1 Ontology based on SNOMED-CT

Several languages have been proposed for building ontologies. Both Resource Description

Framework (RDF) and Web Ontology Language (OWL) are based on the Extensible Markup

Language (XML), as proposed by the World Wide Web Consortium (W3C) [198, 199, 200]. OWL

has been chosen in this work because it is widely-used as standard for representing and sharing

knowledge in the semantic web context [201]. Furthermore, it can provide additional vocabulary

with formal semantic, hence yielding a greater machine interpretability than that supported by

XML or RDF.

The construction of the HRT ontology using OWL was based on the methodology proposed

in [202], with the following steps:

(1) Determine the domain. The goal in this work has been the HRT domain (previously

defined in Section 5.1.1).

(2) Enumerate the relevant concepts. First, a set of clinical, anatomical, electrophysiological,

and pharmacological features, were identified in order to provide an accurate representation of

the HRT domain. Most of the clinical concepts were based on existing SNOMED-CT concepts.

However, a subset of 19 concepts (over 308) could not be taken from SNOMED-CT and were

extended using the Fuenlabrada Hospital namespace. Figure 5.2 shows an schema of some

concepts and their is-a relationships, where the 19 extended concepts are in rectangle.

(3) Define the concepts and their hierarchy (down-top development process). HRT concepts

directly mapped on the SNOMED-CT terminology followed the SNOMED-CT hierarchy. For the
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19 extended concepts, the SNOMED-CT axis associated to each concept was first decided, e.g., in

a body structure, in a clinical finding, or in an observable entity. Then, the concept was assigned to

its parent class. The SNOMED-CT January 2012 release was systematically examined using the

CliniClue terminology browser [195] to determine whether the defined concepts were represented

in the terminology. Figure 5.3(a) shows an example of a defined concept (ECG feature), its

hierarchy, status and identification (Concept ID). In Fig. 5.3(b), a screenshot of Protégé (an

open source ontology editor) shows the ECG feature concept in our HRT ontology hierarchy.

The concept ID was used to extent the term of the ECG feature concept, what could be used in

future to standardize the ontology concepts, in such a way that they can be used in any EHR.

A public available version of these concepts and their relationships is-a can be found at [203].

(4) Define the properties of the concepts. There are two properties. Data Properties define

features associated with one concept, whereas Object Properties define relationships between

two concepts. Table 5.1 presents some concepts and Object properties used in the HRT domain.

Extended concepts and extended properties are shown in italic. Note that extended concepts

require new properties to relate them to other concepts.

(5) Use the inference mechanism, in this work, to get a risk stratification criterion for

patients with CHF. Note that the logic description implemented by OWL does not offer

inference capabilities. Semantic Web Rule Language (SWRL), the rule language to infer new

knowledge [204], has been considered in this work for this purpose. SWRL extends the set

of OWL axioms to include Horn-like rules [205] for enriching the ontology with logical rules

descriptions to step up the knowledge discovered by the concepts, by their relations, and by the

mining process (when it is considered).

5.2.2 Ontology Prototype in EHR

Scientific medical societies often maintain regional (or national) recordings for specific and

relevant aspects of their field, for instance, the implantable cardioverter defibrillator recording

from cardiology societies [206]. These recordings include basic information about the patient

data and additional information about the specific subject, mostly compiled by accessing to

EHR, handwritten additional documentation, and in best cases, web technology support. The

previously described HRT ontology has been used to implement a prototype providing with

advanced support to a HRT recording. The HRT ontology is being tested in the HIS of

University Hospital of Fuenlabrada (SeleneTM system from the Siemens company). In this

prototype, the most relevant clinical variables in the HRT domain have been gotten into three

groups: (1) Patient data, such as age, smoking, or alcohol; (2) Domain concepts, such as

structural heart disease, other heart disease, heart failure, history of arrhythmic episodes (atrial

fibrillation, ventricular tachycardia, ventricular fibrillation, sinus dysfunction), other arrhythmic
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Figure 5.4: Developed and implemented prototype of HRT ontology in EHR, for supporting

regional and national recordings from scientific societies in the context of HRT follow-up with

basic data.

episodes, non cardiac diseases, other non cardiac diseases, and TO and TS values; (3) other

relevant concepts for decision making, such as diabetes mellitus, glycated hemoglobin, arterial

hypertension, or drugs. The prototype infers the risk in terms of the TO and TS values from

24h Holter data.

Note that a key issue is the calculation of TO and TS from signal processing techniques

considering 24h Holter recordings. Though this calculation can be manual and offline, it is

possible to automate this process by accessing to a specialized remote server enabling the use of

signal processing techniques on the Holter recordings.

The information compiled by the prototype can be used to create an HRT recording to give

support to the health centers with reduced cost and effort, undoubtedly increasing the knowledge

on actual HRT incidence in connection with basic data in EHR.

Figure 5.4 shows a screenshot of the prototype. Though it has been created by a reduced

expert committee, remark here that it should be validated by the corresponding scientific society

to reach a consensus on other factors influencing the HRT and their inclusion in a prototype
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Table 5.2: Cardiovascular risk stratification results.

Avg. tach. Indiv. tach. Indiv. tach. with SVM

C0 C1 C2 C0(%) C1(%) C2(%) C0(%) C1(%) C2(%)
Total

tach.

- - x 13.5 46.0 40.5 0.0 10.8 89.2 37

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

- x - 65.0 35.0 0.0 65.0 35.0 0.0 40

x - - 90.7 9.3 0.0 98.8 1.2 0.0 86

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

x - - 89.0 0.0 11.0 77.8 22.2 0.0 9

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

x - - 50.0 50.0 0.0 100.0 0.0 0.0 2

x - - 69.6 30.4 0.0 87.0 13.0 0.0 23

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

x - - 100.0 0.0 0.0 100.0 0.0 0.0 1

x - - 100.0 0.0 0.0 100.0 0.0 0.0 2

- x - 0.0 100.0 0.0 0.0 100.0 0.0 1

x - - 82.1 17.9 0.0 94.6 5.4 0.0 56

- x - 0.0 100.0 0.0 0.0 100.0 0.0 1

- x - 0.0 100.0 0.0 0.0 100.0 0.0 1

- x - 0.0 100.0 0.0 0.0 100.0 0.0 1

- x - 50.0 50.0 0.0 0.0 100.0 0.0 2

- x - 0.0 75.0 25.0 0.0 25.0 75.0 4

- - x 0.0 0.0 100.0 0.0 0.0 100.0 1

x - - 100.0 0.0 0.0 66.7 33.3 0.00 3

x - - 100.0 0.0 0.0 100.0 0.0 0.00 1

- x - 0.0 100.0 0.0 0.0 100.0 0.00 1

- x - 50.0 50.0 0.0 0.0 100.0 0.00 2

- x - 60.9 34.8 4.3 43.5 56.5 0.00 69

extension. For instance, factors such as cardiopathy, drugs and non-cardiac illness, which can

affect HRT, can be present simultaneously; a patient can have ischemic cardiopathy as well

as valvular cardiopathy or can have beta-blockers and amiodarone at the same time. Hence,

determining the need for multiple choice or main description has to be established. Also, relevant

cardiological information for risk stratification which can be readily obtained from the EHR has

to be taken into account, such as ejection fraction.
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5.2.3 HRT Clinical Decision Support

As a second use case, the proposed HRT ontology was used to provide support to a study

with ECG recordings. The study has a multidisciplinary clinical and technical scope, and aimed

to compare both conventional and emergent signal processing methods for calculating HRT

parameters described in Section 5.1.1. The goal is to analyze the effect of applying different

signal processing techniques for the HRT indices calculation. This analysis is limited to the

comparison of the TO and TS values (HRT indices) obtained with three procedures involving

the tachogram, namely: (1) conventional averaged-tachogram; (2) individual tachograms without

denoising; and (3) individual tachograms with SVM denoising for each tachogram (see [182] for

signal processing details).

We should take into account that, in most clinical studies, values of TO < 0 % and TS > 2.5

ms/RR-intervals are considered as normal after acute myocardial infarction and monitoring of

disease progression in CHF [173]. However, the cut-off values used for risk stratification of

patients suffering other heart diseases are not clearly defined. In healthy subjects, up to four

studies have reported that averaged TO ranged from -2.7% to -2.3% and averaged TS ranged

from 11.0 to 19.2 ms/RR-intervals [173]. A cut-off value of 3 ms/RR-intervals for TS was

proposed as the optimal stratification value for patients with CHF [207]. In the MUSIC trial,

a prospective multicenter longitudinal study was designed to assess risk predictors in patients

with CHF, identifying high-risk quartiles as TS ≤ 1.27 ms/RR-intervals and TO ≥ 0.25 %.

In this work, a database of 24h Holter recordings from CHF patients has been collected in the

Arrhythmia Unit of University Hospital Virgen de la Arrixaca (Murcia, Spain). RR-tachograms

were analyzed to identify reliable individual VPC tachograms, according to the criteria proposed

in [173]. Up to 27 of 60 recordings were useful for this analysis (14 recordings with only

one individual VPC tachogram). According to guidelines [173], cut-off values of 0 % and 2.5

ms/RR-intervals for TO and TS, respectively, were used to classify HRT indices into three

categories. First, C0 when both TO and TS are normal (i.e. TO < 0 and TS > 2.5); then, C1

when either TO or TS is abnormal (i.e. TO > 0 or TS < 2.5); and finally C2 when both TO and

TS are abnormal (i.e. TO > 0 and TS < 2.5). OWL can deal with classification problems using

description logic, but many applications for risk stratification (as it was in this work) require

ontologies and rules together, i.e., SWRL [208].

Table 5.2 shows the 27 patients of our database and their corresponding classification

according to the three previously procedures: conventional averaged VPC tachogram criterion

(first column, Avg. tach.), individual VPC tachograms without denoising (second column, Indiv.

tach.) and individual VPC tachograms with SVM denoising (third column , Indiv. tach. with

SVM). Total number of individual tachograms is presented in last column (Total. tach.). The

category assignment is indicated with a cross for the first procedure. For the two remaining
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Figure 5.5: Example of concepts, descriptions, constraints and values from the Patient Summary

archetype in HTLM format.

procedures, Table 5.2 shows the percentage of individual tachograms assigned to each category

(boldface for the majority percentage); the patient is assigned to the majority category.

Parameters obtained by conventional averaged tachogram classified 15, 10, and 2 patients

on C0, C1, and C2, respectively. For comparison purposes, patient classification according to

raw individual VPC tachograms, was 16, 7, and 1, with no majority percentage for 3 patients.

The procedure based on individual SVM filtering yielded 16, 8, and 3 patients. Note that there

are 3 patients (11%) with more than 30 tachograms which are differently classified when using

conventional and individual raw tachograms. Comparison of conventional and SVM denoising

procedures shows that just 2 patients (7%) are classified in different categories, one patient with

40 beats is assigned to C0 (underestimation regarding conventional procedure) and another one

with 4 beats is assigned to C2 (overestimation regarding conventional procedure).

From the previous analysis with a reduced number of patients, it can be said that the class

assignment is dependent on the signal processing algorithm previous to TO and TS calculations.

The most adequate procedure could be assessed by increasing the number of patients. This

could be achieved with affordable technical and medical effort by means of the inclusion of the

HRT ontology in the EHR. Remark here that the use of a remote server for indices calculation

using signal processing techniques has shown to be convenient (information about the project

is available in spanish at: http://vpredict.org/formacion; research results will be presented in a

dedicated work).

5.3 Application 5.2: From Archetypes to EHR Web Prototype

In the previous application, an ontology was built based on the conceptual model of

SNOMED-CT for CVRS using ECG-derived indices. The ontology was focused on the current

knowledge of HRT, since it represents a low complexity model domain (see [209]). As previously

described, two use studies were proposed therein. The first one corresponded to the practical

development of a clinical form based on the HRT ontology, which was implemented in the HIS

of University Hospital of Fuenlabrada (Madrid, Spain). The second one was a simple application

example for CDS involving the EHR and signal processing techniques. Two main drawbacks
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were found in these practical implementations. On the one hand, the implementation of the

HRT form in different HIS was very difficult to reach, due to changes in commercial systems

requiring a political consensus. On the other hand, the HRT form based on the ontology did not

achieve semantic interoperability in the EHR because it was created with no clinical standard to

represent the relevant health information.

To overcome these drawbacks presented previously, the aim of this work was to create a

rigorous and stable information architecture for communicating some parts (or all) of the EHR of

a single subject of care (patient) among heterogenous HIS, by using a web prototype to account

for the technical requirements of different systems. To achieve this goal, a CVRS archetype

following the CEN/ISO EN13606 standard to achieve the interoperability among heterogenous

HIS is proposed in this work. A simple and helpful way of binding archetypes to the HRT

ontology is also addressed.

Apart from that, a threefold web prototype to get semantic interoperability among

heterogenous EHR systems was developed in this work. First, a web prototype, called HRT

Archetype Proto was built from clinical archetypes, so that their advantages in the EHR are also

maintained in the prototype. It is proposed an HRT archetype transformation which allowed

importing the nodes of the archetypes as fields in a MySQL HRT database. Data generated by

the prototype were saved in this database. Second, a server-based ontology system has been

incorporated into the prototype for binding the nodes of the archetype to the HRT ontology.

Third, the EHR data were exported in xml files, which allowed their sharing among heterogenous

systems.

The web prototype supports: (1) the use of clinical standards for CDS; and (2) the

development of a structured database to scientifically assess and improve the knowledge of the

HRT domain for allowing the wider and subsequent CVRS domain expansion.

5.3.1 HRT Archetype Prototype

In this work, the standardization of different domains using the CEN/ISO EN13606 standard

as recommended in [210] is proposed. Specifically, the recommendation suggests that semantic

interoperability is an essential factor in achieving the benefits of EHR to improve the quality

and safety of patient care, public health, clinical research, and health service management. The

Commission in [210] encourages the use of standards to represent the relevant health information

for a particular application using data structures (such as archetype and templates), terminology

systems and ontologies.

Archetype Editor software [211] was used to build an HRT archetype and a Patient Summary

archetype. A group of clinicians from different hospitals agreed that two archetypes were needed

to separate the summary of the patient data from data related to HRT CVRS. These two
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Figure 5.6: Screenshot of the HRT archetype nodes.

archetypes were used to model and improve the knowledge of these domains. Furthermore,

clinicians defined all the nodes and constraints of both archetypes, achieving the best knowledge

representation from a clinical viewpoint. An example of a set of concepts, definitions, constraints

and values from the Patient Summary archetype are shown in Fig. 5.5. This archetype

records health information potentially useful for HRT CVRS. It also includes factors such as

hypertension, gender, or previous heart diseases. Free text is only allowed in fields “other drugs”

and “other heart disease”, allowing clinicians to include additional information.

On the other hand, the HRT archetype compiles the information of 24h Holter recordings, in

order to infer the CVRS in terms of HRT indices (see Fig. 5.6). CVRS was inferred using TS and

TO values, considering the cut-off values and categories described previously. Since the clinical

evidence of other factors influencing the HRT has not been clearly validated yet, they were not

considered to infer CVRS. However, they were recorded for future follow-up, and for accounting

for this kind of clinical information in the web prototype.

In order to obtain semantic interoperability, knowledge and information were separated by

following a twofold schema. On the one hand, knowledge is provided by clinical experts by

defining the domain elements directly using an archetype editor software, which was Archetype

Editor Ocean Informatics in this implementation. On the other hand, information is managed

and supported by the web prototype HRT Archetype Proto. Figure 5.7 (a) shows the followed

approach: first, archetypes were built; second, the ADL files obtained into a csv file were exported

to extract the information related to nodes of the archetypes and their constrains; and third,

this csv file was used to generate a clinical standard table in a MySQL database, hence allowing

the development of HRT Archetype Proto.

A manual process was followed to incorporate in the web prototype all the nodes and

constraints extracted from the archetypes. In particular, constraints such as ranges of allowed
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(a) (b)

Figure 5.7: Schema for: (a) exporting the information related to the nodes of the archetypes into

fields of the HRT database; (b) the server-based ontology system integrated in the HRT Archetype

Proto Web prototype.

values and coded text options were considered, as shown in Fig. 5.5. Apache, PHP, MySQL and

phpMyAdmin were installed under the web development environment WampServer to design the

prototype. The web prototype not only allows management of patient data and EHR (add, edit,

view, delete), but also, it provides with other functionalities: (1) it allows binding the nodes of

archetypes to concepts drawn from HRT ontology; and (2) EHR exporting in order to enable

sharing of clinical information.

5.3.2 Server-Based Ontology System Archetype Binding

Binding process consists on the structural relationship between the archetypes nodes and

the terminology concepts. Several methods have been proposed for automatic or semi-automatic

binding. For example, authors in [212] proposed an archetype editor which supports a manual

or a semi-automatic binding process. However, this editor has not been updated since 2008. In

[213], an automatic binding mechanism based on an information retrieval system was evaluated.

In this work a solution to help clinicians to use the previously defined ontology without

requiring either a terminology server or a specific software is proposed. Specifically, a simple

system to bind SNOMED-CT concepts from the HRT ontology with the nodes of the HRT

archetype were built. For this aim, the schema shown in Fig. 5.7 (b) was followed. As first step,

Protégé software tool was used to export the HRT ontology created in [209] into an xml file. This

file was converted to csv format to be able to easily add other SNOMED-CT concepts useful

for binding which were not included previously in the HRT ontology. The obtained csv file was
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(a) (b)

Figure 5.8: Binding process: (a) Screenshot of the binding process integrated in the HRT

Archetype Proto Web prototype; (b) Example of ADL file after the binding process.

imported into a table in the HRT database. As a second step, the archetypes nodes (codes and

names) were also imported into a table in the HRT database as explained in the previous section.

Finally, the HRT Archetype Proto Web prototype automatically generates two drop-down

lists that allow the user to match archetypes nodes with the concepts from the ontology (see

Fig. 5.8 (a)). These pairings are temporarily stored in a table in HRT database, and deleted

once the entire process has finished. With the binding data stored in the HRT database, the

HRT Archetype Proto web prototype, automatically writes into the portion corresponding to the

binding code of the original ADL file (see Fig. 5.8 (b)), hence completing the binding process.

The web prototype allows the user to download the generated ADL file with the binding terms,

therefore, it can be now readily shared among different systems.

5.3.3 Clinical Data Export for Semantic Interoperability

The interoperability among different health care systems was pursued in this work by: (1)

creating a structured data based on the standard CEN/ISO EN136066; (2) using SNOMED-CT,

since it guaranteed the standardization and interoperability with emerging EHR; and (3)

exporting clinical data in xml to be shared with fully meaning among different systems. The

last process was developed according to the schema shown in Fig. 5.9 (a). First, the Template

Designer software [214] was used to export the information of the path of each archetype node

and its datatype and classtype in an xml file. An example of the structure of the xml file

is shown in Fig. 5.9(b). Next, data of this template were imported into a table in the HRT

database. This database contains all data generated when a new EHR extract is created using



5.3 Application 5.2: From Archetypes to EHR Web Prototype 131

(a) (b)

Figure 5.9: Exporting clinical data in xml: (a) schema for semantic interoperability; (b) Extract

of the xml file obtained from Template Designer software with path, datatype and dataclass

information..

Figure 5.10: Extract of the xml EHR file generated by the HRT Archetype Proto Web prototype.

the web prototype HRT Archetype Proto. Finally, the web prototype generates xml files in the

form of EHR extracts, by combining the data from the nodes of the archetype and the EHR

data entered by the clinicians, both stored in the HRT database. These extracts have the same

structure and constraints as the built archetypes, so they provide the same advantages, i.e.

semantic interoperability. Figure 5.10 presents an example of an xml file generated by the HRT

web prototype.
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The information compiled by the prototype can be used to create standard HRT records

to give support to the health centers with reduced cost and effort, undoubtedly increasing the

knowledge on actual HRT incidence in connection with basic data in the EHR.

5.4 Discussion and Conclusions

This work has addressed the proposal and building of an ontology for CVRS based on

ECG-derived indices, focused on the current knowledge of HRT due to its well-defined procedures

for parameters calculation and concise guidelines. Other ECG-derived indices, such as Heart Rate

Variability (HRV), T-wave alternans (TWA), deceleration capacity, and many others, have also

been proposed to assess CVRS [215, 216, 217], however, their knowledge domains are significantly

more extensive, and consequently they will require further and specific work. The HRT ontology

has been used here for putting together for the first time most of the relevant elements of

HRT, standardization, ontologies, and SNOMED-CT, in the CVRS setting, considering signal

processing resources as well.

The present work has also addressed the proposal and building of a web prototype, called

HRT Archetype Proto, for achieving semantic interoperability among heterogeneous EHRs, by

using ontologies and archetypes. HRT Archetype Proto provides the user with several novel

functionalities. First, the creation and maintenance of EHR extracts from the knowledge of the

HRT archetype; second, the binding process using the SNOMED-CT concepts from the HRT

ontology; and third, the exporting of these extracts in xml files, hence allowing their sharing

with fully semantic meaning among different systems, since these extracts are generated from

archetypes. Interoperability with EHR has been reinforced by applying the conceptual model of

SNOMED-CT, hence allowing a clear identification of the directions to put the effort in oncoming

work.

Two representative use studies have been first presented. First, a prototype was implemented

in the University Hospital of Fuenlabrada (Madrid, Spain), in order to support HRT recordings

simple follow- up by medical societies. Second, a simple application of risk categorization has

been used for yielding a straightforward comparison between conventional and emergent signal

processing techniques in the HRT indices calculations, and its impact on the classification of

a patient database. The long-term objective is the use of HRT ontology in particular, and

CVRS in general, in the EHR context for efficient support to the clinical practice. As this is

not yet feasible today, given that HRT and other ECG-derived indices for risk stratification are

not established in the clinical practice, we consider our work as a first step and a significant

contribution towards its use in the near future. The methodology can be readily extended to

other relevant ECG-derived indices for CVRS, such as HRV or TWA. A systematic review of the
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scientific and technical literature is mandatory, due to the vast amount of data with different

scientific evidence that can be found today in these fields.

Overall, HRT Archetype Proto allows a new web system for HRT CVRS decision support

based on clinical data standards and on the SNOMED-CT conceptual model. The consensus of

the specific and relevant aspects of HRT domain by clinicians is a necessary step to reach and

maintain the records for this field. The web prototype allows semantically interoperable HRT

records to compile and exchange with fully meaning information about HRT as well as with

basic patient data. In this work, only HRT indices were considered to infer CVRS, although

more cardiac factors are compiling for future following-up. However, other factors which can

affect HRT, such as drugs and noncardiac illness, should be recorded in different archetypes due

to they represent different knowledge domains.

From a clinical point of view, CVRS has to take into account factors depending on the patient

cardiopathy, being the HRT just one of them. As shown in Section IV-A, our current prototype

will provide the patient risk category just in terms of TO and TS values. Additional variables

in the prototype have been included because they are fundamental for better interpreting

the turbulence indices. Two examples of the convenience of complementing the information

provided by TO and TS for HRT characterization are the following. First, be a patient with

hypertrophic myocardiopathy and taking drugs as beta-blockers, assigned to C2 according to

TO and TS values. From the literature, TO and TS have no prognostic value in this group

of patients, and classification would not be used as support for clinical decision. Second, be

a patient with myocardial infarction, ejection function of 35%, 2nd degree stress dyspnea and

implantable defibrillator indicating border-line ischemic cardiopathy. Clinical guides indicate

that risk stratification must be based on ejection function and degree of functional state of the

patient. However, in border-line cases like this one, other stratification elements can be taken

into account, such as HRT, HRV, TWA, presence of non-sustained ventricular tachycardia, or

electrophysiological study inducibility, among others. None of them is strong enough for changing

a therapy indication, but their joint consideration can help us to take the clinical decision in these

cases. Note that, both for clinical and research use, variables potentially modifying the HRT

indices have to be taken into account, e.g. if the patient is smoker, diabetic, or takes drugs,

despite they are not stratification indices.
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

This Thesis has dealt with the use of ML techniques for analyzing data from fields as diverse as

promotional efficiency and healthcare. Towards that end, several contributions to ML literature,

with emphasis on the FS and predictive model design stages, have been addressed. Specific

procedures for each stage have been proposed with applicability to real-world tasks of different

nature.

In order to tackle the general objective, ML techniques have been proposed to adjust the

predictive model to data characterized by high dimensionality, sparsity, temporal dynamics, and

scarcity in the number of samples. Specifically, a feature engineering approach, a smoothing

regression method based on the properties of the covariance matrix, three different FS strategies

based on statistical principles, and a methodology for predictive models benchmarking, have been

proposed and described in this Thesis. The first specific objective was addressed by proposing a

novel data-driven approach to characterize promotional efficiency at both store and chain level.

The second and third specific objectives belonged to healthcare domain. The goal of the second

objective was to infer new knowledge from complex heterogenous longitudinal records of patients

for supporting the early detection of several complications after CRC surgery. The third specific

objective consisted on opening the road towards achieve the semantic interoperability in EHR

data exchange and follow-up.

From the outcomes of the research activity developed within this Dissertation, several

conclusions can be drawn. The specific conclusions for each application have been described

in detail in its devoted chapter. Therefore, only a summary of the main conclusions obtained for

both the general and the specific objectives are next compiled.
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Theoretical Fundamentals and Contributions in ML

As a general conclusion, it can be stated that the theoretical ML contributions proposed and

developed in this Thesis have been implemented in several real-world applications with highly

diverse nature. The most relevant contributions in Chapter 2 are next summarized:

• A nonparametric approach based on bootstrap resampling to individually characterize the

dynamics of each feature.

• A statistical procedure to represent the output based on multidimensional feature spaces

by simply bootstrapping the available observations. Thus, yielding the necessary statistical

distribution for their characterization without losing neither temporal information nor joint

feature relationships.

• A new regression method inspired by covariance properties used in GPs to obtain a

smoothed version of a original random process, achieving a denoising process and an

imputation approach when working with sparse data.

• Three novel FS strategies based on the weights obtained by a SVM linear classifier: (a) a

simple statistical criterion based on leave-one-out; (b) an intensive-computation statistical

criterion based on a bootstrap resampling approach; and (c) an advanced statistical

criterion based on KECA.

• An operative benchmark methodology based on a cut-off nonparametric statistical test to

characterize the model generalization.

• A simple nonparametric statistical tool, based on the paired bootstrap resampling, to allow

an operative result comparison among different ML models.

A summary of the conclusions for each specific objective is next described.

ML for Promotional Decision-Making

As a general conclusion in the promotional decision-making area, it can be stated that the

use of bootstrap resampling allows benchmarking statistically the performance of the different

methods discussed here. However, obtained results are influenced by the promotional method

characteristics, as well as by the specific nature of the product. So, overall conclusions cannot

be drawn for products and categories, and it is necessary to benchmark more than one method

when building promotional estimates from real-world data. Regarding to the promotional

chain-level analysis, data have been first aggregated, and a set of new indicators based on bias
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and scatter measurements in the input feature space have been then proposed to take into

account the reliability and stability of the promotional models.

ML for Healthcare Analytics

A learning system based on ML techniques was also proposed in Chapter 4 for supporting the

early detection of complications after CRC surgery. The use of structured and unstructured data

from the EHR have a potential for early warning and decision support, despite the challenges

related to the veracity and completeness of the data. Combining free text and the temporal

structure of blood tests and vital signs for pre- and post-operative early warning dramatically

improved the system accuracy. This can provide the basis for future on-line systems alerting

clinicians about patients at risk for complications, so that appropriate actions can be taken.

Knowledge Management in EHR

The work presented in Chapter 5 has addressed the proposal and construction of an

ontology and several archetypes for CVRS based on ECG-derived indices, focused on the current

knowledge of HRT due to its well-defined procedures for parameters calculation and concise

guidelines. Semantic interoperability is an essential factor in achieving the benefits of EHR

to improve the quality and safety of patient care, public health, clinical research, and health

service management. Towards that end, in this work a web prototype was built based on

the use of standards to represent the relevant health information for a particular application,

by using data structures (such as archetypes and templates), terminology systems, and ontologies.

6.2 Future Work

The analysis conducted so far constitutes a step forward into the understanding of how to

modify and use ML techniques to support decision-making in diverse real-word applications.

However, there is still a lot to explore and understand in both, theoretical and practical areas,

hoping that the results presented in this Thesis will encourage further investigation on this and

other related topics.

Theoretical Fundamentals and Contributions in ML

One of our short-term research goals from a theoretical viewpoint is to investigate further on

each of the contributions proposed in this Thesis, being the following the main future lines of
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research:

• Feature engineering. The use of a temporal (dynamic) approach to deal with highly sparse

data, might lead to a deep understanding of the nature of each feature.

• Predictive modeling. On the basis of our proposal related to covariance kernel series, a

further analysis can be done for using it in semi-supervised tasks.

• Feature selection. We only used a state-of-art non-linear FS method in this work, but more

theoretical and experimental work should be devoted to the topic of large input spaces

data. For example, the proposal of a stable nonlinear FS method based on the weights

of the SVM to select relevant features to the predictive modeling. Note also that sample

imputation and FS are strongly coupled problems in this kind of sparse temporal data, so

it is recommendable to develop methods for their joint assessment.

The main future lines of research related to the specific objectives are next described.

ML for Promotional Decision-Making

The work presented in this topic is a starting point for future research that can be oriented

towards improving the proposed method or extending the results and methods. In particular,

the studies developed for milk and beer, as well as for laundry detergent, could be extended to

a wider number of categories, to determine whether a higher grouping scheme, would eventually

allow to validate some of the proposed conclusions on a wider scope. New categories, such

as perfumery or perishable product could be also analyzed. In addition, the joint modeling

of different complementary or alternative categories could incorporate further information on

cross-effects in these related products. New approaches could be also explored by introducing

a priori information, such as environmental or idiosyncratic variables. Finally, more advanced

ML techniques could be used and evaluated for improving the predictive capabilities of nonlinear

promotional models.

ML for Healthcare Analytics

In future work, more advanced natural language process tools will be incorporate to build

models that may be more robust to erroneous inputs, such as misspelled or accidentally omitted

words. However, most available methods are designed for English language, and not directly

applicable for Norwegian or Spanish clinical language. For English, a common practice is to

use the UMLS [174], which enables a consistent representation of clinical language, to which no

Norwegian counterpart exists to our knowledge. These issues represent a challenge for future

work. The results of this work indicate that the clinical narrative, in combination with some
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structure data, can be used as the basis for a clinical decision support system. A complete

system should consider all available information as outlined above, and should be designed both in

collaboration with clinicians and EHR providers to build a streamlined, usable, and useful system

integrated in the patient care. There are significant technological and operational challenges, but

establishing robust and methodological methods is a relevant first step in the process to design

such systems and integrating them in the surgical workflow.

Knowledge Management in EHR

The proposed web prototype provides a multi-centric system to access to EHR information.

Oncoming work is devoted to apply it in the daily practice for automating and streamlining the

clinicians workflow, with the long-term ability to generate a complete record of a clinical patient

encounter directly from the information of the EHR. Towards that end, the proposed indices in

the literature, such as HRV or T-wave alternans, require a much wider and complex knowledge

domains specification, and further effort is to be made for their definition. Consequently, they

will be addressed as future work. On the other hand, new tools, not only based on logical

relationships but also on advance ML and data mining techniques will be used to evidence-based

decision support.
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