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Resumen

El desarrollo alcanzado en las Tecnologias de la Informaciéon y las Comunicaciones en las
dltimas décadas, ha traido consigo la recopilaciéon y almacenamiento creciente de datos en
dmbitos tan diversos como pueden ser marketing, salud o seguridad. La disponibilidad de grandes
cantidades de datos hace necesaria la btisqueda de nuevos paradigmas de aprendizaje maquina,
capaces de abordar el analisis automatizado de los mismos con la consiguiente extracciéon de
informacion.

En concreto, las técnicas de aprendizaje mdquina permiten disenar modelos estadisticos
no paramétricos que aprendan las relaciones existentes entre un conjunto suficientemente
representativo de ejemplos, cada uno de ellos formado por unas variables observadas
(caracteristicas), y su correspondiente salida. Se desea que el modelo construido pueda
generalizar, es decir, obtener una salida adecuada ante ejemplos de entrada no considerados
durante la fase del disenio. En los ultimos afios, estas técnicas han experimentado un avance
espectacular, tanto en fundamentos tedéricos como en su aplicaciéon a distintos y numerosos
dominios de conocimiento.

El objetivo general de esta Tesis es el desarrollo tedrico y la implementacion de métodos
de aprendizaje maquina, con énfasis en las etapas de seleccion de caracteristicas y disefio del
modelo predictivo, de forma que permita abordar el anélisis de grandes cantidades de datos de
naturaleza diversa, creando procedimientos especificos para cada etapa pero al tiempo aplicables
en distintos ambitos.

En esta Tesis se han abordado tres areas especificas de creciente interés econémico y
social: (a) el modelado de las interacciones entre productos de consumo diario y su eficiencia
promocional; (b) el apoyo a la toma de decisiones para la prediccion temprana de complicaciones
tras la cirugia de cancer de colon; (c) la estratificacién de riesgo de muerte subita cardiaca a
partir de indices predictores obtenidos de las senales eléctricas del corazén, utilizando un modelo
de conocimiento clinico y una terminologia estandarizada. El analisis de datos de cada una de

estas aplicaciones presenta como denominador comin la utilizaciéon de técnicas de aprendizaje



méquina, de acuerdo con el objetivo general. Sin embargo, la naturaleza tan diversa de dichas
aplicaciones hace que cada una represente por si misma un objetivo especifico de la presente
Tesis.

El primer objetivo especifico consiste en profundizar en la evaluacion y analisis de las ventas
promocionales, tradicionalmente basado en técnicas de estadistica clasica. Un apoyo sustancial
en la toma de decisiones ha de venir necesariamente del anélisis sistematico de datos masivos
sobre el control y monitorizacién de las promociones y sus complejas interacciones. Por ello se
propone el anélisis y la comparacién estadistica de distintas técnicas de aprendizaje maquina.

Otro ambito de naturaleza muy diversa al anterior, pero de indudable interés social, es el
de la salud. El analisis de datos clinicos, tanto estructurados (constantes vitales o andlisis
de sangre) como no estructurados (texto libre en documentos clinicos), recogidos longitudinal
y sisteméticamente en las historias clinicas electronicas (HCEs) de un conjunto numeroso de
pacientes, permite incrementar sustancialmente el conocimiento clinico y apoyar la toma de
decisiones. Sin embargo, las técnicas de aprendizaje maquina y el anélisis de datos han tenido,
hasta la fecha, un alcance limitado en este ambito. Esta situacién se debe principalmente a
la dificultad de extraer informacion util de datos clinicos procedentes de fuentes heterogéneas.
Ademas, existen muy pocos precedentes de sistemas que permitan la explotacion automaética de
la informacién a nivel agregado entre diferentes entidades hospitalarias y existe gran necesidad de
disponer de datos que sirvan de base para el avance cientifico, con mayor impacto en la practica
clinica. En esta Tesis se analizan dos dominios del &mbito salud de gran prevalencia en el mundo
occidental, a saber, el cancer de colon y las enfermedades cardiacas.

El sequndo objetivo especifico consiste en la adaptaciéon y aplicacion de métodos de aprendizaje
maquina para la deteccién temprana de complicaciones tras la cirugia de céncer de colon,
analizando tanto individual como conjuntamente variables procedentes de fuentes heterogéneas,
extraidas todas ellas de la HCE.

El tercer objetivo especifico consiste en la creacién de modelos de conocimiento clinico que
permitan intercambiar datos y comprender seméanticamente la informacion clinica de distintas
HCEs. En los altimos anos se han propuesto numerosos indices predictores del riesgo cardiaco.
En concreto, en esta Tesis se analiza el dominio de la turbulencia del ciclo cardiaco por ser un
predictor de muerte siibita cardiaca con guias clinicas claras y concisas.

El analisis de grandes cantidades de datos y el desarrollo tebrico de nuevos algoritmos de
aprendizaje estadistico representan hoy, sin duda, un area de investigacién muy activa en distintos
dominios. Esta Tesis contribuye a mejorar el conocimiento y la toma de decisiones en aplicaciones

reales de muy diversa naturaleza, y al tiempo con claros denominadores comunes.



Abstract

The development achieved in Information and Communications Technologies in recent
decades has brought an enormous growth in the collection and storage of data in such diverse
fields as marketing, health, or safety. The availability of large amounts of data makes
necessary the search for new machine learning paradigms, capable of addressing their automated
analysis and the subsequent information extraction. Specifically, given a number of training
examples (also called samples or observations) associated with desired outcomes, the machine
learning techniques learn the relationship between them. In recent years, these techniques have
experienced spectacular advances in both theoretical foundations and their application to a wide
range of different knowledge domains.

The general objective of this Thesis consists on the theoretical development and
implementation of machine learning methods, with emphasis on the feature selection and
predictive model design stages, allowing to tackle with the analysis of data of diverse nature,
and creating specific procedures for each stage but at the same time applicable in various fields.

This Thesis has addressed three specific areas of increasing economic and social interest:
(a) interaction modeling between everyday products and promotional efficiency; (b) clinical
decision support for early detection of complications after colorectal cancer surgery; (c) risk
stratification of sudden cardiac death from predictive indices obtained from the electrical signals
of the heart, using a clinical knowledge model and a standardized terminology. The data analysis
in these applications shares the use of machine learning techniques according to the general goal.
However, the diverse nature of these applications represents by itself a specific goal of this
Dissertation.

The first specific objective consists on further evaluation and analysis of promotional sales,
traditionally based on classical statistical techniques. A substantial support decision making must
necessarily come from the systematic analysis of massive data on the control and monitoring of
promotions and their complex interactions. Therefore, a statistical analysis and comparison of

various machine learning techniques is proposed.



Another area of very different nature respect to the previous one, but with strong social
interest, is healthcare. The analysis of clinical data, both structured (vital signs or blood tests)
and unstructured (text-based documents), systematically and longitudinally collected from the
electronic health record (EHR) of a large group of patients, can substantially increase the clinical
knowledge and support decision-making. However, machine learning techniques and massive
data analysis have provided, nowadays, a limited impact in the healthcare area. This situation
is mainly due to the difficulty of extracting useful information from clinical data recorded in
heterogeneous sources. In addition, there are few precedents of systems enabling the automatic
analysis of information at the aggregated level among different hospital entities. There is a great
need for suitable and relevant data as a basis for scientific advance, with greater impact on
the clinical practice. In this Thesis, two healthcare domains highly relevant in most developing
countries are analyzed, namely, colorectal cancer and cardiovascular diseases.

The second specific objective is the adaptation and application of machine learning methods
for early detection of complications after colorectal cancer surgery, analyzing both individually
and jointly data from heterogeneous sources recorded in the EHR.

The third specific objective is to build clinical knowledge models to enable data exchange and
semantical understanding of clinical information from different EHR. In recent years, numerous
predictors of cardiac risk indices have been proposed. Specifically, in this Thesis, the heart rate
turbulence is analyzed to be a predictor of sudden cardiac death with clear and concise guidelines.

Nowadays, the analysis of large amounts of data as well as the theoretical development of
new machine learning algorithms undoubtedly represent a very active area of research in different
domains. This Thesis contributes to improve knowledge and decision making in real-world

applications of diverse nature which still share remarkable common denominators.
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Chapter

Introduction

1.1 Background and Motivation

Over recent years, there has been an enormous growth in available data which is getting ever
vaster and ever more rapidly in a wide range of different fields. Analyzing data allows us to
obtain knowledge and support decision-making in a number of real-world applications. Machine
Learning (ML) methods [1, 2, 3, 1] have been proposed as key tools to lead new breakthroughs
that will improve the human abilities for analyzing many data types. ML techniques allows to
learn the relationships among a number of input training samples (observation or examples) and
a desired output |1, 5, 0], each sample being described by a number of binary, continuous, or
categorical variables (features). The goal of the learning process is to predict the outcome value
for a new sample (test sample), and a predictive model is built towards that end.

The elements of the predictive modeling pipeline, as shown in Fig. 1.1, are feature extraction,
model design, and prediction model |7]. Feature extraction is very domain specific, and expert
knowledge is required to come up with a useful number of features. Sometimes, raw features
are directly used as input variables in the model design whereas, in other cases, features are
built from the original variables after a preprocessing or engineering stage. This corresponds to
the first element of the model design, so-called feature engineering. The second element, feature
selection, is primarily performed to select relevant and informative features [3]. The main idea of
the model exploration consists on choosing a mathematical method for prediction of the desired
outputs from a set of variables [1]. Once the model is developed, expert interpretation and
useful conclusions obtained from the prediction model are needed to support decision-making in
real-world applications.

Despite the large amount of theoretical work developed on the previously described elements,
there is no universal statistical framework to be used in all the applications. Hence, many

design decisions are taken either heuristically, or guided by the vast experience of the ML
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MODEL DESIGN
> Feature Engineering
Data |®m) | Feature Extraction | mm) Feature Selection w=) | Prediction Model

Model Exploration

Figure 1.1: Predictive modeling pipeline.

systems, or founded on complex statistical backbones for specific elements. Therefore, it would
be highly desirable a statistical framework for decision-making in these elements during the
design stage, allowing the expert to make design decision on clear or at least operative cut-off
tests, but supported by statistical well-founded principles keeping easy to use. In this scenario,
nonparametric statistical approaches can be used because they do not assume any restriction
associated with the data distribution, only considering general assumptions about the nature of
the distribution. The use of nonparametric statistics to modify the previous stages, as well as
to propose new ML techniques, can be an operative, useful, and adaptable methodology to work
with.

On the other hand, ML methods have been applied in a large number of practical areas
such as neuroscience, bioinformatics, intelligent systems, finance, or behavioral targeting |3, 4].
Examples of specific applications are optical character recognition [9], speech recognition [10, 11],
or web page ranking [12]. In this Dissertation, ML methods are applied in two separate domains
of great interest nowadays, namely, promotional efficiency and healthcare.

Marketing and sales have been some of the most active applications of statistical learning [3,

|, due to the recent increased technology capabilities to store huge amounts of customer
information [I1]. ML techniques aim to find recurrent patterns, trends, or rules, which can
explain the data behavior in a given context, and then allow the user to extract new knowledge
on the consumer behavior, to improve the performance of marketing operations |15, 16, 17].
Empirical models for analyzing sales promotions effects have been used in the literature. However,
more recent works focus on ML techniques as powerful tools to extract information from existing
recorded data [18, 19]. A vast amount of knowledge has been extracted using ML techniques,
although not all the promotional behaviors have been definitely studied and there is still room
for deep and further analysis |15, 16, 17]. More specifically, operational problems arise in
ML promotional modeling for evaluating their working hypothesis [19, 20, 21, 22, 23, 24, 25].

The use of conventional parametric tests are often not appropriate due to the heavy tails and
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heteroscedasticity for the prediction residuals are often no longer supported.

A very different nature domain, but with undoubtedly increasing importance, is healthcare.
Healthcare analytics are based on data extracted from Electronic Health Records (EHRs), which
are collections of health information in digital storage format conveying the relevant information
of a patient |20], and they contain routinely amassed quantitative data (e.g., laboratory tests),
qualitative data (e.g., text-based documents), and transactional data (e.g., records of medication
delivery). A considerable amount of literature exists on knowledge extraction from the EHRs,
aimed to support clinical decision-making in several domains [27, 28, 29, 30, 31, 32, 33]. In
this Thesis, we focus on two relevant clinical problems, namely, colorectal cancer (CRC) and
cardiovascular diseases. On the one hand, according to the American Cancer Society, colorectal
cancer is the third most common cancer in men and women in developed countries, and the third
leading cause of cancer death. On the other hand, according to World Health Organization,
cardiovascular diseases are the leading causes of death worldwide.

Recent studies shown that surgery is the only curative treatment for CRC [34]. However,
standard elective colorectal resection is usually associated with a complication rate of 20-30%,
which has severe implications for the patient [35]. Anastomosis leakage (AL) is among the most
dreaded complications after CRC surgery. It is reported to occur in 5-15% of all patients who
underwent colorectal cancer surgery, and it is recognized as an important quality indicator of the
surgery procedure [36]. AL may be a lethal condition, therefore its early detection is vital [36, 37].
Authors in [38] showed that the risk of AL as determined by surgeons’ risk assessment appeared
to have low predictive value. A colon leakage score was developed in [39] to predict the risk of
AL based on information from the literature and experts opinions, showing that this score is a
good predictor for AL. However, novel methods to identify and detect this complication at an
early stage are needed, specially to deal with the common heterogeneity and sparsity of EHR
data.

On the other hand, advanced data processing methods that extract useful diagnostic
information often do not reach the medical practice and that research effort does not benefit
the society. For example, ML techniques and massive data analysis have had, to date, a limited
impact in healthcare. This situation is due to the difficulty of extracting useful information from
heterogeneous clinical sources that are not easy to process jointly. In addition, there are very few
precedents of actual systems that allow the exploitation of aggregated information from different
hospital entities. The use of standards aims to allow the interoperability among different systems,
in order to provide to citizens and professionals with the access to clinical information anywhere.
The definition of clear and standardized connections among the current scientific knowledge, its
availability for the care community, and the actual patient databases, are becoming fundamental

needs for the clinical practice.
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Cardiovascular risk stratification (CVRS) is a key element to raise population awareness of
diseases causing a significant burden of morbidity and mortality, as well as to identify and assess
the correct diagnosis and therapy [10]. A wide variety of indices, such as heart rate variability
(HRV) or T-wave alternants presence, can be obtained from the electrocardiogram (ECG)
recordings and can be used as cardiovascular risk predictors, but they are not established in the
clinical practice yet. To overcome this situation, standards and clinical knowledge management

tools are required to achieve the interoperability in this domain.

1.2 General and Specific Objectives

The general objective of this Thesis is to develop new tools to adjust the predictive modeling
pipeline to real-world data characterized by high dimensionality, sparsity, temporal dynamics,
and scarcity in the number of samples. Specifically, a nonparametric feature engineering
technique, a smoothing regression method based on covariance properties, three different feature
selection (FS) strategies, and a methodology to benchmark predictive models, are proposed.

These theoretical contributions are applied in three different domains, thus, three specific

objectives are defined:

1. To perform a novel data-driven approach to characterize promotional efficiency at both
store and chain level. The new economic conditions have led to innovations in retail
industries, such as more dynamic retail approaches based on flexible strategies. The
assessment of promotional sales with models constructed by ML techniques can be readily
used for agile decision-making. A reliable quantification tool is proposed in this work as
an effective information system leveraged on recent and historical data that provides the

managers with an operative vision.

2. To infer new knowledge from complex heterogenous patient longitudinal records for
supporting the early detection of several complications after CRC surgery. In this
Dissertation, unstructured (text-based documents) and structured data (laboratory tests
and clinical signs) are extracted from EHR and analyzed to improve clinical outcomes and
detect post-surgery complications at an early stage. ML techniques are used to deal with
the sparsity and irregular sampling presented in this kind of data, as well as to build the

predictive models.

3. To open the road towards achieving the interoperability in EHR data exchange and
follow-up, the standardization of CVRS based on heart rate turbulence (HRT) domain

is considered as a first step according to its clear and well-defined guidelines. Towards
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that end, a prototype based on clinical knowledge modeling tools is built to enable the

interoperability of HRT domain as well as the continuous improvement and research on it.

1.3 Thesis Structure and Contributions

The remainder of this Dissertation starts dealing with the general objective, in which an
introduction to ML theory, as well as the proposed theoretical contributions, are presented. The
three following chapters present in detail the specific objectives addressed for each domain. In
the last chapter, conclusions and future lines are discussed.

In Chapter 2, the second step (model design) of the predictive modeling pipeline shown in
Fig. 1.1 is presented. An overview of the state of the art, as well as the theoretical contributions in
each stage, are described. Regarding feature engineering, a nonparametric technique is proposed:
(1) to describe the individual behavior of each feature; and (2) to estimate the statistical
distribution of the output conditioned to the input features. A new smoothing regression method
based on the properties of the covariance matrix, called Covariance Kernel Series, is proposed.
Later, the three proposed FS strategies in this Dissertation are explained. Figures of merit and
generalization evaluation are explained for both classification and regression methods. Finally,
a strategy based on nonparametric bootstrap resampling approach is developed to benchmark
prediction models.

Chapter 3 presents the first application, whose objective is the development of a data-driven
model to characterize promotional efficiency at store and chain levels for different product
categories. The proposed method is based on ML techniques, as a useful way to analyze the
multiple and simultaneous effects coexisting in promotional activities in retail markets when using
real-world data. Different ML methods are analyzed and benchmarked by using an operative
and simple statistical method based on bootstrap resampling proposed in this Thesis.

Chapter 4 presents the healthcare analytics applied for early detection of complications
after CRC surgery, and for predicting surgical site infections at both pre-operative and
post-operative stages. Towards that end, heterogeneous structured (laboratory tests and vital
signs) and unstructured (text-based documents) data from the EHR are individually and jointly
analyzed. Clinical data are sparse, high dimensional, scarce in terms of number of samples and
time-dependent, which represent several challenges to deal with. First, clinical notes extracted
from the EHR are used for early detection of complications after CRC surgery. It is informative
to know whether the discriminatory power for identifying unhealthy patients increases when
heterogenous sources, such as laboratory tests and vital signs, are considered in an incremental
way. Finally, different methods to deal with sparsity are benchmarked.

Chapter 5 presents the contribution related to knowledge management in EHR for the CVRS
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domain. The design and use of a standard clinical terminology and a clinical knowledge model
are proposed to get a standardized tool for clinical decision support, providing with technically
straightforward inclusion of the HRT domain in the EHR. In addition, a web prototype is built
in order to support HRT recordings allowing a simple follow-up by the medical community.
Chapter 6 is devoted to general conclusions and future work.
Since this Thesis presents a multidisciplinary work with a combination of both theoretical
and practical approaches, specific introduction as well as topic devoted conclusions are presented

for each application.
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The research activity of this Thesis combines theoretical modeling and practical applications
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e The research developed within the third specific objective (presented in Chapter 5) has been
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Chapter

Theoretical Fundamentals and Contributions

in Machine Learning

2.1 Introduction

The term Machine Learning (ML) has been widely studied in the literature for reproducing
and improving the human capabilities to recognize patterns in the data by using automated
and intelligent systems. Examples of applications using ML methods are marketing (e.g., sales
promotion or client segmentation), web content search (e.g, social networks, page ranking or text
categorization), or healthcare (e.g., diagnosis, early detection of complications, or phenotype
discovery). ML methods allow to learn relationships among samples (observations, examples or
data points) |1, 5, 6], each one described by a set of input features and the corresponding output.
Towards that end, a statistical model is built to predict the desired output. If the output consists
in one or more continuous variables, then the learning task is called regression |1]. When the
output only consists in a finite number of discrete categories, it is called classification |1, 41].

In this Thesis, the ML predictive modeling schema presented in Fig 1.1 is followed [7], which
consists of three different stages, namely, feature extraction, model design, and prediction model.
The first stage, feature extraction, is very domain specific and often requires to be supported by
domain experts. At this first stage, expert knowledge is needed to collect the features that
are relevant to the problem and that can be used to feed the estimation model. Once the
features have been extracted, the next stage is the model design, consisting of three different
steps, namely, feature engineering, feature selection, and model exploration. Sometimes, data
are sparse, high dimensional, scarce in terms of number of samples, or time dependent. In this
scenario, a feature engineering stage is necessary to deal with missing values and to characterize

the temporal dynamic of the features. Several strategies have been proposed ranging from simple
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methods to sophisticated ones. Feature selection methods select a reduced number of features
that maintain or improve the prediction model performance. In the model exploration step,
a mathematical model is designed for prediction [1]. Finally, and using the built prediction
model, expert interpretation and useful conclusions are obtained to support decision making in
real-world applications.

In this Dissertation, several applications from widely different domains are addressed.
However, the same ML techniques, and specifically the ones related to model design stage, can be
used to analyze data from these different nature applications. Thus, the theoretical fundamentals
and contributions in ML for feature engineering, feature selection, and model exploration, are
first briefly described in this chapter. The complete predictive modeling pipeline is presented
individually for each application in devoted chapters.

For the remaining of this Thesis, let D = {x;,y;}"_; denote the data set, where x; € R and
y; is the observed output, being y; € {—1, +1} for a binary classification task or a continuous

value y; € R for a regression task.

2.2 Feature Engineering

2.2.1 Background

Data are described by a number of binary, continuous, or categorical features. Sometimes
these features can be sparse, high dimensional, scarce in terms of number of samples, and time
dependent. In these cases, a feature engineering approach is required to characterize the dynamic
of each feature. This stage is one of the major aspects to consider when building predictive models
in domains with different nature.

Data preprocessing (feature engineering) is an important step and usually the most time
consuming stage in the whole predictive modeling pipeline. The complexity of data preprocessing
depends on the amount of redundant information and noise that are present in the data sources.
Outlier removal, normalization, or missing values handling, are examples of data preprocessing.
An outlier is an observation that is extremely distant from the other observations and that be due
to variability in the measurement. As a rule of thumb, sometimes a threshold based on a number
of times the standard deviation is used to roughly identify them [12], but this is not a statistically
founded criterion, and rather the expert inspection is the approach to be followed in most cases
to identify and deal with outliers. They can seriously distort the learning process, thus, outliers
are normally removed. On the other hand, some ML methods are very sensitive to the chosen
scale of input variables (e.g., distance-based methods) since the influence of each variable can
be different. To avoid that, a normalization step is normally considered independently for each

variable, for example, by transforming each feature so that its statistic is mean zero and standard
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desviation one.

When using observational data from secondary sources such as the EHR, one also needs to
take into account that data are usually sparse and irregularly sampled, i.e., certain features for
some samples are missing. For example, blood tests are taken at a mixture of predefined stages
in a patient pathway and by a clinically driven sampling. Thus, if predictive analytics relies
on regularly sampled data, specific imputation methods need to be employed such that regular
sampling is retrieved, and hence, sparse data can be treated as missing data. Most traditional
techniques for dealing with missing data include replacing the missings with zero values, with the
mean of the available values of each feature, with the last observed value (called Last Observation
Carried Forward, LOCF), or based on the k nearest neighbors technique, as proposed in [13].
Alternatively, Lasko et al. [11] suggested using Gaussian Processes (GP) followed by a warped
function as a methodology to deal with sparse data. The warped function is intended to adjust
for the fact that rapid changes in temporal variables in connection with active treatment is often
followed by long periods of apparent stability, leading to highly non-stationary processes. The

time warping function can be constructed as
d=d">+p (2.1)

where d is the original distance between two adjacent observations, and « and [ are free
parameters to be tuned. This function converts non-stationary data into a stationary process
which allows the use of a GP to deal with sparsity. GP are described in detail in Sec. 2.3.1.
Thus, it is a challenge working with data characterized by sparsity, irregular sampling,
temporal structure and changing dynamics. New strategies are required, at least, to evaluate
the performance and the information provided by each feature individually independently of the
imputation method considered. The proposal of a temporal statistical analysis to individually
characterize each feature is here addressed, aiming to provide with the following advantages in our
different application scenarios: (1) more knowledge about the temporal dynamics of each feature;
(2) a comparison among the behavior of the features and the previous studies in the literature;
(3) the temporal trend of each feature, in some cases, before and after a reference time point
(e.g., surgical intervention); and (4) a tool to define the uncertainty of each feature, specifically,
after applying methods to deal with missing values when data are sparse and irregularly sampled.
The reconstruction of input spaces with time dependence requires to deal with FS and
imputation methods, while maintaining the temporal properties. To deal with it, statistical
moments and other summary parameters can be considered as inputs to the predictive models,
however, temporal information is certainly lost. In this work, we pay special attention to the
temporal properties of the input space to be conserved as much as possible, and two different
approaches are considered. On the one hand, we characterize the temporal evolution of each

feature with its mean and confidence interval (CI) after considering an imputation approach. On
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the other hand, once a multivariable model has been built, it can be difficult to characterize the
complex interactions and the underlying statistical properties among the inputs and the output.
Thus, the second approach consists in studying the distribution of the output conditioned to the
input features.

In this work, the use of nonparametric resampling techniques is proposed for providing with
statistical processing methods to characterize the uncertainty, either in input spaces individually,

or for them jointly with the output.

2.2.2 Contribution 1. Statistical Characterization of Features

In this Thesis, two approaches are proposed to define statistically each feature. In the first
one, a statistical method is proposed for analyzing individually temporal features, whereas in
the second one, the joint distribution of the input feature with the desired output is analyzed by

considering a nonlinear multidimensional model, as described next.

Statistical Method for Characterizing Temporal Features

A nonparametric approach based on bootstrap resampling is proposed to individually
characterize the temporal statistics of the j-th feature. Bootstrap resampling techniques can
provide a useful framework for empirical and nonparametric estimation of the probability density
function (pdf) of statistical entities from a set of observations [15].

Let x/®) (j=1,...,N;t=1,...,T) be a feature vector where x/ € R”, with T the number
of samples for a given temporal feature at a regularly sampled grid. Its statistical distribution is
defined as p, ;) and can be approximated by an empirical estimation, obtained from sampling
with replacement the set of observations in j(¢). Thus, a new set X* I s first built, where
superscript * represents, in general terms, any observation of the feature j in the time ¢ from the
bootstrap resampling process. Therefore, the set X*7 ) contains elements of {Xf ® * , which
are included none, one, or several times. The resampling process is repeated B times, yielding
{ X+ (t)(b)}le. A bootstrap replication of an estimator is obtained by using a given operator
with the elements in the bootstrap resample, so that the bootstrap replication of the statistical
magnitudes of interest is given by 2% (b) = F(x*()(b)). Statistic operator F(-) can be used
to estimate the statistical distribution of the replicated magnitude, such as the average and the
standard error. Note that this procedure respects the possible presence of temporal dynamics in

data.

Distribution of the Output using the Input Features

On the other hand, and again based on bootstrap technique, the statistical distribution of the

output as a function of the input features can be obtained as py(x). In our scenario, estimating
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this multivariate distribution allows us to characterize multidimensional feature spaces by simply
bootstrapping the available observations.

Let V = {x;,yi};{—; be a set consisting of the input and output vectors. Thus, p,«) is
approximated by an empirical estimation, obtained from sampling with replacement observations
in V. First, anew set V* = {x},yf}!'_, is built, where superscript * represents, in general terms,
any observation from the bootstrap resampling process. Therefore, set V* contains elements
of V which are included none, one, or several times. We repeat the resampling process B
times, yielding {V*(b)}2_,. A bootstrap replication of an estimation u is calculated from the
observations in the bootstrap resamples, thus is, u*(b) = F/(V*(b)). Then, we can estimate pz(x)
for the statistical distribution py (), and used it to readily estimate the quality and the reliability
of the output.

The influence of the simulated regular sampling to characterize individually each feature by
its mean and CI obtained after considering a nonparametric resampling approach, is computed
in Application 4.1 (Sec. 5.2) and in Application 4.3 (Sec. 4.4). The characterization of the
output conditioned to the input features using a nonlinear multidimensional model is computed

in Application 3.2 (Sec. 3.3).

2.3 Predictive Modeling

In this Thesis, several predictive models are first studied, ranging from classical methods
to more complex ones, such as artificial neural networks (ANN) or GP. Then, a smoothing
regression method based on the properties of the covariance matrix, called Covariance Kernel

Series, is proposed

2.3.1 Machine Learning Methods

There are in the ML literature several classification and regression methods for linear
and nonlinear tasks. In this Thesis, Fisher’s discriminant analysis (FDA), naive bayes (NB)
and support vector machines (SVM) are briefly described for classification, whereas k-nearest
neighbors (k-NN), general regression neural networks (GRNN), multilayer perceptron (MLP),
SVM, and GP are studied for regression. Furthermore, multi source and composite kernels are
presented.

The general linear estimation model is given by y = (x, w) +b, where x is the input (column)
vector, w is the weight vector, b is the bias term, y is the desired output and (-, -) denotes the

inner product.

Fisher Criterion. The goal of FDA in the two-class problem [1(] is to find a discriminating
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linear projection (w,x), by simultaneously maximizing the between-class scatter and minimizing

the within-class scatter on the projected output given by the cost function

w'Spw

J(w) (2.2)

T wiSpyw
where Sp and Sy denote the between-class scatter matrix and the within-class scatter

matrix in the original space, and T denotes transposed vector. These are defined by

2 2
Sp = Zc:l nc(:u’c - /J') (:U’c - “’)T and Sy = Zczl ZieCC (Xi - /J'c)(xi - .U’c)T
n. is the number of samples in class C., with ¢ = 1,2. Furthermore, pu. = n% ZieCC x; and

, respectively. Here,

n = %Z?:l x;. In order to classify the projected points, a threshold has to be determined.
There is no general rule for finding this threshold, but a common choice is the average between

the class-conditional means.

Naive Bayes. The NB classifier [18] estimates the class-conditional probability density functions

assuming conditionally independent features, i.e.,

N
p(xly=c) =[] pla™ly = ¢) (2.3)
m=1
where x = [z!,...,2™]" is the input feature vector and ¢ = 1,2 denotes the class.

The model is called naive since input features are expected to be independent, even
conditional on the class label. Despite this assumption, classifiers based on NB have been
successful in many applications, sometimes giving competitive results with respect to other

more sophisticated methods [17, 18].

k-NN. The k-NN is a nonparametric procedure which provides an estimation of the output,
f(x4), from the k input samples in the training set closest to x, according to a measurement of
similarity or distance [18, 19]. Conventional distance measurements are L1 and L2 norms, and
many different measurements have been proposed according to the nature of the data [18]. The

k-NN estimator output is given by
k .
g = flx,) = Ll (24)

where w; is a weighting function that depends on the distance of new input sample x, to the
i-th nearest training sample, and parameter k£ has to be previously fixed during the design

procedure.

MLP based models. ANNs are multiparametric nonlinear models, capable of learning from

samples and discovering complex relationships among variables. Neurons are the basic elements
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of ANN, and they represent simple, highly interconnected processing units, usually grouped
in several layers (input layer, hidden layers, and output layer). Each interconnection has a
numeric weight, which has to be adjusted during the training stage. In the MLP network, one
of the mostly used ANN, there is one input neuron for each variable in input sample x, and
as many output neurons as output variables to be estimated (i.e., y can be a multivariable
output). Hence, the number of hidden layers and the number of neurons in each have to
be chosen during the design process. Hidden layer neurons in MLP correspond to global
functions, so-called activation functions, such as linear or sigmoid, and the MLP is a universal
approximator (a single hidden layer is capable of approximating any continuous, smooth, and
bounded function) [50]. During the learning process, weights among neurons connections {w}
are adjusted, according to a given cost function. The most widespread training algorithm is
back-propagation [1], which consists of an iterative process starting in a given initial solution
and a gradient-descent optimization based on first-order derivatives. For nonconvex functions,
local minima can be present, which can be alleviated by the consideration of the second-order

derivatives, as for instance in the Levenberg-Marquardt algorithm [51].

GRNN based models. Another ANN which has received much attention, also used in this

work, is the GRNN, a nonparametric estimator given by the minimization of the squared error

on the set of available examples [52]. Function f(x) minimizing this error is
Jyp(x, y)dy
f(x) = Ely|lx] = =———"—"— 2.5
) = Elylx] T p(x, 1)y (2.5)

where E denotes statistical expectation, and p(x,y) is the joint pdf of x and y. Given that p(-)
is often unknown, it can be estimated by using nonparametric estimation techniques, such as

Parzen windows with Gaussian kernels. In this case, the GRNN estimator is given by

f(x)zM thyz (26)
zz 16 202

where o is the kernel width, D?(x) = (x — x;)'(x — x;) is the squared Euclidean distance
between input sample x and design example x;. For high values of the kernel width, the output
depends on too distant examples, and it is an over-smoothed estimation of the actual value,
whereas for very low values, the network limits to estimate the value from the closest example

to x [52]. Parameter o has to be tuned during the training procedure.

SVM for classification and regression. We focus first on the SVM classifier (see e.g. [53, 51]),
integrating regularization in the same classification procedure, such that model complexity is
controlled, and the upper bound of the generalization error is minimized. These theoretical

properties make the SVM an attractive approach for several data tasks.
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The SVM classification algorithm seeks the separating hyperplane with the largest margin
between two classes. The hyperplane optimally separating the data is defined from a subset
of training data (also called support vectors), and it is obtained by minimizing ||w||?, as well
as the classification losses in terms of a set of slack variables {¢;}I ;. Considering the v-SVM

introduced by Scholkopf et al. [55] and a potential nonlinear mapping ¢(-), the »-SVM classifier

solves
. L, 2 1 @
min —(w|“+vp+ — i 2.7
W,{&}ybm{Qu Pvpt 3 e } (27)
subject to:
p>0, &2>0 Vi=1,...,n (2.9)

Variable p adds another degree of freedom to the margin, and the margin size linearly increases
with p. Parameter v € (0,1) acts as an upper bound on the fraction of margin errors, and it is
also a lower bound on the fraction of support vectors. Appropriate choice of nonlinear mapping
¢ guarantees that the transformed samples (input vector) are more likely to be linearly separable
in the (higher dimensional) feature space.

The primal problem in Eq. (2.7) is solved by using its dual formulation, yielding
w o= > yio¢(x;) (see [51] for further details), where a; are Lagrange multipliers
corresponding to constraints in Eq. (2.8). Thus, the decision function for any test vector x.

is given by

f(x) = (Z yiai K (%, %) +b> (2.10)

i=1
In order to predict the label of x,, the sign of f(x,) is used. The so-called support vectors are
those training samples x; with corresponding Lagrange multipliers a; # 0. The bias term b is
calculated by using the unbounded Lagrange multipliers as b = %Zle(yz —w ' ¢(x;)), where k
is the number of non-null and unbounded Lagrange multipliers.

The use of Mercer kernels allows to handle the nonlinear algorithm implementations as
K(x;,%4) = (¢(x;),0(x4)). In this work, two well-known Mercer kernels are used: the linear
kernel, given by K(x,z) = (x,z), and the Radial Basis Function (RBF) kernel, given by
K(x,z) = exp (—%), where o is the width parameter, to be tuned together with free
parameter v.

Given a test sample x,, the traditional SVM classifies it according to the value of decision
function f(x.). However, it is also possible to convert the output of the classifier into a posterior
probability of class membership by using a sigmoidal function mapping approach [56] as follows,

1
1+ exp(af +c¢)

Pr(y =1|x,) =~ (2.11)
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where f = f(x4), and a and ¢ are estimated by minimizing the negative log-likelihood function
(see [56] and references therein for details).

Conventional SVM regression uses the regularized e-insensitive cost (or Vapnik’s cost) |53].
Parameter ¢ has not a compact support, and then its practical tuning can become inaccurate,
resulting in an extensive scanning for the cases with unknown accuracy of the approximation.
Alternatively, the v-SVM has been proposed for automatically tuning e through a new free
parameter v with bounded range (0,1) [57]. The v-SVM algorithm for non linear regression

optimizes the following primal functional for e-insensitive cost:

_ e UNye oo
L—QHWH +C<V€+NZ(§Z+€1)> (2.12)

i=1
where §;, { are the slack variables, C' is the regularization parameter, and v allows to give
an approximate ratio of the number of support vectors with respect to the number of training

examples. The following constrains must hold:

(w'xi+b) —yi<e+& (2.13)
Yi — (wai +b)<e+& (2.14)

and &,& > 0, € > 0 for Vi = 1,...,n. The Lagrangian functional can be written, by using

Lagrange multipliers «, o*, n, n* and 3, given

n

1 C <
L= §HWH2+CV€+ NZ(éz‘Jrff) — Be—Y (m& + ;&)

i=1 i=1
n n
- Zai(fi +yi—w x;—b+e)— Zaf(& — i+ W X, +b+e) (2.15)
i=1 i=1
By minimizing this functional with respect to primal variables, the Karush-Khun-Tucker

conditions are obtained, and after their substitution, the final solution is given by

fx) = [z<a: .

=1

X+ b (2.16)

Dual variables o; and o] will be nonzero whenever samples x; give a residual either in the
boundary or out of the insensitivity region. By introducing the nonlinear mapping and then

substituting the dot products by kernel functions the following dual problem is obtained:

n n

* 1 * *
MAT o) ot Z(ai —a)y; — 3 Z (af —ai)(a] — aj) K (xi,%;) (2.17)
i=1 ij=1

constrained to

n

d (ei—af)=0, Y (a;—af) <Cv (2.18)
=1

=1

a0 € [O, C] (2.19)
n
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The nonlinear estimator has the following form:

n

Fx) = (af — i) K(x,%;) +b (2.20)

i=1
where b is obtained from Eq. (2.13) and (2.14) when & = £ = 0.

From above summary of the v-SVM algorithm for both regression and classification, it is
clear that there are several free parameters to be tuned. With respect to the cost function,
parameter € can be readily substituted by v, and C is the linear cost parameter which is only
tuned in classification tasks. With respect to the kernels, parameter ¢ has to be previously

tuned when using a RBF kernel.

Sources fusion using kernels. The performance of a prediction system can be improved by
including heterogenous data sources. One influential way to do this is by exploiting the so-called
composite kernels, which combine different kernels, each associated with a different data source.
Some properties of Mercer’s kernels are relevant for this work. Let K; and K» be Mercer kernels

over X x X, with x, z € X C RY. Then, the following are valid Mercer’s kernels [55],

K(x,z) = Ki(x,2) + Ka(x,2)
K(x,2) = Ki(x,2) - K3(x,2)
K(x,z) = uKi(x,2)

K(x,z) =x' Az

where A is a symmetric positive semi-definite (N x N) matrix, and g > 0. The Mercer’s kernels
properties, together with simple vector concatenation, allow us to create composite kernels in
several ways [58|. This gives a framework for exploring the most convenient way of combining
different data sources. Among them, the stacked and composite kernels are next described.

Stacked Kernel. A common way to combine data is obtained by following a stacked approach.

The main idea of the stacked input vector kernel [58] consists in merging different data sources
x;, where s = 1,...,5, being S is the number of sources. The new input vector X; is given by
< NT (2T S\T1T
X; = [(Xz) 7(Xi) ) 7(Xi ) ] ) (225)

and its dimension is obtained as the sum of dimensions of the S sources under consideration.

Then, a single kernel can be used, given by
K = K(Xi,%;) (2.26)

Composite Kernels. Commonly, input data are originated from sources of different nature.

A viable approach is to affiliate different kernels to each source, and combine them using a
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composite kernel approach [58, 59, 60]. A simple composite kernel combining heterogenous data
sources can be obtained by concatenating linear and nonlinear transformation for each x;. Let
©(+) be a linear or a nonlinear transformation into its corresponding Hilbert space H, and let A
be a linear transformation from H;s to H, respectively. Thus, the mapping to H can be described

as follows:
d(x;) = {A1o1(x)), Agpa(x7), ..., Agips(x7)} (2.27)

and the corresponding inner product can be easily computed:

S
Ker(xi, %) = (0(x), (%)) = > 0s(x)) TA] Asp(x3) = > K,(x],%5) (2.28)
s=1

where the property from Eq. (2.24) is exploited in the last step. Previous composite kernel is a
simple sum of the individual samples’ kernel-based similarities for each data source, and is know
to be robust against overfitting. Furthermore, in the weighted summation kernel, the importance

of each data source can be modified by further exploiting Eq. (2.23), yielding

S
KwS(Xi,Xj) = Z#SKS(Xfaxj) (229)
s=1

where weight us gives different relevance to each data source. In this work, each us is a free

parameter to be tuned.

Gaussian Process Regression. A random process f(x) is a GP if, for any finite set of values of
{x1,29,...,2,}, the variables of the corresponding random vector f = [f(x1), f(z2),..., f(zn)]"
are jointly normal (Gaussian). Element Kj; of the covariance matrix K of f is k[f(z;), f(x;)]
where k[-,-] is a covariance (kernel) function, such as the RBF, or the squared exponential
function. Using Bayes Theorem, the posterior density function for random variable f, = f(z)

conditioned on the observed f becomes

p(f«lf) =

A2
exp [(f%j)] : (2.30)

&2

where the posterior mean value is given by f = k"K~!f; and the posterior variance is 62 =

x —kTK~'k. In this expression, element i of the vector k is k[f(x.), f(x;)], Vi = 1,...,n, and
Kk = k[f(2.), f(2.)]. In GP regression, f is used as the estimate, or prediction, of f,, while 52

provides the level of confidence in the prediction.

2.3.2 Contribution 2. Covariance Kernel Series for Regression

The aim of this contribution is to establish a theory for covariance smoothed weakly stationary

stochastic processes over R to be used in regression problems. While classical theory of



CHAPTER 2. FUNDAMENTALS AND CONTRIBUTIONS IN MACHINE
38 LEARNING

stochastic process deals with random variables over time, we will focus on a potentially broader
class of stochastic processes, inspired by covariance properties used in GPs. Let F(x) be a
wide sense stationary real stochastic process where the stochastic process F(x) at location x
represents a random variable. The feature vector x € X is the set of possible inputs, which
could be more general than time. The goal of this contribution consists in approximating F' by
S(x) = [wF(x")dx/, considering a weighting factor w defined as a smoothing correlation term,
as follows

w=kp(x,x') = E[F(x)F(X)] = kr(x — x'), (2.31)

where kr is the autocorrelation function. The covariance function must be symmetric positive
semi-define (psd) such that kp(0) = mazxkr(x).

In practice, we have available a set D of n observations D = {(x;,f;)|i = 1,...,n}, where x
denotes an input vector (covariates) of dimension N and where the realization f = f(x) of F'(x)
constitute the dependent variable. The focal point of this study will be a stochastic process
defined as a weighted average, i.e. a smoothing over F'(x), where the weighting is defined in

terms of the covariance structure of F'(x) as follows,
S(x) = /kp(x —x')F(x)dx/, (2.32)

The are several reasons why it may be interesting to study S(x). First of all, if the underlying
process F'(x) is corrupted by additive noise, i.e. F(x)+ N(x), where N(x) is a noise process,
then the covariance smoothing may lower the influence of the noise. Secondly, when working
with sparse data, covariance smoothing can be considered as an interpolation approach.

Mean and covariance properties of S(x). Some properties of S(x) are established below.

Mean Function. The mean function of S(x) is given by

ms) = 2 | [ ke = x) P )ax| = [ ntx - x)ELFNax = [ kel xymp (i

(2.33)
and mg(x) = 0 if mp(x) = 0 as assumed here.
Covariance function. The covariance function of S(x) is given by
ks(x,x')=FE [/ kp(x — i)F(i)di/kp(x’ - i)F(i’c)di’c}
= //kp(x — %)E[F(X)F(%)]kp(x — %)d%d% (2.34)

= //k:p(x—i)kp(i—i)kzp(x’—i)didf&: ks(x —x).

Eigenvalue and eigenfunction expansion of S(x). Since the covariance function is psd, it

may be expressed in terms of the following series expansion [61]:

Np
kp(x—x') =) \eoi (%) 61 (X), (2.35)
k=1
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where N is the number of eigenvalues A, and eigenfunctions ¢y, satisfying [ kr(x—x")¢y(x")dx =

A:¢k(x). Hence, we have

Ng Np Np
S(x) = /ZM%(X)%(X’)F(X'WX' = Z/\/quﬁk(X')F(X')dX'\/E%(X) = Brti(x)
k=1 k=1 k=1
(2.36)
where B, = [ M\dp(X)F(x')dx’ = VAp(pr(x')F(x')) and ¢p(x) = v/ Ardr(x). Note that the
process F'(x) enters explicitly only in the computation of the coefficient ;. These coefficients
weight the functions 1, (x), depending on the covariates x and the covariance function k(-,-),
constituting the orthogonal series in Eq. (2.36).
Analyzing function ;(x). A smoothing version of the process F'(x) is obtained by weighting
it by the covariance function. In Eq. (2.35), the covariance function is expressed in terms of
eigenvalues and eigenvectors. However, it is relevant to study what happens when the original
process F'(x) is close to one of the eigenfuctions, i.e., F(x) ~ ¢r(x). Let S(x) be defined as
S(x) = kp(x — x')F(x')dx/, and following Eq. (2.36), the smoothing process can be expressed

as:

Np
S(x) =Y VA(GR(X), F(x) v/ Neoi (%) (2.37)
k=1

By definition: [ 4;(x)1g(x)dx = 0 and [ ||¢k(x)]|?dx = 1, and considering them in Eq. (2.37)
when F'(x) = ¢x(x), it is obtained,

Np Np
S) =YV Awldr(X), 65 (X)) VAkdr(x) =D Me(dn(x), 65(x))pr () (2.38)
k=1 k=1

Thus, if the eigenfunction represents the process itself, i.e, F'(x) is very close to ¢y (x) a scaling
factor of i is necessary to obtain the original process.

Several conclusions can be obtained from these assumptions: (1) for 8y = A\ ( Pp(X), F(X')),
if By is small, it means that the eigenfunction is not able to represent the original process. Thus,
the k-th component should not be considered to obtain a smoothed version of the original process
F(x); and (2) the scaling factor is only reasonable for high values of Sy, i.e., for eigenvalues which
can represent the process; otherwise, only noise will be add to the system.

Empirical estimation from data. Given covariates x; for i = 1,--- ,n, A\; and ¢;(x) may
be estimated from the eigenvalues J; and eigenvectors e; of the psd covariance (kernel) matrix
K:K;j =Fk(x; —x;), 4,5 =1,--- ,n; yielding \; = % and ¢;(x) ~ \/ne;, where e;; is the ¢t-th

element. Hence, the estimation of S(x) is given by

N
S(x) = B/ Okers, (2.39)
=1

where B = /0pf Tey, and f = [fioeees ful T
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Out of sample extension. Using the covariance smoothing approach proposed in this work, the
estimate for a test input x,, when the labels for the training examples are known, is computed.
Although mapped samples ¢(x) are unknown, the projection m;(x*) of a testing point x, can be
obtained as the inner product of ¢(x,) with the eigenvector uy of the covariance matrix. Hence,

following Nystrom approximation [62, 63, G4
n
~ n
Bixe) = U0 S i K (i), (2.40)
i=1
Then, the estimate for a test input x, is given by,

Nr
S(X*) = Z \/ngek\/ngk(x*)
= Z \FfTek\/af Z €1 K (%, %) (2.41)
= Z fley Z e; 1 K (x4, Xx)
k=1 i=1

Since the covariance function is psd, it can be estimated by the covariance (kernel) matrix
as:
krp(x —x') = K(x,x'). (2.42)

The kernel matrix is commonly computed based on a parametrized function such as RBF, being
this one used in this Thesis.

Experiments. The proposed method has been evaluated in two databases previously analyzed
by GP. In the first one, we study a seven-degrees-of-freedom SARCOS anthropomorphic robot
arm (downloaded from http://www.gaussianprocess.org/gpml/). This data set was used for
regression tasks in |05, 66]. We have in this case D = {(x;, fi)]¢ = 1,...,1000} where each x
input vector is 21-dimensional (7 joint positions, 7 joint velocities, 7 joint accelerations), and
the target variable f = f(x) is one of the 7 joint torque. The main idea here is to illustrate
that information related to the process F(x) may be extracted from the process S(x), depending
solely on the covariate x and covariance function k(-,-). In the second analyzed database, the
training data were collected during the SPARC — 2003 and SPARC — 2004 campaigns, in
Barrax, La Mancha in Spain [67]. The output training data is the actual chlorophyll content.
The chlorophyll content was measured for certain crops (garlic, alfalfa, onion, sun power, corn,
potato, sugar beet, vineyard and wheat) in Barrax. In both examples, Covariance Kernel Series
method performs better in terms of accuracy than GP. Covariance Kernel Series method was
used in Application 3.1 (Sec. 3.2), but the performance was worse that the one obtained with

SVM. The scarcity in the number of samples and the dimensional of the data, having only 43
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examples and 8 features, may provide these results. Future work may improve the previous

limitations.

2.4 Feature Selection

2.4.1 Conventional Methods

Feature selection is defined as a series of actions in order to choose a subset of features that
are relevant, while holding or improving the learning method performance. The task of FS is
well known in the ML literature (for a review, see [0, 68, (9]) and it is specially relevant when
working with high dimensional input spaces, due to: (1) the computational complexity, when the
number of features is larger, the number of parameters (as weights in the linear SVM or neurons
in the MLP) is also larger, and thus, the time and the complexity for designing the estimation
model also increase; (2) the generalization problems, the higher the number of training samples
related to the number of free parameters in the estimation model, the lower the possibility of
overfitting the model; (3) mutual correlation, one feature can add value to the predictive model
when it is analyzed individually, however, the information carried by this feature can be lower
in combination with another one.

Three different types of F'S are common in the literature [69]. First, filter methods select
features as a pre-processing step performed independently of the classifier. Second, wrapper
methods evaluate the performance of the classifier based on subsets of features. An third,
embedded methods integrate F'S and classifier performance into the training procedure of the
classifier (68, 69]. Examples of previous FS methods range from feature-ranking techniques
based on correlation, to sensitivity analysis [70], and to maximum margin criteria [68, 71]. FS
in text documents have focused on criteria such as the document frequency, the term frequency,
mutual information, information gain, odds ratio, x? statistic, and term strength, to name a few
[72, 73, 74].

FS set depends on both the method used to select the relevant features, and on the selection
criterion to select them. In the FS literature, some works considered a criterion which attempt
to maximize the class separability [08], whereas in others, the criterion tried to retain the
discriminating power of the data defined by original features [75]. Thus, random subsets can
be obtained depending on both the method and the criterion considered. To our best knowledge,
there are no studies which try to defined this randomness. Thus, in this work, three different
FS methods are proposed to deal with the randomness in this stage by taking advance of the
statistical properties of the data.

Of particular interest is FS based on the weights obtained by a maximum margin SVM

linear classifier, which we pursue in this exposition. There are several reasons for this: (i) the
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robustness of the linear SVM in high-dimensional and noisy low sample size problems; and (ii)
the one-to-one relationship between the weights of the linear classifier and the features (words),
which enables the interpretation of the features. The latter is a significant advantage when
compared to classifiers such as Gaussian maximum likelihood or ANN [76, 77|, where the direct
connections to the features are lost. The previous literature on SVM-based FS is to a large
degree concentrated on the Recursive Feature Elimination (RFE) method [68], which has been
shown to compare very favorably to many of the classical FS methods. RFE puts a threshold
on the amplitudes of the weights obtained by the SVM. Hence, the user must either pre-specify
the number of features to obtain, or alternatively, to engage in a computationally demanding
cross-validation procedure, whereby features are eliminated recursively, thus requiring numerous
SVM re-training procedures on subsets of features of decreasing size. This may be very time

consuming, even for small sample sizes.

2.4.2 Contribution 3. Statistical Feature Selection Strategies

We propose a further research on F'S strategies based on the statistical nature of the weights of
the linear SVM, by investigating: (a) a simple statistical criterion based on leave-one-out; (b) an
intensive-computation statistical criterion based on bootstrap resampling; and (c¢) an advanced

statistical criterion based on kernel entropy, as explained below.

Leave One-Out Based Test

The Leave one-out (LOO) cross-validation method has been shown to give an almost unbiased
estimator of the generalization properties of statistical learning models [78]. The concept can be
used for estimating the pdf for each feature m.

The process is to create a matrix of weights W with n rows and N columns, where n is
the number of samples and N is the number of features. Each row of W is a weight vector
corresponding to the linear SVM solution by using LOO cross-validation. The LOO technique
partitions the original data set into n subsets, one for validation and the remaining n — 1 for
training. This process is repeated n times, setting apart for evaluation each of the n subsets just
once, hence yielding W. For the m-th feature with m = 1,..., N, a given linear classifier yields
a weight vector w", whose statistical distribution can be approximated with different empirical
resampling criteria, denoted as pym.

The estimated Confidence Interval (CI™) is built for each w™, which has all the LOO
estimations for the m-th feature, in order to determine wether this feature is relevant. Then,
CI™ is used to perform a hypothesis test on the m-th feature, with Hy : 0 € CI™ (feature m is
irrelevant for the model) vs alternative hypothesis Hy : 0 ¢ CI™ (feature m is relevant for the
model).
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Bootstrap Resampling-Based Test

Bootstrap resampling methods [79] are very useful approaches for nonparametric estimation
of the distribution of statistical magnitudes. We propose a bootstrap resampling scheme (see
Fig. 2.1) for building a statistical test for FS, as follows. We use W to provide a statistical
description of the noise assuming its variance is globally dependent on the weight magnitude, and
locally constant for weights with similar magnitude. Under these conditions, for each feature m
withm =1,..., N, alocal window of § radius encompassing the 24 nearest features is considered
to build the set of weights given by R™ = {wzm_‘s, A wlm_l,wlmﬂ, ... ,wf”'(s}?:l. Hence, R™
represents a noisy set of weights, with low (still non-null) probability of including representative
weights. Then, for each m-th feature, the set S = {w]"}I' | represents the weight set to be
tested for significance.

Weight sets R and S™ are used to estimate the marginal distribution of noisy and potentially
relevant weights for the m-th input feature, respectively, by constructing bootstrap resamples.
A bootstrap resample is a new set obtained from sampling with replacement the elements of the
original set (R™ and S™ in our case), providing resamples R*™ and S™™, respectively. The
resampling process is repeated B times, with b indexing the resampling number (b =1,..., B).
Thus, the b-th resamples S*™(b) and R*"™(b) contain 2dn and n elements of S™ and R™,
respectively, appearing zero, one, or several times. A bootstrap replication of an estimator is
constrained to the elements in the bootstrap resample. The bootstrap replication of the statistics
of interest is A®™(b) = s*"(b) — r*™(b), where s*™(b) and r*"(b) are elements, randomly
chosen, from S*™(b) and R*"™(b), respectively. The B bootstrap replications for each feature m
allow us to estimate the Confidence Interval (CT*™) for the statistics A*". Then, CT*™ is used
to perform a hypothesis test on the m-th feature, with Hy : 0 € CI*™ (feature m is irrelevant
for the model) vs alternative hypothesis Hy : 0 ¢ CI*™ (feature m is relevant for the model).
Note that we only sample one pair of s*™(b) and r*"(b) for each b, producing one A*"(b) for
each b, and that the process results in a feature being found relevant if it has a large absolute

value compared to the mostly noise weights that have mostly smaller absolute weights.

Kernel Entropy Inference Test

The basic idea behind the proposed kernel entropy inference test for feature selection, is to
select those features that correspond to the high entropy part of a pdf, describing a random
variable considered to generate the features. The high entropy part of a pdf represents the most
informative part, and it is associated with the tails of the pdf. Fig. 2.2 (a) illustrates a pdf, where
the sum of the areas represented by the black regions represent the tail probability.

In order to achieve the entropy-based feature selection, we concentrate on Renyi’s second
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Figure 2.1: Schema of the proposed bootstrap resampling-based test: (a) Matriz of weights W ;

(b) 26 nearest features represents a noisy set of weights R™, whereas S™ is the weight set to be

tested for significance; (c) bootstrap resamples; and (d) bootstrap replication and hypothesis test.

1.4

1.2

0.8

0.6!

0.4/

0.2]

p(w)

0.5 1 1.5 2

(a)

RKHS
e(w")
o
o i e (m)
w" T

Principal axis

(c)

Figure 2.2: Kernel Entropy Inference Test: (a) The tail probability refers to the sum of the areas

corresponding to the black regions under the probability density function p(w). (b) Illustration
of the role of the bandwidth, o, in kernel density estimation (KDE). A large bandwidth (red)
provides more smoothing compared to a small bandwidth (blue). (c¢) KECA is related to principal

components in a RKHS corresponding to the positive semi-definite kernel function used in KDE.

order entropy [30] for a random variable w, given by

—logV(p), V(p) Z/pQ(w’)dw’

H(p)

(2.43)
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where p(w) is the pdf of w. The reason for this choice is that this measure is easily estimated
using the modern technique known as kernel entropy component analysis (KECA) [31]. KECA

estimates the entropy using a kernel density estimator (KDE),

N
1
Bw) = + > ko (w,w™) (2.44)
m=1
Here, w™, m = 1,..., N, are elements of w and the kernel function provides a smoothing

of the histogram, where the bandwidth parameter o governs the amount of smoothing. A

1 2

common choice of kernel, which we also pursue in this paper, is k, (w, w™) = NoT

Figure 2.2 (b) illustrates the role of 0. A relatively big o will tend to produce a too smooth density
estimate and vice versa. Note that w is in this approach considered a one-dimensional random
variable, and in that case reliable data-driven (automated) procedures exist for the selection of
o, meaning that a different o is computed for different samples (data sets), see Section 4.2.3
for details. Furthermore, in the current exposition, the elements in the SVM weight vector w
represent the samples w™ of the random variable w. Based on one particular such w, the left
panel in Fig. 2.2 (b) (best viewed in color) shows the KDE based on an automated bandwidth
selection procedure (blue), corresponding to the most narrow function shape. The broadest
function (red) shows a Gaussian best fit. The right panel shows the histogram for w indicating
that the KDE performs better than the Gaussian model. In addition, the middle function (black)
shows a kernel density estimate where we have manually doubled the selected o. Note how the
function becomes more smooth, in this case deviating more from the peaky shape.

When inserting Eq. (2.44) into Eq. (2.43), the KECA estimator for the Renyi entropy becomes
Vip) = ﬁ Z%:l [VAnen1] ?. Here, A, and ey, are eigenvalues and eigenvectors of the so-called
kernel matrix K where K, = k,(w’,w™) and 1 is a vector of ones. We have experienced
robust estimates of V(p) using only the top component (eigenvalue), such that in our case
Vip) = [VAe! 1]2 (leaving out eigenvectors may be considered a de-noising process).

There is a one-to-one relationship between the elements in the vector e; and the features
stored in the SVM vector w, and we use this in the FS. Since the kernel function is positive
semidefinite, it computes an inner-product in a reproducing kernel Hilbert space (RKHS) [61].
That is, w — ¢(w) such that the RKHS inner-product is kq(w’,w™) = (¢p(w'), p(w™)). It is
furthermore known, that in RKHS, the projection of the jth point ¢(w™) equals e1(m), i.e.
the jth element of the eigenvector e;. This is the RKHS principal component corresponding to
¢(w™). Hence, the feature w™ corresponds to the m-th element of e;. This is illustrated in Fig.
2.2 (c).

The kernel entropy FS idea is the following. The tails of p(w) contribute the most to the
entropy of the random variable w and the features corresponding to the tail are represented by the

smallest principal components in the RKHS (i.e, the smallest principal components contribute
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the most to V(p)) In the F'S, we fix a tail probability, for example to the value 0.05, and select
those features that correspond to the tail by identifying the corresponding smallest principal
components (elements of e;). Note that the number of selected features by this proposed
procedure is not pre-specified, but it depends on the chosen tail probability.

The FS strategies previously described are used in Application 4.1 (Sec. 5.2) and
Application 4.2 (Sec. 4.3), see them for more details.

2.5 Model Selection

In this section, we first present several merit figures to evaluate the obtained model quality for
both classification and regression methods. Next, the generalization capabilities of the developed
models are analyzed. Finally, when more than one predictive model are evaluated, a statistical
comparison is required to select the one which provides better performance. However, often,
a description of the differences between them is not considered, or models are benchmarked
using, t-student or ANOVA test or even nonparametric statistical tests such as Wilcoxon signed
rank test [32]. In some studies, statistical assumptions of independence and gaussianity are
not verified for its proper application. Therefore, this motivates the proposal of an operative
benchmark methodology based on a cut-off nonparametric statistical test, both to characterize
the generalization of the model as well as its comparison with other predictive models.

In this work, a nonparametric resampling test based on bootstrap is presented as a way
to evaluate the models in terms of average and scatter measurements, for a more complete
efficiency characterization of the predictive models. These statistical characterizations allow us to
readily work with the distribution of the actual risk, in order to avoid overoptimistic performance
evaluation in the ML based models. Apart from that, we propose a simple nonparametric
statistical tool, based on the paired bootstrap resampling, to allow an operative result comparison
among different learning-from-samples models. The use of bootstrap resampling in this setting
is supported by the previous observation of heavy tails in the residuals distribution when using
ML models, as well as by bimodalities, and other non-Gaussian effects [15], which make the use

of conventional statistics a non-operative tool when working with ML models.

2.5.1 Merit Figures and Generalization Evaluation

Model quality obtained when applying learning techniques can be evaluated by means of
informative merit figures. It is a well-known fact that the evaluation of merit figures in the
training set is highly suboptimal, as far as generalization capabilities of the model are not
considered at all. This is the main reason why it is necessary the adequate characterization

of any merit figure for model benchmarking, and this characterization needs to be performed
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using an independent data set of examples, i.e., a set niest of data that not used during the
training stage. Several merit figures can be used for benchmarking models in learning from

samples techniques. We limit ourselves here to the Mean Absolute Error (MAE), given by

1 Ntest

Z | f(xi) — il (2.45)
1

Ntest <
1=

MAE =

Performance measures in binary classification problem may be constructed based on the

confusion matrix (C'M), as follows,

Real diagnosis

Positive | Negative
Positive TP FpP
Negative FN TN

Predictive diagnosis

where TP and TN denote true positives and true negatives, and FP and FN denote false

positives and false negatives, respectively [$3]. The performance measures considered in this

TPFFN+FPFTN Seusitivity, Se = 7575y,

specificity, Sp = %; and balanced error rate, BER = %(Se + Sp).

work are the following: error probability, P, =

Once the merit figure is selected, we need to analyze the generalization capabilities of
the developed models. In that sense, cross-validation techniques are statistical methods for
quantifying and measuring the generalization error [84]. In this work, a cross-validation
technique is used for benchmarking ML techniques, by considering two subsets of the available
examples, namely, a training set (for weights adjustment), and a validation set (for generalization
benchmarking) [35]. Three widely used cross-validation techniques are: (a) Holdout, where data
are split into 2 subsets for training (often 70%) and validation; (b) K-fold, where examples set
is randomly divided into K subsets with the same size, one for validation and the remaining
K — 1 for training, the process is repeated K times (each corresponding to a different subset
being used for validation), and the generalization is obtained by averaging the merit figures of
the K models; and (c) leave-one-out (LOO), a particular case of K-fold where K is the number
of available examples. Note that the computational burden of LOO is much higher than other
cross-validation techniques, however, in this work, we use LOO for the free parameter tuning in

each technique, due to its advantage when the available data set is scarce.
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2.5.2 Contribution 4. Bootstrap Resampling for Benchmarking Machine
Learning Models

Actual Risk Estimation with Bootstrap Resampling

One of the main limitations of current ML techniques is the difficulty in establishing clear
cut-off tests for model comparison, hence, systematic procedures for establishing F'S, significance
levels, and confidence intervals for model diagnosis, are developed. An interesting approach
to the model diagnosis and FS can be given by bootstrap resampling techniques, which were
first proposed as nonparametric procedures for estimating the pdf of a statistical estimation
from a limited, yet informative enough, set of observations [15]. Bootstrap resampling has been
successfully used before for selecting the design parameters of SVM classifiers [30], and due to
their simplicity of use, we propose here to extend their use to model benchmarking in predictive
modeling problems.

For a given set V of n observations, the dependence between the explanatory variables and

the response variable can be fully described by means of the distribution of the output,

Py(x) = V= {(yi,xi); 1=1,.. .,n}, (2.46)

In order to obtain a ML model, a set of R weights {w,,r = 1,..., R}, has to be estimated
according to an optimization process denoted by operator s(-), and it depends on observations
V and on the model design parameters that have been fixed a priori, which can be grouped in a
vector 6 for a given ML technique. The model weights obtained by using the observations and

a previously fixed @ are given by

w={w}=s(V,0) (2.47)

The model performance can be evaluated with the empirical risk, defined as a certain figure of
merit of the model that is evaluated at the observations used for building the model, and it can

be expressed as
Remp = t(w, V), (2.48)

where ¢(-) represents the operator that stands for the figure of merit calculation.

Given that the ML based models do not rely on any a priori distribution of the data, it is not
easy to know the functional form of the pdf of the merit figures. Moreover, the sample estimators
of the merit figures can be optimistically biased, especially for some degenerate choices of the
design parameters, e.g., when too much emphasis is put on the cost of the residuals, or when
a too small neighborhood parameter is used. A method for estimating the pdf of the output is
given by bootstrap resampling, and it can be used for compensating the optimistic bias in the

figures of merit estimators [30].
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A bootstrap resample is a data subset that is drawn from the observation set according to
their empirical distribution p, (). Hence, the true pdf is approximated by the empirical pdf of
the observations, and the bootstrap resample can be seen as a sampling with replacement process

of the observed data, this is,
ﬁy(x)—> V*:{(yf,xf); i=1,...,n} (2.49)

where superscript * represents, in general terms, any observation, functional, or estimator arising
from the bootstrap resampling process. Therefore, resampled set V* contains elements of V
which are included none, one, or several times. The resampling process is repeated B times.

Accordingly, a partition of V in terms of resample V* can be done, which is given by
V= {V;kn(b)) V:ut(b)}l?zla (250)

where V7 (b) and V) ,(b) are the subsets of observations that are and are not included in resample
b, respectively.

A bootstrap replication of an estimator is given by its calculation constrained to the
observations in the bootstrap resample. The bootstrap replication of the empirical risk estimator
is

B2 (b) = t(w, Vi, (b)). (2.51)
The normalized histogram obtained from B resamples is an approximation to the pdf of the
empirical risk. However, further advantage can be obtained by calculating the bootstrap
replication of the risk estimator on the non-included observations, and rather than estimating

the empirical risk, we are in fact obtaining the replication of the actual risk,
th(b) - t(wa Vzut(b)) (252)

The bootstrap replication of the averaged actual risk can be obtained by just taking the average
of cht(b), and scatter measurements can be readily obtained from the same histogram. A typical

range for B in practical applications can be in (50,2000) bootstrap resamples.

Paired Benchmarking of Actual Risk with Bootstrap Resampling

For giving a clear cut-off test allowing us to benchmark the significance of the performance
differences between two different ML based predictive models, we use here the previously
described bootstrap nonparametric resampling procedure. We present the operative procedure
in two complementary stages: first, the bootstrap based characterization of the residuals of a
single model is introduced, allowing the detailed statistical characterization of the figures of merit

under analysis; and second, the performance comparison between two models is described from
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paired bootstrap resampling, which allows us to control for the standard error of the estimates of
the differential figures of merit, giving moderate standard errors and allowing to establish cut-off
tests for model comparison purposes.

The characterization of the pdf of the residuals for a single model can be summarized as

follows:

e Given the original residual vector for a given model, e = [e1, eq, ..., e,], where the actual
risk is evaluated from these residuals, then B independent bootstrap resamples are built,
e*(1),e*(2),...,e*(B), each given by n data resampled with replacement from the original

residual set.

*

ot 1s calculated, and used as an

e For each resample, the value of a given figure of merit R

estimation of the figure of merit under study, by using operator ¢, this is,

2t (b) = t(e* (b)) (2.53)
Note that IA%ZCt can be given by any of the figures of merit previously described.

e A sample distribution is built for the replications of statistic R, (b), which stands for an
approximation to the actual distribution for statistic R, and it can be an estimation of

either average or scatter statistical description of the figure of merit.

%

* ot the 95% CI can be obtained, and its empirical value

From the sample distribution of R
belonging to this interval will allow us to assume that the empirical estimator does not present
a significant bias due to overfitting.

The previous procedure can be readily modified in order to benchmark the performance of
two different ML techniques (or the same technique with different settings), by using a paired
bootstrap resampling, with the same resamples considered in the benchmarked models. The

procedure can be summarized as follows:

1. The residuals or the figures of merit yielded by two different ML based models, r and
s, are considered, given by r = [r1,72,...,7,], and s = [s1, S2, ..., $p] and the differential
resamples are built for the magnitude increments of these figures of merit, thisis, A = |r|—

|s|, hence the differential increment resamples are A*(1), A*(2),..., A*(B).

2. From these resamples of the increments, the increment in performance measurement

ARth(b) is calculated, to be used as an estimator of the populational figure of merit

under study, this is,
AR (b) = t(A*(D)). (2.54)

act
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The normalized histogram of the incremental performance is built for the statistic under analysis,
which represents an approximation of the actual distribution of its pdf.
In this work, when resampling two different ML models model; and models, results will be

compared in terms of average and scatter measurements according to three different statistics,

namely,
AMAE = MAE(modely) — M AE(models), (2.55)
ACI(model;) = Clsyp(model;) — Cliy, f(model;) (2.56)
ACIT = ACI(model;) — ACI(models), (2.57)
AC gy, = Clgyp(modely) — Clgy,y(models), (2.58)

where C1 has been obtained for 95% confidence level, Cly,, (Cliy) are the superior (inferior)
CI limits. These statistics give a description not only in terms of the average magnitude of
the error, but also in terms of its scatter. Given that inference-based closed forms for CT
scatter measurements are often a mathematically complex problem, it comes clear that bootstrap
resampling represents a useful approximation for making it possible.

This theoretical contribution is applied in several applications. For example, in
Application 3.1 (Sec. 3.2) both actual and paired risk estimation with bootstrap resampling
are computed to evaluate the statistically significant differences among the considered ML
techniques. In Application 3.2 (Sec. 3.3) and Application 4.1 (Sec. 5.2), several estimation models
are considered and benchmarked using the paired bootstrap resampling approach presented in

this section.
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Chapter

Machine Learning for Promotional

Decision-Making

3.1 Introduction

The current economic landscape, characterized by financial instability and the consequent
changes in consumer behavior, is driving a transformation in retailer decision, bringing to a new
and more aggressive promotional perspective [$7]. As an example of this situation, the dramatic
sales reduction of some products in Spain, which has led retailers in the industry to implement
new approaches, such as the intense use of private label products, can be mentioned. In
addition, it has been also searched to increase consumer’s frequent purchases through promotional
activities, such as promotional discounts, feature advertising, and promotional packs (e.g., “buy 3
and get 1 free”) [37]. Therefore, sales promotions have become in recent years a fundamental
tool for retailers’ strategies, and the investment in this setting has highly increased in the
marketing strategy, with percentage even above 50% [38]. The better understanding of the
sales promotion dynamics has received growing attention from ML and data mining techniques,
which are powerful tools to extract information from recorded examples [17].

Existing models for analyzing sales promotions effects can be classified into two separate
groups. In the first group, namely theoretical models, consumer behavior is basically evaluated by
considering a sociological and psychological perspective, whilst in the second group of empirical
models, promotional structures based on empirical information extracted from historical
databases are usually built. Within that last group, the efforts have been focused during the last
decades on the understanding of sales promotion dynamics based on classical statistical analysis
methods, and more recent works are concentrated towards ML and data mining techniques, as

powerful tools to extract information from existing recorded data |18, 19]. ML techniques aim to
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find recurring patterns, trends, or rules, which can explain the data behavior in a given context,
and then allows to extract new knowledge on the consumer behavior, to improve the performance
of marketing operations. In particular, a vast amount of knowledge has been extracted from ML
techniques, although not all the promotional behaviors have been studied and there is still room
for further studies [15, 16, 17]. More specifically, operational problems arise in ML promotional
modeling, when based on nonlinear estimation techniques, for evaluating and demonstrating
working hypothesis [19, 20, 21, 22, 23, 24, 25]. First, conventional parametric tests are often not
appropriate, because given the heavy tails and heteroscedasticity for the prediction residuals,
Gaussianity is no longer a working property for them. Second, special attention has to be paid
in order to be sure when working with hypothesis tests in terms of actual risk comparisons,
and not of empirical risk comparisons, to avoid as much as possible the unawared presence of
overfitting in the ML based models. And third, as an indirect consequence of not having a clear
cut-off test, their results cannot always be easily compared across studies, even when they have
been made on the same data set.

Therefore, the objective of the first application of this chapter, Application 3.1, is to propose
an operative procedure for model diagnosis using ML techniques for promotional efficiency
applications at store level. An empirical approach, based on ML techniques, is used for analyzing
the sales dynamics for two representative databases with different promotional behavior, namely,
a non-seasonal stable category (milk) and a heavily seasonal category (beer). Four well-known
ML techniques with increasing complexity are benchmarked, specifically, k-NN, GRNN, MLP,
and SVM. The nonparametric statistical tool based on the paired bootstrap resampling approach
(see Sec. 2.5.2) is used for establishing a clear statistical comparison among them.

In addition, in Application 3.2, an operative and reliable analysis tool for promotional decision
making based on retail aggregated data is also proposed. The main contribution from a digital
signal and data processing viewpoint is the proposal of a new data-driven model based on a
new set of indicators for evaluating the reliability and stability of a data model in terms of
multidimensional feature space rather than a single merit figure for the model (e.g., the mean
absolute error). These indicators allow the user to identify the uncertainty of different feature
space regions, for example, unusual promotion conditions. Using the statistical processing
available, the performance of different methods and different feature spaces is studied. The
use of aggregate data in suitable conditions yields moderate and acceptable confidence intervals

in these feature spaces.
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3.2 Application 3.1: Promotional Efficiency at Store Level

3.2.1 Introduction

Though many definitions have been published for the term sales promotion [33, 89, 90|, none
of them are generally accepted, but general consensus suggests that sales promotions consist
basically in short-time sales incentives [$8, 89]. For instance, the American Marketing Association
defines sales promotion as a media and non media marketing pressure applied for a predetermined,
limited period of time in order to stimulate trial, increase consumer demand, or improve product
availability [91]. Some researches [3%] consider sales promotion not just a marketing element, but
instead included within the strategic activity undertaken by the company. The sales promotion
strategy adopted by the grocery retailer must be consistent with the general pricing policy. In
fact, some strategic aspects of the retailer’s pricing policy cover certain considerations related to
the appropriateness of the use of promotions and discounts. For this reason, when under certain
circumstances the use of deals and discounts are considered adequate, the specific discount rate
must be determined attending to timing, frequency, and magnitude of the promotional discounts,
[92, 93, 94, 95, 96).

Some studies suggest that the pricing policy adopted by retailers is influenced by many
diverse aspects [97], among them factors related to the industry, the company itself, and other
elements derived from the competitive situation and consumer demand. When referring to a
specific activity of sales promotions, such as price promotion, it is important to make reference
to the deal effect curve DEC, which shows the representation of actual sales volume against price
discounts applied during a certain period. Hence, the DEC shows pricing and volumes, and
depicts pricing promotions effects over different products, such us private label and/or normal

brands. Effects illustrated by the DEC can be basically grouped into three categories:

1. The first category is related to direct discount effects. Two fundamental effects can be
showed as far as this category is concern, namely, threshold and saturation. Threshold
stands for the minimum discount that has to be applied to ignite sales growth [958, while
saturation effect could be defined as the discount level that does not generate additional
sales. This second effect can be justified either from the maximum number of product units
that consumers can stock at home (especially with perishables products) [15], or from the
consumer perception of discount itself, which has been shown to be lower than the real

discount [99].

2. A second category relates to the cross-effect generated from other products promotions.
The cross-effects appear when other brands and categories promotion indirectly imply
variation on the volume sold of a certain product. This variation could be different

depending on the value assigned by consumer to the promoted brand (providing a
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much higher effect as the value perceived by the brand is higher) [23], and also
depending on whether simultaneous promotions are inside the same category or substitutive

products [100].

3. And finally, a third category is related to the number of concurrent promotions and their
special characteristics, especially the different media used for the promotion, what implies
different outcome (i.e. combination of an especial exhibition and temporary discount

provides additional effectiveness to the promotion).

An increasing attention is being paid to the potential explanatory possibilities of ML
techniques in promotional effectiveness. In [20], an algorithm based on historical transactions
data, and yielding self and cross-effects for promotional sales prediction, was presented to
estimate the promotions sales profits in retail sales and other business applications. In [25], Rough
Sets and SVM techniques were used to establish a pricing model based on hedonic price improving
prediction capabilities. In [19, 23, 24], sales promotion was modeled by means of semiparametric
regression and semiparametric SVM, with no further comparison to other possibly relevant ML
techniques, partly due to the lack of a suitable cut-off test, capable of dealing with non Gaussian,

heteroscedastic prediction residuals, and actual risk comparisons.

ML Techniques for Promotional Sales Modeling

ML techniques have emerged as powerful tools to extract relevant quantitative
information [17, 18]. Two different types of regression methods have been mostly used in
the sales promotion literature to analyze the sales response to price promotions discounts:
parametric regression and nonparametric regression. Parametric regression assumes a certain
functional form underlying the data, namely linear, exponential, or logarithmic. The simplest
parametric regression model is the linear model, where the parameters can be easily estimated
using ordinary least squares, assuming the presence of additive, uncorrelated, and Gaussian white
noise. However, in the presence of heteroscedasticity, generalized least squares methods are more
appropriate [101]. In addition, maximum likelihood models assume a given statistical distribution
linking the parameters and the data [102]. Nonparametric regression does not assume any a
priori functional form, but it rather relies on approximating the observations locally. Examples
of nonparametric methods are spline regression, k-NN, or kernel estimators [102]. The main
advantages of nonparametric methods are flexibility and consistency, which are established under
much more general conditions than for parametric modeling.

General data model for promotional sales. In order to support the model architecture
that is capable of learning from the relationships between inputs (x, column vector) and outputs

(y), it is required a finite number of paired observations. In sales promotion modeling, the input
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Table 3.1: Products under analysis in the milk and beer product category.
Model Product (Milk) Product (Beer)

Model 1 Asturiana Amstel 25 cl x 6
Model 2 Ato Amstel 33 cl

Model 3 Private brand Bavaria 33 cl

Model 4 Pascual Calcio Cruzcampo 33 cl
Model 5 Pascual Clasica Estrella 25 cl x 6
Model 6 Puleva Calcio Estrella 25 cl x 12
Model 7 - Estrella 33 cl

Model 8 - Heineken 25 x 6
Model 9 - Private brand 33 cl
Model 10 - San Miguel 25 cl x 6
Model 11 - San Miguel 25 cl x 12
Model 12 - Voll Damm 25 cl x 6
Model 13 - Xibeca 25 cl x 6
Model 14 - Xibeca 33 cl

pattern may consist of information about price changes and promotion characteristics, whereas
the output would correspond to the number of sold units for a given product. The model f(-)
for the relation y = f(x), has been mainly estimated in the marketing research literature by
using two different families of regression methods. Regarding to the first of them, in parametric
methods, it is assumed a previously known shape or structure for functional relation f(-). In this
case, the functional is often defined by a simple relationship (linear), while the nonparametric
method does not assume any prior structure in terms of data model, instead, it is built the

estimated relationship based on kernels (for instance, the Gaussian kernel) [4].

3.2.2 Database

Two real databases from the milk and beer product categories were analyzed. These two
categories represent products with different promotional dynamics, in particular, milk is a daily
used product, while beer is a highly seasonal product. We used the information extracted
from both product categories, obtained from digital archives of sold units in the same retailer
(supermarket) during one year, excluding weekends. Up to 304 examples (samples) were available
for each category, corresponding to the days when transactions were recorded in the supermarket.
Information was aggregated into 43 weeks, to avoid weekly seasonality effects that were clearly
present in the data.

On the one hand, the milk category database was studied separately from beer products, in
order to compare daily products. Hence, 6 brands were analyzed within this product category,

corresponding to 6 different promotional models, as indicated in Table 3.1. On the other hand,
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the beer database was assembled, as a reference of a strong seasonal product along the year.
This separate structure of databases allowed the benchmark between categories with different
behavior, as well as a benchmark among all models inside each category in order to compare with
a strongly along the year seasonal product. In this second category, the promotional behavior
of 14 different models were analyzed, as shown in Table 3.1. For some brands, different formats
were considered (i.e. for Amstel beer a distinction was made between the 33 cl. can and the 25
cl. 6 units pack). In all models, exogenous variables were given by the set of price indices (PI)
for the different items in each category. The price index for a given product is given by
Bprom (i, t)

PIG1) = “Fs
reg\?,

(3.1)

where PI(i,t) is the price index of product i at week ¢, Preg(i,t); and Pprom(i,t) are the
regular and promotional prices of product ¢ at week t, respectively. Hence, the price index
gives the relative variation between the promotional price and the regular price, and its value
is 1 whenever both are equal. This index allows a clearer comparison of the magnitude of
the discounts, and so it is often considered as a more informative exogenous variable than the
promotional price. In addition to the price index of all the competing brands in a category for
each model, other exogenous variables were also considered. First, a variable for direct discount
(DD) (or equivalently, price reduction) was considered as a dichotomic variable (1 for existing
direct discount and 0 otherwise). Second, a pre-processing algorithm was used for distinguishing
between two possible seasonality-dependent behavior, by splitting each database into two possible
periods. The first period was identified with 0 and the second with 1, allowing a natural way
either for identifying the low from the high season, or for canceling its effect in the model.
This dichotomic variable was called baseline (BL). Baseline sales is a key concept in marketing
research and it is typically defined as the sales of a given product when there are neither marketing
promotions for this product, nor promotions for other interacting products [103, |. Graphical
representation of these assessments can be found in Fig. 3.1 where the PI for each model in both
product categories, as well as the weekly sold units, are shown.

The promotional models for both databases share some characteristics, namely, the input
sample is given by a combination of both price indices and dichotomic variables, and also the
output of each model is given by the sold units for that particular product in the database.

Hence, the promotional model can be expressed as:

y(i,t) = f(z™@,t), 2P (i, t), BL(t)) (3.2)

where y(i,t) is the number of sold wunits for product ¢ during week ¢;

«M = [PI'(i,t),...,PI"(i,t)]T is a vector with the price indices of product i during

week t, with n,, = 6 for milk database and n,, = 14 for beer database; z”(i,t) is the direct
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Figure 3.1: Time evolution of price indices (a,b) and sold units (c,d) for mil database (a,c) and

beer database (b,d).

discount dichotomic variable for product i during week t; and BL(t) is the baseline for the

dichotomic variable at week ¢.

3.2.3 Experiments and Results
Limitations of DEC Characterization with the Own-Effect

In order to verify whether a complex model is really required to analyze the existing data, the
DEC was estimated by considering only each price index own-effect, and estimation was executed
by calculating the average units of products sold as a function of the pricing index, without
considering presence of simultaneous promotional effects by other competing or substitutive
products.

Individual own-effect for models corresponding to milk category, and for beer category were
obtained. In both cases DECs corresponds only to the effect, over each product, due to the
discount applied, without taking into account any further interactions with other competitor
products, which ended not been a fair approximation attending to results obtained. In many cases
DECs shapes found could be explained according to direct effects such as threshold, saturation

and price/demand standard elasticity, although other situations are also identified. In an attempt
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Figure 3.2: Aweraged price index as a function of sold units for milk database. Models 1 to 6
correspond to panels (a) to (f).

to identify those effects in the individual DEC curves for milk category, it could be said that the
largest elasticity effect can be found for the product presented in Fig. 3.2 (a), while the smallest
one is detected in Fig. 3.2 (d). Threshold effects could be observed in Figs. 3.2 (c¢) and (d) at
levels of discount of 2%, whilst the saturation effects could be detected in Figs. 3.2 (a), (c), (e)
and (f) at levels of discounts of 3%, 8%, 3% and 4% respectively. Similar conclusions could be
extracted from DEC simple estimations for the beer category.

Therefore, it seems reasonable to assume that, apart from threshold and saturation effects,
other phenomena are taking place simultaneously, for instance, cross-price effects and differential
interactions among promotional initiatives. Therefore, the DEC own-effect should be considered
with caution, as it does not allow to identify or detect cross-effects in real data, more complex
and sophisticated modeling techniques must be used. This is the motivation for applying ML

techniques in order to detach and characterize existing simultaneous promotional effects.

Selection of Design Parameters for ML methods

The design parameters selection was just dependent on the ML method. In summary,
four nonparametric regression/estimation techniques were used for comparison purposes: k-NN|,

GRNN, MLP and the linear and nonlinear »-SVM. Fundamentals of the four techniques are



3.2 Application 3.1: Promotional Efficiency at Store Level 61

explained in Sec. 2.3.1. LOO was selected as the cross-validation approach due to the reduced
number of available samples (see Sec. 2.5.1).

k-NN design parameter selection. As summarized in Sec. 2.3.1, the number k of
neighbors considered for local-averaged estimation is the design parameter of this technique.
Best value for k depends on the size and dimension of the database, and must be chosen so that
the model is neither sensitive to atypical samples nor provides over-averaging, since both cases
give poor quality estimations. For each model, parameter k is explored in the range (1, 40). Note
that there is often a noticeable plateau, giving a stable working zone for the design parameter
selection. In addition, it is worth to note that k£ tends not to be a low value, hence indicating
that smoothing is necessary to yield better models with this technique and database.

GRNN design parameter selection. The implemented GRNN architecture is a multiple
output scheme (Sec. 2.3.1) such that every output corresponds to one predictor variable
(sold-units of a product in the database). The width o of the symmetrical Gaussian kernel
is the design parameter for the GRNN. Though from a mathematical point of view, outputs are
uncoupled (they do not model cross-interactions among outputs), and hence the implemented
architecture is equivalent to a set of independent individual models, the multiple output
implementation has operational and computational advantages. Parameter ¢ was explored in
the interval (0.01, 0.5).

MLP design parameter selection. The chosen MLP architecture (see Sec. 2.3.1 for
details) has one hidden layer and multiple output so that optimization is simultaneously
performed for all outputs, which are now coupled along with the design process. The design
parameter to be selected was the number of neurons in the hidden layer, denoted as ng. Weights
of the MLP were determined by applying the iterative Levenberg-Marquardt algorithm. To avoid
overfitting an early-stopping procedure with holdout cross validation was performed.

SVM design parameter selection. As explained in Sec. 2.3.1, different free parameters
have to be tuned in the v-SVM. When working with linear kernels, two design parameters
are necessary: v € (0,1) to control training errors and regularization parameter C' (C' > 0).
The kernel width ¢ has to be also tuned when Gaussian kernels are considered. In the linear
case, the (v,C) space is explored. In the nonlinear approach, and to reduce the computational
burden required by an exhaustive three-dimensional exploration, the following iterative procedure
starting from an initial value of C' was applied: (1) for a given C, the (v,0) space is explored; (2)
pair (v,0) providing a minimum MAE is found; (3) with values of (v,0) obtained in previous step,
parameter C' is explored and the best conditional value is chosen; and (4) the obtained MAE is
stored, and first and third steps are repeated until MAE becomes stable. The previous procedure

was performed four times, each with a different initial value for C', with C' = [10, 50, 100, 1000].
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Table 3.2:

MAE for individual models in milk database.

For each cell,

empirical and

bootstrap-averaged MAE (first row), and 95% CI (second row).Bold emphasizes the method with

the best performance for each model.

k-NN GRNN MLP RBF SVM Linear SVM

Model 1 366.44 || 365.50  366.44 || 365.50  320.75 || 320.56  322.15 || 320.68  389.43 || 388.00
[269.95,465.16] [269.95,465.16]  [247.23,407.72]  [231.08,422.75]  [282.24,512.49]

Model 2 205.21 || 205.56  205.21 || 205.56  198.89 || 198.22  166.09 || 166.13  240.07 || 240.68
[156.94,257.97] [156.94,257.97] [154.57,244.11]  [123.03,214.02]  [185.46, 301.55]

Model 3 164.62 || 165.11  164.62 || 165.11  151.23 || 151.83  136.12 || 135.86 160.58 || 160.38
[131.26,199.64] [131.26,199.64] [122.15,182.68]  [109.63,165.34]  [124.98,199.50]

Model 4 63.27 || 63.18 63.27 || 63.18 72.41 || 72.85 50.64 || 50.41  71.73 || 71.72
[48.61,79.27] [48.61,79.27] [58.06,89.09)] [37.87,65.05] [51.25,93.84]

Model 5 178.99 || 178.49  178.99 || 178.49  196.36 || 196.83  192.59 || 193. 03  380.79 || 380.89
[131.93,226.97]  [131.93,226.97] [151.58,248.20] [134.98,257.77]  [282.89,494.88]

Model 6  119.68 || 119.54  119.68 || 119.54  127.68 || 127.64  105.13 || 105.24  238.90 || 238.85

[92.13,148.40) [92.13,148.40] [99.38,157.79) [80.24,132.32) [178.34, 307.87]

Benchmarking Prediction Models

The first analysis to be made is the benchmarking among different ML techniques (k-NN,
GRNN, MLP, linear and nonlinear SVM) in terms of LOO-based MAE, for each product and
both databases. For the milk database, the promotional model considered 8 input variables,
namely, 6 metric variables corresponding to the price indices of itself and of competitor items,
and 2 dichotomic variables (direct discount indicator and seasonality). The number of model
outputs was dependent on the technique, this is, 6 product models with 1 single output each for
k-NN and v»-SVM, and one joint model with 6 outputs for GRNN and MLP. Table 3.2 shows the
results of the empirical MAE (recall again that it has been obtained with LOO and averaging),
together with the bootstrap-averaged MAE. Note that consistence between these two values is an
indicator that generalization capabilities are properly quantified with the merit figure, whereas a
reduced empirical MAE compared to the bootstrap-averaged will be an indication of overfitting.
The 95% CI is also summarized, in order to give a nonparametric measurement of scatter for
each method. Bold typeface emphasizes the best ML technique, in terms of averaged MAE. From
the values in the table, we can observe that RBF SVM seems to be the best ML technique for
Models 2, 3, and 4, whereas k-NN seems to be the best one for Model 5.

For the beer database, the promotional model considers 16 input variables (14 metric
variables, and two dichotomic variables for direct discount and seasonality), with the same
considerations as before for the number of outputs and models in each technique. Results in
terms of MAE are shown in Table 3.3, where it can be observed that RBF SVM seems to be the
best method for all the models, except for Models 2 and 7, where k-NN seems to be the best



3.2 Application 3.1: Promotional Efficiency at Store Level 63

Table 3.3: MAE for individual models in beer database. empirical and
bootstrap-averaged MAE (first row), and 95% CI (second row).Bold emphasizes the method with

For each cell,

the best performance for each model.

k-NN GRNN MLP RBF SVM Linear SVM

Model 1 7.85 || 7.85 11.85 || 11.90  13.86 || 13.75 6.98 || 6.96 12.93 || 12.92

[5.16,10.94] [9.07,14.83) [10.33,17.50| [4.77,9.16] [8.85, 17.34]

Model 2 33.77 || 33.61  47.56 || 47.43  49.76 || 49.42 34.52 || 34.53 48.50 || 48.57
[25.67,42.11] [38.10,57.32] [39.08,62.28] [27.33,42.32] [36.61,59.32]

Model 3 15.10 || 14.96  14.92 | 14.70  14.33 || 1428  14.08 || 14.11  15.40 || 15.46
[11.48,19.38] [10.94,19.35] [10.49,18.60) [10.48,18.67] [11.53, 20.29]

Model 4 25.75 || 25.74  27.51 || 27.58  26.74 || 26.42  21.40 || 21.40  29.53 || 29.36
[19.59,32.09] [22.34,33.32] [20.15,34.00] [16.36,27.01] [22.81,36.04]

Model 5 12.21 || 12.05 13.67 || 13.67 13.62 || 13.54 10.27 || 10.25 12.85 || 12.87
8.82,15.92] [10.67,16.49) [10.28,16.77] [7.54,13.19] [10.38, 15.31]

Model 6 31.10|| 30.89 32.33 || 32.15  31.59 || 31.65  26.82 || 26.86  32.21 || 32.41
[23.82,39.15] [24.29,40.91] [25.15,38.95] [18.92,35.37] [24.67,41.85]
Model 7 78.86 || 78.57  97.54 || 96.86  103.53 || 102.14  89.50 || 89.53  102.08 || 102.20
[61.13,99.64]  [72.26,123.36]  [72.98,136.63] [64.13,118.31] [75.92,130.58]

Model 8 36.90 || 36.92 36.19 || 36.19 47.42 || 47.15 34.59 || 34.71 36.03 || 36.25
[29.91,48.91] [26.89,46.31] [38.34,57.09) [26.83,43.39] [27.42, 46.24]

Model 9 20.77 | 20.64  32.93 || 32.85  28.92 | 28.70  19.58 || 19.62  31.36 || 31.43
[16.04,25.67] [26.50,39.82] [21.18,38.62] [14.48,25.02] [23.87,39.84]

Model 10 17.98 || 17.88  24.12]| 24.02  26.08 || 26.22  12.85 || 12.84  21.69 || 21.82
[11.54,26.99] [16.44,34.14] [18.29,35.32] [8.39,19.15] [13.09, 32.44]

Model 11 13.65 || 13.62  17.48 || 17.42  13.60 || 13.62  11.48 || 11.43  17.62 || 17.63
[9.74,17.73] [12.51,23.41] [9.86,18.06] [7.92,15.18] [13.29,22.93]

Model 12 109.58 || 109.69  102.62 || 102.00 146.30 || 146.07  96.85 || 97.06  99.46 || 99.85
[83.88,140.81]  [77.19,130.96]  [107.64,183.87]  [71.72,126.61]  [72.24,130.99]

Model 13 16.49 || 16.45  22.83 ] 22.69  26.16 || 25.92  14.91 || 14.94  22.23 || 22.32
[12.88,20.21] [18.21,27.91] [18.84,34.56] [11.47,18.78] [16.96, 28.41]

scheme.

In general terms, it can be concluded that, for MAE as merit figure, RBF SVM is the

technique with better performance. This advantage is more patent in the case of beer database

products, and occasionally, k-NN yields better performance than RBF SVM. With respect to the

remaining ML techniques, it is often complicated to benchmark in terms of averaged MAE. For

instance, in the milk database, GRNN gives lower MAE than k-NN and MLP for Models 2 and

3, but not for the remaining products. Therefore, in order to give a clear cut-off test allowing

the comparison, the next step is to use the proposed bootstrap paired test.
Table 3.4 shows the paired comparison of k-NN vs GRNN, k-NN vs RBF SVM, GRNN vs RBF
SVM and linear SVM vs RBF SVM. Bootstrap resampling allows us to calculate the 3 different
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Table 3.4: Paired bootstrap for milk Database using three statistics for MAE merit figure in each
cell, namely, AMAE (first row), ACI (second row), and AClg,, (third row), with mean and 95%
for each. Bold emphasizes the technique comparison with statistically significant differences at
95%.

k-NN vs GRNN k-NN vs v-SVM GRNN vs RBF SVM  Linear vs RBF SVM
Model 1 -33.26 [-107.37,43.21] 45.14 [-6.46,106.76) 76.78 [20.21,133.73] 21.51 [-45.62,91.75)
150.41 [-453.69,749.42 |  231.63 [-344.72,706.90] 86.76 [-469.78,431.90] 90.12 [-176.88,535.20]
-54.43 [-499.08,438.29)] 8.06 [-247.29,163.40] 158.71 [-304.17,300.46) 101.64 [-173.43,537.06]
Model 2 25.60 [0.09,54.63] 38.22 [10.13,68.02] 12.13 [1.04,23.53] 80.98 [29.29,130.67]
-1.98 [-135.32,121.75|| 21.14 [-169.14,226.54] 18.35 [-21.31,93.62)] 162.70 [20.73,454.97]
21.94 [-106.26,194.54] 59.74 [-13.31,234.87] 29.16 [2.40,109.07] 195.66 [50.14,489.21]
Model 3 16.95 [-1.18,33.74] 27.40 [7.47,48.29] 10.40 [2.19,19.08] 8.15 [-4.57,21.04]
141.97 [46.41,246.08] 159.73 [39.62,260.05] 15.92 [-37.84,104.71] 14.68 [-40.09,74.93]
92.05 [14.20,142.75] 95.50 [-22.02,180.99) 4.50 [-33.02,39.79] 16.92 [-38.42,76.60]
Model 4 1.74 [-15.80,14.41] 13.64 [3.43,23.68] 15.49 [4.53,26.47] 65.14 [-24.80,115.85]
-12.40 [-129.01,144.81] 67.71 [-11.58,130.99)] 82.00 [-13.82,122.43) 4.33 [-6.73,15.37]
-52.49 [-122.24,98.23) 10.79 [-35.07,74.79] 64.60 [-32.74,92.66) 66.58 [-22.95,114.04]
Model 5 -15.22 [-55.52,28.75] -11.40 [-52.92,31.54] 2.86 [-39.87,44.85] 226.28 [147.89,303.90]
70.56 [-142.65,255.19)] -41.69 [-417.52,251.53]  -110.44 [-353.20,148.94] 268,40 [152.12,413.05]
1.10 [-63.07,57.34] -202.82 [-401.77,-3.48]  -203.46 [-407.88,23.06]  275.29 [177.14,407.94]
Model 6 4.04 [-19.98,27.76) 7.28 [-21.99,36.11] 2.62 [-12.44,17.51] 192.47 [137.81,240.53]
46.78 [-106.24,163.55) 55.53 [-92.50,169.06] 9.87 [-112.51,104.06] 21.37 [-134.94,221.37]
29.39 [-36.50,111.73) 13.35 [-24.32,60.57] -15.63 [-51.16,38.43) 77.20 [-24.26,240.90)

statistics previously described in Sec. 2.5.2, namely, the difference of averaged MAE (AMAE,
first row), the difference in the width of CI of the MAE distribution (ACI, second row), and the
difference between the upper limits of the CI (ACIy,y, third row), for paired-benchmarked ML
methods. Recall that the two last measurements give a quantification of the scatter, whereas
the first one gives a quantification of centering. Consistently with both conventional statistics,
we can say that the performances of 2 methods are statistically different whenever the CI of the
increment of the statistic does not overlap the zero level. Hence, in terms of CI limits, in the case
both limits were simultaneously negative, it will indicate that the first technique significantly
outperforms the second; both limits with positive values will indicate that the second technique
significantly outperforms the first one. Trivially, a negative limit together with a positive limit
indicates that no significant difference can be given to any of the compared methods.

Table 3.4 presents the results of analysis for dairy products using the 3 statistics. This
structure of data studied, i.e. generating and analyzing the 3 statistics for paired comparisons
and statistical testing, was extended throughout this research. However, the results obtained for

the 2 statistics related to the scattering were consistently equivalent, and therefore, the remaining
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Table 3.5: Paired bootstrap for beer Database using three statistics for MAE merit figure in each
cell, namely, AMAE (first row), ACI (second row), and ACILup (third row), with mean and

95% for each. Bold emphasizes the technique comparison with statistically significant differences

at 95%.

k-NN vs GRNN

k-NN vs v-SVM

GRNN vs vr-SVM

Linear vs RBF SVM

Model 1 -4.07 [-6.88,-1.01] 0.85 [-0.61,2.43] 4.89 [2.08,7.85] 5.93 [1.97,10.26]
-2.42 [-8.79,12.76] -6.73 [-13.01,7.88] -6.53 [-10.03,5.16] 19.62 [8.29,31.29]
Model 2 -13.51 [-24.07,-4.29] -0.75 [-4.40,2.89)] 13.01 [3.43,23.07] 14.04 [4.16,24.88]
-11.33 [-51.85,19.99]  -13.20 [-24.47,-1.24]  0.68 [-26.16,38.10] 32.36 [-5.94,67.87]
Model 3 0.27 [-3.22,4.04] 1.00 [-2.06,4.11] 0.87 [-1.43,3.27] 1.32 [-1.57,4.37]
-12.19 [-20.08,19.58) -12.04 [-26.49,17.23]  -1.61 [-17.07,10.44] 3.89 [-5.26,14.04]
Model 4 -1.78 [-7.06,3.04] 4.30 [0.96,7.34] 6.08 [0.92,11.16] 10.72 [-6.30,50.22]
8.76 [-17.53,20.85] 0.91 [-23.05,12.03] -7.07 [-27.73,16.90] 8.29 [2.47,14.34]
Model 5 -1.16 [-4.43,1.71] 1.88 [0.12,3.75] 3.36 [0.55,5.99] 2.62 [0.43, 4.70]
7.02 [-1.55,17.34] 0.68 [-10.08,14.4] -6.78 [-13.52,1.50] -5.89 [-17.70,4.58]
Model 6 -0.93 [-9.70,7.70] 4.26 [1.82,6.93] 5.50 [-4.14,14.83] 5.41 [-3.84,14.47]
-9.67 [-44.34,20.41] -3.32 [-41.07,24.58] 3.35 [-33.54,31.77] 4.52 [-30.69,64.74]
Model 7 -18.25 [-43.59,3.21] -10.67 [-35.21,11.45] 7.94 [-5.48,20.40] 12.81 [-0.60,25.69]
-76.33 [ -171.02,31.78]  -47.81 [-261.81, 63.56]  7.89 [-127.94,118.44] 18.64 [-66.96,81.47]
Model 8 0.83 [-6.60,8.17] 2.25 [-2.97,6.98] 1.61 [-3.86,7.24] 1.51 [-5.05, 7.98]
-13.11 [-46.22,13.68]  -19.78 [-44.14,-3.42]  -8.97 [-32.16,16.40] 17.25 [-0.79,32.86]
Model 9 -12.14 [-19.99,-4.32] 1.21 [-1.28,3.70| 13.30 [6.45,20.67] 11.81 [4.23,19.70]
-23.08 [-42.88,0.98] -1.11 [-15.95,6.42] 17.54 [-4.85,41.78] 32.49 [7.70,55.29]
Model 10 -6.19 [-13.24,0.53] 5.10 [0.69,10.34] 11.17 [5.49,17.63]  55.21 [20.70,70.61]
-11.69 [-46.93,17.99)] -7.95 [-15.95,6.43] 5.98 [-20.11,37.46] 8.93 [2.68,16.33]
Model 11 -3.65 [-8.58,0.27] 2.19 [-0.73,5.30] 6.03 [2.68,9.41] 6.15 [3.03,9.72]
-14.88 [-43.21,1.57] 0.66 [-13.85,13.62] 16.23 [1.44,33.81] 10.42 [2.65,18.40]
Model 12 6.47 [-20.01,30.79) 13.04 [-18.12,44.29)] 5.73 [-1.99,14.50] 2.45 [-12.58,18.47]
82.44 [-153.18,146.97]  15.96 [-174.49,109.52]  -31.25 [-126.57,16.92] 8.74 [-91.51, 71.80]
Model 13 -6.31 [-11.29,-1.8] 1.62 [-2.11,5.07] 7.90 [2.40,13.23] 7.29 [1.84,13.06]
-18.75 [-36.99,9.57]  -29.97 [-44.63,-3.48] -11.61 [-36.42,18.84] 25.72 [-4.74,56.5]
Model 14 -0.71 [-8.51,6.23] 3.67 [-2.24,9.36] 4.83 [-1.04,10.46] 12.81 [5.37,21.23]

0.24 [-30.71, 14.10]

-20.96 [-81.49,-4.77]

-17.78 [-51.68,5.46]

38.62 [7.00,52.91]

results of this work will show only the first one (ACI). For this particular case, from the third
column in Table 3.4, it can be concluded that it is better to estimate the number of sold units
with RBF SVM for Models 1, 2, 3, and 4. However, in terms of ACI, there are no significant
differences between GRNN and RBF SVM, and all histograms are centered on zero. Models
2 and 3 correspond to ATO brand and distributor brand, respectively. These two models gave
significantly better performance when using RBF SVM than when using k-NN or GRNN in terms

of averaged MAE, but there were no differences in terms of scatter merit figures.
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When comparing the paired bootstrap test for analyzing the differences between k-NN and
RBF SVM, the last one was significantly better for Models 2, 3, and 4. It can be also observed
that in Model 5, the upper limit of CT is lower with k-NN scheme. Regarding linear and RBF
SVM comparison, it can be concluded that RBF SVM yields better performance for Models 2, 5
and 6. This conclusion suggests that is better to use a nonlinear approximation to characterize
the promotional efficiency in dairy product.

As a summary, for milk category, RBF SVM results performed better than k-NN in some
models, and no significant difference was obtained in the rest of the cases, in terms of AMAE.
GRNN performance mainly overcame k-NN, while v-SVM, in general terms, also overcame
GRNN. So, as a key result it could be mentioned that for milk category RBF SVM was the
best performing method.

Paired bootstrap tests for beer database are shown in Table 3.5. When comparing k-NN
vs GRNN, there are significant performance differences in AMAE for Models 1, 2, 9, and 13,
k-NN yielding significantly better quality for the estimation. For the distributor brand (Model
9), the upper lower of CI was significantly lower when using k-NN. When comparing k-NN vs
RBF SVM, in terms of MAE it was better to use RBF SVM for Model 4, 5, and 6, however, the
scatter was lower when designing the models with k-NN, specifically, in Models 2, 8, 13, and 14,
both for ACI. When comparing GRNN vs RBF SVM, it can be said that RBF SVM yielded a
significantly better MAE for Models 1, 2, 4, 5, 9, 11, and 13. In terms of scatter, ACI was only
significantly different for Model 11. Regarding linear and nonlinear SVM, it can be concluded
that nonlinear approach performs better for most of the products.

As a summary conclusion of this experiment, we could state that using MAE merit figure, in
absolute terms, RBF SVM method provided a better performance, although occasionally k-NN
overcame SVM in the case of beer database, while in some cases it is GRNN the preferred method

for milk database.

3.2.4 Discussion and Conclusions

In this study, two separate types of conclusions can be distinguished. First, those ones related
to the evaluation of the different ML methods, and secondly, those related to promotion of a
specific product. From a marketing point of view, it has been evidenced that it is essential
to better understand not only the consumer behavior in terms of their response to price deals,
but also an in depth study of the adequate methodologies. Thus, the tendency is to evolve to
nonparametric regression methods, which allow more flexibility and a higher ability to adapt
to the specific promotional features. This is really important in the scenario of the present
study, where two databases corresponding to different food product categories with specific

characteristics. Milk is a daily used product, while beer has a high level of seasonality. On
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the other hand, milk is consumed by a higher range of consumers segments, whereas beer is
consumed by adults.

Main contribution of this work is the proposal of an operative method to evaluate the
promotional efficiency, based on ML, as a valid method to analyze the multiple and simultaneous
effects coexisting in promotional activities in retail markets when using real-world data.
Justification for the use of ML tools is based on the fact that real data are subject to a large
number of factors (namely, consumer idiosyncratic behavior, multiple simultaneous promotions in
the same category, promotions in complementary/ substitute products and categories, and even
consumer share of wallet), and hence simple models would not be able to trace all concurrent
events or even extract complex multivariable characteristics.

As far as method evaluation is concerned, initial results showed that very often it comes
complicated to identify significant differences in the model quality for the ML techniques
presented (k-NN, GRNN, MLP and SVM). Final results showed that RBF SVM presented
a significant better performance, followed by k-NN and GRNN, for milk category. For beer
category, results were also better in general terms for RBF SVM, although in some cases a

better result was obtained using k-NN.

3.3 Application 3.2: Promotional Efficiency at Chain Level

3.3.1 Introduction

From a retail manager’s viewpoint, sales forecasting is essential not only to set the right
pricing for an individual product [105] but also to define the promotional structure that maximizes
benefits within a category as a whole [106]. The same rationale applies to individual customer
behavior with regard to the total impact of a certain promotional strategy [100, , , ,

|. As a consequence, promotional models built on market-level data are considered as the
best suited to describe the market behavior. Executive decisions are mainly based on this
kind of information, especially for those retail chains accounting for a significant market share.
Although it is evident that aggregated retail sales forecasting could potentially improve store
sales prognosis [111], nevertheless, many authors have warned against the biasing risk during the
aggregation process [112].

For a decision-making tool to be an efficient instrument for promotional retail management,
it must be designed to be operative and reliable. To be operative, the retail management tool
should be able to handle data models that: (1) can be better described time series (TS) dynamics,
static paradigms, or even by both; and (2) can be better represented by linear or by nonlinear
dynamics. To be reliable, the tool must be more robust when working with aggregated data

than working with store level data, but also must ensure an adequate aggregation process. We
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describe next relevant data aggregation precedents and summarize conventional T'S dynamic for
promotional sales models. Static DEC and learning-based nonlinear methods were described
previously in Application 3.1, thus, we avoid to repeat them in this application.

Data aggregation at chain level. Previous research has considered three levels of
aggregation: store, chain, and market levels. At the store-level, data can characterize consumers’
behavior (by considering buying habits such as products, and units to evaluate loyalty and churn
rates), as well as brand or product sales (by aggregating sales). Household information for each
product category can also be used to analyze the individual brand sales behavior and pricing
effects can also be analyzed [113]. Further aggregation at chain-level, or even at market-level,
integrates the information for brands or categories to provide accumulative effects [114].

According to published research analysis, each level of aggregation may introduce bias, which
depends to a great extent on the aggregation method, thus limiting the generalization capabilities
of the forecasting model. In [115], the authors analyze bias effect by comparing sales estimates
at both store and chain level, and conclude that bias may be related to heterogeneous marketing
strategies within stores. The authors also note that relevant information, such as marketing
strategies followed by competitive retailers, is not reported or registered through scanner datasets.
Other studies use different approaches to address model heterogeneity and bias among stores. For
example, authors in |1 16] proposes a random coefficient demand model to avoid bias when data
aggregated across stores with heterogeneous promotional activity are considered. However, bias
may not be fully removed due to substitutive effects, competing products and heterogeneity;
therefore, in the current study, we followed the methodology in [117], in which bias can be
mitigated by aggregating data across stores with homogeneous marketing activities.

TS for promotional modeling. Promotional activities typically exhibit a strong temporal
dependence, which suggests that certain models taking into account temporal variations could
yield better results than static DEC. In this setting, the statistically well-founded TS analysis,
has received a great deal of attention in the last decade of the twenty-first century, due to the vast
amount of data available from electronic records and media (e.g., scanner data), which allows
both the cross-sectional and longitudinal analyses |1 15]. Researchers have used TS techniques for
forecasting marketing variables and for evaluating specific situations [119]. New tools based on T'S
have proliferated in recent years to support general decision-making and especially in marketing
activities [118]. For example, autoregressive moving-average (ARMA) modeling provides a
well-developed general framework to analyze time series. It can be further extended to take into
account exogenous variables (so-called ARMAx models) to improve their predictive capabilities.
A multivariate version of ARMA models, the vector ARMA, allows adjusting models in which
the dependent variable can be explained by multiple TS [119].

In this Thesis, we propose an operative analysis tool for promotional decision making based on
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Store-level Retail Decision

Nonlinear preprocessing Reliable indices extraction for supporting
tools and data aggregation promotional decision-making

—_— Benchmarking linear and nonlinear sales
prediction engines (bootstrap resampling)

Figure 3.3: Schematic of the proposed chain-level analysis.

retail aggregated data. Using the statistical processing available, we can study the performance

of different methods and different feature spaces.

3.3.2 General Forecasting Promotional Model

A three stages chain-level analysis as shown in Fig. 3.3 is proposed. First, we use a
signal preprocessing method to aggregate data from store-level to chain-level, based on a-priori
considerations and simple morphological analysis. Second, we propose a generic promotional
sales forecasting tool that can account for static and time-varying dynamics models in a
given product, while maintaining a simple and compact mathematical form. Decisions about
different plausible models are determined by their comparative benchmarking by means of
nonparametric resampling statistical tests (formally introduced in Sec. 2.5.2). Finally, the new
proposed statistical indices are defined in the feature space and calculated for each product using
resampling techniques.

We will generally consider data available at discrete time ¢, mostly consisting of prices and
sold units in a weekly time period. Accordingly, P;(t) (s;x(t)) denotes the price (the number
of sold units) for the i-th product at store k during week t, where i € {1,..., I}, ke {1,...,K}
and t € {1,...,T}, with I, K and T being the total number of products, stores and weeks,
respectively. Recall that P;(t) represents the price proposed by headquarters (HQ), which should
be identical for the same product and week in all stores, however, day-by-day knowledge shows
that prices are often different at each store due to promotional local decisions. This variability
may be related to human errors during scanning process at cashier, special discounts applied
due to damaged items, errors in the information systems, or even changes in prices due to local

strategies. Store and central prices can be related by the following expression,
Pii(t) = Pi(t) + Xix(t) (3.3)

where X is an uncertainty term.
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Because we are interested in decision making according to central prices, we will need to

approximate them by an adequate estimation operator ®, this is,

N

Pi(t) = ®{P (1)} (3.4)

In contrast, sold units can be readily aggregated at the chain-level (S;(¢)) by the accumulative

sum across stores, that is,
K
Si(t) = Z sik(t) (3.5)
k=1
After data preprocessing, a general forecasting model for the i-th product can be written as

Si(t) = Sit) +elt) (3.6)

S = FOLBMNLELSH}) (3.7)

where S’Z(t) are the forecasted values of aggregated sold units at time ¢ for the i-th product; e;
are the model residuals; operator F' stands for the method used for estimation, such as DEC
analysis, linear TS, or nonlinear statistical learning algorithms; and @;, Z;, denote the features
extracted from prices and sold units series for the i-th product. Note that operator F' gives a
data description in the so-called feature space, defined by ©; and Z; feature (column) vectors,
which can be concatenated in a simple feature vector given by ¥; = [@,, &[]T. In the following,
we will use both Sj(t) and S;(¥;(t)) to denote the estimated number of sold units at time ¢ for
the i-th product.

The DEC model with just self-product effects can be readily expressed by ®;(t) = [Pi(t)], as
follows,

Si(B;) = E{Si(1)|Pi(t) € e(B)} (3.8)

The expectation operator is used to smooth the number of sold units with respect to observed
pairs of price and sold units within a neighborhood of a given price, €(ﬁ)2) Note that operator
F in Eq. (3.7) is given by the price expectation within the P, neighborhood.

AR(p) and ARz(p,q) models, with p autorregresive terms and ¢ + 1 exogenous input terms,

can be written as follows,

Si(t) = > duSit—r) (3.9)
r=1

p q
Si(t) = D oSt —r)+ > 0; Bt — ) (3.10)
r=1 =0
where ¢, 0; are the model parameters [120, 121], and Eq. (3.7) is readily adapted by generating

the following feature spaces,
OAPWM)} = [BD)..... Bt —q) (3.11)
=L} = [Si(t—1),... St —p)]T (3.12)



3.3 Application 3.2: Promotional Efficiency at Chain Level 71

Table 3.6: Price level, brand and regular and promotional sold units (%) for each product.

Regular Promotional
Product Price level Brand Sold Units Sold Units
(%) (%)
Product 1 0.3426 Brand 1 43.82 % 51.99 %
Product 2 0.2860 Brand 1 43.82 % 51.99 %
Product 3 0.2489 Brand 2 7.62 % 12.20 %
Product 4 0.2181 Brand 2 7.62 % 12.20 %
Product 6 0.1810 Brand 3 5.22 % 5.38 %
Product 5 0.1522 Brand 3 5.22 % 5.38 %
Product 7 0.1455 Brand 4 1.86 % 1.62 %
Product 10 0.1372 Private label 17.19 % 8.74 %
Product 8 0.1004 Brand 5 2.24 % 0.00 %
Product 9 0.0836 Brand 5 2.24 % 0.00 %

Thus, we can simply use F(©;,&;) = ¢'Z; + 07O, for the ARx model accounting for past
prices as exogenous variables, and F(©;,5;) = T=,; for the AR model, which is only built on
the self-dynamics of the observed time series without information about prices.
In addition, nonlinear data models can readily be taken into account with the model nomenclature
in Eq. (3.7). For the current study, k&-NN technique is used as a nonlinear method for promotional
sales forecasting, due to its extreme simplicity and acceptable performance in many applications.
The k-NN estimator in ¢y is a nonparametric procedure that just consider the k nearest data to
W,(ty), according to a given similarity or distance measurement [19], where k has to be previously
fixed during the design procedure. Conventional distances are L and Ls norms, though different
measurements have been proposed according to the nature of the data [15].

The k-NN estimator assumes that data close in the feature space W provide similar values

for the independent variable. Therefore, to estimate the number of sold units at any time tg,

Si(to), the k-NN estimator uses a local neighborhood &(tg) to provide the estimation as

Si(to) = Fl(i)1Si(t)/t € K(to)} (3.13)
where F ) is the weighted average operator that depends on distance and parameter k, and it
k .
is given by: Fy) = w, where w; = 1/d; depends on the distance to the [-th nearest
1=1wWI
neighbor (d;).

3.3.3 Database

Our database contains the weekly consolidated information from all electronically recorded
data from scanners at cash registers for a Spanish store chain. The information is from 118 stores

(K = 118), during 105 weeks (7' = 105) between 2008 and 2009 for 10 products (I = 10).
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Table 3.7: Top ten retail stores in terms of sold units.

Stores Regular Promotional
Sold Units (%) Sold Units (%)
Store 1 2.72 % 2.61 %
Store 2 2.43 % 2.07 %
Store 3 2.16 % 1.95 %
Store 4 2.02 % 1.88 %
Store 5 1.80 % 1.20 %
Store 6 1.711 % 1.16 %
Store 7 1.65 % 1.75 %
Store 8 1.60 % 2.35 %
Store 9 1.59 % 1.37 %
Store 10 1.56 % 1.83 %
80 %
70
o 25
g 50 § 20
S 40 5 s
30 "
20
10 5
4.45 _4 5 %‘505(76) in e:r.oGs 4.65 4.7 04 4.2 Fe‘:(77) in eu4r.063 4.8 5
(a) (b)

Figure 3.4: Number of stores with a given price for Product 10 during two consecutive weeks,
t =176 (a) andt =77 (b).

We selected Laundry detergent as the best category to be analyzed in this study for several
reasons: (1) it is an easily storable product with almost no expiration date; (2) almost all
customers buy products of this category, and it is considered a basic household product; and (3)
it was one of the largest products in the database in terms of sales. We assembled a database
consisting of six brands in this category, including a private label (Table 3.6), and sold units were
almost equal across stores (Table 3.7). The largest store in terms of sold units accounted only
for the 2.72% of the total sales; however, this scenario is adequate for aggregation purposes.

Promotional activities are carried out by HQ, which means that prices are assumed to be
identical for each product in every single store. Consequently, chain-level decisions and global
strategies were considered as the main source of promotional activity, rather than store-level
marketing strategies. However, database information showed remarkable variability in terms of

pricing being applied across stores (Fig. 3.4), which reveals that real databases always incorporate
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Figure 3.5: Prices for Product i = 1, where central prices are stated as regular (a,c) or

promotional (b,d). The prices before (a,b) and after (c,d) preprocessing are also shown.

uncontrolled effects on actual pricing, regardless how strict a HQ’s pricing is. As an example,
Fig. 3.4 represents bar graphs for prices versus stores for one product in our database. These
graphs demonstrate that the existence of a well-known statistical distribution shape is not a
sustainable assumption. The high variability shown in these graphs suggests that information
provided by cross-stores should be considered.

Apart from that, a subsequent step in preprocessing aimed to identify whether the analyzed
week could be considered as a promotional or a regular pricing-week. This categorization was
performed for each product, by setting the week as promotional (or regular) when at least 40%
of the stores had promotional prices (or regular) prices). Figure 3.5 (a) and Figure 3.5 (b) show
that prices are scarce and corrupted by impulsive noise for both promotional and regular prices.
To overcome these problems and get the same prices for all stores according to HQ pricing policy,
a twofold preprocessing is performed. First, the well-known median filter has been used as the
estimation operator, denoted as ®{P; ;(t)} = median,{P;;(t)}. This filter is robust with respect

to the statistical distribution of the uncertainty term in Eq. (3.3). We empirically chose a size
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window of 5 elements, and the filter was applied every week for all the available stores (i.e. one
dimensional filtering). Second, the mode of every week was computed in order to have only one
price per week. Two examples of the preprocessing results are shown in Fig. 3.5 (¢) and (d) for

regular and promotional prices, respectively.

3.3.4 Experiments and Results

In this section, a set of experiments for analyzing the suitability of the methodology presented
in Fig. 3.3 are first described. Specifically, the quality of models with increasing algorithmic
complexity (DEC, TS, nonlinear models), are benchmarked and compared, as well as with
different feature spaces. Then, model quality and reliability are proposed and applied to laundry

category database.

Data Model Analysis in a Multidimensional Feature Scale

DEC static model. DEC static model is estimated by considering only each price index
own-effect after preprocessing. The sold units’ estimator requires a smoothing operator
(Eq. (3.8)); to do so, we implemented two methods. The average, obtained as a function of the
discrete set of prices, and the k-NN estimator, which provides a statistically more effective effect,
limiting the impact of outliers. The k-NN method depends on the number of neighbors considered
for local-averaged estimation, explored in the range (1,30) and selected the one minimizing MAE
(Eq. (2.45)).

Recall that this DEC estimation does not take into account neither simultaneous promotional
effects in related products nor temporal structure. For the rest of this section, DEC model
based on the k-NN estimator is considered for several reasons: (1) we experimentally checked
that it is robust to outliers; and (2) sold units were estimated for the whole range of prices,
not only for a discrete set of prices, being able to benchmark results with those provided by
other models proposed in this work. Table 3.8 shows the average obtained from bootstrap
resampling for merit figures M AF and ACT when using DEC k-NN estimator. It can be seen
that this method performs similarly in terms of mean and scatter. Results interpretation based
on consumer behaviors suggest that, in general, sales estimations for products with a higher
number of promotions have worse quality (e.g., Product 1). Note also that good performance is
achieved for the private label (Product 10).

DEC approach can be suitable for promotional sales forecasting, though several limitations
can be observed. First, the expected effects of demands with respect to prices are not clearly
evidenced, even when we use a high rotation category without seasonal effects. Second, according
to the observed data, similar prices can yield very different number of sold units, and sometimes

lower prices seem to result in lower demand. However, it could be argued that static models for
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Table 3.8: Bootstrap test for .-NN DEC. For each cell, the table shows free parameter k in
parentheses (first row), average of M AE (second row) and ACI (third row) obtained from

bootstrap resampling.
Model‘ 1=1 1=2 1=3 i1 =4 =25 1 =06 i=7 i=8 +=9 =10
DEC | (1) m an (30) @ @) By () (13
78.38  32.67 20.78 156.80 273.32 34.92 30.87 3452 29.15  28.27
187.39 83.47 55.11 675.75 1079.84 103.51 101.20 78.53 90.67 81.01

non-perishable products can obviate temporal conditions. For example, consumers could easily
defer laundry detergent purchase, or they could accumulate a number of laundry detergents in
a single purchase when prices are low. However, on the whole, these apparently contradictory
results raise doubts about the suitability of the DEC promotional model for fitting the products
in our database.

Intrinsic and exogenous TS dynamic models. Two different TS promotional models were
considered, namely, an AR description (Eq. (3.9)), and an ARx promotional model (Eq. (3.10)).
In both cases, we used a two hold-out technique (50% for training) to estimate their out-of-sample
performance. We explored orders p and g up to 10 lags, selecting the ones which minimize MAE
(Eq. (2.45)).

Table 3.9 shows the p-th and ¢-th selected orders in terms of MAE for the AR and ARx
models, respectively; and the average obtained from bootstrap resampling for merit figures
MAEFE and ACI for each product. We obtained non parsimonious models with high orders
for both p and ¢, which highlights a mismatch between the model proposed by TS and the
data dynamics. For some products (3, 4, 7, 8, and 9), the time series of the sales volume
seemed self-related and with limited correlation with the exogenous variable (prices), whereas
for the other products, the performance improved significantly when the exogenous variable was
considered. Nonparametric paired bootstrap resampling method was applied to test whether the
differences in the benchmarking comparison in the table were statistically significant.

Furthermore, Table 3.9 presents the following comparisons: (1) DEC versus AR; (2) DEC
versus ARx; and (3) AR versus ARx. From the first comparison, we can conclude that there
were significant performance differences in AM AFE for most products (except Products 8 and 9),
indicating that DEC yielded significantly better quality for the estimations, and the scatter was
lower when DEC was considered for Products 2, 6, 7 and 8. The second comparison indicated
significant performance differences in AM AE for Products 3, 4, 5, 6, 7, 8 and 9, showing that
DEC yielded better quality for the estimation, in contrast, for Product 1 ARx yielded significantly
better quality. However, the scatter was lower when we used DEC for Product 1, indicating
significantly better predictions in terms of scatter. The third comparison indicated significant

performance differences were found in AM AF for the Products 3, 7, 8 and 9, demonstrating that
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Table 3.9: Individual and paired bootstrap tests for TS (AR, ARx). Individual: For each cell,
the table shows p-th and ¢-th selected orders (first row), the average MAE (second row), and 95%
CI (third row) from bootstrap resampling. Paired bootstrap between DEC and TS methods, and
between AR and ARx: average of AMAFE (first row) and ACT (second row). For each product,
boldface emphasize that in the comparison Model; vs Models, best performance is achieved with

Model; (negative values) or with Models (positive values).

Model | i=1 i=2 =3 i=4 i=5 =6 i=7 i=8 i=9 =10
AR (p) | (10) (10) (10) €) (10) (10) (10) (10) (10) (9)
~ 132.26 5946  30.14  221.99  373.92 7292  67.85 3748 2080 4216
3 156.87 12648  72.04  1050.68 1376.73  227.44 15044  85.32 5401  102.58
' 1: CARx (p,q) | (10,10)  (10,10)  (10,10)  (10,10) (10,10)  (10,10)  (10,10)  (10,10)  (10,10)  (10,10)
= 6475 33.20 4325  233.05 31311  56.87 9391  97.88 5604 2479
246.07 7489  172.68  860.55  876.86  183.60  332.07 59853  296.87  64.77
DEC vs AR | -53.72 -26.88 -9.28 -65.54 -98.90 -37.81 -37.01  -2.77 824 -13.94
30.38  -43.00 -17.39  -391.09 -200.65 -121.53 -49.34  -6.85  36.48  -21.20
F DECvs ARx | 13.84  -0.63  -22.24 -77.27 -39.54 -22.01 -63.65 -63.61 -26.80  3.58
& -129.16 3312 298 -60.97 153.75  92.95 2.86 1901 -4278 497
~ ARvsARx | 67.29  26.40 -13.05 -11.66 6051  15.83  -26.57 -61.73 -35.24  17.43
-89.21  51.89 -100.50 199.32 499.59  43.64  -176.22 -516.22 -244.36 37.95

AR methods performed significantly better for the estimation, whereas for Products 1, 2, 6 and
10 ARx yielded a better quality. The scatter was lower when AR was considered for Products
2, 5 and 10, yielding significantly better predictions in terms of scatter, and ARx for Products
1, 3,7, 8 and 9. In summary, no clear trend in terms of general behavior and prediction of the
promotional models could be observed in this set of models.
Improvements from nonlinear methods. k-NN method for nonlinear promotional modeling
was used. Its design depends on a free parameter, k, which stands for the number of neighbors
considered for local-averaged estimation. In this study, the range (1,30) was explored and selected
the value which provided the minimum MAE.

Different feature vectors to characterize temporal evolution in terms of exogenous and/or
endogenous variables were explored. The notation for the feature space in this experiment, for a

temporal depth ng, in terms of the feature space, is as follows:

gl = [P(t),---,P(t—t)] (3.14)
e = [S{t—1),---,8(t—tg)] (3.15)
gl = [2h o) (3.16)

According to Eq. (3.14), which addresses different temporal depths for past prices, five

models were benchmarked, i.e. ', =2, =3 =4

,=3, 24 25, Results showed that the estimated performance

[1]
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Table 3.10: Individual and paired bootstrap tests for k-NN. Individual: For each cell, the free
parameter k (first row), the average MAE (second row), and 95% CI (third row) from bootstrap
resampling. Paired bootstrap between k-NN and DEC, k-NN and TS, and k-NN with different
temporal depth: average of AM AF (first row) and ACT (second row). For each product, boldface
emphasize that in the comparison Model; vs Models, best performance is achieved with M odely

(negative values) or with Modely (positive values).

Model =1 i=2 i=3 i=4 i=5  i=6 i=7 i=8 i=9 i=10
ENNa () | (@) (30) (9) (1) (30) (30) (22) (30) (2) (20)
~ 7525 3374 2113 8889 29255  35.85  30.10  33.60 2892  25.25
- 17012 87.95  56.96  350.75  1251.68 13527 9547 7484  87.22  61.13
é k-NNy1 (k) (2) (2) ®3) (®) (17) (5) (1) ®3) (2) (20)

141.17  107.98 53.45 580.44 1053.12  152.35 85.50 93.84 73.47 73.87

DEC vs k-NNzi | 677 -235 007 406 2376  -7.08 220 090 000  -0.69
1411 -812 183 -17.45 3680  -57.74 851  -1043 425 773
"% ARvskNNz | 57.62 2610 912 13321 8307 3644 3801  3.63  -8.26  16.56
& 1514  45.81 1567  700.05 12379 105.61 54.34 1110  -33.67 40.72
 ARxvs k-NNgi | -3.98 -14.72 2171 2416 4760  -1078 56.31  59.47  22.64  -3.82
103.81 -24.77 118.69  260.35 -166.01  44.98 240.22 501.94 225.12 -8.58
k-NNzi vs k-NNg1 | 8.08  -14.13  -059 -120.94 24.07 -32.01 -7.66 -5.92 -4.89 -3.54
E 2857  -19.67  3.33  -237.22  200.80 -18.69 1058 -19.08  13.96  -13.30
& k-NNgi vs k-NNg2 | 371 077 -0.00 064  -1129  -0.52  -038 019  -031  -059

13.75 -0.82 0.22 -11.95 -40.21 -0.71 -17.87 0.18 0.13 -7.22

improved when including in the model information over two consecutive weeks, current and
past. Thus, Z! was a suitable feature space for nonlinear promotional models, when considering
only the exogenous variable. A similar analysis using a set of consecutive temporal depths ng
for exogenous and endogenous variables simultaneously was performed, observing better results
when considering information over coupled consecutive weeks, this is, for W'

Table 3.10 shows the individual bootstrap tests in terms of MAE and CI when considering
=! and U! since both are the feature spaces that provide the minimum error.

Table 3.10 also shows the results when comparing static, dynamic, linear and nonlinear models
with paired bootstrap tests. First, regarding static and dynamic models (DEC vs k-NNgz1),
significant performance differences in AM AFE were observed for Products 1 and 7, for which
the dynamic approach yielded better estimation quality, whereas for Product 6, the static model
performed better. Secondly, we compared linear and nonlinear models, namely, AR vs =,
obtaining better quality in terms of scatter for Products 2, 4, 6, 7 and 10 when the nonlinear

model is considered. Regarding linear and nonlinear models with past sold units and prices, it
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is observed significantly better estimation quality in AM AFE for Products 3, 7, 8 and 9, whereas
nonlinear models showed better results for Product 2. It is noteworthy that the scatter was lower
when nonlinear models were considered for Products 1, 3, 7, 8 and 9.

Thus, it can conclude that, for modeling the sold units of laundry detergent products in
this database, the consideration of modeling promotional sales with nonlinear methods yields a
significant performance improvement for most of the products. Therefore, we benchmarked new
feature vectors with different temporal depths, which indicated that including additional past
sold units and prices did not improve sales forecast. Table 3.10 also shows that, for Products 2,

4,6, 7, 8 and 9, it was significantly better to exclude the endogenous variable (sales).

Model Quality and Reliability Indicators

In contrast to conventional approaches, which use a single value of a merit figure to evaluate
model performance, it is proposed in this Thesis the use of a new set of indicators to characterize
both quality and reliability in a given region R € ¥; (¥X). Note that different values for the
same indicator can be obtained for different regions. As an intuitive example, indicators may be
less reliable in regions with scarce, noisy or non-informative data.

A set of four quality indicators will be calculated using the B estimations u}(b) = F(V*(b)),
obtained through the B resamples { V*(b)}2 . These indicators are proposed to measure the
reliability of model F'; and are defined as follows.

(1) Variation Coefficient (VC) Index. V C measures dispersion in relation to mean value. It
is a useful statistic for comparing the degree of variation between two datasets, even when their
means are drastically different. The lower the V', the more reliable our predictions are. It can
be written as

VOE (W) = S 2 (3.17)

where agi (¥;) and ,uSEi (¥;) are the standard deviation and mean, respectively, of sales estimations
in region R.

(2) Confidence Intervals Variation (ACI). We particularize ACI previously defined in
Eq. (2.57) to calculate the reliability of the estimated sales in region R for the i-th product.
The narrower the confidence interval, the lower the variability is, hence ACT can be used as a

reliability measurement in a region R of the feature space, denoted as

ACTE (W) = CIZ" (0;) — CIS (W) (3.18)
where CI?’“(\IH) and Cfg’l(\l'i) denote the upper and lower limits of the confidence interval,
respectively.

(8) Baseline Relative Index (BLRI). Marketing managers widely use baseline sales to assess

the profitability and effectiveness of marketing activities by investigating how promotions can
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affect baseline sales over time. In this setting, it is necessary the creation of a new index to assess
the accuracy of a promotional model in not only absolute but also in relative terms respect to the
baseline. This can be achieved by normalizing the number of estimated sold units with respect

to the baseline sales, and we define it as

GR(W.) — R\p.
BLRIF(w,) = (%) — BLI(¥:)
BL (%)

(3.19)

where BLE(W;) is the estimated baseline sales in region R of the feature space for the i-th
product. Note that BLRI = 0 indicates that the estimated number of sold units is similar to
baseline, whereas BLRI > 1 indicates that estimated sold units are greater than baseline.

(4) Dynamic Range Index (DRI). It is based on dynamic range DR;, defined as the difference
between the maximum and minimum values of a variable, for us, estimated sales for the i-th

product. We define it as follows:

GR N R .
DR?(‘IQ)

(3.20)

This way, DRI provides an idea of the accuracy in terms of the forecasting variability. The
greater the DRI, the lower the variability is.

The four previous indices allow us to check for the reliability and uncertainty of a given model
for promotional sales depending on the feature space. Note that the two first (two last) indices
are absolute (relative) magnitudes, and that the statistical distribution of S; has to be estimated
in the feature space.

As described in Sec. 3.3.4, the statistical distribution of estimated sold units S for the i-th
product in the space defined by feature input vector ¥, i.e., Pg(w)> can be readily estimated by

using bootstrap resampling, and it is denoted as p*s, . Its statistical average is a hypersurface of

the sales as a function of the feature space, and m(()‘fe)z general, it provides useful information for
both reliability and decision-making point of views by allowing us to obtain the indices previously
defined in Eq. (3.17), (3.18), (3.19), and (3.20).

For this database, it was checked that better results were obtained when sold units predictions
were made with a nonlinear model considering two consecutive weeks. With this forecasting
model, we checked the reliability and stability of results when working with one or two years.
This experiment presents the proposed indices in the feature space for two illustrative example
products, namely, Product 1 and Product 5. Figure 3.6 shows the predicted sales units S; as a
function of the feature space for both products, when using two years (a,c) and one year (b,d). As
previously described, changes in the dynamics and the promotions in the available time periods
were determinant for the model forecasting capabilities. V' C' was larger in general for Product 1
with two years data, but also it was larger, in general, in promotional regions of the feature space

(e,f). For Product 5, VC was quite constant throughout the feature space, but lower when only



CHAPTER 3. MACHINE LEARNING FOR PROMOTIONAL

80 DECISION-MAKING

1200 1200
1 1100
1100 1100 2500 b
2500 2500 b 000
1000 1000
2000 2000 R o0 =
0
1500 200 1500 %00 s : oy
1000 A—’ °° 1000 800 1 . N
500 » 700 500 700 o . G ™ . o
4 600 P 600 sy “ w004y oo
35 4 35 M ) = = — -
Pn-1) 3 35 500 Pn—1) 3 T s00 e T 0
Pin) PAn) Pon) Pin 1) Pin) P{n—1)
(a) (b) () ()
.
! 1
0z ¢ Jos
02. e jos.
05 05 .
02 0045 ose o e
ose o2
00s IS oz
So1s b lo Sou o X
0035 o =
01 * - 02
003 1 M .
- 05 05 008 ot
4 - 4 [ Los
35 4 35 ~< 4 IS o0 : !
35 ; » 35 2 e 3 oo
Pfn-1) 3 1 P{n-1) 3 3 1 P 5 s P =
L o 1 in
Pin) P PAn) Pin—1) {n) > p-1) B
(e) (f) (o) (h
700 700 "~
600 *
700 500 80
600 500 500 00
500 '{_;7"
3 ¥ w0 3 400 o
400 60~
300 ol 300 300 300
200 50
- 200 ~ 200 200
4 - 4 -
35 - - 4 35 4
" ~ - 100 35 100
Pn-1) 3 5 °®° P{n-1) 3 3
Pin) Pin)

(i)

(1)

1 1
os
1 1 o 08 1 s
05 05 s oe o8 oo
05 05 o o
= = e oz - os
q° o ]° o A o " o2
05 -05 02 o2 [, =3
I~ - = 0.5 1 05 o8 os Loe
34 34 o o o N
3 3 .
32 32 s
32 32 - - o
Pn-1) 3 \ Pn-1) 3 " e e M ,:{,,)” o
Pin) PAn) PAn) P{n—-1) i P{n 1)
(m) (n) fo) (p)
" 1 os '
oe
os
1 1 3 jos
05 05 o o
05 05 oz o >
& & = o2
0 o o 02
E o E ‘ o S o °
05 . 05 ° Mo
R, ™ 04 02
314. 05 -314) 05 I - - o
32 3 32 3 Py );; R N - -
32 32 an Tas - N !
P(n-1) 3 ’ Pin-1) 3 y ‘ s ., o ¥ ”
Pn) Pn) Pn 1) PAn) b Pon—1) 8

(t)

Figure 3.6: Estimated sold units and reliability indices. Columns 1 (two years) and 2 (one year)
for Product 1; Columns 3 (two years) and 4 (one year) for Product 5. Estimated sold units:
(a) - (d); VC: (e) - (h); ACT: (i) - (1); BLRI: (m) - (p); DRI: (q) - (t).

considering the last year. ACT was strongly dependent of the region in the feature space (i,k),

and higher for promotional regions. BLRI for Product 1 indicated a higher efficiency, relative
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to the baseline, of the promotional activity when data from one year was used (mm). DRI
was larger in promotional regions for Product 5 using the data from two years, whereas it was
reduced and became near constant for the data from one year (s,t).

The significant differences among estimated sold units and reliability indices in one year
versus two years, indicating that memory effect may not be justified to be larger than one year,
and so, proposed models would not necessary provide stability and reliability capabilities, adding
information beyond one year historical data.

It is also remarkable the higher stability and more solid behavior of Product 5 in all analyzed
statistics over a wider range of different prices. This situation contrasted against Product 1,

indicating that for this kind of product significant effects are led by price change.

3.3.5 Discussion and Conclusions

A promotional chain-level analysis and data modeling based on retail aggregated data to
support retail marketing decisions is proposed. Figure 3.3 depicts the necessary steps for the
reliability and stability analysis of promotional models from a chain-level point of view. First,
retail data were aggregated at the store-level using simple preprocessing tools, to come to a
market-level decision. Second, linear and nonlinear prediction engines using nonparametric
bootstrap resampling based on performance statistics were benchmarked and optimized. Third,
we took into account the reliability and stability of the promotional models built with the
products in the database using a set of new indicators based on bias and scatter measurements
in the feature space.

The economic downturn that began in 2008 is one of the largest in history, at least in some
countries; thus, it is more necessary than ever for retailers to effectively evaluate short to medium
term promotional effects. It is possible that traditional promotional models do not accurately
reflect the actual complexity in the real time because of the increasing amount of concurrent
aspects that affect consumer behavior. Therefore, researchers should focus on new models that
can capture and statistically represent this new scenario.

Limitations of DEC Static Analysis. Our experiments showed that the DEC analysis could
not provide consistent results in terms of unequivocal demand for a certain pricing level in our
data. Note that laundry detergent category is not subjected to short expiration date, thus,
it could be argued that households may stockpile the product if prices justify doing so. This
assumption is one of several behind the “buy two and get one free” promotional offers, which
are common for many long-expiration date products. The present study shows that the static
DEC model does not provide a direct statistical match between the endogenous (demand) and
exogenous (price) variables.

Limitations of TS Linear Models. The existence of communication networks and consumer
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networking may change the market dynamics, resulting in a large and increasing number of
concurrent effects. Accordingly, retailers have used dynamic T'S models based on historical and
current data to guide the promotional strategies. In our data, T'S linear models with intrinsic and
exogenous variables had an acceptable fit to the data, but only at the expense of non-parsimonious
models. Although previous research shows that future demand is forecasted better by considering
memory for both pricing and demand data, paradoxically, our data set contained several products
for which the incorporation of the exogenous variable into the AR analysis significantly worsened
forecasting performance.

Scope of Nonlinear Models. In general, non-linear models’ predictive capability was more
effective than that of linear models. Although the results were not uniform for all the products,
we obtained consistently parsimonious promotional nonlinear models that yielded acceptable
forecasting performance in all the products with up to one lag for both the exogenous and
endogenous variables. In some cases, TS linear models performed similarly to nonlinear ones,
which is consistent with the fact that linear T'S models are specific cases of nonlinear models.

We observed most behavioral singularities in the premium product (higher price, Product 1)

and in the most competitive products (private label and low prices, Products 7, 8, 9, and 10).



Chapter

Machine Learning for Healthcare Analytics

4.1 Introduction

Electronic Health Records (EHRs) are collections of health information in digital storage
format, which can in theory be shared among systems to convey the relevant information of a
patient [26]. EHRs have three levels of medical understanding, namely, data storage, information,
and knowledge [122]. While technology seems to have successfully covered the data storage
level, the others are currently intensive research tasks. In the last decades, a considerable
amount of literature exists on knowledge extraction from the EHRs, aimed to support clinical
decision-making in several domains |27, 28, 29, 30, 31, 32, 33]. In this chapter, EHR data related
to the gastrointestinal surgery domain are analyzed to address different goals: (1) to detect
complications after CRC at an early stage; and (2) to predict surgical site infections (SSI) at
both pre-operative and post-operative stages for patients admitted for gastrointestinal surgery.

According to American Cancer Society, CRC is the third most common cancer diagnosed in
both men and women in developed countries, being the surgery the only curative treatment [34].
Nevertheless, the elective colorectal resection is normally associated with a complication rate
of 20-30% |[35], being reported that AL occurs in 5-15% of all patients who underwent CRC
surgery [36]. Early diagnosis and intervention can minimize systemic complications, and can be
vital in the case of AL due to it may be a lethal condition. However, it is hindered by current
diagnostic methods that are non-specific and often uninformative [37], thus, novel methods are
required to identify and detect this complication at an early stage using EHR data.

On the other hand, SSIs are among the most common hospital-acquired infections. In fact,
they represent up to 30% of all hospital acquired infections [123, ]. SSIs are associated
with considerable morbidity and mortality. A mortality rate of 3%, prolonged stay up to 10
days and a significant decrease in quality of life, are reported. Similarly, readmissions related

to SSIs are associated with a considerable increase in healthcare cost, up to 27,000 USD per
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readmission [125]. This persistent in-hospital morbidity is particularly associated with surgery
for CRC [126, , |.

In this Thesis, we first focus on the task of early detection of AL using free text extracted
from EHRs. Then, we propose a learning system architecture capable of jointly exploiting
heterogeneous sources for AL early detection. We used linear and non-linear kernel methods
individually for each data source, and leveraging the powerful composite kernels for their effective
combination. Finally, we built a prediction model for pre-operative and post-operative SSI using

different methods to manage the sparsity of the EHR data sources.

4.2 Application 4.1: Early Detection of Anastomosis Leakage
from Bag-of-Words

4.2.1 Introduction

A considerable amount of literature exists on extraction of knowledge from EHRs to
support clinical decision-making (see [30] and references therein). Specifically, analysis of the
(unstructured) EHR free text may potentially extract a large amounts of information regarding
patient health status and medical history, which may not be fully available in the structured
data that are also available in EHRs [31, 32].

ML methods have recently demonstrated great potential at free text analysis for decision
support and medical information retrieval. Several such methods are based on the simple,
but often powerful, Bag-of-Words (BoW) model. Wright et al. [32] used this model to
identify relevant documents in EHRs pertaining to a user’s query on progress notes in
diabetes, and in [129], a system for automatic case identification was proposed for observational
epidemiological studies. Using various levels of sophistication in the BoW model, the authors
in [31] developed a framework for general-purpose automatic diagnosis in traditional Chinese
medicine. Furthermore, the authors in [130] derived a semi-supervised SVM, for automated
identification of primary care records from the General Practice Research Database, with
applications to retrieval of coronary angiogram and ovarian cancer diagnoses, and in [131] a
comprehensive bag-of-concepts system was proposed for quantifying a patient’s risk of mortality
and complications. The interested reader can also see reference [132] for a recent review of
natural language processing techniques for analysis of free text in EHRs, in addition to [133] for
a review on extracting information from textual documents in EHRs, including the advances in
the field from 1995 to 2008. However, few studies have explored systematic F'S criteria for ML
based applications using EHR data, or principled knowledge extraction from the ML engines.

In this Thesis, the detection of AL using a BoW model extracted from an EHR is analyzed.

This work was based upon a patient database (QUAKE, quality control of surgical performance
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with unstructured EHR data) which was extracted from the Department of Gastrointestinal
Surgery at the University Hospital of North Norway. First, different ML techniques are
benchmarked using pre-operative and post-operative data. Then, the early detection of AL was
further explored. Several novel FS strategies described in detail in Sec. 2.4.2, that are capable of
automatically identifying the relevant words, while permitting easy knowledge extraction from
the system, are applied.

A vast general literature exists on FS, see Sec. 2.4 for examples. As novel alternatives to
the RFE, innovative F'S methodology in order to avoid numerous SVM re-training procedures is
proposed in Sec. 2.4. Our present work introduces statistically principled F'S methods, capable of
working on the linear classifier weight amplitudes in an easy way with extremely high dimensional
input spaces. The proposed methods require no pre-specification of the number of features to
obtain, and are based on three different criteria (see Sec. 2.4.2 for details).

After adjusting for imbalanced classes, which is a well-known challenge in medical
classification applications [129, |, the proposed F'S strategies are shown to significantly improve
the detection of AL. Also, the results provide useful knowledge of the relevant words (without

need of their pre-selection by clinicians) and their temporal evolution.

4.2.2 Database

The database used in the current study consisted of unstructured Norwegian text extracted
from the EHR used at the Department of Gastrointestinal Surgery at the University Hospital of
North Norway. All documents related to both inpatient and outpatient visits between 2004-2012
were extracted. The most frequent document types that were extracted were nurses’ notes,
journal notes, outpatient notes, radiology reports, referrals, discharge letters and admission notes.
A clinician manually reviewed the EHR of 402 patients admitted for CRC surgery in 2006-2011,
and 31 patients with AL were identified. The negative class consisted of the 371 remaining
patients.

A BoW model was subsequently built, by counting all unique words appearing in the database.
There were a total of 65328 unique words in the database. Hence, the database is represented as
D = {x;,y;}}_, where each x;, representing the i-th patient, is 65328-dimensional. For compact
notation, we collect the data samples x;, ¢ = 1,...,n, in the matrix X = [x1,...,%,]. In the
linear SVM y = (w, x) + b, each element, or feature, in x hence corresponded to the number of
appearances in a EHR for a given patient of one of the unique words.

Preprocessing. Initially all words were transformed to lowercase and all grammatical symbols
were removed. Furthermore, all numbers and stop words were filtered out. Apart from
that, advanced natural language processing procedures, such as combining words with identical

meanings or corrections of obvious misspellings, were not considered in this work.
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These unique words represent the "bag" in the BoW model. The bag cardinality was reduced
by keeping only those words appearing at least a certain number of times (assuming that, for
instance, misspelled words appear relatively infrequently). In this work, we empirically kept only
words appearing at least 10 times, reducing the dimensionality of the vectors x; from 65328 to
13188. Of course, enforcing a threshold may lead to information loss. Note that enforcing a too
high threshold may lead to information loss. In the remainder of this work, the data set consists
of the resulting 13188 words.

In previous general-purpose text classification studies using SVM [135, , , ],
normalization has been suggested for preprocessing. Normalization may be obtained in several
ways. Term frequency - inverse document frequency (TF-IDF) representation [139] is a common
method. Here this and other normalization strategies, such as standardization to mean zero
and unit variance, were considered. Alternatively, feature vectors may be normalized to equal
(Euclidean) length. In this study, such normalizations did not influence the results much, and
they were not pursued further.

Finally, the feature set can be represented on a binary basis, by the presence or absence of each
word, so that the influence of high frequency words that do not necessarily exhibit discriminatory

power is reduced. This binary dataset is denoted by X",

4.2.3 Experiments and Results
Experimental Setup

This experiments section starts by analyzing and discussing the tuning of the free parameter
v in the SVM, and then comparing the SVM AL classification performance on the dataset X
without F'S; with those of FDA and NB (see Sec. 2.3.1 for more details). We subsequently analyze
in detail the effect of the proposed FS strategies, and show that results improve significantly.
Finally, a temporal analysis explores the viability of early detection of AL by means of the BoW
model.

Parameter Tuning. The linear v-SVM algorithm requires the tuning of a single free parameter
v € (0,1), which has to be tuned. This parameter must be tuned based on the available training
set. We adopted a LOO strategy for the tuning of v, ensuring that the parameter tuning was
always based on out-of-sample performance. For completeness, we evaluated several different
performance measures, namely, Pe, Se, Sp, and BER (see Sec. 2.5.1).

Classification problems are frequently imbalanced. For example, in the binary case, the
number of samples in the positive class may be substantially smaller than the number of samples
in the negative class. Several previous ML studies have shown that balanced classes in the
training data set provide improved overall classification performances (see e.g. [140] and references

therein). Common strategies to balance the classes include undersampling, i.e., removing samples
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Figure 4.1: Free parameter (v) tuning in terms of several figures of merit (Pe, Se, Sp and BER)
for random (thick) and resampling (fine and filled, CI shaded) downsampling, evaluated for X
and X" in (a) and (b), respectively.

from the majority class, at the risk of information loss, or oversampling the minority class has
also been studied, at the risk of overfitting.

The training set was constructed using an undersampling strategy in order to enforce balanced
classes. Towards that end, a random subset (31 samples) of the negative class was selected,
together with the 31 positive samples in the database. This random subset was used for the
tuning of v. The results, one for each performance measure, are shown in Fig. 4.1, indicated
by the thick line (see figure text for further explanation). Observe that the best performance
was obtained for a relatively wide range of smaller values of v, independently of the figure of
merit used. C'M was computed for v € [0.05,0.4] (not shown) finding that the error rates were
basically the same over this range of v. In the end, a value of v = 0.05 was used in subsequent
experiments (see below). The reason for this choice was that v represents an upper bound on
the fraction of margin errors and a lower bound of the fraction of support vectors relative to
the total number of training examples. As few support vectors as possible, while maintaining
performance, is in general considered a positive property of any SVM method.

In order to analyze the appropriateness of the particular random subset used here, in a
statistical sense, we extracted further 50 random resamples (with replacement) from the negative
class. Figure 4.1 shows the mean performance (fine line, see figure text) and the CI (filled tube)
for each of the figures of merit. It is important to note that the results corresponding to the
initial random sample lie well within the CI, and may therefore be considered representative for
the negative class.

The test or generalization performance of the SVM received special attention in this work.

The key element when evaluating the generalization ability is to keep the training and the testing
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Figure 4.2: Number of features, Se and Sp depend on the size of a local window § of neighbor
weights for X (upper panel) and X" (lower panel).

process independent, as far as possible in the given database. For this purpose, the overall data
set was divided in two parts, one part in which there is a balance between positive and negative
instances (balanced part), and a second part consisting of the remaining negative instances.
The generalization ability was measured by a two-stage process. The first stage invokes a LOO
cross-validation scheme on the balanced part. In the second stage, a SVM classifier is constructed
using the whole balanced set and it is used to classify the remaining negative instances. Results
in two stages are combined. Table 4.1 shows C'M for the SVM, together with the FDA and
NB methods (using the two-stage process), for both feature spaces X and X% (SVM only).
First of all, the table shows that FDA and NB performances are clearly lower to those of the
SVM. Interestingly, for the SVM, results were better on X" compared to X. We used a paired
bootstrap resampling test as proposed in Sec. 2.5.2 to establish statistical significance of the
different performances across methods, obtaining that X% performs better than the other ones.

When using FDA| it is well-known that the inherent matrix inversion is problematic when
the number of features, i.e. the dimensionality, is greater than the number of samples. For that
reason, the dimensionality of the feature vectors was forced to be less than 402, which was the
number of samples, by considering the 350 most frequently occurring words. A problem when
using NB, is that some of the most infrequent words, or features, are not appearing in both
classes. In order to avoid this problem, only those features appearing in both classes were kept.

In the testing phase, the classes were imbalanced. For this reason, we also display the
performance, or generalization ability, of the SVM in terms of Se and Sp in Table 4.1. The SVM

results on X" also stand out with respect to Se measures.
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Table 4.1: Performance for v-SVM, FDA, and NB classifiers.
| -SVM, X 1»-SVM, X""  FDA,X  NB, X

ol {25 56 } {26 52 } 15 208} [10 28 }
6 315 5 319 16 163 21 343

Se 81% 84% 48% 32%

Sp 85% 86% 42% 92%

Feature Selection

In this section, the attention is turned to the analysis of the proposed FS strategies, namely,
a simple statistical criterion (LOO based test), an intensive-computation statistical criterion
(bootstrap resampling), and an advanced statistical knowledge criterion (kernel entropy), see
Sec. 2.4.2. The core idea is the following: 1) a subset of relevant features was selected by one
of the proposed algorithms, and 2) the linear v-SVM classifier was retrained with the selected
features and used to classify test samples. As shown below, the performance of the classifier
increases as a result of the FS.

First, a brief discussion on the selection of free parameters in the FS algorithms is provided.
For bootstrap resampling, the free parameter corresponds to the size of a local window J of
neighbor weights. Small § values provide higher number of selected features, whereas the opposite
is true for larger § values. This is illustrated in Fig. 4.2 where Se and Sp results are shown based
on bootstrap FS retraining over a range of § values. Results suggest that good performance was
obtained when considering § = 10, which is the value used in subsequent experiments.

Kernel entropy component FS requires the selection of the tail probability and the kernel size
(o value). We have experienced that a tail probability of 0.05 provides good results. Furthermore,
since w is a one dimensional random variable, Silverman’s rule [111] for kernel size selection is
known to be reliable, and for that reason that criterion was used in the remainder. With this
approach, kernel size is obtained as follows: o = 1.06std(w)N —1/5 where std is the standard
deviation and w is the weight vector obtained for each dataset.

Table 4.2 shows the benefit of FS in terms of C M, Se, Sp and the number of selected features
obtained by the LOO based test, the bootstrap resampling, and the kernel entropy criterion for
both databases X and X"". The power of the proposed FS methods can be observed by noting
that all of them improve Se and Sp measures. Furthermore, these improvements were obtained
by using far fewer features, compared to the original dimensionality of the data.

Results suggest that the best performance is obtained with the bootstrap resampling approach
for both X (Se 100%, Sp 89%) and X% (Se 100%, Sp 89%). The number of features selected
to obtain these results were 196 for X and 292 for X%,

For completeness, the proposed FS strategies were compared with the RFE method [63].
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Table 4.2: FS criteria analysis. CM, Se, Sp and number of selected features obtained by LOO
based test, bootstrap resampling, and kernel entropy criterion (Keca) for X (upper) and Xb™

(lower) inputs spaces.

| An LOO Boot (6 =10)  Keca
25 56 28 52 31 39 25 55
CM
6 315 3 319 0 332 6 316
Se 81% 90% 100% 81%
Sp 85% 86% 89% 85%
g features 13188 6896 196 212
26 52 29 52 31 42 31 45
CM
5 319 2 319 0 329 0 326
Se 84% 94% 100% 100%
Sp 86% 86% 89% 88%
f features 13188 8073 292 189

Table 4.3: Proposed FS benchmarked with RFE for non-binary (X, upper) and binary (X",

lower) input feature spaces.

| LOO RFE | Boot RFE | Keca RFE

Se 90%  87% | 100% 87% | 81%  80%
Sp 86 %  86% | 89%  82% | 85%  82%
4 features | 6896 6896 | 196 196 | 212 212
Se 94%  90% | 100% 100% | 100%  100%
Sp 86%  86% | 89%  88% | 88%  88%
§ features | 8073 8073 | 292 292 | 189 189

Results obtained using the proposed FS methods and RFE are shown in Table 4.3, using for
clarity the same number of features for RFE as the number of features selected by the proposed
methods, respectively. Recall that RFE requires the training of multiple classifiers on subsets of
features of decreasing size, and for this reason, it does not trivially provide the optimum number
of features to be selected. We also implemented the RFE cross-validation procedure (requiring
up to 12 hours run-time on a standard research-purpose laptop for one data set) obtaining results
which were very similar to those displayed in Table 4.3. This shows that the proposed FS methods
may extract useful information from the EHRs, similarly or better when compared to the RFE,
however, it is based on statistical criteria requiring no pre-specification of the number of features

to be selected, nor any computationally demanding cross-validation.

Early AL Detection Experiments

The early detection of AL was further explored. Towards that end, several additional

databases were created. The databases X,, and Xg;” represented the BoW based on all journal
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Table 4.4: Temporal analysis (CM and number of features) for different data time slots: up
to and including day of surgery; four days after surgery or until patients leave the hospital, for

non-binary and binary input feature spaces.

FS | X, X.is X X xbin xbin
Al {19 186] {17 126} {25 56 } [20 145} [22 112} [26 52 ]
12 185 14 245 6 315 11 226 9 259 5 319
Se 61% 55% 81% 65% 1% 84%
Sp 50% 66% 85% 61% 70% 86%
§ features 5409 6358 13188 5409 6358 13188
LOO {28 193] {25 118} {28 52} [29 131} [30 93} [29 52]
3178 6 253 3 319 2 240 1 278 2 319
Se 90% 81% 90% 94% 97% 94%
Sp 48% 68% 86% 65% 75% 86%
§ features 2840 3912 6896 2991 3992 8073
Boot {30 196] {30 130} {31 39 } [31 105} [31 82 } [31 42 ]
1 175 1 241 0 332 0 266 0 289 0 329
Se 97% 97% 100% 100% 100% 100%
Sp 47% 65% 89% 72% 78% 89%
f features 107 102 196 120 142 292
{29 181] {30 146} {25 55 } [29 125} [31 85 } [31 45 ]
Keca (5%)
2 190 1 225 6 316 2 246 0 286 0 326
Se 94% 97% 81% 94% 100% 100%
Sp 51% 61% 85% 66% 7% 38%
i features 90 110 212 86 106 189

notes up to and including the day of surgery. At this point in time, none of the patients who

eventually experienced AL, had developed the condition. Furthermore, the BoW databases X4

!

and X{’ﬂf were created, where “; 4" indicates that this BoW is based on all journal notes up to

and including post-operative day four.

Table 4.4 shows CM, Se, Sp, and the number of selected features for all the considered
databases. The area under the curve was also explored, but similar results were obtained.
bin bin
op * op
the results show that given that the patient will eventually experience AL, our FS method

Note that discriminatory power is revealed, even for X,, and X In particular, for X
detects that in 100% of the cases. On the other hand, given that the patient does not eventually
experience AL, our FS method correctly reveals that in about 72% of the cases. This means
that the FS approach advocated in this application, has capacity for detecting AL patients at
an early stage. Note also that the number of features selected in order to achieve these results
is dramatically lower than the cardinality of the input feature space. As one would expect, the

discriminatory power in the data increases with time.
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Table 4.5: Words associated with selected (bootstrap) SVM positive weights corresponding to Xgi,”

(first column) and X" (second column).

T
anastomosis anastomosis leakage
shaved anastomosis
easy re-operated
relieving re-operation
low butt
localized insufficiency
air saline
info anterior
up vatan
anterior colorectal
peripheral some
far drainage
anesthesia sigmoidostomi
evt suture
stapler stapler
loop ileostomy furix
coloanal localized

Interpretation of Selected Words

One of the major advantages of training a linear SVM on the EHR is that each weight in
the weight vector w corresponds to a particular word in the BoW database, enabling knowledge
extraction by analyzing the weights. In this section, those words that correspond to the dominant
SVM weights are presented, and interpreted the words in the context of AL detection.

The databases Xg;” and X" are analyzed in detail due to the promising AL detection results
presented in the previous section. These databases contained only positive elements (binary
numbers), such that a positive weight corresponded directly with the positive class (AL) and a
negative weight was associated with the negative class, since the classification into the positive
or negative class is based on the sign of w'x.

Those weights with the largest positive values correlate the most with the positive class,
and vice versa for the negative class. Table 4.5 (first column) shows the words corresponding
to some of the largest positive weights (in order) for Xgﬁ,”. These were the words which SVM
associates with the positive class, i.e., the class of patients experiencing post-operative AL. For
some surgeons in the University Hospital of North Norway, the appearance of several of these
words in association with AL seemed reasonable from a clinical perspective. Some examples are
presented below.

Tumors located in the lower part of the rectum are known to increase the risk of AL, and
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are removed by the surgical procedure known as low anterior resection. Similar reasons may
explain the appearance of the word anterior in Table IV (first column). The word air may be
an indicator of a leakage, since the presence of air outside of the bowel will be due to a leakage.
A diverting loop iliostomy will be performed in patients with the highest risk of AL (low rectal
cancer with coloanal anastomosis and after neoadjuvant treatment with irradiation).

Some examples regarding the words associated by the SVM to the negative class, are the
following: amputation, abdominoperineal, endcolostomy, prozimal, sonor percussion sound. One
of the words is amputation. This word simply refers to the removal of the whole rectum and
anus in order to remove a distal rectal tumor oncologically safe. In that case the problem of AL
is completely avoided and the patient will have a permanent endcolostomy. Abdominoperineal
amputation is the name of the operation. Patients with proximal (means located in the upper
part of rectum) rectal cancer do not need deep pelvic surgery and are thereby less exposed to
AL. The expression sonor percussion sound is used when the physician describes the normal
sounds that appear before the operation, when he/she carefully knocks on a finger placed on
the patient’s chest in order to detect pleural fluid collections or abnormal air distribution in the
chest. AL is often followed by lung and heart complications.

We also analyzed the selected (bootstrap) SVM weights corresponding to the databases XTZ
and X", The distribution of positive and negative weights change for these databases, compared
to Xg;”. We focus here on the words corresponding to X"". Table 4.5 (second column) shows
the words corresponding to some of the largest positive weights (in order) for X%". Several of
the words from Table 4.5 in the first column reappear in the second column. However, there
are differences. For example, the weight associated with the word anastomosis leakage is now
the largest of all the weights. Furthermore, words like re-operation and re-operated are also
associated with large weights.

This analysis shows that the selected words, obtained by the proposed FS strategies based
on the BoW model, may be reasonably interpreted in the medical context of AL. Future work
may consider highlighting words of particular medical relevance when training decision support

systems, or flag certain selected words as indicators of the AL complication.

4.2.4 Discussion and Conclusions

In this work, it is demonstrated that the clinical narrative contains relevant information for
early detection of AL following surgery for CRC. The discriminatory power in the data is based
on a simple BoW model, where classification and FS is based on a linear v-SVM.

Results show that both binary and non-binary approaches have discriminatory power. A
binary input space yields a sensitivity of 100% and specificity of 72% at an early stage, while

performance worsens when using a non-binary input space, to 97% and 47% respectively.
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The number of relevant features is also lower in the latter case. In multidisciplinary studies
like the present one, validation by clinicians is highly necessary in order to extract correct and
useful knowledge. The set of words shown in Table 4.5 was therefore validated by a group of
surgeons who concluded that several words (in bold) appear to have relevance for identification
of patients with increased risk of AL after CRC surgery.

The study has some limitations. In particular, the number of cases is low, and hence prone to
over-fitting, such that external validation of the results would be desirable. A manual annotation
process as used here is likely to provide accurate labels, but is very time consuming. By using
automated phenotyping [112] of the EHR, one can effectively gather larger cohorts at the loss
of some accuracy. The extracted text does not contain all information about the patient, and
notably the surgery notification form is unavailable. Thus there is much information missing
about patient’s preoperative status, which could be important additional indicators of subsequent
complications and could improve accuracy.

In studies of risk assessment models there is always the concern that the signal may be
censored when a clinician spots a pattern leading to a complication and takes appropriate action
to avoid the complication [143]. This would result in a significant number of cases where the
pattern leading to the adverse event is present but not the event itself as that was successfully
averted, effectively constituting mislabeled cases. This might be a concern in the current study,
and would, if the classifier is good, lead to a decreased specificity. In the work a BoW model
was used, which is arguably the simplest possible model for text processing. Nevertheless it was
demonstrated potential for F'S for improving the AL detection.

This innovate study describes the development of an early computerized warning system
that, when fully developed, will be a useful supplement for the clinician to be alerted at an
early stage and act promptly to avoid potentially lethal post-operative outcomes. It is important
that the information provided by the system is actionable on the part of the physician, in
that there is an option to change the course of action for patients with increased risk. In the
case where the risk is evident prior to the index surgery, potential courses of action can be to
postpone the surgery until all known risk factors are corrected or to protect the anastomosis by
a diverting stoma or avoid any anastomosis by giving the patient a permanent stoma in the first
place. Additionally, the patient can be involved in the preoperative decision-making and sign an
informed consent form based on a better understanding of the preoperative risk-assessment for
AL. In the case of increased risk post-operatively, potential actions in the case of alarm signals
indicating an anastomotic leakage would be emergency CT scans, diagnostic laparoscopy, or
laparotomy. The latter two are resource demanding and not without potential complications. It
is therefore beneficial to have additional computerized algorithms as described in this application,

in addition to sound clinical judgment.
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We have shown that there is information in the clinical narrative that can be used to predict
AL after CRC surgery. Thus, the text can be a piece of the input to a clinical information system
that warns clinicians of the potential for complications in individual patients. Experimental
results corroborate the feasibility and sustainability of the proposed framework, although future

work could further enhance results to support early diagnosis decisions.

4.3 Application 4.2: Early Detection of Anastomosis Leakage

using Heterogeneous Sources

4.3.1 Introduction

In the previous application, one of the data sources, namely the free text clinical narratives,
discovered a potential for detecting AL after CRC surgery based on this source [l11, |.
However, several works in different contexts have concluded that the combination of heterogenous
sources of information enhances classification and regression results in many applications, such
as intelligent transportation systems [1416], multibiometric face recognition application [117], and
remote sensing [118]. The combination of heterogenous sources from EHRs have been only
moderately studied in the literature, likely due to the fact that the availability of the EHR
information is limited, in some cases for privacy issues. However, some previous works concluded
that the use of heterogenous data improved clinical decisions. For example, the combination
of structured EHR data (diagnostic codes, vital signs etc.) combined with free-text analysis in
order to detect acute respiratory infections was analyzed in [29], enhancing sensitivity values in
unhealthy patients. Merging heterogenous clinical data from five databases improved Alzheimer’s
diagnosis [28].

In the ML literature, the so-called composite kernel methods have been used for combining
heterogenous sources in several applications [59].  For example, the task of hypertext
categorization exploring words and links information individually and by using composite
(combined) kernels was analyzed in [1419], obtaining better performance by a combined kernel
approach. Composite kernels were also used for hyperspectral image classification [1418] and for
the classification of very high resolution urban images [150]. Regarding clinical applications, the
use of the composite kernel framework provided the highest classification rate for diagnosis of
cancer based on colon cancer and leukemia datasets in combination with proteome patterns of
a stomach cancer dataset [27], for the improvement of Alzheimer’s diagnosis [28], and for the
automatic diagnosis of pathological myopia [33], among others.

In this application, a prediction model based on structured and unstructured clinical data
from the EHR is proposed for early detection of AL. The novelty of the present work is found

in: (1) the exploitation of heterogenous data sources for AL detection; (2) the leverage of the
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power of composite kernels for this purpose; and (3), the assessment of a temporal risk score in

order to control the patient status and detect AL complication at an early stage.

4.3.2 Database

In this section, three different data sources (free text, blood tests, and vital signs) are
presented, which have been jointly analyzed in order to perform early detection of AL. First, it
is explained how these data sources were recorded in the EHR and the specific characteristics of
each data set. Later, the extraction and preprocessing stages needed to obtain a suitable input
space to be treated by the classifiers proposed in this work are discussed. The specific nature of
each data source required the development of different preprocessing strategies.

The same database described in the previous application, Application 4.1, is also used in this

one, although more clinical documents were considered. In the current study, data from two
heterogenous sources, namely, blood tests and vital signs, are also analyzed. A summary of the
new sources is given next.
Blood tests. In this work, structured data from nine different laboratory tests, namely, albumin,
C-reactive protein (CRP), glucose, hemoglobin, potassium, creatinine, leukocytes, sodium, and
thrombocytes were analyzed. These blood tests were recorded for a period of 10 days before the
surgery and up to 20 days after the surgery.

Blood tests measurements are in general highly irregularly extracted in time. This is
illustrated in Figure 4.3 for the CRP blood test, showing that available data are characterized by a
strongly irregular time sampling pattern. Hence, the observed data matrix is sparse over patients
and time. This poses challenges in the data processing. From a data processing perspective, the
data sparseness is equivalent to missing data, and must be handled. The irregular sampling and
resulting sparseness of data is even higher for some of the other tests (not shown here).

Despite the efforts made to develop statistical methods for handling missing data, there is no
global best approach because the different approaches depend on different assumptions. When
a relatively small number of samples are missing, skipping features or patients can be an option,
but this was not the case in our problem. An imputation method based on the k-NN algorithm
as in [43] was followed, which allowed us to work with a database denoted as X%°°¢ from now
on.

Vital signs. Three vital signs (temperature, blood pressure -high and low values-, and pulse)
were extracted from different types of nurse’s notes using several layered regular expressions
working on a specific part of the different documents where this information was noted down.
Vital signs were normally recorded at least three times per day for each patient, for a period of
10 days before the CRC surgery up to 20 days after the surgery. Since these data are by nature
irregularly sampled, thus, an imputation method based on the k-NN algorithm was applied to
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Figure 4.3: CRP laboratory test measurements for each patient (the first 31, from the top,
correspond to AL cases) for a period of 10 days before the colorectal surgery and up to 20 days
after the surgery (Day 0). The data matriz is sparse over patients and time, constituting a

challenging data set to work on.

obtain daily measures.

Temperature. The extraction process restricts it to be between 30.0 and 41.0 as normal values.
In some cases, the analyzed text contained words indicating that the patient was afebrile, febrile
or subfebrile.

Blood pressure. It measures the diastolic and systolic blood pressure of a patient, given as
two integers separated by a /, that is for instance 120/80. The extraction process restricts it to
be: (1) first integer larger than second integer; (2) first integer (overpressure) larger than 60 and
lower than 250; and (3) second integer (underpressure) larger than 30 and lower than 200. The
analyzed free text sometimes contained words telling that the patient had normal, low, or high
blood pressure.

Pulse. The number of heart beats per minute was given as an integer. The extraction process
restricts it to be between 41 and 250. Choosing 41 as the lower limit makes sense medically,
though there might be rare cases of lower pulses than this. In these cases, the patient was
probably anyway kept under tight control. Free text sometimes contained words indicating that
the patient had normal pulse, irregular heart beat, or irregular heart beat with an approximate
number of beats per minute given in the text. Only a really small number of patients had
irregular beats, so this characteristic was discarded and only was analyzed the number of heart
beats per minute.

Data from vital signs were represented as a concatenation of four values (temperature, high

and low pressure, and pulse), in matrix X*9" from now on.



98 CHAPTER 4. MACHINE LEARNING FOR HEALTHCARE ANALYTICS

4.3.3 Experiments and Results

In this section the individual contribution of each data source is presented, as well as the
results obtained after combining heterogeneous sources using composite kernel. The experimental
setup followed in this application is the same as the one described in the previous one. Thus, it

is not repeated here.

Individual Contribution of Each Data Source

The potential to predict AL based on data from individual sources recorded in the EHR
was explored. Towards this end, the performance of linear and non-linear SVM classifiers
was evaluated. First, we automatically selected the free parameters following a LOO strategy.
The linear v-SVM method requires the tuning of a single free parameter, v € (0,1). For the
RBF-based v-SVM, the tuning of the width o is also necessary. Furthermore, results after
evaluating RFE and bootstrap F'S methods were provided. The first one was computed for linear
and non-linear SVM classifier, whereas the second was only computed for the linear case.

Free text. A BoW model analysis based only on data up to and including the day of the
surgery identified AL patients with Se = 97% and Sp = 66% using a linear kernel after a FS
strategy (see Table 4.6). Note that the performances enhanced when more information was
considered (Se = 100%, Sp = 68% for X4, and Se = 100%, Sp = 87% for X). A linear SVM
classifier considering the features subset after a bootstrap resample strategy provided the best
predictions when only free text data set was evaluated. A RBF SVM classified all patients in the
same class. For this reason, and in order to avoid the high dimensional input space in the BoW
model, we decided to focus only on the features subset obtained after considering a bootstrap
FS method from now on.

Blood tests. For this data source, Se and Sp improved when a non-linear SVM classifier was
considered. More specifically, the application of the non-linear RFE FS strategy enhanced the
performance for all time slots.

Physiological data. We also evaluated to what extent AL can be detected based only on vital
signs. A linear classifier did not performance properly, but non-linear SVM classifiers provided
reasonable Se and Sp values. Results improved when using a non-linear RFE FS method.

In summary, the linear SVM performed the best when a BoW model was considered, yielding
Se = 97% at an early stage. However, a higher Sp was obtained when blood tests data for
Xop were analyzed. As indicated in Application 4.1, the clinical narrative provided the best

performance when all available data were considered separately.
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Table 4.6: Classification sensitivity (first value, in %), specificity (second value, in %), and
number of features (in brackets) for linear and non-linear kernels when individually applied on

free text data set, blood tests and vital signs. Best values are shown in bold.
BoW Xop X i X

Linear kernel 65 58 (5409) 74 68 (6858) 84 85 (13188)
Linear & boot 97 66 (0158) 100 66 (0186) 100 87 (00389)
Linear & RFE 65 58 (5406) 74 68 (6476) 84 85 (13180)
Blood tests Xop X4 X
Linear kernel 7174 (99 77 72 (135) 7776 (279)
Linear & boot 68 76 (96 71 70 (128) 77 77 (186)
Linear & RFE 71 74 (98) 81 73 (108) 77 75 (234)
(135) )
(

RBF kernel 87 60 (99) 87 Tl 94 63 (279
RBF & RFE 87 68 (93) 90 72 (130) 97 77 (040)

Vital Signs Xop X4 X

Linear kernel 61 20 (44) 61 39 (60) 52 49 (124)
Linear & boot 55 29 (42) 45 41 (55) 65 40 (118)
Linear & RFE 61 25 (33) 12 42 (52) 52 41 (108)
RBF kernel 68 65 (44) 61 56 (60) 94 52 (124)
RBF & RFE 65 62 (33) 68 48 (21) 81 71 (093)

Heterogenous Data Sources Combination

Previously, it was concluded that free text provides the higher Se values. In this section, it is
analyzed whether clinical results can be improved by combining different data sources available
in the EHR. Towards that end, the classification performance when using a stacked kernel and
a composite kernel method were benchmarked. Results are shown in Table 4.7.

Stacked input vectors kernel. Features from pairs of two sources were first stacked in an
input vector using a single kernel, obtaining three different combinations, namely, BoW with
blood test, BoW with vital signs, and blood tests with vital signs. Then, all features from the
three sources were stacked in an input vector, using a single kernel. In this case, the new vector
dimension is obtained as the sum of the three datasets dimensions, evaluated for X,,, X4,
and X, respectively. After the new input vector was built, linear and non-linear classifiers were
designed, both with and without a F'S strategy.

Results showed improved AL detection in general when combining heterogenous sources. In
general, clinical narrative had good discriminatory power itself, and also after combining it with
blood tests or vital signs. More specifically, free text and vital signs fusion was promising in
order to detect AL at an early stage (Se = 100% and Sp = 72%). Using only structured data
provided some reasonable classification results, however, they were inferior compared to those

obtained when considering free text.
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Table 4.7: Classification sensitivity (first value, in %), specificity (second value, in %), and
number of features (in brackets) for linear and non-linear kernels when combining free text, blood

tests and vital signs data sources. Best values are shown in bold.
BoW & Blood Xop X4 X

(257) 100 69 (321) 100 87 (668)
Linear & boot 77T 61 (244) 97 66 (300) 100 85 (615)
Linear & RFE 97 68 (256) 100 69 (318) 100 87 (668)
Stacked (RBF) 90 63 (257) 97 59 (321) 68 42 (668)
RBF & RFE 77 71 (093) 97 73 (226) 100 87 (614)
BoW & VS Xop X X
Stacked (linear) 93 63 ) 100 70 (250) 100 88 (513)
Linear & boot 90 64 (227) 97 68 (243) 100 86 (482)

)

)

Stacked (linear) 97 68

Lincar & RFE 97 64 100 69 (243) 100 88 (443)
Stacked (RBF) 90 70 97 57 (250) 68 46 (513)
RBF & RFE 100 72 (238) 100 74 (249) 100 88 (457)
Blood & VS Xop X4 X

Stacked (linear) 58 73 (143) 61 76 (195) 77 73 (403)
Linear & boot 54 69 (140) 65 75 (189) 71 71 (333)
Linear & boot 64 57 (142) 58 59 (188) 81 74 (360)
Stacked (RBF) 81 74 (143) 65 83 (195) 81 73 (403)
RBF & RFE 87 80 (125) 84 68 (187) 87 77 (392)
BoW & VS Xop X4 X

& Blood

Stacked (linear) 97 67
Linear & boot 84 67
Linear & RFE 97 66 165) 100 88 (691)
Stacked (RBF) 90 57 87 56 (381) 68 41 (792)
RBF & RFE 100 69 (277) 97 77 (327) 100 87 (730)
Composite kernel 100 76 ( ) 100 88 (792)

100 75 (381) 100 87 (792)
372) 100 86 (755)

Composite kernels. It was evaluated whether results improved by exploiting a combination of
different kernels for all the available sources. After analyzing individually the three data sources,
the conclusion was that the best classifier scheme for free text data were a linear SVM, whereas
for blood test and vital signs data sets, a non-linear scheme enhanced detection performances.

Thus, the used composite kernel can be expressed as:
K = Kblood + MIKBOW + MQKsigns (41)

where K represents the composite kernel, KZ°W is the linear kernel based on BoW model, and
Kbood and K9 represent the RBF kernel when considering blood test and vital signs data
sets, respectively. First, the kernel free parameters were tuned, and then, a LOO cross-validation

optimization procedure was developed to select p; and po values, obtaining the optimized
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Figure 4.4: ROCs using X,, and indwidual data sources X BoW = xblood = g d X519ms ith
‘Linear & boot’, ‘RBF & RFE’ and ‘RBF kernel’ classifiers, respectively. ROCs using X°P

and combination of the three individual data sources with the composite kernel in Eq. (4.1).

composite kernel. The search ranges for py and pe was (0,10).

Composite kernel results are shown in the very last row of Table 4.7. Note how already at the
day of surgery, sensitivity and specificity are at 100% and 76%, respectively, clearly indicating
an improved capability for early detection of AL. This is promising, and it shows that composite
kernels have a potential for extracting useful information from the heterogeneous data sources
which are considered in this work.

For a visual interpretation, the Receiver Operating Characteristic (ROC) was represented.
The ROC curve is generated by varying the threshold parameter in the classifier which controls
the trade-off between sensitivity and specificity. In this case, the soft output for yielding
a statistical decision parameter on which moving the threshold was used. Figure 4.4 shows
individual ROCs for XBoW Xblood X signs and after combining them using a composite kernel
when considering data up to and including the day of the surgery. For XP°" the ROC was
calculated after considering a linear SVM classifier with a bootstrap FS method, whereas for
Xblood gnd X5197s 3 non-linear SVM and a RFE FS method were considered.

Temporal Risk Assessment for Early Detection of AL

Previous experiments showed the AL prediction performance for the 402 patients at different
time slots. However, a more complete patient risk assessment may be useful. For example in

order to warn clinicians to be alerted at an early stage and act promptly to avoid complications.
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Figure 4.5: FEstimation of posterior probabilities for each patient (infected in red, not infected
in blue). Upper panels: using XP°W and linear SVM with FS for X, (a), and X (b). Lower

panels: using the three heterogenous sources and a composite kernel for Xo, (c), and X (d).

When the risk is evident, potential courses of action can be applied to avoid AL. Towards that
end, we proposed a temporal risk score using several heterogenous data sources. Following the
same two-stage procedure, as explained in Sec. 4.2.3, the risk score is based on the estimated
posterior probabilities of AL, obtained after training the SVM classifier, i.e, given the i-th patient
with feature vector x;, the goal is to estimate Pr(y = 1|x;), for i = 1,...,n (see Sec. 2.3.1). The
higher/lower (infected/not infected) the posterior probability is, the higher the confidence in the
classification will be, and thus, improving the likelihood of better clinical decision support.
Figure 4.5 shows the posterior probability estimation for each patient; red points are
associated to infected cases (positive class), while blue points correspond to negative cases.
Fig. 4.5 (a) and Fig. 4.5 (b) represent the estimated posterior probability when only free text is
considered to predict AL, both using X, and X, respectively. In order to compare these results
with those obtained when several heterogenous sources are considered, the estimated posterior

probability for X,, and X (Fig. 4.5 (¢) and Fig. 4.5 (d)) is represented. Note that, in general,
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lower posterior probabilities of AL are reported for the negative cases (controls) when using more

sources.

4.3.4 Discussion and Conclusions

In this work, we demonstrated that the combination of heterogenous data sources (i.e. free
text, blood tests, blood pressure, pulse and body temperature) from the EHR using SVM and
composite kernels may predict AL at an early stage. Free text, laboratory tests, and vital signs,
have been simultaneously used in order to deal with both unstructured and structured data.
The impact of each data source individually, as well as their combination using weighted kernel
summations, were studied.

Our results show that improved classification performance was obtained when clinical
narrative was used. Nevertheless, the individual analysis of laboratory tests and vital signs also
provided with additional discriminatory power. An increase in sensitivity classification is clearly
obtained when combining these heterogenous data sources. Furthermore, the risk assessment
status of the patient improved when using multisource information from the EHR. This result
is specially relevant to detect AL complications at an early stage, and its inclusion in an on-line
prediction system might be used to predict patients risk of AL.

For the sake of simplicity, an imputation method based on the k-NN algorithm was used
to deal with missing data, though other imputation strategies will likely yield more accurate
classifiers. Different methods to deal with observations at non-uniform time points have been
grouped in three different categories [151]: (1) smoothing or interpolation techniques to fill
missing observations; (2) spectral analysis tools, such as wavelets or Lomb-Scargle Periodogram;
and (3) kernel methods. All of them depend on the considered assumptions on the data, and
are sensitive to the time series dynamics. Furthermore, for the cases with several heterogenous
data sources recorded with different criteria, more specific and elaborated methods have to be
developed to this end. On the other hand, we only used a state-of-art non-linear F'S method in
this work, but more theoretical and experimental work should be devoted to the topic of large
input spaces in the EHR data sources. Note also that sample imputation and FS are strongly
coupled problems in this kind of sparse temporal data, so it is recommendable to develop methods
for their joint assessment. Finally, we used state-of-art posterior probability estimation, and
given the suitability of this type of output in the clinical environment and the improvement
of the detection capabilities in our results, further theoretical and experimental effort is also
encouraged in this setting.

The suitability of vital signs to diagnose an AL after intestinal resection was analyzed in [152],
showing that it represents a quite challenging problem, and low prediction capabilities were

obtained therein. However, CRP showed promising diagnostic value in excluding patients without
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AL [153]. Furthermore, both vital signs and laboratory tests data were also combined into a
clinical score system [154], in order to identify patients with higher risk of AL using statistical
tests, such as Mann-Whitney and ANOVA, hence improving the prediction. In this work, and
based on kernel methods, it was able to combine vital signs and laboratory tests data together

with free text, yielding higher discriminative power.

4.4 Application 4.3: Data-driven Temporal Prediction of Surgical

Site Infection

4.4.1 Introduction

When using observational data from secondary sources such as the EHR one needs to take
into account that the information is rarely recorded in a systematic way. Indeed, the data are
often sparse, and gathered at a clinician’s discretion. For example, blood tests are taken at
a mixture of predefined stages in a patient pathway and clinically driven sampling. Thus, if
predictive analytics relie