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Preface

“Be fruitful and multiply, and fill the Farth and
subdue it, and have dominion over the fish of the
sea, and over the birds of the heavens and over
every living thing that moves on the Earth”

-Genesis 1:28

The present work constitutes my PhD thesis, which has been accomplished dur-
ing the last five years in the research group on Nonlinear Dynamics, Chaos Theory
and Complex Systems Group at the Universidad Rey Juan Carlos. It is focused on
two core subjects, which are the dynamics of tumor growth in interaction with the
cell-mediated immune response, and the application of control techniques to avoid
the overgrowth of tumors, both from the point of view of Nonlinear Dynamics and
Complex Systems. In order to provide a conceptual framework to this work, I de-
velop a general introduction to complex systems, the biology of cancer, and the
immune system function. Then, its main body is comprised by an article on the
existence and control of chaos in a cancer model of tumor and immune cell inter-
actions, another in which we validate a mathematical model of tumor growth, two
works on the establishment of the mathematical equation that governs the lysis of
solid tumors and one last article in which we investigate the transient and asymp-
totic dynamics of tumor-immune aggregates. The thesis has been arranged in seven
chapters with the following contents:

Chapter 1. Introduction

We begin by introducing the basic notions that are necessary to clearly under-
stand the contents of the whole work. We describe dynamical systems, nonlinearity,
and several concepts commonly employed in the study of complex systems. Then we
expose the problem of cancer and the current status of cancer theories. An indispens-
able introduction to immunology and its role in tumor development proceeds. The

vii
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fourth last section is devoted to presenting the mathematical tools and techniques
that are used in our investigations, both from a historical and a methodological
perspective.

Chapter 2. Chaos and control in a model of tumor-immune interac-
tions

Here we present our first approach to cancer modelling. We investigate the dy-
namics of a three-dimensional model describing tumor and immune cell interactions.
After inspection of the phase and the parameter spaces, a boundary crisis leading
to transient chaotic dynamics is found. To avoid the overgrowth of the tumor, we
propose a control technique that has been developed by our research group, which
allows to keep the tumor oscillating at a small size population. We also discuss
the practical difficulties to apply this technique. The last section of the chapter is
devoted to expose other works on the control of chaos.

Chapter 3. A validated mathematical model of tumor-immune inter-
actions

In this third chapter our attention turns to the correlation between our models
and some experimental results obtained from studies with mice and men. By in-
troducing a mathematical function proposed in other studies of tumor cell lysis, we
modify the model presented in the previous chapter, and fit it to the experimental
data. Several hypotheses concerning this mathematical function are proposed. Fi-
nally, we also validate an experimental chemotherapy protocol applied to mice in
viwo and study several correlations between the proposed model and the experimen-
tal results.

Chapter 4. The fractional cell kill governing the lysis of solid tumors

Now we concentrate our efforts in the study of the hypotheses proposed in the
foregoing chapter. Using an hybrid cellular automaton model, we show that the
mathematical function that describes the velocity at which a tumor is lysed by a
population of immune cells, arises from spatial and geometrical constraints. We
introduce some crucial modifications, so that the parameters appearing in the math-
ematical function have a clear biological and physical significance, and also its asymp-
totic behaviour is well-posed. Moreover, we provide an analytical derivation of the
function, using heuristic arguments.

Chapter 5. The kinetics of tumor lysis

Having established the mathematical function that governs the lysis of solid tu-
mors, we inspect its different limits in this fifth chapter. Analytical methods are
used to determine the rate at which a solid tumor decays in one of such limits,
and one last modification is proposed. We test this modification using the cellular
automaton previously developed, showing its validity. Finally, we discuss the possi-
bilities of the mathematical function to describe the lysis of non-solid tumors and
tumors infiltrated with lymphocytes.

Chapter 6. Dynamics of tumor-immune interactions

In this penultimate chapter we investigate the long-range dynamics of tumor
and immune cell interactions, using an extension of the cellular automaton. The



possible outcomes of two competing tumor and immune cell populations are put in
correspondence with the theory of immunoedition. Diving deep into the parame-
ter space and developing new techniques, we show that a long-lasting tumor mass
dormancy uniquely mediated by the immune system is not a very likely event to
occur.

Chapter 7. Conclusions

The thesis ends summarizing the main results of our investigations.
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Chapter 1
Introduction

“All truth is simple... is that not doubly a lie?”

-Friedrich Nietzsche, (1844-1900)

1.1 Complex systems

The science of complex systems arises as a response to the reductionist philosophy
that dominated science from the 17th century until well into the 20th century. Ac-
cording to this philosophy, all phenomena can and should be explained in terms of
fundamental physics. Thus, if cells are made of organelles, and these in turn are
made of proteins, which at the same time are composed by atoms, the knowledge
of the physical laws governing the atomic scale should suffice to explain the laws
governing the dynamics of cells, animals, species and so on. However, experience
demonstrates that when a physical system is constituted by numerous parts interact-
ing among them in a complex manner, unexpected and unpredictable properties that
can not be inferred from the separated study of such parts appear. Moreover, since
the dynamics at a particular scale can be affected by the dynamics at a higher scale,
the development of a bottom-up description of nature is simply unrealistic. Given
this state of facts, we begin this thesis by introducing some basic definitions concern-
ing nonlinear dynamics and complex systems, and also discussing their importance
in the study of physics and biology.



2 Chapter 1. Introduction

1.1.1 Dynamical systems and chaos

As experience reveals, every physical system, whatever is the facet of nature it
covers, experiments changes as time goes by. This is to say, the dynamical character
of nature is its fundamental or essential feature. Science consists in the study of
nature in order to achieve a better understanding that allows us to obtain practical
benefits from it. Therefore, a deep knowledge of how things evolve with time is
required to reach the mentioned goal. Otherwise we could be arranging things
hoping to follow a certain track, and future would mess up all our plans. This is, in
fact, what occurs mostly, and it is due to the unpredictability of physical systems
under certain circumstances.
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Figure 1.1. The Lorenz attractor. Two trajectories for the Lorenz system and almost
same initial conditions represented by two overlapping dots. They start together but soon begin
to separate exponentially. After a while the red one is in the right wing of the chaotic attractor,
while the black one appears on the left side. However, both stay trapped or bounded in a certain
region of the phase space.

At a fundamental level, dynamical systems can be described by means of ordinary
differential equations. Since this description will be of great importance in our
studies, we give some formal definitions in the first place.

Definition 1.1. Given a topological space X a set E = R or E = Z and a
continuous mapping ¢ : X x B — X, a dynamical system is a list of three elements
(X, E, ), satisfying:

e ¢(0,x) =2 Ve eX
o O(t,x)od(s,z) =¢(t+s,x) VeeX t,seE

The topological space X is called phase space, and frequently denoted by 2. The
mapping ¢;(z) is usually called a one-parameter flow, and tells us how a particular
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initial condition = of the dynamical system evolves with time t. If E = R the
dynamical system is said to be continuous, while in the other case is said to be
discrete. In the present work both sort of systems are important, since a common
tool used in continuous and bounded dynamical systems is the Poincaré map or
return map, which is obtained by observing how trajectories intersect a section of
the space. In this manner, an application that maps a certain set in this section into
it can be constructed. The time evolution is generally given by a set of equations,
called the equations of motion, that are written as a system of first order differential
equations,

x = F(x). (1.1)

The vector appearing in the previous equation is called a vector field, and it is
tangent to the flow curves. The flow also obeys the equations of motion and the field
represents the tangent at the identity of the flow, which can be simply computed by

differentiation p
= (G2 (1.2)
dt 0

For discrete systems, equations of motion are written iteratively in the form

Xnt1 = F(Xn), (1.3)

where the sequence {F"(xg)}nez is called the orbit of the initial condition x.

In summary, a dynamical system is a set of states equipped with a time evolution.
Since these equations are deterministic, in principle, given some initial conditions,
the future can be predicted from this set of equations. This picture of reality, origi-
nated with the discovery of Newtonian mechanics, yields a universe working more or
less like a clock. It is traditionally summarized under Pierre Simon Laplace’s state-
ment. This statement asserts that, given Newton’s laws and the current position
and velocity of every particle in the universe, it is possible, in principle, to predict
everything for all time. However, the development of the theory of dynamical sys-
tems has demonstrated that, because of the nonlinear nature of physical systems,
which tend to amplify perturbations [1], the predictive capacity of a model can be
hindered and lost for long enough times. Dynamical systems that possess this prop-
erty are said to be sensitive to initial conditions, and are called chaotic. Taking
up the previous mathematical concepts, a simple, clear and rigorous definition of a
chaotic dynamical system can be given as follows

Definition 1.2. A flow ¢i(x) is said to have sensitive dependence to initial con-
ditions in a compact flow invariant' subset A C , if there exists € > 0, so that
for every x € A and any open set U C A containing x there isy € U and t > 0

satisfying ||¢1(x) — ¢u(y)l| > €.

Sensitive dependence to initial conditions means that two arbitrarily close points
of phase space separate fast as time goes by. Whenever this sensitive dependence

!This means ¢;(A) C A, Vt € R.
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takes place, we talk about chaos and unpredictability (see Fig. 1.1). In practice,
fast means exponentially, and this sensitive dependence is commonly measured by
the largest Lyapunov exponent. Note that because the system is bounded, saying
that the two points separate does not mean that their distance is always increas-
ing. These two points will certainly come closer again the sooner or the later, but
after this re-encounter, they will separate once again. This is in contrast with lin-
ear transformations, which transform parallel lines into parallel lines, meeting the
fifth postulate of Euclidean geometry. If a linear system expands, i.e., amplifies per-
turbations, it can not be bounded. In other words, sensitive dependence to initial
conditions occurs in a local manner. The big deal with this sensitivity is that any
small error or uncertainty in the measure of an initial condition will be exponen-
tially expanded with time evolution. Since our measurement apparatus have a finite
resolution, whenever a system is chaotic, long time predictions become impossible.
Chaos means unpredictability for far enough future. Therefore, nonlinearity might
lead to chaotic dynamics of a physical system, and more sophisticated systems, cre-
ated from the interaction of nonlinear elements distributed in space, just as those
described in the next section, are at the core of the studies of complexity.

1.1.2 Characteristics of complex systems

A complex system can be defined as a system “in which large networks of compo-
nents with no central control and simple rules of operation give rise to complex
collective behaviour, sophisticated information processing, and adaptation via learn-
ing or evolution” [2]. When pattern and organization appear in a physical system
without the guidance of a central controller, it is commonly said that the system
self-organizes [3]. Generally, the resulting patterns of organization can not be easily
deduced from the description of their interconnected parts, and therefore they are
said to represent emergent properties of the system.

As the field of complex systems has developed, a standard concerning their clas-
sification has been widely adopted, splitting this science into two domains: complex
physical systems and complex adaptive systems [4]. Since our works mainly deal
with complex physical systems, in the following lines we introduce their fundamen-
tal characteristics.

Complex physical systems are usually formed by arrays of elements (atoms, cells,
etc.) that occupy several positions in the space. Generally, these elements remain
still at their location, and fixed local interactions occur between a particular element
and its neighbours. As a result of their interactions, a certain spatio-temporal
pattern evolving in time appears. Thus, the three basic ingredients of a complex
physical system are: (1) a series of interacting entities that can exist in different
states, (2) the geometry representing their spatial distribution and (3) the fixed
rules characterizing their interactions.

1. The components of a complex physical system can be diverse, depending on
the scale at study. For example, neural networks study interactions between
neuron cells. Reaction-diffusion systems study the diffusion and the reaction
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of several chemical substances in a spatial domain. In the Ising model, which
studies the behaviour of ferromagnetic materials, the lattice points are occu-
pied by particles with a certain spin. But, independently of the nature of these
components, all of them must be capable of existing in different states, which
change according to deterministic or probabilistic laws.

2. Sometimes the agents of a model are allowed to occupy positions in a con-
tinuous space, but most complex systems are modelled using discrete grids or
lattice-like geometries. The geometry of the lattices varies significantly depend-
ing on the model. For simplicity, orthogonal square lattices are frequently as-
sumed, albeit some studies use different Bravais configurations. Non-euclidean
geometries are abundant in the literature as well, as for example elements ar-
ranged and connected along rings. However, in many situations the geometry
is considered unimportant, and the attention is focused on the connections
between the model elements. This is a customary approach in the study of
networks, where the emphasis is put on the topology of the network.

3. Certainly, the rules that govern the interactions among the elements of a com-
plex system enclose all its “magical” or hard-to-predict features. Of course,
these rules are imposed by the specific nature of the interacting parts, but
the interactions of complex physical systems obey a particular characteristic
that makes these systems deserve their name. Essentially, the interactions are
nonlinear. As opposed to the superposition principle, this means that the re-
sponse of the elements of the system to a perturbation is not proportional to
it, what endows the system with the capacity to amplify perturbations, which
can be later propagated to other components of the system. In this sense,
complex systems are holistic, a property traditionally referred by saying that
“the whole is greater than the sum of its parts”.

In some circumstances, the amplification of perturbations due to nonlinear feed-
back is capable to provoke a rupture of the homogeneity or a symmetry breaking
of the system. Not surprisingly, fractal structures [5] and power-law distributions
pervade the study of complexity. Another important property of complex systems
is that they can be self-referential, meaning by this that the input of an element
depends on its own output. In this manner, the line of causality is broken, and com-
plex feedback loops befall. If a negative feedback mechanism is established between
a complex system and some environmental variable, in such a way that the input
of the dynamical system depends on its output and such variable, the system can
exhibit goal-directed behaviour, what confers it purposeful or teleological qualities
[6]. Therefore, the dynamics of a complex physical system must be understood in
terms of a balance between positive feedback mechanisms, which are responsible for
the amplification of signals, and the negative feedback mechanisms, that tend to
stabilize the system. As a consequence, these systems are frequently found in what
has been called critical states [7], where small perturbations can destabilize their
metastable states, leading to cascade events that are dispersed through the system
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Figure 1.2. Two complex systems. (a) A complex network representing the Ras
signalling transduction pathway inside a cell. In purple we see the different interacting
proteins that comprise these complex network, while the different links representing the
positive and negative feedback interactions are shown in white. (b) Microscopic view of an
histological specimen of human lung tissue. This complex system is comprised by different
types of interacting cells. We can see erythrocytes in red, T cells in blue, and stromal cells
in pink. The white regions represent empty space. From Refs. [10, 11], respectively.

in a scale-free manner. Once again, self-similarity manifests.

Interestingly, the notion of a single-valued and one-to-one relation between cause
and effect in complex systems is ambiguous in other ways. For example, in biological
systems, a cause might have several effects (pleiotropy) or, on the contrary, different
causes might synergize to produce a single effect. Another hallmark of complex
systems is their antagonism. This means that, due to nonlinearity, causality be-
comes context dependent, and a particular cause might produce one effect or its
opposite, depending on its intensity or some other relevant variables of the system.
In summary, nonlinearity is the fundamental notion at the core of complexity and
a conditio sine qua non to observe complex behaviour. However, such condition is
not sufficient on its own, and other requisites must be fulfilled. Both necessary and
sufficient conditions to observe complex emergent phenomena in physical systems
have been mathematically derived and gathered under the term edge of chaos [8],
a concept that has evolved in the study of complex phenomena [9]. To conclude,
and as the introductory definition evidences, every complex system can be regarded
as a network (see Fig. 1.2), where the rules of interaction define a topology, linking
their interacting elements (nodes) in a particular way. In spite of the fact that the
interactions or the links are often stronger between neighbouring elements, i.e., they
act locally, long-range dependencies are commonly found in many complex systems.

Finally, some remarks concerning life and self-organization deserve exposition.
As previously noticed, under appropriate conditions, complex physical systems are
capable to self-organize into non-homogeneous patterns [12]. This fact seems to defy
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the second principle of thermodynamics, which predicts that the ultimate state of
an isolated system is an homogeneous state of equilibrium. The solution to this
paradox is that the emergence of non-homogeneity and the evolution of a system
far from equilibrium requires complex systems to be open [13]. Tt is the constant
flow of matter and energy between the system and its environment that allows it to
create ordered dynamical structures. Because of their capacity to dissipate gradients
and reduce exergy [14], the term dissipative structures was coined by Ilya Prigogine
to describe complex physical systems [15]. On the other hand, these structures or
dynamical patterns also allow dynamical systems to code and process information.
Their increasing ability to process information coming from the environment bestow
them with the capacity to adapt to such environment, by modifying the internal
relations among its parts. Therefore, the entropy regulation performed by these
systems leads naturally to the concept of homeostasis [16], which can be defined as
the self-maintenance of a complex system in a similar unstable state in the presence
of a fluctuating milieu. From our point of view, it is at this point that complex
adaptive systems emerge. Their adaptation is accomplished by constantly rewiring
the connections among their constituents and, in this way, the rules that guide the
dynamics of the system are constantly evolving, as opposed to complex physical
systems.

Even though the dynamical systems modelled in this thesis are evolutionary,
the present work focuses on aspects that are rather physical. Therefore, adapta-
tion will not be rigorously represented. Nevertheless, our methods allow to figure
out evolutionary features, as for instance in Chapter 7, in which the results are in
clear correspondence with the evolutionary theory of immunoedition. Moreover, our
models also incorporate some degree of heterogeneity, cell motility and simulate two
different scales. Consequently, they include aspects which go beyond models fre-
quently used in the study of complex physical systems and, in a rudimentary sense,
are adaptive.

1.2 Cancer theories

The ability of cells to proliferate is essential for multicellular organisms, as mor-
phogenesis and wound repair exemplify. However, in such organisms, the ancestral
capacities of cells to move and multiply are carefully regulated probably both at the
cellular and the tissue level, so that the organization of the tissue displays specific
functionalities. When the mechanisms silencing the growth of cells in a tissue fail,
an uncontrolled proliferation proceeds, leading to a dysfunctional accumulation of
cells, known as a tumor or neoplasia. Prior to this agglomeration, tissues evolve
from their normal phenotype into a highly abnormal architecture, which is formally
known as a dysplasia, and that it is not usually harmful to the organism, because
of its robustness. During the first steps of carcinogenesis, most tumors (e.g., in situ
carcinomas) can not grow beyond the resource limitations imposed by their tissue
environment, and it is common to find necrotic cores inside them. It is now very well
accepted that solid tumors grow logistically [17]. It is only when tumors cells reach
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the circulatory system and colonize the organism that cancers become lethal. These
tumors are said to be invasive. The extravasation of tumor cells from a primary
tumor, their subsequent navigation through the circulatory system and their final
landing into other locations of the body, is named metastasis. Approximately 90 %
of the fatal cancers are metastatic.

Figure 1.3. A pre-malignant growth in the colon. (a) A photograph of a pedunculated
polyp in the colon. (b) A micrograph of the same polyp. From Ref. [10]

Therefore, cancer is the uncontrolled proliferation and spread of a population of
cells through the organism. But, from a physicist point of view, cancer can be defined
in a more general and abstract manner. We might define cancer as the destabilization
of an ecosystem due to the overgrowth and overspreading of a certain subset of the
species which cohabit in it. This “unlimited” growth may arise in several manners,
but clearly represent an extreme form of liberalism that allows some species to
become independent of the environmental constraints that are responsible for their
restricted growth.

Concerning the origin of tumors, a theory has dominated the conception of can-
cer during almost a century [10]. This theory is formally known as the somatic
mutation theory, and claims that cancer is a monoclonal expansion resulting from
the accumulation of mutations by a single cell. These mutations arise inevitably as
a consequence of stochastic mistakes in the process of replication of the DNA, but
can be also produced by several chemicals, commonly known as carcinogens. The
mutations of this single renegade cell [18] endow it with the capacity to promote its
own proliferation. As the tumor mass grows, further properties must be acquired by
the descendants of this aberrant cell, which allow them to circumvent the various
homeostatic controls that regulate development in tissues, as well as the natural re-
strictions imposed from the tissue environment. In this manner, cancer can be seen
as an evolutionary Darwinian process [19], in part governed by random drift and nat-
ural selection. Waves of clonal expansion and cell death would guide the sculpting
of tumors toward their invasive phenotype. Thus, according to this theory, cancer
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is a cell-based disease, resulting from the accumulation of mutations that concern
crucial genes coding proteins that regulate genomic stability and render eukaryotic
cells their quiescent default phenotype.

The increasing complexity of the somatic mutation theory, together with its in-
ability to provide a substantial progress on the treatment of many cancers (mainly
carcinomas), has led to the proposal of an alternative theory, called the tissue or-
ganization field theory. This theory proposes that cancer is a tissue-based disease,
affecting the biophysical and biomechanical communication between the stroma and
the epithelium. The proliferation and motility restraints imposed by normal tissue
architecture loosen and as a consequence of this disruption, leading to the hyper-
plasia of the epithelium. Further alteration of the reciprocal interactions between
tissue compartments will induce metaplasia, dysplasia, and carcinoma [20].

In conclusion, a lot of movement and conflicting perspectives is currently taking
place in the study of carcinogenesis, which legitimate the present work, as well as its
methods. Moreover, the National Cancer Institute opened in 2009 twelve centres of
Physical Sciences and Oncology, with the aim of enlarging the fight against cancer,
and also in order to gain insights from other disciplines. One of them is led by the
prestigious physicist Paul Davis. This interdisciplinary spirit has strongly motivated
the present work.

1.3 Immunosurveillance of tumors

The immune system represents an outstanding example of a complex adaptive sys-
tem, which comprises many biological processes and cell interactions. It appears in
most multicellular organisms (around 98 % have a more or less developed immune
system) and evolved to protect such organisms against pathogens, such as viruses,
bacteria or fungi. Even though these cells and substances interact among them with-
out the guidance of any central controller, as a building block of an organism, the
immune system is a feedback control dynamical system. The present thesis mainly
deals with the interactions between tumor cells and the cell-mediated immune re-
sponse. For a detailed description of the immune system, we refer the reader to the
Appendix, in which we provide a brief introduction to immunology. In the present
section we discuss the role of the immune system in the control of tumor growth.

Paul Ehrlich suggested in 1909 that the immune system might protect an organ-
ism from the development of cancer [21]. Around fifty years later, this proposition
was more formally reintroduced by Macfarlane Burnet [22, 23] and, later on, by
Lewis Thomas [24]. After suffering major setbacks [25, 26|, the immunosurveil-
lance theory gained renewed consistence close to twenty years ago, thanks to several
experimental works with genetically altered mice [27, 28]. Currently, the immuno-
surveillance of tumors is more properly referred as cancer immunoediting. Given
the genetic heterogeneity of tumors, this control system coevolves with them and
seems to act as a natural selective force, editing its phenotype by selecting those
cells that are unresponsive to immune detection.

Hesitation on the capacity of the immune system to control tumor growth arises
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from a quite simple fact. The immune system has evolved to protect the organism
against foreign pathogens, while tumor cells originate in the body, and in many
aspects, are very similar to normal cells. Since the immune system has tolerance
to cells originated in our body, it is reasonable to think that the recognition and
destruction of tumor cells is not a very likely event. Even more, it has been observed
a great antagonism of the immune system in the control of cancer, since some cells
can foster tumor growth, while others can suppress it. Even the same type of cells
might show conflicting roles concerning tumor growth. Note that many immune
cells promote inflammation by secreting cytokines, some of which can promote cell
growth. Nevertheless, several experimental observations support an important role
of the immune system in tumor progression, which keeps these tumors in check. For
example, histopathological studies reveal the existence of substantial numbers of
lymphocytes infiltrating tumor masses, and macrophages engulfing tumor cells at
the wound healing site have been observed (see Fig. 1.4).

Even in the case in which the immune cells are effective in the recognition of
tumor antigens, experience reveals that tumor cells adapt and find ways to avoid
their elimination. These collection of strategies is formally known as immunoevasion.
We enumerate a few examples:

1. Stop displaying tumor antigens that do not compromise their survival and
proliferation, through suppression of their encoding genes.

2. Partial repression of MHC-class I molecules. This occurs through the lack of
mRNAs molecules encoding these proteins and post-translational mechanisms,
as for example the lack of synthesis of relevant proteins and transporter pro-
teins.

3. Down-regulation of stress ligands, like the NKG2D ligand, by disabling its
signalling pathway.

4. Release of ligand proteins in soluble form to the medium.

5. Launching counter-attacks on immunocytes, through the Fas receptor or the
release of cytokines, such as TGF-beta and I1-10.

6. Avoiding recruitment through interaction with endothelial cells and adhesion
molecules.

7. Inhibition of apoptosis using different signalling pathways.

8. Modifying the mix of immune cells by recruiting T suppressor cells, which
inhibit and even kill cytotoxic and helper T cells.

Immunoevasion is of great importance to the present work and, consequently, our
models include parameters capable of representing the effectiveness of the immune
system in the surveillance of tumors.
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Figure 1.4. Evidence supporting the immunosurveillance of tumors. (a) Tumor
infiltrating lymphocytes (brown) in an oral carcinoma. From Ref. [10] (b) A group of
macrophages fighting a tumor cell. By Susan Arnold, from NCI Vissuals Online.

1.4 Mathematical population dynamics

The coda to this introduction is devoted to describe the mathematical context in
which our models are developed. Our investigations are accomplished by means of
mathematical population models, which have been employed in many domains of
science, from chemistry, through population genetics, biology, epidemiology, ecology,
evolutionary theory, demography, sociology, or economy, just to cite a few examples.
In a first approach, population models are of two types, depending on how they rep-
resent the population variable: continuous models and discrete models. Continuous
models represent populations through densities or volume fractions, while discrete
models assume an integer number of elements. The time variable can also be repre-
sented continuously or discretely, and some models also include spatial dependence,
again in a discrete or continuous fashion. Other variables can be considered in the
model, as for example, the age of the population, and frequently models include
stochasticity, in order to account for fluctuations. Finally, different cell populations
with specific interactions among them can be considered, forming more or less com-
plex networks. The present thesis mainly deals with two types of models:

e The first are ordinary differential equation (ODE) models, which represent cell
populations continuously, are also continuous in time, and they do not explic-
itly simulate spatial distribution. Nevertheless, the present work demonstrates
that these traditional models can account in a tacit manner for spatio-temporal
effects.

e The second are hybrid cellular automata models (CA), which are spatio-temporal
models in which all variables are treated discretely. However, the diffusion of
nutrients in the domain of the tumor and their absorption by the tumor cells,
will be treated continuously, through partial differential equations (PDEs).
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1.4.1 Geometric growth

The oldest mathematical population model of which we have written proof is the
Fibonacci’s sequence. Leonardo de Pisa was born in 1170 and after preparing to
be a merchant, he travelled for business around the Mediterranean Sea, compared
the different number systems and studied Arab mathematics. In 1202 he finished
writing a book in Latin entitled Liber abaci, in which he shows how to use such
number systems for accounting, and also gathers many of the results in algebra and
arithmetic known to the Arabs. The population problem that he poses in his book
tries to compute the number of rabbits after a certain number of months, given the
fact that it takes rabbits one month of life to be fertile. Couples of rabbits are then
given by the sequence

Poow=PFP,+ P, 1. (1.4)

Interestingly, this old population model incorporates delay, since the number of
rabbits at a particular month n does not only depend on the number of rabbits in the
previous month, but also on the number of rabbits in the past months. Consequently,
two months of history have to be provided as initial conditions. An equivalent time
continuous model is given by the delay differential equation P(t) = P(t — 7), which
solution is an exponential growth.

Although population models were later used by renowned scientists, such as
Edmund Halley, Christiaan Huygens or Gottfried Leibniz, it was the prolific math-
ematician Leonhard Euler who gave attention to the study of the mathematics of
populations in a rigorous and detailed fashion. His first examples are dedicated to
the geometric progression, in which a population increases its size at each time step
(say a year), at a rate r. Mathematically, this linear model is written as

Pt = (147)P,, (1.5)

and its continuous counterpart can be written as P(t) = rP(t), which as it is well-
known, leads an exponential growth, with doubling time log(2)/r. Later on, in 1760,
he published other works in which the population is age-structured, and addressed
different questions.

1.4.2 Limited growth

In 1798, Thomas Malthus, an English priest, seriously considered for the first time
the obstacles to geometric growth, arguing that a growing population could only
be maintained if its means of subsistence were not comparable [29]. Malthus cor-
rectly believed that if the human population grows beyond its capability to produce
resources, then part of such population would be inevitably forced to misery, vice
and death. Even though Malthus did not introduce any mathematical model so as
to properly represent limited growth, conceptually, he set the basis for such models.
Certainly, Adolph Quetelet suggested that populations can not grow geometrically
over a long period of time because the obstacles mentioned by Malthus act as a re-
sistance. This fact inspired Pierre-Francois Verhulst, who presented a mathematical
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model in 1838. This model is nowadays known as the logistic model, and can be
written as follows

P(t) = rP(t) (1 — %) : (1.6)

where r is the rate of growth and K has been named the carrying capacity. Note that
this model exhibits two terms. The first term represents a geometric growth, while
the second stands for the mortality of the population, due to a lack resources as the
population increases towards the carrying capacity P = K of its ecosystem. The
model exhibits two fixed points, P = 0 and P = K. The first is unstable and the
second is stable. A population that exceeds the carrying capacity of its ecosystem
P > K, dies at a higher rate than it grows, decaying to stable population levels. This
regime precisely represents the circumstances so much feared by Malthus. Logistic
growth is very common in solid tumors, and arises as a competition for space and
resources, as proposed by the Reverend Malthus.

Alfred Lotka, an American physicist and chemist, independently developed mod-
els quite similar to those of Euler, but in a continuous fashion. In the nineteen-
twenties, he turned attention to the problem of interacting populations, and devel-
oped a two-dimensional biological model, where the variables represent a species of
herbivores (predators) and a species of plants (preys). In Fig. 1.5 we exemplify this
struggle for life [19]. For this purpose, he used chemical reactions as a conceptual
framework, and demonstrated that two species can subsist together performing os-
cillations. From the Malthusian perspective, these oscillations can be explained in a
quite simple manner: the predators grow exponentially, but depend on their preys
to subsist. As they keep on growing, the number of plants reduces, and when the
population of predators grows beyond a certain limit, plants are very scarce and the
predators begin to die. Now, as the predators reduce, the plants regrowth again
and the cycle resumes. Perhaps the most important moral of this study, is that the
equilibrium of an ecosystem is based on a balance between life and death, leading to
oscillatory regimes. A very important Italian mathematician, Vito Volterra, came
up with an identical model while investigating the oscillations of cartilaginous fish
in the fisheries of the harbours of the Adriatic sea.

The history of population dynamics proceeds up to the present, with very im-
portant scientific figures in many disciplines. However, we will detain ourselves here,
since the basic concepts required to clearly understand the following chapters have
been introduced. For a complete description of mathematical population models
and their history we refer the reader to two books [30, 31], which have been very
helpful to write the notes that conform this section.

1.4.3 Lotka-Volterra models

Since Lotka-Volterra Models are the basis of the cancer ODE models used in this
work, in this section we delve deeper into their mathematical nature. Given a species
of preys X (t) and another of predators Y (¢), the Lotka-Volterra equations can be
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(0)

Figure 1.5. The struggle for life. (a) A feral cat haunting a rabbit. Image by
Eddy Van under license CC BY-SA 2.0. (b) Sea anemones engaged in a clone war. The
white tentacles are fighting tentacles. After war ends one of them should move. Image by
Brocken Inaglory under CC BY-SA 2.0.

written in the form )
X(t) =aX(t)— X ()Y (1)
' (1.7)
Y(t) = —=0Y(t) +yX ()Y (t).

Assuming that in the absence of predators the mortality rate of preys is much
smaller than their growth rate, the first equation states that the velocity at which
the preys growth or die is the result of the balance between their geometrical prolif-
eration at rate o, and the destruction caused by predators, at rate 5Y. Note that
predation rate increases with no bound as the number of predators increases, which
is unrealistic. Other bounded functional responses have been proposed by ecologists
in more realistic attempts [32], and so it is the purpose of the present thesis, con-
cerning tumor-immune interactions. On the other hand, predators multiply when
food is available at a rate vX, and in its absence die of hunger at rate 9. In the
spirit of Alfred Lotka, we can write the Lotka-Volterra equations as an autocatalytic
chemical reaction, where the animal species are regarded as molecules. These sort
of analogies will be used throughout the text in several chapters. The reactions are

A+ X SmX (1.8)
X+Y Ly (1.9)
Y -5 v (1.10)

with o = k[A]m and v = fn.

More specifically, Lotka-Volterra equations of competition are commonly used in
cancer modelling. For example, consider two species of cells which grow logistically
up to a carrying capacity, imposed by the homoeostatic controls of the body, and
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(a) w

Figure 1.6. A one-dimensional cellular automaton. The horizontal axis represents
the space, while the time runs along the vertical one. (a) The Pascal’s triangle mod-
ulo 2 cellular automaton, generating a Sierpinsky triangle as times goes by. (b) Similar
structures in a conus textile shell. Image by John Doe, distributed under CC BY-SA 3.0
license.

compete among them for resources. The differential equations representing this

process are
X(t) = 1 X(1) (1 _ ﬁé?) —anX (Y (D)

(1.11)
Y (t) =Y (1) (1 _ 5;?) —an X ()Y (t).

Now, both cell populations die at a rate that is proportional to the reciprocal species,
as a consequence of competition. Depending on the parameter values of the model,
two fundamental situations can be addressed: exclusive competition or stable coex-
istence. In the first case, one species outcompetes the other, while in the second,
both stably coexist.

There exists a vast amount of research concerning Lotka-Volterra models. Gen-
eralizations such as the Arditi-Ginzburg equations, higher dimensional models ex-
hibiting chaos, time-delayed models, or variants accounting for mutualism or com-
mensalism, and even spatio-temporal reaction-diffusion models, frequently appear
in the literature.

1.4.4 Cellular automata models

Cellular automata were born in 1950, when John Von Neumann designed a math-
ematical algorithm to demonstrate the existence of a self-replicating machine. Al-
though he died of cancer before finishing the complete mathematical demonstrations,
his proof was finished by his friend Arthur Brooks, who published them in 1966.

A cellular automaton model is a spatio-temporal discrete dynamical model. The
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space, which is commonly a square, is divided into suitable units forming a grid.
These units are called cells, and can exist in different states, that are usually repre-
sented by integers. Then a set of rules is provided, by allowing each cell to interact
with its first neighbours. Depending on the state of its neighbours and its own value,
the cell will perform an action, changing its current state or not. At each iteration
or time step, all the CA cells are checked and the corresponding rules applied to
compute the evolution of the system. Finally, boundary conditions must be imposed.
Two outstanding examples of cellular automata are the one-dimensional binary cellu-
lar automata studied by the British physicist Stephen Wolfram, and also the British
mathematician John Horton Conway’s “Game of Life”. An example is illustrated in
Fig. 1.6.

From the point of view of the architecture, the cellular automata used in this work
are more sophisticated, since they incorporate multi-scale effects and their rules are
probabilistic. The birth and death of the cells will depend explicitly on the nutrient
concentration at each point of the space, which is simulated by reaction-diffusion
equations. Therefore, “our” cellular automaton can be classified as a probabilistic
hybrid cellular automaton.

References

[1] E.N. Lorenz, “Predictability: does the flap of a butterfly’s wings in Brazil set
off a tornado in Texas?”, 139th Annual Meeting of the American Association
for the Advancement of Science, (1972).

[2] M. Mitchell, Complexity: A guided tour, (Oxford University Press, New York)
(2009).

[3] S. Camazine, Self-Organizing Systems, (Encyclopedia of Cognitive Science,
Wiley Online Library) (2006).

[4] J.H. Holland, Complezity: A very short introduction, (Oxford University Press,
New York) (2014).

[5] B. Mandelbrot, The fractal geometry of nature, (WH Freeman and Co., New
York) (1983).

[6] A.Rosenblueth, N. Wiener, and J. Bigelow, “Behavior, purpose and teleology”,
Philos. Sci. 10, 18-24 (1943).

[7] P. Bak, C. Tang and K. Wiesenfeld, “Self-organized criticality: an explanation
of 1/f noise”, Phys. Rev. Lett. 59, 381-384 (1987).

[8] L.O. Chua, “Local activity is the origin of complexity”, Int. J. Bifurcat. Chaos
15, 3435-3456 (2005).

9] S.A. Kauffmann, The origins of order: Self organization and selection in evo-
lution, (Oxford University Press, New York) (1993).



References 17

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R.A. Weinberg, The Biology of Cancer, (Garland Science, New York) (2013).

S. Grumelli, D.B. Corry, L.Z. Song, L. Song, L. Green, J. Huh, J. Hacken,
R. Espada, R. Bag, D. E. Lewis, and F. Kheradmand, “An immune basis for
lung parenchymal destruction in chronic obstructive pulmonary disease and
emphysema”, PLoS Med. 1, e8 (2004).

A.M. Turing, “The chemical basis of morphogenesis”, Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences 237, 37-72 (1952).

E. Schrodinger, What is life?: With mind and matter and autobiographical
sketches, (Cambridge University Press, New York) (1992).

E.D. Schneider and J.J. Kay, “Life as a manifestation of the second law of
thermodynamics”, Math. Comput. Model. 69, 25-48 (1994).

L. Prigogine, Only an illusion, (Cambridge University Press, New York) (1982).

S.J. Cooper, “From Claude Bernard to Walter Cannon. Emergence of the
concept of homeostasis”, Appetite 51, 419-427 (2008).

L. Norton, A Gomertzian model of human breast cancer growth, Cancer Res.

48 7067-7071 (1988).

R.A. Weinberg, One renegade cell: How cancer begins, (Basic Books, New
York) (2013).

C. Darwin, The origin of species, (John Murry, London) (1929).

A .M. Soto and C. Sonnenschein, “The tissue organization field theory of cancer:

a testable replacement for the somatic mutation theory”, Bioessays 33, 332-
340 (2011).

P. Ehrlich, “Uber den jetzigen Stand der Karzinomforschung”, Nederlands
Tijdschrift voor Geneeskunde 5, 273-90 (1909).

F.M. Burnet, Cancer-A biological approach: I. The Processes of control. II.
The Significance of somatic mutation. Brit. Med. Jour. 1, 779-786 (1957).

F.M. Burnet, “Immunological surveillance in neoplasia”, Transplant Rev. 7,
3-25 (1971).

L. Thomas, Cellular and humoral aspects of the hypersensitive state. (Lawrence
HS, New York, Hober-Harper) (1959).

O. Stutman, “Tumor development after 3-methylcholantrene in immunologi-
cally deficient athymic-nude mice”, Science 183, 534-536 (1974).

O. Stutman, “Immunodepression and malignancy”, Adv. Cancer Res. 22, 261-
422 (1975).



18

References

[27]

D.H. Kaplan, V. Shankaran, A.S. Dighe, E. Stockert, M. Aguet, L..J. Old, and
R.D. Schreiber, “Demonstration of an interferon ~-dependent tumor surveil-
lance system in immunocompetent mice”, Proc. Natl. Acad. Sci. U. S. A. 95,

7556-7561 (1998).

V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old, and
R.D. Schreiber, “IFN+ and lymphocytes prevent primary tumor development
and shape tumor immunogenicity”, Nature 410, 1107-1111 (2001).

T. Malthus, An essay on the principle of population, (Penguin, New York)
(1970)

N. Bacaér, A short history of mathematical population dynamics, (Springer
Science & Business Media) (2011).

F. Brauer and C. Castillo-Chavez, Mathematical models in population biology
and epidemiology, (Springer, New York) (2001).

C.S. Holling, “Some characteristics of simple types of predation and para-
sitism”, Can. Entomol. 91, 385-398 (1959).



Chapter 2

Chaos and control in a
model of tumor-immune
interactions

“The most successful people are those who
are good at plan B.”

-James A. Yorke

In this second chapter, we demonstrate the existence of transient chaotic dynam-
ics for certain values of the parameter space in a three dimensional cancer model
consisting of interacting cell populations, similar to the model used in Refs. [1, 2, 3].
These three populations are the tumor cells, the healthy host cells and the immune
effector cytotoxic T-cells present at the tumor site. After examining the phase space
of the model for the given parameters, and the boundary crisis leading to transient
chaotic dynamics, the partial control method is applied to avoid tumor escape and
uncontrolled growth, preventing from extinction of the healthy tissue. We discuss
the main difficulties of applying such control method at the present state of the art
of cancer treatments, as well as some other inherent to chaotic behavior.

2.1 Introduction

As previously discussed, cancer is the result of an uncontrolled proliferation of tumor
cells within a tissue, that eventually can spread to new locations in the body. It
is believed that the loss of cooperative behavior of cancer cells mainly arises as a
consequence of accumulated mutations, and yields a complex evolutionary scenario
in which tumor and healthy cells compete for space and scarce resources. Mathemat-
ical modeling has proven to be a useful tool for the understanding of many features
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concerning the complex interactions between tumor and healthy cells [4, 5, 6, 7].
Just to recall, based on how the tumor tissue is represented, a vast number of can-
cer growth models fall into two main categories: discrete models and continuum
models. The discrete cell based models are capable of describing biophysical pro-
cesses in significant detail, considering the individual cells governed by a precise
series of rules. However, for large scale systems, this method is very demanding and
requires sophisticated computer simulations. An alternative to discrete methods is
provided by the continuum aproach, where tumors are treated as a collection of tis-
sue, considering, among other possible elements, the description of densities or cell
volume fractions and cell substrate concentrations. More particularly, carcinogenesis
population-based models [1, 8, 9, 10] have often been used to study different aspects
of tumor progression [11, 12] and settle therapy protocols [13, 14, 15, 16]. As an
example, we briefly describe a model which has enormous relevance to the present
thesis. The model was engineered in Ref. [6] to suggest a possible dynamical origin
of tumor dormancy and the sneaking through of tumors. These two concepts will be
rigorously defined in Chapter 6. It was tested against experimental data, obtained
from a BCL; lymphoma in chimeric mice, and consists of two cell populations: the
tumor cells and the immune effector cells. Using enzyme kinetics as a metalanguage,
the following differential equations can be derived

T
F=s—dE+p——F —cTE
g+T
(2.1)
. T
T=rT(1——)—bET.
(%)

Here r is the rate of growth of the tumor cell populations, K is its carrying
capacity, and b and ¢ represent Lotka-Volterra competition terms. More specifically,
the term represented by ¢ models the lysis (destruction) of tumor cells by the immune
cells. On the other hand, b can represent any of the several mechanisms that tumor
cells utilize to evade the immune system response, described in Chapter 1. Finally,
the parameter s models a natural input of cytotoxic cells into the tissue, while
p and ¢ comprise the recruitment of cytotoxic cells as a result of tumor-immune
interactions. The parameter d represents the rate of inactivation of immune cells,
which can only lyse a finite number of times. A possible nondimensional model can
be derived by redefining the cell populations in the following manner

1)
Yy Toux EO’T (1) ( )

with By = Ty = 10°, which is the typical scale for the the immune and the tumor
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cell populations. The resulting nondimensional parameters are re-expressed as

b1y Ey b1y T
c d r
—— = — = — 2.

H=0 b, b, (2:3)
Ty

/B - ?7

and the equations now read
T=0—0x+p T — pyx
Ty (2.4)

y=ay(l—By)—xy.

A phase space portrait illustrating the dynamics of the model is shown in Fig. 2.1.
The phase space clearly exhibits the structure of a Lotka-Volterra model, with “exclu-
sive” competition. Two different regions are distinguished, containing two respective
attractors. One of them A is an stable spiral attractor, corresponding to a tumor
that is kept at a small size by the immune system. This phenomenon is formally
known as tumor mass dormancy. The other B is an stable node representing a very
big tumor, that has escaped the immune system’s vigilance. The fixed point C' is a
saddle whose stable manifold W, divides the space into two regions. In the language
of dynamical systems, these regions are referred as basins of attraction, since all
trajectories inside them ultimately end at their corresponding attractors. Another
fixed point, not appearing in the image, occurs for small tumor size populations and
a small immune cell population. This fixed point is a repellor. Closer settings in
parameter space (o, d) suggest that an increase of immune cells can stimulate tumor
growth (immunostimulation) and that initially big tumors can be reduced to a very
small size, which later on escape immune surveillance (sneaking through).

We will come back to this model and discuss its main virtues and deficiencies in
the last chapter. Nevertheless, this pioneering work served as a foundation for other
ODE models, which frequently divide the problem into two clearly differentiated
parts. The first one sets and describes the model itself, which commonly consists
on some Lotka-Volterra equations describing growth and death of cell populations,
as well as competition between them. The second part is devoted to establish
a treatment protocol, mainly chemotherapy, immunotherapy or radiotherapy, to
reduce in an optimal manner the tumor population. Even though most of these
models deal with more than two dimensions, not many of them [2, 3, 17, 18] seriously
consider the situation in which cell populations behave in a chaotic fashion. From our
point of view, the main reason why this occurs is that, in spite of the fact that there
is experimental evidence of deterministic chaos in tumor cell populations [19], in
general this evidence is not abundant and clear enough. Although chaotic dynamics
of a growing tumor seems to be uncommon, it is more probable to appear when
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Figure 2.1. The phase space. We show the phase space of the model presented
in Eq. (2.4), for the set of parameters o = 0.1181, p = 1.131, n = 20.19, p = 0.0033,
0 = 0.3743, a = 1.636 and 8 = 0.0020. (a) Two stable attractors A and B, representing
a dormant tumor and an escaping one respectively. The third fixed point shown C is
unstable, with its invariant manifolds Wy and W,,. (b) In this second case the value of p
has been increased to 0.0055. The system experiences a bifurcation through a heteroclinic
connection. Now we see that high immune cell population values do not lead to the
dormant tumor state A. After being reduced, the tumors persist at small cell populations
and sneak through until they escape. Adapted from Ref. [6].

therapies are considered. Therefore, we think that chaos should not be disregarded in
the study of tumor progression. In particular, as far as we are concerned, no one has
mentioned the possibility of finding transient chaos in the populations of these tumor
models. We believe that, since complex interactions take place between neoplastic,
stromal and immune response cells, it is likely for transient chaotic dynamics to
happen before tumor dominates the struggle. On the other hand, several methods to
control transient chaos have been proposed along the last decades [20, 21, 22, 23, 24].
Among them, the partial control method [25, 26, 27, 28] aims to control systems
displaying chaotic transients in the presence of certain external disturbances (usually
noise), using smaller controls. The main idea of partial control is to take advantage
of the Cantor set structure embedded in a region of phase space containing the
remnant of a chaotic attractor to avoid escaping from it by small perturbations. In
this manner, we prevent the occurrence of a particular dynamics.

2.2 Model description and phase space analysis

We now introduce an ODE mathematical model of tumor-immune interactions and
describe the phase space.
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2.2.1 The model

We develop our investigations with a model used in Refs. [2, 3]. Tt is the same three
dimensional Lotka-Volterra model than the one described in Ref. [1], with the only
difference that no constant input of effector immune cells is considered. Such input
can be used to model innate immunity [10] or an immunotherapy protocol [9]. Each
of the variables represents a cell population, namely: 7T'(t) the tumor cells, H(t)
the healthy host cells near the tumor site, and E(t) the effector immune cells. The
growth of cancer and host cells is assumed to be logistic with growth rate r; and
carrying capacity k;. Both compete with each other, being the competition terms
given by a;;. The production of immune cytotoxic T-cells is triggered by antigen
presenting cells. Assuming that this process occurs at a enough smaller time scale
than the one corresponding to tumorigenesis, the stimulation of the immune system
by the tumor specific antigens can be considered to act instantly and modelled by
a Michaelis-Menten law. The immune effector cell production rate in response to
the presence of tumor cells is given by r3, and the steepness of the response curve
is associated to ks, the value of the tumor cells at which the immune response rate
is half of the maximum production, where the response curve saturates. These cells
only compete with cancer cells and in their absence they die off with a constant per
capita rate d3. Therefore, the system of differential equations is

. T
T = 7’1T (1 - ]{;_) - CL12TH - a13TE
1

: H
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The nondimensionalization and parameter reduction of this system is thoroughly
studied in Ref. [2], yielding the set of equations

t=x(l —x)— apry — azrz

) =1y (1l —y) —anyx
y=ray (Zx y) — asy ) (2.6)
zZ=T — A31RT — z.

3x+k3 o ’

2.2.2 Equilibria of the system

An exhaustive phase space analysis has been carried out in the previously cited
references [1, 2]. In the following, we restrict our attention to a particular set of
parameter values, for which the system has a chaotic attractor close to a boundary
crisis. The choice of parameters in Eq. 2.6 is: a5 = 0.5, aoy = 4.8, a3 = 1.2,
az1 = 1.1, ro = 1.20, r3 = 1.291, d3 = 0.1 and k3 = 0.3. The only significant
differences of this setting compared to the one arranged in Ref. [1] are given by
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parameters a2 and r3, which take higher values in the present case. The biological
meaning of this choice is that tumor cells are more agressive in their competition
with normal cells, and that the recruitment or response of the immune effector cells
due to the presence of tumor cells is much stronger.

We now describe all the nullclines and equilibria for the current set of parameters.
The fixed points of the system are given by & = y = 2 = 0, what yields the set of
equations

(1 —x —apy — aiz2)
(ro — 1oy — a1 ) (2.7)
((7‘3 — k’galg — dg)!L‘ — a31x2 — k‘gdg) .

Nullclines can be read directly from Eq. 2.7. There is a total of six nullclines:
the x —y, y — z and = — z planes, the plane II, represented by the implicit equation
x + apy + a3z = 1, the plane Iy, given by roy + as;z = ro, and the planes I3 and
I1, for o the constant solutions of the quadratic equation as2* — (rs — ksayz — d3)x +
ksds = 0. If we focus on the positive octant RT x R*T x R*, the intersections of the
different nullclines yield six different fixed points z}, as shown in Fig. 2.2. We give
the numerical values of the fixed points and also analyze their stability by examining
the eigenvalues of the Jacobian at each of them.

0
0=
0

N e R

Figure 2.2. Phase space with the nullclines and the fixed points. The planes
are the different nullclines, with the fixed points placed at some of their intersections. The
green points are saddle fixed points, the red point is the tumor stable fixed point and the
blue points are the two spiral-saddles that give rise to chaotic motion.

The point z7 is the origin (0,0,0), a saddle with two positive eigenvalues cor-
reponding to the z-axis and the y-axis, and a negative eigenvalue along the z-axis.
The point 25 = (0, 1, 0) represents the healthy state, for which there are only normal
cells. This fixed point is a saddle point too, but with two stable directions (nega-
tive eigenvalues) and one unstable (positive eigenvalues). The stable eigenvectors
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are contained in the x = 0 plane, so if the dynamics enters this plane, it eventu-
ally reaches the healthy solution. The point x% = (1,0,0) has its three eigenvalues
smaller than zero, representing a stable solution for which there are only tumor cells.
Since this point is the one we want to avoid falling into, we have colored it in red.
The fixed point z3 = (0.75,0,0.21) is also a saddle fixed point with two stable and
one unstable directions. A stable and an unstable direction are in the plane y = 0,
while the remaining stable direction is given by the eigenvector (0.23,0.97,0.02).
The two stable directions are related to the stable manifold separating the basins of
attraction of the chaotic attractor and the tumor stable fixed point. The fixed points
xi = (0.04,0,0.8) and x§ = (0.04,0.85,0.45) are two spiral-saddles. For x} the spiral
is stable and is contained in the y = 0 plane, while the unstable direction is given
by the eigenvector (—0.02,1.00, —0.03), almost pointing parallel to the y-axis. The
other spiral-saddle shows opposite stability, i.e., the spiral is unstable and the stable
direction is given by the eigenvector (—0.02, —1.0,0.02). The interplay of these two
“facing” spiral-saddles is responsible for the heteroclinic chaotic motion of the sys-
tem, which is the reason why we paint them blue. The attractor together with the
fixed points are shown in Fig. 2.3(a). The Lyapunov exponents of the system are
A = 0.022, Ay = 0 and A3 = —0.76, so the Kaplan-Yorke dimension of the chaotic
attractor is dy = 2.027.

Figure 2.3. Chaotic attractors and boundary crisis. (a) Chaotic attractor before
the crisis. Again saddle fixed points are marked in green, the tumor attractor is shown
in red, and the spiral-saddles are painted blue. (b) The same chaotic attractor and fixed
points after the crisis. Now trajectories do not stay forever in the chaotic attractor, but
fall into the tumor stable equilibrium after a long transient.
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2.2.3 Boundary crisis and transient chaos

It would be expected that, decreasing the level of the immune response to tumor
cells, the cancer state 23 should asymptotically prevail over the chaotic attractor. As
is well known, whenever two attractors coexist in phase space, the stable manifold
of a saddle fixed point between them separates their basins of attraction. If one
of these attractors is chaotic, when we vary a parameter, it might happen that it
collides with the stable manifold of the saddle. Such phenomenon is formally known
as a boundary crisis, and allows the chaotic attractor to access the basin of the
stable attractor, falling into it. Indeed, when we decrease the value of the immune
respone r3 from 1.291, the chaotic attractor collides with the stable manifold of 7 at
an approximated critical value r§ = 1.2909. For values of r3 below the critical value,
the dynamics of the system eventually sinks into x3. However, if the value of the
parameter is close to the boundary crisis, the chaotic attractor persists as a remnant
(or ghost), so larger or shorter chaotic transients are observed before escaping into
the stable attractor, as shown in Fig. 2.3(b). The use of the partial control method
to avoid ending in that attractor, which corresponds to the tumor-only state, is the
pursued objective through Sec. 2.4. In Fig. 2.4 we show a two-dimensional fold of
the parameter space, corresponding to the rate of production of immune cells r3 and
the rate of growth of healthy cells 75, making a clear distinction between parameter
regions before and after the crisis.

1.21

1.205

Ty 42

1.195

1.285 1.29 1.295 1.3
T3

Figure 2.4. A region of the parameter space. We see how the variation of the
parameter r3 induces the crisis for many different values of the parameter ro. The boundary
between the two regions contains the critical values of 7§.
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2.3 The partial control method
2.3.1 Basic aspects

Transient chaos is a physical phenomenon that occurs in systems for which trajecto-
ries behave chaotically during some finite amount of time in a region () of the phase
space, until they move toward a final state outside ). The underlying topological
structure in @) responsible for that type of motion is a Cantor set-like structure
known as the chaotic saddle. Manifestations of transient chaos are wide, and many
examples can be found in the literature [29, 30, 31]. We show transient chaotic
dynamics for our model in Fig. 2.3(b). Partial control is a feedback control method
aimed to mantain the transient chaotic dynamics as long as desired, avoiding the
escape from (). Things get even more complicated if we consider the existence of
some unpredictable external disturbances acting on the system. Since most physical
systems interact with their environment, realistic situations always have to deal with
a certain amount of noise. The striking advantage of the partial control technique is
that it allows the avoidance of the undesired event sometimes using smaller controls
than the disturbances. If we consider a map f modeling the dynamics of the system,
the whole process is mathematically expressed as

where &, is the noise at step n, and u,, is the feedback control applied at the same
iteration. In our case we have a continuous system, and a Poincaré map must be
arranged to apply partial control. In addition, the noise and the control are bounded
and moreover the upper control bound is smaller than the upper noise bound, that
is,

o >up >0 \un\ < ug ‘§n| < &. (29)

Noises and controls obeying these conditions are called admissible, and trajecto-
ries fulfilling Eq. 2.8 are equally named.

2.3.2 The safe set and the asymptotic safe set

Consider a point gy in the set @), the one we want to keep the dynamics in. We
say that such point is safe if for any iteration g, of this point and any admissible
disturbance &, there exists an admissible feedback control u,, such that g,,; remains
in (). Note that if qq is safe, any of its iterations is safe as well. More generally, if
any point in S C @ is a safe point, we say S is a safe set. Examples of safe sets
for different systems can be seen in Ref. [27]. The following lines are devoted to
describe the computation of the safe set.

The computation of the safe set can be achieved by means of the Sculpting
Algorithm [27], which proceeds iteratively in the following manner. A point in the
safe set has to verify that any of its images under Eq. 2.8 is in .S, so, beginning with
(), we compute the fattend set Q) + ug, this is to say, we add to @ all points that
are at a distance ug from its boundary. Then we eliminate every point in @ + ug
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that is at a distance &, from its boundary, obtaining @ + ug — &y (see Fig. 2.5). All
points in () whose images are in @) + uy — &y are safe for one iteration. We call this
set (1 C @ and insist that every point in (); can be kept in () for one iteration.
Now we repeat the proceedure starting with )1 and obtain (s, the set of points
that are safe for two iterations. The set Qo is the largest safe set in (). Topological
properties granting the convergence of the iterates are given in Ref. [28]. Here we
just recall that if ) is compact, all ),, are compact and that the infinite intersection
of non-empty compact sets () @, is non empty. In practice we have to use a grid
with limited resolution to compute S, so the procedure converges for some finite n.

Q+U0 Q+‘u.0-£0

(c) (d)

Figure 2.5. An iteration of the Sculpting Algorithm. (a) An initial set @ to apply
partial control. (b) Fattening realized by the addition of points at a distance ug from
the boundary of @. (c) The resulting set @ + ug. (d) The set @ + ug — &, result of the
shrinking of ) 4+ ug, which is performed by eliminating the points that are at a distance &,
from it. The set Q1 would consist on all the points in ) whose images are in Q) +ug— &p in
one iteration. Even though &y > ug, as long as we sculp the sucessive sets @, the Cantor
construction of the chaotic saddle, or equivalently, the sets of points that do not escape
from the region @) after some particular iteration, are glued together by the control if such
iteration is high enough, what is related to the convergence of the Sculpting Algorithm.

Intuitively, if noises are not too high, all the partially controlled trajectories must
end in some region around the original attractor (or the ghost). This means that
there exists a trapping region where trajectories enter after a sufficiently high number
of partially controlled iterations and never leave. This idea leads to the definition
of the largest asymptotic safe set A. Such set is invariant under Eq. 2.8, so any
of its points must be accessible from any other point in it by a partially controlled
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iteration. Clearly stated, the largest asymptotic safe set is the largest invariant
set under partial control. For the rigorous mathematical formalism see Ref. [28].
The asymptotic safe set can be computed using a similar Sculpting Algorithm to
the one described in the previous paragraph. Starting with S, we compute all of
the accessible points under partial control from every point in it, this is to say, we
compute (f(S)+uog+&)[()S. We call this new set S and use it to compute Sy, and
so on until obtaining S.,. Another algorithm used in Ref. [28], called the Growing
Algorithm, operates locally starting at some point ¢ in .S and computing all the points
accessible by any partial control iteration (f(q) + ug + &) () S. However, it might
happen that A contains other invariant subsets in it, so that the Growing Algorithm
starting at some particular point ¢ in A gives, as a result, a set that is smaller
than the largest one. In the next section we introduce the smallest asymptotic
safe set computed with the Growing Algorithm, and show that partially controlled
trajectories cover it densely. Therefore, such set is the attractor of the partially
controlled system.

0.8+

0.6

0.4+

0.2+

Figure 2.6. The Poincaré section. (a) A Poincaré section II for z = 0.255. The
trajectory returns to it several times (red points) before escaping to the attractor 3,
contained in the green ball. (b) The return map associated to the green section in (a).

2.4 Avoiding extinction of healthy cells

Although partial control could be carried out in the whole phase space, computa-
tional efficiency exhorts to use some subspace with a dimension as small as possible.
This way, the first thing we have to do to apply partial control is to select a Poincaré
section. Any two-dimensional manifold intersecting the chaotic attractor serves for
this purpose, but for simplicity, we choose a plane Il at some fixed value of the im-
mune cell population, i.e., at a constant z value. According to the reasons explained
ahead, we use z = 0.255. This Poincaré section appears in green in Fig. 2.6(a) and
the associated Poincaré map is shown in Fig. 2.6(b). The value of r3 after the crisis
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is set to 1.2907. Since we know that eventually trajectories approach =3, a simple
way to avoid this event is to assure that any iteration comes back to the Poincaré
section II. With this purpose, we take ) as the set of all points in that plane that
come back to it at least once before escaping to the attractor. In fact, this set re-
sembles very much the basin of attraction of the chaotic attractor for a parameter
value of r3 above the critical value. The set @) is shown in Fig. 2.7. The reason why
we choose z = (0.255 is that for such value of the immune effector cell population
the set @ is the biggest, and the control/noise ratio is the smallest.
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Figure 2.7. The set Q. A subset of [0,1] x [0,1] formed by all initial conditions on
z = 0.255 that return at least once to the Poincaré section before escaping to the attractor.
The purpose of partial control is to mantain trajectories in the blue region, avoiding the
escape through the long white tusk that transverses it and the small white piece on the
bottom right corner.

Concerning disturbances on the system, these models usually use multiplicative
noises [32], so that external perturbations acting on them modify the cell populations
through some parameter fluctuations. Note that the use of additive noises could lead
to negative values of populations, which have no physical /biological meaning. Nev-
ertheless, partial control acting on some parameter of a dynamical system is still
to be attained. For the moment, we take additive noises, considering that those
leading to negative values of the cell populations are meaningless, and therefore
rejected. If preferred, one can think that the noise probability distribution varies
as we approach to a zero value of any coordinate of the system, what is somehow
equivalent to considering multiplicative noises. Anyway, this does not require modi-
fying the noise and control conditions given in Eq. 2.9, since they cover the rejected
cases. Another important issue is that the use of continuous noises modifies the set
(2, because some points in the non-disturbed case that would come back to II do
not return when disturbances are present. Nevertheless, to simplify things, we will
suppose that noises act only on the Poincaré section and assume a correspondence
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between the maximum continuous noise amplitude and the discretized one, which
are related by eM7mes being A\; the maximum Lyapunov exponent and 7., the
maximum recurrence time of a point in the set (). The probability distribution of
the noise is then considered uniform and takes values according to Eq. 2.9, with
bounds & = 0.02 and uy = 0.013, which means a control /noise ratio p = 0.65.

0 02 0.4 06 08 1
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Figure 2.8. The safe set S obtained from @. We have used a maximum admissible
noise of £y = 0.02 and a maximum admissible control uy = 0.013.

The Sculpting Algorithm is applied to a 3000 x 3000 grid to obtain the safe
set, which is shown in Fig. 2.8. Any trajectory starting in S can be controlled to
stay in S as much time as desired. Using this safe set, we compute the largest
asymptotic safe set A and also the smallest asymptotic safe set I C A C S. The
former is computed with the Sculpting Algorithm, while the later uses the Growing
Algorithm starting with a point in A. Both sets are shown in Fig. 2.9. As stated in
Ref. [28], potentially there could be more that one asymptotic safe set. In fact, we
have found up to four asymptotic safe sets with the growing procedure. One of them
is the smallest asymptotic safe set, which is contained in all the remaining. We claim
that there is not a smaller invariant set under partial control. Rigorously stated,
I is irreducible under partial control transformations. After a sufficient amount
of time trajectories enter in I and do not escape, covering it densely, as shown
in Fig. 2.10. We perform a simulation of the partially controlled system for 6000
iterations, proving its success to prevent escape from the chaotic attractor towards
the stable tumor fixed point.

In spite of this mathematical and numerical achievement, it is important to give
biological and medical significance to controls. The idea of tumor therapies relies
on a very simple fact: kill by all possible means the tumor cells. Three well known
methods to accomplish it are chemotherapy, which tries to destroy cancer cells by the
injection in the body of a chemical agent designed for the purpose; immunotherapy,
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Figure 2.9. The asymptotic safe set A and the irreducible asymptotic safe set
I. (a) The safe set in blue containing the largest asymptotic safe set (red) obtained with
the Sculpting Algorithm. (b) The smallest asymptotic safe set (green) obtained with the
Growing Algorithm starting at some point in the largest asymptotic safe set, close to the
original attractor. Note how this safe set encloses the attractor in Fig. 2.6(b).

that kills cells by a reinforcement of the immune system; radiotherapy, that attacks
cells by means of ionizing radiation, breaking their chromosomes. The process of
chemotherapy is very complex, since drugs have to be absorbed, reach the tumor site
and then be eliminated from the organism. These pharmacokinetical aspects have
to be modelled dynamically. It is for these reasons that the mathematical modeling
of chemotherapy is generally attained by means of another variable representing the
concentration of the drug at the tumor site, with the inclusion of an extra ordinary
differential equation and curve responses of the cell populations to the drug [1]. Also
the process of radiotherapy is rather sophisticated, even though the time dependence
of the dose is more precisely defined than in chemotherapy, as pharmacokinetics or
other accessibility matters do not really arise. Once a dose of radiation is applied,
cells start a repair process to rehabilitate chromosomes. The model that explains
the effects of radiation on cells is the well known linear quadratic model (LQM)
that also includes an additional variable representing the average double strand
breaks of chromosomes [8]. For short exposure to radiation compared to the time
between therapy sessions, a Dirac’s delta discrete approximation can be performed
[14]. Nevertheless, both of these medical treatments destroy all types of cells with
a variable killing rate depending on each case and cell population. Immunotherapy
affects the production of immune effector cells that kill tumor cells, and also requires
new variables associated to different substances that stimulate the immune system,
as for instance the lymphokine concentration (e.g. 1L-2) [12].

Since partial control treats cells separately and requires to increase and decrease
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Figure 2.10. A partially controlled trajectory. We represent 6000 iterations start-
ing at a point close to the original attractor. The black points are the iterates, which cover
densely the smallest asymptotic safe set (green). We see that the trajectory stays close to
the attractor avoiding escape. The radius of the two circles in the bottom-right part of
the image represent the maximum control ug (yellow) and the maximum noise &y (black).

populations according to the safe sets, none of these procedures serve. Nevertheless,
the great advance of biomedical engineering suggests that a day may come for which
selective drugs allow to control cell populations in a totally independent way. On
stimulation of cellular growth there is also research [33, 34|, so the possibility of
increasing cell populations is not harebrained. In fact, this is a rather counter-
intuitive thing, since as we have shown, occasionaly we have had to increase the
number of cancer cells to control the tumor escape.

Another interesting point is that the chaotic attractor in Fig. 2.3(a) oscillates
between regions where there is a very low number of cancer cells and a high number
of healthy ones to others where the opposite situation is found. A similar oscillatory
regime also appears in other works with this model [2, 3], and it is characteristical
of Lotka-Volterra predator-prey systems. Whenever this happened at some stage of
tumorigenesis, the precise instant of the application of a therapy would be crucial.
This means that a single therapy session applied at the right time might be enough
to annihilate the tumor, while many sessions wrongly applied could result in a great
damage to the patient. Furthermore, the chaotic behavior of the system implies that
periodic controls acting on it might not have the desired effect. Finally, supposing
that we could perform the required controls, a physician would ask how much time do



34 Chapter 2. Chaos and control in a model of tumor-immune interactions

Figure 2.11. The partially controlled attractor. We show 1000 iterations (of the
Poincaré map) of the controlled trajectory. Note that it does not get as close to the saddle
fixed point z} as it does without control.

we have to wait until we reach the Poincaré section again, or equivalently, how often
therapy controls need to be applied. Certainly, as we have stated, the recurrence
time of each point is different, so, the way we have tackled the problem, no periodic
or continuous protocols can be used. We show the recurrence time of every point in
the Poincaré section in Fig. 2.12. The idea of using non periodic protocols is not new,
and cases can be found in the literature, as for example the optimal therapy protocols
used in Ref. [1], or the modeling of intermittent hormone therapy of prostate cancer
developed in Refs. [35, 36, 37].

2.5 Other tecniques for controlling dynamical systems

To not deviate the attention from the main topic of this work, which is the dynamics
of cancer, and because this chapter deals with the control of chaos in dynamical
systems, we include here other contributions to this research area. In particular,
we briefly discuss a general method developed to test the experimental possibilities
that a dynamical system offers to suppress an undesired chaotic dynamics. This is
pertinent because, as the reader might have noticed, the control technique applied in
the previous sections operates directly on the dynamical variables, which in general
are not accessible to an experimenter. Moreover, many other control techniques are
used in the study of dynamical systems, which are more alike to cancer treatments,
and which operate by manipulating one or more of the accessible parameters of the
model. The main idea of these techniques is to introduce a perturbation in the
system to control its dynamics. However, for this purpose, a deep knowledge of
the system response to the parameters of the perturbation is required. The tools
we introduce in this section provide a nice example of how this knowledge can be
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Figure 2.12. The recurrence time of each point in the Poincaré section. The
color bar represents the time it takes a point (z,y) in the section to return to it.

acquired.

Sometimes chaotic dynamics represents an advantage because it makes systems
more adaptable. Precisely, in the previous sections we have shown how chaos can
be used to avoid the occurrence of an undesired dynamics. However, in other sit-
uations chaos is an undesirable effect. For example, chaos restricts the operating
range of many electronic and mechanic devices. This is a good enough reason to
justify the attention that chaos suppression has received in the study of dynamical
systems [38, 39, 40, 41]. In the case of nonlinear oscillators, such a suppression can
be accomplished by introducing a time periodic perturbation depending on a set
of predetermined parameters, which can be chosen to cause an stabilization of the
chaotic system toward a periodic state. In chemotherapy, for example, drugs are
commonly administered periodically (every three weeks) as well. Thus, contrary to
some feedback control methods, as the partial control or, for example, the celebrated
OGY [42], the present case is of the essence of some nonfeedback control methods, as
for example the phase control [43, 44]. In the phase control method typically time
independent variations of a phase difference between the periodic perturbations act-
ing on a certain nonlinear oscillator is used to achieve chaos suppression. Sometimes
anharmonic periodic perturbations have been used, as it is the case of Jacobi elliptic
functions [40, 45], for which the elliptic parameter has been selected as the control
parameter. Whatever the perturbation is, it always depends on one or more param-
eters, so studying the response of the dynamical behavior for the perturbed system
to their variations is required. This task can be managed analytically or numerically.
In the former case, one of the commonly used methods is the Melnikov analysis [40],
while in the last one bifurcation diagrams or chaotic parameter sets are computed
[45, 46]. A chaotic parameter set informs us if the asymptotic dynamics of a system
is chaotic or not when varying two system parameters. This set is a basic and useful
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tool in the study of dynamical systems [47] since it easily allows to visualize the
asymptotic behavior of the system in a certain region of the parameter space. The
asymptotic behavior of a dynamical system can be studied by computing the largest
Lyapunov exponent, whenever it exists. As is well known, Lyapunov exponents
measure the exponential rates of contraction and expansion along the orbits of dy-
namical systems. Given two available parameters of a particular system, the chaotic
parameter set is defined as the set of the largest Lyapunov exponent computed for
every pair of parameter values in a planar grid (see Fig. 2.13). The fact that it
involves two parameters makes this set specially useful, what explains its frequent
use in the study of chaos suppression. The ultimate usefulness of this set is that
they might be later used in experimental settings [48] as guides to suppress chaotic
dynamics. Nevertheless, in experimental situations, parameters are measured with
a finite accuracy. This means that a certain parameter variation, appearing in a
bifurcation diagram or a chaotic parameter set as adequate, could be uneffective in
practice due to the limited precision with which such a parameter is measured.
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Figure 2.13. The chaotic parameter set. Chaotic parameter set for the Duffing
oscillator & + pi — x + 23 = Fsint in the (F, ) parameter space. The colorbar shows
the value of the largest Lyapunov exponent, computed for a grid of 720 x 720 points,
and using as initial condition (z,4#) = (1,0). Both periodic (gray colored) and chaotic
(non-gray colored) motions are displayed.

Therefore, we now study when it is in practice possible to turn the asymptotic
dynamics of a system from chaotic to periodic by variations of a parameter. Having
settled a domain for that parameter, we want to know if suppression is in fact
feasible for many different values spread over it, and if it is carried out with small
variations of the parameter or not. For such purpose, we define the suppressibility,
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a measure that takes into account all these matters. Sometimes it occurs that
chaotic parameter sets exhibit highly fractal patterns. In those situations we have
no security of reaching one asymptotic behavior or the opposite, due to the limited
precision with which we measure a parameter. For this reason we have to provide a
way to not consider them when defining and studying effective suppression. As we
will see, our numerical study can be carried out in the parameter space by means of
the chaotic parameter set.

The basic idea of suppression is to vary a free parameter, the suppressing parame-
ter, from a particular value for which chaos rules, to another value for which periodic
regime exists. Since we are only interested in the sign of the largest Lyapunov ex-
ponent, we represent chaotic parameter sets as binary sets, assigning black color to
chaos and white to periodic dynamics. In this manner, we have an R x R matrix of
grid points (being R the resolution with which we compute the chaotic parameter
set), and black or white squares centred in them. For convenience, we identify the
square and its centre and simply refer to it as a pixel. Each of these pixels (i, 7)
is related to a point in the parameter space (Fj,p;), with 4,7 = 1,..., R. Chaos
suppression in the chaotic parameter set simply corresponds to a transition from a
black pixel to a white one, both contained in a line parallel to the axis associated to
the suppressing parameter. We call each of these lines in a chaotic parameter set a
suppressing line. Returning to our model, we take F' as the suppressing parameter
and fix the value of p. If there is a particular point in the parameter space (Fj, ;)
for which chaotic dynamics occurs, we can switch it to periodic by varying the sup-
pressing parameter, 7.e., by making a transition to a different point in the same
suppressing line (Fy, p;). Therefore, pixels in a suppressing line provide a natural
way to measure how much a particular chaotic attractor can be suppressed. Simply
count all the transitions from that black pixel to all the white ones contained in
such line.

At this point, an important objection arises. The chaotic set is a delicate tool
for several reasons. The most remarkable one is that chaotic parameter sets usually
display fractal structure, so that chaotic regions hide “periodic lakes” inside them
at any scale. Moreover, in some sort of systems, even periodic regions reveal chaotic
states at any scale as one zooms in. It could happen that many (possibly infinite)
periodic lakes were hidden in a black pixel, allowing transitions to a regular regime
by smaller variations of the parameter. This is certainly true, but in such a case
a smaller region of the chaotic parameter set should be computed. Then the same
objection would arise again and again due to the fractal character of the chaotic pa-
rameter set. However, even if this was the case, experimentally there is a limitation
on the measurement of the suppressing parameter F', imposed by the experimental
uncertainty AF'. This implies a restriction in the range of values of the suppressing
parameter used to compute the chaotic parameter set. The reason is that if a white
pixel is at a distance from a black one smaller than the uncertainty, suppression
can not be guaranteed by a transition to that pixel. We define transitions that do
not assure suppression as unsafe transitions. On the contrary, those that guarantee
suppression are named safe transitions. Pixels involved in safe (unsafe) transitions
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are referred as safe (unsafe) too. We also define the length of a suppressing line L as
the distance used to compute the chaotic parameter set in the suppressing direction.
In the example shown in Fig. 2.13 this length corresponds to the width of the chaotic
parameter set L = |Fy,00 — Finin| = 15. This width must be chosen according to the
uncertainty in the measurement of the suppressing parameter. In particular, it must
never be smaller than the uncertainty, because in that case we would not be able
to guarantee suppression by any specific transition. In other words, all transitions
would be unsafe. Even more, it is convenient that the uncertainty of the suppressing
parameter be much smaller than the length of the suppressing lines. For instance,
an adequate length could be such that we assign an uncertainty AF' of one pixel.
This means AF = L/R. If this is the case, only transitions to white pixels one pixel
away from black ones would be unsafe. Concerning uncertainty, all the transitions
can be considered as safe for AF < L/2R.

Suppose now we compute a chaotic parameter set with an uncertainty of just
one pixel, and we are in a black (chaotic) pixel located at position (i, 7). If the first
coordinate i corresponds to the suppressing direction and a neighbouring pixel (i +
1, 7) is white, we should not make a transition to it, because it is unsafe. Even worse,
we can not even assure that the first was certainly chaotic. Therefore boundaries
in the direction of the suppressing parameter must be redefined by marking as
inaccessible all the pixels that are at a distance equivalent to the the parameter
uncertainty from the boundary. The remaining pixels in that suppressing line are
safe, and so are all the transitions from one of those black pixels to the white ones
in the same line. We define all the transitions from a safe black pixel (i, j) to all the
safe white ones in a specific suppressing line j as the set of accessible transitions A
corresponding to that initial chaotic attractor. These transitions are called safe or
effective in the sense that for the initial pixel chaos occurs and the final white pixel
guarantees suppression.

The distance between two elements involving a transition, or in a similar fashion,
how much the parameter must be varied to achieve a certain transition, is also a
very important fact when measuring how much can be suppressed the dynamics of
a particular black pixel. If we have two possible or accessible transitions, one of
them implying a variation of the parameter of two pixels, while another meaning a
variation of eight pixels, it seems reasonable to prefer the first one. Hence the next
step is to find a way of considering preferably transitions involving shorter varia-
tions of the parameter. The problem is to establish a mechanism to tell how much
preferable are short transitions to large ones. Certainly here one has to deal with
some arbitrariness, which is going to depend on the conditions we settle to achieve
suppression. For instance, we might want to weight very high short transitions and
then very low long ones. Or maybe we prefer to weight the same transitions up to a
certain distance and then let their weight decrease slowly, etc. Therefore, given two
pixels in a suppressing line, (i,j) and (k, j), we define the order of the transition
(1,7) — (k,7) as the distance between them |i — k|, considered as matrix elements
in a suppressing line j. Then we assign a weight w;; to every transition, through a
monotonically decreasing function w : N — R depending on the order of the transi-
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tion wy, = w(|i — k|). For example, if we take w(n) = 1/n, a black pixel (i, 7) and
a white pixel (k,7), the transition between them has a weight wy, = 1/|i — k|. In
this case first order transitions have weight 1, second order transitions have weight
1/2, and, in general, the nth order transition has weight 1/n. We also require that
w(l) = 1, what simply gives unit value to the highest possible weight. Finally, we
define the suppressibility y;; on a black pixel (¢,j) as the sum of all the weights
over the set of accessible transitions A;;, i.e., the weights related to all the safe
transitions to white pixels in the same suppressing line

Xij = Z Wi (2.10)

keA;j;

Now, given two chaotic situations and some particular suppressing conditions
coded in w, we can quantitatively compare them to know which one offers more
and better possibilities of being suppressed in a certain region of the parameter
space. As an example, we consider the two chaotic attractors for parameter choices
(F3s7, f132) = (8.0625,0.1797) and (Fss5, fiagg) = (11.5625,0.4057) in Fig. 2.13. We
recall that (Fsg7, 1132) corresponds to the values of the forcing amplitude and damp-
ing associated to the grid point given by the coordinates (387,132) in the computed
chaotic parameter set, whose resolution is 720 x 720. Keep F' as the suppressing
parameter and suppose it is experimentally measured with a precision AF = 0.021,
what corresponds to one pixel in the mentioned figure. What is the suppressibility
for each of those two attractors if we want to use no more than thirty pixels (varia-
tions of the suppressing parameter less or equal than 0.6241) to suppress chaos and
consider all transitions equally weighted? These conditions impose an assignment
of weights according to a Heavyside function of the form

(1 Ji—k <30
w“f—{o i— k| >30 " (2.11)

Computation of the suppressibility yields x(ss7,132) = 8 and X(s55,208) = 7. This
means that under the experimental conditions stated in the previous paragraph, the
first attractor offers more possibilities of being suppressed. Now that this is well
understood, we define the suppression parameter set as the value of the suppress-
ibility computed for every safe black pixel in the chaotic parameter set. This set
shows where chaos can be more easily and in more ways suppressed, as shown in
Fig. 2.14. Note that many chaotic attractors have disappeared, since they can not
be suppressed under the specified experimental restrictions imposed by w and AF.

Some more information can be extracted from the chaotic parameter set, and
other considerations must be taken into account under special circumstances, but we
detain ourselves here, since the main concepts of our method have been illustrated.

2.6 Conclusions and Discussion

In summary, the present chapter shows the possibility of preventing a tumor escape
in a chaotic cancer model in the presence of some external disturbances, applying
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Figure 2.14. The suppression parameter set. Suppression parameter set for Z+uz—
x+ 23 = Fsint in the (F, ;1) parameter space, with suppressing parameter F, uncertainty
AF = 0.021 and wy, = 1 — O(|i — k| — 30), where O(x) is the Heavyside function. This
set shows all the safe chaotic events for which chaos can be suppressed, and which ones
offer better possibilities of being suppressed, according to the conditions imposed by w.
It is obtained by computing the suppressibility x;; for every safe black pixels (4, ) and
assigning each chaotic event a color depending on its value. The colorbar goes from cold
colors to hot ones, corresponding respectively to the lower (1) and higher (56) values of
the the suppressibility measure.

small controls to the cell populations. This has been achieved by means of the partial
control method, which applies to transient chaotic situations in presence of external
disturbances. The fact that controls are smaller than the external disturbances
is promising, since the side effects of drugs and radiation are well known. On
the other hand, the main difficulties at the current stage of development of the
partial control method to maintain healthy cell populations arise from two simple
facts. It requires to be able to modify cell populations directly and all of a sudden,
implying an enormous accessibility to the system, and different cell populations have
to be treated independently. This is in contrast to the regular procedure of most
cancer treatments, that usually decrease all cell populations by complex processes.
Other investigations concerning the control of chaos in dynamical systems have been
described at the end of the chapter. This method reveals that the most feasible way
to control a dynamical system is, perhaps, by varying one ore more of its relevant
parameters. Therefore, we conclude that the implementation of partial control to
parameter variations is convenient. Another surprising aspect is that sometimes it
has been required to increase cell populations. Although striking, if we consider
common tumor therapies, this reveals important consequences of chaotic dynamics
on tumor progression and therapy protocols.
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Chapter 3

A validated mathematical
model of tumor-immune
interactions

“It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment, it’s wrong”

-Richard P. Feynman (1918-1988)

We continue our investigation developing and validating an ODE model of tumor
progression with three interacting cell populations representing the healthy tissue,
the neoplastic tissue and the immune effector cells. By means of the least-squares
fitting method, we adjust the model to experimental data [1], verifying that the
lysis of cancer cells by the effector constituents of the immune system is accurately
reproduced by the model. As a completely new feature regarding previous mod-
elling of this nature, we also introduce a chemotherapy protocol validated with in
vivo experiments in mice [2]. To reproduce the time evolution of the experimental
fractional tumor cell kill by the chemotherapeutic agents a new method is proposed,
that avoids dealing with complex pharmacokinetical models. The study is closed
with the examination of correlations between the model and the experiments.

3.1 Introduction

It is increasingly apparent that the growth deregulation within a tumor can only
be explained once we understand the contributions of the host healthy cells present
with it, which play key roles in driving tumor cell proliferation. Signaling interac-
tions between the stromal and the neoplastic tissue may ultimately prove to be as
important as the cancer cell autonomous mechanisms in explaining tumor cell pro-
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liferation [3]. The importance of the immune system fighting the growth of tumors
is undeniable, to the point that immunotherapy is lately focusing major attention
of cancer therapists and researchers [4]. Adoptive cell transfer using chimeric anti-
gen receptors [5, 6] or the modulation of CTLA-4 activity by means of monoclonal
antibodies [7] are two outstanding examples [4]. Also chemotherapy treatments are
under constant examination, in the pursuit of better distribution mechanisms that
diminish the toxicity of the anti-cancer drugs [8], as well as protocols that evade the
resistance of tumor cells to such cytotoxic substances [9]. Mathematical modelling
of tumor growth [10] has been widely used to explain different aspects of tumor pro-
gression, such as tumor dormancy, sneaking through, angiogenic switch, invasion,
morphology, etc. Therefore, the development of validated and simple mathematical
models representing several types of tissues and the nonlinear interactions among
them, as well as therapy protocols, is of paramount importance.

We derive the dynamical system equations from a similar validated model describ-
ing immune and tumor dynamics [11], but that considers different cell populations
for innate and specific immune responses and disregards tumor-host interplay. Here,
the immune response is integrated in a single cell population, as it was the case of
older models [12], allowing us to include a population representing the healthy tissue
and still to visualize in a simple manner their dynamical phase space.

3.2 Model development

All the biological assumptions considered to set up the model equations are based
on both accepted knowledge of basic laws governing tumor growth and the immune
system function [1, 11, 12]. The tumor-host competition for space and resources
is developed following previous modelling [13, 14, 15, 16], while the law governing
the fractional tumor cell kill by the chemotherapeutic drugs is derived from the
exponential kill model [17], developed in accordance with in vitro experiments.
The growth of the cell populations is assumed to be logistic for both the tumor T’
and the healthy cells H, with growth rates r; and ro, and carrying capacities K; and
K. Other types of laws, such as Gompertz law, have no relevant consequences in the
dynamics, and might be used as well. We use ordinary competition terms frequently
appearing in Lotka-Volterra models, identical to those used in Refs. [12] and [14].
Finally, the immune response and the destruction of the neoplastic tissue is built up
from the one presented in Ref. [11], which was validated with data from published
mouse [1] and human [18] studies. The model of cell-mediated immune response
described in that work consists of a tumor cell population T interacting with two
immune cell populations, the natural killers N and the CD8" T lymphocytes L. The
fractional tumor cell kill by T cells is given by a Hill function D(L,T") depending on
L/T, while the fractional tumor cell kill by NK cells is proportional to the number
of such cells. The NK cells dynamics is modelled with four terms: a constant input
o responsible for innate immunity, a recruitment contribution g7?%/(h + T?)N, a
competition term pN'T" with tumor cells, and a decay term representing the death fN
of the natural killers, which after several interactions with the tumor cells become
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inactivated. The CTLs dynamics is governed by analogous laws, but there is no
constant input of cells, since they correspond to acquired immunity. On the other
hand, it includes the stimulation of T lymphocytes in response to the interaction
between NK and tumor cells 7T'N. The activation term is jD?T?/(k + D*T?)L, the
death term is mL and the competition one is qLT'.

It can be numerically shown that for many initial conditions and not long times
these two immune cell populations are more or less related in a linear fashion. In
this manner, we identify them and linearly combine their equations, simply referring
to them as effector cells E. The resulting model is

1
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This fractional cell kill law was a novel feature discovered and introduced in
Ref. [11], so it deserves some comments. To give some hints on the significance and
possible explanations of this law we rewrite it in the following form

E)\

DE,T) =d———.
(7) dST)\+E)\

(3.3)

Written this way, the law states that the more effector cells, the greater the
fractional cell kill, but bearing in mind the saturation of antigen-mediated immune
response, which depends on the tumor load. The value for which the fraction cell
kill is half of its maximum is given by Ej,, = s'/*T, what means that bigger tumors
are harder to fight by T lymphocytes. If two tumors of the same nature and different
size at a certain time instant, are lysed at the same rate by the immune system, the
bigger tumor will require more effector cells. This is because an immune cell destroys
tumor cells one by one and the number of encounters is limited by the inactivation
of the effector cells. Or equivalently, if two tumors of different size are reduced
to a particular fraction of its size after a certain period of time, the bigger tumor
will require more effector cells. On the other hand, and as we develop in the next
chapter, the saturation effect in this law is tacitly including geometrical properties
of the tumor and their consequences (e.g., crowding effects and accessibility of the
immune cells). We believe that it would be desirable to propose a general law of the
form

E)\

D(E.T) = d o

(3.4)
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and study different functions depending on the tumor load h(T') for different tumors.
In the cited work h(T) = sT* is used. We have tested the importance of the pa-
rameter A\ by studying deviations from this function in the form h(T) = sT*4*,
and we have found that shifts AA/A even higher than one are still capable of vali-
dating in an accurate manner the immune response by simply decreasing the value
of the parameter s. The precise relation between A\ and s is depicted in Fig. 3.1,
and it is explained by noting that the function A(7) can be thought as a surface in
the parameter space (), s), so that changes in the parameters along a level curve
sT* = ¢(T) are also capable of validating the experimental results. This means
that the rational form E/T appearing in Eq. (3.2) may not generally hold, and can
not be derived solely from the experiments used in Ref. [11]. What can be safely
deduced from such experiments is that h(7T") increases with the tumor size. There-
fore, the dePillis-Radunskaya-Wiseman law (PRW law) states that the number of
the T cells for which the fractional tumor cell kill is half of its maximum, increases
monotonically with the tumor burden. It remains unexplained why the same does
not happen for the NK cells as well. As pointed out in Ref. [11], this might be due
to the fact that NK cells are less effective destroying tumor cells. Generally, a T
lymphocyte is able to destroy more tumor cells during its life cycle than a natural
killer cell [19]. Note also that to obtain similar values for the lysis of tumor cells by
T cells and NK cells, much higher values of the Effector:Target ratio are required
for the last [11]. This hypothesis is also supported by the fact that the PRW law
fits better the experimental results for which the immune system is more effective,
as can be seen in Fig. 3.2.

The model shown above fits the data accurately, but it is quite hard to manage
when investigating its dynamical properties. A simplified version of this model capa-
ble of reproducing experimental data can be obtained by neglecting the recruitment
and lysis of the NK cells, which are more ineffective fighting the tumor cells. Note
however, that the role of the NK cells is indirectly present in the model, in the
background source rate o. The equations are now

. T
T = TlT (1 - ?) - CL12HT - D(E, T)T
1

. H
H = TQH <1 — —> - a21TH (35)
K
D(E, T)T?

E:U—d3E+gh+D2(E’T)T2

E— angE.

The chemotherapy treatment is here described by the exponential kill model, which
proposes the fractional cell kill law k;(C) = b;(1 — e 7)), with i = 1,2,3, and
C' the drug concentration at the tumor site, which dynamics is given by a single
compartment model and first order pharmacokinetics. Therefore, the whole set of
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Figure 3.1. Level curve in the parameter space. In this figure, we show the changes
in the parameter s required to validate the model when the parameter A in the function
h(T) = sT* is changed to A4+ A\. The case A\ = 0 corresponds to the (I1) values shown in
Table 3.1. The relation is explained by the level curves of the function s7* in the parameter
space (A, s), which can be expressed in the form log s = logc¢(T) — Mlog T'. Averaging this
equation in time, we obtain the equation logs = a — bA. A linear regression has been
performed to confirm the previous assertion, obtaining the relation log s = —0.46—5.79A\,
with a coefficient of determination R? = 0.9996.

equations reads

. T
T = T‘lT (]_ — F) - a,lgHT - D(E,T)T - kl(C)T

1

H = T‘QH (]_ - g) - angH - k?Q(C)H
2 (3.6)
: D*(E, T)T?

E:a_d3E+gh+D2<E,T)T2

E— CI,31TE - ]{Z3<C)E

C = I(t) — kO,

with I(t) the input of drug and k. the rate of elimination of the drug from the body.
In fact, to reproduce in vivo experiments the fractional cell kill law £(C') is modeled
depending on the time-delayed concentration of drug C'(t — 7).

Finally, the cooperation between the healthy and the tumor tissues is not mod-
elled here. The reason is that the paracrine signals stimulating tumor growth come
from ancillary cells (e.g. fibroblasts), different from the host cells (e.g. epithelial
cells) from which the tumor evolves [20]. Moreover, the stromal cells cooperating
with the tumor differ from the normal stromal cells. Therefore, a model with sev-
eral healthy cell populations representing the different types of tissues should be
considered to rigorously represent the tumor microenvironment.
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3.3 Fitting the model to experimental data

We fit both, the model and its simplified version, to four experimental situations,
proving that the tumor-immune interaction is again validated with accuracy. The
data used to arrange the equations and fix the parameters of our mathematical model
are obtained from Ref. [1]. In this work the authors study the effects of ectopically
expressing NKG2D ligands in three tumor cell lines, which resulted in the rejection
of the tumors by syngeneic B6 mice. Such rejection was mediated by NK cells and
CD8™ T cells. Their experimental results demonstrate that a high enough expression
of these ligands creates a significant barrier to the tumor establishment in mice. In
particular, the data borrowed from this work and used to fit the model correspond
to the point where the authors address whether prior immunization with tumor
cells that express ligands of the NKG2D receptor induces protective immunity to
ligand-negative tumor cells. The NK and CD8" T cells lysis of a T-cell lymphoma
after primary challenging with ligand-expressed cell transductants and being again
challenged with ligand-transduced or ligand-negative-transduced cells is reported.
More specifically, we deal with four possible scenarios: a primary challenge with
control-transduced cells followed by a secondary challenge with ligand or control
cells, and a primary interaction with ligand-transduced cells followed again by ligand
or ligand-negative rechallenges.

Firstly, we give a summary of the parameters used, which are listed in Table 3.1
and Table 3.2, together with the corresponding sources in which the parameter
estimation methods are explained. As in Ref. [14], we consider similar carrying
capacities K; for the tumor and the healthy tissue, assuming that generally the
tumor occupies a region that otherwise would be filled with normal cells. Also the
rates of growth r; of both cell populations take very close values, following the same
reference, but we assume that the tumor grows faster in the absence of competition
and immune surveillance, since its dependence on cell to cell signaling for growth
is smaller [3]. These four parameters, the recruitment rates and steepnesses, the
constant input, as well as the inactivation rate of the effector cells, are borrowed
from Refs. 6 and 10. It has been demonstrated that the Gompertz law of growth
of tumor cell populations is a robust emergent feature of cancer dynamics under
nutrient competition among tumor cells [21]. It is commonly considered [12] that the
competition between the neoplastic and the healthy tissues is indirect, what means
that cells do not kill each other, but struggle for territory and nutrient resources.
However, a very important source of competition between the tumor and the healthy
host cells is due to the acidic environment in which tumor cells develop, which is
a consequence of the primitive metabolic pathways they use [14, 22, 23]. In fact,
if we neglect spatial dependence in the equation governing the excess of H' ions
in the model presented in Ref. [14], the stationary state gives a fixed point for
ion concentration proportional to the number of tumor cells. Clearly stated, the
more tumor cells, the lower the pH and the worse for the healthy tissue. When
substituted in the reaction-diffusion equation governing the dynamics of the healthy
host cells, we obtain another competition term between the host and the tumor cells.
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Figure 3.2. Least-squares fitting of the model. The data and the predicted curves
from the models for the lysis of tumor cells by the effector cells. The green curve represents
the general model, while the blue corresponds to its simplified version. (a) The experiment
where the effector cells are primary challenged with ligand-negative-transduced cells and
then rechallenged again with control-transduced cells (nn). (b) The case for which the
effector cells are primary challenged with ligand-negative-transduced cells and then rechal-
lenged with ligand-transduced cells (nl). (c) In this case the effector cells are primary
challenged with ligand-transduced cells and then rechallenged with control-transduced
cells (In). (d) The experiment where the effector cells are primary challenged with ligand-
transduced cells and then rechallenged again with ligand-transduced cells (11).

Therefore, we assume that the tumor cells compete in a more aggressive manner and
set a1o < agy. The effects of changing these parameters is reported in Sec. 3.4, and
rough estimates are provided in Sec. 3.6.

According to the experiments taken from Ref. [1], the model validation should
be carried out in two separate steps, one for each type of effector cells. For instance,
the first could involve the validation of the results concerning NK cells to obtain
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Figure 3.3. The residuals of the fitting. The differences between the experimental
data and the model estimated values (residuals) obtained from the predicted curves for the
lysis of tumor cells by effector cells. The green bars correspond to the the general model,
while the blue bars belong to its simplified version. They are more or less randomly
distributed. (a) The (nn) case represented in Fig. 3.2(a). (b) The (nl) case represented
in Fig. 3.2(b). (c) The (In) case represented in Fig. 3.2(c). (d) The (ll) case represented
in Fig. 3.2(d).

the value of the parameter a3 for the ligand and ligand-negative transduced cells.
Then, after setting a3 to zero, the experimental lysis of CD8% T cells should be
fitted for the different cases. Finally, both contributions would be added to the
model. However, another possibility is to fit only CTLs results and let the parameter
a3 take diverse values. This procedure allows more accurate fittings and has the
advantage of suggesting a generalization of the PRW law, as explained at the end
of the present section. To avoid the risks of overfitting because of using too many
parameters, we have to proceed carefully. Since the model is derived from an original
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validated model, we take the values of a3 used in such work and modify them the
least as possible to obtain curves that resemble the ones shown there. The same
procedure is followed for the steepness s of the saturation term in the PRW law.
Then, the curves are fitted using the parameters d and A. Trajectories are runned up
to a maximum time of four hours ¢,,,, = 0.167 days, at which the lysis of tumor cells
1 —T'/Tp is measured in the experiments. Initial conditions are chosen to guarantee
that the experimental Effector:Target ratios Ey/Ty belong to the computed interval.
The lysis of the tumor cells is obtained at t,,,, for the various initial conditions and
optimization is achieved by the least-squares method using a grid of values for the
two parameters. The fitted curves for the model and its simplified version are shown
in Fig. 3.2, while the residuals are depicted in Fig. 3.3. The general model fits the
data nicely, with randomly distributed residuals. As expected, the reduced version
gives worse results, specially for the control-transduced cells. The first four points in
Fig. 3.2(a) and Fig. 3.2(b) can be fitted with exactness, but not the last one. Hence,
a combination of a nonsaturating law with the PRW law gives considerably better
results for the cases in which the immune response is less effective. These results
suggest extending the PRW law by considering a fractional cell kill F'(FE,T) given
by the sum of a power law function and a Hill function

A

F(E,T) = cE” +d—n"' .
(E,T) = B + dym g

(3.7)
Two limits can be clearly distinguished in this law. On the one hand, we have the
situation in which the immune response is more or less effective ¢ ~ 0, as shown in
Figs. 3.2(c) and 3.2(d). On the other hand, an ineffective immune response is given
by d = 0, which corresponds to the NK cell lysis in Ref. [11]. Intermediate situations
are better represented by Eq. (3.7), as shown in Figs. 3.2(a) and 3.2(b). An heuristic
explanation as to why less effective cells do not show saturation in practice can be
given as follows. Suppose that we have two identical tumors of size T in presence
of the same number of effector cells, but the first £ being very effective recognizing
and lysing tumor cells, while the second E being ineffective. The difference between
these two cell populations can be represented by considering that in the second case
only a small fraction f of the effector cells are interacting with the tumor F = fF.
Therefore, the PRW law becomes
B f)\ EX EX
D& T) dh(T) + [AE dﬁ(T) + EY (38)

where h(T) = h(T)/f*. In the case f < 1, and as long as F is not much higher
than 7', we get h(T) > E*, what yields the fractional cell kill D(E,T) = E*/h(T).
If the variation of 7" is small or h(T") varies slowly with 7", then the approximation
cE? holds. For example, if we consider the parameter values of the (Il) experiment
in Tab. 3.1 and take f = 107%, then we get a value for h(T') two or three orders of

magnitude higher than E*, depending on the values of the Effector:Target ratio.
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Parameter Units Value Description Source
1 day ! 5.14 x 107" Tumor cells growth rate (6)
K, cell 9.8 x 10° Tumor carrying capacity (6)
a cell 7' day =! 1.1 x 107!  Competition of host cells with tumor cells

az(nn)  cell™t day™' 5.2 x 107  Fractional tumor cell kill of the power law (6)
ay3(nl) 1.6 x 1077 (6)
ay3(ln) 32x107® (6)
a(ll) 8.5 x 107 (6)
d(nn) day™! 2.20 Saturation level of fractional tumor cell kill of the PRW law
d(nl) 3.47
d(In) 2.60
d(ll) 7.86
s(nn) None 1.6 Steepness coefficient of the PRW law
s(nl) 2.5
s(In) 1.4x 107"
s(ll) 4.0 x 107!
A(nn) None 1.2 x 107" Exponent of the PRW law
A(nl) 2.1 x 107!
A(ln) 7.0 x 1071
Al 7.0 x 107!
Ty day~! 1.80 x 10~!  Host cells growth rate (6,11)
K, cell 1.0 x 10° Host cells carrying capacity (6,11)
o1 cell ' day ~' 4.8 x 1071  Competition of tumor cells with host cells
o cells day™! 7.5 x 10* Constant source of effector cells (10)
ds day ! 6.12 x 107 Inactivation rate of effector cells (6)
g(n) day~! 2.5 x 1072 Maximum recruitment rate related to the power law (6)
(l) 20 x 107! (6)
g(nn) day ! 3.75 x 1072 Maximum recruitment rate related to the PRW law (6)
g(nl) 3.75 x 1072 (6)
g(In) 1.13 x 107! (6)
g(ll) 3.00 x 1071 (6)
h cell? 2.02 x 107 Steepness coefficient for recruitment related to the power law (10)
h cell? 2.02 x 107 Steepness coefficient for the recruitment related to the PRW law (10)
as; cell tday 7! 2.8 x107?  Immune-tumor competition (10)

Table 3.1. The non-simplified model parameters. The values of the parameters
used to compute the curves representing the lysis of cancer cells by the effector cells, for the
general model given by Eq. (3.1). The parameters of the PRW law, A and d, are obtained
by a least-squares fitting of the solutions of the system of differential equations to the
experimental data. The parenthesis represent four different cases: a primary challenge
with control-transduced cells followed by a secondary one with ligand (nl) or control (nn)
cells, and a primary interaction with ligand-transduced cells followed again by ligand (I1)
or ligand-negative (In) rechallenges.

3.4 Parameter and phase space analysis

Even though the simplified model fits better the experiments where cells are primary
challenged with ligand-transduced cells, to study the dynamics we concentrate on
the control-transduced choice of parameters. The reason is that the cell lines used
in the experiments do not normally express ligands of the NKG2D receptor [1]. We
begin by nondimensionalizing Eq. (3.5), redefining the cell populations and the time

. T . H - ~
I'=— H=—,F=—t=1r]. 3.9
K17 K27 ) Tl ( )
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Parameter Units Value Description Source
e day~? 5.14 x 1071 Tumor cells growth rate (6)
K cell 9.8 x 10 Tumor carrying capacity (6)
a9 cell 1day ! 1.1x 107" Competition of host cells with tumor cells

d(nn) day~! 2.6 Saturation level of fractional tumor cell kill of the PRW law

d(nl) 7.1

d(In) 2.7

d(ll) 7.9

s(nn) None 1.8 Steepness coefficient of the PRW law

s(nl) 5.0

s(ln) 1.4 x 107!

sl 4.0 x 1071

A(nn) None 2.2 x 107t Exponent of the PRW law

A(nl) 2.5x 107!

A(In) 7.3 %1071

Al 7.0 x 107!
o day™! 1.80 x 1071 Host cells growth rate (6,11)
K, cell 1.0 x 107 Host cells carrying capacity (6,11)
[ cell ' day ~' 4.8 x 1071  Competition of tumor cells with host cells
o cells day™ 7.5 x 10" Constant source of effector cells (10)
ds day™! 6.12 x 1072 Death of effector cells (6)

g(nn) day™! 3.75 x 1072 Maximum recruitment rate related to the PRW law (6)

g(nl) 3.75x 1072 (6)

g(ln) 1.13 x 1071 (6)

g(ll) 3.00 x 107! (6)
h cell? 2.02 x 107 Steepness coefficient for the recruitment related to the PRW law (10)
a3y cell 1day ! 2.8x 107  Immune-tumor competition (10)

Table 3.2. The simplified model parameters. The values of the parameters used
to compute the curves representing the lysis of cancer cells by the effector cells, for the
simplified model given by Eq. (3.5). The parameters of the PRW law, A and d, are
obtained by a least-squares fitting of the solutions of the system of differential equations
to the experimental data. The parenthesis again represents four different cases: a primary
challenge with control-transduced cells followed by a secondary one with ligand (nl) or
control (nn) cells, and a primary interaction with ligand-transduced cells followed again
by ligand (Il) or ligand-negative (In) rechallenges.

The new parameters are related to the previous ones in the following way

- ap iy - d (K17’1>/\
= d=— §=s
T T1 g
K
Fp = 12 gy = L2 (3.10)
T1 T1

5 ds a1 K7 g 3 h
ds = = = =< h=—

’ 1 181 1 J ™ (K1T1)2
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Dropping the tildes, our nondimensionalized system becomes

t=xz(1—2)—apyr — D(z, 2)z

y = T2y<1 - y) — 1Y (311)
. D*(z, z)x?
z=1-—dsz +gh n D2(:c,z):c2z — a31Tz.

The rescaled parameters are a;o = 0.195, d = 5.0, A = 0.21, s = 11.5, ro = 0.35,
as; = 0.954, ds = 0.112, g = 0.29, h = 7.95 x 10~ and as; = 5.25. Unless specified,
these parameters are used all along our study.

We now describe all the nullclines and equilibria for the current set of parameters.
The fixed points of the system are given by & =y = 2 = 0, which yields the system
of equations

0=z(1—2—apy— D(z,2))

0=y (7’2 — Ty — azll’) (3.12)

D*(z, 2)a?
0=1 _d32+gh+D2(a:,z)x2

Nullclines can be read directly from Eq. (3.12). There is a total of five nullclines:
the x — 2z and y — 2 planes, the surface S; represented by the implicit equation
1 — 2 — ajpy — D(x,z) = 0, the plane II given by 1y — roy — agixz = 0, and the
surface S, which implicit equation is given by the last of the three equations shown
above. If we restrict our attention to the biologically meaningful region, which is
the positive octant RT x Rt x R*, the intersections of the different nullclines yield
five different fixed points z, as shown in Fig. 3.4. We give the numerical values of
the fixed points and also analyze their stability by examining the eigenvalues of the
Jacobian at each of them.

The first fixed point is 2% = (0,0,d5"), in particular (0,0,8.93), a saddle with
two positive eigenvalues corresponding to the z-axis and the y-axis, and a negative
eigenvalue along the z-axis. The point x5 = (0, 1,8.93) represents the healthy state,
for which there are only healthy and immune cells. Therefore, we represent it in
green color. This fixed point is stable, being one of the attractors of the dynamical
system. The other stable fixed point is x5 = (0.65,0,0.31), representing a stable
solution for which there are only tumor and immune cells. As in previous works
[14], we associate this fixed point to malignant growth, so we have colored it in red.
The fixed point 2} = (0.06, 0, 6.55) is a saddle fixed point with two unstable and one
stable directions, separating the stable tumor attractor and the state xj, which is
attractive in such plane, and for which there are only immune cells. A stable and an
unstable direction are in the plane y = 0, while the remaining unstable direction is
given by the eigenvector (0.01,0.08,1). The last fixed point is xf = (0.1,0.74, 3.02),
corresponding to the saddle fixed point, which two dimensional stable manifold
separates the basins of attraction of the healthy and the tumor stable states. Hence,

Z — a31xz.
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Figure 3.4. The phase space. The positive octant of the phase space with the
nullclines and the fixed points. The surfaces represent the different nullclines, with the
fixed points placed at some of their intersections. Every fixed point is the intersection
of three surfaces. The surface S has not been ploted completely for clarity, but it also
intersects the y — z plane. The green point is the healthy state, while the red point is the
tumor stable fixed point. The other three fixed points are saddles.

the system is bistable. The evolution of the three cell populations for an initial
condition leading to the malignant tumor state is shown in Fig. 3.5(d).

We begin the parameter analysis studying the effects of varying d, that affects
the intensity with which the immune system destroys cancer cells. In Figs. 3.5(a)
and 3.5(b) we depict the change in the basins size due to increasing such parameter
to a value of d = 6.5, while in Fig. 3.6(a) a bifurcation diagram is computed, showing
the evolution of the fixed points as such parameter is varied. Starting from high
values of d, for which there is only a healthy stable state and the fixed point z7,
the parameter reaches a critical value of d. = 7.4185 and a saddle-node bifurcation
occurs. Another similar bifurcation appears for d. = 7.4095. In total, four fixed
points are born: three unstable and one stable. Only two of them are in the positive
octant, the tumor fixed point =3 and x}, both unstable. As we keep on decreasing the
immune strength, for a value of d. = 7.2650, the stable fixed point enters the positive
octant and a transcritical bifurcation occurs, through which the malignant state
switches its stability with the stable fixed point. These results are in agreement with
Ref. [1], where cells that express ligands reject tumors, while control cells do not. The
existence of a critical value d. beyond which there is not a malignant tumor attractor
constitutes an important prediction of the model, and might be used to estimate
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Figure 3.5. The basins of attraction. (a) The stable manifold of the fixed point =}
(blue) separating the basins of attraction of the healthy 23 (green) and the tumor =7 (red)
stable fixed points for d = 5.0. (b) Same figure but for d = 6.5. As the immune system
response is stronger, the healthy basin enlarges and the tumor coordinate of the malignant
attractor becomes smaller. (c) A section of the basins of attraction for z = 3.5. Oncogenic
mutations can be understood as a crossing from the green basin to the red one. (d) Time
series with the evolution of the three cell populations (nondimensional variables). As the
tumor starts growing and replacing the normal tissue, the immune system orchestrates
his response, activating the effector cells to counteract the proliferation of tumor cells.
However, the effort is insufficient.

the minimum level of ligands required to ensure tumor regression through ligands
expression. Also the parameter s is important in the model. Its behavior is opposed
to the previous. As it is decreased, for a value of s, = 7.55, a transcritical bifurcation
occurs, turning unstable the malignant attractor. It again disappears through a
saddle-node bifurcation for the critical value s, = 7.35. However, the parameter A
does not change the stability of our dynamical system after considerable variations
(even twenty times), although its increase leads to more negative eigenvalues of the
tumor attractor, making this fixed point more attractive.

Looking at the basin of attraction in Fig. 3.5(c), it might result surprising that
a healthy state is always stably preserved. The reason is that cancer is the result
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Figure 3.6. Bifurcation diagrams. (a) The bifurcation diagram for the tumor coor-
dinate as we vary the parameter d, associated to the maximum fraction cell kill of the
effector cells. As such parameter is decreased from values d > 7.4, for which there is only
a healthy state, two saddle-node (SN; and SNj3) bifurcations occur, giving birth to four
fixed points, among which figures the tumor one, still unstable. Later on, a transcritical
bifurcation (TC) turns the tumor stable fixed point z7 stable, by switching stability with
another fixed point. The stable attractor is shown in green, while the unstable saddles
are painted in red. (b) The bifurcation diagram for the tumor coordinate as we vary the
parameter as;. For high values of agq, the fixed point xf, corresponding to an equilibria
for which all the cell populations coexist, is unstable and placed out of the positive octant.
As we decrease a1, it enters the positive octant and switches stability with the malignant
tumor fixed point x% through a transcritical bifurcation (TC). The tumor shrinks as we
keep on decreasing the value of ao;.

of accumulated mutations and no mutations between healthy and cancerous pheno-
types have been considered in the present model. This is in accordance, but also in
contrast, with a simple logistic growth model, for which the zero value of the tumor
cell population is a fixed point, but it is unstable, so that any small perturbation
pulls the dynamics away from it. The homologous to such zero cell population fixed
point in the present model is z7, which is always unstable. However, as we argue in
detail in the next paragraph, a healthy stable state will be preserved unless the ac-
tion of the immune system and the competition of the healthy cells with the cancer
cells are negligible, what is in consonance with the fact that apoptosis is a major
barrier to tumor growth that must be circumvented [3]. The effect of mutations
can be associated to a passage from one basin to the other. The smaller the basin
of attraction of the healthy point is, the easier for a tumor to be born. Mutations
can be modeled in several manners, for example, considering multiplicative noises
on some parameters of the model, or introducing balanced decay and growth terms
in the host and the tumor cell differential equations respectively [24, 25], like in the
quasispecies formalism [26].
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Concerning the tumor-host competition terms a2 and as;, the following behavior
is observed. In an ordinary Lotka-Volterra competition model with two populations
(N1,N2) (no immune response), the stability of the fixed point (0, K3) depends upon
the competition term a,, affecting the other population, and vice versa. In such a
model, if ajo > 71 /K3, then the fixed point (0, K3) is stable, while if it is smaller,
the point becomes unstable. The immune system introduces an innovation in this
scenario as long as d is not very small, since no matter how small a5 is made, the
effector cells are killing tumor cells, what means that there is always a healthy state.
On the other hand, if we decrease the parameter as; more than the critical value
0.535, a transcritical bifurcation occurs for which the tumor fixed point x3 becomes
unstable and a equilibria zf representing the coexistence of the three species arises
in the positive octant, becoming stable. As can be seen in Fig. 3.6(b), for as; = 0.5
such equilibria is z§ = (0.63,0.10,0.32). A big tumor coexists with the healthy
tissue. As we keep on decreasing the value of as;, the tumor shrinks and the healthy
tissue swells, what corresponds to a more benignant state. Thus, the maximum
size a tumor can reach according to our model, depends noticeably on its capability
to reduce the host healthy cells living with it, which in part is related to aerobic
glycolysis.

3.5 Fitting the chemotherapy treatment to experiments

Therapies are the main practical reason for studying tumor growth. Two impor-
tant restrictions in the application of chemotherapy are the toxicity of the drugs
and the resistance of tumor cells to such cytotoxic agents. In order to properly
model and understand these two processes in our context, a realistic modelling of
chemotherapy must be attained in the first place. Depending on their particular
mechanism of action (alkylation, topoisomerase inhibition, antimetabolism, etc.),
cytotoxic chemotherapeutic agents can be classified in two main groups: cell cy-
cle specific (CS) and nonspecific (CNS). Both types of drugs appear commonly
combined in many therapies. For example, locally advanced breast cancer uses cy-
clophosphamide, doxorubicin and docetaxel. Therefore, we shall utilize a model
capable of reproducing CS and CNS drugs, preferably not requiring explicit mod-
elling through several cell populations in different stages of the cell cycle, as in other
works [27]. A mechanistic model that has been tested with in vitro experiments for
both types of drugs is the exponential kill model. This model has been already used
[11, 25, 28], and proposes a fractional cell kill law of the form

E(C) = b(1 — e *Y), (3.13)

where C' is the drug concentration at the tumor site, and for CS drugs b depends on
the fraction of cells in a vulnerable part of the cell cycle at a certain time instant,
and the cells rate of entry and abandon of such phase of the cycle. In the case of CNS
drugs such parameter is equal to one. The scaling parameter p is related to the levels
of drug resistance. This factional cell kill law means that for a given dose of drug,
after a certain period of time the tumor is reduced to a particular fraction of its size,
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no matter how big or small it was initially [2]. Survival fractions can be analytically
obtained assuming exponential growth and constant concentrations of the drug [17],
but neither of these two situations generally hold for in vivo experiments. We have
modified this law so that it depends on the time-delayed concentration. This is the
simplest modification we have been able to elucidate that permits to fit the data.
The significance of this method will be discussed ahead. In this first approach, to
fit the experiments we neglect the cytotoxic effects of the drug on the healthy tissue.
The resulting nonautonomous dynamical system reads

T = l’(l — .T) — A12YT — D(;L” Z)SL’ — b(l _ e*pu(tfq—)>aj

y = T2y<1 - y) — a21Y (314)
. D*(z, 2)a?
z=1- d3z+gh+D2(aj, z)xQz — a3,

with u(t) = uge " for t > 0 and zero if ¢+ < 0. Hence, a single dose of drug is ad-
ministered at t = 0, but it starts to cause its effect at time 7. The relations between
the chemotherapy parameters of the nondimensional model and the originals shown
in Eq. (3.6) are
b=— F=1r1 ke=-, (3.15)
T T
where tildes have been excluded again in Eq. (3.14).

The data used to fix the parameters of the chemotherapy treatment are borrowed
from Ref. [2]. In this study a plasmacytome is inoculated into BALB/c mice and
allowed to grow up to a certain size. Then the animals receive cyclophosphamide,
a cell cycle nonspecific alkylating agent, and tumor regression is observed days
later. To validate the modelled chemotherapy treatment, we use the results from
two experiments. In the first one, five mice are given subcutaneous injections of
1 x 10® viable MOPC 104E cells, and the tumor is allowed to grow up to 0.09
g (1 g equals 1 x 10° tumor cells). Cyclophosphamide is given at a single dose
after palpable nodules are present. In the second experiment three mice receive
intravenous injections of 1 x 10° cells of the same cell line, and the tumor is allowed
to proliferate up to maximum size of 2.90 g. They use three mice as control with
mescaline treatment and three more with a single dose of cyclophosphamide. They
are able to estimate the size of the tumor from the immunoglobuline M levels using
a linear model M = T — kM, being M the IgM levels and T the tumor size, which is
assumed to grow exponentially T'(t) = Toe™, with «a a function of the doubling time
of tumor cells. The parameter k represents the removal rate of IgM from circulation.
The dose of drug administered in the experiments is 200 mg/kg, and the mice weight
around 20 g, so we take uyg = 4 mg. We consider that the drug elimination rate is
k. = 2.5 day~!, what approximately corresponds to a half-life of 6.5 h. In the first
experiment in Ref. [2], the averages of the tumor weight and the mass percentage of
the tumor respect to the total mass are reported. In the second experiment the same
magnitudes are addressed for each of the three mice. We limit ourselves to the first
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mouse results, which tumor grows bigger. Because no data concerning the tumor-
immune interaction is provided in these two experiments, we can not properly fit the
model given by Eq. (3.5). For this reason, we use the nondimensional model with the
parameter values given in Sec. 3.4, and the mass percentage of the tumor measured
in the experiments, and set the initial conditions (xg, 3o, 20) proceeding as follows.
In the first experiment the therapy begins at day 22, when the tumor size reaches
the 4 % of the total body weight. Therefore, we consider that the x coordinate of
the fixed point associated to the malignant tumor state x3, represents a size of 5 %
of the total body, . e., zog = x% - 0.4/0.5. An identical prescription is followed with
the second experiment, for which the tumor reaches a size of 12 % of the total body
weight. Now we make x¢ = x%-12/15. Since in the second experiment large implants
of intravenously disseminated tumors are studied, while the first experiment deals
with small localized subcutaneous tumors, we consider different initial conditions
concerning the effector cells for each experiment, assuming that in the second one
the immune response is stronger. In particular, the values we use are respectively
29 = 7.0 and 2y = 1.0. The initial condition for the healthy tissue is taken yo = 0.5
in both experiments. These initial conditions lead to the tumor stable fixed point in
the absence of treatment, and other choices might be used as well. The parameter
values 7 and p arranged to fit the fractional tumor cell kill by cyclophosphamide
are obtained following the same method as in Sec. 3.3. We show them in Table 3.3
for both cases. The time-delay is longer in the first experiment, probably because
small localized tumors are harder to reach than large implants. The levels of drug
resistance are certainly low (high values of p), and similar for the two experiments.

In Fig. 3.7 and Fig. 3.8, we can see that the model validates well the experimental
results. During the first three/four days the drug has little effect on the tumor, and
from this day on a severe decrease is observed. Along these first days, we recognize
that the curves are slightly concave and then rise up, before cyclophosphamide starts
to be effective. This is a consequence of the immune system, that is destroying
proliferating tumor cells. After this first period of time the drug starts to cause its
effect and dominates the dynamics during the next five/six days. From this day on,
the immune system takes care of the remaining part of the tumor and the healthy
tissue regenerates. The action of chemotherapy can be thought as a passage from
the red basin to the green one in Fig. 3.5(c). We believe that the lag in the action
of the drug is due to complex pharmacokinetics. In general, it takes a time for the
drugs to reach the tumor site and be absorbed, as well as to inflict damage to the
proliferating cells through its cytotoxic mechanism. In particular, it might happen
that different drugs have different time-delays, what might play a role in modelling
combination therapy when studying tumor resistance to chemotherapeutic agents,
and also their toxicity.

The dynamical response to chemotherapy mainly consists in a change of the basin
size. The higher the dose, the bigger the healthy basin. The manifold separating the
basins of attraction moves to the right and rotates clockwise. The results are similar
to those shown in Fig. 3.5(a) and Fig. 3.5(b), and also in previous works [12], so we
do not show them. It is important to recall that the nonautonomous system given by
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Figure 3.7. Least square fitting of the chemotherapeutic protocol. (a) Data in
the first experiment and the model predicted curve for the tumor decay after a single dose
injection of cyclophosphamide is delivered into the mice. The y-axis represents the fraction
of tumor cells in the body. During the first days, the drug has little effect on the host, and
then the tumor cells are strongly reduced. (b) Data for the second experiment and the
model predicted curve for the tumor decay after a single dose injection of cyclophosphamide
is delivered into the mice.

Eq. (3.14) tends to the original system asymptotically. This means that although the
basins structure and size change during the treatment, once the drugs are eliminated,
the original dynamical system is restored, and so they are its stability properties.
Consequently, a tumor relapse requiring to resume the chemotherapeutic treatment
would be expected. On the other hand, as shown in Sec. 3.4, therapies implying
a change in the parameter values of the dynamical system, as it is the purpose of
immunotherapeutic vaccines [1, 28|, are obviously more advantageous, because they
can change the stability properties of the dynamical system permanently, preventing
the disease from recurring.
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Figure 3.8. The residuals of the fitting. (a) Residuals of the fitted data in the first
experiment, corresponding to Fig. 3.7(a). (b) Residuals of the fitted data in the second
experiment, corresponding to Fig. 3.7(b).

3.6 Experimental correlations with the model

This section is devoted to expose some correlations between the model and the
experimental data appearing in Ref. [2], with the aim of obtaining rough estimations
of the parameters a;s and as;. In particular, the experimental results correspond to
the same experiment as those shown in Fig. 3.7(b), but now we focus on the growth
of the tumor before therapy is applied. In that experiment, the actual body weight,
which is defined as the difference between the total weight of each mouse and the
weight of their respective tumors, is computed. For the cyclophosphamide treated
group, the data are registered at days 10, 18 and 21, the last corresponding to the
beginning of the treatment (see Fig. 3.9). It is hard to know if these variations are
due to differences in the tumor cells and the healthy cells interacting with them,
consequence of other cells in the body, changes in the metabolism or, more simply,
nourishment. Nevertheless, we believe that it is good to show that our model is
compatible with such results, mainly to assure ourselves that the parameter values
of the competition terms are biologically reasonable. For these reasons and because
no data concerning the tumor-immune interaction is available in these experiments,
we do not fit the curves.

We relate the total body weight to the sum of the three cell populations, while
the actual body weight is considered to be the sum of the healthy and the immune
cell populations. Since the last is considerably smaller than the former, the actual
population of cells looks like the normal cells population. We also consider the
approximation d = 0 (otherwise small tumor sizes lead to the healthy attractor),
which is reasonable during the first days of tumor growth, since it takes the body
some time to develop an immune response. The plots in Fig. 3.9 show similar
behaviors of the experimental data and the theoretical predicted values by the model
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Experiment 1

Parameter Units Value Description
p mg~! 4.04 x 10> Level of drug resistance
T day 4.18 Time-delay

Experiment 2

Parameter Units Value Description
p mg~! 4.03 x 103> Level of drug resistance
T day 3.56 Time-delay

Table 3.3. The parameters of the chemotherapeutic protocol. The values of
the level of drug resistance and the time it takes the drug to start causing its cytotoxic
effect. They are obtained through a least-squares fitting of the solutions of Eq. (3.14) to
two different experimental situations were mice are treated with cyclophosphamide.

at days 18 and 21 for the three mice. In some cases the correspondence is not only
qualitative, but also quantitative.

As we can see in Fig. 3.9, for the first mouse there is a decrease of the healthy
cell population, what implies a decrease of the actual and total populations at day
18. Later on, the tumor increases and the total population rises, while the healthy
host cells keep on being destroyed. Interestingly, in this case, a better correlation
between the experimental data and the theoretical predicted curves at day 21 can
be achieved if saturation of the competition term given by as; with the tumor load
is considered. This saturation would be explained by the fact that competition for
space occurs between nearby cells, and competition for nutrients occurs along the
direction of the gradient of nutrient concentration. For the second mouse the tumor
grows very slowly, so the cell populations remain almost constant. In the third case,
since the mouse has smaller weight, we choose a smaller value of the healthy cell
population as an initial condition. The population starts to increase, and so does
the tumor. A maximum actual weight is observed at day 18, and then the healthy
cell population starts to decrease due to the growth of the tumor. However, the total
weight at day 21 is almost the same, because the tumor has grown considerably. The
parameters we have had to change from the ones settled in Eq. (3.5) to reproduce
the experiments are shown in Table 3.4. Note that for every mouse as; > aqo holds,
as conjectured in Sec. 3.3.

3.7 Conclusions and Discussion

We have developed a model of tumor growth taking into account the heterogeneity
of the tissue as a complex interaction between several types of cells. The model
includes tumor-immune and tumor-host interactions, which are in conformity with
experimental data. We have examined the dynamical properties of the model, show-
ing its correlation with theoretical and empirical knowledge of tumor progression.
Also chemotherapy has been studied and a way to overcome the problem of mod-
elling complex drug dynamics has been proposed. We believe that the model might
be useful when attempting to embark the study of tumor growth. Of course, ODE-
based modelling and the present model itself are both far away from being definitive.
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Figure 3.9. Correlations between the model and experimental data. The time
series given by the model (solid curves) and the experimental data of the tumor (e), the
actual (x) and the total (o) cell populations for the three mice in the second experiment
in Ref. [2]. The first points are used to fix initial conditions. (a) For the first animal
the actual and the total sizes first decrease because the healthy tissue is being destroyed.
Then the growth of the tumor rises and the total and the tumor cell populations become
equal. (b) In the second animal the tumor grows very slowly and the cell populations are
almost constant. (c) In the third case the healthy cells start to grow together with the
tumor, but as the tumor increases the normal cells reach a peak and begin to die.

Rather, they might be used as a foundation upon which to build up different and
increasingly more sophisticated models, capable of reproducing the many aspects of
the tremendously complex dynamics of cancer inception and evolution at its differ-
ent, but inextricably related, scales. In the next chapter more sophisticated models
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Mouse 1
Parameter Units Value Description
K cells 3.4 x 107 Carrying capacity of tumor cells
Ky cells 3.5 x 107 Carrying capacity of healthy cells
T day™? 0.95 Rate of growth of tumor cells
2 day™! 0.06 Rate of growth of normal cells
19 cellstday™! 4.8 x 107" Competition of healthy cells with tumor cells
ag cells~'day™' 6.0 x 1071°  Competition of tumor cells with healthy cells
Mouse 2
Parameter Units Value Description
K cells 3.4 x 107 Carrying capacity of tumor cells
Ky cells 3.5 x 107 Carrying capacity of healthy cells
r day~! 0.62 Rate of growth of tumor cells
9 day™! 0.13 Rate of growth of normal cells
12 cellstday™! 4.8 x 107" Competition of healthy cells with tumor cells
as cells™'day™' 1.3 x 1071°  Competition of tumor cells with healthy cells
Mouse 3
Parameter Units Value Description
K cells 3.4 x 107 Carrying capacity of tumor cells
Ky cells 3.5 x 107 Carrying capacity of healthy cells
r day~! 0.82 Rate of growth of tumor cells
9 day™! 0.49 Rate of growth of normal cells
(19 cellstday™! 3.7 x 107" Competition of healthy cells with tumor cells
as cells™'day™' 2.3 x 1071°  Competition of tumor cells with healthy cells

Table 3.4. The simplified model parameters. The values of the parameters in
the simplified model that were required to change in order to describe the growth of the
plasmacytome, the time evolution of the body weight and the time evolution of the actual
body weight, for the three mice in the second experiment in Ref. [2].

are used to ascertain the validity of the hypotheses presented above.
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Chapter 4

The fractional cell kill
governing the lysis of solid
tumors

“To play life you must have a fairly large checkerboard and a
plentiful supply of flat counters of two colors”

-Martin Gardner. Scientific American (October 1970)

In this chapter we focus our attention on the fractional cell kill exposed in the
previous one, and which governs the lysis of tumor cells by cytotoxic cells. We use
in stlico simulations to ascertain the validity of the hypotheses previously given. In
order to achieve this goal, we redefine the nature of this mathematical expression.
Our results indicate that this law emerges from spatial and geometrical restraints. In
particular, simulations are provided in the limit of immunodeficient environments,
showing the disappearance of the saturation of the lysis of tumor cells for high
effector-to-target ratios as the immune system becomes more and more ineffective.

4.1 Introduction

The progress of tumor immunotherapy with T lymphocytes mainly relies on our
capacity to uncover and understand the molecular and cellular bases of the T-cell-
mediated antitumor response. However, due to the highly complex regulatory mech-
anisms that control both cell growth and the immune system, this task can be hardly
achieved without the use of mathematical models. From a theoretical point of view,
these models provide an analytical framework in which fundamental questions con-
cerning cancer dynamics can be addressed in a rigorous fashion. The practical reason
for their development is to make quantitative predictions that permit the refinement
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of the existing therapies, or even the design of new ones.

Mathematical models of tumor growth and its interaction with the immune sys-
tem [1] have demonstrated their potential to explain different properties of tumor-
immune system interactions, as for example tumor dormancy and sneaking through.
As pointed out in Chapter 2, it was precisely with the aim of giving insight into these
two phenomena, that a continuous ODE model was engineered in Ref. [2]. Just to
recall, such model consists of two cell populations, the tumor cells and the immune
effector cells. It was inspired by enzymatic kinetics and developed in conformity with
experimental results. However, in their original model, the rate at which a tumor is
lysed, i.e., the fractional cell kill, increased linearly with the number of immune cells,
just as in an ordinary Lotka-Volterra model [3, 4]. Simply put, the velocity at which
a tumor is destroyed can be increased unboundedly by simply adding more immune
cells. In the hands of De Pillis and Radunskaya [5], the model evolved to include an
interaction with the host healthy tissue. Years later, such inclusion was dropped in
favor of a more specialized model, in which two interacting immune cell populations
were considered: the NK cells and the CD8" lymphocytes. This model was validated
[6] using experiments in mice [7] and humans [8], and to reproduce the experimental
data a new fractional cell kill law was presented. These authors noticed that the
lysis curves seen in experimental settings exhibited saturation. Briefly, the fraction
of lysed tumor cells after a certain time (usually a few hours in chromium release
assays) versus different values of the initial effector-to-target ratio saturates for in-
creasing values of the later. Therefore, they proposed a Hill function [9] depending
on the effector-to-target ratio as the mathematical function describing the rate at
which a tumor is lysed. Their brilliant achievement notwithstanding, little theoreti-
cal explanation was given to this function and the original proposal of Ref. 2] was
partly forgotten.

In the previous chapter, several hypotheses concerning the significance of this
fractional cell kill were made, and its limitations for weak immune responses were
debated. The following lines thoroughly inspect this mathematical function. In order
to give insight into the significance of the parameters appearing in such law, a hybrid
cellular automaton model describing the spatio-temporal evolution of tumor growth
and its interaction with the cell-mediated immune response is used. When the CTLs
eradicate efficiently the tumor cells, the model predicts a correlation between the
morphology of the tumors and the rate at which they are lysed. As the effectiveness
of the effector cells is decreased, a failure of the law at reproducing the CA is
detected. We derive a new fractional cell kill capable of reproducing the results
more accurately, and also having a clear interpretation.

4.2 Models

In the present chapter two models are utilized: a cellular automaton (CA) and an
ordinary differential equation model. We make use of the CA to test the fractional
cell kill that governs the lysis of solid tumors.
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Figure 4.1. Schematic representation of the cellular automaton. (a) A grid in a
square domain, with some tumor cells (pink) growing from its center, and some necrotic
cells (gray) at its core. Two vertical vessels on the boundary supply the nutrients required
for cell division and other cellular activities. The upper and lower bounds are identified,
forming a cylinder. (b) To study the lysis of tumor cells, the cell co-cultures (initial
conditions) are prepared by randomly placing effector cells in a rectangular region around
the tumor. The size of this domain is selected so that for the maximum values of the
effector-to-target ratio the region is almost filled with effector cells.

4.2.1 A hybrid cellular automaton model

The simulations are accomplished by means of a cellular automaton (CA) model
developed in Ref. [10] to study the interactions between tumor and immune effector
cells. An schematic representation of the CA can be seen in see Fig. 4.1. This model
was built on a previously CA model designed to study the effects of competition
for nutrients and growth factors in avascular tumors [11]. Tt is hybrid because
the cells are treated discretely, allowing them to occupy diverse grid points in a
particular spatial domain, and evolve according to probabilistic and direct rules. On
the contrary, the diffusion of nutrients required for growth (such as glucose, oxygen
and other types of nutrients) from the vessels into such spatial region is represented
through linear reaction-diffusion equations, which are continuous and deterministic.
Two types of nutrients are utilized in this model, making a distinction between those
which are specific for cell division N (z,y,t), and others M (z,y,t) that are related to
the remaining cellular activities. The partial differential equations for the diffusion
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of nutrients are

N
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where T'(z,y,t), H(z,y,t) and E(x,y,t) are functions representing the number of
tumor, healthy and immune cells at time ¢ and position (z,y). For simplicity, we
assume that both type of nutrients have the same diffusion coefficient Dy = Dy, =
D. Following Ref. [10], we consider that the competition parameters are equal
ko = k3 = ks = k¢ = k, except for the tumor cells, which compete more aggressively.
We set k1 = Ayk and ky = Ak, with Ay, and Ay greater than one. An adiabatic
limit is considered, assuming that the solutions are stationary. This approximation
holds because the time it takes a tumor cell to complete its cell cycle, which is
of the order of days [13], is much longer than that of the diffusion of nutrients,
which is of the order of minutes. A quadrilateral domain Q = [0, L] x [0, L] is
considered and Dirichlet boundary conditions are imposed on the vertical sides of
the domain, where the vessels are placed, assigning N(0,y) = N(L,y) = Ny and
= M(0,y) = M(L,y) = My. For simplicity, the horizontal upper and lower bounds
of the domain obey periodic boundary conditions N(z,0) = N(x, L) and M (z,0) =
M (z, L), wrapping them together to form a cylinder.

The reaction-diffusion equations can be non-dimensionalized [11] by redefining
the nutrients and the spatial and temporal coordinates in the form

~ Dnt _ _ nxr ny
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Dropping the tildes and considering that the solutions are stationary, we obtain
the equations

V2N —o*(H+ I+ ANT)N =0 :
VEM — o*(H + 1+ M\yT)M =0, (4.5)

where o? = kL?/Dn? is the dimensionless rate of consumption of nutrients by host
and immune cells, while Aya? is the rate of consumption of the nutrient N by
the tumor cells. The boundary conditions are now N(0,y) = N(L,y) = 1 and
= M(0,y) = M(L,y) = 1. From a physical point of view, these elliptic partial
differential equations represent the “scattering” of nutrients from the boundary of a
tissue and their diffusion in it. The role of the cells at a particular point in space is
to act as a “potential barrier”, consuming nutrients and, therefore, attenuating their
concentration at such position. The size of such “barrier” varies in space, depending
on the number of cells at each position and the rate at which they consume nutrients.
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Figure 4.2. An interaction between a T cell and a tumor cell. (a) A cytotoxic
T-cell detecting a tumor cell a particular moment through antigen recognition. The red
spot represents the lytic granules of the T-cell. (b-c) During the next five minutes, then
the cell polarizes (capping) through the reorganization of the cytoskeleton, with its Golgi
apparatus aligned close to the receptor zone. Subsequent polymerization of perforins
creates a hole in the membrane, and the enzymes are secreted. (d) Approximately forty
minutes later, a tumor cell experiencing apoptosis is observed. From Ref. [12].

Since Ay > 1 and Ay > 1, tumor cells compete equally or more aggressively for
nutrients.

We now briefly explain how the experiments are carried out, and also give a
qualitative description of the CA rules. The experiments here presented are carried
out in two successive steps. The first (1) is devoted to the growth of the tumors,
while the second (2) focuses on the lysis of tumor cells by CTLs.

1. We generate distinct solid tumors as monoclonal growths, arising after many
iterations of the cellular automaton. At each CA iteration the tumor cells
can diwide, move or die attending to certain probabilistic rules that depend
on the nutrient concentration per tumor cell and some specific parameters.
Each of these parameters 6, represent the intrinsic capacity of the tumor cells
to carry out a particular action a. The precise probabilistic laws and the
corresponding actions are described in detail in the next section. Attending
to morphology, diverse types of tumors can be generated, depending on the
nutrient competition parameters among tumor cells a, Ay. We simulate four
types of geometries (spherical, papillary, filamentary and disconnected), and
inspect four tumors of different sizes for each shape.
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2. The Iysis of tumor cells is a hand-to-hand struggle comprising several pro-
cesses. After recognition of these cells through antigen presentation via MHC
class T molecules, the CD8' T cells proceed to induce apoptosis (see Fig. 4.3).
The principal mechanism involves the injection of proteases through pores on
the cell membrane, that have been previously opened by polymerization of
perforins. Even though death may take about an hour to become evident,
it takes minutes for a T cell to program antigen-specific target cells to die
[14]. We assign a time of ten minutes for each iteration of the CA, and other
choices can be made. Therefore, twenty four iterations of the CA equal the
four hours after which the lysis of tumor cells is measured in the experiments
[7]. Since the cell cycle time of a tumor cell is generally a few times longer,
we assume a second adiabatic approximation and freeze the tumor cell dynam-
ics during T cell lysis. The rules governing the effector cells evolution are
as follows. At each iteration, those immune cells that are in contact with at
least one tumor cell, might lyse them with certain probability. The intrinsic
cytotoxic capability, which in the model also accounts for the capacity of T
cells to recognize tumor cells [15], is related to the parameter 6;,,. If a T cell
destroys a tumor cell, recruitment might be induced in its neighboring CA
elements. When immune cells are not in direct contact with a tumor cell, they
can either move or become inactivated. We consider that a single T cell can
not lyse more than three times, leaving the region of interest when this occurs
[10]. Again, the precise probabilistic laws and the corresponding actions are
thoroughly described in the next section. Each of the sixteen solid tumors is
co-cultivated with different effector-to-target ratios as initial conditions and
the lysis is computed four hours later.

Because our study mainly focuses on how fast lymphocytes lyse a tumor, two
important simplifications between our cellular automaton and the one presented
in Ref. [10] deserve notification. We have excluded the NK cells from the model,
together with a constant source of immune cells.

4.2.2 Cellular automaton rules

In this section the CA rules are described quantitatively for the two mentioned steps,
the first corresponding to the development of the tumors, and the other related to
the lysis of the tumor cells by the cytotoxic T cells. They are almost the same
as those used in Ref. [10], and any difference will be explicitly remarked. In what
follows, T'(Z) and E(Z) are the tumor and immune cells at position Z, while N (Z) and
M (%) are the concentration of nutrients in nondimensional variables at position Z.
N(Z) represents those nutrients required for cell division, and M (Z) those required
for other cellular activities. The paramters 6, represent the intrinsic capacity of a
cell to carry out a particular action a.
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First step

As in previous works, the role of the healthy cells is simplified to passive competitors
for nutrients that allow the tumor cells to freely divide or migrate. At each CA
iteration the tumor cells are randomly selected one by one, and a dice is rolled to
choose whether each of these cell divides (1), migrates (2) or dies (3).

1. A tumor cell divides with probability

Pisy =1 — exp <_ S T>2) . (46)

2
ediv

This probability is compared to a similar randomly generated number using a
normal distribution and the same standard deviation. If the former is greater
than the last, division takes place. The higher the value of 6y,, the more
metabolic requirements for a cell to proliferate. When a cell at position ¥ =
(x,y) divides, if there are neighbouring CA elements that are not currently
occupied by tumor cells, we randomly select one 7= (',y") and place there
the newborn cell, thus making T'(z') = 1 and H(z') = 0 or D(2) = 0, where
D(Z) is the function representing the necrotic cells at position Z. However, if
all the neighbouring elements are occupied, we let the cells pile up, making
T(7) = T(z) + 1.

2. A tumor cell migrates with probability

Phig =1—exp (_(\/Zﬂ) . (4.7)

mig

If P4 is greater than the probability of a randomly generated number, migra-
tion proceeds, otherwise it does not. The higher the value of 6,,,,, the more
metabolic requirements for a cell to migrate, unless there are too many tumor
cells. When a cell at position & moves, if there are neighbouring CA elements
that are not currently occupied by tumor cells, we randomly select one at z
and place the cell there. If there is more than one cell in the original position,
the moving cell simply replaces the healthy or the necrotic cell, thus making
the transformation T'(Z) — T(Z) — 1, T(2/) = 1 and H(2') = 0 or D(z) = 0.

3. On the other hand, if there is only one tumor cell at Z, then it interchanges its
position with the healthy or necrotic cell at 2. If all the neighbouring elements
are occupied, we displace the cell to a randomly selected neighbouring element.

4. A tumor cell dies with probability

s (00T as

nec
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If P,.. is higher than the probability of a randomly generated number, necrosis
proceeds, otherwise it does not. The higher the value of 6,.., the greater

the probability for a cell to die. When a cell at position ¥ dies, we make
T(Z) — T(Z) — 1. If this is the only cell at &, then D(Z) = 1.

Second step

At each CA iteration the immune cells that have one or more tumor cells as first
neighbours, carry out an attempt to lyse a randomly chosen surrounding tumor cell.
This process occurs with probability

2
1
Pys =1 —exp — (Z E) : (4.9)

lys €M

where 7, indicates summation up to the n-th nearest neighbors. If P, is higher
than the probability of a randomly generated number, then the selected tumor cell
dies. Therefore T(z/) = 0, D(2/) = 1 and the immune cell counter decreases by a
unit. If the counter reaches a value of zero, it dies and it is replaced by a healthy
cell. The smaller the value of 6;,,, the greater the probability for an effector cell to
lyse a tumor cell. This parameter was not present in Ref.[10] and is introduced here
to model the intrinsic cytotoxicity of T cells. When a tumor cell is destroyed by an
immune cell, the first neighbouring cells are flagged for recruitment. For each CA
element without tumor cells a new immune cell is born with probability

-2
1
Prec =exp | =55 (Z n) . (4.10)

rec \jen

If P,.. is higher than the probability of a randomly generated number, recruit-
ment proceeds. The higher the value of 6,.., the less surrounding tumor cells that
are required for T cell recruitment to succeed. When a cell is recruited at position
', we make D(z') =0 or H(z') =0, and E(a') = 1.

Those effector cells whose immediate neighbourhood is not occupied by tumor
cells, either migrate or become inactivated. To decide which of these two processes
is carried out, a coin is flipped. If the output is migration, it occurs for sure. In the
opposite case, inactivation occurs with probability

(ZT) R . (4.11)

(IS5}

1
Pipe=1— eXp _92—
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If P,,. is higher than the probability of a randomly generated number, inactivation
proceeds. The smaller the value of 6;,., the less surrounding tumor cells that are
required for a T cell to become inactivated. When a cell disappears from position
Z, we simply make H(Z) =1 and E(Z) = 0.

Note that the probability distributions are normal type distributions, which are
very common in biological processes [16].
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4.2.3 The algorithm

First, we let the tumors grow until they have reached some specific size. A variety
of sizes will be used to inspect the fractional cell kill. The algorithm starts with
a domain full of healthy cells, except for a single tumor cell placed at the centre
of the domain. During this period of growth each CA step corresponds to one day.
Each iteration begins with the integration of the reaction-diffusion equations, using a
finite-difference scheme and a successive overrelaxation method. Then all the tumor
cells are randomly selected with equal probability, and the CA rules are applied.
As in previous works [11], every time an action takes place, the reaction-diffusion
equations are locally solved in a neighbourhood with size 20 x 20 grid points. Once
the tumors are grown, we freeze their dynamics, and only the immune cells are
computed. This approximation holds because the experiments last four hours and
it takes a tumor cell approximately one day to divide. The initial conditions are
set by randomly placing the immune cells in the neighbourhood of the tumor, in
a similar manner as co-cultures are prepared in immunological studies. Then the
reaction-diffusion equations are solved at each step and then all the immune cells are
randomly selected. For each immune cell, after applying the CA rules, the nutrients
are computed in a local region, in exactly the same manner as before. The algorithm
stops after 24 iterations of the cellular automaton. Each of these steps correspond
to 10 minutes, which accounts for a total time of four hours.

4.2.4 An ordinary differential equation model

The results of the simulations performed with the cellular automaton model are
fitted by means of a least-squares fitting method to the simplified Lotka-Volterra
type model validated in the previous chapter. Our study focus mainly on CD8" T
lymphocytes, but the model can be easily modified to reproduce NK cell dynamics.
In the present chapter only those parameters appearing in the fractional cell kill law
(d, X and s) are inspected. Accordingly to the CA model, we set 0 = 0 in the ODE
model since the CA does not include a constant input of effector cells. We have
also selected a value g = 0.15, which is very close to one of the values appearing in
Table 3.2. Importantly the CA model and the ODE model include the same type of
processes. The logistic growth of tumor cells in the CA model arises as a consequence
of competition for nutrients [11]. There is also competition among healthy cells and
tumor cells for nutrients, which in the ODE model is represented by the competing
Lotka-Volterra terms between healthy and tumor cells. T cell lysis, inactivation and
recruitment are also present in both models. Only the competition term between
tumor and immune cells ag; is different. Although we keep this parameter as shown
in Table 3.2, if desired, it can be made equal to zero. As far as we have investigated,
reducing the value of this parameter produces no appreciable consequences in our
study. Notwithstanding this correspondence, we recall that during the second step
of our CA simulations, the tumor dynamics is freezed. Accordingly, the parameter r4
should be made equal to zero. Again, we keep this parameter as shown in Table 3.2.
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Reducing the value of this parameter produces no significant consequences in our
study when the T cells are effective. For immunodeficient scenarios the effects are
more sensitive, but still small. In other words, the dynamics of the model during
the first four hours is dominated by T cell lysis, recruitment and inactivation.

4.3 Results

In this section we expose the CA results and fit the parameters of the fractional cell
kill to the results. From an immunological point of view, two scenarios are studied.
The first corresponds to immunocompetent hosts, while the second corresponds to
the immunodeficient case.

4.3.1 Tumors

In Fig. 4.4 we depict the simulated solid tumors with four distinct morphologies,
depending on the nutrient competition among tumor cells. The apparent three-
dimensionality is an artefact resulting from the fact that we let cells pile up at the
CA grid points. This piling mechanism was assumed in Ref. [11] for computational
simplicity, and does not have any consequence in our study, since once the tumors
are grown, we project them to study their lysis. High values of a and Ay lead
to more branchy tumors, gradually changing from spherical to filamentary. This
phenomenon is explained if we consider that when some nearby neoplastic cells on
the boundary of a tumor compete aggressively for nutrients, those cells that divide
and take ahead at some step, preserve this advantage at the next step, stealing
the nutrients to those cells left behind. This positive feedback mechanism provokes
a rupture of the spherical symmetry of the tumors. The resulting geometries are
comparable to a variety of histologies (see Fig. 4.3).

Note that the necrosis of tumor cells due to the scarcity of nutrients in the core
of the masses has been neglected, since it has no relevance in our study. In the CA
this is achieved by setting 6,,.. = 0. Except for the disconnected patterns appearing
in the last row in Fig. 4.4, motility has been also disregarded, considering sufficiently
high values of 0,,;,.

4.3.2 Effective immune response

In the model given by Eq. (3.5), the fractional cell kill of tumor cells by CTLs is
given by the function K(E,T). In the previous chapter we took the decision of
expressing this function in the form

EA

K(E,T) = T T

(4.12)
with h(T) = sT*. Written this way, the fractional cell kill clearly states that the

more effector cells, the greater the fractional cell kill, but bearing in mind the satu-
ration of antigen-mediated immune response, which depends on the tumor burden.
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Figure 4.3. Histological samples of tumors. (a) A basal cell carcinoma (tu-
mor of the basal cell of the epidermis) invading its underlying stroma. This tumor
represents a connected spherical tumor. From www.mrcophth.com/pathology/skin/
basalcellcarcinoma.html (b) An urothelial carcinoma, exhibiting papillary geometry.
Distributed under license CC BY-SA 3.0. (c¢) A cancer of the hair follicle (trichoblastoma),
were tumor cells acquire a filamentary disposition. From Ref. [17]. (d) A disconnected
tumor in the thymus (thymoma), with tumor cells scattered in the tissue, among healthy
cells. The healthy cells that separate them are T-cells, which mature in the thymus.
Therefore their name. Distributed under license CC BY-SA 3.0.

We propose that the saturation is due to the crowding of immune effector cells,
which is evident if we recall that these cells need to be in contact with tumor cells
to exterminate them. In a solid tumor, once all the tumor cells on its surface are
in contact with a first line of immune cells, the remaining effector cells are not
lysing, although the adjacent lines behind probably contribute to immune stimula-
tion through several feedback mechanisms. Therefore, at a certain point, no matter
how many more immune cells are present in the region of interest, the rate at which
the tumor is lysed remains practically unaltered. Before saturation appears, if two
tumors of the same nature and different size at a certain time instant are lysed at
the same rate by the immune system, the bigger tumor will require more effector
cells. Put more simply, if two tumors of different size are reduced to a particular
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Figure 4.4. Tumors generated using the cellular automaton model. Tumors
become increasingly branchy as the competition for nutrients increases. Colors go from
dark purple (one cell) to light pink (highest number of cells in a grid point for each tumor).
We set the parameters A\yy = 10 and 6,,.. = 0 in all the cases, disregarding necrosis. (a-d)
Spherical tumors with increasing size and parameters a = 2/n, Ay = 25, 04, = 0.3 and
Omig = 00. (e-h) Papillary tumors with increasing size and parameters o = 4/n, Ay = 200,
O4iv = 0.3 and 60y,5g = co. (i-1) Filamentary tumors with increasing size and parameters
a=8/n, AN = 270, 04, = 0.3 and 6,4 = co. (m-p) Disconnected tumors with increasing
size and parameters a = 3/n, Ax = 200, 4, = 0.75 and 6,4 = 0.02.

fraction of its size after a certain period of time, the bigger tumor will require more
effector cells. The number of effector cells E for which the fractional tumor cell kill
is half of its maximum d, increases monotonically with the tumor size h(7).

We use simulations to demonstrate that these assertions are sufficient to explain
the fractional cell kill law, even though there might be others. With this purpose,
for every tumor pictured in the previous section, we prepare co-cultures with differ-
ent effector-to-target ratios. Then, we let the CA evolve and measure the lysis four
hours later (see Fig. 4.7). As previouly explained, the tumors have been projected
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Parameter Units Value Description
d(s) day™t 944 Saturation level of fractional tumor cell kill
d(p) 2041
d(f) 32+£2
d(d) 13£3
A(s) None 0.61+0.07 Exponent of of fractional tumor cell kill
A(p) 0.87£0.04
A(f) 0.89 £0.03
A(d) 0.63 £0.03
s None 0.15 Steepness coefficient of fractional tumor cell kill
Dp(s) None 1.0940.02 Box counting dimension of the boundary before the lysis starts
Dg(p) 1.21+£0.04
Dy(f) 1.36 4 0.02
Dr(d) 1.72+0.04

Table 4.1. The parameters of the fractional cell kill. The parameter values mod-
ified in the equation shown in Eq. (4.12) corresponding to an effective immune response.
The parameters A and d are obtained through a least-square fitting of the lysis of tumor
cells between the CA simulations and the ODE model. The mean value and standard
deviations is computed for each morphology using four different tumors sizes: spherical
(s), papillary (p), filamentary (f) and disconnected (d).

before the lysis starts, to better correlate the geometry and the parameters in the
fractional cell kill. Otherwise, we would have two-dimensionally distributed lympho-
cytes fighting three-dimensional-like tumors, as in Ref. [10]. Finally, the results are
fitted to the ODE model using a least-squares fitting method. We recall that such
model was validated using as initial conditions typical cell populations of 10° cells,
while the CA automaton grid used can harbor at most 9 x 10* cells. However, this
is not a hurdle at all, since if desired, the cell populations in the ODE model can be
renormalized and its parameters redefined so as the cell numbers coincide.

The resulting lysis curves are depicted in Fig. 4.5 and the values of the param-
eters d, A and s in Eq. (4.12) are listed in Table 4.1, together with the fractal
dimension Dp of the contour of the initial tumors. Satellitosis is clearly appreciated
as a consequence of T cell recruitment, and the resulting clusters of cells act like
wave fronts that advance lysing the tumor. There is a correlation between the box
counting dimension and the parameters d and X for the connected tumors examined,
but this is not the case for the disconnected one. In fact, the fractal dimension of
the boundary of a solid tumor, is not generally a good measure concerning the cell
mediated immune response. A counterexample suffices to convince ourselves, pre-
venting us to search for power laws relating the parameters d and A and the fractal
dimension. For example, the disconnected tumors shown in Fig. 4.4 have the highest
dimensions, but this is because these tumors are very drilled, so most of the tumor
cells are on its boundary. However, they are rather spherical, so that the part of the
boundary that is in the center of the mass is not initially accessible to the immune
system. On the other hand, a tumor with a similar distribution of cells, but none
making contact among them, will have fractal dimension smaller than one, but close
lytic rates. These facts explain the low values of d and A for such tumors, which are
comparable to the spherical ones. Indeed, what matters to the cytotoxic cells is the
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Figure 4.5. The lysis curves. The lysis of tumor cells after four hours versus the
effector-to-target ratio Ey/Tp in immunocompetent environments. The parameter values
of the CA related to the lysis, recruitment and inactivation are 6,5 = 0.3, 0., = 1.0 and
Oine = 0.5, respectively. The solid curve corresponds to the ODE model, while the points
correspond to the cellular automaton results. Here we show the results for four tumors.
(a) The spherical tumor in Fig. 4.4(b). (b) The papillary tumor in Fig. 4.4(f). (c) The
filamentary tumor in Fig. 4.4(1). (d) The disconnected tumor in Fig. 4.4(n).

accessibility to their enemies. The more tumor cells there are between an immune
cell and a tumor cell, the lower the rate at which the effector cells kill their victims.
This is starkly evident for the spherical tumors, which correspond to the smallest
values of d and \.

Thus, according to our model, Eq. (4.12) is an emergent property of the tumor-
immune interaction depending on the spatial distribution of the tumor cells. It
reflects the tumor size dependent saturation of an effective immune system, fruit
of the crowding of the effector cells and the arduousness to establish contact with
their adversaries. Nevertheless, it takes hours for the effector cells to fully lyse the
tumors so far investigated, what denotes that this extrinsic limitation to the lytic
capacity of the immune system is barely important compared to the immunoevasive
maneuvers that tumor cells commonly orchestrate [18].
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Figure 4.6. The lysis curves. The lysis of tumor cells after four hours versus the
effector-to-target ratio Ey/Tp in immunosuppressed environments. The spherical tumor
represented in Fig. 4.4(b) is studied, with recruitment and inactivation CA parameters
Orec = 1.0 and 6;,. = 0.5. The solid curve corresponds to the ODE model, while the
points correspond to the cellular automaton results. (a) A more ineffective, but still
effective, adaptive response is here represented, with 6;,; = 10. (b) A value of the intrinsic
cytotoxic capacity 6;,, = 100 is set for the most ineffective immune system.

4.3.3 Ineffective immune response

Tumor cells find ways to evade the immune surveillance through a broad range of
mechanisms [12]. They can acquire the ability to repress tumor antigens, MHC
class I proteins or NKG2D ligands. They may also learn to destroy receptors or to
saturate them, induce suppressor T cells formation, launch counterattacks against
immunocytes by releasing cytokines, avoid apoptosis, etc. It is therefore pertinent
to ask ourselves if the law can cover situations in which the tumor microenvironment
is immunodeficient.

In Ref. [6] the authors show that the lysis curves corresponding to NK cells in the
experiments borrowed from Ref. [7] do not show saturation, and that a fractional
cell kill given by a simple power law cE” works to fit such data. Because much
higher values of the effector-to-target ratio are required to obtain similar values for
the lysis compared to the CTLs curves, it was suggested that when the effector cells
are less effective, saturation is not observed.

Mathematical arguments have been given in previous chapters to explain this
lack of saturation. Briefly, when the cytotoxic cells are less effective, only a fraction
f of the effector cells are interacting with the tumor. Thus we can replace FE by fFE
in the fractional cell kill. Now, defining § = s/ f*, the fractional cell kill law remains
unchanged. This suggests that the parameter s is related to the effectiveness of the
cytotoxic cells, being this parameter inversely proportional to the effectiveness of
such cells. On the other hand, if the effectiveness is small enough (f < 1), then
h(T) dominates over E* in Eq. (4.12), as long as E is not too high. The resulting
lysis term becomes df*E*T*~*/s. This legitimates the estimation cE”T that has
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Parameter Units Value Description
d(s) day~' 3.80  Saturation level of the fractional tumor cell kill
d(i) 1.56
A(s) None 0.62  Exponent of the fractional tumor cell kill
A1) 0.17
s(s) None 0.50  Steepness coefficient of the fractional tumor cell kill
s(i) 1.10

Table 4.2. The parameter values of the fractional cell kill law given by
Eq. (4.12). These parameters are obtained through a least-square fitting of the lysis
of tumor cells between the CA simulations and the ODE model (see Fig. 4.6. Two cases
are represented: a very ineffective (i) and a semi-effective (s) immune responses.

been used in other works [6, 19] to reproduce the fractional cell kill of tumor cells.
Nevertheless, now we do not want to introduce phenomenological laws of this type,
but rather concentrate our efforts on the significance of the parameter s. To this end,
we diminish the intrinsic cytotoxic capacity of the immune cells, which is encoded
in the parameter 60;,, in our cellular automaton. Higher values of this parameter
represent more ineffective T cells. The results can be seen in Fig. 4.6 and the values
of the parameters are listed in Table 4.2. As we increase the parameter 0;,,, the lysis
curves become progressively less convex, and at a certain point they look concave.

When 6, = 10, the ODE model can be adjusted to the CA results. However,
increasing s is not sufficient to reproduce this data, and considerable variations of
the remaining parameters d and A is required. A much more dramatic case arises
when 6, = 100. In this case we have not been able to find any values of the
parameters that represents faithfully the CA results. The best fitting provided by
the ODE model exhibits strong saturation. The conclusion is that the fractional
cell kill law represented by Eq. (4.12) works bad for immunodefficient environments
and also confuses the geometrical effects and the intrinsic cytotoxic capacity of the
immune cells. In the next section, we propose a new fractional cell kill law that
allows to fit the results more accurately by simply reducing the value of s.

4.3.4 Modification of the fractional cell kill

In the previous chapter, the particular nature of the function h(7") appearing in
Eq. (4.12) was discussed, proving that if instead of h(T) = sT*, h(T) = sT 5 is
used, the empirical results can also be validated by simply decreasing the value of s,
even for values AX/\ greater than one. This means that the original proposal of a
saturating fractional cell kill depending on the quotient £/T can not be guaranteed.

Furthermore, from a theoretical point of view, the function h(T) = sT* makes the
model ill-defined in the limit of very big tumors (7" — oo) facing a comparably small
fixed number of immune cells. The reason is that in this limit we get unbounded
velocity for the lysis (K (E,T)T — oo0). We demonstrate that h(7") = sT' is a much
better choice. It has been shown [15, 20] that for a fixed number of effector cells
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Figure 4.7. Lysed tumors after four hours for different effector-to-target ratios.
The effector cells (green) form satellites that advance destroying their neoplastic enemies
(violet) and leave apoptotic bodies (light gray) behind them, ready to be phagocytosed.
The parameter values of the CA are ;,s = 0.3, Orec = 1.0, O3 = 0.5, Apy = 10, Ay = 25
and o = 2/L. (a-d) Spherical tumor in Fig. 4.4(b) with Ey/Tj taking values on the set
{0.0025,0.005,0.05,0.75}, respectively. (e-h) Papillary tumor in Fig. 4.4(f) with Ey/Tj
taking values on the set {0.005,0.0075,0.025,0.25}, respectively. (i-1) Filamentary tumor
in Fig. 4.4(1) with Ey/Ty taking values on the set {0.0025,0.0075,0.025,0.017}, respectively.
(m-p) Disconnected tumor in Fig. 4.4(n) with Ey/T) taking values on the set {0.005,0.0075,
0.015,0.025}, respectively.

FEy, the Michaelis-Menten kinetics govern the lysis of tumor cells. The value of the
lytic velocity at tumor saturation, ¢.e., when 7" — oo, is reported in such works as a
measure of the intrinsic cytotoxic capability of a particular number of effector cells.
A Michaelis-Menten decay in Eq. (4.12) is obtained for a constant value of effector
cells as long as h(T) = sT in used. The value at saturation for a fixed number of
effector cells is then dE7/s. An argument supporting saturation comes from the
following fact. If the number of tumor cells is much higher than a fixed number of
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effector cells, the velocity at which the tumor cells are lysed can not be enhanced
by increasing the number of the neoplastic cells. This occurs because T cells kill
tumor cells one by one, and for such ratios all the effector cells are already busy
fighting other cells. In a similar fashion, for an enzymatic reaction, one can not
increase arbitrarily the velocity at which the products are formed by simply adding
more substrate. Precisely, this reasoning is reminiscent of the original formulation
proposed in Ref. [2], in which the cell populations are regarded as chemical species
obeying enzymatic kinetics in the quasi-steady state regime. In such work, the tumor
cells are the substrate, the effector cells are the enzyme and the products are the
dead cells. Indeed, it can be analitically demonstrated that such kinetics governs
the lysis of tumor cells in the cited model for a constant number of effector cells (see
Appendix 4.4). A fractional cell kill law that yields bounded velocity for the lysis
of tumor cells when any of these two cell populations is sufficiently high compared
to the other is represented by

E)\

K(ET)=d——:.

(4.13)

Following the point of view of Ref. [2], this law can be regarded as a Michaelis-
Menten kinetics where the rate constants of the formation of the “enzyme-substrate”
conjugates, their dissociation and their conversion to product depend nonlinearly (as
power laws) on the enzyme concentration. It establishes the saturation of the velocity
of the lysis of tumor cells for both the tumor and the immune cell populations.
In Fig. 4.8(a) we first reproduce the experiments of the spherical tumor shown
in Fig. 4.4(b) for 6,,s = 0.3. This allows us to obtain the parameter values of
the modified fractional cell kill law shown in Eq. (4.13). Then we carry out the
simulations of the preeceding section for immunodeficient evironments and see how,
mainly by increasing the value of s, the CA results are reproduced (see Figs. 4.8(b)
and 4.8(c)). The parameter values are listed in Table. 4.3. This sheds light into
the significance of this parameter, which is now manifestly related to the intrinsic
cytotoxic potential of the T cells. Moreover, this implies that the limit T" — oo,
for which the quantity dE*/s is obtained, is not a good measure of lymphocyte
cytotoxicity, as suggested in Refs. [15, 20]. This limit, which for a constant value of
the T cells implies a linear decay of the tumor, involves geometry as well. Ideally,
if we consider that there is just one immune cell, and it takes this cell an hour to
lyse a tumor cell, then a spherical tumor would be reduced at approximately one
cell per hour (assuming that this immune cell does not become inactivated at some
step). However, the geometry of the tumor, which is coded in the parameters d and
A, clearly affects how fast this single cell can erase it.

Even though the reduction of saturation for ordinary values of the effector-to-
target ratio can be justified mathematically and numerically, the change in curvature
for the CA results appearing in Fig. 4.8(c) is hard to put on a rational basis. Since
0 < X < 1, the quantity dE*/s, as a fucntion of F, will always have negative cur-
vature. Therefore, a positive feedback mechanism is required to explain the change
in curvature. A candidate mechanism responsible of this phenomenon is effector
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Figure 4.8. The lysis curves. The lysis of tumor cells after four hours versus the
effector-to-target ratio Ey/Ty for increasing inneffectiveness of the lymphocytes. The
spherical tumor represented in Fig. 4.4(b) is studied, with recruitment and inactivation
CA parameters 0., = 1.0 and 6;,. = 0.5. The solid curve corresponds to the ODE model,
while the points correspond to the cellular automaton results. (a) An effecetive immune
response for 0, = 0.3. (b) A more ineffective, but still effective, adaptive response is here
represented, with 6, = 10. (b) A value of the intrinsic cytotoxic capacity 6;,, = 100 is
set, for the most ineffective immune system. As shown in Table 4.3, the intrinsic cytotoxic
potential of the T cells is chiefly represented by parameter s in Eq. (4.13).

cell recruitment. As the effectiveness of the T cells decreases, this terms become
increasingly important. Further research concerning this mathematical function is
deserved.
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Parameter  Units ~ Value Description
d(e) day™'  9.22 Saturation level of the fractional tumor cell kill
d(s) 9.62
d(i) 9.52
Ale) None  0.50 Exponent of the fractional tumor cell kill
Als) 0.51
Ai) 0.55
s(e) cells*1 1.0 x 107 Steepness coefficient of the fractional tumor cell kill
s(s) 14 %107
s(1) 9.5x 1071

Table 4.3. The parameter values of the fractional cell kill appearing in
Eq. (4.13). These parameters are obtained through a least-square fitting of the lysis
of tumor cells between the CA simulations and the ODE model (see Fig. 4.8). Three cases
are represented: an effective (e), a semi-effective (s) and inneffective immune responses (i).
Note that it is only the parameter s, which is related to the intrinsic cytotoxic capacity,
that varies substantially. It increases as the immune cells become less effective.

4.4 The fractional cell kill as a Michaelis-Menten kinetics

The fractional cell kill represented by Eq. (4.13) can be derived from the Michaelis-
Menten kinetics [21, 22] assuming that the rate constants of the reaction depend on
the enzyme concentration. During the process of lysis, the effector cells £ bound to
the tumor cells T forming complexes C', and dead tumor cells T* result from this
interaction. Therefore, the tumor cells play the role of the substrate and the effector
cells act as the enzyme. This cellular reaction can be written in the form

k1 ko
E+T=C =T +E. (4.14)

Once a tumor cell is induced to apoptosis it can not resurrect, so we must set
k_o = 0. Generally, also the backward reaction represented by k_; should be dis-
regarded, since after tumor cell recognition and complex formation, destruction
proceeds. However, we keep this term for reasons explained bellow.

Assuming that the law of mass action holds, the system of differential equations
governing the reactions is

W] — KB+ (s + k(O] (4.15)
dt
% = —ky[E][T] + k_1[C] (4.16)
A _ il - ey + k)] (4.17)
d[T"] _
= ha[C]. (4.18)

The Briggs-Haldane [23] quasi-steady state approximation [C] = 0 was assumed
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in [2]. This approximation requires

[Eo]

o] + Ko < 1, (4.19)
where Ky = (k_1+k2)/ky is the Michaelis constant, and [Ep| and [Tp] are the initial
concentrations of the effector and the tumor cells respectively.

Because we are dealing with situations in which the substrate concentration can
be smaller than the enzyme, the quasi-steady state approximation implies K, >
[Ep]. Since this condition can not be generally guaranteed, instead, we consider
Michaelis and Menten original formulation, and suppose that the substrate is in
instantaneous equilibrium with the complex. We believe this is more reasonable,
beacuse it takes about an hour for a cytotoxic T cell to fully lyse a tumor cell and,
if the cells are effective, the recognition and complex formation should occur quite
fast when brought together. In this manner, we have ki[E][T] = k_1][C]. From
Eqgs. (4.15) and (4.17) we get the conservation law [E] + [C] = [Ey]. These two
equations put together and substituted in Eq. (4.18) yield

d[T"] 1]
dt k[T + k4 .

— hohi ) (4.20)

So far, this is nothing else but the Michaelis-Menten kinetics. It is at this point
that we have to consider a dependence of the rate constants of the reaction on the
concentration of the effector cells. The mathematical relations are derived heuristi-
cally, based on the idea that for higher concentrations of the immune cells the rate
constants vary in a such a manner that the reaction is pushed backwards. Since
saturation is due to crowding of T cells, and this depends on the geometry of the
tumor, it seems a natural choice to use power laws.

Once the first lines of effector cells cover the surface of a solid tumor, the remain-
ing immune cells are not in contact with it. Alternatively, an equivalent argument
is attained if we suppose that the non-interacting effector cells do interact with
some tumor cells unsuccesfully (say ghost tumor cells), so that the complexes are
dissociated without lysis. The more effector cells, the higher the rate of dissociation,
and when the number of effector cells is small compared to the number of tumor
cells, the dissociation should vanish. Therefore, we consider a power law depen-
dence k_1([Eo]) = k_1[FEo]*, with 0 < a < 1, as suggested from the experiments.
Substitution in Eq. (4.20) yields

d[T]
dt

Bl
kiT] + k_1[Eo]>™ *

= koky (4.21)

The fractional cell production of dead cells in this equation already resembles
very much to Eq. (4.13). To obtain the exact result we have to consider depen-
dence of k; and ky on the effector concentration as well. Note that for the inverse
reaction to take place complexes have to be formed first, and this requires some
time. Therefore, saying that complexes dissociate without lysis is not exactly equiv-
alent to stating that the complexes are not formed. These rates should decay for
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increasing concentrations of the effector cells, diminishing the rate of formation of
complexes and products. Once again, we postulate power law relations in the form
ki([Eo]) = k1[Eo] ™ and ky([Fo]) = Ka|Eo]™” where again 0 < 3 < 1 and 0 < vy < 1.
It might result surprising that in the limit [Ey] — oo these functional relations tend
to zero, suggesting that the reaction stops. However, this is not the case, because
when subsituted in Eqgs. (4.15), (4.16), (4.17) and (4.18), ki ([E])[E] and ko([E])[C]
both increase with the number of effector cells. Replacing the rate functions in
Eq. (4.21) we obtain

R ML ) (4.22)
dt ot BLp) (Bt
R—1
We now rename the constants A\ = a + 3, s = k1/k_1, d = Kiks/Kk_1, and

remember that the velocity for the lysis must remain bounded for [Ey] — oo, what
imposes the constraint o + § + v = 1. Thus, the result is
AT _ [
dt s[T] + [Fo)*

7). (4.23)

4.5 Discussion

Our study demonstrates that the saturation of the fractional cell kill of tumor cells by
their cytotoxic opponents is a consequence of cell crowding. This limitation depends
on the morphology of the tumor, insofar as geometry restricts the access of effector
cells to tumor cells. In theory, those tumor growing with “spherical symmetry” will
be the harder to lyse, because many layers of tumor cells have to be erased to reach
the cells at the center. In the next chapter a rigorous mathematical proof of this fact
will be provided. We recall that the process of T cell recruitment from circulation
to the tumor site is complex, involving several steps [24]. This implies that the
crowding might happen before contact with the tumor occurs, as for example, during
adhesion to the endothelium. In such a case, a relation between the parameters in
the fractional cell kill and the shape of the tumor can not be established. At all
events, mathematically, this extrinsic barrier to the lytic capacity of the effector cells
is reflected in the parameters d and \. The more accessible the tumor cells are, the
higher both of these parameters. Interestingly, the values of A\ are expected to be
between zero and one, as suggested by the experiments and the simulations. From
the enzymatic kinetics point of view, if we think of Eq. (4.13) as a Hill function
depending on the effector cells, this can be interpreted as non-cooperative binding.
Certainly, if we pay attention to the process of lysis only, the best that an immune
cell can do to another is not to interpose between itself and their adversaries. Of
course, cooperative effects exist, as the recruitment term exemplifies. Quite the
opposite, as the intrinsic lytic capacity of cytotoxic cells is decreased, saturation
gradually vanishes. This capability is inversely proportional to the parameter s. It
is not surprising that the limit dE*/s dictates the lysis when the immune response
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is ineffective. As argued in the previous chapter, this occurs because saying that
a small fraction of a cytotoxic cell population fFE interacts with a tumor is, to
what the tumor concerns, equivalent to considering a small number of effector cells
confronting a big tumor. These limits are more thoroughly studied in the following
chapter.
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Chapter 5
The kinetics of tumor lysis

“It has been observed that missiles and projectiles describe a
curved path of some sort; however, no one has pointed out the fact
that this path is a parabola.”

-Galileo Galilei (1564-1642)

In the previous chapter we saw the usefulness of the enzymatic conceptual frame-
work to describe the interactions of cells. We modified the fractional cell kill of
tumor cells by T cells, imposing the condition that the velocity of tumor cell lysis
must remain bounded for an increasing tumor cell population. Using the chemical
kinetics framework as a metalanguage, we derived the mathematical function analyt-
ically, so that now the parameters have a clear biological significance. In the present
chapter, we further explore this mathematical expression by examining the different
limits that it provides. To reproduce also the time series as well as the lysis curves,
we introduce one last rearrangement, which we believe makes it theoretically more
conspicuous.

5.1 Introduction

The oversimplification of cancer as the growth of an independent subset of rebel mu-
tated cells within a tissue presents great difficulties explaining tumor development
[1, 2]. The relative importance of the dynamics at the tissue level, represented by the
interactions of the tumor cells with their environment, compared to the role played
by mutations, is still a subject of intense debate [3, 4]. The tumor microenviron-
ment includes stromal cells (e.g. immune cells, fibroblasts or endothelial cells), the

95
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extracellular matrix, and signalling molecules such as cytokines or growth factors.
The particular cellular and molecular mechanisms, as well as their role in tumor
development, are complex and not sufficiently well understood [5]. Even though all
of them might prove to be important in the fight against cancer, immunotherapy
is lately focusing great attention. Probably, this is because the immune system is
better known and has evolved for centuries to neatly destroy threatening foreign
organisms in our body. Therefore, there is evidence and hope that it can be trained
to effectively destroy tumor cells, which originate in the body, as well. However,
given the complexity of biological systems and the ubiquity of nonlinearity at all
scales, it is hardly believable that this task can be rigorously achieved without the
guidance of mathematical models. Positively, these models, together with the exper-
imental ones, might provide the guiding principles that biologists precise to unveil
the counter-intuitive nature of the complex interactions among cancer cells and their
environment during the evolution of tumors. This, in turn, might permit clinicians
to design better treatments for the vast variety of cancers [6].

In the context of tumor-immune interactions, it is worth and interesting to anal-
yse the potential that enzyme kinetics offers [7, 8]. Enzymatic reactions can be
viewed in an abstract manner as an asymmetric interaction between two entities, one
being rather passive (the substrate) and the other being rather active (the enzyme).
When these two entities make contact, the latter affects the former transforming it
into some other entity (the product). Thus, an enzymatic reaction can be casted in
three steps: the formation of a complex from the two parts, a subsequent transfor-
mation of the passive part by its active counterpart and their final dissociation. As
long as these conditions are fulfilled, there is no general reason preventing us to use
this conceptual framework not only at the chemical scale, but also at the cellular
scale and, perhaps, even at higher scales. For example, the growth of microorgan-
isms in the presence of a limited substrate obeys the Michaelis-Menten kinetics [9].
In ecology, the intake rate of a consumer as a function of the density of preys is
also a kinetics of this type [10]. In all these cases, whenever there is a considerable
imbalance between the number of active and passive elements, saturation occurs.
This is due to the limited capacity of the active part to interact with a sufficiently
high number of elements of the passive counterpart. Note that this is also true in
the reverse direction, since the passive elements can not interact with an enormous
number of active elements for short times. In other words, interactions occur locally
and require some time.

5.2 Tumor lysis kinetics

A mathematical expression describing the velocity at which a population of cytotoxic
cells lyse a tumor was derived in the previous chapter using the Michaelis-Menten
kinetics as the modelling framework describing tumor-immune interactions at the
cellular scale [11]. According to this model, the process of tumor cell lysis is equiv-
alent to an enzymatic reaction where the tumor cells correspond to the substrate
and the immune cells correspond to the enzyme. An schematic representation of
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Figure 5.1. The cell-mediated immune response as an enzymatic reaction.
An interaction between an activated lymphocyte E, colored in green, and a tumor cell
T, painted in red. When the lymphocyte identifies the tumor cell these two cells form a
complex. The result of the interaction is the initial T-cell and an apoptotic tumor cell 7.
This cellular interaction is similar to an enzymatic chemical reaction, where the tumor cell
plays the role of the substrate and the T-cell acts as an enzyme.

such a cellular reaction can be seen in Fig. 5.1. When a T-cell identifies a tumor
cell through the recognition of antigens, these two cells form complexes. As a re-
sult, apoptosis is induced and a dead tumor cell is produced. However, some of the
assumptions that lead to the Michaelis-Menten kinetics, such as a high substrate
concentration compared to the enzyme concentration, or high values of the Michaelis
constant compared to the enzyme concentration, are not met in the present case.
To reproduce experiments, the constant rates of the reaction require dependence on
the number of effector cells, in such a manner that saturation of the velocity is also
found for increasing numbers of the effector cells. As previously stated, saturation
occurs in both directions. The differential equation [12] describing the velocity at
which the tumor cells are destroyed is 7' = —K (E,T)T, with K(E,T) the fractional
cell kill, which can be written as

EA

KET)=d————
(B,T) dsT+E>"

(5.1)
where T" and F represent the number of tumor cells and immune cells respectively.
The parameters d and A depend on the tumor geometry. Less spherical tumors
lead to higher values of these parameters. On the other hand, the parameter s is
related to the intrinsic ability of the cytotoxic cells to recognize and destroy their
adversaries. Smaller values of this parameter are related to more effective immune
cells. Thus, the velocity at which a tumor is lysed is given by
. E?
T=—-d———T. 5.2
sT + EX (52)
This equation states that the velocity at which a tumor is lysed by a population
of cytotoxic cells becomes faster as this immune cell population increases. However,
once the vicinity of the tumor is vastly occupied with several layers of immune cells,
the remaining immune cells are not in contact with their tumor adversaries, and
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saturation is attained. Even in a situation in which the tumor cells are considerably
bigger than the immune cell, and several immune cells are in contact with a single
tumor cell, the velocity at which the tumor is lysed is not substantially enhanced.
Accordingly, the saturation process depends on the size of the tumor. The number
of immune cells for which the fractional cell kill K(E,T) is half of its maximum d
increases monotonically with the tumor burden. Concerning the tumor cell popula-
tion, also faster lytic velocity occurs for bigger tumors, but again saturation befalls.
Now the reason is that for a big tumor cell population compared to the immune cell
population, at some point the addition of tumor cells can not increase the velocity
at which the tumor is lysed, since these added tumor cells are not in contact with
immune cells, which are already busy lysing some of the initial tumor cells.

It is worth and interesting to carefully examine the different limits that this
equation possesses (see Fig. 5.2). For a fixed number of immune cells Ej, when the
immune cell population is small compared to the tumor size (E} < sT), the tumor
cell population is reduced at a constant velocity

T = —dE}/s. (5.3)

This linear decay makes perfect sense if we bear in mind the extreme situation
in which there is only one lymphocyte fighting a tumor of a certain size. Ideally, if it
takes the immune cell approximately one hour to lyse a tumor cell, then the velocity
of the decay is simply one tumor cell per hour. Even though this is fairly obvious,
in Fig. 5.3 we show the random walk of a lymphocyte lysing a tumor that occupies
a square domain, at one cell per hour. In practice, the velocity clearly depends on
the intrinsic ability of the cytotoxic cell s to lyse the tumor cells and also on the
tumor morphology A and d. On the other hand, when the immune cell population
is high enough compared to the tumor cell population (E} > sT'), Eq. (5.2) yields
an exponential decay

T = —dT. (5.4)

Now, the scenario corresponds to the case in which the tumor is totally covered
with effector cells. For the sake of simplicity, we consider a tumor spheroid [13].
At each step the immune cells lyse a layer of tumor cells, and the radius of the
spheroid decreases. In the next round another layer is eliminated but, since the
tumor has smaller radius, so it does the length of this second layer. Therefore, the
velocity decreases as the tumor is gradually erased. Nevertheless, note that for a
three-dimensional solid tumor the reduction occurs in surface while the tumor is
distributed in volume, suggesting that the decay should be slower than exponential.

In Ref. [12] it was demonstrated that Eq. (5.2) reproduces accurately the values
of the lysis after some fixed time versus different values of the effector-to-target
ratio as initial conditions. However, here we show that it is unable to reproduce the
time series of the tumor decay faithfully. A mathematical function which is good
at reproducing the time series of the tumor decay can be derived in the following
manner. Assume that a two-dimensional tumor with the shape of a disk is plainly
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Figure 5.2. The limits of the fractional cell kill. (a) A small immune cell population
facing a big tumor. In this limiting situation the decay of the tumor is rather linear, as
shown in Eq. (5.3). (b) The intermediate case in which a considerable part of the tumor
is covered with immune cells. (¢) A tumor which surface is totally covered with immune
cells. In this extreme case the velocity of the decay can be approximated by a power-law
decay, as shown in Eq. (5.6).

covered with immune cells. As shown in Fig. 5.4(a), a layer of tumor cells is erased
by the immune cells at each step, like peeling an onion. If we write the radius of the
disk at the n-th step as R,, and the diameter of a cell as AR, the dynamics of the
tumor can be represented by a very simple map in the form R, = R, — AR. Since
the area of a disk is related to the radius through A = 7R?, a direct substitution
yields the map A, = A, + TAR? — 27!/ 2ARAY?. If we consider that the immune
cells lyse at a constant rate, then AR = cAt, and we obtain

AA,
At

= 12 At — 272 cAY?, (5.5)

Finally, assuming that the cell density of the tumor is approximately constant,
that the tumor is big enough so that the time intervals can be considered infinitesimal
and defining a decay constant as d = 27'/2¢c, we obtain the differential equation

T = —dT*/. (5.6)

More simply, if we consider a disk of area A = 7w R? and assume that the velocity
at which the radius decreases is constant R = —c¢, with ¢ > 0, we can write

% = 27TRC;—§ = —ox!/2cAY2, (5.7)

If the tumor has a more sophisticated geometry, we can still apply Eq. (5.6) under
appropriate assumptions. Suppose that a layer of a tumor with complex geometry
is erased by the immune system. At every step along the tumor decay, we can
associate to the tumor mass a disk of equal area. Thus, the decay of the tumor is
again equivalent to a sequence of disks with decreasing radii. Now, however, we can
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Figure 5.3. A single T-cell wandering inside a tumor, destroying one tumor
cell per hour. (a) The linear decay of the tumor. (b) The random walk described by
a lymphocyte (green) inside a quadrilateral domain occupied by tumor cells (red). The
green path are lysed cells.

not guarantee that the radius decreases a fixed value at each step. To demonstrate
this statement, it suffices to consider a pair of counterexamples. A very simple one
arises if we consider a tumor with the shape of an ellipse. Assuming that the semi-

major axis a and the semi-minor axis b both decrease at a constant rate a = b = —c,
we find

dA d db

= = Wd—jb + ma— = —rl2e(1 — )Y 4 (1 — )14 AY2, (5.8)

where e = e(t) is the eccentricity of the ellipse, which changes over time. Note that
for e = 0 we recover Eq. (5.7).

Things get even more complicated if we take an initial tumor which is not a
convex set, as the one depicted in Fig. 5.4(b). Even in the case in which all the
immune cells act synchronously and are equally effective, the topology of the tumor
might change during the process of lysis, becoming disconnected. Assuming equal
decay rates d and using Eq. (5.6), it is straightforward to verify that the total area
of two tumors with the shape of a disk does not decay as a whole with the same
velocity than that of a single tumor with such shape and equal total area. The
two small tumors decay faster, because the ratio between the perimeter and the
enclosed area is larger. Analytically, this is simply a consequence of the nonlinear
nature of Eq. (5.6). Therefore, we designate the mean value of the variations of
the radius of such sequence of disks as AR. Then, we write the variation of the
radius as 0,AR, where ¢, accounts for the deviations with respect to the mean
value, that must be bounded. The map is now R,,; = R, — ,AR and the area

goes as Apy1 = A, + m62AR? — 27Y/25, ARAY?. Making the same assumptions as
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(a) (b)

Figure 5.4. Two tumors with a destroyed layer. (a) A tumor with the shape of
a disk and initial radius Ry. At each step the immune system erases a layer (light red),
reducing its radius by an amount AR. (b) Again a tumor with a destroyed layer, but
exhibiting a more complex geometry.

in the previous case, the final result is
T = —d(t)T"?, (5.9)

where d(t) = 27'/2¢5(t), and 6(¢) a function which takes into account the deviations
from Eq. (5.6) due to the change in morphology and connectedness at each step. In
Sec. 5.4 we show that these deviations due to a complex morphology are small for
the connected tumors here examined. Therefore, the parabolic decay represented in
Eq. (5.6) works well at reproducing the decay of the tumors in the limit in which
they are completely surrounded by immune cells, as long as they are not formed by
disconnected pieces and their shape does not differ too much from a spherical shape.
In Sec. 5.5 we derive an explicit relation between 6(¢) and the geometrical properties
of the tumor. Also a more general differential equation representing the decay of a
two-dimensional surface with a non-trivial shape and topology is developed.

5.3 The cellular automaton model

The cellular automaton model previously described is now used to study the velocity
at which the tumors decay. As a reminder, an schematic representation of the CA
is once more depicted in Fig. 5.5.

As in the previous chapter, the simulations are carried out in two successive
steps. The first is devoted to the growth of the tumors. Then the immune cells are
placed in the immediate domain of the tumor and we let the system evolve. We are
only interested in the dynamics of the lysis of the tumor. Thus, during this second
step, we freeze the tumor growth, as if the tumor cells had been irradiated. Since
now we focus only on the lysis of the tumor, some restrictions in the use of the
cellular automaton deserve notification. The decay laws here investigated, given by
Eq. (5.4) and Eq. (5.6), are deterministic and valid in the limit in which the tumor
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Figure 5.5. The cellular automaton. (a) A grid representing the cellular automaton
during the growth of a tumor. The tumor cells are shown in red, while the remaining
spots are occupied by healthy cells. The vertical black stripes in the boundary of the
square domain represent the vessels from which nutrients diffuse, and periodic boundary
conditions are considered in the remaining part of the boundary. (b) Once a tumor is
grown up to a certain size, immune cells are placed around the tumor (green) and the
lysis of the tumor is registered until it is totally eradicated. During this second step, the
dynamics of the tumor is freezed, since we are only interested in the lysis.

is totally covered by immune cells. Therefore, we assume that, as the successive
layers of the tumor are lysed, the immune cells advance quickly towards the tumor.
In our cellular automaton this can be guaranteed when the immune cells are placed
isotropically covering the whole tumor through the mechanism of recruitment. We
insist that it is only in this limiting situation that we can make use of the cellular
automaton for comparison with Eq. (5.6).

After placing the cells as shown in Fig. 5.5(b), those immune cells that are
far from the tumor become inactivated (disappear from the region). As a result,
what we see are several outer layers of immune cells lysing the tumor. However,
when a few immune cells are placed at a particular location in the boundary of the
tumor, stochastic effects associated to T-cell inactivation and recruitment impose
an appreciable deviation from the expected linear decay. Nevertheless, the tendency
to linearity is observed as the initial number of effector cells becomes smaller.

5.4 The effect of morphology

We use the cellular automaton model to inspect three different morphologies of two-
dimensional tumors: a spherical tumor, a papillary tumor and a filamentary tumor.
The tumors generated with the cellular automaton are shown in Fig. 5.6. We place
these three tumors inside a circumference and, for each of them, we repeat the
experiments for several initial conditions. To this end, we fill with immune cells the
remaining space of the circumference for increasing angles, as depicted in Fig. 5.7.
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Figure 5.6. Three tumors grown by iteration of the cellular automaton. A grid
of n x n cells, with n = 300 has been used. We disregard necrosis and motility of tumor
cells by setting the parameters, 0,.. = 0 and 0,,;4 = oco. In all the three cases A\y; = 10.
(a) A spherical tumor obtained for parameter values o = 2/n, Ay = 25 and 04, = 0.3.
(b) A papillary tumor obtained for parameter values o = 4/n, Ay = 200 and 64;,, = 0.3.
(c) A filamentary tumor obtained for parameter values a = 8/n, Ay = 270 and 64;,, = 0.3.
These three tumors have grown up to approximately 9100 cells.

The time series representing the decay of the tumors are shown in Fig. 5.8. As
explained in Sec. 5.2, we see a tendency towards linearity as the tumor is initially
less covered with immune cells. Even the curvature is inverted for such small values
of the initial angle, but this is surely a consequence of recruitment in the cellular
automaton. Note also that the stochastic effects are more noticeable when the
number of initial effector cells is low.

The cases in which the tumors are totally covered with immune cells as initial
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Figure 5.7. How the initial conditions are set to investigate the lysis of the
different tumors. The tumors are inscribed in a circumference and immune cells are
placed in the surroundings for different angles . Since those cells that are not close to
the tumor outest layer become inactivated during the first steps of the CA, small values
of the angle correspond to the case shown in Fig. 5.2(a), while the case v = 27 is related
to Fig. 5.2(c).

conditions (y = 27) are fitted to the equation T'= —dT"” and also to T = —dT, to
elucidate which type of decay represents better the tumor cell lysis. The parameters
are obtained through a least square fitting method, and are listed in Table 5.1. As
can be seen in Fig. 5.9, the exponential decay is much worse at describing the time
evolution of this dynamical system. Moreover, the value of v that gives the best
fit to the power-law decay is equal to one half for the papillary and the filamentary
tumors, and practically one half for the spherical case. The agreement is striking
and, as previously predicted, the fluctuations are higher when the tumors exhibit
a more complex geometry. Concerning the parameter d, we see that more branchy
tumors display higher values. The explanation for this behavior is evident, since
the higher it is the contact surface of a tumor, the more cells that can interact with
it and the faster the speed at which it is lysed. This is in conformity with results
obtained in Ref. [12], where it was claimed that tumors with an spherical symmetry
are harder to lyse. For a rigorous mathematical demonstration of this statement we
refer the reader to Sec. 5.5. The crucial concept here is the accessibility that the
immune cells have to the tumor cells.

Thus, we have demonstrated that in the limit in which a solid tumor is totally
covered with immune cells, the velocity at which it decays is slower than exponen-
tial. This fact requires modifying Eq. (5.2) so that such limit is attained. The
arguments employed in Sec. 5.2 can be perfectly applied to tumors that live in a
three-dimensional space. If we recall that saturation of the velocity must be attained
in the limit of infinitely big tumors, we propose that the kinetics of tumor lysis in
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Figure 5.8. The decay of the three tumors for different initial conditions.
The immune cells are placed in the neighbourhood of the tumors for values of the angles
v ={n/6,7/2,7,37/2,2r} and we iterate the CA. The CA actions corresponding to the
lymphocytes have parameter values 0,5 = 0.3, 0,.cc = 0.5 and 0;;,. = 0.5. The tumor cells
dynamics has been frozen, and the parameters related to the diffusion of nutrients are the
same as those appearing in previous figures. (a) The decay of the spherical tumor for the
different initial conditions. (b) The decay of the papillary tumor for the different initial
conditions. (c) The decay of the filamentary tumor for the different initial conditions. As
less immune cells are placed in the vicinity of the tumors as initial conditions (from v = 27
to v = m/6), the power-law decay transforms into a more or less linear type of decay.

the cell-mediated immune response to tumor growth is given by

. EX
T=—-d———=T" 5.10
sTV + E> 7 (5.10)
where the exponent v depends on the dimension of the space, the morphology of
the tumor and its connectedness. For realistic, connected and rather spherical solid
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Power-law decay

Parameter Units Value Description
d(s) cell'/”? hr='  1.34  Rate of decay
d(p) cell'/2 hr' 336  Rate of decay
d(f) cell'/2 hr=' 731  Rate of decay

v(s) 0.49  Exponent
v(p) 0.50  Exponent
v(f) 0.50  Exponent

Exponential decay

Parameter Units Value Description
d(s) hr~? 0.04  Rate of decay
d(p) hr~! 0.10  Rate of decay
d(f) hr! 0.21  Rate of decay

Table 5.1. The parameter values of the decay. The parameter values of the power-
law decay T = —dT" and the exponential decay T = —dT, to which the data of the
cellular automaton are fitted by means of a least-squares fitting method. We see that as
the geometry of the tumor changes from spherical (s) through papillary (p) to filamentary
(f), the parameter d increases. However, the value of v is almost the same for the three
geometries.

tumors we have v = 2/3, with the 2 standing for surface, and the 3 for volume.
However, in those cases in which the tumor is very disconnected and the immune
cells are well mixed with the tumor cells, as for instance in haematological cancers
or solid tumors profusely infiltrated with lymphocytes, v = 1 should be used. The
exponential decay arising in the limit £} > sT would be then interpreted from a
stochastic point of view, regarding the process as a Poisson process. Indeed, not all
the immune cells have the same capacity to recognize a tumor cell, neither they act
synchronously. In this case, the decay of a tumor does not differ substantially from
other types of decay phenomena, as for example one-decay processes in radioactivity.
For intermediate situations, the exponent v will take a value between 2/3 and 1.

5.5 The decay of an arbitrary tumor

We start with a convex set in R?, and assume that the boundary of such set is
differentiable. We consider a solid tumor that is plainly covered with activated
lymphocytes, in such a manner that the outmost layer of the tumor is erased at
each step. Given a tumor with a particular boundary, we can approximate the T
cells by small disks of diameter AR placed on such boundary. Then, perhaps, the
most reasonable assumption is to consider that these cells reduce the surface in the
normal direction to the boundary of the tumor, as depicted in Fig. 5.10.

At each step n of the process of lysis, the boundary can be represented by a
parametric curve in the form v, (\) = (z,(\), y.())), being A the parameter used in
such representation. Then, the decay can be mathematically expressed as a sequence
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Figure 5.9. The decay of the three tumors for v = 2. We have iterated the
cellular automaton in the limit in which the tumors are totally covered with immune cells.
The results are fitted to a power-law decay 7' = —dT", shown in red, and an exponential
decay T = —dT, shown in blue, to elucidate which type of decay represents better the
velocity with wich the tumors shrink. (a) The decay of the spherical tumor. (b) The
decay of the papillary tumor. (c¢) The decay of the filamentary tumor. In all the cases a
power-law decay with an approximate value of v = 1/2 fits much better the results of the
CA. The exact values are listed in Table 5.1.

of planar curves
Ynt1(A) = 7u(A) + ARp,(N), (5.11)

where p,, () is the normal unitary vector to 7, (). Recursive relations for the tangent
and the normal vectors have to be found using the Frenet-Serret formulas, and a
sequence of planar surfaces enclosed by these curves has to be defined. Finally, the
element of area can be derived from the metric, its integral computed to obtain an
equation for the variations of the area at each step, and a continuum limit worked
out. These computations are very extensive, involve complicated integrals depending
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T-cells

Figure 5.10. Lymphocytes on the surface of a tumor. Assuming that the tumor
(red) has a smooth boundary, the lymphocytes (green) erase a layer of the tumor (light
red) in the normal direction to its boundary, at each step.

on the curvature at each step, and do not allow to draw clear conclusions.

Another possibility is to use polar coordinates, and consider that the initial
boundary of the set can be represented through the curve Ry(6). The area enclosed
by this initial curve is computed as

1

21
Ay = 5/ R3(6)do. (5.12)
0

Now, we introduce the dependence on time, so that the initial area decreases in
all directions at constant velocity. Mathematically, we have

1 27
A(t) = 3 / R*(6,t)db, (5.13)
0
with the radius of the set decreasing with constant velocity in every direction, i.e.,
OR

Note that now the surface is reduced in the radial direction, which is not normal to
the boundary, except for a spherical tumor. Therefore, this approximation is worse
than the first suggested. Nevertheless, it allows to derive continuous equations and
draw neat conclusions in a very simpler manner. Generally, it takes a T cell around
fourty minutes to lyse a tumor cell. If we approximate the diameter of a cell to 10um,
the value of ¢ is around 10um/hr. Integrating Eq. (5.14) we can obtain the equation
of motion representing the decay of the radius, which can be written in a simple
manner as R(0,t) = Ry(0)—ct. This equation is only valid as long as the radius does
not vary too much in different directions, compared to its size. Otherwise, the radius
in a particular direction R(6,t) could become zero (even negative) as other directions
are still being erased. Thus, we assume that the condition Ry(6) > |R}(#)| holds.
Differentiating Eq. (5.13) with respect to the time yields

2T
A(t) = —c / R(6,t)dh. (5.15)
0
Substituting the equation of the radius in Eq. (5.15) leads to

A(t) = —c/o27r Ro(0)df + 2mc?t. (5.16)
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Under the condition previously imposed, the integral appearing in Eq. 5.16 is
approximately the length of the boundary of the initial set L. Thus, the differential
equation governing the decrease of a convex set with a non-spherical shape can be
approximated by

A(t) = —cLy + 2nc*t. (5.17)

It is straightforward to integrate this equation, if we consider the initial condition
given by A(0) = Ap. The result is

A(t) = Ay — cLgt + wc*t?. (5.18)

This equation represents a uniformly accelerated motion [14], where the initial
velocity is vg = —cLyg, while the acceleration is a = 27c?. In other words, the decay
is parabolic. Intuitively, if the radius decays linearly, the area does it quadratically.
The time 7 at which the tumor is totally erradicated can be computed by setting

A =0, which yields
L A
= <1 — 11— 47r—°> : (5.19)

2rce

Note that the isoperimetric inequality [15] imposes 41 Ay < L3 for any planar surface,
with the inequality saturating for a disk. Thus, tumors with a spherical shape are the
hardest to lyse. Since for a disk we have Ly = 27!/ 2Aé/ ?, substitution in Eq. (5.18)
yields

A(t) = (Aé/Q - %(27r1/20)t)2. (5.20)

This function is the solution to the differential equation A = —(27/2¢)A'/2, obtained
in Sec. 5.2. However, for more complex morphologies this power-law function does
not rigorously hold. We can obtain the deviation from this type of decay for a
complex morphology. As shown in Sec. 5.2, the Eq. (5.15) can be written as

A(t) = —d(t)AY?, (5.21)

e BODAO [ LA
d(t) = V2 R =2 AW (5.22)

Again, we have assumed that the variations of the radius with respect to the angle
are small compared to the size of the radius for all times. Therefore, the function
d(t) presented in Sec. 5.2 is approximated as

where

L)
o) =\ T

(5.23)

A three-dimensional version of the inverse of this parameter has been called the
sphericity [16]. For a planar set, the sphericity measures the deviations of a geo-
metrical objet from the spherical shape, in terms of the ratio between the area A
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enclosed by a curve and the length of its squared perimeter L'. It takes a maximum
value of one for a disk, and it would take a value of zero for a fractal closed curve, as
for example the Koch snowflake, which is made out of three Koch curves [17] placed
on the sides of an equilateral triangle. However, we have assumed differentiability.

If the tumor is not convex, then it might occur that during the process of lysis it
becomes disconnected. For a disconnected tumor the decay law can also be obtained
following the same recipe. But now we have to be more careful, since once a piece
has been eliminated, this piece does not contribute anymore to the decay. This
difficulty can be circumvented by introducing Heavyside step functions. The decay
of a disconnected tumor formed by N pieces can be approximated by

At) =Y (1= 0(t =) Ai) (5.24)

2

where each function A;(t) is like Eq. (5.18) and 7; can be computed from equation
Eq. (5.19). The time it takes a disconnected tumor to decay is 7 = max ;.

Finally, it may well happen that the velocity with which the radius decreases is
not isotropic, varying for different angles. Or that the velocity at which the radius
decreases is not constant in time. In such a case, the best we can do is to provide
a partial differential equation relating the variations of the area in time and angle
and those of the radius in time

A OR
aios ~ War

(5.25)

Given R(6,t), this inhomogeneous second order linear PDE can be integrated to
obtain the variations of the area in space and time. For example, we can consider
that the velocity with which the radius decreases is anisotropic but constant in time.
Then R(0,t) = Ry(0)—c(0)t, and again a parabolic decay results, but with a velocity
and an acceleration averaged over the different angles.

5.6 Discussion

This chapter demonstrates that the kinetics governing the lysis of a two-dimensional
solid tumor that is not infiltrated with lymphocytes ranges from a linear decay
to a parabolic decay. When infiltration occurs the decay ranges from linear to
exponential. The linear decay corresponds to small values of the effector-to-target
ratio as initial conditions, while the parabolic decay represents a tumor that is widely
surrounded by immune cells. Intermediate situations are governed by Eq. (5.10),
which is a crossed Hill function for both the tumor and the immune cell populations.
The two exponents in this function are both smaller or equal than one, representing
the non-cooperative effects among tumor cells and immune cells that arise in the

'We prevent the reader from trying to relate the Eq. (5.7) to Eq. (5.23) to obtain the perimeter
of an ellipse in a closed form, which, as it is well known, does not exist and must be given in terms
of elliptic integrals. These equations are rough approximations.
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interaction as a consequence of geometry and cell crowding. To conclude this work,
we also want to recall that when the immune cells are not effective recognizing the
tumor cells (s — 00), a linear decay results once again. As reasoned in other works
[12], a large number of immune cells that “interact” ineffectively with a tumor can
be considered equivalent to a small number of immune cells interacting effectively.
To demonstrate this assert mathematically, we recall that when a population of
cytotoxic cells is ineffective lysing a tumor, only a fraction f of such cell population
interacts with it. By inserting fFE in Eq. (5.10), we can redefine s/f* to be s and
obtain the same equation.
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Chapter 6

Dynamics of
tumor-immune
interactions

“It is by no means inconceivable that small accumulations of tumour cells
may develop and, because of their possession of new antigenic potentialities,
provoke an effective immunological reaction with regression of the tumor
and no clinical hint of its existence.”

-Macfarlane Burnet (1899-1985)

In this last chapter we investigate the process of cancer immunoedition by means
of an hybrid cellular automaton. Even though a very interesting and similar work
has been carried out in this context [1], the present work includes new features,
which we believe makes it more realistic, permitting a correlation between the re-
sults and the theory of immunoedition. Mainly, the time scale of the cytotoxic cell
action (about an hour) differs from the time scale of tumor cell proliferation (about
a day). Secondly, our cellular automaton includes a new parameter, which allows
us to represent immunosupressed environments. The exploration of different im-
munological scenarios enables the discussion of a possible dynamical origin of tumor
dormancy and the sneaking through of tumors, as originally proposed in Ref. [2].

6.1 Introduction

Cancer immunoediting can be described by three phases: elimination, equilibrium
and escape [3]. The first of these three Es corresponds to what has traditionally
been termed immunosurveillance [4], and involves the innate and adaptive immune
responses. During this phase, the immune system keeps in check the tumor cell pop-
ulation, whose majority of cells are successfully recognized and destroyed. However,

113
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some residual tumor cells might remain unnoticed and asymptomatic for long peri-
ods of time, ranging from 5 years to more than 20 years. This leads to a second stage,
in which a small cell population is kept at equilibrium. The mechanisms through
which the immune system upholds the tumor at low cell numbers (i.e., dormant) are
diverse. In a first approach, cancer dormancy can be generally classified into two
categories: tumor mass dormancy and cellular dormancy [5]. In the former case, the
equilibrium of the tumor is the result of a balance between cell growth and cell death.
In the latter, the cells arrest and survive in a quiescent state until more benevolent
conditions are provided by their environment. This work only deals with tumor
mass dormancy, whose occurrence is commonly associated again to two different
mechanisms [6]. The first is angiogenic dormancy, which occurs when the cells are
unable to induce angiogenesis, and therefore to recruit oxygen and other nutrients to
their location. In this manner, the proliferation rate is counterweighted by elevated
rates of apoptosis. The second mechanism is the immune system response. This
response is very complex and involves many types of cells and molecules [7]. There
is evidence that the cell-mediated immune response collaborates with the humoral
immune response promoting the dormancy of tumors, and that CD8" lymphocytes
and TFN-v play a transcendental function in its maintenance [8]. Here, we focus
on the cell-mediated immune response. Finally, the phase of escape is led by some
tumor cells that might present a priori, or have acquired along their evolutionary
process, a non-immunogenic phenotype.

6.2 The model

We consider a model of limited nutrient growth of an immunogenic tumor consisting
on a hybrid cellular automaton (CA) very similar to those presented in the previous
chapters. For an schematic representation of the model see Fig. 6.1. The present
model extends the prior CA models in two ways. First, we introduce a constant
input of immune cells, as those appearing in the ODE models previously described.
Importantly, now we let the tumors grow as the immune systems tries to reduce
them. So, in a loose sense, both systems co-evolve. Two competing forces guide
the dynamics of the model: those contributing to the reproduction of the tumor
cells and those stimulating the immune system surveillance, which tries to destroy
it. Since the reader might have forgotten some aspects of the CA model, in the
following lines, and for the last time, we summarize its fundamental features.

The role of the healthy cells is reduced to passive competitors for nutrients that
allow the tumor cells to freely divide or migrate. The dead cells play no significant
role in the model, and they can be replaced by the tumor and the immune cells, just
as if they were phagocytized by wandering macrophages.

At each CA iteration, the tumor cells can carry out different actions attending
to certain probabilistic rules. These rules depend on the nutrient concentration per
tumor cell and some specific parameters. Each of these parameters 6, represent the
intrinsic capacity of the tumor cells to carry out a particular action a. The tumor
cells can divide 84, move 0,,;, or die 0,,.. Attending to morphology, diverse types of
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tumors can be generated, depending on the nutrient competition parameters among
tumor cells a, A\y. Here, we consider parameter values that, in the absence of an
immune response, generate rather spherical tumors [9, 10].
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Figure 6.1. The cellular automaton. A grid representing the cellular automaton
during the growth of a tumor in the presence of immune effector cells. The tumor cells
are shown in red and the immune cells appear in blue. The remaining spots are occupied
by healthy or dead cells. The vertical black stripes in the boundary of the square domain
represent the vessels from which nutrients diffuse. Periodic boundary conditions are con-
sidered in the remaining part of the boundary. Some immune cells are scattered in the
region, and some other form clusters that advance reducing the tumor.

Concerning the immune cells, we assume a constant input of cytotoxic cells into
the region. When these cells are in contact with at least one tumor cell, they
attempt to lyse it. The fate of this tumor cell depends on the intrinsic cytotoxic
ability of the immune cells, which is coded in the parameter 6;,,. We outline the
importance of this parameter, which allows us to represent immunosuppressed tumor
microenvironments. Following Refs. [2, 11], we assume that when a cytotoxic cell
interacts with a tumor cell, several citokines are secreted by the immune cells, which
induce the recruitment of other immune cells to the domain. We note that the
constant input of immune cells can, to some extent, be regarded as a mechanism of
recruitment as well. Commonly, cytokines are secreted by other types of immune
cells, as for example T helper cells, which are not explicitly modelled here. When
immune cells are not in direct contact with a tumor cell, they can either move or
become inactivated 6;,.. As in previous chapters, we assume that a single immune
cell can not lyse more than three times, leaving the region of interest when this
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occurs [1].

Concerning the natural input of immune cells into the domain, we let them
appear with certain probability and place them at random in the domain, at points
that are not occupied by tumor cells. Every grid point is examined and, if the
probabilistic condition holds, the healthy or dead cells that might occupy it are
replaced with an immune cell. An immune cell is placed in the background with
probability X

P = = — > E, (6.1)
i€CA
where f is a number between 0 and 1, that represents the intensity of the input of
immune cells into the tissue. If Py, is greater than a randomly generated number
between zero and one, then an immune cell appears in the corresponding grid point.
This probability condition is designed in such a manner that the total number of
immune cells is approximately a fraction f of the CA grid points.

The modifications explained right above, imply changes in the algorithm. There-
fore, we briefly describe the new algorithm. The algorithm starts with a domain full
of healthy cells, except for a single tumor cell placed at the centre of the domain.
First, we let the tumor growth until it is detected by the immune system, when
it has reached some specific size Ty;. During this period of growth each CA step
corresponds to one day. Each iteration begins with the integration of the reaction-
diffusion equations, using a finite-difference scheme and a successive overrelaxation
method. Then all the tumor cells are randomly selected with equal probability, and
the CA rules are applied. As in previous works [12], every time an action takes
place, the reaction-diffusion equations are locally solved in a neighbourhood with
size 20 x 20 grid points. When the time of detection is reached, the immune cells
start to evolve. Now the CA step corresponds to one hour, and during the next
twenty-three steps, only the immune cells are computed. First, the background
source of immune cells is executed. Then the reaction-diffusion equations are solved
and all the immune cells are randomly selected. For each immune cell, after apply-
ing the CA rules, the nutrients are computed in a local region, in exactly the same
manner as before. Every twenty-three iterations, the tumor cells are checked and
the tumor cell rules applied as previously described, before immune detection. The
algorithm stops when a maximum number of steps after the elapse of the immune
response has been reached, or when a tumor cell is at a distance of two grid points
from its boundary.

6.3 Simulations and results

We study the evolution of the tumor and the immune system for three different sce-
narios. The first scenario is used as a reference, and it is characterized by high levels
of immune cell recruitment and negligible necrosis due to the scarcity of nutrients
in the core of the tumor masses. In the second scenario, the recruitment levels are
reduced, while the necrosis of tumor cells is enhanced in the third. Unless specified,
the remaining parameters are all the same in every case. Beginning with one tumor



6.3. Simulations and results 117

cell, the tumors grow up to 5 x 103 cells, and at this moment the immune response
triggers. In order to elucidate the effects of tumor immunogenicity, we devise what
shall be called a transient bifurcation diagram. Given a dynamical system, an ordi-
nary bifurcation diagram is a plot of the asymptotic values of a particular variable
against a set of values of some relevant parameter. However, in many situations
there might exist very long transients before the asymptotic state is established.
These transients are of great importance in our context, since tumors may exhibit
long periods of latency before the development of recurrence. Therefore, we com-
pute the number of tumor cells for the last 100 iterations of a trajectory comprising
24000 iterations of the CA from immune detection. Then, these 100 points are rep-
resented on the vertical axis for different values of the 6;,, parameter, which lies
on the horizontal axis. Since each of these iterations corresponds to one hour, we
are registering the size of the tumor for approximately the last 4 days of a period
of 33 months from immune detection. We recall that the parameter 6,5 codes the
intrinsic ability of the immune cells to recognize and lyse their adversaries. Higher
values of this parameter correspond to more immunodeficient environments.

6.3.1 Reference scenario

The set of parameters for this scenario is g;,, = 0.3, Opec = 0.05, Opig = 00, Oree = 1.0,
Oine = 0.1, A\yy = 10, Ay = 25 and o = 2/n. Regarding the natural flow of
immune cells into the tissue, two situations are inspected for each scenario. The
first corresponds to a high input of immune cells into the tumor area. In this case
a value f = 0.10 is set, what means that approximately 10% of the background
is occupied by immune cells. The other has a lower input of 5%, thus f = 0.05.
In the absence of immune response, the tumors display a rather spherical shape,
as those appearing in Refs. [9, 10]. As we can see from the transition bifurcation
diagrams shown in Fig. 6.2, three different regions are clearly distinguished. In
the first region, when the immune system is effective, the tumors are completely
eliminated. The second is related to an equilibrium phase, for which tumors spend
very long transients oscillating at low cell numbers. Finally, tumors with increasing
size, eventually leaving the domain through the vessels, appear in the third region.
Thus, here we see how immunogenicity affects the fate of tumors, in accordance with
the theory of immunoedition.

To give insight into the second and the third regions, time series have been
computed (see Figs. 6.3 and 6.4), until the tumor escapes. Initially, the tumors grow
in the absence of immune response, and then the immune cells start to reduce them
or, in the worst case, delay their growth. Depending on how effective the immune
cells are, longer or shorter transients follow this reduction phase. The asymptotic
dynamics is always the same: if the tumors are not totally eliminated by an efficient
immune system, they eventually escape from the region. These two attractors are
reminiscent of those appearing in Ref. [2]. As shown in Fig. 6.3(a), the length of the
transients in the second region, which are of around twelve years, clearly indicate
a phase of prolonged tumor mass dormancy. During the period of dormancy the
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Figure 6.2. Transient bifurcation diagrams. Two transient bifurcation diagrams
for the reference scenario. The size of the tumor T for the last 100 hours of a trajectory
comprising 1000 days is plotted against the parameter that models the immunogenicity of
the tumor 6;,5. The size of the tumor has been renormalized, dividing it by the number
of total grid points n?. Tumors having escaped the region are assigned a value of T = 2.2,
which is over the maximum obtained in all simulations. (a) A transient bifurcation diagram
for a constant input of tumor cells into the domain given by f = 0.1. (b) A transient
bifurcation diagram for a constant input of tumor cells into the domain given by f = 0.05.
Three different regimes are clearly discerned. The first (1) corresponds to the elimination
of the tumors, the second (2) to abiding small tumors kept in equilibrium by the immune
cells and the third (3) to fast growing tumors that eventually escape. The distances
between the escape points in the third region clearly suggest that the time it takes a
tumor to escape is stochastic.

immune system keeps the tumor at low cell numbers and randomly displaces its
disconnected pieces until one of them reaches the vessels. In the third region again
transients are found, but they are shorter (less than four years) and the tumors
escape with bigger sizes. As predicted in Ref. [2], the duration of the transients
is stochastic. This randomness is evident from the transient bifurcation diagrams,
since after 33 months of tumor-immune struggle, some tumors have escaped and
some others have not, disregarding how immunogenic they are. When the immune
system barely responds to the tumor, we see very big tumors occupying the domain
and escaping rapidly, as depicted in Fig. 6.3(e).

Interestingly, the equilibrium region shrinks as the normal input of cells into the
tissue reduces from f = 0.1 to f = 0.05. As it is shown in Fig. 6.4, the oscillations
during the equilibrium phase are more pronounced. This makes the equilibrium more
unstable and suggests that having cells scattered all over the domain is important
for the maintenance of dormancy. Probably, the reason is that these spread immune
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Figure 6.3. Asymptotic dynamics and tumor escape. Three time series of the
tumor size for the reference scenario are plotted. The constant input of immune cells to
the domain is f = 0.1. The size of the tumors is registered until they escape the domain
through the vessels. The tumors at escape are shown beside. The immune cells appear
in dark blue, while the tumor cells range from red to white. The color bar represents the
number of tumor cells at a grid point. The dead cells are represented in light blue. (a)
A long-lived tumor is kept at equilibrium for 6;,, = 90. This is an example of immune-
mediated tumor mass dormancy. (b) The corresponding small tumor at escape. (c) A
less immunogenic tumor 6, = 106 is kept at equilibrium, but for a considerably shorter
time. (d) The corresponding tumor at escape, which is noticeably bigger compared to the
previous case. (e) A tumor that is barely immunogenic for ;,, = 140. Now the tumor
escapes very rapidly and exhibits the largest size, although the immune system delays its
growth. (f) The corresponding tumor at escape, which is the biggest of the three.
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Figure 6.4. Asymptotic dynamics and tumor escape. Two time series of the
tumor size for the reference scenario are plotted. The constant input of immune cells to
the domain is now smaller f = 0.05. We register size of the tumors until they escape the
domain, and the tumors at escape are shown beside. As before, the immune cells appear
in dark blue, while the tumor cells range from red to white. The color bar represents
the number of tumor cells at a grid point. The dead cells are represented in light blue.
(a) A long-lived tumor is kept at equilibrium for 6;,, = 67. Now the oscillations of the
tumor size during the equilibrium are higher. (b) The corresponding tumor at escape. (c)
Another tumor 6,5 = 89 that is slightly reduced and kept at a constant size for a year,
but that soon after escapes. (d) The corresponding tumor at escape.

cells keep the tumor at a small size, not allowing its overgrowth in any specific
direction.

We have also explored the importance of the tumor size at detection by reducing
this size to 5x 102, The results are depicted in Fig. 6.5 and resemble very much those
shown in Fig. 6.2. There is no hint of a sneaking through mechanism in our model.
According to the definition given in Ref. [13], sneaking through is the preferential
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Figure 6.5. Transient bifurcation diagrams. Two transient bifurcation diagrams
for the reference scenario, represented as previously explained. Now a smaller tumor size
at detection Tye; = 500 has been considered. (a) A transient bifurcation diagram for a
constant input of tumor cells into the domain given by f = 0.1. (b) A transient bifurcation
diagram for a constant input of tumor cells into the domain given by f = 0.05. The effects
of tumor size at detection does not introduce significant changes in the dynamics.

take of tumors after small size inocula to a similar degree with that seen with large
size inocula, compared to the rejection of medium sized inocula. More clearly put,
small and big tumors escape immune surveillance, while intermediate do not. Such
phenomenon has not been observed in the present case for other values of the tumor
size at detection. However, we do not discard it, since motility of tumor cells has
not been included in this first investigation, and might be crucial for these cells to
escape.

Finally, even though the tumors here inspected are homogeneous and no evolu-
tionary process is really taking place in our model, the transient bifurcation diagrams
insinuate how the sculpting of the phenotype occurs, moving from the first region
to the second, and then to the third. Thus, the present model is in accordance with
the theory of immunoedition, which suggest that the immunosurveillance of tumors
sculpts the phenotype of a tumor. In fact, a similar cellular automaton can be used
to explore the impact of heterogeneity and how the immunoedition process takes
place. It suffices to consider that the immune cells intrinsic cytotoxicity, represented
by the parameter ¢;,,, varies for each tumor cell.

6.3.2 Low recruitment scenario

We now evaluate the impact of the recruitment of immune cells to the domain of the
tumor. For this purpose, we reduce the value of 6,.. from 1 to 0.35. Our interest in
this parameter is due to the fact that, in many occasions, the recruitment of cells to
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Figure 6.6. Transient bifurcation diagrams. Two transient bifurcation diagrams
for the low recruitment scenario 6,.. = 0.35, represented as previously explained. (a) A
transient bifurcation diagram for a constant input of tumor cells into the domain given
by f =0.1. (b) A transient bifurcation diagram for a constant input of tumor cells into
the domain given by f = 0.05. A decrease of the immune cell recruitment value reduces
the window of equilibrium. Thus large periods of dormancy require significant levels of
immune cell recruitment.

the site of the tumor might be very complicated. The recruitment of immune cells
is a very complex process, at least from a physical point of view. The extravasation
of leukocytes requires an initial contact between these cells and the endothelial cells,
which depends on adhesion molecules. After adhesion to the walls of the vessels,
the immune cells traverse them through diapedesis, which again relies on several
cytokines. Finally, chemokines bias their random walks to the tumor location [14].
Thus we expect this parameter to exhibit great fluctuations, depending on the tissue
location and other factors, as for instance the degree of inflammation.

The effects of decreasing the recruitment parameter are shown in Fig. 6.6. As
expected, the elimination region shrinks, while the escape region widens. A dramatic
reduction of the dormancy window is observed in both plots. When f = 0.1, the
window still exists, but for f = 0.05 it has even disappeared. These results suggest
that a relatively tight balance between lysis and growth is required to maintain the
dynamical equilibrium of the tumor.

Note that, as previously proposed, the equilibrium of the tumor implies that
reduction must occur in an isotropic manner. If a region of the tumor grows over the
immune system capacity, then a soon overgrowth and a consequent escape would be
expected. In the present model, this relies on a positive feedback mechanism between
the natural input of immune cells and their recruitment. The more cells there are
spread in the domain, the more chances for an immune cell to lethally hit a tumor
cell. ' When this occurs, recruitment proceeds, favouring the local aggregation of
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Figure 6.7. Transient bifurcation diagrams. Two transient bifurcation diagrams
for the high necrosis scenario 0,.. = 1.0, represented as previously explained. (a) A
transient bifurcation diagram for a constant input of tumor cells into the domain given
by f =0.1. (b) A transient bifurcation diagram for a constant input of tumor cells into
the domain given by f = 0.05. Obviously, an increase of tumor cell necrosis enlarges the
elimination region and shrinks the remaining ones. Interestingly, the window of equilibrium
has again reduced, what suggests that long-lived periods of dormancy are based on a
delicate equilibrium between the proliferation rate of the tumor and its lysis by the immune
system.

immune cells at this site of the tumor and giving rise to satellites [1]. This isotropy
can be appreciated in the equilibrium represented in Figs. 6.3(b) and 6.4(b), as
opposed to those situations that lie in the third region, represented in Figs. 6.3(d),
6.3(f) and 6.4(d).

6.3.3 High necrosis scenario

Solid tumors usually exhibit necrotic cores due to the scarcity of nutrients. Other
chemical species can be represented with the present model (e.g. growth factors)
and, if desired, necrosis can be regarded as apoptosis, at least to some extent [12].
Therefore, we now inspect the effects of cell death in the model. To this end, we
increase the value of 0,,.. from almost zero to 0.5. Obviously, the increase of necrosis
facilitates the labour of the immune system. As shown in Fig. 6.7, the elimination
region enlarges substantially, compared to the reference case. Also in the equilibrium
region, lower tumor cell numbers are seen before the escape of the tumor. More
importantly, the equilibrium window, which has been associated to large periods
of tumor mass latency, is practically imperceptible for f = 1.0 and has completely
vanished for f = 0.05. We have again computed time series, showing that transients
occur in the equilibrium region, sometimes as long as those appearing before in the
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Figure 6.8. Asymptotic dynamics and tumor escape. Two time series of the
tumor size for the reference scenario are plotted. The constant input of immune cells to
the domain is now smaller f = 0.05. The size of the tumors are registered until they
escape the domain. The tumors at escape are shown beside. The immune cells appear in
dark blue, while the tumor cells range from red to white. The color bar represents the
number of tumor cells at a grid point. The dead cells, which now also appear inside the
tumor, are represented in green. (a) A quite long-lived tumor is kept at equilibrium for
0iys = 92. (b) The corresponding tumor at escape. (c) Another tumor 6;,, = 118 that
is barely reduced and kept at a constant size for less that half a year, and then escapes
rapidly. (d) The corresponding tumor at escape.

equilibrium, but generally shorter (see Fig. 6.8). In fact, the equilibrium window
and the escape zone drawn in Fig. 6.7(a) overlap.

It seems that the equilibrium region appearing in the reference scenarios has
been swept under the elimination region. Once more, this confirms the requisite of
a relatively delicate balance between the mechanisms that maintain the cytotoxic
effects of the immune system and the growth of the tumor, in order to keep it at
low cell numbers for very long periods of time.
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6.4 Discussion

We have studied the transient and asymptotic dynamics of a cellular automaton
model for tumor-immune interactions. We have shown that, depending on the im-
munogenicity of the tumor, the model furnishes three main types of dynamics, which
are in accordance with the three Es of the theory of immunoedition. Importantly,
we have shown that a dynamical equilibrium between the tumor can occur for long
periods of time, as proposed in Ref. [2]. However, after inspection of the parameter
space, our model suggests that this equilibrium is quite fragile, since it is based on
an adjusted balance between the mechanisms that stimulate the immune response
and tumor cell proliferation. It is worth asking if this also occurs in the model
presented in Ref. [2]. We must bear in mind that such model is very sensitive to
a parameter, there called p, which is related to the rate at which tumor cells are
lysed. In their model, tumor cell lysis is represented by a simple Lotka-Volterra com-
petition term. In the previous chapters it has been demonstrated that the rate at
which a tumor is lysed should be represented by a more sophisticated function, that
depends on the geometrical properties of the tumor and its immunogenicity. Finally,
it was not assessed in their work the importance of the parameters that model the
recruitment. Although their model is tested against experimental data, obtained
from a BCL; lymphoma in chimeric mice, these tumors develop in the spleen of the
mice. As explained in the introduction, the spleen is a secondary lymphoid organ
through which T-cells are permanently trafficking, and the process of recruitment
to other types of tissues might be more arduous. Interestingly, a reduction of the
value of the parameter p from 1.131 to 0.6300, which in their model is related to
the rate at which T-cells are recruited, produces a saddle-node bifurcation through
which the dormant state disappears. Just as in the present work, “high” levels of
recruitment are required to sustain dormancy. Nevertheless, both models clearly
demonstrate that a state of tumor mass dormancy mediated by the immune system
is likely to occur. It is the length of this dormant period that it is being questioned
here. Thus, we conclude that, even though tumor mass dormancy can result from
the cell-mediated immune response to tumor growth, long periods of dormancy, as
commonly found in recurrent metastatic tumors [5, 6], are not likely to arise by this
single mechanism. It is therefore pertinent to ask ourselves if the role of the cell-
mediated immune response in the promotion of the dormancy of tumors is rather to
synergize with other types of mechanisms, as for example cellular dormancy.
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Chapter 7
Conclusions

“True laws of nature cannot be linear”

-Albert Einstein, (1879-1955)

In this research work, the interactions between tumor cells and cytotoxic immune
cells have been analysed from a dynamical point of view. Clearly, its nature is mostly
numerical and theoretical. The experimental data required to validate our models
have been borrowed from other works published in renowned scientific journals. We
expose the main conclusions of our work in the three following sections.

7.1 Control of tumor growth

In the first part of this thesis, which comprises the second chapter, we have studied
the possibility to control the chaotic oscillations in a model of tumor and immune
cell interactions. The two most relevant conclusions of this work are:

e For an immune system which is very effective in the recruitment of cells and
a very aggressive tumor, chaotic oscillations can be observed. Therefore, the
use of immunotherapeutic protocols (and also other therapies) might induce
the unpredictable oscillations of the size of a tumor.

e In spite of the practical limitations of the applied method, the work suggests an
interesting alternative to deal with non metastatic cancers, in contrast to treat-
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ment protocols aimed at destroying the tumor, as for instance in chemotherapy
and immunotherapy. In many situations, such treatments lead to a subsequent
regrowth of those resistant cells that have escaped the applied control (min-
imal residual disease). An alternative to destroy a tumor, is to keep it at
non dangerous levels by performing a feedback control of its size, and taking
advantage of the competition among tumor cells.

7.2 The velocity at which tumors are lysed

In the second part of this work, we have validated a mathematical model and estab-
lished the mathematical function representing the velocity with which a population
of immune cells destroys a tumor. The main contents of this function and its deep
significance are itemized in the following lines:

e The velocity at which a tumor is lysed by a population of cytotoxic cells
increases monotonically with the size of this population, but saturation is
observed for sufficiently high numbers of the immune cells. This saturation
is a consequence of cell crowding, and can be explained in a simple manner.
When the outmost layer of a solid tumor is profusely covered with several lines
of lymphocytes, the addition of cells can not enhance the rate at which the
tumor is lysed, because these cells are not in contact with it. Consequently,
the geometry of the tumors affects this velocity. The more spherical a tumor
is, the smaller the surface-to-volume ratio, and the slower the speed at which
it is erased. On the other hand, given a small number of immune cells in
comparison to the tumor, the increase of the tumor also translates into higher
speed, but again, saturation is found. Now the reason is that at some point, all
the immune cells are busy lysing other tumor cells, and the addition of tumor
cells can not enhance the speed. Therefore, the velocity depends nonlinearly
on both cell populations.

e Two of the four parameters appearing in the mathematical function represent-
ing the rate at which a tumor is lysed are related to its geometry, one is related
to its topology, while the fourth represents the intrinsic ability of the cytotoxic
cells to recognize and destroy their adversaries. Importantly, the present work
has provided, for the first time, a clear measure of the intrinsic cytotoxicity of
lymphocytes.

e In the limit in which the immune cell population is very small compared to the
tumor, the tumor decays at a constant velocity. When the tumor is plainly cov-
ered with immune cells, it decays with a power law decay, the exponent ranging
from cubic to exponential. The former corresponds to connected tumors, while
the latter corresponds to completely disconnected tumors, in which both cell
populations are homogeneously distributed. Intermediate situations are repre-
sented by a crossed Hill function, with exponents representing non-cooperative
binding.
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e The process of lysis can be understood as an enzymatic process, where sat-
uration is found for both, the substrate (the tumor) and the enzyme (the
lymphocytes). Perhaps the most important conclusion of our results is that
they query the general validity of the law of mass action, stating that the ve-
locity at which the products of a reaction are originated, can not be increased
without limits, by simply adding more of one of the two reactants. Unless
the species are added homogeneously and in equal proportions, according to
their stoichiometric coefficients, a point must be always reached for which sat-
uration is observed. This is because interactions occur in a local manner and
take some time, no matter how small this time is. Certainly, the effects of
saturation are more sensible at higher scales, such as for cellular interactions
and animal interactions, in comparison to chemical reactions. This is probably
because interactions take longer at higher scales.

7.3 The dynamics of tumor-immune interactions

In the last part of this work, we have used a cellular automaton to inspect the
transient and asymptotic dynamics of the interactions between neoplastic cells and
cytotoxic cells. The main conclusions are itemized in the following two points:

e Asymptotically, the dynamics of the cell-mediated immune response can only
lead to two outcomes: the destruction of the tumor, or its escape. Transiently,
long periods of dormancy can be mediated by the immune system. If the
immune cells are effective at recognizing the tumor cells, the tumor can be
eliminated. If they are not effective, the tumor escapes. Intermediate situa-
tions can lead to latency periods in which the tumor is kept at low numbers in
an asymptomatic equilibrium. These results are in conformity with the theory
of immunoedition, and support its content.

e The equilibrium phase depends on a relatively fine tuning of the mechanisms
that strengthen the immune response and the rate at which the tumor grows.
Therefore, the equilibrium phase can be easily destabilized by the stochastic
fluctuations and the movement of the tumor, leading to its escape. This implies
that long periods of tumor mass dormancy uniquely mediated by the immune
system are not likely to occur.
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Appendix: Basics of immunology

In this appendix we describe the role of the immune system, its components at
different levels of hierarchy and the mechanisms through which these cells monitor
the organism.

The first lines of defence of an organism against pathogens are the physical and
chemical barriers. The physical barriers correspond to the skin and the mucous,
which are supported by several enzymes capable of destroying dangerous intrud-
ers. When a pathogen overtakes these first obstacles, reaching aseptic tissues in the
body and infecting them, the immune response is triggered. The immune system is
a complex system that comprises many biological processes and cell interactions. It
appears in most multicellular organisms (around 98 % have a more or less developed
immune system) and evolved to protect such organisms against pathogens, such as
viruses, bacteria or fungi. The immune system cells and molecules are distributed
over a network of organs (bone marrow, thymus, lymph nodes, spleen, etc.). Broadly
speaking, the immune system has developed two different mechanisms to fight in-
fections. Depending on the requirement of previous knowledge of their enemies,
and also on the molecular structures involved in the their recognition, the immune
response is classified as innate or adaptive (see Fig. 1).

The innate immune response is based on the activation of preformed molecules,
called complement proteins, and several types of cells, such as phagocytes or inflam-
matory cells. Cytolitic cells, like the natural killer cell (NK), play a key role in
the context of tumor immunology. All these cells and proteins have the potential
to recognize and interact with highly conserved molecular patterns, without prior
exposition to them. Therefore their belonging to the innate arsenal of the immune
system. Other proteins, which are not usually preformed, but rather synthesized
and secreted by the immune cells as a consequence of the interaction with antigens,
are indispensable for the self-regulation of both the adaptive and the innate response.
These proteins are technically known as cytokines, and will be introduced at the end
of this section. In the following lines, we briefly list and describe the constituents of
the innate immune response.

Complement: a set of proteins circulating in the blood and the tissues. Its acti-
vation leads to a cascade reaction which ultimate result is the direct or indi-
rect elimination of pathogens and the begin of inflammation. As an example
of a direct elimination process we can think of the protein complement C9,
which creates holes in the membrane of a target cell, producing their lysis.
An indirect process is, for instance, the marking of pathogens that promotes
phagocytosis. The complement is activated through three different pathways,
which will not be discussed here.

Phagocytes: immune cells responsible for the ingestion and digestion of pathogens.
Phagocytes can be classified by the morphology of their nucleus. Macrophages
and monocytes are mononuclear phagocytes. The latter usually navigate
through the circulatory system until they land in some particular tissue. Then
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these cells mature and differentiate into macrophages. Macrophages mainly
concentrate in the connective tissue underlying the epithelium and in the
lymphoid organs. They posses membrane receptors that have been selected
by evolution to recognize conserved antigenic structures. Apart from eating
pathogens, they induce inflammation by secreting soluble proteins (cytokines)
and unleash the adaptive immune response through antigen presentation. This
task is also carried out by another type of cell of the innate immune response:
the dendritic cell. Polynuclear phagocytes are also referred in the literature
as granulocytes, since these cells present a multilobulated nucleus and a cyto-
plasm full of granules. They are shorter-lived (days) and spend most of their
time in the circulatory system, until the emission of cytokines or complement
proteins provokes their recruitment to the tissues. There are three types of
granulocytes: neutrophils, eosinophils and basophils. Neutrophils are the most
abundant among the granulocytes (approximately 90 %). They can phagocyte
and destroy pathogens directly, but they can also dump the contain of its lytic
granules through a process called exocytosis. However, it is eosinophils that
are more specialized in this last procedure. These comprise about 3 — 5%
of the leukocytes, and are frequently found in tissues. Basophils represent
a very small cell population and participate in inflammation. Together with
the complement, phagocytes constitute the first line of defence of the immune
system.

Mastocytes: theses cells are the most important mediators of the inflammatory
response. They live close to the blood vessels and locally regulate their perme-
ability. When they are activated by pathogens, mastocytes release high doses
of preformed inflammatory mediators, such as histamine. The region is then
flooded with blood carrying fresh leukocytes and the pathogens are destroyed
by brute force.

NK cells: these are the innate cytotozic cells, capable of recognizing molecular
proteins without previous activation. After recognition, they proceed to lyse
(destroy) their enemies by releasing proteins contained in their granules. These
granules mainly contain a protein called perforin and granzymes. The former
polymerizes in the membrane of the target cell, opening holes on it. The lat-
ter is responsible for triggering the apoptotic machinery of the cell, leading to
its programmed death. NK-mediated cytotoxicity is based on the recognition
of MHC-class I molecules and it is explained by a model of double receptor,
that combines activatory and inhibitory signals. A receptor is a protein on
the surface of a cell that binds to other proteins, allowing it to recognize other
cells and substances. In the language of complex systems, cells communicate
and process information through chemical signals, and receptors are respon-
sible for the transduction of these signals. The receptors of the NK cells are
classified into two groups: immunoglobuline-like receptors and lectine-like re-
ceptors. Two respective examples of receptors are the KIR receptor and the
NKG2 receptors. Specifically, the NKG2D receptor appears in Chapter 3.
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Figure 1. The two arms of the immune response. (a) The cells and proteins that
mediate the adaptive immune response. (b) The cells and proteins that mediate the innate
immune response.

Contrary to the innate immune response, adaptive immunity is constantly evolv-
ing through processes of genetic recombination and Darwinian selection. The cells
that integrate this response exhibit a tremendous heterogeneity of receptors, which
are randomly generated. This increases the chances of detecting new pathogens that
can not be recognized by innate immune cells. When such detection takes place, the
specific immune cell activates and begins to proliferate, creating a powerful army
capable to counteract the infection. As a proof of the complexity of the immune
adaptive response, it is interesting to see that part of the cells differentiate into
memory cells, so that a faster and more efficient response is executed in later sim-
ilar encounters. Two types of responses can be discerned in the adaptive immune
response: the humoral response and the cell-mediated response.

The humoral arm of adaptive immunity is mediated by a set of specific proteins
called immunoglobulines, and the B cells. These molecules are also called antibodies,
since they bind to specific antigens. An antigen is a protein related to a foreign
microorganism, that might appear linked to the surface of such agent, or free-floating
in the serum and in tissue fluids. Antibodies are synthesised and secreted by plasma
cells, which differentiate from B cells. Antibodies carry out different assignments.
For example, IgM and IgG antibodies can activate the complement system. In fact,
IgM levels are referred in Chapter 3, since they can be correlated to tumor size
in plasmacytomas (a cancer of the plasma cells). Antibodies commonly attach to
pathogens as well. This phenomenon is called opsonization, and has two important
consequences. First, it neutralizes or blocks the infective agents, and second, by



136

marking these pathogens, it facilitates the labour of recognition and destruction of
phagocytes. Antibodies are also important regulators of the process of inflammation,
by stimulating basophils and mastocytes, and are also abundant in MALT tissues.
Concerning B cells, these cells can use their receptor (BCR) to recognize antigens
in native form and to secrete antibodies as well. However, it is precisely when these
cells interact with specific antigens in the secondary lymphoid organs, that they
are activated and the humoral adaptive response is triggered with intensity. After
activation, they differentiate into plasma cells and memory B cells. The latter also
act as antigen presenting cells, by means of their receptor.

The cell-mediated arm is mostly comprised by the T cells. The two most impor-
tant types of T cells are the T helper cells (mostly CD4% cells) and the cytotoxic
T cells (mainly CD8" cells). T helper cells interact with B cells and other T cells
through their TCR receptor and through the emission of cytokines, helping them to
activate, divide and differentiate. They can also help macrophages and NK cells to
destroy pathogens. To some extent, T helper cells control and orchestrate the adap-
tive immune response by secreting cytokines and interacting with antigen presenting
cells (dendritic cells and macrophages), which arrive to the lymphoid organs from
the site of infection. Antigens are presented to T helper cells through MHC class
IT molecules and, under proper co-stimulation, these cells activate or differentiate
to memory T cells. On the other hand, the cytotoxic T cell, as its name indicates,
is specialized in destroying other types of cells. For example, they can lyse cells in-
fected by viruses or tumor cells. Since they are very harmful, their prior activation
requires higher co-stimulatory signals than T helper cells. Cytotoxic lymphocytes
can be activated directly by antigen presenting cells or, when co-stimulatory signals
are not abundant, by T helper cells. The particular mechanism of destruction is
relevant to our study and operates in the following manner. When a cell is infected
by some intracellular pathogens, it starts to present on its membrane fragments
of antigenic proteins associated to the molecules of the major histocompatibility
complex one (MHC I). These complexes are responsible for presenting on the cell
surface fragments of proteins inside the cell, so that they can be checked. When
an activated cytotoxic lymphocyte recognizes specific molecular patterns presented
by their target cells, these cells polarize (capping) by reorienting their cytoskeleton.
Then, they induce apopotosis in the target cells in the same manner as described
before by NK cells. As it is explained in Chapter 4, the time duration of the lytic
process lasts around an hour, and will be of great importance in our models.

In order to understand the process of recruitment, that plays an important role in
our models, we now give a short summary on cytokines. Cytokines are proteins that
allow the different constituents of the immune system to interact and communicate,
leading to an unilateral response. Cytokines are commonly produced during the first
moments of cellular activation and have a rather local effect, alerting other immune
cells of the ongoing of an immune response. Thus, cytokines have three main effects:

e Regulate the duration and amplitude of the immune response

e Recruit other immune cells to the site of conflict
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Figure 2. The lymphatic system. A network of lymph nodes (red) connected by
lymphatic vessels. This network allows to process the substances circulating in the body
to detect antigens. Other lymphoid organs, such as the spleen, the bone marrow and the
thymus are shown.

e Induce the generation of immune cells from their hematopoietic precursors

Although many immune cells secrete cytokines, the major producers are the
macrophages and T lymphocytes, which principally orchestrate the innate and adap-
tive immune response, respectively. Cytokines can be classified in six different
groups, depending on the protean nature of their receptor. For brevity, we bet-
ter describe a few examples that are relevant in the context of our investigations.
The interleukin IL-2 increases the cytotoxic activity of NK cells and the proliferation
of T-cells and macrophages. It is mainly secreted by T cells and monocytes. The
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Figure 3. The process of T cell recruitment. A cell circulating attaches to the
endothelium, rolls on it and transverses these walls of the vessel (diapedesis). Then, it
directs to the tumor, following chemical gradients (chemotaxis).

tumor necrosis factor alpha TNF-a triggers the inflammatory response, producing
the increase of the diameter of vessels and their permeability, and inducing the ex-
pression of adhesion molecules of the endothelium. The interleukins IL-1, IL-6 and
[L-12 are important for increasing the temperature of the body, causing fever. T
helper cells secrete 11.-4, 1L-10 and IL-12, which are potent activators of lympho-
cyte activation and differentiation. T cytotoxic lymphocytes secrete 1L.-16 which
promotes chemotaxis. A very important cytokine is interferon gamma IFN-v. It is
secreted by T lymphocytes and NK cells, and induces MHC-class I and IT molecules
presentation. Finally, the transforming growing factor beta TGF-f is secreted by
macrophages and T helper cells, to inhibit the activation of T cells and macrophages
themselves.

To end this succinct introduction to immunology, we describe the origin and
trafficking of the immune cells repertoire, with the aim of showing the action of the
immune system as a whole complex and coordinated system. The immune system
cells are organized forming a network of organs and tissues, communicated by lym-
phatic vessels (see Fig. 2). Altogether, these structures are known as the lymphatic
system. The organs of the lymphatic system are usually classified into primary lym-
phoid organs (the bone marrow and the thymus) and secondary lymphoid organs
(the spleen, the lymph nodes and the mucosa-associated-lymphoid-tissue or simply
MALT). The first are responsible for the maturation and differentiation of cells,
while the second are sinks for antigenic molecules and cell multiplication.

Bone marrow: it is located inside the bones and formed by islets of of hematopoi-
etic cells. All the immune cells are generated from these pluripotent stem
cells, and then these precursors of immune cells migrate to other organs where
they suffer differentiation. As an exception, immature B-cells both divide and
differentiate in this organ.
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Thymus: it is located in the thorax. Immature T cells migrate to this organ to
divide and differentiate. During this process the lymphocytes experience so-
matic recombination and later suffer positive and negative selection processes.
This mechanism ensures the generation of a very heterogeneous population
of lymphocytes each with a different receptor, capable of recognizing specific
surface proteins.

Spleen: it is a big node that drains antigens from the blood. All types of immune
cells are found in this organ, that participates in the generation of immune
responses against antigens coming from the blood.

Lymph nodes: they are located throughout the body including the armpit and
the stomach, and are linked by the lymphatic vessels. B cells and T cells are
abundant in this organ, which acts as a filter for foreign particles (antigens).
Antigen presenting cells (dendrites and macrophages) usually travel to the
lymph nodes and present their antigens to T cells, triggering the adaptive
response through their activation.

MALT: a diffuse system of small concentrations of lymphoid tissue found in var-
ious mucosal sites of the body (gastrointestinal tract, thyroid, breast, lung,
salivary glands, skin). It is populated by lymphocytes such as T cells, B
cells, plasma cells and macrophages. Again, in this site these cells encounter
antigens passing through its epithelium.

The bone marrow is constantly generating leukocytes that later on enter the cir-
culatory system. Some of them extravasate in different tissues and wait for the ap-
pearance of pathogens, until they die after several weeks (macrophages, mastocytes,
dendritic cells). Some other just live a few days in the circulatory system (granulo-
cytes). T cells have to enter the thymus to mature and then, just like mature B cells,
are daily recirculating. These cells have an average life of weeks. They abandon the
blood vessels and enter the lymph nodes, then leave these nodes through the lymph
vessels and close their loop by reentering the blood stream through the subclavian
veins. This constant recirculation augments the probability of being activated by a
specific antigen.

Things change dramatically when a tissue is infected. Then the inflammatory re-
sponse triggers. The vessels become more permeable and selectively export immune
cells, which are guided by chemotactic molecules. Some of these recruited cells stay
in the zone lysing pathogens and secreting cytokines, to reinforce the recruitment.
Others travel through the blood until they arrive to nearby lymph nodes, where they
present antigens and trigger the adaptive immune response, which takes around a
week to fully develop. Then, the activated effector T and B cells leave the lymph
nodes, and the first travel to the site of infection while the second direct towards
the bone marrow, where they secret antibodies. The entire process of recruitment
and cell trafficking is accomplished by means of adhesion molecules, such dirigins,
integrins and selectins (see Fig. 3).
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Resumen y conclusiones

Introduccion

A pesar de los avances en el tratamiento de algunos canceres, y de los miles de
millones invertidos por el gobierno americano en la lucha contra el cdncer en los
ultimos cuarenta anos, las tasas de mortalidad de una gran parte de ellos apenas si
han disminuido. Estos hechos, junto con diversos hallazgos experimentales que han
puesto en duda los cimientos de la teoria de la mutacién somatica, teoria vigente de
la carcinogénesis a lo largo de practicamente el dltimo siglo, han llevado al National
Cancer Institute a abrir doce centros de fisica y oncologia. Sin lugar a duda, a dicha
decisién han contribuido los hallazgos de la teoria de los sistemas dindmicos y la no
linealidad, asi como el subsiguiente desarrollo de las ciencias de la complejidad y la
biologia de sistemas, iniciadas estas ultimas a lo largo de los anos cincuenta del siglo
pasado, mediante la introduccion de principios y técnicas matematicas capaces de
modelizar los sistemas bioldgicos. En dicho contexto, el presente trabajo se centra en
el estudio de las interacciones entre las células cancerigenas que integran un tumor
y la respuesta inmunoldgica celular. En una primera toma de contacto, se inves-
tiga un modelo en ecuaciones diferenciales ordinarias de tres poblaciones celulares,
publicado previamente en la literatura cientifica. Dichas poblaciones son las células
sanas, las células cancerigenas y las células efectoras de la respuesta inmunitaria.
El hallazgo de dindmicas cadticas transitorias en dicho modelo, permite utilizar la
técnica del control parcial, consiguiendo mantener el tumor oscilando a niveles toler-
ables y evitando la extincién de células sanas. Una vez familiarizados con el modelo
matematico, se desarrolla otro similar, que posteriormente es ajustado a datos exper-
imentales. A tal efecto, se introduce una funciéon matematica capaz de representar la
velocidad del lisado de los tumores por los linfocitos T, que posteriormente es estu-
diada en detalle utilizando modelos de automatas celulares. Mas adelante, poniendo
el proceso de lisis de una célula cancerigena en relacién con la cinética enzimética, se
estudian los limites que ofrece dicha ley matematica, y una iltima correccién es in-
troducida. La tesis concluye con el estudio de la dinamicas transitorias y asintéticas
que resultan de las interacciones entre las células cancerigenas y las células de la
respuesta inmunitaria. Extendiendo los modelos de autéomatas celulares utilizados
previamente, se demuestra la dificultad de observar periodos muy prolongados de
latencia tumoral, mediada exclusivamente por el sistema inmunitario.

Metodologia y objetivos

La metodologia utilizada a lo largo del trabajo ha sido tedrica y matemaética, basada
tanto en métodos analiticos como computacionales. Los resultados experimentales
utilizados en la validacion de los modelos se han tomado prestados de articulos
publicados en tres revistas: Nature, Science y Cancer Research. Los objetivos que
se han propuesto y cumplido a lo largo de esta tesis doctoral se desglosan en los
siguientes apartados, mientras que las conclusiones de la presente investigacion se
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resumen en la ultima seccion.

Técnica del control parcial aplicada a un modelo de cancer

Se estudia un modelo en el que el tejido es representado mediante ecuaciones diferen-
ciales ordinarias. En esta primera aproximacion se asume, por lo tanto, homogenei-
dad espacial. Cada una de las tres variables representa a una poblacion celular, a
saber, una poblacion de células cancerigenas asociada a la neoplasia, una poblacién
de células sanas que tiende a extinguirse en presencia del tumor, y una poblacién
de células efectoras de la respuesta inmunitaria. La competiciéon por espacio y por
nutrientes entre las células cancerigenas y el tejido sano, asi como la acidificacion
del entorno resultante del metabolismo primitivo de las primeras, se modeliza medi-
ante ecuaciones tipo Lotka-Volterra. La dindmica de la respuesta inmunoldgica estéa
comprendida por tres términos: uno de reclutamiento de linfocitos a la region del
tumor, como consecuencia de la emisién de citocinas; otro de competicion por re-
cursos, que permite incluir la inactivacion de las células inmunitarias por las células
cancerigenas; y, finalmente, un tercero que representa la inactivacion de linfocitos
independiente de las células cancerigenas, por poder solo lisar un numero finito de ve-
ces. Finalmente, un término de lisis representa la destruccion de células cancerigenas
por las celulas inmunitarias, también modelado a la Lotka-Volterra.

Se encuentra que, para un sistema inmune muy eficiente en el reclutamiento y
un tumor muy agresivo en su crecimiento, el sistema dindamico presenta oscilaciones
cadticas de las poblaciones. Variando los parametros de los modelos, se observa
una crisis de frontera que provoca la apariciéon de transitorios cadticos, después de
los cuales el tumor acaba por dominar todo el tejido, con la consiguiente extincion
de células sanas. Con el fin de evitar el escape de las células cancerigenas y el
sobrecrecimiento del tumor, se aplica una técnica de control, denominada técnica
del control parcial. El método del control parcial permite, dado un sistema dinamico
que experimenta dinamicas cadticas previas a la ocurrencia de un acontecimiento en
particular, mantener dicha dindmica, evitando dicho suceso indeseado. Asumiendo
que dicho sistema experimenta también ciertas perturbaciones externas, nuestro
método de control es capaz de evitar la ocurrencia del acontecimiento indeseado, en
nuestro caso el sobrecrecimiento del tumor, con la consecuente extincion de células
sanas, utilizando controles de menor intensidad que dichas perturbaciones.

En tltima instancia se discute la imposibilidad de aplicar dicho método, dada la
complejidad de los sistemas biolégicos.

Validacion de un modelo matematico con datos experimentales

En segundo lugar, se procede a una modificacién del modelo anterior para ponerlo en
concordancia con resultados experimentales, obtenidos en estudios de la respuesta
inmune celular al crecimiento tumoral. Para ello, la funcién matematica que rige
el lisado se modifica, siguiendo trabajos anteriores. Tras la validacién del modelo
utilizando ajustes por minimos cuadrados, se analiza su espacio de fases y su sen-
sibilidad a las perturbaciones, mediante la variacion de sus parametros. Para ello
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se utilizan técnicas habituales en el estudio de los sistemas dinamicos, como son los
diagramas de bifurcaciones o el cémputo de conjuntos invariantes asociados a los
puntos fijos inestables (sillas) del mismo. Dicho andlisis permite establecer un valor
estimado del minimo nivel de ligandos que han de sobreexpresar las células can-
cerigenas para que la respuesta inmunitaria sea efectiva. Este hecho podria resultar
de interés en el desarrollo de futuras inmunoterapias. En lo que a la nueva funcién
matematica concierne, se proponen una serie de hipdtesis con el fin de explicar su
naturaleza.

En la dltima parte del trabajo se introducen unos protocolos de quimioterapia,
que son representados mediante el Exponential Kill Model. Para representar los
resultados experimentales (obtenidos en estudios in vivo con ratones), se propone la
utilizacién de retardos en los modelos, capaces de representar la demora que se ob-
serva desde que se administran los farmacos, hasta que ejercen sus efectos citotoxicos,
sugiriendo que dichas demoras se deben a los complejos procesos farmacocinéticos en
la distribucion y absorcion de tales agentes. Este método supone una simplificacién
notable, en comparacién con otros modelos farmacocinéticos mas complejos.

La expresion matematica que rige el lisado de un tumor

Con el objeto de estudiar la compatibilidad de las hipotesis planteadas anteriormente
en relacion con la expresion matematica que determina la velocidad con la que un
tumor es lisado por el sistema inmunitario, en funcién de la citotoxicidad intrinseca
de los linfocitos y la geometria del mismo, se desarrolla un autémata celular, prop-
uesto en otros trabajos. Dicho modelo es un modelo espacio-temporal, en el que
las células ocupan diversas posiciones en una malla cuadrada. Las células pueden
proliferar, migrar o morir, en funcién de la concentracién de nutrientes en cada
punto del espacio, siguiendo ciertas reglas probabilisticas. La difusién de nutrientes
en el dominio del tumor, tales como el oxigeno y la glucosa, es simulada mediante
ecuaciones de reaccién y diffusion.

Asumiendo que originalmente el espacio estda ocupado por tejido sano, y colo-
cando en el centro del dominio una célula mutada, se itera el sistema en el tiempo,
generando tumores con distinta geometria. Se aprecia como, al aumentar la tasa
metabdlica de las células tumorales, la competicion por nutrientes entre las mismas
produce, por un proceso de retroalimentacién positiva, una ruptura de la simetria
esférica de los tumores, que adquierien morfologias papilares y filamentosas.

Se aprovechan las diversas morfologias para estudiar las curvas de lisado. A tal
efecto, se disponen diversas poblaciones de linfocitos en los dominios del tumor, y se
observa el lisado de los mismos al cabo de cierto tiempo (el equivalente a cuatro horas,
que es lo acostumbrado en los ensayos de emisién de cromo en inmunologia). Para
ello, se supone que el tumor no crece durante el proceso de lisado, tal y como ocurre
en muchos experimentos en inmunologia, en los que las células del tumor se irradian
previamente. En todo caso, el tiempo que tarda una célula en dividirse es aprox-
imadamente de un dia, por lo cual se puede asumir una aproximacion adiabatica.
Mediante ajuste por minimos cuadrados entre los resultados in silico y el modelo
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en ecuaciones diferenciales ordinarias, se observa que los tumores menos esféricos
son lisados méas rapidamente. Sin embargo, la funcién matematica utilizada es inca-
paz de reproducir los resultados del autémata celular cuando se estudian escenarios
inmunodeficientes (cuando las células del sistema inmunitario no son capaces de re-
conocer bien a las células tumorales). Para ello proponemos una modificacién de
la misma que reproduce los resultados notablemente mejor. Ademas, ello permite
dilucidar el significado biolégico de los parametros que figuran en dicha funcién, de
forma clarividente. Dos de ellos quedan vinculados a la geomtria del tumor, mien-
tras que el tercero queda asociado a la citotoxicidad intrinseca de los linfocitos. Se
provee con ello, por vez primera, una medida rigurosa de la citotoxicidad intrinseca.

Finalmente, utilizando la cinética enzimatica para representar el proceso celular,
se deriva la funcién matemadtica de forma analitica. Esta funcion puede entenderse
como una extension de la cinética de Michaelis-Menten para situaciones en las que
la concentracién de substrato es equiparable a la de la enzima.

El decaimiento de tumores

Establecida la funciéon matematica que representa la velocidad con la que las células
efectoras de la respuesta inmunitaria lisan un tumor, se procede a investigar sus
limites. Para ello, se obtiene de forma analitica la velocidad con la que un tumor
es lisado cuando estd completamente rodeado de células inmunitarias. Ajustando
nuevamente dicha expresion matematica al modelo de autéomata celular descrito
anteriormente, y haciendo las modificaciones oportunas, se verifica que en dicho
caso el decaimiento de un tumor bidimensional sigue una funcién del tiempo de
forma parabdlica, lo cual es consistente con el hecho de que, para tumores conexos,
el tumor se reduce en superficie, pero através de su frontera unidimensional. Con el
objetivo de que se cumplan dichos limites, y para cubrir también tumores disconexos,
es preciso introducir una ultima modificacién en la expresiéon matematica.

Dinamica de la respuesta celular al crecimiento tumoral

En ltima instancia, se procede a estudiar la dinamica transitoria y asintotica que
resulta de la coevolucién del sistema inmunitario y un tumor. Para ello, se introduce
una modificacién en el modelo de autémata celular, que incluye el flujo de células
inmunitarias de la respuesta innata (células NK), y que suelen depositarse de forma
natural en los tejidos.

Mediante el desarrollo de nuevas técnicas, como por ejemplo los diagramas de
bifurcaciones transitorios, se observan tres regimenes en funcién de la citotoxicidad
intrinseca de las células efectoras. O bien el tumor es eliminado, si los linfocitos son
suficientemente efectivos; o bien el tumor se mantiente a bajos niveles, en un estado
de equilibrio que puede durar entre cinco y quince anos; o bien los tumores escapan
a la vigilancia (inmunoevasién). Ello permite correlar de forma fidedigna los resulta-
dos del modelo con la teoria de la inmunoedicién. Dicha teoria propone que, habida
cuenta de la heterogeneidad celular comunmente hallada en los tumores, el sistema
inmunoldgico esculpe su fenotipo seleccionando las poblaciones que son resistentes a
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la vigilancia inmunitaria. En un principio las células susceptibles son eliminadas, so-
breviviendo inicamente las células parcial y totalmente resistentes. Luego sigue una
etapa de equilibrio o latencia, en la que el tumor permanece asintomatico durante
un periodo mas o menos extenso de tiempo. En tltima instancia, el proceso desem-
boca en la evasion inmunitaria de las subpoblaciones mas resistentes, observandose
el recrecimiento del tumor.

Moviéndonos en el espacio de parametros, se observa que la ventana de equilib-
rio es notablemente sensible a las modificaciones de los mismos, manifestando la
delicadeza de un estado de latencia tumoral prolongado mediado de forma exclusiva
por el sistema inmunitario.

Conclusiones

Las conlusiones principales que se derivan de nuestro trabajo se exponen a contin-
uacion.

e La conclusiones mas importantes del capitulo segundo son dos. En primer
lugar, que es plausible que la utilizacién de protocolos de inmunoterapia sea
capaz de introducir dinamicas caoticas en la dinamica de crecimiento de un
tumor. En el segundo, que a pesar de las limitaciones practicas del método de
control utilizado, el trabajo sugiere una interesante alternativa a la aplicada
por los tratamientos convencionales, que esta siendo estudiada en otros contex-
tos, como por ejemplo en la quimioterapia. Dicha alternativa propone, en lugar
de intentar erradicar un tumor, produciendo la expansion subsiguiente de las
pequenas poblaciones resistentes que generalmente suelen sobrevivir al mismo,
mantenerlo a unos niveles razonables, y aprovechar la competicion interna de
las células cancerigenas y posteriores intervenciones para evitar su expansion.
Notese que en tanto que un tumor no metastatice, en muchas ocasiones, no
supone un peligro fatal para el paciente.

e En el tercer capitulo se concluye, mediante el ajuste del modelo a datos ex-
perimentales, que la velocidad del proceso de lisis de un tumor no puede in-
crementarse arbitrariamente. Se propone que dicha saturacién es el resultado
del apinamiento de los linfocitos, que dejan de estar en contacto con el tumor
cuando son muy numerosos. Asi mismo, se concluye que la utilizacion de re-
tardos es capaz de simplicar notablemente los procesos farmacocinéticos, en
una buena aproximacion.

e La conclusion del capitulo cuarto es que la velocidad con la que el sistema
inmunitario lisa un tumor es mayor conforme aumenta el nimero de células in-
munitarias, pero llegado a un punto satura, dado que una vez que las primeras
lineas de linfocitos lo cubren, el resto no estan en contacto. Consecuentemente,
dado el volumen de un tumor, cuanto mayor es la superficie que encierra dicho
volumen, mayor es la velocidad con la que éste es lisado, pues hay mas lugar
de contacto. Por lo tanto, los tumores esféricos son los mas dificiles de lisar.
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De igual modo, dado un ntmero suficiente de células inmunitarias, la veloci-
dad con la que se lisa un tumor incrementa al aumentar el niimero de células
tumorales, pero una vez que todas las células inmunitarias estan ocupadas
lisando a sus adversarias, se observa nuevamente saturacion.

En el capitulo quinto se concluye que, cuando la poblacion de células inmu-
nitarias es pequena en comparacion con el tamano del tumor, se observa que
su decaimiento es lineal con el tiempo. Esto es, el tumor decae con velocidad
uniforme. Basta considerar el caso limite en el que sélo se tiene un linfocito.
Si éste tarda en lisar una célula cancerigena en torno a una hora, entonces
la velocidad de decaimiento es aproximadamente de una célula por hora. Sin
embargo, cuando el tamano de la poblacién de células inmunitarias es suficien-
temente grande, rodeando todo el tumor, éste se va lisando capa a capa. Dado
que la superficie de contacto se hace mas pequena a cada paso, la velocidad dis-
imuye a medida que se reduce el tumor. Si el tumor es conexo, el decaimiento
de un tumor bidimiensional es parabdlico en dicho limite. Sin embargo, si
es disconexo y los linfocitos estan homogéneamente mezclados con las células
que constituyen el tumor, el decaimiento es exponencial, de forma idéntica
a un proceso de decaimiento radiactivo. En casos intermedios, la expresion
matematica que rige la lisis de un tumor es una funcién de Hill cruzada. La
cinética del proceso es muy similar a una cinética de Michaelis-Menten, pero
que aplica tanto al sustrato como a la enzima. Como se acaba de decir, la
funciéon matematica resultante es una funcion de Hill en dos variables, donde
los exponentes, al ser menores o iguales a la unidad, manifiestan el caracter
no cooperativo del proceso de lisis. Esto es, en lo que a la lisis concierne, las
células se estorban o no lo hacen.

La conclusién del ultimo capitulo es que, si bien el sistema inmune puede
mantener un tumor asintomético durante cierto tiempo (hasta unos pocos
anos), es improbable que sea capaz de mantener un estado de latencia tumoral
durante periodos muy prolongados (del orden de quince anos). Ello se debe
a un ajuste relativamente fino entre los procesos que espolean la respuesta
inmunitaria (el reclutamiento, fundamentalmente) y el ritmo de crecimiento
del tumor, asi como del constante desplazamiento que resulta de dicho proceso.



