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Resumen

Las redes de comunicaciones inaldmbricas y las redes de distribucién de electricidad experi-
mentan crecientes demandas en lo referente a eficiencia y fiabilidad. La necesidad de desarrollar
métodos para asignar unos recursos escasos, como son la potencia y el ancho de banda, motivan la
incorporacién de herramientas de optimizacién no lineal y procesamiento de sefial para su disefo
6ptimo. Esta tesis desarrolla esquemas para asignacion eficiente de recursos en redes dindmicas,
haciendo hincapié en el caracter estocastico tanto de la formulacién de los problemas como del
funcionamiento de los algoritmos. Se investiga el uso de optimizacién estocastica y de herramientas
de descomposicién para el desarrollo de algoritmos de baja complejidad con aplicaciones especi-
ficas en el disefio a través de capas (cross-layer) de comunicaciones inalambricas, redes de radio
cognitiva, y redes de distribucién de electricidad (smart grids).

El caracter limitado de los recursos necesarios para el funcionamiento de las redes, junto con la
inclusién de diversos requisitos de calidad de servicio (Quality of Service, QoS), hace que el disefio,
la gestidn y la operacion de las redes planteen una serie de retos. Ademas, cuando la informacién
de estado de la red es variante en el tiempo, los nodos deben adaptar sus pardmetros de operacién
a dicha variabilidad. Se hace necesario el disefio mediante esquemas novedosos que no sélo utilicen
informacién local sino que integren la informacién de los nodos a lo largo de la red, y que tengan
en cuenta la incertidumbre referente los pardmetros del sistema y en los eventos futuros.

Metodologia

En esta tesis proponemos el disefio de esquemas 6ptimos mediante la solucidon de problemas
matematicos rigurosamente formulados teniendo en cuenta las variables aleatorias presentes en los
modelos de red. Los tres elementos béasicos de la formulacion de un problema de optimizacién son
las variables de disefio (recursos a asignar asi como informacién de monitorizacién y de control), las
restricciones de sistema y de calidad de servicio), y la funcién a optimizar u objetivo (usualmente
formulada como suma ponderada de varias funciones de utilidad).

Una vez formulado el problema de optimizacién, se identifica el tipo de problema que es y
se procede a su solucién, ya sea mediante la aplicacién de algoritmos existentes para el tipo de
problema en cuestién, o el desarrollo de nuevos algoritmos mediante la adaptaciéon o combinacién
de algoritmos existentes para problemas relacionados. La validacién experimental de los algoritmos
propuestos es imprescindible, ya que permite validar el modelado del problema, el funcionamiento
del algoritmo propuesto y el anélisis de aspectos técnicos que trascienden la notacién matematica.

Antecedentes

Existen trabajos previos en asignacién dinamica de recursos en redes inaldmbricas que integran
informacién de diversas capas (fisica, enlace, red...). Algunos de estos trabajos estan basados en
optimizacién convexa y descomposicién en el dominio dual, a la vez que utilizan informacién sobre
la ganancia instantanea de los canales inaldmbricos (fading); otros trabajos establecen politicas de



backpressure basadas en técnicas de control adaptativo y que tienen como objetivo estabilizar las
colas de transmisién de la red.

En los dltimos afios, las redes de cognitive radio (CR) se han posicionado como la préxima
generacion de comunicaciones inalambricas y moviles para mitigar el problema de la infrautilizacién
del espectro, gracias a su capacidad para limitar la interferencia que se causa a los usuarios
coexistentes (usuariosprimarios). Para hacer esto, las CRs deben adquirir informacién sobre la
presencia de sefiales en el espectro y adaptar sus pardmetros de transmisiéon de acuerdo a la
informacién percibida y a los recursos de transmisién disponibles. Los trabajos existentes en este
contexto limitan la interferencia causada, bien mediante la imposicién de restricciones (a corto o
largo plazo) sobre la potencia de transmisién; o bien controlando la probabilidad de interferir con
las transmisiones primarias. La informacién captada por los sensores es generalmente imperfecta,
debido ya sea a errores en el sensado, a la cuantificacién (baja resolucién) de la informacién
codificada por los sensores, o a que la informacién percibida quede desactualizada. Ante este
problema, los algoritmos estocasticos de asignacién de recursos permiten adaptarse a condiciones
variables en los canales o a cambios en el patrén de comportamiento de los usuarios primarios. En
el mismo contexto, existen también trabajos que ponen de manifiesto el compromiso (tradeoff)
entre la adquisicion de informacién (sensing) y la asignacién de recursos en CRs y que investigan
su disefio conjunto.

En el contexto del despacho (asignacién de recursos) 6ptimo de energia en smart grids, la
creciente penetracién de las fuentes de energia renovables plantea nuevos retos relacionados con
la variabilidad temporal y la incertidumbre. En este contexto, existen trabajos que formulan
problemas de asignacién de recursos con restricciones de seguridad y de fiabilidad basados en
herramientas de optimizacién estocastica, mientras que otros trabajos mas recientes demuestran
que los inverters (presentes en los sistemas de generacién fotovoltaica) se pueden controlar para
apoyar la regulacién del voltaje de la red. Algunos trabajos mas recientes desarrollan esquemas de
operacién para smart grids en diferentes escalas de tiempo, o se basan en aproximacién estocastica
para explotar un cierto margen de sobrecarga esporadica permitido por los estandares para facilitar
la integraciéon de fuentes de energia renovable.

Objetivos

El primer objetivo de la tesis es resolver un problema estocéstico de asignacion de recursos a
través de capas que utiliza informacién instantanea de fading y de longitud de colas para asignar
de forma éptima recursos en las capas fisica, de enlace y de transporte.

El segundo objetivo de la tesis es optimizar el rendimiento (en términos de tasa de transmisi6n)
de una red de CR, limitando la probabilidad de interferir a los usuarios primarios. Se pretende
ademas analizar en qué medida la formulacién de algoritmos estocasticos y el tratamiento mediante
estos de informacién de estado ruidosa y/o desactualizada suponen una mejora con respecto a
algoritmos previos.

Como objetivo adicional de la investigacién en CR, se propone la resolucién de la optimizacién
conjunta de los procesos de adquisicion de informacién (sensing) y asignacién de recursos para CR
y el anélisis del impacto de tener en cuenta la correlacién temporal de la informacién de estado
sobre la actividad de los usuarios primarios utilizando programacién dindmica estocastica (SDP).

Finalmente, en el contexto de smart grids, se aborda el objetivo de asignar recursos de una
red de distribucidén en dos escalas de tiempo diferentes, en presencia de restricciones en promedio
o en probabilidad sobre las decisiones en la escala de tiempo méas rapida. Se pretende analizar la
mejora en términos econdémicos de utilizar un modelo de red aproximado para minimizar el coste
de operacién esperado mediante la resolucién de un problema de punto de silla estocastico.



Resultados

Los resultados tedricos sobre asignacidn de recursos a través de capas permiten establecer una
relacién entre las longitudes de las colas de transmisién y ciertos multiplicadores de Lagrange del
problema planteado; esta relaciéon puede ser utilizada para estimar y controlar los retardos de la
red, y ademds permite establecer prioridades de retardo entre usuarios.

El disefio conjunto de la adquisicién de informacion (sensing) y la asignacién de recursos en CR
permite alcanzar un rendimiento 6ptimo de la red y tiene la capacidad de adaptarse a condiciones
del canal variantes. Una estrategia de disefio en dos pasos ha permitido reducir significativamente
la complejidad computacional de la solucién con alternativas de baja complejidad; ademas, a partir
de dichos esquemas y los resultados experimentales se generaron mapas que permiten visualizar la
decisién 6ptima en funcién de la informacién de estado.

Los esquemas desarrollados para smart grids optimizan decisiones de gestién energética en dos
escalas de tiempo diferentes y manejan variables acopladas en el tiempo de forma estocistica.
Las restricciones en promedio y en probabilidad se han tratado mediante descomposicién dual y
optimizacién convexa. Dichos esquemas funcionan basdndose en datos de generacién y demanda,
y convergen a decisiones éptimas de asignacién de potencia.

Los resultados obtenidos a lo largo de la tesis confirman que los esquemas estocasticos disenados
alcanzan un rendimiento 6ptimo o cercano al éptimo, son robustos ante procesos no estacionarios
en la informacion de red, cumplen las restricciones instantaneas y ademas cumplen asintéticamente
las restricciones impuestas a largo plazo.

Conclusiones

La investigacién realizada ha permitido disefiar, de forma sisteméatica, esquemas estocasti-
cos que alcanzan un rendimiento éptimo o cercano al éptimo, son robustos ante procesos no
estacionarios en la informacién de red, cumplen las restricciones instantaneas y ademas cumplen
asintéticamente las restricciones impuestas a largo plazo.

En relaciéon con el objetivo de asignacién de recursos a través de capas, se ha realizado la
optimizacién mediante un esquema estocastico tanto para el enlace de subida (uplink) como de
bajada (downlink) y se ha establecido una relacién matemaética entre ciertos multiplicadores de
Lagrange y la longitud de las colas de transmisién, lo que adicionalmente ha permitido analizar y
controlar los retardos que afectan a distintos usuarios de la red celular.

El objetivo de optimizacién de la red de CR se ha llevado a cabo con éxito y ademéas se han
obtenido diversas variantes del esquema de asignacién de recursos, en los que la manera en que se
imponen las restricciones de probabilidad de interferencia varia, pudiendo ser esta una restriccion
instantanea o a largo plazo.

Asimismo, la optimizacién conjunta de la adquisicién de informacién y asignacién de recursos
se ha resuelto y se ha mejorado la eficiencia computacional del algoritmo desarrollado gracias al
andlisis detallado de la estructura matematica del problema. Se ha comprobado, ademas, que la
formulacién utilizada permite programar versiones estocasticas con caracter adaptativo.

En lo referente al despacho 6ptimo en smart grids, se ha verificado que la asignacién conjunta
recursos de generacidon convencional y alternativa, en dos escalas de tiempo y bajo restricciones
a largo plazo sobre el voltaje, puede formularse como un problema céncavo-convexo. La solucién
6ptima de dicho problema ha sido adaptada para aproximar la solucién de un problema analogo
con restricciones probabilisticas de voltage, que ha sido validada de forma numérica.

La presencia de restricciones de potencia media ha sido un factor comin en los disefios de redes
inaldmbricas acometidos, asi como su tratamiento utilizando descomposicién dual y esquemas de
subgradiente dual estocastico. Se ha seguido una estrategia similar para tratar con restricciones
probabilisticas (no convexas) en CRs y en smart grids, dando lugar a esquemas efectivos con una
carga computacional asequible.
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Abstract

Wireless networks and power distribution grids are experiencing increasing demands on their
efficiency and reliability. Judicious methods for allocating scarce resources such as power and band-
width are of paramount importance. As a result, nonlinear optimization and signal processing tools
have been incorporated into the design of contemporary networks. This thesis develops schemes
for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochastic-
ity, which is accounted for in the problem formulation as well as in the algorithms and schemes
to solve those problems. Stochastic optimization and decomposition techniques are investigated
to develop low-complexity algorithms with specific applications in cross-layer design of wireless
communications, cognitive radio (CR) networks and smart power distribution systems.

The costs and constraints on the availability of network resources, together with diverse quality
of service (QoS) requirements, render network design, management and operation challenging
tasks. Moreover, when the available network state information (NSI) is time-varying, nodes must be
capable of adapting their operation parameters to the those variations. While traditional schemes
only exploited local information, or did not take into account uncertainty in system parameters
and future events, the methodology proposed in this thesis aims at designing schemes through
the solution of rigorously formulated mathematical problems involving random variables. The
three basic elements when formulating an optimization problem are the design variables (mainly
corresponding to resources to be allocated, and sensing and control information), system and QoS
constraints, and the objective function (usually formulated as weighted sums of utility functions).
Equilibrium between problem tractability and realistic modeling is also sought.

Previous works on dynamic RA for wireless networks that take into account cross-layer informa-
tion rely on convex optimization and dual decomposition techniques, while exploiting instantaneous
fading; whereas others build upon dynamic backpressure policies based on adaptive control tools
and aim to stabilize queues of the network. Based on such a background, our first contribution
is the design of a stochastic scheme that uses instantaneous fading and queue length information
to optimally allocate resources at the transport, link and physical layers. Theoretical results allow
to establish links between the transmit queue lengths and Lagrange multipliers; these links can be
used to estimate and control queuing delays and establish delay priorities among users. Experi-
mental results confirm that RA feasibility and optimality are preserved when the scheme employs
window averages of multipliers and queue lengths.

In the last years, CRs have emerged as the next-generation solution to the perceived spec-
trum underutilization, thanks to their capability to limit the interference inflicted to coexisting
primary users (PUs). To do so CRs must sense the spectrum and dynamically adapt their trans-
mission parameters according to the available resources and sensed information. Existing works
limit CR-inflicted interference either through short- and long-term transmit-power constraints; or,
by controlling the probability of interfering with PU transmissions. As the sensed information
may be imperfect (due to errors or quantization) and get outdated, implementation of stochastic
RA algorithms offers the possibility of adapting the operation of the network to varying channel
conditions and PU behaviour. Motivated by these facts, we develop stochastic RA algorithms that



viii

optimize sum-rate performance of a CR network, limit the probability of interfering with PUs, and
jointly account for outdated and noisy NSI. Additional works in this context point out the tradeoff
between the sensing and RA and deal with their joint design. Hence, we also develop a jointly
optimal sensing and RA algorithm that additionally takes into account the temporal correlation of
the primary NSI and the sensing cost by means of stochastic dynamic programming (SDP). The
proposed schemes obtain optimal performance, account for imperfections in the acquired state
information, and are able to adapt to varying channel conditions. A two-step strategy significantly
reduces the computational solution complexity without loss of optimality, and its formulation allows
developing adaptive stochastic schemes. Numerical experiments confirm a significant performance
improvement with respect to low-complexity alternatives and allow to trace sensing-decision maps.

The last part of the thesis addresses the design of RA algorithms for smart grids, where
increasing penetration of renewable energy sources (RESs) pose new challenges related to variability
and uncertainty. Previous works formulate security-constrained and risk-limiting dispatch schemes
based on stochastic optimization tools, whereas recent works demonstrate that power inverters
can be controlled to effect voltage regulation. More recent works deal with smart grid operation
schemes in different timescales, or capitalize on stochastic approximation to limit the magnitude
of sporadic component overloads. Based on this background, we consider joint dispatch of slow-
and fast- timescale distribution grid resources under average or probabilistic constraints over fast-
timescale decisions. Using an approximate grid model, the expected network operation cost is
minimized under inverter and voltage constraints, and the two-stage dispatch is formulated as a
stochastic saddle-point problem. The developed dispatch algorithms account for conventional and
alternative energy resources at different timescales, which are coupled across time in a stochastic
manner. Average and probabilistic voltage constraints are tackled using dual decomposition and
convex optimization. The resulting schemes rely on random samples of stochastic generation and
demand, and converge to optimal dispatch decisions.

The experimental results throughout the thesis confirm that the proposed stochastic RA
schemes achieve optimal or near-optimal performance, are robust against non-stationary NSI,
fulfill instantaneous constraints and asymptotically fulfill long-term constraints. Average power
consumption constraints and their treatment by means of dual stochastic gradients are common
ground for the cross-layer and CRs designs undertaken. A similar strategy is followed to deal with
(nonconvex) probability of interference constraints in CRs and voltage probabilistic constraints in
smart grids with manageable complexity.
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Chapter 1

Introduction

Societies in an extremely connected world depend heavily on services provided by engineered
networks — emblematic examples being telecommunications and electricity. The widespread avail-
ability of internet access and the maturity of wireless communication technology allow to create
new personalized communication applications and evolved business models. At the same time, the
increasing penetration of renewable energy sources in the power grid brings hope to circumvent
the scarcity of fossil fuels. However, an ever-growing human population, together with the urge to
reduce the power consumed by communication devices and the need to cope with aging infrastruc-
tures and overcrowded spectrum bands, are putting increasing demands on the required efficiency,
reliability, and sustainability of such networks. To satisfy such demands, careful network planning
and judicious management of the available resources are crucial. Network size, complexity, and
time-variability render these tasks challenging and call for systematic design approaches.

To satisfy the demand for fast and error-resilient wireless communications providing quality
of service (QoS) for diverse applications, judicious methods for allocating the available (scarce)
power and bandwidth resources are of paramount importance [Gatl2]. To this end, nonlinear
optimization has been fruitfully brought into the design of wireless networks —see e.g., [Lin06b,
Geo06, Chi07, Sha08]— and is instrumental in devising efficient link- and network-adaptive resource
allocation (RA) algorithms. Similarly, the project of a single, smart electricity grid [Farl0] that
efficiently integrates distributed and renewable energy sources (RESs) without sacrificing reliability
requires intelligent control and dispatch schemes. Apart from the incorporation of state-of-the-
art power electronics, sensor and communication infrastructure, and computational intelligence
[Fan12], nonlinear optimization and signal processing tools are also key to implement smart control
strategies and optimal resource management algorithms.

This thesis develops schemes for efficient RA in dynamic (time-varying) networks, with an
emphasis in stochasticity, which is incorporated in problem formulations and solution schemes.
Optimization methodologies and decomposition techniques are investigated to develop algorithms
with specific application to both wireless communication and electrical power networks.

The outline of this first chapter is as follows. Section 1.1 provides a more detailed explanation
about network RA, starting with the general concepts and then moving to more application-specific
concepts. Section 1.2 describes the mathematical tools that will be used throughout the thesis.
Section 1.3 contains the motivation, methodology and research objectives pursued during the
development of the thesis. The chapter ends in Section 1.4 with a presentation of the outline of
this document, and the enumeration of the main contributions.



2 Introduction

1.1 Resource Allocation in Networks

Since this thesis deals with various types of networks, we start by reviewing general network
aspects. Then, we discuss the role of dynamic network RA schemes, and follow with a description
of the practical scenarios for which such schemes will be developed.

A network is a system of interconnected agents (nodes) where a global behavior emerges from
the aggregation of local interactions (links), defining a notion of proximity or dependence between
entities with an underlying graph structure. Sometimes the network is defined by the structure
underlying a set of magnitudes. In other occasions, it is the physical structure of the network what
influences the relationships between such magnitudes.

This thesis focuses on networks that are engineered to have resources flowing through their
links, and injected (introduced or extracted) at their nodes. The combination of injections and
flows permit the transportation of commodities (such as data) or resources (such as energy) from
one point of the network to another. It is desirable to do this process efficiently, and resources
necessary for competitive network function are generally limited, so that the main challenge of
network design and operation is to balance the associated tradeoffs. As increasingly stringent
performance requirements are demanded from the aforementioned networks, their design and op-
eration experience an intensive increase in complexity, which requires a detailed analysis.

In a dynamic network its state is a random process that varies in time and space, and usually
there is interest in monitoring and controlling such a process. In general terms, the performance
of a network depends on the availability of network state information (NSI). In wireless networks
where NSI varies, nodes must be capable of adapting their transmission and reception parameters
to these changes, while adhering to constraints on the usage of resources and QoS requirements.

A network will rarely perform optimally if its design and operation are based on traditional
schemes that only exploit local information, or if their operation is planned based only in information
about the present (myopic schemes) without having into account their impact on future events.
A holistic, integrated, and multi-stage network design is necessary instead. Information on future
events is often stochastic and usually more uncertain than that regarding the present. Similarly,
from the point of view of a node, information on nodes that are far in the network is generally
more uncertain than local information.

Optimal network RA comes from the solution of a judiciously and rigorously formulated math-
ematical problem. The practical implementation of the aforementioned schemes requires signaling
schemes and communication protocols, and problems should be formulated in a way that facilitates
the design of such protocols. The developed models should be sufficiently realistic (complex) as
to grasp the coupling between variables relevant to the network performance. At the same time,
simplicity is a useful property since algorithms need to be designed with implementability and scal-
ability in mind. Knowledge of the practical application helps to keep this balance between realism
and implementability. In the remainder of this section we will describe the technologies for which
RA schemes are developed.

1.1.1 Wireless communications and cross-layer design

Contemporary wireless communication networks serve traffic with diverse QoS requirements for
different applications including voice, data and real time, or streaming video/audio. Early wireless
communications standards defined several levels of QoS requirements and established fields in
protocols for terminals to request them, but did not specify the RA schemes that would ultimately
provide QoS support. For this reason, the design of optimal dynamic RA algorithms that take into
account cross-layer information has attracted the attention of information theory, signal processing,
communications, adaptive control, and networking communities. Existing works in this area can
be mainly classified in one of the following two categories. In the first category, approaches rely
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on convex optimization and dual decomposition techniques; see e.g., [Lin06a, Lin06b, Che06,
Lin05, Sol06]. In those, the solution of a properly formulated optimization problem dictates how
resources are allocated, while the structure of the solution typically suggests the design of signaling
protocols. In the second category, approaches build upon dynamic backpressure policies, see e.g.,
[Tas92, Nee05, Ery06, Gia06, Sto05, Geo06]. These works rely on adaptive control tools (the
so-called Lyapunov optimization), and aim at stabilizing queues of the wireless network. Such
queues correspond not only to actual queues where packets are buffered before transmission, but
also to virtual queues whose role is to account for QoS requirements. Most existing works have
focused on the impact of the cross-layer features on the higher layers, and fewer have addressed
the design of cross-layer networking algorithms that take into account instantaneous fading; see
[Lin06a, Che06, Lin05, Wan07, Rib10a, Geo06, Gat10, Mar13] for some of the exceptions.

More information about stochastic cross-layer RA based on fading and queue information can
be found in Chapter 2.

1.1.2 Cognitive Radio Networks

Cognitive radios (CRs) are next-generation wireless radios that use the spectrum more efficiently
by intelligently adapting their transmission parameters to a varying environment [Hay05, Zha07a]
while avoiding harmful interference to other users. The perceived spectrum under-utilization has
motivated intensive research on dynamic spectrum management, for which CRs are the enabling
technology.

In most CR designs, users holding the license of spectrum are called primary users (PUs),
whereas secondary users (SUs) are those in charge of dynamically accessing the spectrum that
PUs do not utilize. In many practical scenarios, PUs are assumed not to collaborate with the SUs,
mainly because this allows coexistence of non-cognitive PUs (complying with older standards) with
SUs that implement more advanced processing capabilities.

Depending on the operating conditions and the requirements of the primary users, CRs can
be deployed under different paradigms [Zha07a, Gol09]. Three of the most extensively studied in
the literature are the interweave, overlay and underlay paradigms [Gol09, Zhal0]'. Overlay and
underlay CRs transmit at the same time and band with PUs while keeping interference below a
certain level. Overlay CRs align their transmissions with those of the PUs, which requires knowledge
about the codebook and messages that the PUs send [DD12]. Underlay CRs adjust their power so
that interference at active PUs remains below a pre-specified threshold [Zha07a, Gol09, Zhal0],
requiring state information about the primary-to-secondary channel gains. Differently, interweave
CRs are allowed to use a frequency band only if no PU is active in it. To do so, spectrum sensing
is employed to detect empty portions of the radio spectrum at a certain time. Upon detection of
a transmit opportunity, the CR uses the channel but is required to vacate it when accessed again
by a PU.

Effective operation of either type of CR requires the implementation of two critical tasks:
i) sensing the spectrum seeking transmit opportunities and ii) dynamically adapting their trans-
mission power and modulation according to the available resources and the sensed information
[Hay05, Mar14]. Harmful interference can be avoided by adding appropriate constraints in the RA
formulation. It is also worth stressing that the state information collected by sensing is generally
heterogeneous because there is more uncertainty on the information related to the primary network
than that of the secondary network.

More detailed information on the specific CR-related challenges that are faced in this thesis
will be described in Chapters 3 and 4.

nitially, most works referred to interweave CRs as overlay CRs (in contrast to underlay CRs). Nowadays, the
difference between the three paradigms is clear and the term interweave CRs to refer to the scenario where the SUs
exploit spectrum holes to transmit opportunistically is widely accepted; see e.g., [Gol09].
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1.1.3 Electric Power Networks

Convergence of power networks and information technologies give rise to smart grid technology
[Fan12], which is called upon minimizing the environmental impact of the energy production,
fostering the utilization of RESs, integrating flexible energy storage, and establishing a novel social
contract with network agents, among other innovations. To address them, industry capitalizes on
state-of-the-art information technologies such as sensing, control, communications, and machine
learning [Ami05, Gial3].

Transmission (high voltage, long distance) and distribution (medium voltage, shorter distances)
networks are modeled and operated in quite different ways and face different challenges. Recent
advances in network optimization and control give rise to microgrids, which are distribution systems
containing loads and distributed energy resources (DERs) (such as distributed generators, storage
devices, or controllable loads) that can be operated in a controlled, coordinated way either while
connected to the main power network or while islanded. Microgrids act as single controllable
entities with respect to the grid and are envisioned to provide resiliency against time-variability
[Gial3].

Signal processing already plays an important role in various grid monitoring tasks such as
power system state estimation, line outage identification [Zhul2], and load and electricity price
forecasting. There are also research efforts in solving new emergent and intriguing inference and
learning problems such as blind topology identification [Kek14] and cyberattack detection [Kun10].

Leveraging the state information captured by the aforementioned monitoring, the smart grid
will be operated with significantly improved efficiency. Optimization tools have been successfully
employed in tasks such as economic dispatch (setting generators power output so that the load
is served at the minimum operation cost). Optimal power flow (OPF) formulations extend the
economic dispatch by including the effects of the transmission/distribution network in the problem
formulation, so that line losses are minimized and line thermal limits are preserved. As a matter of
fact, optimal Lagrange multipliers of such problems are used to calculate wholesale electricity prices
[Wo012] and research efforts are being placed on determining more advanced pricing schemes such
as real-time prices based on more sophisticated optimal dispatch formulations.

Due to the increasing renewable generation and its stochastic nature, the growth of variability
and uncertainty pose new challenges in energy management. For example, solar energy from
photovoltaic (PV) units can change significantly over one-minute intervals. The power inverters
found in PV units can be commanded to curtail active power generation or adjust their power
factor within seconds [Liu08], [Car08], but conventional generation cannot follow such fast-varying
generation. Operation in such different timescales calls for multistage dispatch solutions.

All these challenges motivate the incorporation of stochastic optimization (see Sec. 1.2.2)
to formulate efficient, security-constrained dispatch schemes [Bou08] and risk-limiting approaches
[Varll]. These tools are also envisioned to ensure efficient and reliable operation under normal and
emergency conditions. While in most traditional designs reliability came at the cost of excessive
conservativeness, stochastic optimization can better leverage the available (statistical) information
to provide reliability at a minimum sacrifice in efficiency.

Optimal formulations aim at minimizing expected operation costs including cost penalties upon
deviating from energy market schedules [Varll]. Apart from ensuring user satisfaction and repre-
senting physical limitations of network components, constraints can also take care of security issues
such as thermal limits of transmission/distribution lines, and control over under/over-voltages; and
reliability guarantees such as limiting the probability of blackouts and cascading failures.

More detailed information on dispatch and reliability issues in distribution grids in different
timescales will be provided in Chapter 5.
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1.1.4 Common aspects

Albeit different in nature, communication and power networks share a number of properties
and challenges that motivate a coordinated investigation of their optimal operation and design.

Network topology influences RA formulations because of capacity limits and flow conservation
laws. The amount of data that can be transmitted through a wireless link is limited, as well as
the power that can flow through a power line without overheating. Routing nodes are required to
balance their incoming and outbound traffic to prevent large delays, and the power injections at a
bus (nodes in power networks) always must equal the power consumed by the loads located in it.

Another noticeable parallelism is the presence of time-varying magnitudes. Wireless networks
face time-varying conditions such as local data-flow injections, channel gains (fading), and PU
activity in the case of CRs. The main varying conditions in power networks are essentially demand
and renewable available energy. As a result, both call for the implementation of adaptive schemes
that monitor the NSI and adapt the allocation of resources accordingly.

In both cases, there is interest in developing RA algorithms that limit the probability of some
specific undesirable events, such as outages in mobile communications, and interference to PUs in
CRs (see Sec. 1.1.2). In power networks, the probability of over-/under-voltages or load shedding
should also be maintained under a prespecified limit.

The mathematical formulation of optimization problems in these networks will share also com-
mon aspects, such as aggregate-utility maximization (or, equivalently, cost minimization) objec-
tives through the (possibly weighted) sum of nodal objectives, and the expression of capacity limits
and flow conservation laws as constraints. The following section elaborates on the optimization
techniques that will be used to formulate such problems.

1.2 Optimization algorithms

The use of optimization theory has been key to develop cross-layer communication protocols and
CR networks. It is also playing a prominent role in the design of contemporary schemes to operate
smart grids [Farl3b], where novel optimization techniques allow to operate with more accurate
network models. This thesis is devoted to extend the currently well-studied use of optimization
methods for network design through the incorporation of stochastic tools. Specifically, this implies
the incorporation of stochastic programming? [Kal94] and stochastic approximation [Kus03], or
even combinations of both [Nem09], whereas the proposed algorithms will deal with stochastic
variables / processes, and the incorporation of stochastic approximation grants algorithms with a
functioning of stochastic nature.

When using optimization to design practical control schemes, apart from being able to find
the optimal solution, the structure of the solution itself is very important since it can be leveraged
to suggest signaling or message passing algorithms. Also algorithm byproducts (such as Lagrange
multipliers or value functions) contain relevant information about the solution (e.g. economic
interpretations or congestion indicators).

The rest of the section provides a description of the specific mathematical tools that have been
utilized in this research.

1.2.1 Convex optimization and decompaosition techniques

Early works that use optimization as a mathematical tool to analyze network protocols are
[Kel98] and [Low99]. The gist of these works is that congestion control protocols can be viewed as
distributed implementations of algorithms that solve utility maximization problems. Source rates

>The term programming is often used to refer to optimization techniques. As well, stochastic optimization
problems are commonly referred to as stochastic programs.
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are regarded as primal variables and congestion parameters constitute variables of the corresponding
Lagrange dual problems. Recursive schemes updating these variables boil down to subgradient
descent iterations on the dual function—the kind of optimization algorithm also known as dual
decomposition [Rib10b].

Although some works advocate alternative decomposition methods [Joh06, Pal06], most of
the network optimization literature relies on dual decomposition. This is because the associated
Lagrangian function exhibits a separable structure reminiscent of layered network designs [Rib10b].

On this issue, though, it is important to stress that since networking problems can be nonconvex,
the duality gap is generally nonzero. As a result, the dual optimum is generally different from the
primal optimum and for this reason layering is believed to come at the price of optimality loss.
However, recent advances [Rib10b] show that in scenarios dealing with stochastic NSI, under
certain conditions imposed on the distribution of the random state variables, the duality gap of
such problems is zero. Prior to elaborating on this fact, let us describe the techniques that allow
to solve optimization problems in the presence of random variables.

1.2.2 Stochastic optimization

Solving optimization problems under uncertainty (affecting model parameters or possible future
events) has long been a focus of mathematical programming research, and of high relevance for
engineering applications. In this context, robust optimization [Berll] and stochastic optimization
[Kal94] allow a more efficient modeling than deterministic optimization problems. When unknown
variables are known to belong to a certain set and their statistical distribution is unknown, robust
approaches are useful. On the other hand, information about the statistics of uncertain variables
can be exploited, whether it is in the form of a probability density function (pdf) or a set of
samples. In these cases, the stochastic approach is less conservative and can lead to more efficient
solutions; in exchange, solving this kind of problems is usually more computationally demanding.

Stochastic optimization is frequently applied in setups where decisions must be made in sev-
eral stages in order to integrate information that is revealed at different time instants. Two-stage
stochastic problems have been widely studied using previously established strategies such as Ben-
ders decomposition [Bir85] or dual decomposition [Rus97] , whereas multi-stage problems call for
stochastic dynamic programming (SDP) (see Sec. 1.2.4).

1.2.3 Stochastic approximation

A basic difficulty of solving (stochastic optimization) problems that often involve expectations
over multidimensional random variables is that the integrals involved cannot be computed with
a high accuracy. Two computational approaches to approximate these expectations based on
Monte Carlo sampling techniques are the stochastic approximation (SA) and the sample average
approximation (SAA) methods. The SA method is going back to the pioneering paper by Robbins
and Monro [Rob51]. Since then, SA algorithms became widely used in stochastic optimization
(see, e.g., [Pfl12] and references therein) and, due to especially low demand for computer memory,
in new and diverse areas such as signal processing and communications.

Indeed, whether or not they are called stochastic approximations, such algorithms occur fre-
quently in practical systems for the purposes of noise or interference cancellation, the optimization
of “post processing” or “equalization” filters in time varying communication channels, adaptive an-
tenna systems, adaptive power control in wireless communications, and many related applications
[Kus03].

In several RA approaches that rely on convex optimization and dual decomposition techniques,
see e.g., [Lin06a, Lin06b, Che06, Lin05, Sol06], the solution of a properly formulated optimization
problem dictates how resources are allocated, while the structure of the solution typically suggests
the design of signaling protocols. In the last years, works such as [Mar08b, Mar09, Gao09, Rib10a]
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developed adaptive dual stochastic algorithms to estimate the optimal Lagrange multiplier values.
The developed algorithms are robust to non-stationarities, do not require knowledge of the channel
fading gain distribution, and incur arbitrarily minimal loss of performance (optimality). Motivated
by these advances, recent works develop stochastic dual methods for power networks dispatch
[Wanar], load shedding [Gat14] and reactive power compensation [Kek15a], which are also robust
to non-stationary and unknowingly-distributed renewable energy injections.

1.2.4 Stochastic dynamic programming

Stochastic dynamic programming (SDP) is a technique used to optimize the operation of
discrete-time complex systems, where decisions have to be made sequentially and there is a de-
pendency among decisions that are made at different time instants. In this framework, presence is
assumed of an agent which has the ability to take certain actions that will modify the (stochastic)
way in which a controlled system evolves. To be more precise, the system to be controlled is
modeled as a state-space model composed of: a set of state variables ; a set of actions which are
available to the controller and which can depend on the state ; a random function that describes
the transitions of the system depending on the actions taken; and a function that defines the
reward associated with a state transition.

In general, finding the optimal solution of a SDP is computationally demanding. Unless the
structure of the specific problem can be exploited, complexity grows exponentially with the size
of the state space, the size of the action space, and the length of the temporal horizon. This is
commonly referred to as the triple curse of dimensionality [Pow07]. Two classical strategies to
mitigate such a problem are: i) framing the problem into a specific, previously studied model and
ii) find approximate solutions that reduce the computational cost in exchange for a small loss of
optimality.

Key to solving a SDP problem is the definition of the so-called value function which is a
mathematical tool that allows to efficiently quantify the effects of current actions in future time
instants. SDP-solving algorithms are generally based on estimating the value function by iterative
means. Statistical signal processing can also be helpful in this context as it is commonly required
to approximate value functions through parametric estimation, and adaptively modifying those
parameters as new information on the system is learnt (see also [BuslO] and the last part of
Chapter 4).

(Partially observable) Markov decision processes

Markov decision processes (MDPs) are a relevant subclass within SDP problems. For such
problems, the state transition and reward function depend only on the state and the action taken
in the current time instant. MDPs with finite state-action spaces can be solved exactly for finite-
horizon problems. For infinite-horizon problems, the solution can be approximated with arbitrary
precision.

A partially observable Markov decision process (POMDP) can be viewed as an MDP for which
the state is not always known perfectly. Only an observation of the state (which may be affected
by errors, missing data or ambiguity) is available. To deal with these challenging properties, it
is assumed that a (possibly random) observation function is known. The POMDP framework
provides a systematic method for using the system history of actions and observations to aid in the
disambiguation of the current observation to the effect of taking optimal actions. The key point
is the definition of an internal belief state accounting for previous actions and observations. The
belief state is a probabilistic description of the system state.

A nice property of POMDPs is that, under certain conditions, they can be reformulated as a
continuous-space MDPs, making possible to use MDP-solving methods to solve POMDPs as well.
More details on this topic can be found in [Kae98].
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1.3 Motivation and objectives

Having described the practical applications that will be addressed throughout this thesis, and
the main mathematical tools that will be deployed to solve the proposed problems, we discuss here
the motivation, problem-solving methodology and specific objectives of the thesis.

1.3.1 Motivation

To guarantee that dynamic networks attain (near) optimal performance while guaranteeing safe
and satisfactory operation, we are interested in developing:

= Stochastic schemes that allow to modify their operation as a function of the time-varying
state variables, and entail a low computational burden;

= Sensing strategies to extract relevant information from the network environment;

= Adaptive signal processing algorithms that allow to estimate unknown information and predict
future state variables.

To achieve these goals, this thesis proposes the systematic and rigorous utilization of optimiza-
tion and signal processing tools for network design. We consider (and will demonstrate throughout
the thesis) that the rigorous mathematical formulation and analysis of the engineering problems,
and the accurate incorporation of stochasticity in the models and algorithms are sources of timely
and insightful research contributions.

1.3.2 Methodology

Proper formulation of mathematical problems will be critical to obtain optimal solutions and
develop efficient algorithms that allow to properly integrate the distinct nature of variables and
constraints under study. The three basic elements in formulating an optimization problem are the
design variables, the constraints that the solution must satisfy, and the objective function (metric
to be optimized). Let us further describe these elements in the context of the thesis:

1. Optimization (design) variables correspond essentially to:

(a) resources that the network operator can modify, such as transmit power and rates, user
access, user-flow allocation (scheduling), routing, power injections at power grid nodes,
or available renewable energy;

(b) sensing and control-information interchange between nodes of different nature such as
user equipment, base stations, network controllers or power buses;

(c) undesired network events, such as interferences, overvoltages, and load shedding, which
can be tolerated if their probability is limited;

(d) auxiliary parameters introduced to facilitate/simplify the previously described tasks.

The behavior in time of these variables is potentially diverse, because they can be deter-
ministic or random; global or local (at a node or neighborhood level); static (constant or
representing averages,/ probabilities/statistic moments of time-varying parameters) or dy-
namic (being able to vary in different timescales).

2. Regarding constraints, these can be classified into two main groups:

(a) Quality-of-service (QoS) constraints, which will be used to guarantee different perfor-
mance metrics that users and applications require (demanding certain average transmit
rate, limiting the bit error rate (BER) or average delay, or allowing a maximum inter-
fering power).
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(b) System constraints related to the operating conditions that regulate the system function
that can be imposed either by the physical system properties, or by the applicable
standards. These will guarantee that the obtained solution can indeed be implemented
in the system under study. For instances, several users cannot simultaneously access a
channel, transmit power cannot exceed the established limits, power flows across power
lines must not exceed thermal limits, and PV systems cannot deliver energy without
sunlight.

3. The objective function must be carefully designed because there are different measures of
quality that depend on the system under study (in wiereless sensor networks the power
consumption is a reasonable objective, but a function of the transmit rates is better suited for
a mobile data network). Formulations that use a weighted sum of several merit figures (known
as aggregate utility maximization) has been successfully used in communications as well as
operations research, transportation engineering, or econometrics [Lin06b, Rib10b, Marl1al.

All the previous elements depend on state variables that vary across time and space (nodes
and links across the network). Such state variables are oftentimes not perfectly known, hence
must be modeled as stochastic quantities. Stochasticity can be incorporated into the problem
formulation in several different ways. When the costs of RA decisions are affected by stochasticity,
common practice is to include the expectation of a random cost function in the objective. Similarly,
when varying conditions affect variables which are involved in constraints, the constraints can also
be rewritten using the expectation operators, giving rise to a so-called expected or long-term
constraint. Alternatively, one can formulate probabilistic constraints guaranteeing that the original
constraints are satisfied with a certain probability [cf. Chapters 3 and 5]. A more complex model
of stochasticity appears in state-space models where state variables depend on previous states,
decisions, and random variables, calling for SDP. The formulation of such models is based on the
definition of random function ssuch as the transition, observation and reward function [cf. Chapter
4].

This methodology will be useful for the modeling of time-varying parameters, interactions
between the resources to be allocated, and the acquisition and interchange of control information.
Such a systematic approach allows to focus on exploiting the problem structures with the aim
of reducing complexity and providing robustness against imperfect, non-stationary or incomplete
information.

1.3.3 Objectives

The previous points reflect the methodology and general targets of the thesis. In the following
paragraphs, some of the specific goals are briefly described:

1. Design of optimal schemes for RA in mobile communication networks with diverse QoS
requirements and operation conditions, with emphasis in providing guarantees of maximum
interference (deterministic and probabilistic) to other networks and users.

2. Design of convergent stochastic algorithms that adapt existing resources in the network as
a function of the available state information.

3. Design of adaptive processing schemes that will allow to estimate/predict state variables
that are not precisely known. These algorithms will leverage of the statistical dependencies
between the different state variables (e.g. time correlation). Such schemes must be used in
an integrated way using the utility-cost criteria that govern the overall network design.

4. Design of algorithms to manage heterogeneous state variables of different nature and diverse
levels of uncertainty. Schemes will be designed having into account that the information
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about the channel is statistical or deterministic, perfect or imperfect, stationary or non-
stationary.

5. Incorporation in the RA problem formulation of the information acquisition (sensing) and
optimization of the latter process.

6. Promotion of network robustness against unexpected events such as sensing errors, imprecise
state information, power surges or voltage sags.

7. Characterization of the relationships that can be established between dual variables and
different parameters of a network, such as queue lengths, marginal cost of resources, or the
sensitivity of the optimal cost with respect to QoS parameters.

8. Development of schemes to allocate resources under probabilistic constraints [cf. Chapters
3 and 5] paying special attention to obtaining tractable solutions.

9. Design of algorithms that allow to optimize the interaction between resources that have to
be allocated in different timescales.

To overcome these challenges a number of tools will be used, including: convex optimization,
stochastic approximation, dual methods for convex and non-convex problems, dual decomposition,
SDP, adaptive (Bayesian) estimation, and queuing theory. In certain cases it will be enough to
apply existing tools; in other cases we will need modifying or tailoring them to the problem at
hand.

1.4 Outline of the dissertation and contributions

This thesis comprises four technical chapters, three of them dealing with the optimization
of wireless communication and cognitive networks and the last one addressing a problem in the
context of power networks. Since each chapter deals with a different system setup with particular
challenges, the optimization tools used in each of the chapters are different and exhibit an increasing
level of elaboration.

Chapter 2 is devoted to cross-layer RA in cellular networks based on channel- and queue-
state information. An optimization problem with long-term average power and rate constraints
is formulated, and solved using a stochastic approximation dual descent algorithm. Links will
be established between the optimal Lagrange multipliers and the window-averaged length of the
queues. Capitalizing on those links, queue stability and average queuing delay of the developed
algorithms are characterized

Chapter 3 addresses the RA in CRs with heterogeneous and imperfect knowledge of the chan-
nel state information, under probability-of-interference constraints. A stochastic dual descent
algorithm (similar to that used in the previous chapter) is used, not only to solve the RA, which is
formulated as convex, but also to deal with the non-convex probability-of-interference constraints.

Chapter 4 further elaborates on the model presented in Chapter 3 and deals with the design of
jointly optimal sensing and RA schemes. This implies the combination of opportunistic spectrum
access and a sequential bayesian estimator. When the time correlation in the NSl is incorporated in
the joint design problem, it gives rise to a SDP problem, which is split into two levels, one dealing
with the RA (resulting in a convex problem), and the other one being a (much more tractable)
dynamic program. Finally, a stochastic approximation-based scheme is proposed to make the
solution adaptive to channel non-stationarities.

Chapter 5 is dedicated to the RA in electric power networks. This goes beyond mere application
of the previously exposed techniques into a power dispatch problem, and includes a novel two-stage
stochastic program formulation and its application into the dispatch of a smart distribution power
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grid in two timescales, including constraints on the long-term average voltages and over-/under-
voltage probabilities. The dispatch is formulated as a stochastic saddle point problem and solved
using a primal-dual stochastic algorithm.

In Chapter 6, general conclusions of the thesis and lines of future work wrap up the document.

1.4.1 Contributions

The research developed during this PhD has been published in several journals and conferences,
which are listed below.

Journal articles

» LOPEZ-RAMOS, L.M., MARQUES, A.G., and Ramos, F.J., Jointly Optimal Sensing
and Resource Allocation for Multiuser Interweave Cognitive Radios, IEEE Transactions on
Wireless Communications, vol. 13,11, pp. 5954-5967, 2014 (ref. [LR14b]).

» MARQUES, A.G., LOPEZ-RAMOS, L.M., GIANNAKIS, G.B., and RaMos, F.J., Re-
source allocation for interweave and underlay CRs under probability-of-interference con-
straints, IEEE Journal on Selected Areas in Communications, vol. 30, 10, pp. 1922-1933,
2012 (ref. [Marl2al).

= MARQUES, A.G., LoPEz-RAMOS, L.M., GIANNAKIS, G.B., Ramos, F.J., and CAA-
MANO, ANTONIO J., Optimal cross-layer resource allocation in cellular networks using
channel-and queue-state information, IEEE Transactions on Vehicular Technology, vol. 61,6,
pp. 2789-2807, 2012 (ref. [Mar12b]).

» LopeEz-Ramos, L.M., KEkATOS, V., MARQUES, A.G., and GIANNAKIS, G.B., Two-
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Chapter 2

Optimal Cross-Layer Resource Allocation Using Channel and Queue
State Information

Recent results in cross-layer RA for wireless systems have revealed that channel and queue
state information are two of the most important parameters critically affecting the resultant de-
signs. Motivated by these results, we rely here on stochastic convex optimization to develop optimal
algorithms that use instantaneous fading and queue length information to allocate resources at the
transport (flow-control), link and physical layers. The allocation strategies are obtained as the
solution of a constrained utility maximization problem involving average performance metrics. It
turns out that the optimal allocation at a given instant depends on the instantaneous channel state
information and Lagrange multipliers, which are associated with the QoS requirements and the
operating conditions of the system. The multipliers are estimated online using a dual stochastic
subgradient approach, and are linked with the window-averaged length of the queues. Capital-
izing on those links, queue stability and average queuing delay of the developed algorithms are
characterized, and a simple mechanism is devised to effect delay priorities among users.

2.1 Introduction

Existing works in cross-layer RA can be mainly classified in one of the following two categories.
In the first category, approaches rely on convex optimization and dual decomposition techniques;
see e.g., [Lin06a, Lin06b, Che06, Lin05, Sol06]. In those, the solution of a properly formulated
optimization problem dictates how resources are allocated, while the structure of the solution
typically suggests the design of signaling protocols. In the second category, approaches build upon
dynamic backpressure policies, pioneered by [Tas92]; see e.g., [Nee05, Ery06, Gia06, Sto05, Geo06].
These works rely on adaptive control tools (the so-called Lyapunov optimization), and aim to
stabilize queues of the wireless network. Such queues correspond not only to actual queues where
packets are buffered before transmission, but also to virtual queues whose role is to account for
QoS requirements. Most existing works have focused on the impact of the cross-layer features on
the higher layers, and fewer have addressed the design of cross-layer networking algorithms that
take into account instantaneous fading; see [LinO6a, Che06, Lin05, Ribl0a, Geo06, Gatl0Q] for
some of the exceptions.

In this context, this chapter aims to optimally design cross-layer RA algorithms for fading
wireless cellular networks under the following operating conditions. At the transport layer, every
node receives packets from higher layers. The packets of each user entail different utility levels and
nodes implement simple flow control mechanisms to keep the network stable. At the link layer,
users share orthogonally a set of parallel flat fading channels. At the physical layer, nodes can
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adapt their power and rate loadings per channel realization. Both uplink (multiple access) and
downlink (broadcast) channels will be considered. The optimal cross-layer RA (flows, powers, rates,
and channels) is obtained as the solution of a constrained optimization problem, which naturally
takes into account flow-specific utility functions, individual QoS requirements, and the network'’s
operating conditions. The resultant optimum dynamic RA is found in closed form, and it is shown
to depend only on the current channel realization, and user-specific prices (Lagrange multipliers).
An adaptive dual stochastic algorithm is developed to estimate the optimal Lagrange multiplier
values. The developed algorithm is robust to non-stationarities, does not require knowledge of the
channel distribution, and incurs arbitrarily minimal loss of performance (optimality). Furthermore,
it is shown that under very mild conditions, stochastic estimates of some of the Lagrange multipliers
correspond to scaled versions of windowed averages of queue lengths. In other words, the developed
schemes reveal one way in which queue state information (QSI) metrics related to the queue length
can be used to optimize network performance. Building on the relationship between queues and
multipliers, both stability and average queueing delay of the novel cross-layer RA algorithms are
characterized.

The main differences relative to the state of the art and the most relevant contributions of the
work reflected in this chapter are listed next. a) The specific cross-layer RA algorithms designed
in this work were not considered before. b) The convergence results are stronger than those
available is the QSI literature. The convergence results are similar to those in [Rib10a], which
neither deals with queues nor considers windowed averages. c) Approximations for the average
queuing delay are provided and a simple mechanism to effect delay priorities is presented, which
is attractive from a practical perspective. d) The QSI corresponds to windowed averages of the
instantaneous queue lengths. e) The channel state information (CSI)/QSI adaptive schemes are
designed relying purely on convex optimization and dual stochastic algorithms, without including
explicitly the queue lengths in the formulation. Contributions d) and e) deserve further elaboration.
From a practical perspective, d) is interesting because QSI variability will be smaller and its time
correlation stronger, so that, for example, more aggressive coding schemes can be employed for
QS| feedback. Indeed, several actual congestion control and queue management protocols rely
on window-averaged queue lengths [Low03]. From an analytical perspective, d) entails that the
convergence (feasibility and optimality) proofs in the chapter have to account for QS| updates
being biased and outdated versions of the actual instantaneous queue lengths. As a result, the
proofs can be easily adapted to deal with additional sources of QSI imperfections which are relevant
from a practical perspective (e.g., noise or delay in the signaling channels). The approach in €)
opens the door to apply several known results to the problem at hand. For example, sensitivity
analysis can be used to quantify trade-offs between the considered constraints and the average
queuing delay. The approach also allows for different versions of the dual stochastic updates, each
potentially giving rise to different forms (metrics) of QSI. See [Mar09, Gao09, Rib10a] for works
that do not deal with QSI but use different stochastic updates to allocate resources in wireless
networks.

The rest of the manuscript is organized as follows. The system setup and operating conditions
are described in Section Il. The constrained optimization problem is formulated in Section Ill. Its
solution is presented in Section IV, where a stochastic method to estimate the optimum Lagrange
multipliers is also developed, along with the connection between Lagrange multipliers and queue
lengths. Queue stability and the average delay are characterized in Section V, where a method
to effect delay priorities among users is also presented. Sections IlI-V deal with the uplink, while
Section VI briefly presents their counterparts for the downlink. The signaling overhead required to
implement the developed schemes is discussed in Section VII. Numerical results and conclusions
in Sections VIII and IX wrap-up this manuscript.*

'Specific notation for Chapter 2: W (z[n],L) = + Y-, _1,; z[l] denotes the windowed average of length L of



2.2. Modeling preliminaries 17

Table 2.1: Summary of most significant notation in Chapter 2.

Symbol Meaning
n Time slot index
M, m Number of users / User index
K,k Number of channels / Channel index
h, h¥ Channel gain vector / channel gain for user m on channel k
wk, Scheduling variable (fraction of time user m occupies channel k)
Pk (h) Power transmitted by user m over channel &
rE (h) Rate transmitted by user m over channel k
pF Maximum instantaneous power level in channel k&
D Maximum average power consumed by user m (Uplink)
Y Maximum average power consumed by the BS (Downlink)
C* (h,p* (h)) Capacity (rate-power) function for user m over channel k
Am, Instantaneous arrival rate of user m
Qm Average arrival rate of user m
Qm Length of queue m
Un(am) Utility function of user m's service rate
P Sum-utility achieved by the optimal resource allocation [cf. (3.6)]
Tm Lagrange multiplier for user m's average power constraint
Pm Lagrange multiplier for user m's flow conservation constraint
Qo Lagrange multiplier for user m's average arrival rate constraint
A Vector gathering all Lagrange multipliers
Ty Py Qs A (Optimal) Value of the non-stochastic Lagrange multipliers
Ar[n] Stochastic multiplier estimates using an averaging window of length L
Ly o, Stepsize / User-selective stepsize (for delay priorities)
flm,k,h,X) Link Quality Indicator of channel k for user m

2.2 Modeling preliminaries

In this section, the system setup and channel model are introduced first. Then, operation of the
link and physical layers is presented. Finally, the flow-control mechanism and queue dynamics are
described. To facilitate the readability of the manuscript, the most relevant notation introduced
in this and the following sections is summarized in Table 2.1.

Consider M wireless terminals (users) connected to an access point (AP). The overall band-
width B is divided into K orthogonal channels, each with bandwidth B/K small enough to
ensure that the fading per channel is flat, i.e., non-selective. The wireless link between the AP
and user m on channel k is characterized by its random square magnitude hfn, which is as-
sumed normalized by the receiver noise variance. The overall M K x 1 gain vector is denoted
by h := {h,’fn, m=1,...,M, k =1,...,K}. The channel fading process is assumed ergodic,
stationary and statistically independent across users and time. Moreover, it is assumed that h
remains invariant over a block of symbols, but can vary from block-to-block (block fading channel
model). In other words, if n denotes the current block index (whose duration is dictated by the

variable x at time n > L.
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channel coherence interval), then h[n] remains constant and h[n] # h[n + 1] with probability one
(w.p.1). Notation h[n] will be used whenever the block time-variance of the channel needs to be
emphasized.

Regarding the link layer operation, links at the outset are scheduled to access simultaneously but
orthogonally in time (or frequency) any of the channels; see e.g., [Won99, Marllc]. To describe
access quantitatively, let w® (h) € [0,1] denote the nonnegative fraction of time (or channel
bandwidth) that user m is scheduled to transmit over channel k during the channel realization h.
Since individual user transmissions interfere each other, it must hold that

M
S wh (h)<1, Vk, Vh (2.1)

m=1

This way, if wk (h) =0.9 and w”,(h) = 0.1, the traffic of user m is assigned to channel k during
90% of the duration of realization h, to user m’ during the remaining 10%, and traffic of no other
user is scheduled. Clearly, if one restricts w” (h) € {0,1}, then w’, (h) can be readily viewed as an
indicator variable; meaning that if channel k is assigned to user m, then it holds that wfn(h) =1
while wfn,(h) =0 for all m" # m. No restriction is placed on the maximum number of channels a
user can access.

The resources adapted at the physical layer will be power and rate per user and channel.
Specifically, let p* (h) and ¥ (h) denote, respectively, the instantaneous power and rate user m
transmits over channel k during the channel realization h, if wfj?(h) =1. Two types of power con-
straints are considered. Spectrum mask constraints are imposed to ensure that the instantaneous
pf’n(h) does not exceed a maximum prespecified level §; that is,

pF (h) <p*, VEk, Ym, Vh. (2.2)

On the other hand, the maximum average power terminal m can transmit is also bounded by p,,;
hence,

K
B[ Y ol (0wl ()] <, ¥ (23)
k=1

where the expectation is taken over the fading channel distribution. Since an uplink setup is
considered here, users act as transmitters, and the power of each individual user has to be bounded
[cf. (2.3)]. In the downlink, the AP acts as a transmitter and thus only the AP power must be
constrained (see Section 2.6 for details).

Under bit error rate or capacity constraints, power p’ﬁl(h) is coupled with the corresponding
rate 7% (h). This rate-power coupling will be represented by the function C¥ (h,pF, (h)). It is
assumed throughout that the rate-power function C¥ (h, p%,(h)) is increasing and strictly concave.
For example, if sufficiently strong coding schemes are used, C* (h, p¥ (h)) approaches Shannon'’s
capacity formula log(1 + h% p% (h)), which is increasing and strictly concave. The one-to-one
mapping between p¥, (h) and % (h) implies that when the optimization problem is formulated, it

suffices to optimize over one of them.

Regarding the transport and network layers, the operation is as follows. Packets are generated
exogenously at higher layers. Packet streams will be referred to as flows, and there will be as many
flows as users, each user having one flow. The packet arrival rate of flow m at a given instant
n is a random variable denoted by a,,[n]. The average arrival rate of exogenous information of
flow m is denoted by a,,. Terminals are equipped with queues (buffers) capable of storing the
incoming packets. Let g,,[n] denote the queue size corresponding to flow m at time slot n. Then,
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the queue obeys the recursion

K oo
gm[n+1] = [gm[n] + am[n Z rh (B[n])uf,(h[n])] ", vm. (2.4)

In practice, packet arrivals and departures vary at a time scale smaller than n. This implies that
definitions slightly different from the one in (2.4) are also possible [Geo06]. Such differences, how-
ever, are inconsequential for the subsequent analysis, and (2.4) has been chosen for mathematical
simplicity.

Different definitions of queue stability are available. In this work, queues are deemed stable if
limy oo 2 371 E[gim[1]] < oo. This definition is referred to as “strong stability” in [Geo06]. For
queues to be stable, the following necessary condition needs to be satisfied

<Z]E[ (h)wh (h)], ¥ (2.5)

The latter is typically known as necessary average flow conservation condition. Equation (2.5),
together with (2.1), (2.2), and (2.3) are accounted for in the optimization problem presented in
the next section.

2.3 Problem formulation and Design approach

The optimal RA will be viewed in this section as the solution of a constrained optimization
problem. The objective will entail concave and increasing so-called utility functions Uy,(-), that
are commonly used in RA tasks (not only restricted to communication systems), and account
for the “social” utility (reward) that a specific resource (here a,,) gives rise to. Sum-utility
maximization has been frequently employed by scheduling, MAC layer, and networking algorithms;
see e.g., [Liu06, Jia05, Geo06], and references therein. Utility functions Uy, (a.,) are chosen to be
increasing (so that solutions which allow for higher arrival rates are promoted), and concave (so
that the marginal utility for each user terminal diminishes as its rate increases) which offers a means
to effect fairness among different users. Typical utility functions U,,(x) include a,, log(5,, + x)
and ay, (1 - ﬁm)‘lxl‘ﬁm, where «;,, B, are user-dependent positive constants. On the other
hand, to effect QoS, a minimum average arrival rate d,, is guaranteed for certain users.

The optimal allocation is obtained by solving the following constrained sum-utility maximiza-
tion:

M
P* = max > Unm (am) (2.6a)
wh () ph () ™
subject to: Gm > Gm, m=1,.... M (2.6b)
(2.1), (2.2), (2.3), (2.5). (2.6¢)

Recall that there is no need to optimize over 7% (h), because ¥ (h) in (2.5) can be replaced with
C¥ (h, pk,(h)); thus, the optimum value of p,(h) will readily yield the optimum value of 7¥ (h).
Moreover, for 'best effort’ flows the corresponding a,, in (2.6b) is set to zero. Both the cross-layer
and the channel-adaptive attributes of the RA problem are apparent since variables of different
layers are jointly optimized in (3.6), and several optimization variables as well as constraints are
functions of h. Finally, note that in (4.8a) we have defined P* as the sum-rate utility value
achieved by the optimum solution. This notation will be useful in the upcoming sections to assess
the potential loss of performance of the algorithms to be developed.

The solution of (3.6) will be pursued in the next section, but several remarks are due before
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that. First, if the minimum rate requirements in (2.6b) are too high, and the power budgets in
(2.3) too small, the optimization in (3.6) could be infeasible. This however is readily detectable,
since the Lagrange multipliers associated with some of the infeasible users would grow unbounded.
In such a case, the only option to stabilize the system is to simply drop users. Unfortunately,
optimally selecting which users to drop (also known as admission control) often boils down to an
NP-hard problem, and goes beyond the scope of this work. Second, the average rate constraints
in (2.6b) guarantee that the average arrival rate of a flow remains above a given requirement
(elastic traffic). However, there is no guarantee on the instantaneous transmit-rate of real-time
traffic. Third and last, it is important to stress that queue dynamics were not explicitly taken into
account in (3.6). Only the necessary condition for stability in (2.5) has been explicitly accounted
for. However, it will be shown in the next section that queues can in fact be used as stochastic
estimates of Lagrange multiplier values associated with constraint (2.5). This result implies that
the solution of (3.6) will implicitly depend on QSI too.

2.4 Optimal cross-layer allocation

The problem in (3.6) can be readily transformed to a convex one (see [Won99] or [Marllc]
for details), which can be solved using the dual approach. The optimal solution will be presented
first as a function of the optimum Lagrange multipliers (dual variables). A stochastic scheme will
be developed next for estimating the multipliers per time instant n. The last part of this section
will be devoted to the relationship between stochastic multiplier estimates and queue lengths.

2.4.1 Optimal allocation as a function of the multipliers

Let 7, Pm, and a,, denote the Lagrange multipliers associated with the average constraints
in (2.3), (2.5), and (2.6b), respectively. Collect all these multipliers in a vector A. There is no
need for dualizing the instantaneous constraints (2.1) and (2.2) because the solution will turn out
to satisfy them automatically. Furthermore, let (U,,,)7*(-) and (C*)~!(h,-) denote the inverse
function of the derivative of U,,,(-) and C% (h,-), respectively; and remember that z* stands for
the optimum value of a given variable x. Using these notational conventions and the Karush-
Kuhn-Tucker (KKT) conditions [Ber99] associated with (3.6), it is shown in Appendix A that the
optimal cross-layer RA is

) = [O) - e (27)
P = () (o) ] (28)
P AY) = R (b plt (h, A)). (29)

For notational convenience, define f(m,k,h,X*) := pirE*(h, A*) - 72, pE* (h, A*). Then, Ap-
pendix A also shows that for h and A* given, only users m for which f(m,k,h, A*) is maximum
can transmit over channel k; i.e., users satisfying my, = arg max,,,/{ f(m’, k,h, X*)} [Li01, Marllc].

If the user attaining the maximum is unique, it follows readily that the optimum scheduling is

wfn*(hv)‘*) = ]]-{m=argmaxmr{f(m’,k,h,)\*)}' (210)

It will be shown later that for the schemes developed here, the user attaining the maximum is
always unique, and thus the optimum scheduling is always given by (2.10).

A close look at (2.7)-(2.10) reveals that the optimal resource management depends only on
the current channel realization h, and on the optimal Lagrange multipliers A*. While (2.7)-(2.9)
are easy to derive and interpret, the scheduling in (2.10) deserves further elaboration. Equation
(2.10) asserts that per channel realization h, each channel k is uniquely assigned to the user index
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maximizing the functional f(m,k,h, X*); i.e., the scheduling follows a winner(s)-take-all strategy.
Regarding p;;, and 7, as prices for the rate and power, f(m,k,h, \*) determines the net utility
(rate reward minus power cost) of the mth user on channel k. This means that users with large
pr, (or small 7 ) are promoted for selection. Although for a given h the winner is unique, the
user accessing the channel will vary as h varies. Hence, long-term fairness is accommodated too.
Last but not least, in several practical systems (like multicarrier systems) the channel gains in
consecutive channel are expected to be very similar. This implies that the value of f would be
similar for k and k + 1 and therefore, it is likely that the winner user in both channels is the same.
Additional details on this issue are provided in Section 2.7, where different alternatives to reduce the
signaling overhead required to implement our schemes are discussed. The winner-takes-all strategy
(also known as max-weight scheduling) has been shown optimal for additional setups dealing with
orthogonal sharing of resources among users [Li01, Marllc], [Lee06], [Lin06b], [Sto05]. It is also
worth noting that (2.7) only dictates the optimal value of the average arrival rate, but not the
specific distribution of the packet arrivals. In fact, from the point of view of (3.6) any arrival
distribution with average given by (2.7) is equally optimal. Nevertheless, the distribution of packet
arrivals does affect practical issues such as queue lengths, or the delay packets experience. These
issues as well as further conditions on the distribution of packet arrivals will be re-visited when the
stochastic algorithms are presented.

2.4.2 Estimating the multipliers

In the previous section, the optimal RA was characterized by two variables: the current channel
state information h, and the optimum Lagrange multipliers A*. Various options are available to find
A*. Most are iterative numerical methods seeking A* off-line by capitalizing on knowledge of the
channel distribution [Ber99, Ch. 4 and 6]. An online approach is pursued here under which the exact
value of A\* is never found. Instead, an estimate of A" is obtained using stochastic approximation
iterations per time index n. This estimate, call it A[n] (the reason for using the subscript L will
be apparent soon), remains sufficiently close to A*; see e.g., [Wan07]. The motivation behind this
estimate is threefold: (i) computational complexity of the stochastic schemes is lower than that of
their off-line counterparts, (ii) stochastic schemes do not need to know the channel distribution and
can cope with channel non-stationarities; and (iii) connections between these multiplier estimates
and queue lengths can be established as will be seen in the next section.

Toward estimating the multipliers, let a;,[Ar[n]] denote the instantaneous arrival of flow m
during block n. The latter is a random variable drawn from a distribution with mean a;,(Az[n])
given by (2.7). Moreover, with z[n] denoting the value of a given variable x at time n, the sliding
window average of length L of variable z at time n > L is> W (z[n],L) := + %, ,; [{]. Based
on this average and with u denoting a constant stepsize, the Lagrange multipliers are updated as
follows:

Tl + 1] = [ 0] = (. W( Syl (B[] Auln])wly (lnd, Ac[n]), )] (211)

(2
ar[n+1]:= [apmln] + p(dn - Wa[Acln]]. ))] (2

®For n < L, the sliding window average is defined as W (z[n],L) := 1 ¥, z[l]. Although the definition for
n < L is needed from completeness, it will not be critical for the performance analysis. This holds because we will
be interested in the long-term performance of our allocation schemes (more specifically, in the cumulative running
average of the variables as n — o). Clearly, if z[n] is bounded, the behavior during the first L —1 time slots (which
is an interval of finite length) is not relevant for that purpose.
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where the primal variables in (3.20)-(2.13), namely, powers, rates, scheduling percentages and flow
rates, are found by substituting 71, ,,,[n], pr.m[n], and ar ,[n] into (2.7)-(2.10). Those will be
referred to as stochastic primal variables.

Having described the stochastic schemes, it is appropriate to revisit the optimality of the
winner-takes-all strategy in (2.10). It was stated in Section 2.4.1 that the scheduling in (2.10) is
indeed optimum because for the schemes in this chapter the user m* maximizing f(m,k, h, A\*)
is unique. To verify that this is true for the stochastic allocation, the user m*[n] maximiz-
ing f(m,k,h[n],Ar[n]) must be unique. Clearly, f(m,k,h[n],Ar[n]) is a continuous random
variable because all terms involved in its definition are continuous random variables. More-
over f(m,k,h[n],Ar[n]) is uncorrelated across users, because in practice both arrivals and
channel gains are independent across users. As a result, the event of f(m,k,h[n],Ar[n]) =
f(m' k., h[n],AL[n]) has probability (Lebesgue measure) zero. Since for the winner not to be
unique two users must attain the same value of f, the previous finding readily implies that the
winner is unique w.p.1.

Convergence, feasibility and optimality of the stochastic schemes will rely on the fact that
(3.20) and (2.13) are finite-length averages of stochastic subgradients of the dual function in
(3.6), see e.g. [Ber99, Ch. 6]. Employing unbiased stochastic subgradients of the dual function
for allocating resources in wireless fading networks has received some attention in recent years
[Wan07, Gao09, Mar09, Mar10, Rib1l0a]. The focus and novelty here are on algorithms that use
constant stepsize and combine (average) the L most recent stochastic subgradients. These two
features will allow us to establish connections between some of the iterations in (3.20), and the
(windowed average) length of the system queues. To be specific, assuming that the updates in
(3.20)-(2.13) are bounded, the following result guarantees feasibility and near optimality of the
stochastic allocation iterates.

Proposition 1 The sample average of the stochastic RA: (i) is feasible and (ii) incurs arbitrarily
small loss in performance relative to the average non-stochastic solution of the problem in (3.6).
Specifically, as n — oo, it holds w.p.1 that

' ”(z (BT AL [ (B2, A )zlia 1% i
”5:1 n3

n

Y D0 Lwnwsxh[u,AL[zD) < 2140

1

(it) And with dp(p) denoting a positive number proportional to the stepsize i, it holds that [cf.

(3.6)]
ZUm(liamL[m) P = o). (215)
m i

In words, Proposition 1 guarantees asymptotic optimality of the stochastic iterates because they
are feasible and achieve a value (performance) arbitrarily close to P*, which is the optimal value of
the original (non-stochastic) solution of (3.6). The proof of the proposition is given in Appendix
B.1 and relies on the convergence of stochastic (epsilon) subgradient methods. For simplicity,
the proofs are given for convergence in probability, but the extension to convergence w.p.l is
straightforward using the arguments in [Boy06, Rib10a], [Ber03, Ch. 8]. Moreover, the proof also
shows that under very mild assumptions, the first inequality in (2.14) and the inequality in (2.14a)
hold with equality.

Equally relevant, convergence results can also be obtained when the cumulative running average
in Proposition 1 is replaced by a finite-size sliding window averaging or with an exponentially-
decaying window averaging. For those cases, convergence in distribution of the modified left hand
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side of (2.15) to a Gaussian whose mean is larger than the right hand side of (2.15) can be shown.
A rigorous proof can be obtained following the methodology in [Kus03, Chapter 11].

2.4.3 Relating multipliers with queue lengths

On top of being optimal, the stochastic schemes are also meaningful because they reveal the
cross-layer attribute of our algorithm. To see how, set temporarily L = 1 and compare (2.12) to
(2.4). It is clear that p,,[n] and gn[n] are related in a way such that the stochastic Lagrange
multipliers can be interpreted as a scaled version of the queue sizes. A very similar result is also
true for L > 1. For this case, the following holds.

Proposition 2 [f there exists ng such that pr, ,[n] >0 and gn[n] >0 for n > ng then pr ,[n] =
pW (gm[n], L) + 6m(no), where 6,,(n0) = pr,m[n0] = pgm[n0].

Proof:  The proof for L = 1 is straightforward because the only difference between (2.12) and
(2.4) is the stepsize p1. To prove the equivalence for L > 1, we will view py, ,[n] as the output
y[n] of a discrete linear time-invariant filter with input z[n] = a*,[n] — X% 75 (h[n])w®* (h[n]),
where dependence of variables on Az [n] has been dropped for notational brevity. Upon examining
(2.12) and with * denoting convolution, y[n] can be written as

y[n] = hrir[n] * (hrir[n] * (uz[n])). (2.16)

In the latter, hprr[n] implements the window averaging of length L, while hj;z[n] implements an
autoregressive filter of order one; i.e., if y;yr[n] and x;7r[n] denote, correspondingly, the output
and the input of filter hyyr[n], then yrrr[n] = yrrr[n — 1] + 11r[n]. Using properties of the
convolution operator, (2.16) can be rewritten as

y[n] = p(hrrr[n] * (hrrr[n] * z[n])). (2.17)

Relying on the expression in (2.4) and given that z[n] = a*,[n]- X, r¥* (h[n])wk* (h[n]), it readily
follows that ¢,,[n] = (hrrr[n] * x[n]). For this to be true, the projection operator in (2.4) needs
to be transparent, which is the reason for requiring the queues not to be empty3. Substituting
the former into (2.17) yields y[n] = u(hrrr[n] * gm[n]). Since hprg[n] implements the window
averaging and y[n] = pr, m[n], it follows that py n,[n] = pW (gm[n], L), which is the claim of the
proposition.

As mentioned earlier, the result of Proposition 2 is meaningful because it shows one way in
which queues can be used to allocate resources in the network. In fact, Propositions 1 and 2
establish that if p;, in (2.7)-(2.10) is approximated by uW (g [n], L), the resultant stochastic RA
is optimum so long as p is sufficiently small [cf. (2.15)]. Although the term d,,(ng) introduces
a discrepancy between py, ,,,[n] and W (gm[n], L), this is not a concern because: (i) in practice
dm(no) ~ 0; and (ii) from an implementation perspective, the value of pr, ,,[n] at instant ng can
always be redefined as pr, ,[10] == pr,m[10] —m(n0) without affecting the long-term performance
of the algorithm. Similarly, the presence of ng is not critical from a practical perspective either;
and has been assumed to simplify the proof. Nevertheless exhaustive simulations have shown that
a nonzero nyg is present for small-medium values of L and p. As an alternative, the iterations in
(3.20)-(2.13) can be slightly modified so that the correspondence pr, ,,[1] = pW (gm[n], L) holds
Vn. Although the proof is a bit more tedious, it can be shown that Proposition 1 holds in this
case too.

3Intuitively, this assumption is reasonable because the optimization in (3.6) aims to obtain as high arrival rates
as possible, which require the system to work close to its saturation point.
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In addition to revealing how QSI can be optimally used for allocating resources, Proposition
2 is also relevant for extra reasons too: (i) to analyze stability of RA algorithms; (ii) to estimate
the queueing delay that packets will suffer from; and (iii) to establish connections with other
well-known cross-layer RA algorithms such as the dynamic backpressure algorithm generalizations
reported in [Geo06]. The next section deals with i) and ii). Regarding (iii), the stochastic iterates
with L =1 allocate resources in a manner related to those in [Geo06, Huall] in the following way:
the role of pr[n] is played by the actual queues; the role of my[n] and ar[n] is played by the
so-called “virtual” queues; and some tuning parameters in [Geo06] correspond to the inverse of the
stepsize p. Nevertheless, the results presented so far are distinct from [Geo06] not only because
different channel realizations are used to update the multipliers (since L > 1), but also because
the analytical framework (Lyapunov optimization versus stochastic convex optimization), the CSI
model, as well as the convergence claims are all different. Interestingly, works as [Huall] also
established relationships between the queue lengths and the optimal value of the multipliers of a
related optimization problem. More specific details on this issue will be given in the next section
after presenting the results on the queue stability of our schemes.

2.5 Queue stability and delay analysis

The previous section established that although queue dynamics have not been explicitly ac-
counted for in the formulation of (3.6), they emerge naturally as scaled stochastic estimates of
the Lagrange multipliers associated with (2.5). In this section, queue stability of the developed
RA algorithms is characterized first. Next, estimates of the average queueing delay that the flows
experience are obtained, and used to outline a mechanism to effect delay priorities among users.

Stability analysis of the stochastic RA in (2.7)-(2.13) relies on Proposition 2 to establish the
following result regarding convergence of queue lengths.

Proposition 3 If ¢,,[n] := % Y1 gm[l] denotes the sample average of the queue length ¢,,[n], and
dq(p) is a finite number satisfying 5,(pv) = 0 as p — 0, it then holds that

|wGm[n] = prl < 6g(p) as m—> o0 w.p. L. (2.18)

As a corollary, (2.18) yields lim,, o @m[n] < oo provided that p, < co; which implies that the
iterations are stable so long as the original problem in (3.6) is feasible. The proof is given in
Appendix B.2. Note that Proposition 3 focuses on the convergence of the sample-average of the
queues and not on the convergence of the instantaneous multipliers. That is the case because
we are interested in the long-term queue stability and not in issues like queue length (or delay)
moments. As simulations will confirm, the time trajectory of the stochastic estimates consists of
two phases. During the first phase, the multipliers will move from the initialization point towards
the optimum value. Grossly speaking, the speed of convergence is expected to be linear because our
algorithms are modified versions of a stochastic first-order (gradient) iteration. During the second
phase, the estimates will hover around their optimum value. The estimates will not converge to a
fixed point (because they are continuously updated based on a continuous random variable) and
the “hovering noise” will be proportional to the stepsize considered.

Before moving to the next section, it has to be mentioned that for an algorithm related to
the one proposed here, a relationship between the expected queue length and the optimum value
of a Lagrange multiplier has been also established in [Huall]. Specifically, [Huall] relies on
adaptive control tools to propose a cross-layer algorithm which relies on CSI and QSI to allocate
resources. The authors analyze then the performance that such an algorithm achieves and show
that the expected queue length approximately corresponds to the value of a Lagrange multiplier
of a deterministic optimization problem.
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2.5.1 Average delay and delay priorities

The relationship between queues and Lagrange multipliers can also be leveraged to estimate the
average queueing delay of the proposed stochastic RA. To this end, Little's result asserts that with
stable queues the long-term average delay is given by the long-term average queue length divided by
the long-term average arrival rate, meaning that the delay of a specific flow is d,;, = /@, Using
Proposition 3, it follows that |udp, — p,/(@m)| < 64(i)/@m w.p.1. This readily implies that the
average delay for the stochastic resource algorithms developed in this thesis can be approximated
as

In words, the average delay of our stochastic algorithm can be estimated based on the optimal
solution of (3.6), and the stepsize of the proposed iterations [Mar10]. The KKT conditions as-
sociated with (3.6) can be readily used to show that p* = U,(a}) + a’,. Substituting the
latter into (2.19), it follows that the delay can be written as the sum of two nonnegative terms
dm = Up (@) (pat,) + o, [(pat,). Clearly, the first term depends only on the exogenous arrival
rates a,,. This implies that the arrival rates can be used to estimate the value of the average delay
for a given flow (when the minimum rate constraint of such a flow is not active, and thus ., = 0)
or a lower bound on that value (when the minimum rate constraint of the flow is active, and thus
ay, > 0).

Upon examining (2.19), it is also apparent that changes in the stepsize induce changes in the
average delay. Specifically, the larger the stepsize, the smaller the average queueing delay. The
intuition is that large stepsizes accelerate convergence and improve the ability of the iterates to
react against events that otherwise would increase queuing delay. However, large stepsize values
also lead to more severe hovering in the dual domain, and thus more pronounced loss of optimality.
Equally interesting, (2.19) can also be used to effect different delay priorities. Key for this purpose
is the fact that the iterations in (3.20)-(2.13) converge not only if the stepsize is the same for
all entries of A, but also if it is different for each entry. This way, flows (users) with stricter
delay constraints can employ a larger stepsize. In other words, by allowing the stepsize to be
user-dependent it is possible to control the average delay performance of individual users.

2.6 Downlink setup

In this section, we briefly elaborate on the generalization of the developed schemes for use in
a downlink setup (fading broadcast channel). The first step to address the optimal design is to
reinterpret some of the notation. Specifically, in this section the entries of h represent the channel
from the AP (transmitter) to the users (receivers); a,, is the average exogenous rate at the AP
destined for user m; and pf,(h) and X (h) are the power and rate transmitted by the AP to user
m over channel k. With p denoting the average power budget of the AP, the second step is to
replace the M individual power constraints in (2.3) with the single constraint

kZ P (B)wy, (h) <. (2.20)

Now, we are ready to formulate the new optimization problem which gives rise to the optimal
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cross-layer allocation for the downlink setup:

M
P*:=  max > U (@m) (2.21a)
wh (h)ph, ) "
subject to: Gy, > A, VM (2.21b)
(2.1), (2.2), (2.5), (2.20). (2.21c)

Similar to (3.6), the problem in (2.21) can be transformed into a convex one and solved in the
dual domain. The main difference is that instead of M multipliers {m,}}/_;, now only a single
multiplier 7 is involved. Clearly, {m,}}1_, were associated with the M constraints in (2.3) while
7 is associated with the single constraint in (2.20). With this change, the optimal allocation of
resources for the broadcast channel is

(A = [(Un) (P - i) (2.22)
P =[5 (o)) (2.23)
rei(h,AY) = CF(h,plr(h,AY)) (2.24)
wfr:(h7A*) = ]l{m:argmaxm/{fDL(m’,k,h,)\*)} (2 25)

where fpr(m,k,h,X\*) = pi rE* (h, A*) —7*pk*(h, X*). Comparing (2.22)-(2.25) to (2.7)-(2.10),
we indeed observe changes in (2.8)-(2.10), which are the RA variables dependent on 7.

Regarding the stochastic iterates, the only modification required is to replace the M updates
in (3.20) with the following single update

mp[n+1] = [m[n] - u (5 - kz PE* (h[n], Az[n])wF* (h[n], AL[n]), L)]:’ (2.26)

The results in Propositions 1, 2 and 3, as well as that in (2.19) hold also for this case.
Together with the changes in the formulation, consideration of a downlink setup entails changes in
the signaling schemes and feedback overhead. This issue is discussed in further detail in the next
section.

2.7 Signaling and computational overhead

So far, algorithms yielding the optimal allocation of resources as a function of several variables
have been developed and their performance has been analyzed. This section briefly discusses the
signaling (and computational) overhead required to implement the developed algorithms and points
out means to alleviate it. We assume that the algorithms are run in a centralized fashion so that
the AP (which acts as a scheduler) carries out most of the required tasks. The operation of the
central scheduler proceeds into four steps (phases): (sl) gathering of the information required
to find the optimum RA; (s2) calculation of the optimum RA; (s3) notification of the resulting
allocation to the transmitters; and (s4) update of the corresponding multipliers. Carrying out these
tasks is challenging because the variables involved are available at different locations. For example,
the channel gains h[n] are available at the receiver side via training, but not at the transmitter
side (unless channels are reciprocal). On the other hand, the instantaneous values of the queues
{gm[n]}M_, are only known at the transmitter side because they depend on the instantaneous
arrivals. If convenient for reducing the signaling overhead, the multipliers can become available at
both sides provided that the corresponding stochastic iterations are run both at the transmitter
and the receiver. The overhead associated with each of the aforementioned steps depends on the
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system setup (downlink vs. uplink), for this reason the two setups are analyzed separately.

Consider first the downlink case. To find the optimum RA, the AP needs to know (g [n], r m[n])
VYm, pr[n], and h[n]. In this setup the AP acts as transmitter, so that ¢,,,[n], oz, mm[n] and 7z [n]
are available at the AP, and the only problem is to get h[n]. In Time Division Duplexing (TDD)
systems, uplink and downlink channels are reciprocal. Hence, the AP can acquire h[n] by estimat-
ing the channel in the reverse link. However, in Frequency Division Duplexing (FDD) systems the
forward and reverse channels are non-reciprocal, and therefore h[n] is not available at the AP. In
that case, during step (s1), every user has to send the estimation of its own channels to the AP. If
the channel varies sufficiently slow and the number of channels is not too high, the users could send
and analog estimation of their channels. However, if it varies to fast or the number of channels is
too high, the feedback rate needs to be reduced. Effective methods to feedback the values of h[n]
are to rely on quantized CSI [Mar08a, Lov08], and exploit correlation among channel gains (e.g.,
by grouping channels [LR10]). Step (s2) is run locally at the AP and only entails computational
overhead. For the schemes developed in this chapter the required complexity to carry out such an
operation is affordable. Specifically, finding the optimum arrival flows, powers and rates requires
evaluation of closed-form expressions [cf. (2.7)-(2.9)]. Finding the optimum scheduling requires
the evaluation of the closed-form functional f(m,k,h[n], Ar[n]) for every user m and channel
k and computing a maximum per channel [cf. (2.10)]. During step (s3), the scheduler needs to
notify the optimum allocation to the terminals. This requires broadcasting the index of the winner
user in each of the (groups of ) channels. It the users can detect the modulation/coding mode that
the AP is using, no further action is required. If not, the AP needs to notify the modulation/coding
scheme to be used. If only a finite set of adaptive modulation and coding modes is used (which
is the typical case in quantized CSI systems), then only the index of the corresponding mode has
to be identified. For this setup, the users do not need to know any multipliers, so that step (s4)
is only run at the AP and no feedback is required. Regarding the computational complexity, step
(s4) only requires run one iteration of the updates in (3.20)-(2.13) (which is trivial because the
optimum allocation has been already found).

The uplink case is more challenging. In this case, we can safely assume that h[n], {az .[n]}M,
and {7 m[n]}M_, are available at the AP (the AP acts as receiver, so that the channel values are
known via training). However the values of {g,,[n]}2_, are only known by the users, so that during
step (s1) such values have to be feedback to the AP. If the duration of a slot n is long enough,
it is reasonable to assume that every user can send its own ¢,,,[n] to the AP through a signaling
(feedback) control channel. If not, schemes to reduce the signaling are required. As in the case
of the CSI, worth exploring alternatives are to quantize the queue length or exploit the correlation
that the queue lengths exhibit across time. A simpler alternative consists in sending the (windowed
average) queue length only one out of L slots. Clearly, this would reduce the feedback rate by a
factor of L. The proofs in Appendix B can be adapted to show that the optimality/convergence
results in Proposition 1 would hold also for such a case. The computational complexity to run step
(s2) is the same than that in the downlink setup. During step (s3), the AP broadcasts the index of
the winner user in each of the channels. Moreover the power and rate that the winner users need
to load have to be broadcasted too. For fast fading channels, the most reasonable alternative to
reduce this overhead is to use quantized CSI. In such a case, the AP only needs to identify the
index of the rate-power pair to be used.

We close this section by pointing out that worth looking lines of research are developing schemes
that: i) work in a fully distributed scenario; ii) are robust against communication errors; and iii)
are suboptimal (imperfect), but require a much lower signaling overhead [Lin06b]. Although all
these lines are certainly of interest, they go beyond the scope of this thesis.
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Table 2.2: Sum utility (here P* := ¥, Upn(ay)), and sum rate, individual average rates and pow-
ers for different test cases (transients have been removed when forming averages). Average power p is
[40.0,20.0,12.0,7.0] for all five test cases.

(AS1) | (AS2) | (AS3) | (AS4) | (AS5)
P~ | 17.354 | 17.632 | 17.097 | 14.057 | 8.968

Smdm | 467.06 | 44276 | 451.96 | 157.72 | 82.49
a1 | 282.46 | 239.81 | 300.00 | 76.14 | 53.39
G; | 11554 | 119.16 | 85.82 | 43.16 | 21.74
as | 4936 | 58.31 | 45.00 | 25.09 | 6.68
G, | 1070 | 2548 | 21.14 | 1333 | 0.68
7 [40.0, 20.0, 12.0, 7.0]

2.8 Numerical results

In this section, numerical results are presented to assess the analytical claims. Unless explicitly
mentioned, the default simulation setup will be an OFDM uplink system with M = 4 users and
K =64 parallel channels. Channels are time and frequency selective and the corresponding SNRs
follow an exponential distribution (Rayleigh fading channel model). The average power gains for
users 1, 2, 3 and 4 are 6 dB, 4.5 dB, 3 dB and 1.5 dB, respectively. Arrivals are randomly drawn
from a binomial distribution. Simulations are run assuming that the signaling channels were ideal,
so that both CSI and QCI are assumed to be perfectly known.

Test Case 1: optimality and feasibility. First, we illustrate that the developed algorithms are
optimal and feasible, and compare their performance with that of existing alternatives. Values of
the average transmit-power, transmit-rate, sum-rate and sum-utility for the five allocation schemes
(AS) tested, are as follows: (AS1) utilities are linear (so that the objective corresponds to sum-
rate), and there are no rate restrictions; (AS2) the utility functions are U, (a) = log(1+a) VYm,
and there are no rate restrictions; (AS3) as AS2 but with a; = 300; (AS4) a simplified version
of AS2 with fixed subcarrier allocation; and (AS5) an algorithm compatible with the WiMAX
standard, where the subcarrier and power allocation are fixed and the SNR per subcarrier is used
to select the transmit-rate from a codebook with 8 pre-specified values. In all five schemes the
average power constraints are P := [Py, Do, P3,Pa]? = [40,20,12,7]7. To reduce the number of
schemes simulated, in this test case we only simulate the non-stochastic version of our algorithms.
Extensive simulations assessing the optimality loss of the stochastic algorithms relative to their
stochastic counterparts will be carried out in Test Case 3.

The results listed in Table 2.2 illustrate that the proposed algorithm is able to provide fair-
ness and guarantees on minimum average rate requirements, while it clearly outperforms other
suboptimal schemes which fail to satisfy these requirements. Regarding optimality, we see how
indeed AS1 outperforms AS2 in terms of sum-rate (sum-rate is the metric maximized by AS1)
and how AS2 does better than AS1 in terms of sum-utility (sum-utility is the metric maximized
by AS2). Moreover, we also see that to satisfy the minimum rate requirement for user 1, AS3
needs to sacrifice some utility. (This is because the unconstrained problem in AS2 does not fulfill
the requirement a1, and therefore the constraint needs to be activated.) Recall that optimality of
the non-stochastic schemes has been proved theoretically and the results here try to illustrate the
gains with respect to suboptimal schemes. Finally, it should be stressed that the small differences
in terms of sum-utility values among AS1, AS2 and AS3 is due to the specific set-up selected. Had
the utilities been different or the rates smaller, the difference in terms of sum-utility would have
been larger. However, for the simulated configuration, the transmit-rates are large enough so that
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the selected utility is basically flat.

Test Case 2: dynamic behavior of the stochastic schemes. To gain further insight on the
convergence of our algorithms, we analyze the dynamic behavior of the stochastic iterates. We
focus on the test case in AS3, with L = 1 and p = 107*. Figure 3.1 comprises six subplots,
each depicting the evolution over time of a different subset of variables. Subplot (a) is the
evolution of the average transmit rate a,,[n] = %Z}L ay (AL[l]), while (b) is the evolution of
the average power consumption p,,[n] = %Zﬁl(ka’ﬁ,j(h[l],AL[Z])wf{(h[Z],)\L[l]). In these
subplots, dashed lines correspond to the performance when the optimal multipliers are known,
while continuous lines correspond to the stochastic algorithms proposed in this chapter. Subplots
(c), (d) and (f) plot the instantaneous value of the Lagrange multipliers: pr, [n], o m[n] and
mr.m[n], respectively. Finally, subplot (e) depicts the time-trajectory of the instantaneous value
of the queue lengths ¢,,,[n].

Starting with the trajectories of the running averages a,,[n] and p,,[n] in subplots (a) and (b),
we observe that the considered constraints are satisfied (with equality), and that the stochastic
allocation converges in some hundred (correspondingly, a couple of thousand) iterations. The
behavior of the Lagrange multipliers plotted in (c), (d), and (e) is slightly different. As in (a)
and (b), there is an initial phase during which the multipliers go from the initial point (which
was chosen randomly) towards the optimal value. However, once the multipliers approach their
optimal value, they do not strictly converge but hover around it. This in not unreasonable, because
prm[n], arm[n] and 71, [n] are instantaneous variables while a@,,[n] and p,,[n] are running
averages. The numerical results also reveal that for the simulated test case, oz, 1 is non-zero. This
means that the rate constraint for m = 1 needs to be enforced, as mentioned in the Test Case
1. We also observe that all 7y, and pr, ., are also non-zero Vm, confirming that constraints in
(2.3) and (2.5) are always active. Finally, the trajectories of queue lengths are depicted in subplot
(e). Note that the queues are stable, and the relationship between py, ,,,[n] and ¢ [n] holds in
practice.

Test Case 3: changing the stepsize and the window length. The numerical results for this
test case are listed in Table 2.3. The results correspond to a setup where the power gains for
users 1, 2, 3 and 4 are 6, 5, 4 and 3 dB, respectively; the maximum average power constraints
are p =[40,20,16,10]". The minimum average rate constraints in the upper half of the table are
&= [ay, ag, a3, a4]T = [0,0,0,55]7, while the average rate constraints in the lower half of the table
are & = [150,0,0,0]7. All other parameters are set as in the default case. The values for x and L
vary as indicated in the entries of the table. The numerical results reveal that larger stepsizes give
rise to larger gaps from the optimum. This trend is reasonable, because the bounds on the loss of
optimality in Proposition 1 are proportional to u. It must be noted, however, that the bounds were
derived using a worst-case approach, so that the actual loss does not have always to follow such a
trend. The variation of the losses with respect to L is more difficult to explain. On the one hand,
the bound on the optimality loss grows if the value of L increases (this was not established in the
statement of Proposition 1, but it was revealed in its proof). On the other hand, larger values of
L, render the stochastic updates of the multipliers closer to the original (non-stochastic) updates.
This contradictory behavior may be the cause for the results in Table 2.3. For p = 1075, larger
values of L incur more sizeable losses; for p = 1074, the trend is the opposite; and for p = 3.107°,
the variation of the losses is not monotonic.

In order to illustrate the behavior of our algorithm in a scenario with larger number of users,
additional numerical results (confirming the previous findings) are presented in Table 2.4. The
simulation setup is similar to the previous one, but in this case there are M = 8 users instead
of 4. The average power gains are [6,6,4.5,4.5,3,3,1.5,1.5]7 and the maximum average power
constraints are p = [80, 40, 40, 20, 30, 15, 20, 10]T. Two different rate requirements are considered:
& = [100,0,0,0,0,0,0,0]” for the configurations listed in the upper half of the table and & =
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Figure 2.1: Trajectories of different primal and dual variables in test case 2: (a) sample average rate a,,[n];
(b) sample average power p,,[n]; (c) flow conservation multiplier p,,,[n]; (d) estimate of the average power
multiplier #,,,[n]; (e) queue length g,,[n]; (f) estimate of the average arrival rate multiplier &,,,[n].
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Table 2.3: Sum utility (P*) and sum rate for different values of 1 and window sizes.

a=1[0,0,0,55]

CASE Stepsize p | Window size L P Yo Gm
OFF-LINE N/A N/A 18.765 | 490.38
ONLINE 1.0E-5 1 18.722 | 483.87
3 18.712 | 482.44
8 18.571 | 464.98
3.0E-5 1 18.424 | 435.13
3 18.474 | 452.21
8 18.432 | 453.49
1.0E-4 1 17.592 | 337.50
3 18.085 | 399.57
8 18.371 | 449.02

a = [250,0,0,0]
CASE Stepsize 1 | Window size L P Yo Gm
OFF-LINE N/A N/A 18.784 | 513.21
ONLINE 1.0E-5 1 18.736 | 508.85
3 18.662 | 503.79
8 18.389 | 483.58
3.0E-5 1 18.354 | 483.53
3 18.271 | 477.65
8 18.062 | 462.59
1.0E-4 1 17.551 | 424.10
3 17.871 | 451.05
8 17.735 | 445.18

a; =100

CASE Stepsize p | Window size L P Yo Om
OFF-LINE N/A N/A 24.095 | 211.20
ONLINE 3.0E-5 1 23.956 | 208.69
4 23.951 | 208.64
3.0E-6 4 24.046 | 210.44
10 24.042 | 210.37

dg = 70, 64 =40
CASE Stepsize p | Window size L P Yo Om
OFF-LINE N/A N/A 24.010 | 197.09
ONLINE 3.0E-5 1 23.845 | 193.74
4 23.846 | 193.81
3.0E-6 4 23.974 | 195.98
10 23.967 | 195.85

Table 2.4: Sum utility (P*) and sum rate for different values of 1 and window sizes. M = 8 users; K =
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Table 2.5: Queue lengths, average delays [cf. (2.19)], and sum utility (P*) for the allocation schemes in
Test Case 4.

(ASa) | (ASb) | (ASc) | (ASd) | (ASe) | (ASF)
a1 | 960 | 7791 | 115 | 726 | 143608 | 463
@ | 1051 | 9436 | 119 | 974 | 70832 | 333
q3 1480 13382 104 1449 46116 217
G | 2162 | 19543 | 220 | 2077 | 32603 | 203
d | 45 | 390 | 06 | 36 | 7178 | 24
do 10.6 89.8 1.1 9.3 673.6 3.3
ds 21.8 181.2 1.4 19.6 623.4 3.0
dy 47.0 389.5 4.5 41.3 649.1 4.2
P* | 18.050 | 18.218 | 18.153 | 18.220 | 18.222 | 18.101

[0,70,0,40,0,0,0,0]" for the configurations listed in the lower half of the table.

Test Case 4: evaluating the average delay. Finally, we analyze the queuing delay associated
with the developed schemes. We consider a downlink setup with M =4, L =1, K =64, a =
[200, 80,40, 30]%, p = 80. Six test cases are considered: (ASa) our stochastic scheme with i = 107
and A[0] = 0; (ASb) our stochastic scheme with 1 = 1078 and A [0] = 0; (ASc) the scheme in ASa
but with AL[0] = 0.9X*; (ASd) the counterpart of ASc for ASb; (ASe) the non-stochastic scheme
which assumes that A* is known and uses these values to adapt resources; and (ASf) a modified
version of the non-stochastic scheme in ASe, where the average arrival rate a*(A*) is slightly
backed-off so that the delay is decreased (specifically, simulations are run with a = 0.97a*(A*)).
In all six cases, packet arrival rates follow a binomial distribution. The corresponding average
queue length, average delay and utility loss are listed in Table 2.5.

The main observation from the numerical results in Table 2.5 is that the average delay is
indeed inversely proportional to the stepsize. Moreover, the results also show that the delay of the
stochastic schemes ASa, ASb, ASc and ASd is considerably lower than that of the non-stochastic
optimal solution in ASe. In addition, comparison of the simulated average delays for the schemes
ASf and ASe reveals that the delay of the non-stochastic schemes can be considerably reduced at
the expense of a small loss in terms of optimality (sum-utility). Differently, stochastic schemes ASc
and ASd also achieve a delay reduction relative to their counterparts ASa and ASb, but without
incurring a sum-utility loss (relative to ASa and ASb). The delay improvement observed in the
stochastic schemes that use a “smart” initialization is in agreement with the results in [Huall].
Specifically, [Huall] develops different algorithms that explicitly consider the instantaneous queue
length and shows that if the actual queue lengths are offset by a positive number (referred to as
place-holder bits), the delay optimality trade-offs improve considerably. The effect of such place-
holder bits is very similar to the non-zero initialization considered in ASc and ASd. Characterizing
the optimality versus delay trade-off for the nonstochastic schemes, their stochastic counterparts
(relying on the results in [Huall]), and stochastic versus nonstochastic alternatives, are interesting
research lines, but go beyond the scope of this thesis.

To gain insights on the sensitivity of the average delay with respect to the stepsize, we run a
last experiment. In this experiment, the value of the stepsize is modified online and the effect on
the size of the queues and the average delay is analyzed. Specifically, the stepsize remains constant
during a period of 10,000 time iterations, and then it is reduced by a factor of 1/4. The simulation
comprises 5 periods so that the total simulated time is 50,000 instants. The corresponding results
are plotted in Figure 2.2, where subplot (a) represents the queue lengths of all users; (b) depicts
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Figure 2.2: Trajectories of (a) queue length, (b) average delay and (c) product delay stepsize for a slightly
varying stepsize u. The variation of the stepsize corresponds to a (decreasing) piecewise constant function.
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Table 2.6: Sum utility (P*), sum rate, and average delays [cf. (2.19)] for the allocation schemes in Test
Case 5.

(A1) (A2) (A3)
P* | 23.954 | 24.077 | 24.055
Y Gm | 208.65 | 210.89 | 210.78
Y,.d | 1531 | 12314 | 1526

the delay experienced by the users; and, (c) represents the product delay times stepsize. Results
in subplots (a) and (b) show that every time the stepsize changes, the queue length and delay
increase notably. However, after a transient period the stochastic schemes are able to drive the
queues to a stable level (note also that the duration of this transient seems also to increase as the
stepsize decreases). Moreover, the product delay times stepsize, is stabilized around a steady state
value confirming that the average delay is inversely proportional to the stepsize (as predicted by
Proposition 3).

Test Case 5: comparison with other optimal RA algorithms. The last test case is devoted
to compare the performance of our algorithms with that of existing state-of-the art alternatives.
The metrics to be compared are sum average delay and sum-utility. Three algorithms are compared:
(A1) our stochastic optimization algorithm with L = 1 and p = 107°; (A2) an stochastic algorithm
with time diminishing stepsize similar to the proposed in [Wan07] (the stepsize considered is
p[n] = p[0]/(1+100n/N), where N = 50000 is the total simulation time); and (A3) the optimal
queue control algorithm proposed in [Huall]. Neither [Wan07] nor [Huall] consider the exact
same operating conditions than the ones in this chapter, so that the solutions proposed in those
papers require some adaptation. Since [Huall] considers an unconstrained optimization problem,
we will assume that the value of the optimum values of the multipliers associated with the average
rate and power constraints (i.e., a;;, and 7, Vm) are perfectly known. To ensure a fair comparison,
the initialization of the queues (multipliers) in both algorithms is the same and the parameter V'
in [Huall] is set to V =1/p.

The scenario considered is the same than one of the considered in Test Case 3 (M = 8
and & = [100,0,0,0,0,0,0,0]%). Results are listed in Table 2.6. The first observation is that
A2 achieves the best sum-utility value. This was expected because the schemes in [Wan07] are
optimal as n - oo. On the other hand, A2 also exhibits the highest delay. This was expected too,
because the steady state of the algorithms in [Wan07] is in fact the same than that of the optimal
non-stochastic solution (recall that the results in Test Case 4 confirmed that the queues for the
non-stochastic algorithm can grow unboundedly). Comparing A3 with Al, the results show that
the sum-utility loss is slightly higher for our scheme while the achieved delays are similar. This is
also reasonable, because A3 capitalizes on the perfect knowledge of a, and =, (which amounts
to have knowledge of the channel distribution) while Al is a purely stochastic (online) algorithm.

2.9 Concluding summary

Cross-layer algorithms were designed in this chapter to allocate resources (flows, channel access,
power and rates) in a cellular system, where users transmit over a set of orthogonal channels. Both
uplink and downlink setups were addressed. The developed RA strategy depends on the instan-
taneous fading, the queue lengths, and user-specific weights. The latter correspond to Lagrange
multipliers and are estimated online using stochastic approximation iterations. Capitalizing on a
relationship between multiplier estimates and the windowed average queue lengths, stability and
average delay performance were analyzed. Finally, a mechanism to effect delay priorities among
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users by tuning the stepsize of individual users was also discussed.

Appendices
Appendix A: Optimal solution for (3.6)

To solve for the optimal RA the constraints in (3.6) will be split into two groups. The first
group is formed by (2.3), (2.5) and (2.6b). Those average constraints are generally difficult to
handle and dual techniques will be used to deal with them. The second group is formed by (2.1)
and (2.2) plus the nonnegative constraints that were not explicitly written in (3.6) but confine all
w” (h),p% (h) and 3,, to be nonnegative. The constraints in the second group are easy to handle,
and there is no need to dualize them.

To find the optimal solution for (3.6) we will: a) form the corresponding Lagrangian; b)
minimize the Lagrangian while guaranteeing that the constraints in the second group are satisfied
and c) substitute for the optimum value of the Lagrange multipliers to recover the primal variables.

We start by introducing notation to form the Lagrangian associated with the problem in (3.6).
Let x be a vector containing all primal variables (3,,,w¥, (h),p% (h), ¥m,k, h). Note that x has
infinite length because h takes infinite values. Using these notational conventions, the Lagrangian
is:

M K
L(x,A) = Zl(—Um(am)+am(dm—dm) +pm(E[am-;w;(h)og(h,pg(h))])

g Wm(E[ 5™ wh (h)ph (i) —ﬁm]))- (227)

k=1

For a given A, we need to minimize £(x, ) with respect to (w.r.t.) x. As it will be apparent
next, the structure of £(x, ) allows the minimization w.r.t. a,, p&, (h) and {wf (h)}M_; to be
performed separately. Since £(x,\) is strictly convex and differentiable w.r.t. a,, and p¥ (h),
minimization w.r.t. those variables amounts to equating the corresponding partial derivatives of
L(x,) to zero. Differently, the minimization w.r.t. w¥ (h) is slightly more complicated, mainly
because £(x, ) is linear in w¥ (h).

Consider first the optimum arrival flows. Differentiating £(x,\) w.r.t a,, and equating the
derivative to zero yields U, (@*,) + aum — pm = 0. Solving the latter w.r.t. @,, yields

iy (A) = (Un) ™ (pm = ). (2.28)

To guarantee that the latter satisfies the nonnegative constraints, we just need to project a,, onto
the feasible set (nonnegative orthant). Thus, the solution is

ay,(A) = [(Un) ™ (pm = am) ] (2.29)

Proceeding similarly with the optimum power allocation, we set the partial derivative of £(x, )
w.r.t. p},(h) to zero. This yields pyw, (h)CE, (h, pf, (h))-mw), (h) = 0, which can be rewritten
s [pmCk (1, pk,(h)) = m]wk (h) = 0. Clearly, the equality is satisfied if: i) w¥ (h) = 0 or ii)
pmdﬁl(h,p,ﬁl(h)) — 7y = 0. Supposing that w¥ (h) # 0, then ii) needs to hold. The root of ii)
is pF*(h,A\) = (CF)7! (h, 7 /pm). As before, we must guarantee that pF*(h,\) is nonnegative
and satisfies (2.3); hence, the optimal power allocation is

PRS0, A) = [(CE)7 (b, m ) ] (2:30)
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If now w¥ (h) = 0, then any finite value of p¥ (h) is equally optimum. In fact, w¥ (h) being
zero means that channel k is not assigned to user m, so that the effective transmit power (and
rate) is zero for any finite value of p%,(h), including the one in (2.30). For this reason, the power
allocation in (2.30) is optimum regardless of the value w¥, (h). Interestingly, if C¥ (-) corresponds
to Shannon's capacity, the solution in (2.30) reduces to

<k
P
p 1
(B, A) = [—m - _k] (2.31)
Tm Pyl
which corresponds to the celebrated waterfilling solution (with p,, /7, being the waterfilling level)
that maximizes the sum-capacity of a set of parallel orthogonal channels [Cov06].

As already mentioned, minimization w rt. wk (h) has to be handled more carefully. The
first reason is that E(x A) is linear in wk (h); hence the optimal scheduling cannot be found by
differentiating w.r.t. w¥ (h). The second reason is that constraint (2.1), which was not dualized,
couples the scheduling across users, so that the mere projection |n (2.29) and (2.30) cannot be
used here. And the third reason is that to find the optlmum wF*(h, ), the optimum values
{pF5(h, )M, need to be known. To solve for wr*(h,A), we first note that the terms in
L(x, ) that depend on w¥ (h,\) are [cf. (2.27)]

M K M K
. zlme[zwmh)cz(h,pfn(h))] -5 Lz wmh)pfn(h)]. (232)
m= m= =1

k=1

Substituting for the optlmump “(h, /\) rearranging terms and defining the functional f(m,k,h, \) :

pmCE (h, pFr (h, pk* (h, X)) = mmpf (h, X) (cf. Sec. 2.4.1), it is possible to rewrite (2.32) as
K M
IE[Z (- > wj;(h)f(m,k,h,x))]. (2.33)
k=1 m=1

Based on the previous expression, it readily follows that finding the optimal w” v (h,A) that mini-
mizes (2.27) amounts to solving, for each h and k, the following problem:

. (Iﬁn)\r;}M - Z wk (h) f(m, k, h,X) (2.34a)
s. to: Z wk (h,A) <1 (2.34b)
wfn(h,)\) >0 Vm (2.34¢)

where (2.34b) and (2.34c) are the constraints that involve w¥, (h) and were not dualized.

Assuming that f(m,k,h, A) is nonnegative for at least one user*, the solution of the previous
problem is straightforward and consists of setting w’ﬂ“z(h,)\) =1 for the user m which maximizes
f(m,k,h,X), while setting w® (h, ) = 0 for all other users. This policy can be written in closed
form using the indicator function as

w’rk;:—(h7 )‘) = I[{m:argmaxmr{f(m’,k:,h,)\))}}' (235)

Substituting A = A* into (2.29), (2.30) and (2.35), yields the optimal solution in (2.7), (2.8)
and (2.10), respectively.

*The convexity of C¥,(-) can be used to rigorously show that f(m, k,h, ) is always nonnegative.
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Appendix B: Convergence and optimality of stochastic schemes

We begin by briefly reviewing some concepts from optimization theory and introducing notation.
Then, we present a result on boundness of Lagrange multipliers (Lemma 1) to be used in subsequent
proofs. Using Lemma 1, we prove Proposition 1 (Appendix B.1), and subsequently Proposition 3
(Appendix B.2). For brevity, several of the proofs presented here guarantee only convergence in the
mean (hence, in probability), but more sophisticated tools can be used to establish convergence
w.p.1 [Boy06], [Ber03, Prop. Sec. 8.2.2], [Rib10a].

The definition of a stochastic subgradient is reviewed first. Let f be a scalar, real-valued
function of vector x. Vector 8(x¢) is an unbiased stochastic subgradient of f at point xq if and
only if f(x) - f(x0)>ET[8(x0)](x-x0) w.p.1. Getting back to our problem, we will use D(\)
to denote the dual function of (3.6) [Ber99, Sec. 5.1.2]. Key for the subsequent proofs is the fact
that the updates in (3.20)-(2.13) are finite-length averages of stochastic subgradients of D(A).
To be more precise, let d[n] denote a 3M x 1 vector whose ith entry is

0iln] = pi = 2ot (], AL[n])wi™ (hn], Ar[n]), if 1 <i< M;

ai[n] = > v (B[n], Ap[n))wiy (h[n], AL [n]) - aip[AL[n]], if M +1<i<2M;
and 0;[n] = ai_sp[Ar[n]] - di-onr, if 2M +1 <0 <3M.

It is easy to verify that for L = 1, 8[n] comprises the correction terms in (3.20)-(2.13), so
that (3.20)-(2.13) can be collectively written as the first-order vector recursion: Ap[n + 1] =
[AL[n] - ud[n]]y. For the general case L > 1, define 8y[n] := W(8[n],L) and write (3.20)-
(2.13) as Ap[n + 1] = [Ap[n] - udr[n]]y’, where now the (3.20)-(2.13) correction terms are
windowed averages of 9[n].

Using results from optimization theory, it follows readily that 8[n] is an unbiased stochastic
gradient of D(A) at point Ar[n] (cf. [Ber99, Ch. 6]). This implies by definition that D(X) -
D(Ar[n]) = ET[8[n]](Ar[n] = A) w.p.1, which is an important property to be used later on.
Note however that 81[n] for L > 1 may not be an unbiased stochastic subgradient of D(\). In
fact, the subsequent proofs will reveal that 81, [n] is in general a biased estimate of the subgradient
of D(X), and therefore results from convergence of e-subgradients need to be used [Ber03, Sec.
4.3]. This will slightly complicate the convergence proofs. Finally, let 8;[n] denote the normalized
multiplier error 8y,[n] == (Ap[n+ 1] - Ar[n])/p. In words, dy[n] = r[n] if Ar[n] - pdr[n] is
nonnegative so that the projection operator in Ap[n + 1] = [Ap[n] - udr[n]]; is not needed.
Otherwise, the entries of @1[n], which are large enough to render Az [n] — u@r[n] negative, are
partially clipped in &7[n]. Based on this definition, we can write A [n+1] = Ap[n]-pdr[n]. This
notation will be used at several points in the proofs to bypass the non-linearity of the projection
operator in Az[n+1] = [Ap[n] - pdr[n]]y -

Now, we are ready to present a result on the boundness of the multipliers.

Lemma 1: If the problem in (3.6) is strictly feasible and the constraint set in (2.6b) and (2.6c)
is bounded, then there exists a finite constant c so that E[|Ap[n]|] < ¢ Vn.

This is a standard result for dual (sub)gradient algorithms, and its proof will only be sketched here.
The proof follows the steps in, e.g., [Ned09, Lemma3)], after writing 1[n] as a sum of L terms and
taking expectations. Intuitively speaking, this claim is reasonable because: a) feasibility implies
that the optimum multipliers A* are finite; b) the subgradient iterations drive E[Ar[n]] closer
to 8*; and c) the maximum correction term is bounded. Since convergence in the mean implies
convergence in probability, it is guaranteed that |Az[n]| is bounded in probability. As mentioned
earlier, the ensuing appendixes will prove convergence in probability, but not convergence w.p.1.
One of the key steps to show convergence w.p.1 is to prove that |[Az[n]| < ¢ Vn w.p. 1. This
can be done using a slight generalization of the supermartingale convergence theorem; see [Ber03,
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Props. 8.2.10 and 8.2.11] and [Ber03, Prop. 8.2.11] for details, or [Rib10a] for a related argument.

Appendix B.1: Proof of Proposition 1

Proof of (i): Recall that the updates in (3.20)-(2.13) can be written in a single vector re-
cursion as Ap[n + 1] = [Ap[n] - pdr[n]]y’. Since the stochastic iteration is projected over
the nonnegative orthant, it follows that Ap[n + 1] > Ar[n] — udr[n]. Applying this inequality
recursively yields Ap[n + 1] > AL[0] - XL, Or[l]. Dividing both sides by n and initializing
with AL[0] > 0, yields ("D AL[n+1] > —u(n™t) X, AL[1]. Since the multipliers are bounded
(cf. Lemma 1), as n — oo the left hand side of the last inequality goes to zero, which implies
0> -limy_en 'Y, 81[1]. Take now into account the following facts: (a) in (3.6) all the con-
straints are convex (in fact, linear); and, (b) The constraint violation averaged over the last L
slots is represented by —8,[!] (this follows from the definitions of 8[l] and 81[!]). Based on these
facts, — lim,,— oo (n‘l) Zln=1 d1[!] amounts to the time-averaged constraint violation; and therefore,
the inequality 0 > —lim, . (n"') X7, 81[1] implies that the stochastic solution is feasible, thus
proving (i).

If it holds that after a time instant ng the multipliers of all active constraints are nonnegative,
then the projection operator becomes transparent, which readily implies that 0 = lim, o (n -
n0) "t Y, OL[l] = limp oo n™t ¥y OL[1]. The latter together with the linearity of the constraints
n (3.6) imply that the bounds in (2.14) and (2.14a) associated with the active constraints are
satisfied with equality. For the problem in (3.6), it is easy to verify that the flow conservation and
average power constraints are always active. However, the constraints in (2.6b) may or may not
be active, depending on individual user rate requirements and on the system’s operating conditions
(average channel gain and power budgets).

Proof (ii): To show the bound in (2.15), we need first to prove the following lemma.

Lemma 2: If the entries of 8[n] are bounded, it holds that lim, e + 3/ E[A] (1]
O(p). Proof: We first present the proof for L = 1. Based on that, we present the proof for L=
which can be easily generalized for L > 2.

<
2,
The first step in proving the lemma for L = 1 consists of using the non-expansive property of

the projection operator [-]&° in Ap[n+ 1] = [AL[n] - pdr[n]]y, to write
IAL[n+1]12< IXL[n] P42 0L [n]*-2uAT [n] B [n]. (2.36)

Supposing that the “path” (history) of the system up to instant n, namely A.[0],...,Ar[n], is
given, consider taking expectations on both sides of (2.36) over the future of the path, to obtain

E[IAln+11?] < [A[n]? + w*E[|0L[n][?] - 20AL [R]E[BL[n]] . (2.37)
Taking now expectations over any possible path Az[0], ..., Ap[n], yields
E[IALln+112] <E[|AL[n]?] + w*E[|0L[n][?] - 20E [AL[R]E[81[n]]] . (2.38)

Successively applying the last inequality and with AT upper bounding E[[|91[n]]?], we arrive
at

E[JAL[n+1]°] < E[AL[OJ\21+u2§;A%M—2MZ§;E[A£U]E[8LU]J]. (2.39)
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Dividing by n and rearranging terms, yields

n 2 n
2R NME O] < A AT+ L (BMLO)) - ELAsn+ 1117]). (240)

Since the multipliers are bounded (cf. Lemma 1), as n — oo the last inequality reduces to

lim — E]E [)\T [8L[l]]] < AL

L (2.41)
nTee o 2

For L = 1, it holds by definition that 8[l] = 8[l]. Substituting d.[l] = 9[!] into (2.41), the
bound in Lemma 2 follows readily.

The proof for L = 2 will rely on the definition of 5L, and the bound in (2.41), which holds
regardless of the value of L. Let us rewrite the left hand side of (2.41) as follows®

lim L S E[AT[E[9,[1]]] = lim © ZE[AT ](%E[a[z-uhém[am])]

e nmeem oy
@ i — ! nzln-z[ AL[l-1 ]+AL[Z])TIE[8[Z—1]]]
n >
® %Lrgom %E[l( L= 1JeAg[l - 1]-pdp[i - 1)) E[8]1-1]]]
©) MWZZIE[AT [~ ]E[B[l—l]]]—gggnlzlu E[aL[l— JE[8[I-1]]] (2.42)

where in (a) we have rearranged terms; in (b) we have used that Ap[l] = AL[l-1] - pdr[l-1]
(cf. the definition of 81[n]); and in (¢) we have shifted the summation index. Substituting (2.42)
into (2.41), yields

max

lim — ZE[)\TZ— JE(8[1-1]]] - hm—Zu E[@L[l— 1NE[8[I-1]]] < g p. (2.43)

nTeem o nTeem o

Since we have assumed that the multiplier updates are bounded, |[E[7[l - 1]E[8[I - 1]]]| is
bounded by say Amax, Upon substituting this bound into (2.43) and rearranging terms, we have
limye(n™h) Ty E[AT[I-1]E[O[1-1]]] < (AP2</2 + A™*/2) 1, which completes the proof
of Lemma 2.  Note that although the lemma assumed that the entries of @[n] are bounded,
the proof relied on the fact that second-order statistics of d[n] are bounded. Nevertheless, the
assumption of the entries of &[n] being bounded does not entail a loss of generality from a practical
perspective (arrival rates and the transmit powers and rates are always bounded in real systems),
and therefore it was assumed through.

Having proved Lemma 2, we are ready to establish the bound in (2.15). Taking expectations

>To simplify the proof, we will not take into account that the window averaging operator renders the definition
of 9. [!] different for [ = 1. As already explained in footnote 2, such a difference is not relevant when one looks at
the long-term average and takes n — oco.
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on the left hand side of (2.15), we have

M 12
U (33 Blan 0110

m=1 =1
(a) M 12 .
SHEAESETANEN)

n M
EED| PHTRNGN]

n M n
© %;E [( 2_1 Um(a:n(AL[z]))) + MR [a[z]]] - %lZlE [ALLIE (B[]
@%éE[B(AL %IZE[ [a[1]]
© b %iE[ 1E[8[1]]] (2.44)

o~
I
—_

where (a) is due to the definition of a),((AL[l])); (b) holds because U,,(-) are concave; (c)
follows by adding and subtracting the same term; (d) is due to the definition of the dual function
[Ber99, Ch. 5]); and (e) relies on the fact that D(AL[l]) > D(X*), which holds because the dual
function is minimized at A*.

Since the problem in (3.6) is convex and feasible, it has zero duality gap, and thus D(AX*) = P*.
After substituting D(A*) = P* into (2.44) and letting n — oo, it holds that

;U (hm ZIE al (Ar] ])])>P*—hmliE[A{[Z]E[aU]}]. (2.45)

no

Using the bound provided in Lemma 2, the statement in (ii) follows.

Appendix B.2: Proof of Proposition 3

The sketch of the proof proceeds in two steps. First, we show that the averaged iterates
of the Lagrange multipliers converge to a neighborhood of the optimum ones. With Ay :=
limy, oo = Y7 E[AL[{]], this will be accomplished by capitalizing on the fact that the dual func-
tion D()\) is continuous and D (Az) — D(A*) < 6p(u), where dp(u) is proportional to p. This
will be shown in Lemma 3 which is presented at the end of this appendix. Since the bound is
proportional to i, Az, belongs to the (level) set By = {\: D(X) = D(X*) <ép(p)}. Since D(A)
is continuous, the size of By shrinks® as ;1 — 0, and therefore |[A;, - X*| - 0 as 1 — 0. The second
step consists in using Proposition 2 to write py, [n] = pW (gm[n], L) + 6 (no). Using the first
step, it then follows that [ulim, e v 0 E[W (gm[n], L)] - Pzl = 0 as o~ 0. Swapping
the order of E[-] and W (-), we deduce that |ulimy—e v 281 E[gm[n]] - pX, ;| > 0 as p - 0,
which is the claim of the proposition. 7
Lemma 3: If the entries of 8[n] are bounded, it holds that D (A1) - D(X*) < O(u). Proof: For
brevity, we consider L = 2, but the proof can be easily extended for L > 2. Taking into account

®Expressions (or bounds) for p (i) and the size of By (thus for the value of [Az — A*|) can be derived; e.g.
for L =2, 5p(u) is expressed as in (2.53). Regarding the size of By, one can capitalize on the expression of D(\)
associated with (3.6). Since a closed-form expression for D(X) may be difficult to obtain, bounds on D(A) (which
in general are easier to find) can be used to bound the size of By. On the other hand, generic bounds on By which
do no exploit the specific form of (3.6), but only the fact that D(\) is a dual function can also be found along the
lines of, e.g., [Ned09].
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that Ap[n+1] = [Ap[n] - pdr[n]]y, it follows that
IApln+ 1] =X < |ALln] = X** + p®|0p[n] | - 2p0F [n](AL[n] - A*)  (2.46)

where the inequality is due to the projection [-]§° operator. Considering that the path of the system
up to instant n is given, taking expectations on both sides of (2.46) yields

E[|ALln+1]= X2 < |ALln] = N + p*E |8 [n] 1] - 24E [0 [n]] (AL[n] - X*)(2.47)

For L = 2, we have that 91[n] = (1/2)(8[n] + 8[n - 1]), where as in Lemma 2, we ignore that
the equality does not hold for n = 1 (cf. footnote 5). Based on this, the last term in (2.47) can
be rewritten as

£ [0 [n]] (Arln] - A) = (67 [n]] (Au[n] - A)
+%E[@T[n—l]]()\L[n—l]—uéL[n—l]—)\*). (2.48)

Using the fact that 8[n] and 8[n — 1] are subgradients of the dual function at points Az[n] and
Ar[n — 1], respectively, (2.48) can be bounded as

E[0f []] (As[n] - X) 5 (DA[n]) - D)
. % (DAL= 1)-DO) - EE[07[n-1]]d[n 1) (249)
Substituting (2.49) into (2.47) yields
E[JAgln+ 1= 2] < [As[n] - X2 + 2B 19 [ 1]

“2u (D(A[n]) - DA)) - 2% (DAL = 1]) = DA)) + (2E [8" [~ 1]] [ - 1].

Taking expectations in (2.9) over any possible path Az[0],...,Az[n], and with A7** and Ampax
denoting upper bounds on E[|8.[n]|?] and [E[9T[n]8L[n]]], respectively, it follows that

E[|ALln+1] - XN P]<E[|AL[n] - X [?] + p2A0
~CE[DA[n]) - DA)] = SE[D(An - 1]) - D(A)] + j A, (2.50)
Applying successively (2.50), yields
E[|AL[n+1] - A*[2] < E[|AL[0] - X* ] + 2

l_il(ArfaX + Amaxy g, lz (E[D(AL[1])] - DAY)). (251)

Dividing by n and rearranging terms, we arrive at

2 n _ n
By A 2 TS EIDAID) - D))
b (B[ ALDn + 1] - AP - E[JAL[0] - A* ). (2.52)

n-1
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Since the multipliers are bounded (cf. Lemma 1), as n — oo the last inequality yields

“(A?M; AE™) nhg} SEDALN]) - D)
n3

ZD(lim liE[ALm])-D(A*) (2.53)

n—oo n l:l

where for the last inequality we have used that the dual function is convex. This concludes the
proof.
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Chapter 3

Resource Allocation for CRs under Probability-of-Interference
Constraints

Efficient design of CRs calls for SUs implementing adaptive RA schemes that exploit knowledge
of the channel state information (CSI), while at the same time limiting interference to PUs. This
chapter introduces stochastic RA algorithms for both interweave and underlay CR paradigms.
The algorithms are designed to maximize the weighted sum-rate of orthogonally transmitting SUs
under average-power and probabilistic interference constraints. The latter are formulated either as
short- or as long-term constraints, and guarantee that the probability of secondary transmissions
interfering with primary receivers stays below a certain pre-specified level. The optimal schemes
leverage CSI of the primary and secondary networks, as well as the Lagrange multipliers associated
with the constraints.

3.1 Introduction

As CRs aim at controlling interference while leveraging favorable link conditions, knowledge of
the CR-to-PU and CR-to-CR channels acquired during the sensing phase is instrumental. Based
on this, CRs adapt available resources, namely power, rate, and scheduling coefficients, to the
intended channels. The merits of exploiting statistical or instantaneous CSI for adaptive RA are
well documented in wireless networking literature [Gol05, Ch. 9]. Nevertheless, CRs face the
following additional design challenges (DC) [Mus09, Jaf07, Gha07, Kan09, Kan09, Urg09, Wan11,
Barll, DL11]:

» DC1) Extra constraints are needed to effect interference control;
= DC2) CR volatility may render statistical CSI outdated; and also,
= DC3) Instantaneous CSI of the PU network is difficult or impossible to acquire.

In order to address DC1, existing works limit CR-inflicted interference either through in-
stantaneous (short-term) and average (long-term) transmit-power constraints [Kan09, Zha09,
ZhalO, Barll]; or, by controlling the probability of interfering with PU transmissions, see, e.g.,
[Urg09, Che08b, Che08a, Wanll, Sol12, Dalll]. For this second case, most works have fo-
cused on short-term constraints, which are relatively easier to handle. Stochastic RA (RA) ap-
proaches [Mar09, Wan11], offer viable means to deal with DC2. As with general wireless networks,
dual stochastic algorithms are particularly attractive because they are computationally simple,
do not require knowledge of channel statistics, and exhibit robustness to channel variations; see
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[Wan07, Rib10a] and references in [Mar09, Wan11]. Regarding DC3, most prior CR works con-
sider noisy or quantized CSI [Mus09, Mar09, Surl0, Hell]; a few consider outdated CSI for
CRs [Surl0, Mus09, Che08al; and very few incorporate mechanisms to predict the actual CSI
[Che08b, Barll].

The goal of the present chapter is to develop stochastic RA algorithms for both interweave and
underlay paradigms that optimize sum-rate performance of a CR network, limit the probability of
interfering with PUs (both short-term and long-term limits are investigated), and jointly account
for outdated and noisy CSI. Probabilistic long-term interference constraints are adopted not only
because they lead to improved performance, but also because uncertain information on the CR-
to-PU channels renders short-term interference constraints infeasible (if the constraint has to hold
with probability one) or grossly suboptimal (if the constraint holds probabilistically). Instantaneous
CSI of the CR-to-CR links is assumed perfect, while that of CR-to-PU channels can be noisy
and outdated. A simple first-order Markov model with additive white noise is used to capture
such imperfections, but more complex models can be afforded too. Such models enable channel
prediction and correction to track the CR-to-PU changing CSI, which is utilized by per-band
orthogonal CR transmissions to adapt their power and rate loadings. The RA schemes are obtained
as the solution of a weighted sum-average rate maximization subject to maximum “average power”
and “probability of interference” constraints that come in two flavors: a short-term constraint
ensuring that the probability of interference is kept below a pre-specified limit per time slot; and
a novel long-term constraint guaranteeing the same for a fraction of time slots. Even though
not all formulations are convex, it turns out that for all of them the duality gap is zero, meaning
that the Langrangian relaxation is always optimal. Additionally, the operating conditions enable
separation in the dual domain across users and frequency bands, which allows for optimal solvers
with considerably reduced complexity. In all cases, the optimal RA scheme turns out to be a
function of the instantaneous CSI of the CR-to-CR links, the (possibly outdated and noisy) CR-
to-PU channels, and the optimum Lagrange multipliers, obtained via simple stochastic iterations
that are robust to nonstationarities, and can even learn varying CSI on-the-fly — a highly desirable
attribute for CR networks [Hay05, Mar09]. Extensions to scenarios with more than one CR network
(each with several users) are of interest, but go beyond the scope of this thesis.

The rest of the chapter is organized as follows. Section Il presents the CSI model, means
to account for CSI imperfections, and pertinent operating conditions. A simplified adaptive RA
optimization problem, devoid of interference constraints, is formulated and solved in Section Il
Incorporation of various interference constraints and design of the corresponding algorithms are
the subjects of Section IV. Section V outlines the low-complexity stochastic iterations needed to
estimate the multipliers. Numerical examples and conclusions in Sections VI and VIl wrap up this
chapter.

3.2 Modeling

Consider a CR network of M SUs (indexed by m) transmitting opportunistically over K different
frequency bands (indexed by k). For simplicity, suppose that: i) each band has identical bandwidth,
and is licensed to a different PU; and ii) the CR network has a network controller (NC), which
collects the CSI needed for channel-adaptive RA. Extensions to scenarios where those assumptions
do not hold can be handled with a moderate increase in complexity.

3.2.1 Channel state information

Intuitively speaking, CSI in adaptive wireless systems entails channel-related information that
must be: i) available to all users in the system; and, ii) relevant from an RA perspective. A key
issue with CR systems is that CSl is heterogeneous, meaning that it is different for primary and
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secondary networks. The reason is twofold. First, CSI availability for links involving PU and/or CR
users is different [cf. i)]. Second, the impact CSI has on the design of RA is different [cf. ii)]. The
CSI for CR-to-CR links will be assumed stationary and perfectly known; that is, at every instant,
the instantaneous gain of SU links will be deterministically available. For notational purposes,
the channel’s instantaneous power gain between the mth secondary transmitter and its intended
receiver over the kth frequency band at instant n is denoted by hy’5[n]. Subscript “2" is used
to emphasize that the channel pertains to secondary transceivers. If PU transmitters are located
far away from SU receivers, h}y[n] represents the squared magnitude of the instantaneous fading
coefficient divided by the noise power in the kth band. If this is not the case, h}",[n] represents
the squared magnitude of the instantaneous fading coefficient divided by the sum of the noise
power plus the instantaneous interference power caused by the kth primary transmitter.

Regarding the CSI corresponding to the PU network, it will not be always assumed perfectly
known; e.g., because not all frequency bands are sensed at every time instant. As a result,
knowledge of the primary CSI will be probabilistic and time variant. This assumption is well suited
for scenarios where sensing the PU network state costs much more than sensing the state of the
CR links; e.g., because PUs are too many, or they are possibly located far away from the CRs, or
they are simply not willing to collaborate. The CSI model adopted by the NC for the PU network
is different for interweave and underlay settings. Each of the cases is described in detail next.

Perfect and imperfect primary CSI in interweave networks

In the interweave setup, the NC only needs to know whether each frequency band is occupied
or not. To capture this occupancy, let the Boolean variable a; represent the activity of the
PU network on the kth band, so that ai[n] = 1 if at instant n the kth PU is active, and zero
otherwise. Only the 2 x 1 belief vector fa[n] := [Pr{ar[n] = 0},Pr{ai[n] = 1}]7 is available,
where the probability mass of ai[n] is based on the history of the system up to n. The belief
can be estimated either beforehand or in real time. Next, an example of imperfect CSI in the PU
network is considered along with means of estimating the corresponding belief vector.

Let sx[n] denote a Boolean variable which equals one if the kth band is sensed at instant n,
and zero otherwise. Moreover, let a;[n] be the (perhaps noisy) measurement of a[n] obtained at
instant n, if sg[n] =1. Two main types of imperfect CSI are: i) outdated CSI (for the instants n
when si[n] = 0); and ii) noisy CSI (due to errors in the sensing process that render ai[n] # ax[n]).
To cope with outdated CSI, a model is needed to capture the dynamics of ai[n] across time which,
for simplicity, are assumed here to follow a first-order Markov process [Barll, Che08b]; see, e.g.,
[Zhall] for alternative models. Define the transition probability matrix Q with (i,7)th entry
Qij = Pr{ag[n]=i|ag[n-1] =74}, for 4,5 = 0,1. In order to account for sensing errors, consider
further the probabilities of miss detection and false alarm, namely Py;p := Pr{ax[n]=0 |ax[n]=1}
and Pp 4 = Pr{ay[n]=1 |ax[n]=0}; and use them to form the 2x1 vectors qy := [1-Pr4, Pyp]”
and qo = [PFA7 1- P]\/[D]T.

Clearly, the CSI measurements are the observed states of a hidden Markov model (HMM), so
that recursive Bayesian estimation can be implemented to obtain the instantaneous belief (posterior
probability mass function of the unobserved states). In particular, the belief f;,, [n] is updated as
follows:

» If sg[n] =0, then f5, [n] = Q 5, [n - 1].

= If sg[n] =1 and ax[n] = 0, then predict the belief vector as fa, [12] := Q fa, [2-1]; and using
that ag[n] = 0, correct f,, [n] via Bayes' rule to obtain ([-]; stands for the [th entry of a
vector)

[fa [n1]1 = ([qoilfai [n111)/ (0" T [1]) - (3.1)
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» If sg[n] =1 and ag[n] =1, predict as before, and subsequently correct to find
[fare[n]]: = ([an LBy, [n]]) /(an " By [0]) - (3.2)

Note that the described procedure resembles other recursive Bayesian models, such as the prediction-
correction steps of a Kalman filter (only prediction if sx[n] = 0, and prediction followed by cor-
rection when si[n] = 1). Different prediction-correction steps will be required if the model for
the sensing error changes, the transition matrix Q is unknown or, if the dynamics of ai[n] are
modeled differently. To be more specific about the latter, let 7, denote the time passed between
two changes of ai[n]. Experimental studies, see [Zhall] and references therein, have shown that
heavy-tailed distributions are proper alternatives to model 74, (in contrast with Markov occupancy
models, which give rise to exponentially distributed 75). Both Pareto and lognormal distributions
are investigated in [Zhall]. Clearly, in those cases aj[n] is no longer Markovian and (3.1)-(3.2)
are not optimal any more. However, the joint process {ax[n],tx[n]}, where t;[n] represents the
time passed since the last time the value of a;[n] changed, can be modeled as Markovian, so that
recursive Bayesian estimation can be employed again. These alternatives will be briefly explored
through simulations in Section VI.

Perfect and imperfect primary CSI in underlay networks

In the underlay setup, the NC also needs to know the gains of the CR-to-PU channels. This
implies that the primary CSI model in this case is different. Specifically, CSI here comprises
information about the instantaneous squared fading coefficient between the mth CR and the kth
PU divided by the noise power, which is denoted by A", (subscript “1"” is used to emphasize that
the link involves primary receivers). Note that A}, accounts for the interference power, while
hy', does not. The reason is that while the interfering power generated by the PUs is a state
variable, the one generated by the SU is a design variable. Clearly, if this CSI is perfect, then
h}cnl [n] is deterministically known at instant n. If imperfections are present, only the distribution
of hy' [n] (conditioned on all previous measurements) is available. The belief state then consists
of the cumulative and the pdf denoted by Fhm 1(h) and fhm 1(h), respectively. Depending on
the operating conditions, the belief can be known beforehand or estimated over time. As in the
interweave setup, the ensuing example highlights CSI imperfections in the underlay scenario, and
the corresponding adaptive schemes to estimate the belief vector.

Define a Boolean variable s]'[n] taking value 1 if hy', is sensed at instant n, and O other-

wise. Moreover, let A7 [n] be the (possibly noisy) measurement of A}, [n] obtained if s7*[n] = 1.
Paralleling the previoue example, two types of imperfections are possib’le: i) outdated CSI (for the
instants n when s}"[n] = 0); and ii) noisy CSI (due to errors in the sensing process that cause
~L”1[ ] # hi'y[n]). The time evolution of hj"; [n] is assumed Markovian with ¢;* (Anew hola) denot-
ing the probab|||ty of having A [n+1] = hnew, given that hk 1[n] = hoia. Moreover, let f7™(h,n)
denote the pdf of hj";[n] = h. It then follows that f;"(h n+1) Jyvz @ (hox) [ (2, n)dz. Next,
in order to account for sensing errors, the following memoryless additive noise model is assumed:
fr}?l[ ] = hi'y [n]+vp*[n], where vi*[n] stands for white noise with known pdf f,m (v) independent
of h [n]. This model has been used by the authors in a more advanced setup — interested readers
are referred to [LR14a].

With these operating conditions, the observations follow again an HMM. Hence, the belief
fhkm[n](h) can be found using recursive Bayes estimates according to the following cases:

= If 537[n] =0, then fhkm[n+1](h) = fv;p q}?(hvx)fh’kn[n](‘r)dx'

= If s)*'[n] = 1, then predict as fhm ne1](h) = [ g (h, :c)fhm n](z)dz, and use ﬁ?[n] to
correct via Bayes' rule as
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fhz"[n+1] (h)fv;" (h - iL)
S Frptnen) (@) fop (2 = B)dar

Tuna1y(h) = (3.3)

Because in this case the number of unobserved HMM states is infinite (the channel is a continuous
variable), the denominator in the update equation (3.3) is an integral. This is in contrast with
(3.2), where the denominator was a finite sum, reflecting the fact that in the previous section the
number of unobserved states is finite. From a practical perspective there are a few cases where
those integrals can be found in closed form (e.g. Gaussian channels). For the remaining cases, an
approximate technique (such as grid-based Bayesian estimators or particle filters) should be used.

Before moving to the proposed RA approach, it is worth reiterating the main points so far. The
CSI model adopted by the NC is distinct for the primary and secondary networks. The secondary CSI
consists of the CR-to-CR link gains, which account for primary interference; whereas the primary
CSl is formed either by the PU activity vector alone (interweave setup), or, it is augmented by CR-
to-PU channel gains (underlay setup), which do not account for secondary interference. Moreover,
secondary CSl is assumed perfectly known, so that information about the instantaneous realization
is deterministic; whereas primary CSl is allowed to be uncertain, so that information (belief state)
about the instantaneous realization is probabilistic.

3.2.2 Resources at the secondary network

This subsection introduces the design variables to be adapted as a function of the overall CSI
that is collectively denoted by h. Define further a Boolean scheduling variable w;* taking the value
1, if the mth CR is scheduled to transmit over the kth band, and 0 otherwise. When w;" =1, let
py' denote the instantaneous power transmitted over the kth band by the mth CR. Under bit error
rate or capacity constraints, instantaneous rate and power variables are coupled. This rate-power
coupling will be represented by the function C}"(h}'y,p}"). It will be assumed throughout that
Cy'(h{'y,-) is given by Shannon's capacity formula log(1 + hyapy [K)"), where k}" represents the
SNR-gap that depends on the coding scheme implemented [Gol05]. For systems that implement
a relatively small number of adaptive modulation and coding (AMC) modes, the last formula can
be replaced with a piecewise linear function combining the rates achieved by the modes (see, e.g.,
[MarQ9], for details).

The secondary network operates in a block-by-block fashion, where the duration of each block
corresponds to the coherence time of the fading channel. This way, per time slot n the NC uses
the current CSI vector h to find w}* and pj". Since h depends on n and {w}",p}"} depend on
h, {w",pi*} will clearly vary across time. Henceforth, h, w;"(h), and p}*(h) will be replaced by
h[n], wi*[n], and p}*[n], whenever time dependence is to be stressed.

For this CR configuration, the goal is to develop adaptive RA algorithms leveraging the in-
stantaneous secondary CSI and the generally uncertain primary CSI to determine which CR should
transmit per band, and at what rate and power. An optimization problem will be formulated and
solved in the ensuing section, first without interference constraints. Those will be incorporated in
Section 3.4.

3.3 The Optimization Problem for Adaptive RA

To formulate the optimization problem associated with the novel RA approach, it is prudent to
identify: i) the variables to be optimized, ii) the metric to be optimized, and iii) the constraints that
must be satisfied. Section 3.2.2 identified {w}",p}'} as optimization variables. The metric to be op-
timized is the CRs' weighted sum-average rate given by ¢ := 3, ,,, Ey, [Bmw;”(h)C}f(hng,pZ‘(h))],
where [y, stands for expectation over all CSI realizations, and 5™ > 0 represents a user-dependent
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priority coefficient. Note that only the rate of CR user-channel pairs for which w;"(h) = 1 par-
ticipate in forming ¢. Other objective functions such as sum-utility rate could be used without
changing the basic structure of the solution; see, e.g., [Wan07, Marlla] for further details. Re-
garding the constraints, {p}’} must be obviously nonnegative, while {w}'} must belong to the set
{0,1}. Moreover, since at most one CR transmits over each band k, it must hold that

Yrwp(h) <1, V. (3.4)

If the left-hand side (LHS) of (3.4) equals one, then one user accesses the channel (orthogonal
access); otherwise, no user transmits either because all CR-to-CR channels are poor, or, because
excessive interference is inflicted to the PU. The maximum average (long-term) power the mth
CR can transmit is upper bounded; that is,

B [, wff (h)pf' ()] <™, v, (35)

Under these considerations, the optimal RA emerges as the solution of the following problem:

¢t = Ep, [ wp () O (b, i (h 3.6a
€= i, 2 B [ )CE (g, i ()] (3.62)
s. to: (3.4), (3.5), w;'(h) €{0,1}, and p;'(h) > 0; (3.6b)

where dependence of the optimization variables on h has been made explicit.

3.3.1 Optimal RA without interference constraints

Although the problem in (3.6) is non-convex, it can be trivially transformed (relaxed) into
a convex one with identical KKT conditions!. In fact, the problem in (3.6) is a weighted sum-
rate optimization of an uplink channel with orthogonal access. With 7™ denoting the Lagrange
multiplier associated with the constraint in (3.5), it has been shown that the solution of such a
problem is (see, e.g., [Marllc])

T [n])= BT (), () — 7 [ o ). (37)
] = [arg o wk"(p?[n])] (3.8)
P [n 0

_ [ a ﬁr (3.9)
0

Tm[1] B h}g?z

Wi ] = L (meargmas, o (01 (1)) A (o (b [n1)>0) ) (3.10)

Key to understanding the solution of (3.6) is the definition of the functional ¢}'(-) in (3.7).
Intuitively, (3.7) can be interpreted as a user-quality indicator where the rate is a reward, the
power a cost, and 5™ and 7™[n] their corresponding prices. Analytically, ¢} (x) represents the
contribution to the Lagrangian of (3.6) if the transmit-power is p;*[n] = x and w}'[n] = 1.

Based on the definition of ¢} (p{*[n]), equation (3.8) reveals that p}**[n] is found separately
for each of the CR user-channel pairs. Similarly, (3.10) shows that finding the optimal scheduling
variables {w™*[n]}2_, per channel k, requires no information from channels other than k. These

'There are two sources of non-convexity in (3.6). The first comes from wj € {0,1}, but can be relaxed to
wr' € [0,1]. As w;® only appears in linear terms, this relaxed solution coincides with the original one [Marllc].
The second source corresponds to the monomials wy'py' and wy C}", for which one can introduce dummy implicit
variables p;" := wy'py" in (3.6), and establish convexity using the properties of the perspective function. The resulting
problem yields the same KKT conditions as those of (3.6); it is convex; and can be solved using a dual approach,

see, e.g., [Marllc], for details.
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attractive properties hold thanks to the assumed orthogonal access in the secondary network and
the definition of the objective in (3.6), both of which render the optimization problem in the
dual domain separable across users and channels. Delving into the nuts-and-bolts of the optimal
RA, consideration of a logarithmic rate-power function implies that (3.9) follows the well-known
waterfilling solution [Gol05]; and (3.10) manifests that the user scheduling is opportunistic (as
desired) and greedy (only the user with highest quality must be scheduled per band).

Finally, it is worth emphasizing that although traditionally 7#™[n] is set to a constant value
7™, corresponding to the value that maximizes the dual function associated with (3.6) [Ber03],
alternative (stochastic) methods can be used. Such an alternative is attractive especially for the
CR setup considered here, and will be explored in Section 3.5.

3.4 Interference constraints

Different interference constraints are considered in this section along with ways the optimal
RA approach must be modified in the constrained case. Attention is centered around constraints
that limit the probability of CR transmitters to interfere with PU receivers. Other interference
constraints (such as limiting the average interference power, or the rate loss for the primary
network) could also be considered. Note that probabilistic constraints naturally account for CSI
imperfections and, depending on their formulation, they can even exploit CSI variability.

When constraints on the probability of interference are included, there are two factors that
significantly affect the design of optimum adaptive RA. The first is whether the interference con-
straints are formulated as instantaneous (short-term) or as average (long-term) constraints. The
former require a certain probability of interference to hold for each and every time instant, while the
latter allow PUs to be interfered at most over a maximum fraction of time. Clearly, instantaneous
constraints are more restrictive than their average counterparts, which can exploit the so-called
“cognitive diversity” of the primary CSI [Zha09, Zhal0]. As a result, the total rate transmitted
by the secondary users will be higher in the latter case. On the other hand, optimization prob-
lems under instantaneous interference constraints are easier to solve because such constraints are
amenable to simplification. Differently, average interference constraints cannot be easily simpli-
fied, and a dual approach is often invoked to deal with them. The second factor is whether an
interweave or an underlay setup is in operation. The definition of interference in each setup is
different. In fact, it will be shown that underlay formulations will render the problem non-convex
and thus, challenge the development of an efficient solver able to achieve optimal performance.
Remarkably, for the formulations in this chapter, the optimization problem for the underlay setup
exhibits zero duality gap, and the optimal solution can still be found with a moderate increase in
terms of computational complexity.

Different formulations are considered for the probability of interference constraints because
they will give rise to novel optimal RA schemes. But also because, upon comparing the different
solutions, it will be possible to understand the differences among the considered alternatives, both
theoretically and from a performance perspective. The first formulation considered is the one
involving instantaneous interference constraints for both interweave and underlay setups. Subse-
quently, the interweave and underlay setups will be investigated separately under average interfer-
ence constraints. In all formulations, the schemes will be designed assuming imperfect CSI and
then specialized for the case of perfect CSI. To simplify derivations, schemes for the underlay setup
will be developed assuming that the PU is always active. The minor modifications required when
this assumption does not hold are discussed in the closing remark of Section 3.4.
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3.4.1 Short-term interference constraints

To keep the interference to the primary network under control, a maximum probability of
interference, call it o € (0,1), is placed per band. Since this subsection focuses on short-term
(instantaneous) interference constraints, such a limit is enforced Vn.

Interweave networks

In this setup, interference occurs when ax[n] = 1 (kth PU active over the kth band), and
Y mwp'[n] =1 (one CR transmits over the kth band). Then, the constraint on the probability can
be formulated as Pr{ax[n] Y, w;'[n] =1 |n} < 0, Vn. At time n, the only random quantity in
the previous expression is ax[n]. Hence, the constraint can be written as

Eafn) [:ﬂ'{ak[”] Zm w?[n]ﬂ}] < O - (3.11)

Taking into account that Y, wi’[n] is Boolean and deterministically known at time n, the con-
straint can be rewritten as [, []l{ak[n]:l}] Ymwpt[n] < 0. Clearly, the expectation on the
LHS corresponds to the second entry of the belief vector [fa, [n]]2. Thus, ¥, wi*[n] =1 only if
[fa, [7]]2 < Og. This in turn implies that: i) there is no need to dualize the constraint, and there-
fore the expression for the link-quality indicator in (3.7) does not change; ii) the power allocation
plays no role on the definition of the interference, and hence (3.8) still holds; and iii) to satisfy the
interference constraint the optimal scheduling is now

wi” (0] = L, [nll2<or} " Li(pr[n]omax; oL [n]) A (¢[n]>0)}" (3.12)
In words, the “winner CR" can transmit only if the probability of the channel being occupied is less
than 0. When the primary CSl is noisy and outdated, such a probability depends on the previous
measurements and the accuracy of the sensor [cf. (3.1)-(3.2)]. On the other hand, if the primary
CSl is perfect, [fa, [1]]2 is either one or zero, and therefore transmissions can be allowed only if the
channel is not occupied, i.e., it holds that w;**[n] = 14, [n]-0} * Lt (o n]=max; gL [n]) A (¢ [n]>0)}-

Underlay networks

In this case, interference occurs when the received power at the PU due to CR transmissions
exceeds a threshold T'y; i.e., if wi'[n] >0 and p}*[n]h}"[n] > T'y, the constraint to be satisfied at
every time n is Pr{p}'[n]h]’,[n] > T\ |n} < 0. Since at time 1 the only random quantity is now

r1[n], the constraint can be rewritten as

Eng, o | Lt (om0 ) < 00V (3.13)

or equivalently, Eh’{,‘l[”] []l{h n]<Ty/pp[ ] > 1 - 0. Using the belief for the primary CSI at
2>

time n, it follows that Fhm (Fk:/pk [n ]) 1 - 0. Upon defining pZ"[n] as the root of 0y =

Fhﬂl[n](pzl,[n]/Fk), the last inequality amounts to the bound p’[n] < p{ [n]. In words, the
interference constraint can be rewritten as a maximum (peak) power constraint.

This is very convenient, because while the original constraint in (3.13) is not convex, the max-
imum peak power constraint is convex. Since no multiplier is introduced to enforce the constraint,
the Lagrangian remains the same, and thus ¢}*(pj*[n]) is identical to that in (3.7). Similarly, the
scheduling does not play a role in defining the interference so that the expression for w;**[n] in
(3.10) holds true too. On the other hand, the expression for the optimum power in (3.8) needs to
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be updated because it has to satisfy the constraint pj'[n] < p?/ [n]. Such a (box) constraint can
be easily handled by a scalar projection, which readily yields

!

py" [n]
pr " [n] = [arg max ¢ (pi'[n]) : (3.14)
p?[n] 0

When the CSl is perfect, there is no uncertainty regarding h}", [n]; hence, the upper bound on the
transmit-power is p’lf, [n] := i [n]/Tk, and no interference is inflicted to the PU.

3.4.2 Long-term interference constraints in interweave systems

The previous subsection demonstrated that short-term interference constraints are easy to
handle. In fact, for the interweave case the difficulty does not lie in how to satisfy the constraint,
which is straightforward, but in estimating the probability of the PU being active. Here, the long-
term probability of interfering with PUs is considered for the interweave setup. Since there is no
easy way to enforce such a constraint, a dual relaxation will be used instead. It will be argued that
regardless of CSI imperfections, the augmented optimization problem is convex and thus exhibits
the following two properties: i) it can be tackled optimally using a dual approach, i.e., the duality
gap is zero; and, ii) it is efficiently solvable.

Starting with the constraint formulation, recall that limiting the short-term probability of in-
terference in an interweave setup consists in satisfying Pr{Y.,, wi'[n]ax[n] = 1 |n} < o, or
equivalently, E,, ) [Il{ak[n] memn]:l}] < 0 [cf. (3.11)]. In this section, the interest is in a
long-term constraint so that all time instants are jointly considered. In this case, 05 can be viewed

as an upper bound on the fraction of time instants for which interference occurs. This implies that
the solution needs to satisfy the following condition

B [ 1a, 5, up ()1} | <06 V. (3.15)

Unlike (3.11), the expectation in (3.15) takes into account all CSI realizations. Note also that the
LHS of (3.15) represents the joint probability of the PU being active and the NC scheduling one
CR transmission. If one wants to limit the probability of one CR being active provided that the
PU is active, then d; must be multiplied (re-scaled) by the stationary probability of the kth band
being occupied by the corresponding PU.

When (3.15) is incorporated into (3.6), the augmented problem is still convex because: i)
(3.15) can be rewritten as E, Y, w?(h)ﬂ{akzl}] < 0k ; and ii) the last inequality is convex (in
fact linear) with respect to (w.r.t.) the only primary variable involved (i.e., w.r.t. w;"). As already
mentioned, the approach to deal with the long-term interference constraint is to dualize it. To
this end, let 05 denote the Lagrange multiplier associated with the kth constraint in (3.15). The
introduction of a new multiplier implies that the link-quality indicator needs to be redefined as

px (i [n]) = B CF" (hiy[n], pi [n]) = 7™ [n]pi [n] = O[n)Bay (o [ Laptg-ry] - (3.16)

If the primary CSI is imperfect, then [, [, []l{ak[n]=1}] = [fa, [n]]2; when perfect, it is simply
ax[n]. The only difference between the definitions of the quality indicator in (3.7) and (3.16)
is that on top of considering the trade-off between rate and power, (3.16) also penalizes CR
transmissions that are likely to cause interference whose “price” is multiplied by the instantaneous
(short-term) probability of interference. The structure of the indicator in (3.16) also shows the role
of the secondary CSl in the RA (first term in the sum), the role of the primary CSI (third term in
the sum), as well as the impact of CSI imperfections (specific expression for By, ][ 114, [n]-1}])-

Upon substituting (3.16) into (3.8) and (3.10), the expressions for the optimal power in (3.8)
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and the optimal scheduling in (3.10) still apply. However, this does not mean that actual alloca-
tion of resources is the same. While in the previous section transmissions never took place when
Eayn] [H{ak[n]=1}] > 0 [cf. (3.12)], the allocation in (3.16) allows for transmissions when the prob-
ability of interfering is high, provided that max,, {8 C}" (hi'y[n], p" [n]) — 7" [n]p}" [n] M
Oc[n]Eq, 1] []]-{ak[n]=l}]- In other words, even if the scheduler knows that ai[n] = 1, the sec-
ondary network can access the channel if the reward for the winner CR is high enough to exceed
the cost of interfering represented by 0;[n]. Clearly, 0x[n] is tuned to enforce that the percentage
of interfering transmissions does not exceed the limit set by 0, (a higher price for interfering means
that secondary transmissions will be less frequent). Finally, since the new term in ¢} (p}*[n]) does
not depend on p}*[n], the equivalence between optimum power in (3.8) and the waterfilling inter-
pretation is still valid [cf. (3.9)]. Hence, an important difference between the short-term and the
long-term solutions for the interweave paradigm is the way in which scheduling decisions are made.
Optimal scheduling for the short-term formulation does not take into account the benefit for the
winner SU. Focus is placed first on the PU. Only if the interference caused to the PU is below a
threshold, the winner SU can transmit [cf. (3.12) and (3.7)]. Differently, optimal scheduling for
the long-term formulation is more flexible and weights both the benefit for the SU and the harm
caused to the PU [cf. (3.10) and (3.16)].

3.4.3 Long-term interference constraints in underlay systems

As in Section 3.4.2, the approach to deal with a long-term constraint on the probability of
interfering with PUs in the underlay setup, is to dualize it. Regardless of CSI imperfections, the
interference constraints here render the optimization problem non-convex. However, the problem
at hand has two attractive features: i) since the functions causing non-convexity are averaged
across time, existing results can be adapted to show that the duality gap is zero; and, ii) the
problem can still be separated in the dual domain, so that minimization of the Lagrangian can be
efficiently performed. More details will be given soon.

To formulate the interference constraint, recall that limiting the short-term probability of inter-
ference in an underlay setup amounts to bounding Pr{p’[n]hj";[n] > Ty [n} < o, or equivalently,

Eh;nl[n] [l{pzl[n]h;nl[n]>rk}:| < 0. For such a long-term bound, all channel realizations (time in-
stants) must be accounted for, along with the CR causing interference. This can be accomplished
by writing the constraint as

En I:Zm w?(h)ﬂ{p?(h)hﬂl(hbrk}] <o, VEk. (3.17)

Similar to (3.15), averaging over all h in (3.17) clearly implies that the constraint need not be
satisfied for every CSI realization h, but only on the average.

When (3.17) is incorporated into (3.6), the augmented problem is non-convex and thus chal-
lenging to solve. Remarkably, since the functions responsible for the non-convexity are averaged
across time, existing results can be leveraged to show that the duality gap is zero. A rigorous proof
can be obtained after adapting the results in either [Rib10b] or [Rajll, App. A] for the problem
at hand®. The fact of having zero-duality gap implies that dual methods can be used to relax
the constraints without loss of optimality. However, the (unconstrained) Lagrangian is still non-
convex and thus challenging to minimize. Next, the optimal RA for this scenario is developed and
shown how it allows for an efficient minimization of the Lagrangian. Let ¥} denote the Lagrange
multiplier associated with the kth constraint in (3.17). As in the interweave case, introduction of

2The basic idea is that non-convexity comes from a constraint of the form E[g(y,x)], where g(y,x) is a
non-convex function w.r.t. y, and x is a random process with infinite support. Here y is the power; x is the CSI,

and g(y,x) is Ehﬂh[”] [H{PL”["]*LZH["PFM]' The interested readers are referred to [Rib10b] and [Rajll, App. A].
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a new multiplier modifies the Lagrangian structure, and thus the link-quality indicator has to be
modified accordingly as

wr (o' [n]) = 87O (higa[n], pi' [n]) =7 [n]py [n] = Ok [n]Epm () [ﬂ{pgl[n]hgl[n]wk}]- (3.18)

As its counterpart in (3.16), the quality indicator in (3.18) considers both secondary and primary
CSI and trades off rate reward with power and the cost of interfering. Indeed, the only difference
between (3.16) and (3.18) is the expression for the instantaneous probability of interfering. Here,
EhZfl[”] I:]l{pzn[n]hzfl[n]>rk}:| corresponds to 1 —thl[n](f‘k/pz@[n]) when CSl is imperfect, and to
Lipmnlng, (n)>r,) When CSlis perfect. As in Section 3.4.2, upon replacing (3.7) with (3.18), the
expressioﬁs for the optimal power in (3.8) and the optimal scheduling in (3.10) remain the same.
However, the equivalence between (3.8) and (3.9) no longer holds. This is because the third term
in (3.18) depends on the transmit power and the optimal power in (3.9) is found by optimizing
only the two first terms. In fact, the power optimization when (3.18) is substituted into (3.8) is
challenging because the third term renders ¢}"(-) non-concave. However, since optimizing ¢} (-)
involves a single (scalar) variable, efficient methods to solve the optimization can be employed.
Once {p7*[n]}}_, are obtained, finding {w"*[n]}}_, just requires the evaluation of closed-
form expressions [cf. (3.10)]. In other words, because in the dual domain the problem can be
separated across users and channels, optimizing the Lagrangian does not require optimizing a
non-convex problem over a 2M K-dimensional space; but instead, M K closed forms and MK
one-dimensional non-convex problems must be solved. Recall that the factors enabling separability
in the dual domain were the orthogonal access adopted by SUs within the CR network, and the
definition of the metric to be optimized (summation across users) under the long-term constraints.

Indeed, when CSI is perfect, power optimization is straightforward and proceeds as follows.
Let p?” [n] == h{".[n]/T}, be the maximum transmit-power by which interference is avoided; and
let 57" [n] denote the optimal power in (3.9), which ignores the interference constraint. Then, it
holds that

(] :{ ig%z% i)fthizz;[:] <pit[n]) v GG ID > GG ID) (5 49

In words, if the cost of interfering is too high, transmit-power is constrained not to exceed pzn" [n].
However, if the cost of interfering is low enough (or the reward of the CR transmission is high
enough), p;**[n] is allowed to exceed the upper bound.

When the primary CSI is imperfect, evaluating thn[n] dominates the complexity of power
optimization. Unless th‘[n] (which is the derivative of thn[n]) is monotonic, the optimization is
non-convex. However, if the number of stationary points of fhzn[n] is small (which holds true for
most practical distributions), the number of local optima of }"(-) will be small too. In this case,
all of them can be found, and the global optimum can be subsequently selected.

Remark 1 The schemes for the underlay setup in Sections 3.4.1.2 and 3.4.3 have been developed
under the assumption that PUs are always active, meaning that ai[n] = 1. If this is not the
case, interference only occurs if pj*[n]h]’[n] > T'y and ay[n] = 1. Assuming that hj',[n] and
ax[n] are independent, the only modification required is to replace the instantaneous ﬁrobability

of interference By 1) [y (ningy, (n)orit ]| with B (o) (Lo tmingg, [l B ) [ a1} -

3.5 Estimating the optimum Lagrange multipliers

Different methods can be used to estimate 7™[n], 0x[n], and Jx[n]. Since the duality gap is
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zero, one approach is to set 7™[n] = 7", O;[n] = 0; and Yi[n] = ¥}, where {7"* 07,9} are
the values which optimize the dual function associated with (3.6). Clearly, the RA resulting after
substituting those values into (3.7)-(3.19) would be the optimal solution for (3.6) [Ber03]. The
main limitations of this approach are that: i) {7™,6; 9, } need to be found through numerical
search® which, at every step, requires averaging over all possible states of h (including channel
imperfections); and ii) every time channel statistics or the number of users change, {7""*,0;,9}}
must be recomputed. Recently, alternative approaches that rely on stochastic approximation it-
erations have been proposed to obtain the multipliers [Mar09, Wan11]. These approaches do
not aim at the optimal {7™*,6;,9;}, but estimates that are updated at every time instant, and
remain sufficiently close to {7"*,6;,9,}. The main advantages of these approaches, especially
for CR settings, are: i) their computational complexity is very low; and, ii) they can cope with
non-stationary channels. The latter is very convenient when the PU transmitters are close to the
SU receivers. The price paid is that the resulting RA schemes are slightly suboptimal. Specifically,
with pr, g and py denoting sufficiently small, constant stepsizes, the following iterations yield
the desired multipliers Vn

"+ 1= 7 [0] = pe (5" -3 wi [l (0] (3.20)
Qk[n+1] :[Hk[n]—,ug(ék— ]Eak[ []l{ak 1}]2 w :I;o (3.21)

Ox[n+ 1]=[19k[n]—uz9(5k “Eqyn] []l{ak[n]ﬂ}]Eh;gl[n][ﬂ{pyg[n]hgl[nprk}] me?*[n]]o- (3.22)

Recall that the expression for the instantaneous probability of interference in (3.21) and (3.22)
is different for the cases of perfect and imperfect CSI. From an optimization point of view, the
updates in (3.20)-(3.22) form an unbiased stochastic subgradient of the dual function of (3.6);
see [Ber03]. Using also that the updates in (3.20)-(3.22) are bounded, it can be shown that
the sample average of the stochastic RA: i) is feasible; and, ii) incurs minimal performance
loss relative to the optimal solution of (3.6). Rigorously stated, define p := max{, pg, 9 };
P [n= 52 Srw pf [0 eln] = 2y Sk B wi [CF (W [1.p3* [1]); and ox[n]:=
5 2l S [0 a1y (interweave) or o [n]:= & Sty Ewil™ [T (ay tng=1) Lo m, 1513
(underlay). It then holds with probability one that* as n — co: i) p™[n] = ™ and 6,[n] = O}, and
i) ¢[n] >¢c* —d(u), where §(u) -0 as p — 0.

3.6 Simulated tests

The default simulation parameters are as follows: M =5, K =10, 8™ =1, p™ = 2, ' = 1,
or = 4%, and T'y = 0.5. Amplitudes of the secondary links are Rayleigh (so that hj’,[n] are
exponential) distributed, and the average SNR for all users and bands is Ep[h;"] ='9. The
primary CSI model is 1", [n] = [H}" [n][?, where H}";[n] is low-pass equivalent, complex Gaussian
distributed (CGD) with zero mean and unit variance. Real and imaginary parts are independent,
so that the amplitude is Rayleigh (and likewise hj'/[n] is exponential) distributed. The time
correlation model is H}"\[n] = \/pH[" [n — 1] + /T~ pz"[n], with p = 0.95 and 2;"[n] white,
CGD with zero mean and unit variance. Measurement noise v;"'[n] is CGD, with zero mean and
variance 0.01. The NC senses H,Z”l[n] every Nj = 6 slots. The PU activity model is simulated

®A classical dual subgradient with diminishing stepsize [Ber03, Ch. 6] would work; see, e.g., [Marllc] for a related
case.
*A proof of this result provided can be derived following the lines of [Rib10a, Marlla].
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with the following parameters: Qoo = 0.95, Qo1 = 0.10, Q19 = 0.05, and Q11 = 0.90; Pr4 = 3%
and Pyp = 2%; and the NC senses ax[n] every N, = 3 slots. Since the optimality and feasibility
of the developed schemes has been established theoretically, the simulation parameters and test
cases have been chosen to illustrate relevant properties of the developed schemes.

Test Case 1: optimality and feasibility. Table 3.1 lists the average weighted sum-rate, power,
and interference probability for an interweave CR network implementing nine different RA schemes.
The first three solve (3.6) under a short-term interference constraint (STIC): S1) is a genie-aided
scheme in which the true is known; S2) is the optimal one developed in this work that accounts
for CSI imperfections; and S3) is a scheme adopting error-free CSI with ax[n +ng] = ax[n], and
hZfl[nJrnh] = iLZ‘l[n] forng=0,1,...., N, — 1, n, = 0,..., Nj, - 1. The following three S4), S5) and
S6) are the counterparts of S1), S2) and S3) under a long-term interference constraint (LTIC). For
further comparison, three more are considered: S7) a scheme with no instantaneous information
of the primary CSI, since it relies only on statistical CSI [Sol12, Barll]; S8) a scheme that solves
(3.6) ignoring the interference constraints [Marl2b]; and S9) a scheme that accounts for CSI
imperfections, and solves (3.6) guaranteeing that the average interfering power at the PUs is less
than I'y, [Mus09, Zha09].

Table 3.1: Interweave CR with N, =3, N}, =6, Ppa = 1%, Pyp = 2%, 0 = 4%, Var{v]'[n]} = 0.01,
T’y = 0.5. Meaning of codes used in row “Comments”: C1=STIC enforced, long-term &5, shown for illustrative
purposes; C2=STIC often violated; C3=LTIC violated.

| ST | S2 | 53 | 54 | S5 ] S6 | S7 | S8 | 9 |
(/M) S, b 10 | 10 10 [ 10 | 1.0 | 1.0 | 1.0 | 1.0 05
c 163 | 69 | 168 | 176 | 169 | 178 | 53 | 231 | 176

(1/K) ¥, 0k (actual) | 0.0% | 0.05% | 3.6% | 4.0% | 4.0% | 7.3% | 4.0% | 39.6% | 39.9%
(1/K) Y ok (estim.) | 0.0% | 0.05% | 0.0% | 4.0% | 4.0% | 4.0% | 4.0% — —
Comments C1 C1 C1,C2 C3 C2,C3 | C2 C3

The results corroborate the analytical claims and illustrate the advantages of the developed
algorithms. The novel schemes satisfy the constraints, while those ignoring CSI errors violate them;
and outperform the suboptimal schemes, especially the one based on statistical knowledge of the
CR-to-PU channels. It is worth noticing how S2 (long-term constraint) yields a higher maximum
than S1 (short-term). Indeed, S1 over-satisfies the long-term interference constraint, while S2
satisfies the constraint tightly. Finally, the results confirm that the probability of interference
estimated by the novel algorithms using the stochastic updates of the belief state corresponds to
the actual one. Since our results guarantee that the long-term constraints are satisfied as n — oo,
small discrepancies may occur when the number of simulated time instants is not high enough.

Table 3.2: Underlay CR with Na = 3, Nh = 6, PFA = 1%, P]\4D = 2%, 6k = 4%, Var{vz”’[n]} = 0.01,
I't, =0.5. Meaning of codes used in row “Comments”: see Table 3.1.

| | ST [ s2 | S3 [ s4 | S5 [ s6 | S7 [ st ] s8 | s9 |
(/M) 3, pm 10 [ 10 1.0 10 | 10 1.0 10 [ 02 1.0 05
c 214 | 203 | 215 | 228 | 215 | 228 | 131 | 11.2 | 231 176

(1/K) Y, 0% (actual) | 0.0% | 3.2% | 14.4% | 4.0% | 2.7% | 17.0% | 4.0% | 3.9% | 37.5% | 14.1%
(1/K) %, or (estim) | 0.0% | 3.4% | 0.0% | 4.0% | 4.0% | 4.0% | 4.0% | 4.0% | —- —
Comments C1 C1 Cc1,C2 c3 C1 C2,C3 | C2,C3
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Table 3.3: Interweave and underlay CR with N, = 5, Ny = 10, Pra = 5%, Pyp = 3%, or = 2%,
Var{v}*[n]} = 0.02, I';, = 0.25. Meaning of codes used in row “Comments”: see Table 3.1. The results for
the interweave setup are shown in the first (top) half of the table and the ones for the underlay setup are
shown in the second (bottom) half.

| | St [ s2 | S3 | S4 [ s5 | S6 [ s7T [ ST [ s8 [ S9 |
(1/M)Y,, Pm 1.0 1.0 1.0 1.0 1.0 1.0 1.0 —— 1.0 0.5
c 16.7 3.2 16.5 17.2 | 10.7 16.9 43 - 23.2 17.6
(1/K) Y, ok (actual) | 0.0% | 0.05% | 7.0% | 2.0% | 2.0% | 8.8% | 2.0% —— 39.6% | 39.2%
(1/K) Y, 0, (estim.) | 0.0% | 0.05% | 0.0% | 2.0% | 2.0% | 2.0% | 2.0% - - -
Comments C1 C1 C1,C2 C3 - Cc2,C3 | C2,C3
Setup Interweave
(/M) Y, Pm 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.1 1.0 0.5
c 19.3 11.4 19.2 221 15.7 22.1 6.4 5.9 23.1 17.7

(1/K) Sx 0r (actual) | 0.0% | 1.9% | 21.8% | 2.0% | 2.1% | 22.0% | 2.1% | 2.0% | 38.0% | 26.4%
(1/K) %, 0% (estim.) | 0.0% | 2.0% | 0.0% | 2.0% | 2.0% | 2.0% | 2.0% | 2.0% | —- —
Comments C1 C1 C1,C2 C3 C1 Cc2,C3 | C2,C3
Setup Underlay

Table 3.4: Results for different simulation setups. The CR paradigm and the parameters which are different
from those in the default test case are described in row “Setup”.

| | ST | s2 | S3 | sS4 | S5 ] s6 [ s7T [ st [ s8 | S9 |
(1/M)5,, bm 10 | 10 10 | 10 | 1.0 | 10 | 1.0 | —- 1.0 05
c 8.8 4.1 8.8 9.4 9.0 9.4 3.7 - 11.4 7.7
(1/K) %5 0r (actual) | 0.0% | 0.05% | 3.8% | 4.0% | 4.0% | 7.2% | 4.0% | —— | 40.0% | 36.8%
Setup Interweave: Ep[h}’5] =2
(/M) Y, bm 1.0 1.0 1.0 10 | 1.0 1.0 10 | 02 1.0 05
c 10.3 9.6 10.3 11.2 10.5 11.2 5.4 3.9 115 7.7
(1/K) >y on (actual) | 0.0% | 1.7% | 14.2% | 4.0% | 3.9% | 15.7% | 4.0% | 3.6% | 38.0% | 13.5%
Setup Underlay: En[hy's] =2
(/M) Y, bm 1.0 1.0 1.0 10 | 1.0 1.0 10 | — 1.0 03
c 10.2 3.6 10.3 11.0 10.4 11.0 2.8 —— 14.7 8.8
(1/K) >y, or (actual) | 0.0% | 0.05% | 3.8% | 4.0% | 4.0% | 7.3% | 4.0% | —— | 39.7% | 40.0%
Setup Interweave: M =5, K =5
(/M) Y, bm 08 | 08 08 | 08 | 08 | 08 | 08 | —— | 08 05
c 152 | 6.1 153 | 163 | 156 | 164 | 50 | —— | 211 | 17.4
(1/K) % 0r (actual) | 0.0% | 0.05% | 3.8% | 4.0% | 4.0% | 7.3% | 4.0% | —— | 39.8% | 40.1%
Setup Interweave: p* =p° = 0.5

Table 3.5: Interweave CR with different models for the activity of the PUs. MM represents the Markov
model considered in this work. PM represents the Pareto model considered in [Zhall]. The stationary
distribution of aj is the same in both cases. The simulation setup is the same than that in Table 3.1.
Meaning of codes used in row “Comments”: see Table 3.1.

l [I\/IM:S4[MM:SS[MM:S6[PM:S4[PM:S5[PM:56‘

(/M) Y, bm 1.0 1.0 1.0 1.0 1.0 1.0
c 2238 215 2238 2238 213 228
(1/K) %, o (actual) 4.0% 3.6% 17.0% | 40% | 34% | 17.1%

(1/K) 3, or (estimated) 4.0% 4.0% 4.0% 4.0% 4.0% 4.0%
Comments C3 c3
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Table 3.2 is the counterpart of Table 3.1 for an underlay system. The additional scheme

S7' (which is the counterpart of S7 for the case of a STIC) is also tested. Such a scheme is
not appropriate for an interweave setup, but it has been considered for underlay CR networks
[Sol12]. The results confirm the previous findings. The main observation is that the underlay
schemes achieve higher sum-rate than the interweave ones. This is reasonable because CRs in
underlay operation have more opportunities to transmit (secondary transmissions with sufficiently
low transmit-power do not cause interference even if the PU is active). Results in Tables 3.3-3.5
summarize further numerical tests assessing performance of the novel schemes over a wide range
of parameter values, including a non-Markov model for the PUs activity [Zhall] in Table 3.5.
These not only confirm the previous conclusions, but also show that when a more demanding
setup is simulated (pronounced CSI imperfections and/or strict interference constraints) then: i)
the impact of CSI imperfections on ¢ is larger (cf. S4, S5, and S6); ii) the interference constraints
are more difficult to be satisfied; iii) the performance gain of the LTIC schemes relative to the
STIC ones is more pronounced; and iv) the performance gain of our underlay schemes (S2, S5)
relative to their interweave counterparts is larger too.
Test Case 2: dynamic behavior of the stochastic schemes. The dynamic behavior of the
stochastic iterates is analyzed in this simulation, focusing on S2 in Table 3.1. Figure 3.1 comprises
four subplots, each depicting the evolution over time of a different subset of variables. Subplot
(a) corresponds to the average power consumption p,,[n], and subplot (b) to the long-term
probability of interference ox[n] (cf. Section 3.5). Dashed lines mark the performance when
the optimal multipliers are known, while solid lines correspond to the proposed stochastic RA
algorithms. Subplots (c) and (d) depict the instantaneous value of the Lagrange multipliers 7" [n]
and 0x[n], respectively (in this case dashed lines correspond to the optimum multiplier values).

Subplots (a) and (b) show that the considered constraints are satisfied (with equality), and the
stochastic RA converges in a few hundred iterations. The Lagrange multipliers plotted in (c) and
(d) suggest that after an initial phase during which the multipliers approach the optimal value,
they never converge but hover around the optimum value. This is reasonable because (c) and (d)
are instantaneous estimates while (a) and (b) are running averages. Finally, it is worth noting that
in order to attain comparable rate of convergence, the stepsizes used to update 7"*[n] and 0;[n]
are considerably different (1 = 107 versus 15 = 107").

3.7 Concluding summary

Stochastic RA algorithms were developed for wireless cognitive radios communicating over
fading links in interweave and underlay settings, and account for imperfections present in the
sensing and CSI acquisition phase. Short-term and long-term interference constraints were enforced
to account for such imperfections. Although not all formulated problems were convex, enticingly
they all turned out to have zero-duality gap, and could thus be solved with manageable complexity.
Stochastic algorithms were introduced to: i) estimate and predict the probability of interference;
and, ii) estimate the optimum multipliers for the average power and interference constraints.
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Figure 3.1: Trajectories of different primal and dual variables for scheme S2 in Table 3.1: (a) sample
average power; (b) sample average interference; (c) (instantaneous) power multiplier; (d) (instantaneous)
interference multiplier. To help visualization, only the multipliers of users m = 1,2 and channels k = 5,6 are
plotted. Dashed lines correspond to the optimal (constant) values.
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Chapter 4

Jointly Optimal Sensing and Resource Allocation for Interweave
CRs

Successful deployment of CRs requires efficient sensing of the spectrum and dynamic adaptation
of the available resources according to the sensed (imperfect) information. While the previous
chapter focused on optimal RA for a CR network, in this chapter the focus is on the joint design
of the sensing and resource allocation tasks. The investigated cognitive radio consists of multiple
SUs that access orthogonally a set of frequency bands originally devoted to PUs. The schemes
are designed to optimize the tradeoff between the sensing cost and the SUs throughput (weighted
sum rate), and limit their power consumption as well as the probability of interfering with the PUs.
The joint design is addressed using nonlinear optimization and dynamic programming, which is
able to leverage the time correlation in the activity of the primary network. A two-step strategy
is implemented: it first finds the optimal RA for any sensing scheme and then uses that solution
as input to solve for the optimal sensing policy. The two-step strategy is optimal, gives rise to
intuitive optimal policies, and entails a computational complexity much lower than that required
to solve the original formulation. Also, a stochastic solution is developed, which is adaptive to
non-stationary fading conditions.

4.1 Introduction

Effective operation of CRs requires the implementation of two critical tasks: i) sensing the
spectrum seeking transmit opportunities and ii) dynamically adapting the available resources ac-
cording to the sensed information [Hay05]. To carry out the sensing task two important challenges
are: C1) the presence of errors in the measurements that lead to errors in the channel occupancy
detection and thus render harmless SU transmissions impossible; and C2) the inability to sense
the whole of the time-frequency lattice due to scarcity of resources (time, energy, or sensing de-
vices). Two additional challenges that arise to carry out the RA task are: C3) the need of the RA
algorithms to deal with channel imperfections such as noise or quantization; and C4) the selection
of metrics that properly quantify the reward for the SUs and the harm for the PUs in case of
interference.

4.1.1 Related Work

Many alternatives have been proposed in the CR literature to deal with these challenges.
Different forms of imperfect CSI, such as quantized or noisy CSI, have been used to deal with
C1 [Mus09]. However, in the context of CR, fewer works have considered the fact that the CSI
may be not only noisy but also outdated, or have incorporated those imperfections into the design
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Table 4.1: Summary of most significant notation in Chapter 4.

Symbol Meaning
n Time slot index
M, m Number of users / User index
K,k Number of channels / Channel index
hi[n] Fading gain for user m on channel k
ag[n] Presence of PU in channel &
Py Transition probability matrix of ax[n]
sk[n], zk[n] Sensing decision / Sensing output
pFA, pMDb False alarm / missed detection probabilities
bi[n], Bk[n] Pre-decision / post decision belief on aj[n]
wi[n] Scheduling variable (1 if user m occupies channel k)
pp[n] Nominal power of user m in channel k
" [n] Maximum average power consumed by user m
Or[n] Maximum prob. of interference on channel k
™, O Lagrange multipliers associated with (4.4), (4.5)
¥ Discount factor 0 <y <1
&k Cost of sensing channel k
Ly (hg[n]) Instantaneous reward indicator (IRI)
Qr(bk[n], sk[n]) | Q-function of the POMDP associated with channel k

of RA algorithms [Che08b]. The inherent tradeoff between sensing cost and throughput gains in
C2 has been discussed in [Lia08] and designs that account for such a tradeoff based on convex
optimization [Wan11] and SDP [Che08b] for specific system setups have been proposed. Regarding
C3, many works consider that the CSI is imperfect, but only a few exploit the statistical model
of these imperfections (especially for the time correlation) to mitigate them [Che08b, Marl2a].
Finally, different alternatives have been considered to deal with C4 and limit the harm that the
SUs cause to the PUs [Gon11]. The most widely used is to set limits on the peak (instantaneous)
and average interfering power. Some works also have imposed limits on the rate loss that PUs
experience [Mar08b, Mar12c|, while others look at limiting the instantaneous or average probability
of interfering the PU (bounds on the short-term or long-term outage probability) [Urg09, Mar12a].

Regardless of the challenges addressed and the formulation chosen, the sensing and RA policies
have been traditionally designed separately. Each of the tasks has been investigated thoroughly
and relevant results are available in the literature. However, a globally optimum solution requires a
joint design capable of leveraging the interactions between those two tasks. Clearly, more accurate
sensing enables more efficient RA, but at the expense of higher time and/or energy consumption
[Lia08]. Early works dealing with joint design of sensing and RA are [Zha07b] and [Che08b]. In
such works, imperfections in the sensors and time correlation of the state information of the primary
network (SIPN) are considered, and the sensing design is modeled as a POMDP [Kae98], [Wiel2,
Ch. 12], [Ber95].The design of the RA in these works amounts simply to user scheduling (i.e.,
selecting the user transmitting on each channel). Under mild conditions, the authors establish that
a separation principle holds in the design of the optimal access and sensing policies. Additional
works addressing the joint design of sensing and RA, and considering more complex operating
conditions, were published more recently [Wanll, Kim10]. For a single SU operating multiple
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fading channels, [Wan11] relies on convex optimization to optimally design both the RA and the
indices of the channels to be sensed at every time instant. Assuming that the number of channels
that can be sensed at every instant is fixed and that the PU activity is independent across time,
the author establishes that the channels to sense are those that can potentially yield a higher
reward for the secondary user. Joint optimal design is also pursued in [Kim10], although for a
very different setup. Specifically, [Kim10] postulates that at each slot, the CR must compute the
fraction of time devoted to sense the channel and the fraction devoted to transmit in the bands
which are found to be unoccupied. Clearly, a tradeoff between sensing accuracy and transmission
rate emerges. The design is formulated as an optimal stopping problem, and solved by means of
Lagrange relaxation of SDP [Cas97]. However, none of these two works takes into account the
temporal correlation of the SIPN.

4.1.2 Objective and Contributions

In this chapter we design the sensing and the RA policies jointly while accounting for the
challenges C1-C4. The specific operating conditions considered are described next. We analyze
an interweave CR with multiple SUs and PUs. SUs are able to adapt their transmit power and
rate, and access orthogonally[cf. Sec. 3.3] a set of frequency bands originally devoted to PU
transmissions. Orthogonally here means that if a SU is transmitting, no other SU can be active
in the same band. The schemes are designed to maximize the sum-average rate of the SUs while
adhering to constraints that /imit the maximum “average power"” that SUs transmit and the average
“probability of interfering” the PUs. It is assumed that the CSI of the SU links is instantaneous
and free of errors, while the CSI of the PUs activity is outdated and noisy. A simple first-order
Markov model is used to characterize such imperfections. Sensing a channel band entails a given
cost, and at each instant the system has to decide which channels (if any) are sensed.

The main novelty (and contribution) of this work is the combined use of SDP and dual nonlinear
optimization techniques to design the jointly optimal sensing and RA schemes. The requirement
for SDP techniques comes because the activity of PUs is assumed to be correlated across time,
so that sensing a channel has an impact not only for the current instant, but also for future time
instants [Zha07b]. To solve the joint design, a two-step strategy is implemented. In the first step,
we obtain an analytical expression for the performance achieved by the optimal RA as a function of
the state of the system after the sensing task (this expression is valid for any fixed sensing scheme).
This (sub-) problem was solved in Chapter 3, as well as [Marllb, Mar12a]. In the second step, the
analytical expression obtained in the first step is used as input to obtain the optimal sensing policy.
This two-step strategy has a double motivation. First, while the joint design is non convex and
involves the formulation of a SDP problem (also referred to as dynamic program (DP), for brevity)
techniques, the problem to be solved in the first step (optimal RA for a fixed sensing scheme)
can be recast as a convex one. Second, when the expression for the optimal RA performance is
substituted back into the original joint design, the resulting sensing optimization problem (which
does need to be solved using SDP) has a more favorable structure. More specifically, while the
original design problem was a constrained DP, the problem to be solved in the second step is an
unconstrained DP which can be solved separately for each of the channels. These facts will make
our problem computationally affordable without entailing a loss of optimality [cf. Sec. 4.3].

The rest of the chapter is organized as follows. Sec. Il describes the system setup and
introduces notation. The optimization problem that gives rise to the optimal sensing and RA
schemes is formulated in Sec. 4.3. The solution for the optimal RA given the sensing scheme is
presented in Sec. 4.4. The optimization of the sensing scheme is addressed in Sec. 4.5, formulating
the problem in the SDP framework and developing its solution. Numerical simulations validating
the theoretical claims and providing insights on our optimal schemes are presented in Sec. 4.7. Sec.
4.8 summarizes the main properties of our jointly optimal RA and sensing policies and concludes
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the chapter.

4.2 System setup and state information

The section begins by briefly describing the system setup and the main operation steps (tasks
that the system runs at every time slot). Then, the model for the CSI, which will play a critical
role in the problem formulation, is explained in detail. The resources that SUs will adapt as a
function of the CSI are described in the last part of the section.

We consider a CR scenario with several PUs and SUs. The frequency band of interest (portion
of spectrum that is licensed to PUs, or the subset of this shared with the SUs) is divided into K
frequency-flat orthogonal subchannels (indexed by k). Each of the M SUs (indexed by m) oppor-
tunistically accesses any number of these channels during a time slot (indexed by n). Opportunistic
here means that the user accessing each channel will vary with time as a function of the current
CSI, with the objective of optimally utilizing the available channel resources. For simplicity, we
assume that there exists a NC which acts as a central scheduler and will also perform the task
of sensing the medium for primary presence. The scheduling information will be forwarded to the
mobile stations through a parallel feedback channel. The results hold for one-hop (either cellular
or any-to-any) setups.

Next, we briefly describe the operation of the system. A more detailed description will be given
in Sec. 4.3, which will rely on the notation and problem formulation introduced in the following
sections. Before starting, it is important to clarify that we focus on systems where the SIPN is
more difficult to acquire than the state information of the secondary network (SISN). As a result,
we will assume that SISN is error-free and acquired at every slot n, while SIPN is not. With
these considerations in mind, the CR operates as follows. At every slot n the following tasks are
run sequentially: T1) the NC acquires the SISN; T2) the NC relies on the output of T1 (and
on previous measurements) to decide which channels to sense (if any), then the output of the
sensing is used to update the SIPN; and T3) the NC uses the outputs of T1 and T2 to find the
optimal RA for instant n. Overheads associated with acquisition of the SISN and notification of
the optimal RA to the SUs are considered negligible. Such an assumption facilitates the analysis,
and it is reasonable for scenarios where the SUs are deployed in a relatively small area which allows
for low-cost signaling transmissions.

4.2.1 State information and sensing scheme

Let us begin by introducing the model for the SISN. Let ﬁzn[n] be the square magnitude of
the fading coefficient of the channel between the mth SU and its intended receiver on frequency
k during slot n. With o'[n] denoting the corresponding noise-plus-interference power, hj'[n] :=
hi*[n]/o}*[n] is defined as the noise-normalized power gain for the mth SU on frequency k. The
stochastic process hj'[n] will be assumed to be independent and identically distributed (i.i.d.)
across time. The values of h]'[n] for all m and k constitute the SISN at slot n. The SISN
is assumed perfect, so that the values of h]'[n] at every time slot n are known with no errors.
This assumption may be unrealistic, but it is made to focus on the challenges due to SIPN
imperfections, which are always more severe. Nonetheless, comments on how to modify the RA
when this assumption does not hold true will be provided in Sec. 4.4.1.

The SIPN accounts for the channel occupancy. It will be assumed that the primary system
contains one user per channel. This assumption keeps the modeling simple and it is accurate for
some practical scenarios, e.g. a primary system of mobile telephony where a single narrow-band
channel is assigned to a single user during the course of a call. Since the CR under study follows
the interweave paradigm (i.e., if an SU accesses the channel when the PU is active, interference
takes place regardless of the transmit power), it suffices to know whether a given channel is
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Figure 4.1: Two-state Gilbert-Elliot channel model and transition probabilities.

occupied or not [Gol09]. This way, when a PU is not active, opportunities for SUs to transmit
in the corresponding channel arise. The primary system is not assumed to collaborate with the
secondary system. Hence, from the point of view of the SUs, the behavior of PUs is a stochastic
process independent of hj'[n]. With these considerations in mind, the presence of the primary
user in channel k at time n is represented by the binary state variable a;[n] (0/idle, 1/busy). Each
primary user’s behavior will be modeled as a simple, discrete-time, Gilbert-Elliot channel model, so
that ax[n] is assumed to remain constant during the whole time slot, and then change according
to a two-state, time invariant Markov chain.

The Markovian property will be useful to keep the DP modeling simple and will also be exploited
to recursively keep track of the SIPN. Nonetheless, more refined models can be considered without
paying a big computational price [Marl2a, Zhall]. With P,¥ := Pr(a;[n] = z|ar[n - 1] = y), the
dynamics for the Gilbert-Elliot model are fully described by the 2x2 Markov transition matrix Py, :=
[P,?O,Plgl;Pkw,P,il]. Sec. 4.8 discusses the implications of relaxing some of these assumptions.

While knowledge of hj'[n] at instant n was assumed to be perfect (deterministic), knowledge
of ai[n] at instant n is assumed to be imperfect (probabilistic). Two important sources of imper-
fections are: i) errors in the sensing process and ii) outdated information (because the channels
are not always sensed). To model the sensing task, let sg[n] denote a binary design variable
which is 1 if the kth channel is sensed at time n, and 0 otherwise. Moreover, let zx[n] denote
the output of the sensor if indeed si[n] = 1; i.e., if the kth channel has been sensed. We will
assume that the output of the sensor is binary and may contain errors. To account for asymmet-
ric errors, the probabilities of false alarm PF4 = Pr(z;[n] = 1|ag[n] = 0) and missed detection
PMP = Pr(z;,[n] = 0lag[n] = 1) are considered.

Clearly, the specific values of P,fA and P,iVID will depend on the detection technique the sensors
implement [Yuc09] and the sensor parameters (operating point). For simplicity, P,fA and P,%MD
are considered known and time invariant!. As already mentioned, the sensing imperfections render
the knowledge of ax[n] at instant n probabilistic; in other words, ax[n] is a partially observable
state variable. The knowledge about the value of ax[n] at instant n will be referred to as the
instantaneous belief. For a given instant n, two different types of belief are considered: the pre-
decision belief bi[n] and the post-decision belief Bi[n]. Intuitively, by[n] contains the information
about ai[n] before the sensing decision has been made (i.e., at the beginning of task T2), while
By[n] contains the information about ai[n] once si[n] and zi[n] (if sg[n] =1) are known (i.e.,
at the end of task T2). Mathematically, if #,, represents the history of all sensing decisions and
measurements up to and including instant n, i.e., H, = {sg[0],2x[0],...,sk[n], zx[n]}; then
bg[n] = Pr(ax[n] = 1/Hn-1) and By[n] := Pr(agx[n] = 1|H,). Provided that the Markov matrix

'This is reasonable if: i) the primary-secondary fading conditions are stationary and ii) complete information
about their statistics (but not about their instantaneous values) is available. Under such conditions, the optimal
operating point of the sensor is constant during the CR operation [Gha05]. Nonetheless, our results can be adapted
to handle time-variant PF*[n] and PMP[n]. Specifically, results in section 4.4 are not affected, and results in
Section 4.5 can be adapted by accounting for the distribution of P/ “[n] and PM”[n].
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Zk=0 Zk=1

Figure 4.2: Observation model for the PU state with asymmetric errors.

Py, is known, the expression to get the pre-decision belief at time slot n is
br[n] = Pe(Br[n-1]) = PL°(1 = Bi[n-1]) + P Bp[n - 1] (4.1)

Differently, the expression to get Bj[n] depends on the sensing decision si[n]. If sg[n] =0, no
additional information is available, so that the post-decision belief will equal the pre-decision one.
If sx[n] =1, the belief is updated according to the sensing outcome. Mathematically,

br[n] se[n] =0
PMDpy[n] - -
Bk[n] = u(bk[n]7 Sk[n]v Zk[n]) = PMDp, [n]+(1-PFA)(1-by[n]) Sk[n] =1, Zkl:’fl] =0 (42)
1

_pMD
(1—PMD(;bk]En]+})71;§Ez]l—bk ) Sk [n]=1,2k[n] =

Note that (4.1) and (4.2) correspond to the prediction and update steps of a Bayesian recursive
estimator, respectively. If no information about ax[0] is available, bx[0] can be initialized as the
corresponding stationary probability. Nevertheless, the effects of an incorrect estimation of the PU
presence vanish as new prediction and update steps are performed.

In a nutshell, the actual state of the primary and secondary networks is given by the random
processes ai[n] and hj'[n], which are assumed to be mutually independent. The operating
conditions of our CR are such that at instant n, the value of h}'[n] is perfectly known, while the
SIPN is formed by bx[n] and b?[n], which are a probabilistic description (estimator) of ax[n].
The system will perform the sensing and RA tasks based on the available SISN and SIPN. In
particular, the sensing decision will be made based on A}'[n] and by[n], while the RA will be
implemented based on h*[n] and by [n].

4.2.2 Resources at the secondary network

We consider a secondary network where users implement adaptive modulation and power con-
trol, and share the available channels orthogonally. To describe the channel access scheme (schedul-
ing) rigorously, let w}'[n] be a Boolean variable so that w}'[n] = 1 if SU m accesses channel k&
and zero otherwise. Moreover, let p;*[n] be a nonnegative variable denoting the nominal power
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assigned for SU m to transmit in channel k, and let C}'[n] be its corresponding rate. We say
that the p*[n] is a nominal power in the sense that power is consumed only if the user is actually
accessing the channel. Otherwise the power is zero, so that the actual (effective) power user m
loads in channel k& can be written as w}'[n]p}*[n].

The transmission bit rate is obtained through Shannon’s capacity formula [Li01]: C}"[n] :=
C (R [n], pt[n]) = logy(1+ Ry [n]p}'[n]/T") where I is a signal-to-noise ratio (SNR) gap that
accounts for the difference between the theoretical capacity and the actual rate achieved by the
modulation and coding scheme the SU implements. This is a bijective, nondecreasing, concave
function with p}*[n] and it establishes a relationship between power and rate in the sense that
controlling p;’*[n] implies also controlling C}*[n].

The fact of the access being orthogonal implies that, at any time instant, at most one SU can
access the channel. Mathematically,

Y wi'[n] <1 Vk,n. (4.3)

Note that (4.3) allows for the event of all w}'[n] being zero for a given channel k. That would
happen if, for example, the CR infers that, at instant n, it is very likely that channel k is occupied
by a PU.

4.3 Problem statement

The approach in this chapter is to design the sensing and RA schemes as the solution of a
judiciously formulated optimization problem. Consequently, it is critical to identify: i) the design
(optimization) variables, ii) the state variables, iii) the constraints that design and state variables
must obey, and iv) the objective of the optimization problem.

The first two steps were accomplished in Sec. 4.2, stating that the design variables are s;[n],
wi'[n] and p*[n] (recall that there is no need to optimize over C}'[n]); and that the state
variables are h{"[n] (SISN), and b[n] and by [n] (SIPN).

Moving to step iii), the constraints that the variables need to satisfy can be grouped into two
classes. The first class is formed by constraints that account for the system setup. This class
includes constraint (4.3) as well as the following constraints that were implicitly introduced in the
previous section: si[n] € {0,1}, w;'[n] € {0,1} and pj*[n] > 0. The second class is formed by
constraints that account for QoS. In particular, we consider the following two constraints. The first
one is a limit on the maximum average (long-term) power an SU can transmit. By enforcing an
average consumption constraint, opportunistic strategies are favored because energy can be saved
during deep fadings (or when the channel is known to be occupied) and used during transmission
opportunities. Transmission opportunities are time slots where the channel is certainly known to
be idle and the fading conditions are favorable. Mathematically, with p" denoting such maximum
value, the average power constraint is written as:

N-1
E| lim (1-7) 3 7" 2 wi'[n]pf’[n] | <™, Vm, (4.4)
— 00 n=0

where 0 < v < 1 is a discount factor such that more emphasis is placed in near future instants. This
exponentially decaying window also facilitates accommodating potential non-stationarities. The
factor (1-+) ensures that the averaging operator is normalized; i.e., that limy_ e Y0t (1-7)7" =
1. As explained in more detail in Sec. 4.5, using an exponentially decaying average is also useful
from a mathematical perspective (convergence and existence of the solution is guaranteed).
While the previous constraint guarantees QoS for the SUs, we also need to guarantee a level
of QoS for the PUs. As explained in the introduction, there are different strategies to limit



70 Jointly Optimal Sensing and Resource Allocation for Interweave CRs

the interference that SUs cause to PUs; e.g., by imposing limits on the interfering power at
the PUs, or on the rate loss that such interference generates [Mar12a]. In this work, we will
guarantee that the long-term probability of a PU being interfered by SUs is below a certain
prespecified threshold ¢,. Mathematically, we require Pr{},, w" = 1|ay = 1} < 0} for each band
k=1,...,K. Using the definition of conditional probability, the constraint can be rewritten as
Pr{¥,, wi =1,a; = 1}/ Pr{ai = 1} < 0, and, capitalizing on the fact that both a; and ¥, w;
are Boolean variables:

N-1
B| lim 3 (1-y)y"ax[n] 3, wi'[n]|/Ax < Ok, VE, (4.5)
—>00 TL:0

where Ag, which is assumed known, denotes the stationary probability of the kth band being oc-
cupied by the corresponding primary user. Writing the constraint in this form reveals its underlying
convexity. + Before moving to the next step, two clarifications are in order. The first one is on
the practicality of (4.5). Constraints that allow for a certain level of interference are reasonable
because error-free sensing is unrealistic. Indeed, our model assumes that even if channel £ is sensed
as idle, there is a probability P,iVID of being occupied. Moreover, when the interference limit is
formulated as a long-term constraint (as it is in our case), there is an additional motivation for
the constraint. The system is able to exploit the so-called interference diversity [Zhal0]. Such
diversity allows SUs to take advantage of very favorable channel realizations even if they are likely
to interfere PUs. To balance the outcome, SUs will be conservative when channel realizations
are not that favorable and may remain silent even if it is likely that the PU is not present. The
second clarification is that we implicitly assumed that SU transmissions are possible even if the
PU is present. The reason is twofold. First, the fact that a SU transmitter is interfering a PU
receiver, does not necessarily imply that the reciprocal is true. Second, since the NC does not have
any control over the power that primary transmitters use, the interfering power at the secondary
receiver could be incorporated into h}'[n] as an additional source of noise.

The fourth (and last) step to formulate the optimization problem is to design the metric
(objective) to be maximized. Different utility (reward) and cost functions can be used to such
purpose. As mentioned in the introduction, focus is put in optimizing the tradeoff between the
weighted sum rate of the SUs and the cost associated with sensing. Specifically, we consider that
every time that channel k is sensed, the system has to pay a price & > 0. We assume that such
a price is fixed and known beforehand, but time-varying prices can be accommodated into our
formulation too (see Sec. 4.6.3 for additional details). This way, the sensing cost at time n is
Us[n] = ¥ &ksk[n]. Similarly, we define the utility for the SUs at time n as

Usuln] =¥ (z ﬁmw?[nwwmn],pmn]>)

where 5™ > 0 is a user-priority coefficient. Based on these definitions, the utility for our CR at
time n is Usy[n]-Us[n]. Finally, we aim to maximize the long-term utility of the system denoted
by Ur and defined as

U = E[]yggo Nz_:_:(l—v)v”USU[n] —Us[n]]. (4.6)

With these notational conventions, the optimal s;[n], w;"*[n] and p;**[n] will be obtained
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as the solution of the following constrained optimization problem.

PDP = S oy U7 (4.72)
s.to:  (4.3), wy'[n] €{0,1}, pi'[n] >0, (4.7b)

(4.4), (4.5) (4.7¢)

su[n] € {0,1}. (4.7d)

The constraints in (4.7) have been gathered into three groups: (4.7b) refers to constraints that
affect the RA (i.e., w;'[n] and p}*[n]) and need to hold at every time instant; (4.7c) refers to
constraints that affect the RA and need to hold in the long term; and (4.7d) affects the design
variables involved in the sensing task (sx[n]).

The main difficulty in solving (4.7) is that the solution for all time instants has to be found
jointly. The key reason is that sensing decisions at instant n have an impact not only at that
instant, but at future instants as well. As a result, a separate per-slot optimization approach is
not optimal in the long term. More specifically, (4.7) belongs to the class of sequential decision
problems that needs to be solved by means of SDP. This techniques usually give rise to algorithms
of high complexity, so that a careful analysis must be performed to keep the problem tractable. In
this work, the algorithmic strategy exploits some details of the problem structure that will help to
reduce the complexity of the solution.

Common practice to render SDP problems tractable is: i) analyzing the problem within a
well-studied framework; and ii) looking for approximation strategies that allow to reduce the com-
putational load in exchange for a small loss of optimality. The problem at hand will be analyzed
within the framework of POMDPs. MDPs are a class of DPs where state transitions and average
rewards only depend on the current state-action pair. POMDPs can be viewed as a generalization
of MDPs where the system state is not known perfectly; only an observation (affected by errors,
missing data, or ambiguity) is available. By using a belief variable [cf. Sec. 4.2.1] a POMDP can
be recast as an MDP [Bra03].

In addition, a two-step strategy will considerably reduce the computational burden to solve
(4.7) without sacrificing optimality. To explain this strategy, let us revisit (and further clarify)
the operation of the system. In Sec. 4.2 it was explained that, at each slot n, our CR had to
implement three main tasks: T1) acquisition of the SISN, T2) sensing and update of the SIPN,
and T3) resource allocation and transmission. In what follows, task T2 is split into 3 subtasks, so
that the CR runs five sequential steps for each channel k:

= T1) h}*[n] is acquired;

» T2.1) bg[n] is computed using Py and Bi[n - 1] via (4.1);

= T2.2) hj'[n] and by[n] are used to find s;[n];

= T2.3) bi[n] and z;[n] (for the channels where s;[n] = 1) are used to get Bj[n] via (4.2);

= T3) h}'[n] and By[n] are used to find the optimal value of wj"*[n] and pj**[n], and the
SUs transmit accordingly.

The two-step strategy to solve (4.7) proceeds as follows. In step |, we obtain the expression
for the optimal w}'[n] and p}'[n] for any sensing scheme. The resultant optimization problem
is simpler than the original one in (4.7) because the dimensionality of the optimization space is
smaller and the terms in (4.7) that depend only on si[n] can be dropped. More importantly, if
the sensing is not optimized, a per-slot optimization can be rendered optimal (see discussion on
the per-slot separability of the Lagrangian in Sec. IV.A). In step I, we substitute the output of
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T2.2: Sensing
T1: Acquire SISN T2.1: Predict SIPN decision

hi'[n] by[n]
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time slot

by [n]

Sense channel

Scheduling T3: Assign T2.3: Update
Transmit Power SIPN

Figure 4.3: Sequential operation of the CR system.

step | into (4.7) and solve for the optimal sx[n]. Note that this does not entail a loss of optimality
because the solution of step | is a function of the sensing scheme, and the latter is optimized in
step II. Mathematically, for a generic function f(z,y), the approach amounts to find (z*,y*) =
argming ,, f(z,y) as follows: i) 2*(y) = argmin, f(z,y) and ii) y* = argmin, f(2*(y),y). The
last (trivial) step is to find z* as x* = x*(y*). Here, the RA variables correspond to x and the
sensing variables correspond to y. Clearly, the output of step | will be used in T2.2 (to find the
optimal sensing) and in T3 (to find the optimal RA once the optimal sensing is known). The
output of step Il will be used in T2.2.2 The optimization in step | (RA) is addressed next, while
the one in step Il (sensing) is addressed in Sec. 4.5.

4.4 Optimal RA for the secondary network

According to the previous explanation, the objective of this section is to design the optimal RA
(scheduling and powers) for a fixed sensing policy. Solving this problem is convenient because: i)
it corresponds to one of the tasks our CR has to implement; ii) it is a much simpler problem than
the original problem in (4.7), indeed the problem in this section has a smaller dimensionality and,
more importantly, can be recast as a convex optimization problem; and iii) it will serve as an input
for the design of the optimal sensing, simplifying the task of finding the global solution of (4.7).

Because in this section the sensing policy is considered given (fixed), si[n] is not a design
variable, and all the terms that depend only on si[n] can be ignored. Specifically, the constraint
in (4.7d) and the contribution of the sensing cost Ug[n] to the total utility in (4.7a) can be
dropped. As a result, we define the new objective to optimize as

N-1
Ust = D B Jim 7;)(1 =" BT [n]CF (R ], i [n]) ]

and aim at solving the following problem [cf. (4.7)]

P% , := max U 4.8a
RA Cminlprnly o0 (4.8a)
s. to: (4.7b), (4.7¢). (4.8b)

A slightly modified version of this problem was solved in Chapter 3 and published in [Mar12a].
For this reason, we organize the remaining of this section into two parts. The first one adapts the
results from Chapter 3, presenting the optimal RA. The second part is devoted to introduce new
variables that will serve as input for the design of the optimal sensing in Sec. 4.5.

2Note that the steps to obtain the optimal solution and those to implement the optimal solution during the CR
operation do not follow the same order.
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4.4.1 Solving for the RA

It can be shown that the problem in (4.8) can be reformulated as a convex one; see [Marl2a]
as well as [Marllc] for details. Specifically, if the constraint w;*[n] € {0,1} is relaxed to yield
wy'[n] € [0,1] and an auxiliary (dummy) variable z"[n] := pj'[n]w}'[n] is introduced, then the
problem is convex in x}'[n] and w}'[n]. Moreover, with probability one (w.p.1) the solution to
the relaxed problem is feasible (hence, optimal) for the original problem [Marl2a, Marllc]. The
approach to solve the reformulated version of (4.8) is to dualize the long-term constraints in (4.7c).
For such a purpose, let 7™ and 0 be the Lagrange multipliers associated with the (now convex)
constraints (4.4) and (4.5), respectively, and define the following auxiliary variables:

piln] = [ (R [n], 7™ 18™)], (4.9)
Ly [n]:= 6"”‘0;?”‘(hm[ 1o [n]) = =" pi'[n], and (4.10)
Ly'[n] = L?U,k[n] Kk Br[n]. (4.11)

Using (4.9)—(4.11), it can be shown that the optimal w}**[n] and x}'*[n] that solve the convex
version of (4.8) are

wi [n] = Lg(pmn]emaxy L9 [n]) A (L7 [n]50)} - (4.12)

and z;"*[n] = p'[n]w**[n]. The latter readily implies that the optimal power allocation can be
written as pi**[n] := p*[n].

The auxiliary variables Lg;;,[n] and L;*[n] are useful to express the optimal RA, but also
to gain insights on how the optimal RA operates. Both variables can be viewed as instantaneous
reward indicators (IRIs) representing the reward that can be obtained if w}'[n] is set to one. The
indicator Lg;; .[n] considers only SISN and represents the best achievable tradeoff between the
rate and powe7r transmitted by the SU. Note that the risk of interfering the PU is not considered in
LG, .., butitis considered in L] [n] through the addition of the interference-aware term -6, By[n].
Accc;rding to (4.12), only the SU with highest IRI can access the channel; moreover, if all users
obtain a negative IRI, then none of them should access the channel (meaning that the utility for
the SUs does not compensate for the risk of interfering the PU). The expressions in (4.9)—(4.12)
also reveal the favorable structure of the optimal RA. The only parameters coupling users, channels
and time slots are the multipliers (prices) 7" and 6. Once they are known, the Lagrangian of
the convex version of (4.8) is separable, and the optimal RA at time n can be found using only
information at time n.

Before moving to the next section, two comments are in . The first one is related to the
computation of the Lagrange multipliers. Several methods to set the value of the dual variables
7™ and 6} are available. Since, after relaxation, the problem has zero duality gap, there exists
a constant (stationary) optimal value for each multiplier, denoted as #"* and §;, such that
substituting 7" = 7™ and 0 = 6; into (4.9) and (4.11) yields the optimal solution to the
RA problem. Optimal Lagrange multipliers are rarely available in closed form and they have to
be found through numerical search, for example, by using a dual subgradient method aimed at
maximizing the dual function associated with (4.8) [Ber99]. The second comment addresses the
assumption of perfect SISN. Key to dealing with this issue is to acquire the instantaneous belief of
the SISN, which is denoted as H}"*[n] and basically corresponds to the instantaneous distribution
of the actual h}'[n] at time n. Once H;'[n] is available, the presence of imperfections has to be
incorporated into the SU rate-power function C'(h]*[n], p}*[n]), now C(H}*[n],p}*[n]), which is
substituted into (4.9) and (4.10). Several alternatives to design C'(H;"[n],p}'[n]) arise. Under
a robust (worst-case) approach, the updated rate-power function would be C(H}'[n],p}'[n]) =
minym(njerrmn) C(hy' [n],p'[n]).  Under a ergodic approach, it would be C(H;"[n],p}'[n])
= Eprpnjerm o) [C (R [n], pi'[n])]. In any case, the basic structure (separability) of the RA
remains the same.
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4.4.2 RA as input for the design of the optimal sensing

The optimal solution in (4.9)-(4.10) will serve as input for the algorithms that design the
optimal sensing scheme. For this reason, we introduce some auxiliary notation that will simplify
the mathematical derivations in the next section. Observe that the optimal value of (4.8) can be
written as

N-1
Pha = E[]\lfl_lg Zo(l )" Y, Ri(hg[n], Br[n])]

with
Ry (hy[n], By[n]) = [LSU,k(hk[n]) - HkBk[n]L (4.13)

and
LSU,k(hk [n]) = mT%X {Lgnka(hk [n])} (4.14)

where hy[n] is a vector containing h'[n] Vm. From the point of view of the SIPN, Ry, (hy[n]Bj;[n])
can be viewed as the (stochastic) contribution to the Lagrangian of (4.8) at instant n when
pp[n] = pi*[n] and w;*[n] = w;**[n] for all k and m, or as an instantaneous expected reward in-
dicator, where the expectation is carried over the uncertainty on ax[n] (recall that By[n] accounts
for the corresponding probabilities). Clearly, (4.13) encapsulates (via Bi[n]) the way in which the
sensing affects the optimal RA and P}, ,. Equally important, while the value of Bi[n] is only avail-
able after making the sensing decision, the value of Li[n] is available before making such a decision.
In other words, sensing decisions do not have an impact on maxy, ; {BmC;”(hZ‘[n],p) - ﬂmp},
but only on Bi[n]. These properties will be exploited in the next section.

4.5 Optimal Sensing

The aim of this section is to leverage the results of Secs. 4.3 and 4.4 to design the optimal
sensing scheme. Recall that s;[n] has an impact not only on By[n], but also on future beliefs.
This in turn implies that future sensing decisions are affected by the current decision, so that the
sensing decisions across time form a string of events that has to be optimized jointly. The section
is organized as follows. First, the optimal RA policy obtained in Sec. 4.4 is substituted into the
original optimization problem presented in Sec. 4.3. It is shown that the design of the optimal
sensing amounts to solving a set of separate unconstrained DPs (Sec. 4.5.1). Then, the solution to
each of the formulated DPs (Sec. 4.6) is obtained. It turns out that the optimal sensing depends
on the current channel realizations hi[n] (SISN) and the pre-decision belief bi[n] (SIPN). Also,
the optimization leverages a value function that quantifies the future reward for time slots n’ > n
(more details will be given soon). Intuitively, a channel should be sensed if there is uncertainty
on the actual channel occupancy (SIPN) and the potential reward for the secondary network is
high enough (SISN). The expression for the optimal sensing provided at the end of this section
will corroborate this intuition.

4.5.1 Formulating the optimal sensing problem

The aim of this section is to formulate the optimal decision problem as a standard unconstrained
DP. Since the expressions for the optimal RA hold for any sensing scheme si[n], the aim here is
to obtain s;[n]. Key to accomplish this are two facts. The first one is that, instead of solving
(4.7), it suffices to solve for all n

oo

PZP::{S,C[I%?{)({JJ}}?; A" ;E[Rk(hk [n], Be[n])-&rse[n]], (4.15)



4.5. Optimal Sensing 75

which can be optimized separately per channel. The second fact is that the instantaneous reward
Ri[n] depends on the sensing only through the belief. As a result, the value of si[n] impacts
the term in (4.15) corresponding to instant n via Bg[n] and &si[n], but the terms in (4.15)
corresponding to instants n’ > n only via bg[n’]. The problem at hand is indeed a POMDP:
current actions that improve the information about the current state have also an impact on the
information about the state in future instants and thus, on future rewards.

The three main differences between (4.15) and the original formulation in (4.7) are that now:
i) the only optimization variables are {sx[n]}; ii) because the optimal RA fulfills the constraints in
(4.7b) and (4.7c), the only constraints that need to be enforced are (4.7d), which simply require
sk[n] € {0,1}; and iii) as a result of the Lagrangian relaxation of the DP, the objective has been
augmented with the terms accounting for the dualized constraints.

To be rigorous and solve this sequential optimization, we leverage techniques described in
[Bus10, Ch. 2]. Let us first identify the generic elements of a POMDP in (4.15). The state space
is the Cartesian product of the supports of hi[n] and bg[n] (replacing the partially observable
state ag[n]). The transition functions that describe the dynamics of the system over time are the
functions (4.1) — (4.2). The action space is the set of values that si[n] can take; there is no need
to include p}*[n] and w}’[n] in the POMDP state space because i) their values do not impact the
future states, and ii) their optimal expression, as a function of si[n], was already found.

The POMDP in (4.15) can be split into K POMDPs without complicating constraints, each
having Ry (Bx[n], h[n])-&ksk[n] as a reward function. Since the latter depends on By[n], which
in turn depends on si[n], to design si[n] we will need to compute the a priori expectation of the
reward function conditioned on si[n]. Let us define for brevity

7é.’c(bk [n]v hv S) = IE)z [Rk(h7 Bk[n])|bk [n]’ S] - fksk [n]

1 (4.16)
= fo f8(Blbr, Sk)[Lk(hk) - QkBk[n]LdB = &sk[n].

which accounts for the sensor-outcome uncertainty prior to sensing. Key to computing this function
will be the expressions to update the belief presented in Sec. 4.2.1. Specifically, expressions in
(4.1)—(4.2) describe how the future beliefs depend on the sensing decision, the current belief, and
a random variable (the outcome of the sensing if the channel is indeed sensed).

Suppose momentarily that the sensing is designed as s;[n] = arg max,(o 1 Ry (bp[n], hi[n], ).
Despite being computationally simple, this approach (typically referred to as myopic policy) ignores
the impact that current sensing decisions have in future time instants.

Rather than a sequence of sensing decisions, we seek a policy, i.e. a mapping from the state
space to the action space of the POMDP. Once the optimal policy is obtained, obtaining the
optimal sequence of decisions is straightforward, since it boils down to evaluating at each time slot
the policy for the current state.

Since (4.15) is an infinite horizon problem with v < 1, the optimal policy is stationary and its
existence is guaranteed [Pow07]. Stationarity implies that the expression for s;[n] is time-invariant,
i.e., it depends on (bg[n], hi[n]) but not on n. Since in our problem the state information is formed
by the SISN and the SIPN, Vj(-) should be written as Vi, (Bg[n], hx[n]).

To account for future time instants we leverage the concept of value function [Bus10]. Con-
ceptually, a value function quantifies the expected sum reward on channel & for all future instants.
To be specific, for any sensing policy II, there exists a value function (more specifically, a Q-
function®) Qg(bk,hk,sk) representing the discounted, expected reward resulting from performing
sensing action s; and following policy II sequentially afterwards. The policy optimizing (4.15)

3To express the cost-to-go or value function, we prefer the Q-function form (value function corresponding to a
state-action pair) over the V-function form (value function corresponding to a state [Busl0, Sec. 2.2.1]) because it
facilitates the mathematical analysis and the design of an online algorithm.



76 Jointly Optimal Sensing and Resource Allocation for Interweave CRs

is then denoted as IT*, while the associated Q-function is denoted as Q. *(by, hy,si) or simply
Q7 (bi, hy, si). The existence of this stationary policy is guaranteed by the discounted formulation
in (4.15). Once Q. (bi, hy, si) is available, IT* is

siln] = arg max. (Q4([n].Bu[n]. ) (417)

for every k,n. The computation of the optimal sensing decision s;[n] at time n boils down to
evaluating the Q-function in (4.17) for six[n] =0 and sg[n] = 1.

So far, the joint design has been reduced to computing Q} (bx, hy,si). This is accomplished
in the ensuing section.

4.6 Computing the optimal Q-function

Since the joint design is separable across channels and the method for computing Q. is the
same for every k, subindex k will be dropped for clarity. Moreover, since the optimal policy is
stationary, time index n will be dropped too. Every variable refers to instant n except prime
variables, which refer to n + 1.

4.6.1 Offline method

The first step to compute Q*(b,h, s) is to write the Bellman equation for the optimal policy
[Busl10, Eq. (2.18)]

Q" (b,h,5) = R(b,h, 5) + By |y ma Q (.1, s")b, 5], (4.18)
s’'e{0,

Note that the expectation over b’ implies averaging over the distribution of the sensor outcome
zi[n]. The first summand is the expected short-term reward conditioned to si[n] = s, while the
second one is the expected long-term sum reward over all future time instants, conditioned to
skg[n] = s and that every future decision is optimal. The Bellman equation expresses the condition
that the Q-function must satisfy in order to be optimal (and stationary) and provides a way to
compute it iteratively.

Two methods to compute the optimal )-function will be developed. The first one is an off-line
method, based on the value iteration algorithm, that relies on (4.18) to iteratively compute Q*.
More specifically, the model-based Q-iteration algorithm [Busl10, Sec. 2.3.1] is employed. With ¢
denoting an iteration index, this amounts to computing for every (b, h, s)

Qen1 (b1, 5)=R(b, b, 5) + By nf 7 masx Qo 0',5")p, ). (4.19)
s'€{0,

To reduce the cost of computing Q;(b, h, s), we will define a function with a smaller dimensionality,
such that Q(b, h,s) can be obtained from it. Specifically, let define

Q((b,S) 2=Ebl hl[ max Qg(b,,h,78,)|b,8]
7 Tse{0,1}

and rewrite (4.18) as
Qf(bvhas) :ﬁ(b7has) +7Q€(b78)‘ (420)

Substituting (4.20) into (4.17) yields

s =arg H{l(i)l}i(} {7@(1), h,s) +~vQ* (b, s)} : (4.21)
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Substituting (4.20) into both sides of (4.19) and simplifying yields

Q€+1(b, S) :]Ebl7h/[ H}{%}i} {ﬁ(b,, 1’1,7 S,) + ’)/Qg(b,, S,)} b, S:| . (422)
s'e{0,
Note that Oy now depends only on two scalar variables. Provided that the distribution of B
conditioned on (b, s) is known, and that by[n + 1] depends deterministically on By[n] [cf. (4.1)],
the iterate in (4.22) can be rewritten as

Qm(b,s):ﬂah,[ /B 1_0 fB(B|b,s)s%%§} {ﬁ(P(B),h',sl)+7QZ(P(B),S’)}dB]. (4.23)

The Q-iteration algorithm initializes the Q-function at an arbitrary Q)9 and at each iteration ¢
updates the Q-function indirectly by using (4.23) to update Q. For simplicity we choose Qy =0
which corresponds to Qo(b,h,s) = R(b,h,s). Convergence of Q; to Q* when ¢ — oo can be
shown based on the fact that the mapping defined in (4.19) is contractive with factor g < 1 in
the infinity norm [Busl0, Ch. 2]. Summarizing, an iterative off-line method has been proposed
to compute the Q-function. The computational cost has been lowered by splitting @) into two
terms [cf. (4.20)]. The first one can be computed directly, while the second one still has to
be computed iteratively, but has much smaller dimensionality. To implement this method, the
following information was assumed to be known: (i) the Markov matrix for the primary occupancy
Py.; (ii) the distribution of z conditioned on the SIPN; and (iii) the distribution of h.

4.6.2 Online method

The second method to compute the Q-function will further reduce the computational com-
plexity, and bypass the need to know the distribution of h. Stochastic approximation is leveraged
to design an online algorithm. With Qn(b,s) representing the online approximation of Q*(b,s) ,
the stochastic update is

On(b,s) =(1-)On_1(b, s)
+a/(;1fB(B b,s) S’rer}{%ﬁ} {Q(P(B),h[n],s') +7Qn_1(P(B),3')}dB, (4.24)

where o € (0,1] is a learning rate. The proposed rule is a variant of the Q-learning algorithm.
More specifically, it is a model-free value iteration [Busl0, Sec. 2.3.2]. The proposed update is
model-free for hy, but it is still model-based for b;. The main advantages of this mixed algorithm
are that it does not need to know the distribution of hy[n], makes the system robust to channel
gain non-stationarities, and avoids the need for exploration that affects (-learning in more general
situations. The price to pay is a small loss of optimality which is typically present in stochastic
and online algorithms.

The presented Q-iteration (off-line) and @Q-learning (online) algorithms will be evaluated using
numerical simulations in the next section.

Let us summarize the most relevant properties (several of them were already pointed out) of
the optimal sensing policy in (4.17): i) it can be found separately for each of the channels; ii)
since it amounts to a decision problem, we only have to evaluate the long-term aggregate reward
if sg[n] =1 (the channel is sensed at time n) and that if si[n] = 0 (the channel is not sensed
at time n), and make the decision which gives rise to a higher reward; iii) the reward takes into
account not only the sensing cost but also the utility and QoS for the SUs (joint design); iv) the
sensing at instant n is found as a function of both the instantaneous and the future reward (the
problem is a DP); vi) the instantaneous reward depends on both the current SISN and the current
SIPN, while the future reward depends on the current SIPN and not on the current SISN; and vii)
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to quantify the future reward, the Q-function is required. The input of this function is the SIPN.
Additional insights on the optimal sensing will be given in Sec. 4.8.

To conclude this section, some comments regarding the computational complexity associated
with the optimal sensing policy are in order. It is assumed here that the optimal Lagrange multipliers
are known. Since there are K channels and computing R(-) entails a maximization over M terms
[cf. (4.12)],the per-slot complexity associated with the RA task is O(K M) [cf. (4.12)]. Regarding
the sensing policy, its complexity depends on whether the form Q() or Q() is adopted. If Q@ ()
is available, computing s* is immediate; note, however, that the form Q() is preferable rather
than Q(). If Q*() is available the cost of computing s* is similar to that of computing R(:), i.e.
comparable to the RA complexity. Regarding the computational cost of calculating Q*(), we will
first analyze the complexity of computing it offline, and then the complexity of the online iterations.
Note that the functional estimation involved requires an approximation: we adopt here the simplest
approach based on uniform sampling and nearest-neighbor interpolation. Since the offline iteration
requires numerical integration over all possible h, the complexity of a single iteration of (4.23) is
O(NbQNhKM) where Ny is the number of samples of the interval [0, 1] as the support of b, and
Ny, is the number of samples of h used to estimate the expectation. This results into an offline
phase of O(NZN,KM) iterations, and O(K M) complexity per slot. The online iteration does
not require any off-line computation, but runs an iteration of (4.24) at every time slot, incurring
O(szKM) cost per slot. Considering that an offline Q-iteration algorithm usually takes a large
number of iterations to converge to an optimal solution, the moderate increase in the per-slot
complexity of the online algorithm is worthwhile for most practical scenarios.

4.6.3 Sensing cost

To account for the cost of sensing a given channel, the additive and constant cost &, was
introduced. So far, we considered that the value of &, was pre-specified. However, the value
of & can be tuned to represent physical properties of the CR. Let us provide three illustrative
examples. Example 1: If the NC invests power P,évc in sensing channel k, then &, can be set to
& = FNCPéVC, where 7V stands for the Lagrange multiplier associated with a long-term power
constraint on the NC (see, e.g. [LR14a] for a related work that uses this criterion). Example
2: Consider a setup for which the long-term rate of sensing is limited; mathematically, this can
be accomplished by imposing that E[limy e Y205 (1 = )7 sk[n]] < 1, where 7 represents the
maximum sensing rate (say 10%). Let py be the Lagrange multiplier associated with such a
constraint, in this scenario & should be set to & = pi. Example 3: Suppose now that to sense the
channel, the NC needs a fraction v of total duration of the slot (that, otherwise, would have been
used for SU transmissions). In this scenario, £i[n] = ¢ Li[n] (time-varying opportunity cost).
Linear combinations and stochastic versions of any of those costs are possible too. Similarly, if a
collaborative sensing scheme is assumed, aggregation of costs across users can also be considered.

4.7 Numerical results

Numerical experiments to corroborate the theoretical findings and gain insights on the optimal
policies are implemented in this section. Since an RA scheme similar to the one presented in this
chapter was analyzed in Chapter 3 and also in [Mar12a], the focus is on analyzing the properties
of the optimal sensing scheme.

The experiments are grouped into two test cases. In the first one, we compare the performance
of our algorithms with that of other existing (suboptimal) alternatives. Moreover, we analyze
the behavior of the sensing schemes and assess the impact of variation of different parameters
(correlation of the PUs activity, sensing cost, sensor quality, and average SNR). In the second test
case, we provide a graphical representation of the sensing functions in the form of two-dimensional
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decision maps. Such representation will help us to understand the behavior of the optimal schemes.

The parameters for the default test case are listed in Table 4.2. We consider K = 4 channels,
each of them with different values for the sensor quality, the sensing cost and the QoS requirements.
In most cases, the value of o5 has been chosen to be larger than the value of PMP (so that the
cognitive diversity can be effectively exploited), while the values of the remaining parameters
have been tailored such that the test case yields illustrative results. The secondary link gains
are Rayleigh distributed, their average SNR is 5dB, and the frequency selectivity is such that
the gains are uncorrelated across channels. We consider M = 4 SUs, and their average power
limits are set to [p1,P2,P3,P4] = [20,16,18,10]. The discount factor v is set to 0.95, so that
the autocorrelation function of ai[n] and the implemented window have comparable length. The
multipliers associated with the system parameters have been calculated by gradient descent, using
a Monte Carlo approach to average over the channel processes. Unless otherwise stated, the
remaining parameters are set to one.

Table 4.2: Parameters of the system under test.

P PP Py &k Ok
0.09 | 0.08 [0.95, 0.05; 0.02, 0.98] 1.00 | 0.30
0.09 | 0.08 | [0.95, 0.05; 0.02, 0.98] | 1.80 | 0.05
0.05 | 0.03 | [0.95, 0.05; 0.02, 0.98] | 1.00 | 0.10
0.05 | 0.03 | [0.95, 0.05; 0.02, 0.98] | 1.80 | 0.10

BN~

Test case 1: Optimality and performance analysis. The objective here is twofold. First, we
want to numerically demonstrate that our schemes are indeed optimal. Second, we are also inter-
ested in assessing the loss of optimality incurred by suboptimal schemes with low computational
burden. Specifically, the optimal sensing scheme is compared with the three suboptimal alterna-
tives described next. A) A myopic policy, which is implemented by setting Q. (b,s) = 0 V (b, s),
equivalent to the greedy sensing and RA technique proposed in [Wanll], which is optimal for a
CR scenario whose PU activity is not time-correlated, but is suboptimal for the test cases at hand.
B) A policy that replaces the infinite horizon value function with a "horizon-1" value function.
(i.e., it makes the sensing decision at time n considering the expected reward for instants n and
n+1). C) A rule-of-thumb sensing scheme implementing the simple (separable) decision function:
sk[n] = L4 L el 0x-x1} LBy [n]e[bS (A1,.0) b (4,,1)]3- 1 his simple policy senses the channel only
if two conditions hold: a) the IRl Lg[n] is neither too low nor too high (so that the scheduling
decision is uncertain), and b) the instantaneous belief By[n] is close to the long-term belief Ay
(so that the information given by the observation will modify the value of By[n] substantially).
To evaluate the effect of the variation of different parameters, we run 4 experiments. In each
experiment, one of the parameters is swept and the rest remain constant (with the values listed in
Table 4.2): a) average PU state transition time (by modifying P} ); b) sensing cost; c) probability
of sensing error (by modifying P,fA and PMP) and d) average SNR. Results are plotted in Fig.
4.4, The slight lack of monotonicity observed in the curves is due to the fact that simulations
have been run using a Monte-Carlo approach. As expected, the optimal sensing scheme achieves
the best performance for all test cases. Moreover, Figs. 4.4a and 4.4b reveal that the "horizon-1"
value function approximation constitutes a good approximation to the optimal value function in
two cases: i) when the expected PU transition time is short (low time correlation) and ii) when
the sensing cost is relatively small. The performance of the myopic policy is shown to be far from
the optimal. This finding is in disagreement with the results obtained for simpler models in the
opportunistic spectrum access literature [Zha07b] where it was suggested that the myopic policy
could be a good approximation to solve the associated POMDP efficiently. This is probably due
to the CR models considered being substantially different (the RA schemes in this chapter are
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Figure 4.4: Performance of the optimal scheme vs. some suboptimal schemes for variations in (a) expected
primary transition time; (b) sensing cost; (c) probability of error; (d) average SNR.

more complex and the interference constraints are formulated differently). In fact, the only cases
where the myopic policy seems to approximate the optimal performance are: i) if & — 0, this is
unsurprising because in that case the optimal policy is to sense at every time instant; and ii) if the
PUs activity is not correlated across time (which was the assumption in [Wanl1]).

Fig. 4.4c suggests that the benefits of implementing the optimal sensing policies are stronger
when sensors are inaccurate. In other words, the proposed schemes can help to soften the negative
impact of deploying low-quality (low-cost) sensing devices. Finally, results in Fig. 4.4d also suggest
that changes in the average SNR between SU and NC, have similar effects on the performance of
all analyzed schemes.

Test case 2: Sensing decision maps. To gain insights on the behavior of the optimal sensing
schemes, Fig. 4.5 plots the sensing decisions as a function of By[n] and Lgyx[n]. Simulations
are run using the parameters for the default test case (see Table 4.2) and each subplot corresponds
to a different channel k. Since the domain of the sensing decision function is two dimensional, the
function itself can be visually displayed as a decision map. Two main regions are identified, one
corresponding to the pairs (By[n], Lsyk[n]) which give rise to si[n] = 1, and one corresponding
to the pairs giving rise to si[n] = 0. Moreover, the region where si[n] = 0 is split into two
subregions, the first one corresponding to Y., wi'[n] =1 (i.e., when there is a user accessing the
channel) and the second one when Y, w;*[n] = 0 (i.e., when the system decides that no user
will access the channel). Note that for the region where si[n] = 1, the access decision basically
depends on the outcome of the sensing process zp[n] (if fact, it can be rigorously shown that
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Figure 4.5: Decision maps (regions) for the four channels in the default test case (see Table 4.2). The
light gray area in the center corresponds to the sensing decision.

Ymwi[n] =1if and only if z;[n] = 1).

Upon comparing the different subplots, it is clear that the size and shape of the si[n] = 1
region depend on Py, P,fA, P,iV[D, &k, and Ok. For example, the simulations reveal that channels
with stricter interference constraint need to be more frequently sensed and thus the sensing region
is larger: Fig. 4.5a vs. Fig. 4.5b. They also reveal that if the sensing cost & increases, then
the sensing region becomes smaller: Fig. 4.5c vs. Fig. 4.5d. This is an expected result: more
expensive sensing implies more conservative sensing decisions.

Test case 3: Stochastic update of the Q-function. This experiment analyzes the performance
of the online stochastic policy (4.24) for a non-stationary scenario. In particular, we consider a
single-channel system and set the simulation time to 50000 slots. During the first 25000 slots,
the channel conditions are those of k£ =1 for the previous experiment. At n = 25000, the channel
conditions switch to those of £ = 2. Fig. 4.6 depicts the achieved utility, averaged using a
rectangular window of length 9000.

The stochastic policy performs better than the myopic one and close to the optimal off-line
policy corresponding to each of the two cases considered. Utility gaps and speed of converge
depend heavily on the simulated scenario and, especially, on the correlation of the primary user
behavior (stronger correlation brings slower convergence).
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Figure 4.6: Performance comparison of the optimal and stochastic iterates.

4.8 Summarizing conclusions and alternative CR models

The aim of this chapter was to design jointly optimal RA and sensing schemes for an interweave
CR with multiple primary and secondary users. Since, due to time correlation in the SIPN, sensing
decisions were coupled across time, the problem fell into the class of DP (more precisely, POMDP).
To address the complexity typically associated with DP, both the objective and the QoS constraints
were formulated as long-term (discounted) time averages (which are less restrictive than their
short-term counterparts and, hence, give rise to a better global objective), and the constraints
were handled using duality and dual decomposition. Additionally, a discounted, infinite time-
horizon formulation was chosen for the DP (giving rise to stationary value functions). A two-step
approach that solved first for the optimal RA for any sensing scheme and, then, solved for the
optimal sensing, was implemented. As a result, the DP finally solved had a state space much
smaller than that of the original formulation. In particular, the optimization was separable across
channels, partially separable across SUs, and separable across time. Both the value functions and
the multipliers accounted for the effect of sensing and RA across time. Provided that the stationary
value function and multipliers were available (they are found off-line via numerical search during
the initialization phase), the online implementation of the optimal schemes entailed very low
computational complexity. Numerical results showed that both optimal and near-optimal policies
corresponding to the formulated DP perform significantly better than myopic policies, conversely
to the model studied in [Zha07b].

These results have been extended in two additional works [LR13, LR14a]. The first one extends
the interweave CR model studied in this chapter, but instead of considering only binary (0/1)
sensing decisions, the CR also has to decide how many samples are taken from the received PU
signal. As a result, a finer control over the sensing cost (which is proportional to the number of
samples taken) and the potential improvement in the belief is implemented.

The second work that capitalizes on these results addresses an underlay CR. As the interference
SUs cause to the PUs will depend on the fading gains of the CR-to-PU channels, a POMDP
approach (similar to that used in this chapter) is proposed to keep track of them. The nature of
such gains requires that the sensing task is carried out by the SUs (instead of the NC), increasing
the complexity of the sensing decision. To overcome such complexity, a greedy algorithm which is
scalable with the number of SUs is proposed and evaluated to reach a near-optimal sensing policy.
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Chapter 5

Two-timescale dispatch of power distribution networks

Smart distribution grids should efficiently integrate stochastic renewable resources while ef-
fecting voltage regulation. The design of energy management schemes is challenging, one of the
reasons being that energy management is a multistage problem where decisions are not all made
at the same timescale and must account for the variability during real-time operation. The joint
dispatch of slow- and fast-timescale controls in a distribution grid is considered here. The sub-
station voltage, the energy exchanged with a main grid, and the generation schedules for small
diesel generators have to be decided on a slow timescale; whereas optimal photovoltaic inverter
set points are found on a more frequent basis. While inverter and looser voltage regulation limits
are imposed at all times, tighter bus voltage constraints are enforced on the average or in proba-
bility, thus enabling more efficient renewable integration. Upon reformulating the two-stage grid
dispatch as a stochastic convex-concave problem, two distribution-free schemes are put forth. An
average dispatch algorithm converges provably to the optimal two-stage decisions via a sequence
of convex quadratic programs. lts non-convex probabilistic alternative entails solving two slightly
different convex problems and is numerically shown to converge. Numerical tests on a real-world
distribution feeder verify that both novel schemes yield lower costs over competing alternatives.

5.1 Introduction

With increasing renewable generation, energy management of power distribution grids is be-
coming a computationally challenging task. Solar energy from photovoltaic (PV) units can change
significantly over one-minute intervals. The power inverters found in PV units can be commanded
to curtail active power generation or adjust their power factor within seconds [Liu08], [Car08].
At a slower timescale, distribution grid operators exchange energy with the main grid hourly or
on a 10-minute basis, and may experience cost penalties upon deviating from energy market
schedules [Varll]. Moreover, voltage regulation equipment and small diesel generators potentially
installed in microgrids respond at the same slower timescale. As a result, comprehensive designs
to optimize such diverse tasks call for multistage smart grid dispatch solutions.

Spurred by demand-response programs and the use of PV inverters to accomplish various
grid tasks [Turll], single-stage dispatch schemes for distribution grids have been an active area
of research. Power inverters can be controlled using localized rules for voltage regulation, see
e.g., [Zhal3a, Kekl5c, Boll5, Zhuar]. Assuming two-way communication between buses and the
utility operator, dispatching a distribution system can be posed as an optimal power flow (OPF)
problem. Centralized schemes use nonlinear program solvers [Paull]; or rely on convex relaxations
of the full ac model of balanced [Far13b, Gan15], or unbalanced grids [Dal14]. Distributed solvers
with reduced computational complexity have been devised in [Dall3, Zhal5, Penar].
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Table 5.1: Summary of the main symbols in Chapter 5

Symbol Meaning
t Fast-timescale time slot index
t Number of slots in a slow-timescale period
n, N Line/bus index, total number of lines
v Bus voltage squared magnitudes
vg Voltage squared magnitude at substation
Po,t active power injected at substation
2 active power bought in advance
Pg,t active power bought in actual time
P, 4 active/reactive net power injections
pl,q! active/reactive demand load injections
p? active injections from diesel generators
P, d; active/reactive injections from PV inverters
P, Available active power at inverters
Jé] Power block (advance) market price
Vb, Vs Actual-time buy/sell prices
Ct(") Cost of energy traded in real time
Cp(Y) Diesel generation cost
Yo Parameter limiting power factor at the substation
@ Parameter limiting power factor at diesel gen. n
©n Parameter limiting power factor at inverter n
Sn Maximum apparent power at inverter n
Sh Maximum apparent power flowing at line n
Va Narrower region for voltages
VB Broader region for voltages
I3 collects all random variables {p’,q', D", Vs, Vs }

Nevertheless, the efficient and secure operation of distribution grids involves decisions at differ-
ent timescales. A dynamic programming approach for a two-stage dispatch is suggested in [Far12]:
The taps of voltage regulators are set on a slow timescale and remain fixed for consecutive shorter
time slots over which elastic loads are dispatched; yet the flexibility of loads is assumed known a
priori. Alternatively, centrally computed OPF decisions can be communicated to buses at a slow
timescale, while on a faster timescale, PV power electronics are adjusted to optimally track vari-
ations in renewable generation and demand [Dor14, Dalar]. Relying on approximate grid models,
the latter schemes yield a fully localized real-time implementation. However, they presume smooth
system transitions and dispatch slow-responding units for a single deterministic fast-timescale sce-
nario.

Multistage dispatching under uncertainty is routinely used in transmission systems and micro-
grids [Con10]. Robust approaches find optimal slow-timescale decisions for the worst-case fast-
timescale outcome; see [Zhal3b] and references therein. To avoid the conservativeness of robust
schemes, probabilistic approaches postulate a probability density function (pdf) for demand, wind
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generation, and system contingencies to find day-ahead grid schedules [Bou05], [Biel4]. The risk-
limiting dispatch framework adjusts multistage decisions as the variance of the random variables
involved decreases while approaching actual time [Varll]. Decisions can be efficiently calculated
only for convenient pdfs for a network-constrained risk-limiting dispatch under additional trans-
mission congestion assumptions [Zhal4a]. As a third alternative, stochastic sample approximation
approaches yield optimal slow-timescale decisions using samples drawn from the postulated pdf;
see e.g., [Bou08], [Zhal4b].

Returning to distribution grids, PV inverters could be overloaded sporadically in time and across
buses to accommodate solar fluctuations and prevent overvoltages [Moul3]. The spatiotemporal
overloading of power system components (such as inverters, bus voltages, line flows) could thus
constitute an additional means for integrating renewables in smart grids. Nonetheless, ensuring that
overloading occurs sparingly couples decisions across time. The single-stage scheme of [Wanar]
finds optimal PV set points while limiting time averages of overloaded quantities. The latter
approach has been also adopted in [LR15] for dispatching a transmission system under a day-
ahead/real-time market setup under load shedding.

Jointly dispatching slow- and fast-timescale distribution grid resources under average or proba-
bilistic constraints over fast-timescale decisions is considered here. Our contributions are three-fold.
First, using an approximate grid model, the expected cost over a slow control period is minimized
while inverter and looser bus voltage constraints are satisfied at all fast-timescale slots. Fur-
ther, tighter voltage limits are enforced either on the average or in probability across successive
fast-timescale slots (see Sec. 5.2). Two-stage grid dispatch is formulated as a convex-concave
optimization in Sec. 5.3. Second, adopting a stochastic saddle-point approximation scheme from
[Nem09], the provably convergent algorithm of Sec. 5.4 finds the optimal slow-timescale decisions
in the case of average constraints. Third, for the case of non-convex probabilistic constraints,
an algorithm solving two similar convex problems for each fast-timescale period is put forth in
Sec. 5.5. Albeit the related expected recourse function enjoys zero-duality gap [Rib10b], the over-
all two-stage dispatch is not convex-concave; and the algorithm’s performance is only numerically
validated. Both algorithms require only samples rather than pdfs of loads and solar generation,
and involve solving simple convex quadratic programs. Numerical tests in Sec. 5.6 on a 56-bus
feeder corroborate the validity of our findings 1.

5.2 Problem Formulation

Consider a distribution grid whose energy needs are procured by distributed renewable gener-
ation, distributed conventional (small diesel) generators, and the main grid. The distribution grid
operator aims at serving load at the minimum cost while respecting voltage regulation and network
constraints. Energy is exchanged with the main grid at whole-sale electricity prices through the
feeder bus. To effectively integrate stochastic renewable generation, the focus here is on short-term
grid dispatch. To that end, the distribution grid is operated at two timescales: a slower timescale
corresponds to 5- or 10-min real-time energy market intervals, while the inverters found in PVs
are controlled at a faster timescale of say 10-sec intervals. One period of the slower timescale is
comprised by T faster time slots indexed by t=1,...,T.

The grid is operated as a radial network with NV +1 buses rooted at the substation bus indexed
by n = 0. The distribution line feeding bus n is also indexed by n for n = 1,...,N. Let p,
and g, ; denote respectively the net active and reactive power injections at bus n and slot ¢; the
N-dimensional vectors p; and q; collect the net injections at all buses except for the substation.
Diesel generators are dispatched at the slower timescale to generate p? throughout the subsequent

'Regarding notation, the convention of lower-(upper-)case boldface letters denoting column vectors (matrices)
holds in this chapter with the exception of the power flow vectors, which are uppercase. Calligraphic letters are used
to denote sets.
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T slots at unit power factor. During slot ¢, PVs can contribute solar generation up to p; that
is modeled as a random process. Smart inverters perform active power curtailment and reactive
power compensation by following the set points p; and q; commanded by the utility operator.
Load demands pi and q,lf are also modeled as random processes. To simplify the exposition,
(pé,q,l;) are assumed inelastic and known at the beginning of slot ¢; although elastic loads can be
incorporated without any essential differences. The operator buys a power block pg from the main
grid at the slow timescale, which can be adjusted to pg ; = pj +pg’t in actual time.

Voltage regulation is effected by controlling (re)active power injections at slot ¢. Let v, ; denote
the squared voltage magnitude at bus n and slot ¢, and v; the vector collecting {vn’t}gzl. The
substation voltage v{ is controlled at the slower timescale [Far12], while voltage magnitudes at
all buses must adhere to voltage regulation standards, e.g., ANSI C84.1 and EN50160 in [ans11],
[en504]. These standards differentiate between a narrower voltage regulation range denoted here
by V4 in which voltages should lie most of the time; and a wider range Vg (with V4 c V5) whom
voltages should not exceed at any time. One of the goals of this work is to leverage this flexibility to
design dispatch schemes that: i) guarantee that voltages lie in Vg at all times, while ii) they belong
to V4 in a stochastic fashion. To this end, two alternative schemes are presented, the difference
between them being how constraint ii) is formulated. The first scheme guarantees that the average
voltage lies in V4, whereas the second one maintains the probability of under-/over-voltage at a
specified low value.

5.2.1 Grid modeling

To capture voltage and network limitations, the distribution grid is captured by the approximate
linear distribution flow (LDF) model, which is briefly reviewed next [Bar89]. Let r and x be
accordingly the vectors of line resistances and reactances across lines. Define also the branch-bus
incidence matrix A € RV*(N+1) whose (i, j)-th entry is

+1 , if -1 is the source bus of line ¢
flij =4-1 , if j —1 is the destination bus of line 4 (5.1)

0 , otherwise.

Partition A into its first column and the reduced branch-bus incidence matrix A as A = [ag A].
Ignoring line losses, the LDF model asserts that the vectors of active and reactive line power flows
at time t can be approximated by

Pt = FTpt and Qt = Fth (52)

where F := A1, Moreover, the squared voltage magnitudes can be expressed as [Bar89], [Far13al,
[Kek15b]
Vi = 2Rpt + 2th + ’U(C]l]. (53)

where R := Fdg(r)F' and X := Fdg(x)F'. Let us define the voltage regulation regions

Vai={v: vy1<v<Tyl} (5.4a)

Vp:={v: vgl<v<vpl} (5.4b)
with ¥p > U4 and vy < vy. Compliance with V4 can be imposed either on the average as
£ [ve] € V4, or in probability as Pr{v; € V4} > 1 — « for some small «. Either way, safe grid
operation requires that vy € Vp at all times t. Within the optimization horizon, the random
processes involved (demand and renewable generation) can be assumed ergodic, i.e., their time
averages converge to their ensemble averages. For this reason, voltage constraints pertaining to
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V4 will be referred to as ergodic.

According to (5.2), if f,, is the n-th column of F, the squared power flow on line n can be
written as Pit = p/f.f)p: and le,t = q/f.f]q:. Imposing the upper limit S,, on the apparent
flow on line n is thus expressed as the convex quadratic constraint

—2
p/ff P+ q/ fuf g < S, (5.5)

Assuming voltage magnitudes to be close to unity, active power losses can be approximated as
Sl (P2, +Q2 ) [Sull4], which from (5.2)(5.3), can be equivalently expressed as P] dg(r)P;+
Q;dg(r)Q; = p/ Rp:+q; Rq;. Thus, the active power injection at the substation is approximately

pot = -1"pt + p; Rp; + q/ Ry (5.6)

Regarding smart inverters, the tuple (p}, ;, gy .), which denotes the power injection from the
inverter located on bus n at slot ¢, should belong to the feasible set

Qg = {(p:z,tv Tnt)  0<pn e <Pty (5.7a)
|atl < npi g (5.7b)
(Ph)*+ (ah,)* <50} (5.7¢)

that is random and time-variant due to the variability of p;, ;. Constraint (5.7a) limits the active
power generation according to the available solar power; constraint (5.7b) enforces the lower limit
cos(arctan(¢y)) on the power factor (lagging or leading); and (5.7c) limits the inverter apparent
power.

5.2.2 Operation costs

If PVs owners are compensated at price 7 for the active power surplus they inject into the
distribution grid, the related utility cost at slot ¢ is Cpyv(p}) = 7' [p} - p}]+ with [-]; := max{0, -}
applied entrywise on vector p:—pi. The diesel generation cost is represented by CD(pd). Regarding
energy transactions with the main grid, the power block pj bought in advance is charged at a fixed
and known price 3. Deviating from pg by pgi at slot t is charged at

Ct(pg,t) = ’Yb[pg,t]+ - ’Ys[_pg,t]+ (5.8)

for known prices (7p,7s). To avoid arbitrage, it is assumed that 0 < 75 < 3 < 3, see e.g.,
[Varll], [Zhal4a]. Then, the deviation charge can also be expressed as C’t(p&t) = max{'ybpg,t,%pgvt},
which is certainly convex [Zhal3b].

5.2.3 Optimal grid dispatch

Depending on the way compliance with voltage regulation region V4 is enforced, two grid
dispatch formulations are developed next. Commencing with the average dispatch, the optimal
grid operation is posed as

P: :=min Cp(p?)+ Bpf +E[C'(p),) + Cov(P)] (5.92)
s.to: p¢ = pl - pL+p? (5.9b)

a =a; - q; (5.9¢)

Po = PG +Phs (5.9d)

pot 2 -1"p; +p/Rp: +q/ Ry (5.9e)



90 Two-timescale dispatch of power distribution networks

piffipe+q fuflaqr < S,y YneN (5.9f)
p’ <p’ <p’ (5.9g)
(Prgs dng) €ty YneN (5.9h)
vy <G <o (5.9i)
vy = 2Rp; + 2Xq; + v51 (5.9))
Vi€ Vp (5.9k)
Eq [vi] € Va (5.91)

a ,a _d ro_r 6 \T
over Vg, Po, P 7{ptvqt7vt7pt7qt7p0,t7p07t}t:1'

The slow-timescale variables {vg,pg,pd} are set in advance, and remain fixed throughout the T
subsequent control slots over which the fast-timescale variables {p¢, q¢, v¢, p;}, q{,pg7t,pg’t}£1 are
implemented. The latter variables depend on the randomness of slot ¢ as well as slow-timescale
decisions.

Alternatively to (5.9), optimal grid operation can be posed as a probabilistic dispatch that is
identical to (5.9) with the exception that (5.91) is replaced by the probabilistic constraint

Pr{vi ¢ V4} < (5.10)

for some small parameter « > 0, say a = 0.05. The optimal cost for the probabilistic dispatch will
be denoted by P.

The objective function in (5.9a) involves the cost of energy dispatched at the slow timescale plus
the average fast-timescale energy management cost. Nodal (re)active power balance is ensured via
(5.9b)—(5.9¢). Constraint (5.9¢) accounts for the active power losses upon relaxing the quadratic
equation in (5.6) to a convex inequality without loss of optimality. Constraint (5.9f) limits the
apparent power flow at each line n based on (5.5). Constraints (5.9i)—(5.91) are voltage regulation
constraints: In detail, (5.9j) relates squared voltage magnitudes to power injections [cf. (5.3)];
(5.9i) constraints the substation bus voltage; and (5.9k) constraints voltages in V. While (5.91)
maintains the average voltage magnitudes in V4, its alternative in (5.10) limits the probability of
voltage magnitudes being outside V4.

5.3 Problem Analysis

To facilitate algorithmic developments, the problem in (5.9) is expressed in a more compact
form next. Collect the slow-timescale variables in vector z' := [vg,pg,pd]; the fast-timescale
variables at slot ¢ in y/ := [pt,qt,vt,p;’,q{,po,t,pgt]; and the random variables involved at slot ¢
; . I
n EtT = [ﬁaptaqt]'

The constraints in (5.9) can be then classified into four groups:

1. Constraints involving fast-timescale variables only, such as (5.9¢), (5.9f), (5.9h), and (5.9k),
that will be abstracted as y; € V.

2. Constraints (5.9g) and (5.9i) that involve slow-timescale variables only, and they will be
denoted as z € Z.

3. The linear constraints (5.9b), (5.9d), and (5.9j), coupling slow- and fast-timescale variables
as well as random variables. These constraints are collectively expressed as Kz + By, = H;
for appropriate matrices K, B, and H.

4. The ergodic constraints (5.91) and (5.10) depend on the voltage sequence {v;}L,, hence
coupling decisions across time. A substantial difference between (5.91) and (5.10) is that the
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latter is a non-convex constraint.

Based on this grouping, the two dispatch problems can be compactly rewritten as

Plap) = {?J?Tl f(2) + Bt [9:(y1)] (5.11a)
sito: ze Z (5.11b)

yi €Vt vt (5.11c)

Kz + By, = H¢, vt (5.11d)

E¢ [h(y:)] <0 (5.11e)

where f(z) = Cp(p?) + Bpg and g(y¢) = Ct(pgt) + Cpy(p}). For the average dispatch, the
optimal cost in (5.11) is P and the function in (5.11e) is h(y:) = [vi —0a1,v41 — v¢]. For the
probabilistic dispatch, the optimal cost is P; and the function in (5.11e) is h(y;) = 1{v; ¢ Va}-a.

The optimal values for the slow-timescale variables z must be decided in advance. Once the
optimal z is found, it remains fixed over the slow-timescale interval. The fast-timescale decisions
yvi(z) for slot ¢t depend on z, while the subscript ¢ indicates their dependence on the realization
&:. Both the average and the probabilistic dispatch are stochastic programming problems with
recourse [Varll]. Their costs can be decomposed as P’(*a,p) = mingez f(z) + G(q4)(z), where the
so termed expected recourse function is defined as

Giopn(z):= min E 5.12a
( ,p)( ) (yeeNn) ¢ [9:(y1)] ( )
s.to: Kz + By, = H¢, vt (5.12b)

Since problem (5.12) depends on z, its minimizer can be written as {y;(z)}._,; and the recourse
function as G, ,)(2z) = Ei[g:(y;(2z))]. The ensuing two sections solve the average and the
probabilistic dispatches.

5.4 Average Dispatch Algorithm

This section tackles problem (5.11) with the ergodic constraint in (5.11e), for which h(y;) =
[val —ve, v —T41]. Although convex, problem (5.11) is challenging due to the coupling across
{y:}L, and between fast- and slow-timescale variables. Dual decomposition is adopted to resolve
the coupling across {y;}._,. The partial Lagrangian function for (5.12) is

La({yt},v) = B¢ [g:(yt) + v h(y1)] (5.13)

with the entries of v being the multipliers associated with the upper and lower per-bus constraints
in (5.11e). The corresponding dual function is

D,(v;z):= min L,({y:},v) (5.14)
{yteVi}

s.to: Kz + By, = Hg§,  Vt.

Observe that after dualizing, the minimization in (5.14) is separable over the realizations {&;}.
Precisely, the optimal fast-timescale variable for fixed (v,z) and for a specific realization &; can
be found by solving:

yi(v,2) carg min gi(ye) + v'h(y:) (5.15a)
t t
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s.to: Kz + By, = H¢,. (5.15b)

For future reference, let us also define Af (v, z) as the optimal Lagrange multiplier associated with
(5.15b). If v is partitioned as v" = [vT,7"] with v corresponding to constraint E;[v¢] >v 41 and
v to Ei[v;] <T4l, then (5.15) simplifies to

y; (v,z) € argmin Ct(pgyt) +Cpy(py)+ (W -v)'vy (5.16)
s.to: (5.9b) — (5.9f), (5.9h), (5.9)), (5.9k)
over {pt7 qt, Vi, p1tn7 Q€7P0,t7pg,t}

and can be solved as a convex quadratic program. Given the optimal pair (v*,z*), the optimal
fast-timescale variables y; can be thus found for any &;.

Back to finding the optimal primal and dual slow-timescale variables, note that the dual problem
associated with (5.14) is
v = arg max D, (v;z). (5.17)
v

Duality theory asserts that (5.17) is a convex problem. Moreover, assuming a strictly feasible point
exists for (5.12), strong duality implies that G4(z) = Do(v*,z). Due to the latter, the original
problem in (5.11) can be transformed to:

Iniél f(z) +Go(z) = mizn{f(z) +max D,(v;z)} (5.18a)
= min max f (v, 2) (5.18b)

where the auxiliary function f, is defined as:

fa(u,z) = f(z) + Dy(v;2). (5.19)

Being a dual function, D,(v;z) is a concave function of v. At the same time, D,(v;z) is a
perturbation function with respect to z; and hence, it is a convex function of z [Boy04]. Recall
that f(z) is a convex function of z too. Therefore, the auxiliary function f,(v,z) is convex in
z and concave in v. Because of the randomness of {£;}, function D, (v;z) in (5.14) is stochas-
tic. Consequently, problem (5.18b) is a stochastic convex-concave saddle point problem [Boy04],
[Nem09].

To solve (5.18b), we rely on the stochastic saddle-point approximation method of [Nem0Q9].
The method involves the subgradient of f, with respect to z, and its supergradient with respect
to v. Upon viewing Dy (v, z) in (5.14) as a perturbation function of z, the subgradient of f, with
respect to z is [Boy04]

Onfa = 0uf (2) + KTE A (v,2)]. (5.20)

By definition of the dual function, the supergradient of f, with respect to v is
O fa = Ed[h(y; (v,2))]. (5.21)

The stochastic saddle point approximation method of [Nem09] involves primal-dual subgradient
iterates with the expectations in (5.20)—(5.21) being replaced by their instantaneous estimates
based on a single realization &;. Precisely, the method involves the iterates over k:

VR = [P 4 dg (i) h(yi (U8, 2°)], (5.22a)
z" = 28 — dg(er) (0. f(2°) + KT AL (VF,2))] 2 (5.22b)
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Algorithm 1 Average Dispatch Algorithm (ADA)

- Initialize (z°, V).
repeat for k=0,1,...
Draw sample &;.
Find (y; (v, 2"), A\;(v*,2")) by solving (5.15).
Update (z**!, v*1) via (5.22).
Compute sliding averages (z*, %) through (5.23).
until convergence of (z¥, o%).

. Output z* = zF and v* = DF.

o N gk wh R

where the operator [-]z projects its argument onto Z; and vectors ;. = po/\Vk and €, = €9/Vk
collect respectively the primal and dual step sizes for positive g and €y. At every iteration
k, the method draws a realization &; and solves (5.15) for the tuple (&x,v*,2") to acquire
(yi(v*,2), A5 (v*,2")) and perform the primal-dual updates in (5.22). The method finally
outputs the sliding averages of the updates as:

7" = (S 2 VD (Sl V) (5.23a)
o = (L VIV (S 1V)- (5.23b)

The proposed scheme converges to the value f,(v*,z*) obtained at a saddle point (v*,z*)
asymptotically in the number of iterations & [Nem09, Sec. 3.1].

Upon convergence of the iterates in (5.23), the slow-timescale variables z* have been derived
together with the optimal Lagrange multiplier v* related to constraint (5.12c). The grid operator
can implement z*, and the fast-timescale decisions y; for a realization & can be found by solving
(5.16). The average dispatch algorithm (ADA) is summarized as Alg. 1.

5.5 Probabilistic Dispatch Algorithm

The probabilistic version of problem (5.11) is considered next. Here, the ergodic constraint
(5.11e) reads h(y:) = 1{vy ¢ V4} — . Despite the non-convexity of the probabilistic constraint,
(5.12) can still be solved optimally. However, optimality for (5.11) cannot be guaranteed. A
heuristic solution is detailed next by adapting the solution of Sec. 5.4.

To that end, dual decomposition is used here as well. If v is the scalar Lagrange multiplier
associated with constraint (5.11e), the partial Lagrangian function for (5.12) is now L,({y:},v) :=
Et [g¢(ye) + v(1{v¢ ¢ Va} —a)]. The corresponding dual function, fast-timescale problem, and
dual problem are defined analogously to (5.14), (5.15), and (5.17). The indicator function renders
L,({y+},v) non-convex. Surprisingly enough though, under the practical assumption that {&;}
follows a continuous pdf, problem (5.12) enjoys zero duality gap; see [Rib10b, Th. 1].

The additional challenge here is the non-convexity of the Lagrangian minimization:

yi (v,2) € arg min 9t(yt) + vI{vi ¢ Va} (5.24)
t t
s.to: Kz + By; = H¢;.

Because the indicator function takes only the values {0, 1} however, the solution to (5.24) can be
found by solving a pair of slightly different convex problems. The first problem is

yi,4(2z) €arg min g (y:) (5.25a)
yieD
stto: Kz + By; = HE; (5.25b)
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Algorithm 2 Probabilistic Dispatch Algorithm (PDA)

1: Initialize (z°, ).
2: repeat for k=0,1,...
3 Draw sample &;.

4: Find (y;;B(Vk,zk),)\,:vB(Vk,zk)) by solving (5.26).

5: Set y; (v,2z) := y;B(z) and Aj (v,2) = A} p(2).

6: if v 5(2) ¢ V4, then find y;;A(Vk,zk) and A,;A(l/k,zk) by solving (5.25).

7: if gt(y;A(z)) < gt(y;B(z)) +v, then set y; (v,2) := y;:A(z) and A; (v,z) = )\;A(z).
8: end if

o: end if

10.  Update (z"*1,v5*1) via (5.27).
11: Compute sliding averages (z*, 7*) through (5.23).
12: until convergence of (z*, 7).

13: Output z* =z and v* = ¥

vi€eVa (5.25¢)

whereas the second problem ignores constraint v, € V4 as

yip(z) €arg min g, (y¢) (5.26a)
Y€Vt
s.to: Kz + By; = H¢;. (5.26b)

From the point of view of (5.24), if the voltages in y;B(z) do not belong to V4, the solution to the
second problem will incur an additional cost quantified by v. Observe that neither problem (5.25)
nor (5.26) depend on v, while their complexity is similar to the one problem (5.15). Suppose that
(5.25) and (5.26) have been solved and let A 4(z) and A 5(z) denote the optimal multipliers
associated with (5.25b) and (5.26b), respectively. Then, problem (5.24) can be neatly tackled by
identifying two cases:

(c1) If g:(y; 4(2)) > g(y; g(z)) +v, then y; 5(z) is a minimizer of (5.24) as well and voltages
are allowed to lie outside V4. In this case, set y; (v,2) := y; p(z) and A/ (v,2) := A{ (z). This
case includes instances where problem (5.25) is infeasible for which g:(y; 4(2z)) = co.

(c2) If g+ (y; a(2)) < g:(y; p(2)) +v, then y; 4(z) minimizes (5.24) too and voltages lie within
Va. In this case, set y; (v,2) =y} 4(z) and A} (v,2) := A 4(2).

Case (c2) covers also instances where V;B(Z) happensto liein V4. In these particular instances,
y; p(z) serves as a minimizer of (5.25) too. Then, it follows that g:(y; 4(z)) = g:(¥; p(2)) <
9:(y; p(z)) +v for v > 0. This implies that one can solve (5.26) first and, if v/ 5(z) € V4, there
is no need to solve problem (5.25).

To find the optimal slow-timescale variables under the probabilistic dispatch, the stochastic
primal-dual iterations of Sec. 5.4 are adapted here as

= R+ g (L (8, 27) ¢ VA - )]s (5.27a)

2" = (27 — dg(er) (0. f(2") + KTAL (V) 2F)] = (5.27b)

The probabilistic dispatch algorithm (PDA) is tabulated as Alg. 2. Because function G,(z) is not

necessarily convex, the iterates in (5.27) are not guaranteed to converge to a minimizer of (5.11).
The practical performance of PDA in finding z* is numerically validated in Sec. 5.6.
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5.6 Numerical Tests

The proposed grid dispatches were tested on a 56-bus Southern California Edison (SCE) dis-
tribution feeder [Gan15]. 5-MW PVs were added on buses 44 and 50; both with 6-MVA inverters
enabling power factors as low as 0.83 (leading or lagging) at full solar generation. The prices for the
energy exchange with the main grid were § =37 $/MWh; 7, = 45 $/MWh, and ~; = 19 $/MWh.
Diesel generators with capacity ;3;5 = 0.5 MW were sited on buses 10, 18, 21, 30, 36, 43, 51, and
55. The cost of diesel generation was Cp(p?) = ¥, (30pd + 15(p2)?) $/h with p? expressed
in MW. Apparent power flows were limited to 7 MVA. The voltage operation limits were set to
Vg = 0.98%, 54 = 1.022, Vg = 0.972, and T = 1.03%, expressed per unit (pu) with respect to a
voltage base of 12 kV. (Re)active nodal loads were Gaussian distributed with the nominal load of
the SCE benchmark as mean value, and standard deviation of 0.2 times the nominal load. The
solar energy generated at each PVs was drawn uniformly between 0.5 and 1 times the actual power
PVs rating.

ADA was run with step sizes proportional to 1/v/k with initial values € = 4.1075, e’ = 4-1071,
egd =6-1073, and puo = 225, to account for different dynamic ranges. The iterates for primal and
dual variables as well as their corresponding sliding averages are depicted in Fig. 5.2. Primal and
dual slow-timescale variables hover in a small range whose width diminishes with time. Their sliding
averages converge asymptotically. The algorithm reaches a practically meaningful solution within
5,000 iterations. Buses 44 and 50 are prone to overvoltages since they host PVs generation, and
buses 2 and 15 are prone to under-voltages; thus yielding non-zero dual variables for the average
upper and lower voltage constraints, respectively.

PDA was tested using the same simulation setup for « = 0.05 and po = 1. Figure 5.3 shows
the convergence of primal and dual variables, and the probability of voltages deviating from V4.
Granted that the probabilistic constraint in (5.10) applies collectively to all buses, the under-/over-
voltage probabilities on a per-bus basis is depicted in Fig. 5.4. The occurrences of overvoltage
seem to be shared primarily among buses 40-56 which are neighboring to the PVs buses 40 and 55.
On the contrary, buses 10-16 being electrically far from both the substation and PVs, experience
under-voltage with a small probability.

The effect of the average versus the probabilistic constraint on voltage magnitudes was evalu-
ated next. After slow-timescale variables z had converged, fast-timescale variables y; were calcu-
lated for 6,000 instances of &; using both ADA and PDA. The histograms of the voltage magnitudes
on two representative buses are presented in Fig. 5.5. Under PDA, the average voltage on bus 15
is slightly higher than the average voltage obtained by ADA. In exchange, the instantaneous value
of the voltage on bus 15 stays within V4 with higher probability. A similar behavior is observed
for the overvoltage instances on PVs bus 40.

ADA and PDA were finally compared to three alternative schemes. The first two, henceforth
called approximate average and approximate probabilistic dispatches, obtained z by setting loads
and solar generation to their expected values, while variables v were calculated via dual stochastic
subgradient, and {y;}L, were found by solving either (5.15) or (5.24), depending on whether the
setting is average or probabilistic. The third deterministic dispatch found z as the approximate
schemes do, and {yt}thl by enforcing v; € V4 at all times. Note that the three proposed alternatives
provide feasible solutions satisfying voltage regulation constraints. The five dispatches were tested
under five scenarios: Scenario 1 is the setup described earlier. Scenario 2 involved the tighter
voltage limits v, = 0.992 and T4 = 1.012. Scenarios 3, 4, and 5 were generated by scaling the
mean value and the standard deviation for loads of scenario 1 by 0.5, 1.5, and 2, respectively.
Figure 5.6 shows the expected operation costs for all five scenarios. ADA (PDA) vyielded the
lowest cost under all scenarios in the average (probabilistic) setting as expected. In all test cases,
ADA vyielded a slightly lower objective than PDA for o = 0.05. The loss of optimality entailed
by the approximate average and probabilistic schemes is due to the suboptimal choice of z. The
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Figure 5.1: Convergence of primal variables for ADA: (top) diesel generation; (bottom) substation voltage
vo (left y-axis) and energy exchange p{ (right y-axis). Sliding averages of optimization variables are depicted
too.

deterministic scheme entailed an additional loss of optimality by preventing the occasional violation
of VA.

5.7 Summarizing conclusions and alternative grid models

By nature of renewable generation, electromechanical component limits, and the manner mar-
kets operate, energy management of smart distribution grids involves decisions at slower and faster
timescales. Since slow-timescale controls remain fixed over multiple PVs operation slots, decisions
are coupled across time in a stochastic manner. To accommodate solar energy fluctuations, volt-
ages have been allowed to be sporadically overloaded; hence introducing coupling of fast-timescale
variables on the average or in probability. Average voltage constraints have resulted in a stochastic
convex-concave problem, whereas non-convex probabilistic constraints were tackled using dual de-
composition and convex optimization. Efficient algorithms for finding both slow and fast controls
using only random samples have been put forth. The two developed novel solvers converge in
terms of the primal and dual variables, and have attained lower operational costs compared to
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Figure 5.2: Convergence of dual variables for ADA: (top) dual variables associated with average lower
voltage limits for all buses; and (bottom) dual variables associated with average upper voltage limits for all
buses. Sliding averages of optimization variables are depicted too.

deterministic alternatives.

Results in this chapter have been adapted to a microgrid model in the transmission level [LR15]
where limits to the expected load not served (ELNS) are imposed in a two-stage dispatch problem.
Similarly to this chapter, the dispatch is reformulated as a stochastic saddle point problem and
solved using a stochastic approximation primal-dual method. Leveraging the proposed formulation
and using sensitivity analysis, the marginal cost of reducing the ELNS imposed limits is identified
as the price of reliability.
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Chapter 6

Conclusions

The goal of this thesis was to blend nonlinear constrained optimization and stochastic signal
processing to design (near optimal) schemes to optimize and monitor dynamic networks.

Cross-layer resource allocation (RA) algorithms were designed in chapter 2 to allocate resources
(flows, channel access, power and rates) in a cellular system, where users transmit over a set of
orthogonal channels. Both uplink and downlink setups were addressed. The developed resource
allocation strategy depends on the instantaneous fading, the queue lengths, and user-specific
weights. The Lagrange multipliers were estimated online using stochastic approximation iterations.
A correspondence was established, for each user, between the transmit queue length and the
estimated Lagrange multiplier associated with the average flow conservation constraint. This
relationship still held for windowed average queue lengths and stochastic multipliers, allowing to
analyze stability and average delay performance.

Numerical experiments in chapter 2 confirmed that, under mild conditions (stationarity of the
fading gain process), there is a proportionality constant between the delay and the stepsize for any
given setup. This allowed to propose a mechanism to effect delay priorities among users by tuning
the stepsize of individual users. Experiments also pointed out that variations in the multiplier
averaging window length do not necessarily have a monotonic impact on the system performance.
It seems though, that long averaging windows may help to mitigate the negative effects of large
stepsizes (used to effect lower delays).

The presence of average power consumption constraints was common ground for the cross-
layer and cognitive radio (CR) designs undertaken in chapters 2, 3, and 4. Such constraints were
addressed by means of dual decomposition and stochastic dual gradient schemes. A similar strategy
was followed to deal with probability of interference constraints in chapters 3 and 4.

Moreover, in chapter 3 the probabilistic interference constraint was tailored to account for
imperfections present in the sensing and channel state information (CSI) acquisition phase. Two
versions of the interference constraint were investigated. The first one was a short-term constraint
that took into account CSI imperfections to limit the instantaneous probability of interference.
The second type of interference constraint was long-term and capitalized on the diversity of the
interfering channel to upper-bound the fraction of time during which interference occurred. It
was shown that the optimal schemes maximize a functional which accounts for the quality of
the secondary links (in terms of rate), the transmission power, and the probability of interfering
with primary users. Several of those terms were multiplied by Lagrange multipliers whose value
depended on the history of the system and the requirements of the primary and secondary networks.
Stochastic algorithms were introduced to estimate and predict the probability of interference, and
to estimate the optimum value of the multipliers.
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The result of zero-duality gap between the presented resource allocation optimizations and
their Lagrangian duals allowed to solve the non convex problems that showed up in chapter 3 with
manageable complexity. Beyond this, the availability of a multiplier that objectively represents the
penalty for interfering a primary user (PU) motivated the joint optimization of RA and sensing
schemes for a CR in chapter 4. Note also that the same zero-duality gap property appears again
in chapter 5 for a probability constraint appearing in an electric power network.

The aim of Chapter 4 was to design jointly optimal RA and sensing schemes for an interweave
CR with multiple primary and secondary users. Given the time correlation in the state information
of the primary network (SIPN), sensing decisions were coupled across time, so that the problem
fell into the class of stochastic dynamic programming (SDP). Moreover, since the sensing decisions
impacted the observability of the PU activity, the problem was formulated as a partially observable
Markov decision process (POMDP). To address the associated complexity, both the objective and
the quality of service (QoS) constraints were formulated as long-term (discounted) time averages
(which are less restrictive than their short-term counterparts and, hence, give rise to a better
global objective). Additionally, a discounted, infinite time-horizon formulation was chosen for the
POMDP, giving rise to stationary value functions. The same dual decomposition methods that
were leveraged in Chapter 3 facilitated the optimization.

A two-step approach that solved first for the optimal RA for any sensing scheme and, then,
solved for the optimal sensing, was implemented. As a result, the SDP solved in last instance had a
state space much smaller than that of the original formulation. In particular, the optimization was
separable across channels, partially separable across secondary users (SUs), and separable across
time. A formulation based on @Q-functions (instead of the commonly employed V-functions) was
chosen because it would facilitate the implementation of an adaptive scheme to estimate the
@-functions online in non-stationary environments. It turned out that the optimal sensing at
time n depended on: the state information of the secondary network (SISN) and SIPN at n;
the stationary Lagrange multipliers associated with the dualized constraints; and the stationary
Q-function associated with the long-term objective. Note also that both the @Q-functions and the
multipliers accounted for the effect of sensing and RA corresponding to future time instants. The
expressions for the optimal RA and the optimal sensing policies were intuitive and relatively simple.

For each time instant, the CR had to run five consecutive steps: 1) acquisition of the SISN; 2)
prediction of SIPN to form the pre-decision belief; 3) implementation of the optimal sensing decision
based on 1-2; 4) update of the SIPN (using the output of the sensing) to form the post-decision
belief; 5) implementation of the optimal RA. The expression for the RA was taken into account in
3) and the one for the sensing policy was considered in 5); testament to the fact that this was a
joint design. Provided that the stationary value function and multipliers were available (they could
be found off-line via numerical search during the initialization phase), the online implementation
of the optimal schemes entailed very low computational complexity. Numerical results showed that
both optimal and near-optimal policies corresponding to the formulated dynamic program (DP)
perform significantly better than myopic policies, conversely to the model studied in [Zha07b].

Energy management of smart distribution grids involving decisions at slower and faster timescales
was investigated in Chapter 5. The two-timescale system model is pertinent due to the joint pres-
ence of electromechanical components and fast-adapting inverters attached to renewable energy
sources such as PV. Since slow-timescale controls remained fixed over multiple PV operation
slots, decisions were coupled across time in a stochastic manner. To accommodate solar energy
fluctuations, voltages were allowed to be sporadically overloaded; hence introducing coupling of
fast-timescale variables on the average or in probability. Average voltage constraints resulted in
a stochastic convex-concave problem, whereas non-convex probabilistic constraints were tackled
using dual decomposition and convex optimization. Efficient algorithms for finding both slow and
fast controls using only random samples were put forth. The two novel solvers proposed proved
to be convergent in terms of the primal and dual variables. Since probabilistic constraints were
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enforced grid-wise, voltage limits on individual buses could be slightly oversatisfied; nevertheless,
they attained significantly lower operational costs when compared to deterministic alternatives.

6.1 Future work directions

Several directions to extend the results presented in this thesis to more diverse aspects of
resource allocation in dynamic wireless networks and smart grids are presented below.
Possible lines of work to extend the CR research in chapters 3 and 4 are:

= Considering more complex models for the CSI such as imperfect SISN and non-Markovian
models for the PU activity. The latter calls for efficient ways to represent and update the
belief, e.g., by applying recursive Bayesian estimation to the augmented models outlined at
the end of Sec. 3.2.1.

= Incorporating additional sources of correlation (correlation across time for the SISN and cor-
relation across channels for the SIPN), motivating the study of more challenging formulations
of the POMDP.

= Addressing the jointly optimal design for underlay CR networks, by means of formulations
that limit the average interfering power or the PU average rate loss due to the interference.
In such cases, information about the channel gains between the SUs and PUs would be
required.

= Developing distributed schemes that address the problem of cooperative sensing as well
as the problem of distributed RA is another interesting extension. The achieved design of
stochastic sensing and RA allocation policies would facilitate that such distributed algorithms
cope with noise and delay in the network state information (NSI) exchanged by the nodes.
For some of these extensions, designs based on suboptimal but low-complexity solutions are
an alternative worth exploring.

» Studying low-complexity stochastic estimations is also of interest from the algorithmic per-
spective. Alternating iterations that attain joint convergence of the Lagrange multipliers and
value functions, together with alternatives such as reinforcement learning [Wiel2] techniques
or online parametric functional estimation [Pow07, Ch. 8] can be explored to this end.

Regarding the research in smart grid optimization, interesting avenues to extend the results in
chapter 5 are:

» Considering additional sources of variability such as real-time electricity prices in the energy
transactions with the main grid.

= Enforcing probabilistic constraints on a per-bus basis, which is expected to entail lower costs
than doing so grid-wise. Also, the strategy of allowing an occasional overloading is not
necessarily restricted to the case of voltages: other components such as the inverters in
photovoltaic (PV) systems can also be subject to similar ergodic constraints. In all these
cases, the Lagrangian minimization carried out in each iteration becomes a combinatorial
problem that deserves a more cautious study.

= Formulation of decentralized implementations, as it can robustify the power network to the
outage of central controllers, and may also reduce the traffic of user-sensitive information
between the network buses and controlling entities, helping to maintain user security and
privacy.
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= Including voltage regulating devices in the models, which would require implementing ad-
vanced decision support schemes. Their optimal design would probably require SDP tech-
niques related to those implemented in Chapter 4.

= |Incorporation of demand-response capable appliances and networked energy storage, and the
design of their optimal energy scheduling policies.

= Joint management of power networks and other energy facilities such as district-heating
networks. In the same line, the joint optimization of power generation and activity schedules
in industry or hospitals is of interest too.

Last but not least, it is also worth exploring the application of the tools studied in this thesis
in other practical cyber-physical systems, such as intelligent transport networks.
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KKT

LDF
LHS
LTIC

MDP

NC
NSI

OPF

average dispatch algorithm
adaptive modulation and coding
access point

bit error rate

cognitive radio
channel state information

distributed energy resource
dynamic program

hidden Markov model
Karush-Kuhn-Tucker

linear distribution flow
left-hand side
long-term interference constraint

Markov decision process

network controller
network state information

optimal power flow

PDA
pdf
POMDP

PU
PV

QoS
Qsl

RA
RES

SA
SAA
SCE
SDP
SIPN

SISN
SNR

STIC
SuU

probabilistic dispatch algorithm
probability density function
partially observable Markov decision
process

primary user

photovoltaic

quality of service
queue state information

resource allocation
renewable energy source

stochastic approximation

sample average approximation
Southern California Edison
stochastic dynamic programming
state information of the primary
network

state information of the secondary
network

signal-to-noise ratio

short-term interference constraint
secondary user
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