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ABSTRACT
Background. Network analysis has become a relevant approach to analyze cascading
species extinctions resulting from perturbations on mutualistic interactions as a result
of environmental change. In this context, it is essential to be able to point out key
species, whose stability would prevent cascading extinctions, and the consequent loss
of ecosystem function. In this study, we aim to explain how the k-core decomposition
sheds light on the understanding the robustness of bipartite mutualistic networks.
Methods.Wedefined three k-magnitudes based on the k-core decomposition: k-radius,
k-degree, and k-risk. The first one, k-radius, quantifies the distance from a node to the
innermost shell of the partner guild, while k-degree provides a measure of centrality
in the k-shell based decomposition. k-risk is a way to measure the vulnerability of
a network to the loss of a particular species. Using these magnitudes we analyzed
89 mutualistic networks involving plant pollinators or seed dispersers. Two static
extinction procedures were implemented in which k-degree and k-risk were compared
against other commonly used ranking indexes, as for example MusRank, explained in
detail in Material and Methods.
Results. When extinctions take place in both guilds, k-risk is the best ranking index if
the goal is to identify the key species to preserve the giant component. When species
are removed only in the primary class and cascading extinctions are measured in the
secondary class, the most effective ranking index to identify the key species to preserve
the giant component is k-degree. However, MusRank index was more effective when
the goal is to identify the key species to preserve the greatest species richness in the
second class.
Discussion. The k-core decomposition offers a new topological view of the structure of
mutualistic networks. Thenew k-radius, k-degree and k-riskmagnitudes take advantage
of its properties and provide new insight into the structure of mutualistic networks.
The k-risk and k-degree ranking indexes are especially effective approaches to identify
key species to preserve when conservation practitioners focus on the preservation of
ecosystem functionality over species richness.
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INTRODUCTION
Biotic interaction networks play an essential role in the stability of ecosystems (Tylianakis et
al., 2010), as well as in themaintenance of biodiversity (Bascompte, Jordano & Olesen, 2006).
Because community dynamics greatly depend on the way species interact, these networks
have been described as the ‘‘biodiversity architecture’’ (Bascompte & Jordano, 2007). Net-
work analysis has become an important approach to provide information on community
organization and to predict dynamics and species extinctions in response to ecosystem dis-
turbance (Tylianakis et al., 2010; Thébault & Fontaine, 2010; Traveset & Richardson, 2014).
Among other assessments, these studies can point out key species, whose stability would
prevent cascading extinctions, and the consequent loss of biodiversity (Sole & Montoya,
2001; Suweis et al., 2013; Dakos et al., 2014; Santamaría et al., 2015). Research on cascading
species extinctions as a result of perturbations in biotic interactions has tackled two main
issues: the different ways to rank a hypothetical extinction sequence and the robustness and
fragility measures (Pocock, Evans & Memmott, 2012; Domínguez-García & Muñoz, 2015).
There are different strategies both to sort species according to their importance and tomea-
sure their influence on extinction. For instance, in early studies on the resilience of foodwebs
Dunne, Williams & Martinez (2002) ranked species by degree (i.e., the number of interac-
tions) using three different scenarios of removal: (a) from the species with the highest degree
to the species with the lowest degree; (b) from the lowest to the highest; (c) species selected
in a random way. Memmott, Waser & Price (2004) worked the same idea to assess the
robustness of mutualistic communities, removing active species (in this context, pollinators
or seed dispersers) and measuring the fraction of remaining passive species (plants).

An observed property of mutualistic interactions is the existence of generalists, highly
interconnected, and specialists, with few interactions linked to the generalists, but rarely
among them. The nucleus of interactions among generalists seems to be the foundation of
resilience. This property has been traditionally identified with nestedness (Bascompte et al.,
2003), although not all mutualistic communities are nested (Joppa et al., 2010; Staniczenko,
Kopp & Allesina, 2013). There are new approaches to describe this structure in a more
general way as a core–periphery organization (Csermely et al., 2013; Rombach et al., 2014).
The core is the set of central and densely interconnected nodes. Ties of periphery are sparse
and usually with nodes of the core.

Identification of key species for community preservation is another active field of
research. Besides classical measures of node centrality such as closeness, degree or between-
ness (Callaway et al., 2000), new rankings based on the well-known Google’s PageRankTM

algorithm are now available for ecological networks (Allesina & Pascual, 2009). There are
efficient ways to find out these key species in bipartite networks that have been tested in one
of the static extinction scenarios we use in this paper (Tacchella et al., 2012; Domínguez-
García & Muñoz, 2015).

Another scenario to identify the key species relative to the role species play in the archi-
tecture of the network is the study of modularity (Guimerà & Amaral, 2005; Blondel et al.,
2008;Guimerà & Sales-Pardo, 2009). Amodule is a group of species more closely connected
to each other than to species in other modules. This ideas have been used in the study of
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mutualistic networks, estimating howmuchmodularmutualistic network are (Olesen et al.,
2007). This analysis allows classifying the nodes into different roles but does not provide a
species ranking for possible extinction scenarios. Furthermore, we focus on the relationship
of the species with the innermost core of the network, because this core is the cornerstone
to understand the functionality of the network.

In this paper, we aim to explain how the k-core decomposition, sheds light on the under-
standing of robustness in mutualistic networks. The tool classifies the nodes of the network
in shells, as in an onion-like structure with the most connected nodes in its center. Taking
into account these basic topological properties, the decomposition helps to assess in detail
the structure of mutualism and enlightens on the processes of species extinction cascades.
Derived from the k-core decomposition we introduce three new magnitudes, hereafter
called k-magnitudes, that describe network compactness, defined as the connection to the
innermost shell of the network, (k-radius), combined quantity and quality of interactions
(k-degree) and species vulnerability to trigger extinction cascades (k-risk). We assess the
best criteria for identifying the species for which the networks aremost vulnerable to cascade
extinctions by comparing k-degree and k-risk ranking criteria with ranking by well-known
indexes and applying them in two network destruction procedures. To conduct the test,
we use one of the most complete available data sets (Fortuna, Ortega & Bascompte, 2014).

MATERIALS AND METHODS
Data
We have analyzed the Web of life collection (Fortuna, Ortega & Bascompte, 2014),
comprised by 89 mutualistic networks, with 59 communities of plants and pollinators and
30 of seed dispersers (http://www.web-of-life.es/). There are 57 communities with binary
adjacency matrix (i.e., the interaction between the two species is recorded but not its
strength), and 32 with weighted matrix, where the strength is accounted for. Network sizes
range from 6 to 997 species, the minimum number of links is 6 and the maximum is 2,933.

Decomposition and k-magnitudes
The idea of core decomposition was first described by Seidman (1983) to measure local
density and cohesion in social graphs. It has been successfully applied to visualize large
systems and networks (Alvarez-Hamelin et al., 2005; Kitsak et al., 2010; Zhang et al., 2010;
Barberá et al., 2015).

The k-core of a network is a maximal connected sub-network of degree greater or equal
than k. That means that each node in the sub-network is tied to at least k other nodes in
the same sub-network.

A simple algorithm to perform the k-core decomposition prunes links of nodes of degree
equal or less than k (Batagelj & Zaversnik, 2003). The process starts removing links with
one of their edges in a node of degree 1. This procedure is recursive and ends when all the
remaining nodes have at least two links. The isolated nodes are the 1-shell . Then it continues
with k= 2, and so on. After performing the k-decomposition, each species belongs to one of
the k-shells (Fig. 1). The m-core includes all nodes of m-shell , m+1-shell ... with m ranging
from 1 to the max k index of that particular network. For instance, the 2-core of Fig. 1 is
the union of the 1- shell and the 2-shell .
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Figure 1 k-core decomposition of a fictional network. Green nodes are pruned during the first itera-
tion, orange during the second and blue during the last one.

Mutualistic networks are bipartite, with two guilds of species (plant–pollinator or
plant-seed disperser in the studied collection). Links among nodes of the same class are
forbidden. We will call these guilds A and B.

Based on the k-core decomposition, we define three k-magnitudes. In order to quantify
the distance from a node to the innermost shell of the partner guild, we define kradius. The
kradius of node m of guild A is the average distance to all species of the innermost shell of
guild B. We call this set N B.

kAradius(m)=
1
|N B|

∑
j∈N B

distmj m∈A,∀j ∈B (1)

where distmj is the shortest path from species m to each of the j species that belong to N B.
The minimum possible kradius value is 1 for one node of the innermost shell directly linked
to each one of the innermost shell set of the opposite guild.

To obtain a measure of centrality in this k-shell based decomposition, we define kdegree
as

kAdegree(m)=
∑
j

amj

kBradius
(
j
) m∈A,∀j ∈B (2)

where amj is the element of the interaction matrix that represents the link, considered as
binary. If the network is weighted, amj will count as 1 for this purpose if there is interaction,
0 otherwise. It could be understood that kdegree(m) is a fine-grained measure, whereas degree
would be a coarse-grainedmeasure. kdegree(m) is like a ‘‘continuous’’ degree where each node
i linked to node m adds the inverse of its kradius(j). Generalists score high kdegree, whereas
specialists, which have only one or two links, with similar kradius, score lower kdegree.
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Figure 2 (A) Degree, (B) kdegree and (C) overimposed kdegree distributions of a big plant pollinator community in Central Los Andes, Chile (Ar-
royo, Primack & Armesto, 1982).

This magnitude reminds the definition of the Harary index (Plavšić et al., 1993) but only
considering paths from the nodes tied from m to the nodes of the innermost shell.

Figure 2 shows how kdegree works for one particular network. There are many nodes with
the same degree value (Fig. 2A), such as specialists with just one or two links, that from a
ranking point of view are equivalent. On the contrary kdegree, maps the degree distribution
onto a more continuous one (Fig. 2B), because of the contribution of the inverse of kradius.
In Fig. 2C the cumulative distributions of both indexes are overimposed over the degree
scale (We perform the linear regression kdegree= α×degree and fit the kdegree distribution
to the degree values).

Finally, we introduce krisk as a way to measure how vulnerable is a network to the loss
of a particular species:

kArisk(m)=
∑
j

amj
(
kAshell(m)−k

B
shell

(
j
))
+εkAshell(m) m∈A,∀j ∈B,kBshell

(
j
)
< kAshell(m). (3)

The krisk of a given species is the sum of the k-shell differences to all the nodes of the other
guild on a lower k-shells to which it is connected. Each one is weighted by the difference
of the k indexes. The second element of Eq. (3) is meant to solve ties among species when
they belong to different k-shells, and is a very small quantity (in our implementation we
use 0.01, two orders of magnitude lesser than the sum).

In an intuitive way, if we remove one node strongly connected to others of lower k-shells,
these species are in high risk of being dragged by the primary extinction. On the other
hand, the extinction is much less dangerous for the species of higher k-shells linked to the
same node, because they enjoy more redundant paths towards the network nucleus.

Applying the k-magnitudes to a network
Figure 3 is an small seed disperser network with five species of plants, four species of
thrushes and eleven links. We call, by convention, guild A the set of plants, and guild B the
set of birds. The k-core decomposition was performed with the R igraph package (Csardi
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Figure 3 Computation of the k-magnitudes. Seed disperser network in Santa Bárbara, Sierra de Baza
(Spain) (Jordano, 1993). (A) Decomposed network. (B) Computing kAradius(4).

& Nepusz, 2006). The maximum k index is 2. The four bird species belong to 2-shell ; there
are three plant species in 1-shell and two in 2-shell. In this example each species of 2-shell
is directly tied to all species of the opposite guild 2-shell, but this is not a general rule.

The shortest path from plant species 2 to each of the four bird species of 2-shell is 1,
because of the direct links. So, kAradius(2) is 1. The same reasoning is valid for plant species
1. The reader may check that the kradius of bird species of 2-shell is 1 as well, measuring
their shortest paths to plants species 1 and 2.

Computation of this magnitude is simple although a bit more laborious for 1-shell plant
species. We work plant species 4 as an example. First, we find the shortest paths to each
bird species of 2-shell. Shortest paths are depicted with different colors. Plant species 4 is
tied to seed disperser species 1, so distance is 1. On the other hand, there is no direct link
with bird species 2. Shortest path is pl4-disp1-pl2-disp2, and distance is 3. It is easy to check
that distances from plant species 4 to bird species 3 and 4 are also 3. Once we have found
the four distances, we compute kBradius(4) as the average of 1, 3, 3 and 3, that is 2.5.

The values of kdegree are straightforward to compute. For instance, the kdegree of disperser
species 1 is:

kBdegree(1)=
1

kAradius(1)
+

1
kAradius(2)

+
1

kAradius(4)
+

1
kAradius(5)

= 2.8. (4)

The last k-magnitude we defined was krisk. We use again the disperser species 1 as
example. Links to species of the same or upper k-shells are irrelevant to compute krisk, so
only plant species 4 and 5 are taken into account.

kBrisk(1)= kBshell(1)−k
A
shell(4)+k

B
shell(1)−k

A
shell(5)+εk

B
shell(1)

= (2−1)+ (2−1)+0.01x2= 2.02. (5)

This magnitude may seem counter-intuitive, because the krisk of a highly connected
species like plant 1 is 0.02, almost the same of that of peripheral plant 3 (0.01). This is
because plant 1 has no ties with lower k-shell animal species. The krisk ranks species to
assess resilience, it has not an absolute meaning. It just tells us that it is more dangerous
for the network to remove the disperser 1 than plant 1, and plant 1 than plant 3 (Table 1).

The k-magnitudes of the example network are shown in Table 1.
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Table 1 K-magnitudes of the network of Fig. 3.

Species kshell kradius kdegree Rank by krisk
pl1 2 1 4 3rd
pl2 2 1 4 3rd
pl3 1 2.5 1 4th
pl4 1 2.5 1 4th
pl5 1 2.5 1 4th
disp1 2 1 2.8 1st
disp2 2 1 2.4 2nd
disp3 2 1 2 3rd
disp4 2 1 2 3rd

Extinction procedures
In order to rank the critical species to preserve the functionality ofmutualistic networks and
visualize eventual decomposition of the giant component (i.e., the highest connected com-
ponent of a given network), we carried out two static extinction procedures. Static assump-
tion implies that there is not rewiring (e.g., plants that have lost their pollinators are not
pollinated by other insects), despite this kind of network reorganization is observed in
nature (Ramos-Jiliberto et al., 2012; Goldstein & Zych, 2016; Timóteo et al., 2016). Nodes
are ranked once, before the procedure starts, as in most of robustness assessments
studies (Memmott, Waser & Price, 2004; Kaiser-Bunbury et al., 2010; Domínguez-García &
Muñoz, 2015).

In the first method, one species is removed each step, in decreasing order according to
the chosen index, no matter to which guild it belongs. Four ranking indexes are compared:
krisk, kdegree, degree and eigenvector centrality. The k indexes were computed with the R
package kcorebip; degree and eigenvector centrality with the degree and evcent functions
of the igraph package.

To estimate the damage caused to the network, the fraction of remaining giant
component was used. The procedure stops when this ratio is equal or less than 0.5. To break
ties, we ran 100 experiments for each network and index, shuffling species with the same
ranking value. The percentage of removed species needed to get to 0.5 of the remaining giant
component is used to measure the performance of the ranking. The lower the percentage
of removed species, the more efficient the ranking is in destroying the network. The top
performer scores the least average removal percentage (Fig. 4).

The second extinction procedure that we followed is more common in the literature.
Only animal species are actively removed (primary extinctions); secondary extinctions
happen when nodes become isolated (Memmott, Waser & Price, 2004).

The fraction of surviving plant species is measured as a function of the removed fraction
of animal species (Figs. 5A and 5C) and the area under the curve is the value to compare
performance. We averaged the results of 100 repetitions.

In this case, in addition to the four indexes of the first experiment, we includeMusRank
a non-linear ranking algorithm for bipartite networks (Tacchella et al., 2012), inspired by
PageRank (Allesina & Pascual, 2009). This algorithm is not valid for the first extinction
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Figure 4 Results of the first extinction procedure for the pollinator network number 10 of theweb
of life collection. Performance of the four ranking indexes for a pollinator community described by El-
berling and Olesen in Zackenberg Station (Greenland). Individual dots are the results of each experiment
while black dots are the average values. The horizontal dispersion is just added jitter for visualization. Per-
formance plots of the 89 networks are available at the github repository, more details in the additional in-
formation subsection.

method. Domínguez-García & Muñoz (2015) showed that MusRank achieves excellent
performance for this extinction procedure.

In the second extinction procedure, we also measured the fraction of remaining giant
component (Figs. 5B and 5D). Extinction sequences are identical, the only difference is
that both magnitudes are measured for each step.

RESULTS
First extinction method
krisk was the ranking method with the lowest average species removal percentage to destroy
half of the Giant Component in most of the networks (67 out of 89 networks) (see
supplemental material, Table S1). Figure 6 shows the performance comparison of the four
ranking criteria. There are some ties, more frequent when networks are small. Network
size is the key factor to explain why the performance range is so wide.

As size increases, the removal percentage to break the giant component decreases
(Fig. 7). When the network is big, the primary extinction of key nodes triggers an important
amount of secondary ones. If the community has 100 or more species, krisk is even a better
predictor of the most damaging extinction sequence and outperforms the other indexes
for 28 out of 32 networks.

Second extinction method
MusRank ranking method had the lowest area under the extinction curve for 85 of the 89
studied networks (Fig. 8), and in the other 4 the difference is so small that may be just an
effect of the averaging procedure. So,MusRank is the optimal ranking index to destroy the
network following this algorithm.

On the contrary, when the efficiency of the network destruction was measured through
the area under the curve (AUC) of the surviving Giant Component fraction the MusRank
index had the highest values, placing it as the least efficient ranking method according to
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Figure 5 Extinction curves of the second algorithm for the pollination network network number 07 of
the collection, Suffolk, UK (Dicks, Corbet & Pywell, 2002). (A, C) Percentage of surviving giant compo-
nent (GC) and percentage of surviving plant species removing animal species ranked byMusRank. (B, D)
Percentage of surviving giant component (GC) and percentage of surviving plant species removing animal
species ranked by kdegree . AUCs of the 89 networks are available at the github repository, more details in
the additional information subsection.

this criterion (Fig. 9). In this case, kdegree is themost efficient index for 42 out of 89 networks.
We must underline that the extinction sequences are the same, the only difference is the
measured output.

We have worked out one example (Fig. 5) to explain this shocking difference in
performance depending on the measured outcome. On the upper row (subplots A and
B), the difference for both ranking indexes when measuring the giant component. While
this magnitude decreases at a constant pace forMusRank, there is a sharp reduction of the
component size when one third of animal species are removed following the kdegree ranking.
On the lower row (subplots C and D), opposite results are obtained when accounting for
the fraction of surviving plant species.

The destruction of this pollinator network sheds light on the root cause of the difference.
The network has 36 pollinator and 16 plant species (Fig. 10A), two of them are outside
the giant component. When the 13 top animal species ranked by MusRank are removed
(pollinators 3, 1, 7, 15, 32, 6, 14, 33, 13, 31, 8, 16, 10), the community reaches the degraded
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Figure 6 First extinction method results. The average percentage of removed species to destroy the Giant Component (GC) is depicted for each
network and ranking index. Under the X axis, the name of each network as coded in the web of life database. The overall top performer is krisk (see
Table S1). Species are ordered by the percentage of primary extinctions, ranked by krisk . The red line joins the krisk destruction percentage values as a
visual reference to compare them with those of the other indexes.

Figure 7 First extinction procedure. Average percentage of removed species to destroy the Giant Com-
ponent of the top performer ranking as a function of the network size. Dots represent the best result for
each network, when there are ties among several rankings for the same network, they overlap.

structure of Fig. 10B. The size of the giant component is 27 (54% of the original), and there
are 23 pollinator and 6 plant species.

If we remove the 13 top animal species ranked by kdegree (pollinators 1, 3, 7, 13, 15, 2,
11, 20, 12, 8, 6, 5, 10) instead, the community structure is that of Fig. 10C. Now, the size
of the giant component is 19 (38% of the original), and there are 23 pollinator and 9 plant
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Figure 8 Second extinction procedure, area under the curve of the surviving fraction of plant species as a function of the fraction of removed
animal species. AUCs are plotted for each network and ranking. The overall top performer isMusRank (see Table S2). The solid line joins theMus-
Rank values. Species are ordered by the percentage of primary extinctions, ranked byMusRank.

Figure 9 Second extinction procedure, area under the curve of the surviving fraction of the original size of the Giant Component as a function
of the fraction of removed animal species. AUCs are plotted for each network and ranking. The overall top performer is kdegree (see Table S3). The
solid line joins the kdegree values. Species are ordered by the percentage of primary extinctions, ranked by kdegree .
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Figure 10 Pollinator network 007 (Dicks, Corbet & Pywell, 2002). (A) original configuration; (B) struc-
ture after the removal of the 13 topMusRank-ranked animal species. (C) structure after the removal of the
13 top kdegree-ranked animal species.

species.MusRank has killed more plant species, but the giant component is clearly smaller
ranking by kdegree.

DISCUSSION
The k-core decomposition offers a new topological view of the structure of mutualistic
networks.We have defined three newmagnitudes to take advantage of their properties. Net-
work compactness is described by kradius, ameasure of average proximity to top generalists of
the partner guild. Second, kdegree maps each node’s degree onto a finer grain distribution. It
has not only information on the number of neighbors but also on how they are connected
to the innermost shell. Finally, krisk is set to identify species whose disappearance poses a
greater risk to the entire network.
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Comparing the k-magnitudes based extinction indexes (kdegree and krisk) with those
routinely used when extinctions take place in both guilds, krisk is the best rank if the goal is
to identify the key species to preserve most of the giant component. krisk identifies species
linked to a high number of nodes of lower k-shells. These species provide vulnerability to the
network because their extinction may drag many of the species with lower k-shells they are
linked to, to extinction as well, as they do not enjoy redundant paths to the innermost shell.

Applying thewell-knownmethod of removing species of the primary class andmeasuring
the extinctions in secondary class, the most effective extinction sequence, if the goal is to
identify the key species to preserve most of the giant component, is kdegree. However, if the
goal is to identify the key species to preserve the greatest species richness in the second
class (e.g., plants in a plant–pollinator mutualistic network), the best criterion isMusRank
as Fig. 8 makes clear. These results confirm those obtained by Domínguez-García & Muñoz
(2015), over a larger network collection (89 in this work vs. 67 in the original paper).

The most striking result of the secondmethod is how different performance is for a same
ranking index, depending on the magnitude we measure. The root cause lies on the defini-
tions of the indexes themselves.MusRank is optimal to destroy the plant guild. It identifies
the most important active nodes of the bipartite network because of how they are linked
to the most vulnerable passive ones. It was designed to excel with this extinction sequence
and works with local properties. On the other hand, kdegree is an excellent performer to
destroy the giant component. It contains information on how nodes are connected to the
innermost shell, and ranks higher those nodes strongly tied to that stable nucleus. This new
approach to network robustness could be also applied to other types of networks in which
the integrity of the giant component is more important than the number of remaining
nodes, for example in communications or epidemic spread networks.

In summary, in this study, we show that the new k-core decomposition derived indexes,
krisk and kdegree provide a new insight into the structure ofmutualistic networks. This insight
is particularly useful because these indexes fair much better than other traditionally used
ranking indexes, when the aim is to identify the species that are key to preserving the inter-
actions and the functionality of the community. As complex network studies onmutualistic
interactions are already being used to suggest conservation policies, it is of utmost impor-
tance to have a clear framework of what the conservation practitioners look for when im-
plementing conservation and restoration plans. The static view of considering biodiversity
conservation as the mere conservation of a list of species has long been substituted by a new
paradigm which looks at conservation from a dynamic viewpoint in which species interac-
tions and the functionality of the ecosystems play a major role (Heywood & Iriondo, 2003).
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