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Summary

“Not all those who wander are lost”

-J.R.R. Tolkien, The Lord of the Rings

During the recent history of humanity, on the one hand economic systems of
advanced civilizations have achieved a great capacity in supplying their citizens with
unimaginable wellness, but on the other hand their devastating power of destraction
has made us doubt about the fragile security that we think they grant us.

The wounds left after the last financial crisis of 2008 are not healed yet, but they
serve us as a reminder that unlike what many people believe or want to believe,
this economic beast is not ready to remain immobile, trapped in an equilibrium
state for the rest of its life. However, these tragic events sometimes produce positive
outcomes, they force us to return to the designing table and reconsider our models,
paradigms, theories and even our knowledge.

I was in charge of a small familiar business when the crisis hit Spain. I felt on
my own flesh the huge social and economic recession that was generated by this
catastrophic event. My curiosity and anxiety for knowing, drove me to question
everything I knew or thought, borrowing ideas from a variety of scientific fields that
in principle do not have anything to do with economics. This thesis is the result of
this long search for the truth.

This thesis has been developed during my years, researching in the Nonlinear
Dynamics, Chaos Theory and Complex Systems research group of the Universidad
Rey Juan Carlos. In this thesis we develop and study nonlinear models in eco-
nomics capable of producing so complex dynamics, that our own understanding of
predictability is challenged. Next, I will briefly describe the structure of this work.

Chapter 1. Introduction
In this chapter we will build the pillars of this work. We will describe how stan-

dard economics theory has been challenged by the emerging science of complexity.
This new scientific paradigm has changed the way economists look and understand
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the entire economic system and it also opened the door for physical scientists to
apply their own tools and methods to study economic phenomena, giving way to
the novel econophysics approach. In this work, we have used it broadly, for this rea-
son, concepts like complex systems, interdisciplinarity, chaos, basins of attraction,
fractals, agent based models (ABM) and emergence are briefly introduced. These
ideas will recurrently come up along the whole thesis.

Chapter 2. The supply based on demand method
In this chapter we introduce the supply based on demand dynamical model

(SBOD). This model is one of the props of this thesis and we invoke it in Chapter
3. For this reason, we describe very carefully the SBOD model. We explain the
reasoning behind it, and the motivations that led us to develop this model in the
first place. Afterwards we describe the structure of the model and how it works.
Finally, we study in detail the complex market dynamics produced by this model
and the important observation that the last bifurcation means market collapse.

Chapter 3. Preventing the crash with partial control
The partial control method was developed by our research group with the collab-

oration of Prof. James Yorke from the University of Maryland. This novel control
method has been successfully applied to a variety of systems in science and engi-
neenering achieving remarkable results. Here we apply for the first time the partial
control method in an economic context, applying it on the supply based on demand
model introduced in Chapter 2. We demonstrate that the firm is capable of control-
ling the market from the bottom up, applying much smaller control than the market
noise.

Chapter 4. When repetition is the best strategy
This chapter is devoted to the study of the system proposed by the Complexity

Challenge Team from the Santa Fe Institute at Spring 2018. This intriguing problem
is an extension of the original El Farol Bar problem in which more complexities are
introduced. There are three pools and each one of them has different rewarding
schemes that depend on the attendance to the pool and in some stochastic functions.
Each agent must locate itself at each time step in one of the pools with the goal of
maximizing its total balance, which is the reward paid by the pool minus some cost.
To study this problem, we have developed an agent based model that integrates 13
types of strategies.

Chapter 5. Making predictions on fractal basins
There are situations where our idea of deterministic predictability is challenged

by the mere existence of complex structures on the phase space of some dynamical
systems. When these basins of attraction present fractal structure, the predictability
of any event in these fractal regions depends on the accuracy in which we measure
the initial conditions, and this is a technical problem. In this chapter, we study the
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relationship between the global predictability and the local measure of uncertainty
in a dynamical system that presents the Wada property. We demonstrate that the
probability of ending up in each basin of attraction converges to a fixed probability
when we increase the accuracy of the measurement or the phase space resolution.
This means that globally, the probabilities of each final state of the system are fixed,
although locally we will never be able of predicting the orbits.

Chapter 6. Results and Discussion
This chapter is devoted to the description of the main results of this thesis. We

also propose some possible research lines for a future work.

Chapter 7. Conclusions
The main conclusions of this thesis are summarized in this chapter.
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Chapter 1

Introduction

“We are a way for the cosmos to know itself”

-Carl Sagan

1.1 The dark energy behind our expanding economies

If there is something that all economists agree on, is that the economy is complex
- very complex. Approximately 250 years ago, one of the fathers of the economic
thought, Adam Smith, in his famous book The Wealth of Nations, introduced the
notion of the invisible hand to illustrate the mysterious force that somehow enforces
the markets to work effectively. However, he could only explain this discovery with
words, since the necessary tools needed to generate a concise theory that explains
quantitatively this phenomenon, did not exist in those days.

The neoclassical economic theorists that came after Smith, took another direc-
tion in the study of this and other economic phenomena. Inspired by the efficiency
of the exact sciences to explain physical and chemical phenomena, these economists
mathematize the economy using mathematical tools that did not exist in Smith days.
These economists influenced by the theory of thermodynamics [1, 2], developed the
demand and supply model, which serves as one of the main paradigms in modern eco-
nomics. This theory has supported many of the practical and theoretical ideas that
were very successful in explaining and supporting the economic growth experienced
during the 19th and 20th centuries that was mainly based on production.

The mathematical arsenal that these economists used to create their new theories
and models, is very powerful in explaining phenomena with few variables, for exam-
ple the business cycle [3], strategy game models [4, 5] or the market equilibrium [6].
Other mathematical weapons from this arsenal are very precise in studying phenom-
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2 Chapter 1. Introduction

ena with thousands of millions of variables exploiting the different laws of statistics,
for example the famous efficient market hypothesis studied by Louis Bachelier and
Paul Samuelson [7, 8, 9] or Black and Scholes options valuation formula [10]. But
when we are dealing with phenomena that are characterized by having a consid-
erable number of variables that is neither very small nor extraordinarily big, this
mathematical artillery is slightly effective. And exactly in this place in the spectrum
of phenomena, is where scientists think that many of the most complex economic
phenomena like value or market organization lays [11, 12].

Approximately 200 years after Adam Smith published his ideas about the invisi-
ble hand, the Nobel prize economist Friedrich von Hayek, replace the term invisible
hand by another extreme idea: the spontaneous order of the market. Von Hayek held
that the market arises spontaneously from the social interactions and from the hu-
man actions. He also claimed that the basic structure of the free markets guarantees
the efficient assignment of the economic resources, better than any system designed
by man. For this reason, he was convinced that these phenomena cannot be under-
stood by any of the methods of the natural sciences. Additionally, he argued that
it is not necessary to interfere in any way in this spontaneous order imposing laws
or behaviors that may disturb the natural evolution and dynamics of the markets.

The invisible hand or the spontaneous order of the market are just two powerful
ideas that try to explain the mysterious force that drives our economy - a force that
we can only deduce from the interactions between economic observables such as the
demand the supply or the price, but we cannot measure it directly. Exactly like the
dark energy - the mysterious energy responsible of the expansion of our universe.
Almost all scientists agree that is there, but no one understand its true nature, yet.

1.2 A paradigm shift

It is more than clear that our knowledge depends heavily on the tools that we have
in our disposal to explore the nature that surround us. The invention of telescopes
helps us to discover the real immensity of our universe and the physical laws that
govern it. Microscopes allowed us to observe the complexity and the mysteries
that the microscopic world was keeping away from our naked eyes. And advance
computers increased dramatically our computing power enabling us to explore the
huge complexity generated by a simple interaction between bouncing balls [13], the
way in which populations grow [14], to make better weather predictions or even
make use of algorithms that mimic our own brain. Our technology allows us to feel
what our senses cannot feel, to explore places where our feet cannot take us and to
know what our reason is unable of deducing.

From the last half of the 20th century, we have witnessed a huge boost in compu-
tation technology. This technological revolution has changed our lives considerably.
But it also changed the way we face very complex problems. Computational power
harnessed to solve complex scientific problems by solving millions of operations in
a blink of an eye, gave scientists one of the keys to the nonlinear kingdom, allowing
them to find numerical solutions to nonlinear equations or to systems of nonlinear
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equations in few seconds. If in the past, economists tried to avoid nonlinearities
by simplifying considerably their equations, sometimes with the cost of losing all
the richness presented in the phenomenon they try to model. Today they can study
complex systems upside-down from the bottom up, starting by modelling the agent’s
behavior and then simulate how these behaviors aggregate into the global behavior
of the system.

This new tool allows economists for the first time in history to create imperfect
worlds, with imperfect agents (heterogeneous and with bounded rationality) that
interact within themselves in an imperfect environment. A world more similar to
the world in which we live. In this way we can contemplate how the economy - is
not deduced but emerges. From the extensive literature on complexity in economics,
I want to highlight the work of Joshua M. Epstein and Robert Axtell on Sugarscape
- evolution of artificial societies [15], the search of optimal strategies in iterative
strategic games by Robert Axelrod in his famous tournaments [16, 17], Nobel Prize
Thomas Schelling’s fabulous study on focal points and economic interactions [18, 19,
20] and the El Farol bar problem by Brian Arthur and his incredible study about
technology [21, 22].

The neoclassical economists have assumed that macroeconomics phenomena could
be deduced from the microeconomic system, in other words, the rational behav-
ior of the microeconomic agents is added up to the linear dynamics predicted by
the macroeconomic theory. But the absence of evidence of these rational agents
[21, 23, 24, 25] or such linear dynamics in the economy brought a lot of criticism
upon this approach. Empirical data show that the devastating economic crises
among other phenomena that strike our modern economies [26], do not match with
the neoclassical view of the economy. And at this point the complexity economics
paradigm with its powerful computational simulations is taking the relay [27, 28].

Complexity economics observes the same economy, but from another angle -
using another paradigm - nonlinear models, describing the economy as an open sys-
tem, composed by heterogeneous agents with bounded rationality, making decisions
in very specific contexts, that give place to networks of interactions that form insti-
tutions. This economy is immersed in a very complex dynamics out of equilibrium,
constantly evolving and adapting to the new environment. In this thesis we study
the economy from this point of view - from the complexity paradigm. Shedding
more light on our understanding of our economy.

1.3 Scientific context

Once the general framework of this thesis has been set, we will introduce briefly
some of the scientific concepts that will be accompanying us along all this work.

1.3.1 Complex Systems, interdisciplinarity and holism

The exact definition of a complex system does not exist yet. Throughout the last
decades with the emergence of this new science, many scientists have tried to clarify
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what is a complex system and how to measure the intrinsic complexity in such
systems [29, 30, 31]. But there is no consensus among scientists about the exact
definition nor how to measure the complexity of these type of systems. For this
reason, instead of exposing here the different definitions of a complex system I will
briefly introduce some of their most important properties.

• Simple components - these systems are constituted by very simple components.

• Information - the components that constitute these systems create, use, trans-
mit and compute information.

• Nonlinear Dynamics - these systems constantly change their structure and
behavior in a nonlinear fashion. Also, as a result of nonlinear interactions
between their components.

• Evolution and learning - these systems tend to adapt to new situations and
environments, learning and changing over time.

• Absence of a central control - there is no one who directs this orchestra.

Now, after considering these key properties, it should be obvious that in order
of studying and understanding this type of systems, we must integrate many ideas
from a variety of scientific fields (physics, biology, mathematics, etc). We call In-
terdisciplinarity to this integration of ideas and the usage of models and theories to
explain different phenomena far from the scientific field in which they borned. Ad-
ditionally, we must change our study strategy, from reductionism to holism taking
as granted that the whole is larger than the sum of its parts. As Péter Érdi quoted
“The science of complexity suggests that while life is in accordance with the laws of
physics, physics cannot predict life” [32].

The markets are a classic example of a complex system and in this thesis, we will
study the markets extensively. In the next chapter we introduce the supply based
on demand dynamical model (SBOD), a very simple model capable of producing
very complex market dynamics. In Chapter 3 we show how to control the market
preventing a market collapse. In Chapter 4 we study a problem related to a complex
market desicion using an agent based model.

1.3.2 Chaos Theory and Chaos in Economics

The first and most important observation that led humanity to familiarize with
chaotic phenomena, is that everything is in motion. A long before Heraclitus said
panta rei, Debora sang: “The mountains flowed before the Lord” because she knew
that, in God’s infinite perspective, everything seems flowing [32].

But only at the end of the 19th century and after approximately 200 years in
which most of the scientists believed, in the Newtonian universe - universe like a
clock, the French mathematician Henri Poincaré, after studying the three-body prob-
lem, would offer us the first mathematical evidence of chaos [33]. Approximately 70
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years afterwards, the American meteorologist Edward Lorenz, using his computer,
discovered a very strange phenomenon, that he would popularize as the butterfly
effect [34]. In 1975, 12 years after Lorenz discovery was published, James A. Yorke
and Tien-Yien Li, two American mathematicians, published a paper titled Period
three implies chaos in which they called this phenomenon for the first time - Chaos
[35]. Chaos means that tiny variations in the initial conditions can lead to enor-
mous deviations in the orbits of the system, making predictions almost impossible.
Chaotic systems present strong sensitivity to the initial conditions.

The first studies of chaotic phenomena in economics appeared at the beginning
of the 80’s of the 20th century with the works of Jess Benhabib and Richard H. Day.
Their work showed to the scientific community, the importance and the potential
of applying chaos theory in economics. Since then, chaos theory has been applied
in many models in economics, growth models, competition models, markets models,
fiscal models and many more [1].

1.3.3 Fractal Geometry

If you have observed the structure of a coastal line of some country from a plane,
you could convince yourself that the coastal line does not follow a straight line, but
rather a more complex structure. If you have approached more closely, observing
the same coast line from a cliff for example, you would see the same pattern. If you
get even more close, standing on the coastline, you would continue seeing the same
pattern in the stones and rocks that form this coastline. The mathematician Benoit
Mandelbrot was the first one who manage to formulate this observation in a new
type of geometry that he called fractal geometry [36].

He wrote in his famous book The fractal geometry of nature, “Why is geometry
often described as cold and dry? One reason lies in its inability to describe the shape
of a cloud, a mountain, a coastline, or a tree. Clouds are not spheres, mountains
are not cones, coastlines are not circles, and bark is not smooth, nor does lightning
travel in a straight line.” [37]. Curiously, Mandelbrot was very interested in the
shape of price charts of different assets in different markets and he was able to show
that price charts can be described by fractals and multifractals [38, 39].

The fractal geometry beside of generalizing the Euclidean geometry, describes
more faithfully the shape of nature. Technically, fractals are defined as geomet-
rical objects with a Hausdorff-Besicovitch dimension larger than their topological
dimension. These objects are self-similar in all scales and this is one of the causes
of uncertainty in nonlinear systems. We will learn that this property can be very
useful in some cases when we want to make predictions.

1.3.4 Basins of attraction, Wada Basins and predictability

In dissipative systems, many final states are possible. The set of initial conditions
that lead to a certain final state of the system, is called a basin of attraction. One
of the most intriguing features of these basins of attraction, is their geometrical
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structure. When there are two or more basins of attraction over the phase space
of some dynamical systems, the basin boundary that separates the different basins
might be a smooth curve or can be instead a fractal curve. When the basin boundary
is fractal, the system is much more difficult to predict. There is an extreme case of
fractal boundary, called the Wada boundary, in which three or more basins share
the same fractal boundary.

In this situation we say that the system possesses an extreme sensitivity to the
initial conditions, since the final state of the system will depend on the accuracy in
which we measure the initial conditions. Minuscule differences in the measurement
of the initial conditions inside the Wada boundary will be translated in very different
final states of the system. Chapter 5 is devoted to the study of the Duffing oscillator
when it possesses this type of basins.

1.3.5 Agent Based Modeling

Paraphrasing Galileo Galilei from “Il Saggiatore” ...the universe is written in math-
ematical language. There is no doubt that mathematics is a very useful language to
model natural phenomena. But sometimes it is very hard to reduce the behavior
of some natural or social phenomena to a series of equations. In these situations,
we can use another type of modeling techniques that take advantage of computers
capacity to execute millions of repetitive computations in a very short time.

One of these modeling techniques is called Agent Based Modeling (ABM), and it
evolved throughout the 20th century along with computation. This technology was
developed by many influential scientists like John von Newman, Stephen Wolfram,
John Conway, Robert Axtell, John Holland, Joshua Epstein and Uri Wilensky among
many others. This type of computational models aims to simulate the actions,
behaviors and the interactions of autonomous agents or agent’s collective entities to
explore the impact that an agent or an agent behavior have on the system as whole.
Unlike cellular automata (CA), ABM’s have the potential of studying how a variant
in the agent properties like the number and kind of agents presented in the system
or some particular agent behavior affects the dynamics of the system. The agents
behave independently, but they interact with the environment and with other agents
that surrounds them. In this way we can contemplate how some unexpected global
dynamics emerge from these interactions that we could not appreciate otherwise
[40].

We will dedicate Chapter 4 to study a complex decision problem proposed by
the Santa Fe Institute’s Complexity Challenge Team in Spring 2018. We study this
intriguing problem from two directions, the ecosystem of possible strategies and the
global dynamics that emerges from the interactions between the different agents
using an agent based model that we have developed especially for this challenge.
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1.3.6 Emergence

An emergent phenomenon [41] appears when the collective behavior of the agents
that compose the system can not be deduced by only reducing the system to its
constituent elements. In physics the phenomenon of superconductivity is understood
as an emergent phenomenon. But in the life sciences these phenomena are very
common. Perception, thought, feelings or consciousness cannot be understood by
reducing the basic components of our brain- the neurons. Life itself cannot be
understood by reducing the chemical components of organic matter and societies
cannot be understood as the simple sum of their citizens. In each one of these
systems the global behavior, what we call, superconductivity, consciousness, life,
societies and also economies are emergent phenomena.





Chapter 2

The supply based on

demand method

“Supply and demand constantly determine the

prices of commodities; never balance, or only

coincidentally; but the cost of production, for

its part, determines the oscillations of supply

and demand.

-Karl Marx

As stated in the introduction, the standard economics modeling approach as-
sumes that the economy is a close system where two dynamics are possible: explo-
sion or equilibrium. Once we get rid of this assumption by modeling the market in a
nonlinear fashion, we observe many additional dynamics that in some cases remind
us real price charts. One of the main assumptions made in the demand and supply
model, is that the quantity demanded, and the quantity supplied in a market, are
two independent variables. The only way of influencing the shape or the position of
the demand or the supply curves, is by applying an external force to the system. It
is very common to use the technology as an example, of an exogenous force capable
of moving the supply curve from its original position. But in the real world one of
the most important factors that determine the quantity of supply is the quantity
demanded or rather the estimated demand in the market. Many firms from all the
scales, invest many resources to study and estimate the future demand, since this
information might be crucial for their future survival. Firms try to optimize their
production in a situation of uncertainty of demand by estimating the demand.

In the literature this problem is known as the newsvendor problem and it dates
back to the end of the 19th century. Since then and up to today many articles that
analyze mathematically and statistically this problem have been published, but very
few works focus on the effect of this firm behavior on the market dynamics. In this
chapter we develop and study a simple dynamical model that tries to capture some
of the complexities involved in this iterative process of estimating the demand and
producing according to it. We show that many market dynamics are possible in this
setting and some of them are chaotic.

9
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2.1 Introduction

Firms need to make the decision of how many goods to supply before they even
know how many goods the market will demand in the next sales season. This prob-
lem is known as uncertainty of demand forecast and it has been widely studied in
economics and supply chain management [42]. Being successful in predicting the
future demand might be crucial for the survival of any productive company in a
competitive market. The standard microeconomics models of the firm assume per-
fect information, implying that the firm knows exactly the shape of the demand
curve. Furthermore, these models assume static and independent demand and sup-
ply curves, so that the decisions made by the firm do not have any effect on the
shape nor the slope of the supply and demand curves. In this position the firm is
only maximizing profits and its actions have no influence on the global dynamics of
the market. So that in the long run the system settles down in equilibrium. Since
the publication of the classic paper of George A. Akerlof [43], new models have been
proposed. For example, pricing models of the monopoly under uncertainty of de-
mand, considering the demand as a stochastic function [44, 45, 46], focusing on the
optimal price for the firm and less on the market dynamics. Complexity economics
in contrast, focuses on the emerging market dynamics created by economic agents
when they react to patterns created by their own interactions during the time they
interact [47, 40, 28]. This approach focuses on the connectivity and the interde-
pendences between economic agents and how they organize and interact to achieve
their economic end. Modeling the economy in this way opens up a new world of
possibilities, where equilibrium is one possible dynamics among many others that
can emerge from these interactions. In recent years, policy making have adopted
Dynamic Stochastic General Equilibrium models (DSGE), to better predict and
even control the economy at the macro level [48, 49]. These models are built from
three main blocks where each one is a representation of some economic agent or a
group of agents. The demand block represents the consumption of households, firms
and even the government. The supply block represents the productive agents of the
economy and the policy block represents financial institutions like central banks [50].
These kind of models add to the general equilibrium models some simple dynamical
interaction between the economical agents in addition to some stochastic external
shocks. In supply chain management when the firm has data sets it almost always
uses statistical methods like time series analysis or linear regression [51] to estimate
the future demand. We find the combination of the last three frameworks interesting
in nonaggregable models at the micro level of the economy.

In this chapter, we will think about the market as a dynamical place where one
firm is a price maker while it has limited information about the demand. We focus
on firms whose commercial activity involves producing or buying some stocks of a
certain good with the purpose of selling them to obtain profits. These firms, mainly
small, medium or entrepreneurs do not spend much resources in demand forecasting,
they rely mainly on their buyers expectations among limited data sets of past sales,
for example small stores, retailers or small factories that their main revenue comes
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from certain holiday tradition. For simplicity, we will call suppliers, to all the agents
that belong to this group.

We will study numerically a dynamical model that is built similarly to a DSGE
model without the stochastic terms, focusing on the micro level of the economy.
This model is highly inspired by the classic cobweb model [52] with the difference
that the supplier decision of how many goods to produce is sensitive to the quantity
demanded instead of the market price of the good. The following two key concepts
in the supply organization are captured in the model. First, as in the nonlinear
version of the cobweb model, we present one possible dynamical procedure based on
suppliers expectations [53, 54, 55, 56], that can lead to market equilibrium and to
chaos as well. The second idea embodied in this chapter, is that for a given quantity
of supply the supplier fix some price that generates a demand feedback from the
market. This information is needed to compute the quantity of supply in the next
time step. As in real markets the supplier reacts to these demand feedbacks, what
creates a rich price-quantity dynamics. Additionally, we will show that in some
cases the supplier may push the market towards an equilibrium motivated by his
selfish interests, (sell all the stock), as Adam Smith once wrote: “It is not from the
benevolence of the butcher, the brewer, or the baker that we expect our dinner, but
from their regard to their own self-interest...”. But in other cases the supplier may
produce irregular dynamics that may lead to market collapse. We have found that
the price elasticity of demand (PED) and the gross margin can play an important
role in the stabilization of prices in the same way they can make the market crash.

The structure of this chapter is as follows. Section 2.2 is devoted to the de-
scription of the supply based on demand model. Two types of suppliers and their
behaviors are described in Section 2.3. In Section 2.4 we introduce the methodology.
The global dynamics and results are described in section 2.5. In Section 2.6 we em-
phasize the idea that the final bifurcation means - market collapse. We describe the
influence of the price elasticity of demand (PED) on the global dynamics in Section
2.7. Finally, some conclusions are drawn in Section 2.8.

2.2 Model description

We consider a supply and demand model of the form,

Dn+1 = a− bPn+1, (2.1)

Sn+1 = DExp
n+1, (2.2)

Pn+1 =
ATC

1−M
, (2.3)

where the quantities demanded and supplied, Dn+1, and Sn+1, and the price, Pn+1

are assumed to be discrete functions of time. The parameters a and b are positive
constants a, b ≥ 0 and DExp

n+1, is a funcional of the expected demand. The parameter
M , is the gross margin added by the supplier to obtain profits, where 0 ≤ M < 1
and ATC is a functional of the average total cost function of the good, that we will
explain in details later on.
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The quantity demanded in the market depends mainly on the price of a given
good. The price of the good in contrast, depends heavily on the average total cost
function, which is directly linked to the quantity of supply. When the supplier
decides how many goods to produce, he always estimates in some way the future
quantity of demand, DExp

n+1. The problem is, that the supplier makes the decision of
what quantity to supply, Sn+1, before he knows the reaction of the market to the
price that he fixes. In this model we assume, the supplier does not know anything
about the demand function. The only available information he has, is the quantity
demanded at the price in which he sold his products in the last sales seasons. We
assume an ordinary good market in which, when the price increases, the consumption
of the good decreases and vice versa. For simplicity, we assume a linear demand
curve with negative slope as shown in Eq. (2.1). Before we proceed, we introduce
two more mechanistic assumptions, that describe how the supplier operates in the
market.

Assumption 1
The supplier is the only one who sets and adjusts the price in light of circumstances.

In this model the supplier is the only one who sets and adjusts the price. Notice
that after the supplier launches the goods into the market, no changes can be done
in the quantity supplied nor the price. The price structure is given by the ATC
function and the gross margin as shown in Eq. (2.3). Both building blocks are
known and controlled by the supplier.

After estimating the demand for the next period, the supplier begins the pro-
duction phase. He introduces his estimations in the ATC function to obtain his
average total costs of production. We assume in this model that the average total
costs is computed adding the fix costs to the variable cost per unit of good, divided
by the total amount of goods produced. However, there are many possible ways to
describe an ATC function. For instance, in many industries the prices lists shown
to the buyers are organized in a “piecewise function” fashion, where the price of
the good is well established for every subset of quantities the buyer is willing to
buy. But here, to stay faithful to the classical cost theory, we have chosen a typ-
ical continuous cubic total cost function, that gives rise a parabolic ATC function
that depends also on the quantity of production Q [57] as shown in Fig. 3.3. In
some markets the average total cost decreases as the supplier increases the amount
of goods he produces or the amount of goods he is willing to buy, until reaching
some critical point. After crossing this point every additional product produced or
bought increments the average total cost. The parabolic shape of the ATC function
as shown in Fig. 3.3 captures this idea. In the classic supply and demand model is
taken for granted the linear positive slope shape of the supply curve what guarantees
convergence towards an static equilibrium. In our case the supply curve is nonlinear,
what produces more complex dynamics. The quantity of production Q is the same
as the quantity of supply, Sn+1, or the expected demand estimated by the supplier
earlier, as shown in Eq. (2.2) and (2.4),

ATC =
Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2. (2.4)
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Figure 2.1. Parabolic price function. We have used the following function P =
1

1−M
·(FcQ+v−vQ+Q2), to relate the price of the good with the quantity supplied, where

P is the price of the good, Q is the quantity, Fc is the fix cost of production and v is the
variable cost of production. Notice that the ATC function inside the brackets, determines
the parabolic shape of the price function. The parameters are fixed as: Fc = 10 and v = 4.
The supply curves S as solid line, S1 as dot line and S2 as dash-dot line, correspond to
the gross margin M = 0.5, M = 0.8, M = 0.2 respectively. When the supplier increases
the gross margin M , the price of a given quantity of goods increases as well.

We assume that the variable cost, v, and the fix cost, Fc, are positive constants.
The final step in this process is to add profits over the average total cost of the good,
using the gross margin operator shown in Eq. (2.3). When M increases, the price
function moves upwards, what leads to higher prices and when it decreases the price
moves downwards what leads to cheaper products as shown in Fig. 2.1.

Assumption 2
The main goal of the supplier is to sell all the produced goods.

For simplicity, we assume that the supplier cannot keep goods as inventories from
one period to the next and also he does not maximize his profits. This model does
not take into account the financial constraints of the production process, and we
assume that the supplier has money to produce or to buy at any point in time. The
main focus of the model is to show how the supplier tries to match his expectations
about the demand with the real demand in the market and how this process alters
the price. So the question is, how the supplier knows if he had a successful sales
campaign. In this case, for him, we consider that a successful sales campaign means
that all the goods were sold. This is exactly the market equilibrium assumption
except that in our model, is just a temporal state of the system and not a constant
reality of the market. The supplier quantifies his success after each period using a
very simple model - he divides the quantity demanded at time n by the quantity
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supplied at time n as shown in Eq. (2.5). We call it the signal of success (S),

S =
Dn

Sn

. (2.5)

According to the signal of success, the supplier decides how many goods to
produce and supply in the next period of time. From the mathematical point of
view, it is important to notice that the supplier reacts to the signal of success and
not implicitly to the quantities demanded and supplied. This simple idea helps us
to model the market assuming no inventories and inequalities between demand and
supply. The signal of success can be divided in four subsets of outcomes, each one
with its corresponding economic meaning. We assume that all outcomes are in the
positive domain.
1. When Dn

Sn

= 0, there is no demand, or even worst, there is no market. In this
case the supplier will not produce anything for the next period due to the scarcity
of demand.
2. When 0 < Dn

Sn

< 1, the quantity demanded is smaller than the quantity supplied
at the given level of price. The supplier produced more goods than what the market
could possibly absorb. From the economical point of view, the supplier will probably
affront economic losses and also gain negative expectations about the future state
of the market.
3. When Dn

Sn

= 1, the quantity demanded is exactly equal to the quantity supplied.
This means that he had a successful sales campaign, exactly as we defined earlier.
In general, suppliers aspire to find themselves in this situation. This is a natural
equilibrium point of the system as we will show in the following sections.
4. When Dn

Sn

> 1, the quantity demanded is larger than the quantity supplied. This
is a stock-rupture situation. Although the supplier sold all the goods he produced,
and this condition meets Assumption 2, losing the possibility to sell even more goods
and earn extra revenue, is an unsatisfactory situation for him. Imagine costumers
entering through the shop door with money bills in their hands asking for some
product that is out of stock. Although he has lost some extra revenue, he gains
positive expectations about the future.

The model works as follow, in the first step the supplier supplies some quantity of
goods to the market to get some feeling about the demand (seed). Then he observes
the quantity of goods that were demanded at the price that he fixed. According to
this quantity the supplier decides how many goods to produce or buy for the next
period using a simple model that quantify the success of his sales campaign. We
called it the signal of success, and it is a simple division between the demanded and
supplied quantities at time n. After computing the signal of success the supplier
uses it to estimate the expected demand in the next period. The second step is the
pricing process. The supplier uses his ATC function to compute the goods average
total cost. After obtaining the cost per unit, he adds some profits over the cost
using the gross margin operator. Finally, he introduces the goods with their new
price into the market. He waits some time until he sees how many goods have been
sold and then he repeats all the process again.
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2.3 Two simple supplier behaviors

In this Section we will describe two types of suppliers. Both of them share the func-
tion that describes the relationship between the signal of success and the multiplier
of production for the next period of time, that is, how the amount of goods produced
or bought in the present period of time for the coming sales campaign, is affected by
the signal of success. In Fig. 2.2 we show this relationship. For the sake of simplicity
we have used two very simple suppliers that can be modeled analytically. But in the
model, more complex suppliers could be introduced.

The naive supplier
The simplest assumption of all is that the supplier makes the decision of how many
goods to supply in the next period, using the signal of success and the amount of
goods he supplied in the previous period as a benchmark. The supplier uses a very
simple model to compute the expected demand, that works as follows. He multiplies
the signal of success with the quantity supplied in the previous period as shown in
Eq. (2.6),

DExp
n+1 = (

Dn

Sn

)× Sn = Dn. (2.6)

The logic behind this model is that the supplier expects the demand to behave
in the next sales season, exactly the same as it behaved in the previous period. This
forecasting method is the same as the moving average method with exponential
smoothing coefficient of α = 1, putting all the weight of the forecast on the most
recent information [58]. There is a linear relationship between the signal of success
and the multiplier for the next production as shown in Fig. 2.2. The supplier is
going to produce exactly the same quantity that was demanded in the previous
period. For this reason we have called naive, to this supplier. The model takes the
following form

Dn+1 = a− bPn+1, (2.7)

Sn+1 = Dn, (2.8)

Pn+1 =
1

1−M
· ( Fc

Sn+1

+ v − vSn+1 + (Sn+1)
2). (2.9)

Simplifying this system of equations, we get the following one dimensional maps
for the demand and the price,

Dn+1(1−M) = a(1−M)− b(
Fc

Dn

+ v − vDn + (Dn)
2), (2.10)

Pn+1 =
1

1−M
· ( Fc

a− b(Pn)
+ v − v(a− b(Pn) + (a− b(Pn))

2). (2.11)

The cautious and optimistic supplier
This type of supplier is in fact a family of infinite number of suppliers, each one
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with a different sensitivity to the signal of success. This supplier instead of merely
using the signal of success as it is, prefers to transform it to be able to improve the
prediction of the demand in the next period. He uses a very simple but powerful
model. He finds the nth root of the signal of success wherem defines his cautiousness
and optimism as we will see next. The supplier multiplies the nth root of the signal
of success with the quantity supplied in the previous period that serves him as bench
mark. We can see this model in Eq. (2.12),

DExp
n+1 =

m

√

(
Dn

Sn

)× Sn, (2.12)

where m > 0. From Fig. 2.2 we can see that when m increases the supplier becomes
less optimistic and more cautious about the future state of the market, when the
signal of success is greater than one. But he becomes less cautious and more opti-
mistic when the signal of success is between zero and one. This behavior remaind
loss aversion [59], where the suppliers reference point, is when the signal of success
is equal to one. As the reader might guess the naive supplier is just a particular
case in this model and it arises when m = 1.

So m determines the producer’s sensitivity to the market states or to the signal
of success perceived. In general, all of them behave in the same manner. When
Dn

Sn

= 0, and Dn

Sn

= 1, there is no change in their behaviors, they expect the demand
to be 0 and Dn respectively as we saw in the naive supplier case. The interesting
behavior occurs when 0 < Dn

Sn

< 1, and when Dn

Sn

> 1. In the first subset of outcomes
the supplier perceives lower demand in proportion to the quantity supplied at time
n. Because of that, he will produce fewer goods than before. His optimism will
drive him to produce a little bit more goods compared to what the naive producer
would had produced in the same situation. As his m increases the supplier becomes
more and more optimistic and he will produce more goods. On the other hand
when Dn

Sn

> 1, the supplier perceives high demand in proportion to the quantity
supplied at time n. Therefore, he will produce more goods than before. However,
his cautiousness will play an important role. He will produce fewer goods compared
to what a naive producer had produced in the same situation. As his m increases
he is considered to be more cautious and he will produce less goods. We can write
down this model as follow,

Dn+1 = a− bPn+1, (2.13)

Sn+1 =
m

√

(
Dn

Sn

)× Sn, (2.14)

Pn+1 =
1

1−M
· ( Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2). (2.15)

Simplifying this system of equations we obtain the following two dimensional
map for the demand and the supply,

Dn+1(1−M) = a(1−M)− b(
Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2). (2.16)
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Figure 2.2. Behaviors of suppliers in terms of the signal of success. The
relationship between the nth root of the signal of success with the multiplier in the next
production is shown in the figure above. The solid black curve represents the linear case
or the naive supplier, m = 1. The blue dash line is the square root m = 2 of the signal of
success. The red dot line is the cubic root m = 3 of the signal of success and the magenta
dash-dot line is the 4th root of the signal of success. We have plotted the horizontal dot
lines, to help the reader see the multiplier of production in each case, when the signal of
success is 0.5 and 1.5.

Sn+1 =
m

√

(
Dn

Sn

)× Sn. (2.17)

Here the producer needs two seeds to calculate the expected demand, D0 and,
S0. Notice that this two dimensional map can be reduced into a one dimensional
map in terms of supply as shown in Eq. (2.18).

Sn+1 =
2

√

1

Sn

(
1

1−M
(a− b(

Fc

Sn

+ v − vSn + S2
n)))× Sn. (2.18)
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2.4 Methodology

We have studied only two variations of the model. Equation (2.19), shows the naive
supplier when the parameters are fixed as: a = 10, b = 0.09, v = 4, Fc = 10 and
M = 0.5.

Dn+1(0.5) = 10− 0.09(
10

Dn

+ 4− 4Dn + (Dn)
2). (2.19)

Equations (2.20) and (2.21) represent the cautious and optimistic supplier when
the parameters are fixed as: a = 30, b = 0.125, v = 6, Fc = 30, M = 0.5 and m = 2.

Dn+1(0.5) = 15− 0.125(
30

Sn+1

+ 6− 6Sn+1 + (Sn+1)
2), (2.20)

Sn+1 =
2

√

(
Dn

Sn

)× Sn. (2.21)

We have used the following one dimensional map to compute the Lyapunov
exponents spectrum of the cautious and optimistic supplier,

Sn+1 =
2

√

1

Sn

(2(30− b(
30

Sn

+ 6− 6Sn + S2
n)))× Sn. (2.22)

We have studied the dynamics of both models using three tests. First, we have
computed the time series of both models to observe the dynamics by applying a
recursive algorithm. We have changed the parameters b and M to see how the
dynamics of the time series changes. We have chosen to show only the chaotic
time series because we want to prove the existence of chaos in the model. Secondly,
we have plotted the bifurcation diagrams of the quantity demanded against the
parameter b in both cases. At each value of b, we have iterated the functions until
they reached the equilibrium points using a recursive algorithm. Then, we have
plotted the values of Dn+1 corresponding to the specific value of b on the same plot.
We have done the same with the parameter M in the naive supplier case, to show
the dynamics when the margin is changed. Lastly, we have computed the Lyapunov
exponents spectrum of both systems.

2.5 Market dynamics

The naive supplier
In order to understand the relationship between the price and the quantity de-
manded, we have plotted the first 20 periods of trade as shown in Fig. 2.3. We
clearly see the price and the quantity demanded behave exactly how we expected.
High prices are responded with low demand and low prices are responded with high
demand. However, the plots show an irregular behavior in both cases. The econom-
ical meaning of this behavior is that the supplier and the customers have not agreed
on the quantity and the price during the trade. In other words, their interactions
were not translated into market equilibrium. Furthermore, it seems that this market
is not efficient. But there is a small window between time steps 6 to 10, in which
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Figure 2.3. The price and demand time series that correspond to the naive
supplier during the first 20 periods of trade. The two time series that are shown in
the figure above were plotted iterating Eq. (2.18) and (2.10). The black line corresponds
to the price, and the red line corresponds to the demanded quantity in the first 20 periods
of trade. Despite the fact that the price and the demand are discrete quantities, it is
easier to follow their evolution plotting them as continuous curves. But, note that the
lines between the dots are meaningless.

the trajectories of the price and the quantity demanded are almost flat or almost
in equilibrium. However, after two time steps this behavior changes abruptly into
high amplitude fluctuations. We would expect that real world markets of ordinary
goods, to behave dynamically and not to fall into the frozen state that standard
models predict. We did not obtain this behavior by an accident; we have chosen
the parameter values precisely to get this behavior. Next, we will show that more
dynamical behaviors are possible computing the bifurcation diagram.

For given values of the parameters b, and M , we can compute the fixed points
of the Eq. (2.11). If we allow the parameter b to vary between 0 and 0.0918, we
can establish the equilibrium points for Dn+1, by plotting the bifurcation diagram
of Dn+1 against b as shown in Fig. 2.4.

The period-doubling route to chaos [60, 61] is obvious looking at Fig. 2.4. We
have found period 6 and period 10 cycles when b = 0.8531 and b = 0.0843999995,
respectively. We clearly see the huge range of demand dynamics when we are varying
the parameter b. We will explain why this outcome is meaningful in terms of demand
theory in the next Section. We obtain a similar bifurcation diagram when we vary
M against Dn+1. Figure 2.6 shows how the quantity demanded is affected by the
gross margin, when it is changed. Notice that in Fig. 2.6, b = 0.03. One can
check in Fig. 2.4 that at this value of the parameter b, the system should be in
equilibrium. Incrementing the gross margin in order to obtain more profits leads to
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Figure 2.4. The bifurcation diagram of the quantity demanded, Dn+1, against
the parameter b. We have divided the interval (0.0418, 0.0918) of the parameter b into
10, 000 values. Then, we have set each value of the parameter b in Eq. (2.10) and we have
iterated the equation 3, 000 times until it settles down in the corresponding fixed points.
Finally, we have plotted those fixed points against the value of the parameter b to obtain
this bifurcation diagram.

a destabilization of the whole system. The model suggests that the supplier greed
has limits. This is the proof that the supplier has influence on the global dynamics
of market. We have also computed the Lyapunov exponent spectrum to prove the
existence of chaos as shown in Fig. 2.5.

The cautious and optimistic supplier
We start again with the time series shown in Fig. 2.7.

It is possible to verify how high prices are responded with low demand and vice
versa. We can see periods where the demanded and supplied quantities are almost
the same. In these periods the system is almost at equilibrium so the price is stable.
But after some time the system goes out of equilibrium and periodic-cycles and
chaotic behavior arise. We have plotted the bifurcation diagram of Dn+1 against b
to illustrate some more possible behaviors as shown in Fig. 2.8. A period 3 cycle
occurs when b = 0.1308. This observation implies chaos [35]. We can clearly see
that the period doubling route to chaos from Fig. 2.8 as well. Furthermore, we
have computed the Lyapunov exponent spectrum to prove the existence of chaos as
shown in Fig. 2.9.

2.6 Transient chaos and market collapse

In this Section, we will expand the economical assumptions of the model to em-
phasize the idea, that a final bifurcation can be a good description of a market
collapse. We have chosen the naive supplier as a case study. But the reasoning and
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Figure 2.5. The Lyapunov exponent spectrum corresponding to the naive
supplier when parameter b is varied. We have taken the interval (0.08, 0.092) of the
parameter b and we have computed the Lyapunov exponent of 100, 000 points within this
interval. Finally, we have plotted the corresponding exponent against its corresponding
value of the parameter b to obtain the spectrum. The exponent is positive in a wide range
of parameter b values, what proves the chaotic behavior of the system.

the methodology that we have used to demonstrate this claim, is generic, and can
be applied to all types of suppliers.

When the parameters are fixed in Eq. (2.10), and (2.11) as: D1 = 1, S1 = 1,
a = 10, b = 0.095, v = 2, Fc = 20 and M = 0.5, we get the following maps for the
demand, the supply and the price :

Dn+1(0.5) = 10− 0.095(
20

Dn

+ 2− 2Dn + (Dn)
2). (2.23)

Sn+1 =
2

√

1

Sn

(2(10− 0.095(
20

Sn

+ 2− 2Sn + S2
n)))× Sn. (2.24)

Pn+1 =

20
10−0.095(Pn)

+ 2− 2(10− 0.095(Pn)) + (10− 0.095(Pn))
2

1− 0.5
. (2.25)

Analyzing the time series produced by these maps we find a transient chaotic
behavior as shown in Fig. 2.10. The trajectories of the quantities demanded, the
quantity supplied and the price are completely chaotic until time step 69, where
suddenly they explode. By explode we mean the system starts to fluctuate without
control giving rise to quantities that are unscaled to the system or even infinitely
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Figure 2.6. The bifurcation diagram of the quantity demanded, Dn+1, against
the parameter M . We have divided the interval (0.6765, 0.8365) of the parameter M into
20, 000 values. Then, we have set each value of parameter M in Eq. (2.10) and we have
iterated the equation 3, 000 times until it settles down in the corresponding fixed points.
Finally, we have plotted those fixed points against the value of parameter M to obtain
this bifurcation diagram. Notice that when the gross margin is between 0 and 0.6765 the
system is in equilibrium. This is a huge range of gross margin values. In contrast, only a
small part of the gross margin interval causes the demand to behave chaotically. It is not
a surprise that this small part corresponds to high margins.

large. We are not familiar with the complicated concepts of negative infinite price
or infinite demand and supply. Therefore, to get a better economical understanding
of this situation we need to extend our assumptions about the model.

We will first, focus on the demand side of the system. The meaning of parameter
a in Eq. (2.1) is that when the good is freely available (its price is zero) in the market,
the maximum amount of goods that can be demanded is the value of the parameter a.
This is an accomplished fact, and it is the upper bound of the quantity of goods that
can be demanded in this market, assuming the system lies in the positive domain.
When we allowed the price to take negative values, the amount of goods demanded
was much higher from the value of the parameter a. In this scenario the supplier
must pay the consumer to create the demand. We will assume that the supplier does
not make strategic decisions thinking on long time horizons. So, when the price is
negative he just lose the incentives to supply. Equation (2.26) integrates this new
behavior into the model,

Dn+1 =

{

0 if (Pn+1 × b > a),
a− b× Pn+1 if (Pn+1 × b ≤ a),

(2.26)

Following the same reasoning as in the demand case, we extend our assumptions
on the supply side of the system. The second assumption of the model is that the
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Figure 2.7. Time series of the cautious and optimistic supplier in the first
30 periods of trade. At the bottom we have plotted the demand D as a solid red
line against the supply S as a dash blue line. Above in black, we have plotted the price
trajectory in this trade scenario. This figure shows the dynamic behavior of the quantities
supplied and demanded, and the price. The price is moving exactly as we would expect.
There are periods where the price does not change much, so we can say the market is
almost in equilibrium. And there are periods where the price changes dramatically, what
corresponds to the nonequilibrium state of the market.

supplier always tries to sell exactly the amount of goods he produced or bought. If
he expects zero or negative demand we can assume the supplier will not produce
anything for the next period of time. He will probably get out of the market in this
situation. The supplier computes the expected demand before going into production,
so if he sees that the expected demand is zero or negative he stops immediately the
process. We can describe mathematically this behavior using Eq. (2.27),

Sn+1 =

{ 1
1−M

· ( Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2) if Dn+1 > 0,

stop if Dn+1,≤ 0.
(2.27)

When the trajectories arrive to the final bifurcation the market stops to exist
immediately. The reader can see in Fig. 2.10, how after the final bifurcation the
price stays at some high level where the quantities supplied and demanded go to zero.
Note that if the demand crosses some critical value (small value), the system enters
into a loop of destruction, because of the growing cost of production of diminishing
quantities. We would expect similar dynamics in a situation of market collapse.

In real economies we find two interesting properties that can be also observed
in this model. The first one is the prediction problem, in which the collapse is
impossible to forecast beforehand. Secondly, the global complexity of the market
emerges from simple nonlinear interactions between the economical agents.
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Figure 2.8. The bifurcation diagram of the quantity demanded, Dn+1, against
the parameter b. We have divided the interval (0.064, 0.134) of the parameter b into
10, 000 values. Then, we have set each value of the parameter b in Eq. (2.16) and we have
iterated the equation 3, 000 times until it settles down in the corresponding fixed points.
Finally, we have plotted those fixed points against the value of the parameter b to obtain
this bifurcation diagram.

Figure 2.9. The Lyapunov exponent’s spectrum corresponding to the cautious
and optimistic supplier when parameter b is varied. We have taken the interval
(0.1, 0.134) of the parameter b and we have computed the Lyapunov exponent of 80, 000
points within this interval. Finally, we have plotted the corresponding exponent against
its corresponding value of parameter b to obtain the spectrum. The exponent is positive
in a wide range of parameter b values, what proves the chaotic behavior of the system.
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Figure 2.10. Time series of the quantities demanded and supplied before and
after bounding the system. The solid line represents the time series of the price, the
demand and the supply, simply by iterating the maps fixing the parameters as: D1 = 1,
a = 10, b = 0.095, v = 2, Fc = 20 and M = 0.5. The time series behaves chaotically
until time step 69 where a very big fluctuation occurs. The price becomes negative so
the quantities demanded and supplied increase dramatically. The dash line represents the
same system as before but now bounded. The time series can not be negative so that,
when some critical value is crossed the system simply goes to zero, as in the case of the
quantity demanded and supplied shown in the figure above.

2.7 Parametric analysis

We have modeled the demand as a monotonic function. Nevertheless, the slope of
the demand curve, parameter b, has a huge effect on the dynamics of the system
as we saw in the previous sections. To capture this idea we can compute the price
elasticity of demand (PED), which measures the quantity demanded sensitivity to
the price and it is given by the following ratio:

PED =
%change in Quantity demanded

%change in Price
. (2.28)

In general, goods which are elastic tend to have many substitutes, they must be
bought frequently and they assume to be traded in a very competitive market. In
this model we have assumed all above. We have done this by modeling the market as
an ordinary good market that obeys the demand law. When we vary the parameter b,
we change the price elasticity of demand. For example, when b = 0, we encounter a
perfectly elastic demand curve. One can imagine the demand curve as an horizontal
line. At this certain price the demand is infinite, so any amount of goods is quickly
consumed. In Fig. 2.11 we clearly see how the quantity supplied in blue is rapidly
sticking to the quantity demanded in red until all the demand is fulfilled. Due to
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Figure 2.11. Dynamics of supply when there is a perfectly elastic demand
curve. Time series of the first 20 periods of trade in the cautious and optimistic producer
case when b = 0. At the bottom we plotted the demand D in red against the supply S in
blue. Above we plotted the price trajectory of this trade scenario.

the excess demand the price is going up until it reaches the market equilibrium
price. This process is not instantaneous as can be checked. Even though we have
assumed a perfectly elastic demand, the supplier does not know it. It takes him
about 13 periods of trade to supply all the goods demanded by the market. This is
a good example of the adjustment dynamics that underlies the market equilibrium
assumption.

But the really remarkable result is that a very small change in the PED can
change completely the system dynamics. Figure 2.8 describes how the global dy-
namics of the system changes as we increase the value of the parameter b inside a
very small subset. When 0 < b < 0.134, we observe equilibrium points, cycles and
chaotic trajectories, but when b > 0.134, the system explodes. We have showed in
the previous Section that the economical meaning of this exploding dynamics is a
market collapse.

This behavior is not special only for b, when the value of M and a are varied,
we encounter the same dynamics, but we assume that the gross margin value is con-
trolled or partially controlled by the supplier. Therefore, theoretically the supplier
can avoid erratic trajectories or crash scenarios manipulating this variable. We have
focused on the price elasticity of demand because it cannot be influenced by the
supplier but it is directly related to the price. Exactly like in a real world, the small
supplier tries to adjust its production to the demand, and not the demand to the
production. Because trying to influence the demand is highly expensive and only
big companies with more resources can afford it.
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2.8 Conclusions

We have introduced the supply based on demand model studying two types of sup-
pliers, the naive supplier and the cautious and optimistic supplier. In both cases
we have found that the model is capable of reproducing a large variety of dynam-
ics such as equilibrium, limit cycles, chaos, and even catastrophic dynamics under
simple and reasonable economic assumptions. We have emphasized the idea that
the final bifurcation can be a good description of a market collapse by adding some
new assumptions to the model. We have shown the important role that the price
elasticity of demand plays on the global dynamics of the market. One important
result is that very small changes in the price elasticity of demand leads to very
different global dynamics assuming a monotonic demand function. We have also
demonstrated the huge influence of the gross margin, M , on the market dynamics.





Chapter 3

Preventing the crash with

partial control

“All stable processes, we shall predict. All

unstable processes, we shall control.”

-John Von Neumann

Market crashes are some of the most catastrophic events in modern societies.
The wounds left after the last financial crisis of 2008 are not healed yet, but they
serve us as a reminder that our economic system is very vulnerable to this type
of events. An extensive literature exists around the economic crashes phenomenon
and it is focused on three main lines of research. The first one analyzes the different
causes that lead to this type of crisis in the first place. The second line of research
focuses on predicting this kind of events by using different analytical techniques.
And the third line of research studies different ways in which the economic system
can be controlled to prevent the crash or to minimize its devastating effects. In
this chapter we follow the third line of research, and we apply successfully for the
first time in economic context the partial control method. This control technique
has been used to control many systems in physics, ecology and biology. But in
this chapter, we show that it is possible to prevent a crash controlling the market,
without any central control, applying much smaller control than the noise that exists
in the market.

3.1 Introduction

Economic dynamics constitutes an important research field in economics. Many
models have been developed to explain the motion of economic variables such as
the price, the demand or the GDP, giving rise to different dynamical behaviors, like
periodic orbits, strange attractors and equilibrium states. But, sometimes, extreme
events lead to a market collapse. Economists agree that market collapses are charac-

29
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Figure 3.1. Cobweb plots of the price map. The blue line represents the price
map, the diagonal red dashed line represents Pn+1 = Pn. The initial condition in both
panels is P (1) = 28.8. When no disturbances nor control are present in the system,
after a few generations the trajectory escapes from the chaotic saddle (region K) towards
minus infinity (black dotted line) as shown in panel (a). When a disturbance, ξ0 = 10.0
is present in the system the trajectory escapes from the chaotic saddle even faster as
shown in panel (b). The green lines represent the amount of disturbance introduced into
the system at each time step. Notice that each line has a different length because it is
defined by a uniform distribution function bounded by ξ0 = 10.0. The black thick line
over the horizontal represent the region K which is the region where we want to sustain
the dynamics.

terized by an abrupt fluctuation or a chain of fluctuations that decreases the value
of some economical variable dramatically.

In this chapter, we consider a particular dynamical behavior called transient
chaos. This phenomenon can be found in many systems such as a thermal pulse
combustor [62] a periodically driven CO2 laser [63], a voltage collapse [64] or a
three-species food chain ecological model [65]. In economics, transient chaos can be
found in many systems as well, such as speculative markets models [66, 67, 68], a
business cycle model [69] and a duopoly model [70]. The topological structure behind
this behavior is the presence of a chaotic saddle in the phase space. This topological
object arises when a chaotic attractor collides with its own basin boundary producing
a transient chaotic behavior of trajectories before eventually escaping towards an
external attractor [71] as shown in panel (a) in Fig. 3.1.

A collapsing market behaves similarly to a transient chaotic system, where the
fluctuations of the price, the demand or the supply are erratic but bounded, until
they reach to some critical value after which the whole system collapses as shown
in Fig. 3.2. We have chosen the supply based on demand (SBOD) model to study
transient chaos in the economy [72]. This model is based on the classic cobweb



3.1. Introduction 31

model [52, 53], with the difference that the firm tries to adjust the production in
accordance with the expected demand, instead of the expected price. In some way
this model is an iterative deterministic version of the Newsvendor problem [73]. The
main differences between these two models are that in the SBOD model, we assume
a deterministic demand function that depends on the selling price instead of some
random demand function. Additionally, we assume that the process of stocking is
an iterative process. The interest of this model relies on the simple explanation
of how small firms prepare their inventory for the coming sales season computing
the expected demand using a simple model and some past sales data. This model
produces the following dynamics: equilibria points, periodic orbits and chaotic be-
havior, which for some parameter values becomes transient. In this situation, the
trajectories of the price, the demand or the supply are chaotic some time until they
eventually collapse. In the context of our model, we mean by market collapse a
market state characterized by high prices in which the firm loses the incentives to
supply due to the very low or even zero expected demand. When the supply and de-
mand vanish the trade becomes impossible and the market collapses. This behavior
is shown in Fig. 3.2.

When the system falls in the market collapse state, the question that naturally
arises is the possibility of avoiding it, maintaining the system in the transient regime.
Three problems arise when trying to control any economical system. The first one
is the prediction problem. How do we know beforehand that the market is close to a
collapse? A lot of research has been done to answer this question. A few interesting
works focused on the stock markets can be found in [26, 74, 75, 76, 77, 78]. The
second one is where to apply the control. In many models the control is applied on
some parameter that is not trackable or can only be influenced theoretically. The
third problem is that all real economies are affected by certain external disturbances,
producing large deviations in a nonlinear deterministic system as shown in panel (b)
in Fig. 3.1. In fact, many control methods that are effective without disturbances,
can fail when the disturbances are present [79]. We have chosen this specific model
because it has some parameters that can be easily controlled by the firm. For
example, the selling price of the product can be easily adjusted by the firm, changing
the firm’s gross margin at each time step.

In recent years, a novel control method called partial control has appeared in
the literature [80, 81]. This control method is applied in situations where transient
chaos is present and the system is subjected to external disturbances as shown in
Fig. 3.1. The main results of this chapter are that the firm can successfully control
the trajectories of the price by only changing the gross margin at each time step
preventing a market collapse. It can also rationalize the quantity supplied with the
same purpose. Moreover, we show that firms with market power can influence the
demand in the retailer or wholesaler markets, generating market stability in the long
run. Furthermore, we prove that the amount of control needed in those cases is even
smaller than the disturbance.

The structure of the chapter is as follows. Section 3.2 is devoted to the description
of the supply based on demand model. The main ideas of the partial control method
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Figure 3.2. Time series of the quantity demanded, the quantity supplied and
the price. Two versions of the SBOD model are represented in each panel on this plot, the
unbounded version as dashed line versus the bounded version as solid line [72]. Although
these two versions are qualitatively identical, so we can not find any differences in the first
69 iterations, their visual representation after time step 69, where the market collapses, is
very different. In the unbounded version (dashed line) a big fluctuation occurs after time
step 69, while in the bounded version (solid line) the line stays unchanged. In the context
of this chapter, we mean by market collapse a situation where after some critical price
value is crossed, the quantity demanded goes to zero. Owing to the absence of demand the
firm losses the incentives to produce and the market disappear. We are use to associate a
market crash with the bounded version kind of plots, in the following sections we will use
it for our visualizations.

are described in Section 3.3. In Section 3.4 and 3.5 the safe sets are computed
for the price and the quantity demanded in the naive supplier case, in order to
produce controlled trajectories. In Section 3.6, we have computed the safe sets
of the quantity supplied in the cautious and optimistic supplier case, generating
controlled trajectories. Finally, some conclusions are drawn in Section 3.7.

3.2 The SBOD model

We use the supply based on demand model proposed by Levi et al [72]. This model
describes the price-quantity dynamics in a market where the consumer obeys the
demand law and the firm prices its products by only adding its gross margin to a
quadratic average total cost function. The main assumptions done in this model are
that the firm is a price maker, implying that it is the only one who sets and adjusts
the price in light of circumstances, while its main goals are to sell all the produced
products and to satisfy the overall demand. The general structure of the model is
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as follows,

Dn+1 = a− bPn+1, (3.1)

Sn+1 = DExp
n+1, (3.2)

Pn+1 =
ATC

1−M
. (3.3)

The quantities demanded and supplied, Dn+1, and Sn+1, and the price, Pn+1 are
assumed to be discrete functions of time. The parameters a and b are positive con-
stants a, b ≥ 0. The firm expected demand functional is DExp

n+1, and M is the gross
margin added by the firm to obtain profits, where 0 ≤ M < 1. The average total
cost functional ATC of the firm will adopt a U-shape, when diminishing returns
are present in the production process and the firm has variable costs. Applying this
idea, when the firm increases the amount of production the average total cost of
every unit of production decreases until it reaches some critical point from which
every additional produced product will increase the unit average total cost. In the
decreasing side of the curve, the firm enjoys of scale economies, that is, decreasing
returns to scale. After crossing this point every additional product produced incre-
ments the average total cost of the firm which implies a diminishing returns to scale
[82]. The U-shape of the ATC function as shown in Fig. 3.3 captures this idea. In
our case, the quantity of production is the same as the quantity of supply, Sn+1, or
the expected demand estimated by the firm, as shown in Eq. (3.2) and (3.4),

ATC =
Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2. (3.4)

We assume that v and Fc, are positive constants. In order to obtain profits, the
supplier adds over the average total cost of the product some quantity using the
gross margin operator shown in Eq. (3.3). When M increases, the ATC function
moves upwards, what leads to higher selling prices and when it decreases the ATC
moves downwards what leads to a cheaper products as shown in Fig. 3.3. We assume
that the selling price is in fact the market price.

The firm makes the decision of what quantity to supply, Sn+1, before it knows
the reaction of the market to the price it fixes. The firm makes this decision based
on the quantity it expects the market will demand, DExp

n+1, in the future. The firm
does not know anything about the demand function. The only available information
it has, is the quantity demanded at the price in which its products were sold in the
last sales season. It is important to notice that the quantity demanded from the
firm perspective is the sum of the total units sold and the total units out of stock
(stock rupture). The firm quantifies its success after each sales season using a very
simple model - it divides the quantity demanded by the quantity supplied at time
n as shown in Eq. (3.5). We called it the signal of success S,

S =
Dn

Sn

. (3.5)
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Figure 3.3. The price-quantity function. We have used the following function
P = 1

1−M
· (FcQ + v − vQ + Q2), to relate the price of the product with the quantity

supplied, where P is the selling price of the product (cost + profits) and Q is the quantity
of production. The average fix cost function is Fc

Sn+1
where Fc is a positive constant and

the average variable cost function is v − vSn+1 + (Sn+1)
2, where v is positive constant.

The parameters are fixed as: Fc = 10 and v = 4. The supply curves S as solid line, S1
as dot line and S2 as dash-dot line, correspond to the gross margin M = 0.5, M = 0.8,
M = 0.2 respectively. When the firm increases the gross margin M , the price increases
and when the firm lows the gross margin M the price decreases.

According to the signal of success, the firm makes the decision of how many
products to produce and supply in the next sales season. We assume an ordinary
goods market in which, when the price increases, the consumption decreases and
vice versa. For simplicity, we assume a linear demand curve with negative slope as
shown in Eq. (3.1).

The model describes just one firm, and it does not take into account its financial
constraints. Furthermore, the firm does not try to maximize its profits nor accu-
mulate stock. The model works as follows. In the first step the firm supplies a
certain amount of products to the market to get some feeling about the demand
(seed). Then, it observes the amount of products that were demanded at this spe-
cific selling price. According to this quantity the firm decides how many products
to produce for the next sales season using a simple model that quantifies the firm
success. We called it the signal of success, and is a simple ratio between the quan-
tities demanded and the quantity supplied at time n. The firm uses this signal to
estimate the expected demand in the next period. The second step is the pricing
process. The firm uses its ATC function to compute the products average total
cost. After obtaining the cost per unit, it adds profits over the cost using the gross
margin operator. Finally, it introduces the products with their new price into the



3.3. The partial control method 35

market, it waits some time until it sees how many products have been sold and then
it repeats all the process again at every time step. This model aims to explore the
global dynamics of the market as a result of this simple behavior of the firm.

In [72] the authors focused only on two supplier types, the naive supplier and
the cautious and optimistic supplier. In this chapter, we will show that the partial
control method can be successfully used in both cases.

3.3 The partial control method

The partial control method has been successfully applied to several paradigmatic
dynamical systems, such as the Hénon map, the tent map [83], the time-2π map
associated to the Duffing oscillator [84, 85, 86] and the 3D Lorenz map [87]. In
particular, when we consider the dynamics after a boundary crisis, the system pos-
sesses a transient chaotic behavior in a bounded region in phase space, previous to
a situation in which the trajectory escapes towards an attractor outside this region.
When the dynamics is affected by noise, somehow it might help the trajectory to
escape from the region earlier as shown in Fig. 3.1. The goal of the partial control
is to apply a control in order to avoid the escape of the trajectory from this region
K, and what is surprising is that the amount of control we need is smaller than the
external disturbance acting on the dynamical system. To implement this method,
we need a map and to define a region K in phase space, where we want to sus-
tain the dynamics. The complete dynamics in presence of an external disturbance
ξn and after the application of a control un is described by the iterative equation
kn+1 = f(kn) + ξn + un. The only assumption we consider on the disturbances and
control is to be bounded, that is, |ξn| ≤ ξ0 and |un| ≤ u0, and when this happens we
say that we have admissible disturbances and controls. A point k ∈ K is considered
safe, if the next iteration of this point f(k) under the action of the map and affected
by the external disturbance can be put again on K once a control |un| ≤ u0 < ξ0 is
applied. We can say that under the previous considerations, a safe point is partially
controlled and consequently remains in K with an applied control smaller than the
disturbance. The set of all safe points in K is called the safe set. There is an algo-
rithm called Sculpting Algorithm [85, 86], that computes automatically (if it exists)
the safe set given a map, a region K in phase space and admissible disturbances and
controls. Our goal here is to compute the safe set for the supply based on demand
model for the naive case described in the previous chapter. The Sculpting Algorithm
works in such a way that it rejects, in the first iteration, the points kn for which
kn+1 = f(kn) + ξn need a control ξn < un to get back to the region K. The points
that survive are a subset of K, and the process is repeated until it finally converges.
As a result, we obtain the safe set containing all safe points, which is formed by
those points that are controlled with admissible disturbances and controls.



36 Chapter 3. Preventing the crash with partial control

3.4 Controlling the price

Here, we will demonstrate how the naive supplier can prevent a market collapse
by only applying the partial control strategy on the selling price. From the naive
supplier model shown in Eqs. (3.6-3.8), we derive the map for the price in Eq. (3.9)
to which we will apply the partial control method,

Dn+1 = a− bPn+1, (3.6)

Sn+1 = Dn, (3.7)

Pn+1 =
1

1−M
· ( Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2). (3.8)

Our goal is to find the safe sets for the following map of the price,

Pn+1 =
1

1−M
·
( Fc

a− bPn

+ v − v(a− bPn) + (a− bPn)
2
)

. (3.9)

We have chosen the parameter values as follow, M = 0.5, Fc = 20, v = 2,
a = 10 and b = 0.095. These parameter values correspond to the region after the
boundary crisis, since we are interested in the transient chaotic regime as we saw
in the previous section. In order to apply the Sculpting Algorithm to find the safe
sets, we need to define a region K in the phase space where the map is acting and
where we want the dynamics to stay in. Then, we can compute an admissible choice
of disturbances and controls.

We know that the iterates of any initial point for which Pn > P ∗, follow chaotic
dynamics until they finally asymptotes to infinity when they cross the critical value
Pn < P ∗, which actually implies uncontrolled growing price fluctuations. We have
defined the initial region K in the phase space where we want to maintain the
dynamics of the system as follows. There is a critical price value P ∗ ≃ 48.838, in
which if the supplier prices the product above it, the market will collapse in some
close future. The upper bound of the region K is subject to the production function
of the supplier, and the lower bound of the region K is assumed to be zero. The
critical price value P ∗ ≃ 48.838 must be inside the region K to ensure the success
of the control strategy. We have chosen for our simulations the initial region K to
be the interval Pn ∈ [0, 103] see Fig. 3.4. Note, that region K contains the chaotic
saddle, which is the responsible for the existence of the chaotic transient.

Furthermore, we have chosen a uniform noise distribution bounded by ξ0, where
a disturbance |ξn| ≤ ξ0 is introduced each time step. The reader can think of the
disturbance as any unpredictable positive or negative change in the price, that was
not taken into account in the pricing process. Oil prices may be a good example
for that. Consider a situation where the price of oil suddenly goes up, incrementing
the transportation costs. This random fluctuation will influence immediately on
the selling price. When the firm did not have time to change its margin or the
variable costs considering this unpredictable fluctuation, it can influence the price
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Figure 3.4. The phase space of the price map. This figure shows the phase space
of the price map (blue line) Pn+1 = f(Pn) and the region K (black thick line over the
horizontal) where we want to sustain the dynamics. Using the Sculpting algorithm we
have computed the safe sets that correspond to an admissible choice of disturbances and
controls. Then, we have plotted them as turquoise rectangles over the region K.

applying some control. The control term in contrast is not random at all. The
firm applies it with the only purpose of controlling the price trajectory avoiding the
market collapse. We want to remind that the firm controls the price without the
intend of maximizing profits, he uses this control method only with the objective of
maintaining the “business alive”. The firm makes discounts when the price is high
or inflate the price when the price is low, in order to control the long term trajectory
of the price. Those ups and downs in the price affect only the gross margin of the
supplier. The new margin is easy to compute including the control term.

Now, we can use the Sculpting Algorithm [85] in order to find the safe sets. The
computation of the safe set depends on the chosen values of ξ0 and u0 and our
observations indicate that for a given ξ0, we may obtain different safe sets which
correspond to different values of u0. The lower the u0 bound the smaller the final
safe set is. Nevertheless, there is a critical value of u0, below which no safe set exists.
We have chosen for our numerical simulations ξ0 = 10 and u0 = 6.82 , where u0

is very close to the minimum value for which safe sets exists. When the trajectory
crosses the critical value P ∗, we evaluate the value of f(Pn) + ξn. If the point is
inside a safe set we do not apply the control, and if it is outside, we relocate it inside
the nearest safe point, resulting the new safe point Pn+1 = f(Pn) + ξn + un. The
final result of this computation gives rise the safe sets as shown in Fig. 3.4.
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Figure 3.5. Controlled time series of price. Black line: time series of the price
without control exhibiting an escape towards some high price level in which no trade can
be done. Blue dot line: controlled time series of the price where the market collapse is
avoided. This time series corresponds to the first 200 iterations of the system.

The time series displayed in Fig. 3.5 shows clearly how the firm prevents the
price in which the trade becomes impossible using the partial control method. The
reader can see the controlled trajectory in blue versus the uncontrolled trajectory
in black. Furthermore, the amount of control needed at each time step to maintain
the dynamics of price in the transient regime is much smaller than the disturbances,
as shown in Fig. 3.6.

3.5 Controlling the quantity demanded

The demand is much more difficult to control than the price, because it is a variable
that depends on other preferences and actions and it is an unaccessible variable to
the agent who tries to control it. Moreover, driving the demand is a very expensive
task, and it might be done only by the most powerful agents in the economy, such as,
large market share companies or the government. We can apply the partial control
method in two different conceptual frameworks of our model, the retail market
and the wholesale market. In the retail market the firm can influence the demand
directly, using a massive advertising and promotional campaigns or even buy its
own goods at the market price when there is an excess supply. When a powerful
firm is sitting on the demand side of the model representing the entire demand for a
much smaller firm, we are modeling a wholesale market situation. Intuitively, these
two firms depend completely on each other. The small firm has only one client -
the powerful firm. In the same time the powerful firm has only one supplier - the
small firm. The powerful firm can force the small firm to match its production with
its own needs, but it must be very careful in not stressing the small firm too much
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Figure 3.6. The disturbance and control applied in absolute values at each
time step. Note that the control applied in order to sustain the trajectory in the transient
regime is always smaller than the disturbance. The reader can check that every time step
the amount of control (blue bar) is much smaller than the amount of the disturbance (red
bar), where the average control disturbance ratio is 0.66.

due to the catastrophic result of that action. In this context, the collapse of both
firms is a sufficient motive of controlling the demand in the system. Technically
speaking, it is simple to apply the partial control method to solve these problems
in the context of our model and it can be done in a very efficient way. As in the
previous section, we will begin with finding the safe sets. We derived the map for
the demand in Eq. (3.10) from the naive supplier model presented in Eqs. (3.6-3.8).
We have followed the same strategy as before to compute the region K. The firm
estimates the potential amount of goods that can be consumed in the market Dmax.
As we can see in Fig. 3.7, almost every initial demand D0 sooner or later is repelled
to minus infinity. Thus, no matter what quantity is chosen by the firm for Dmax,
the system will lay on a transient chaos regime. We have chosen for the numerical
simulations the initial region K to be the interval Dn ∈ [0.4, 8] as shown in panel (c)
in Fig. 3.7,

Dn+1 = a− b
( 1

1−M
·
( Fc

Dn

+ v − vDn + (Dn)
2
)

)

. (3.10)

We have introduced a noise term to the system exactly as in the previous section.
This disturbance represents an unexpected demand. For example, an unpredictable
new trend or an unpredictable seasonal effect. If the firm sees that a positive control
is needed, it might intervene directly in the market, buying the indispensable amount
of products that ensure the demand to be met. Massive promotional and advertising
campaigns can be used to achieve the same goal in an indirect manner. It is clear
that, those two possibilities are very expensive, hence, just powerful firms can afford
such expensive interventions in the economy. As in the previous section, there is a
critical value of u0, below which no safe set exists. We have chosen for our numerical
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Figure 3.7. Cobweb plots of the demand uncontrolled and controlled orbit.
The blue line represents the demand map, the diagonal red dash line representsDn+1 = Dn.
The initial condition in all panels is D(1) = 0.932. When no disturbances nor control are
present in the system, after a few time steps the trajectory escapes from the chaotic saddle
towards minus infinity (black dotted line) as shown in panel (a). When a disturbance,
ξ0 = 1.0 is present in the system the trajectory escapes from the chaotic saddle even faster
as shown in panel (b). The green lines represent the amount of disturbance introduced
into the system at each time step. Notice that each line has a different length because
it is defined by a uniform distribution function bounded by ξ0 = 1.0. Panel (c) shows
the region K (black thick line over the horizontal) which is the region where we want to
sustain the dynamics. Using the Sculpting Algorithm we have found the safe sets and we
have plotted them as turquoise rectangles over the region K. A control term bounded by
u0 = 0.66 is applied each time step (cyan lines) preventing the collapse.

simulation ξ0 = 1.0 and u0 = 0.66, where u0 is very close to the minimum value for
which safe sets exists. When the trajectory is out of the safe set, we evaluate the
value of f(Dn) + ξn. If the point is inside a safe set, we do not apply the control,
and if it is outside, we relocate it inside the nearest safe point, resulting the new safe
point Dn+1 = f(Dn) + ξn + un. The final result of the application of the Sculpting
Algorithm is shown in Fig. 3.7.

Although in practice there are plenty of difficulties to estimate the demand in
the market, the reader can check in the time series in Fig. 3.8 how a powerful
firm can actually prevent the demand of crossing the critical point that triggers
the disintegration of demand and subsequently the collapse by using the partial
control method. Furthermore, the amount of control needed at each time step to
maintain the dynamics of demand in the transient regime is much smaller than the
disturbances as shown in Fig. 3.9.

As we mention in the previous sections, the quantity supplied in the time step
n + 1 is simply the quantity demanded at time step n. Thinking about this, the
supplier may apply the partial control method directly on the quantity supplied.

3.6 Controlling the quantity supplied

When the future demand is uncertain, controlling the quantity of supply is a very
complex task. In our model we assume a deterministic process where after computing
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Figure 3.8. Controlled time series of the quantity demanded. Red line: time
series of the quantity demanded without control exhibiting a escape towards zero, what
implies an imminent market collapse. Blue dot line: controlled time series of the quantity
demanded where the market collapse is avoided. This time series corresponds to 200
iterations of the system.

the expected demand the supplier knows exactly the quantity of supply. In this
setup, unexpected supply fluctuations are impossible. However, there is a special
case where these fluctuations can be considered feasible. In some industrial processes
the supplier can only estimate the average quantity of production and not the exact
amount. In this context, the partial control method can be used to control the
quantity supplied and consequently the market, assuming that the firm always have
some extra stock to stream into the market when positive control is needed. To
demonstrate the efficiency of the partial control method in complex scenarios where
the firm behavior is more sophisticated, we have chosen the cautious and optimistic
supplier for this section. The model that represent this type of supplier is shown in
Eqs. (3.11-3.13),

Dn+1 = a− bPn+1, (3.11)

Sn+1 =

√

(
Dn

Sn

) · Sn, (3.12)

Pn+1 =
1

1−M
·
( Fc

Sn+1
+ v − vSn+1 + (Sn+1)

2
)

. (3.13)

We are interested in the map for the quantity supplied shown in Eq. (3.14)
which is a simplification of Eqs. (3.11-3.13). The region K is defined by the interval
between zero and the maximum amount of goods that can be produced using the
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Figure 3.9. The disturbance and control applied in absolute values at each
time step. Note that the control applied in order to sustain the trajectory in the transient
regime is always smaller than the disturbance. The reader can check that every time step
the amount of control (blue bar) is much smaller than the amount of disturbance (red
bar), where the average control disturbance ratio is 0.66 again.

fix capital Smax. As we can see in Fig. 3.10, almost every initial supply S0 diverges
to minus infinity. Hence, independently to the quantity supplied that is chosen by
the firm for Smax, the system will almost always lay on a transient chaos regime.
We have chosen for our numerical simulations the initial region K to be the interval
Sn ∈ [0.15, 11.2] as shown in Fig. 3.10.
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√
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)

× Sn. (3.14)

Again, we have introduced a uniform noise distribution bounded by ξ0. This
disturbance can be positive when the quantity produced exceeds the expected pro-
duction or it can be negative when the quantity produced is below the expected
production. When positive control is needed the firm uses its extra stock to fill the
shortfall. When negative control is needed the supplier destroys or simply takes out
from the market the exceed quantity. As in the previous sections there is a critical
value of u0, below which no safe set exists. We have chosen for our numerical simu-
lation ξ0 = 2.0 and u0 = 0.33, where u0 is very close to the minimum value for which
a safe sets exists. We evaluate the value of f(Sn) + ξn. If the point is inside a safe
set, we do not apply the control. If it is outside, we relocate it inside the nearest
safe point, resulting the new safe point Sn+1 = f(Sn) + ξn + un. The final result of
applying the Sculpting Algorithm is shown in Fig. 3.10.

The efficiency of the partial control method is shown in Fig. 3.11. We want to
emphasize another powerful property that can be exploited using the partial control
method. The red line in Fig. 3.11, corresponds to the time series of the quantity
supplied without control. Originally, the firm can produce a limited amount of
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Figure 3.10. The phase space of the supply map. This figure shows the phase
space of the supply map (blue line) and the intersect Sn+1 = Sn (red dash line). The
region K (black thick line over the horizontal) is the region where we want to sustain the
dynamics. Using the Sculpting Algorithm we have found the safe sets and we have plotted
them as turquoise rectangles over the region K.

Figure 3.11. Controlled time series of the quantity supplied. Red line: time series
of the quantity supplied without control exhibiting a escape towards zero, what implies an
imminent market collapse. Blue dot line: controlled time series of the quantity supplied
where the market collapse is avoided. This time series corresponds to 200 iterations of the
system.
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Figure 3.12. The disturbance and control applied in absolute values at each
time step. Note that the control applied in order to sustain the trajectory in the transient
regime is always smaller than the disturbance. The control disturbance ratio is much
smaller than in the last two sections and is about 0.165.

products, in this case is around 8 products each time step. We have extended this
natural barrier to 11.2 by defining a region K larger then the natural bounds of the
system. The controlled trajectory is higher than the uncontrolled trajectory due to
the assumption we made earlier, letting the firm to introduce positive controls using
its extra stock. This interesting property [88] can be exploited by the firm. Assuming
that the firm has no limited stock, it can supply all of it, without collapsing the
market. Furthermore, the amount of control needed at each time step to maintain
the dynamics of supply in the transient regime is extremely much smaller than the
disturbances as shown in Fig. 3.12.

3.7 Conclusions

Avoiding market collapses might be a big challenge for economists. The difficulties
in predicting such phenomenon due to the nonlinear interaction among the agents
at the micro level, makes the engineering of a control strategy at the macro level
a very hard task. This can be worst when unpredictable external disturbances are
present in the system. In this chapter, we have shown that this macro state of
collapse can be prevented acting on the macro level of the market when a powerful
firm had influenced the quantity demanded using the partial control method. A firm
with high market power might influence the demand by intervening directly in the
market, buying the excess supply, or just by investing in advertising to encourage
the consumption in the market. But it is more remarkable how the agents at the
micro level have prevented the macro state of collapse by changing their behaviors
using the partial control strategy. We have used the supply based on demand model
to show how the firm can control the price trajectory, avoiding price explosion, only
by changing the selling price of the product at every time step in accordance to
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the circumstances. We have also shown that the firm can apply the partial control
strategy on the quantity supplied in some special cases. Furthermore, while it is
doing that, it is able to extend the natural barriers of the system supplying more
goods than before without being detrimental to the market. We have used the partial
control method, that has the advantage of using a control to sustain the dynamics
in the transient regime much smaller than the external disturbances introduced in
the model. The pursuit for efficient control strategies to help humans dominate
the economy has always been there. The wounds left by the last global crisis are a
painful reminder of why we need to insist in this search. Novel control methods like
the partial control method bring us closer to realize this dream.





Chapter 4

When repetition is the

best strategy

“Everything existing in the universe is the fruit

of chance and of necessity”

-Democritus

In our increasingly interconnected societies people must make very complex de-
cisions in a daily manner, sometimes they must consider many correlated factors
at the same time, to solve just one simple problem. Traditionally, the neoclassical
economists refer to those people as Homo economicus, in other words, rational peo-
ple with endless computing power who maximize their utility function using all the
information present in the system. These Homo economicus agents are more similar
to gods than to ordinary people. But this simplistic view has changed during the
last half century thanks to the important contributions of some social scientists who
focus on how ordinary people really think. These studies have changed forever our
understanding on how people make decisions based on probabilities or how they per-
ceive risk. The bounded rationality paradigm is very useful when designing social
mechanisms, but it is very challenging to integrate it into economic models. Com-
puter programs can help us to solve this problem, in particular agent based models.
In this chapter using an agent based model, we study a complex decision problem
where many agents need to simultaneously choose between three pools that provide
some payoff depending on a stochastic function and the attendance to the pools.

4.1 Introduction

Many times, in our life, we need to make very complicated decisions that are based
on a multitude of factors. For example: change our current safe job, for the chance
to get hired by some better company that offer us a higher salary. In which economic
asset (stock, cryptocurrency etc.) to invest. In a safe asset that has a low yield, or
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in a risky asset with high expected yield. What career to choose. To go or not to
a public place depending on the expected attendance, to participate or not in a bet
and many more. To make such decisions and develop a strategy of action, always,
consciously or unconsciously, we construct one or several mental models using the
data we have at our disposal. Sometimes, we look for a pattern in the data and
sometimes we compute the mean or the standard deviation of an important feature
in the data. Sometimes, we repeat the same decision we have made in the past or
we make our decision completely at random, tossing a coin. The fact that we are
not rational creatures [89, 25], and by design we are not good at computing and
evaluating probabilities [24, 90], opens the door to an infinite variety of models and
strategies similar to the above mentioned. Contrary to our intuition, the presence of
a wide variety of strategies in a system do not necessary mean that the system will
fall into a chaotic regime. The Irish economist Brian Arthur, in his famous paper
on the El Farol Bar problem [21, 91], showed that when many strategies are present
in a system, some of the global dynamics will converge towards the average optimal
or desired solution of the system. This work has three goals: 1. To build a reliable
ABM using the Netlogo software [92] and to simulate the proposed system [93]. 2.
To compare the success of different strategies and families of strategies in a variety
of situations. 3. To study the global dynamics of the system.

The structure of the chapter is as follows. Section 4.2 is devoted to the description
of the problem and to define some of the key quantities in the system. The agent
based model that we have developed to explore this system is described in Section
4.3. In Section 4.4, we explain in depth each one of the strategies that we have
integrated in the model. Section 4.5 is dedicated to explain the methodology of the
experiments that we have carried out. In Section 4.6, we show the results obtained
from the different experiments. Finally, some conclusions are drawn in Section 4.7.

4.2 The problem and some definitions

Before we start, we want to define some quantities of interest in our model. The
payoff P of a pool is the total amount paid by the pool at each time step. The reward
R is the proportional part of the payoff that corresponds to each agent that was in
that specific pool at the time of paying the payoff, that is: R = (P/N), where N
represents the number of agents that inhabit the pool. The parameter τ represents
the agent’s cost of switching between two different pools and the balance B is the
total amount of rewards minus the total amount of costs, that is, B =

∑

(R)−
∑

(τ).
In this work we assume that the goal of the agent is to maximize his balance B. To
achieve this goal, the agent needs to attend the pool that offers the highest expected
reward R at each time step, assuming in the case of moving to another pool that,
R ≥ τ .

The reward R will always depend on two factors: 1. N , since the payoff is
divided equally among all the agents that inhabit the pool at each time step. 2.
The probability that the pool will pay its payoff P . The stable pool, at each time
step, will pay a payoff that is equal to the number of agents that inhabit this pool
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P = 1$ × N , that is equal to 1$ reward with a probability of 100%. This dynamic
rewarding scheme reduces the risk associated with this pool to zero. In contrast to
the stable pool, the payoffs paid by the low pool and high pool depend on some
stochastic functions. The low pool pays 40$ with a probability of 50% at each time
step and the high pool pays 80$ with a probability of 25% at each time step. Agents
can decide what to do by only looking at the current state of the population and the
current state of payoffs paid by the pools. In some cases the agents also have short
term memory in which they can find patterns in the historical data. Considering
these two factors, when the agent wants to attend the low pool or the high pool it
always faces a prediction or estimation problem. The agent must predict or estimate
if the pool will actually pay its payoff in the next time step, since we saw that in
the high and low pools there is no absolute certainty that any payoff will be paid in
the future. In addition, the agent must predict or estimate the value of N in that
same pool in the next iteration, in order to compute the expected reward R.

The relationship between N and R in each pool can be written as follows: for
the high pool: R = 0.25× 80×N . For the low pool: R = 0.5× 40×N and for the
stable pool: R = (N ×1)/N . When the expected N in the low or in the high pool is
equal or bigger than 20, there are no incentives for taking the risk in attending these
pools, since the agent can get the same reward without any risk if it goes to the
stable pool as shown in Fig. 4.1. We will show that when many agents are present
in the system and they own a wide variety of strategies, N in the high and the low
pools will approach to this attractor (N = 20), as predicted by Brian Arthur [21].

4.3 The model and observables

We have built a Netlogo model to simulate this system. The model consists of
two types of agents: the Investors and the Pools. The investors attend the pools
depending on their strategies at each time step. We have created 13 strategies and
the user can set them up manually turning on the Manual switch or automatically
using the Mix tab in the Strategies chooser. All investors keep track of their own R,
B, the pool they attended and τ . The pools keep track of their own corresponding
P , R and N . We were interested in the following observables: P , the average R of
each strategy and the average R of each group of strategies, the average B of each
strategy and the average B of each group of strategies and N in each pool as shown
in Fig. 4.2.

4.4 Strategies

Now we can define what a strategy is. A strategy is the action taken by the agent
with the goal of maximizing its balance at each time step. This action is determined
by one or several models that were fitted to some data, with the goal of predicting
or estimating one or both of the above mentioned factors successfully.

We have decided to distinguish between four families of strategies: Random
strategies - where the agent attends the pools randomly. Näıve strategies - where
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Figure 4.1. Average reward in each pool depending on its inhabitants. We have
run the model 100 times for each N . We have incremented N by 1 after 100 runs. Each
run we have computed the average reward for each pool and we have plotted this average
(colored points) over the black lines that represent the close solutions for the functions
described above, when 0 < N < 50. We have marked N in the low and high pools (green
point) when the average reward was equal to 1.

the agent repeats the same actions of previous iterations. Aggregated strategies -
these strategies use aggregated metrics such as maxima, minima, means, modes
or standard deviation of a variety of features in the data. Finally, Pattern based
strategies - which are based on probabilities and patterns in the data. Next, we will
explain some of the simple strategies we have developed for this ABM. To simplify,
we have grouped the strategies in their corresponding family.

4.4.1 The random strategies family

1. Random strategy - at each time step, the agent randomly attends one of the
pools (33.3% - stable, 33.3% - low and 33.3% - high). The agent can switch to
some of the other pools, only if it has enough balance to pay the cost of τ . This
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Figure 4.2. The interface of the Netlogo model. At each time step, the pink
persons (Investors) move into one of the Pools (houses), depending on their strategies.
This model can be set up manually letting the user experiment with any combination of
agents and strategies, and it can be also set up automatically where strategies are asigned
randomly, keeping the groups of investors with the same strategy proportional to other
groups.

strategy has a very important role in the comparison between strategies since
it allows us to compare the effectiveness of any strategy against the random
case.

2. Random high low - exactly like the previous one with the difference that the
agent randomly attends only the high or the low pool.

4.4.2 The näıve strategies family

1. Always stable pool - the agent always goes to the stable pool.

2. Always low pool - the agent always goes to the low pool.

3. Always high pool - the agent always goes to the high pool.

4. High low - In this strategy the agent attends only the high or the low pool.
At the first time step the agent randomly attends to the high or the low pool.
When it has acomulated enough balance, it starts to switch each time step
between its first choice and the other pool.

4.4.3 The aggregated strategies family

1. Minority in the previous round - at the first time step, the agent randomly
attends one of the pools. In consecutive time steps the agent goes to the least
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populated pool of the previous iteration. If its movement imply switching to
some of the other pools, the agent can do so only when it has enough balance.
If there are two pools with the same minimum N , the agent chooses randomly
between those pools.

2. Maximum reward in the previous round - at the first time step, the agent
randomly attends one of the pools. In consecutive time steps the agent goes
to the highest rewarded pool of the previous round. If its movement imply
switching to some of the other pools, the agent can do so only when it has
enough balance. If there are two pools with the same maximum R, the agent
chooses randomly between those pools.

3. Minimum reward in the previous round - at the first time step, the agent
randomly attends one of the pools. In consecutive time steps the agent goes
to the lowest rewarded pool of the previous iteration hoping to get high reward
in the next round. If its movement imply switching to some of the other pools,
it can do so only when he has enough balance. If there are two pools with the
same minimum R, the agent chooses randomly between those pools.

4. Maximum average payoff in the previous round - at the first time step, the
agent randomly attends one of the pools. In consecutive time steps the agent
goes to the pool that paid the highest average payoff in the previous time step.
The average payoff is simply the total payoff paid in each pool divided by the
number of time steps. If the agent movement imply switching to some of the
other pools, it can do so only when it has enough balance. If there are two
pools with the same average P , the agent chooses randomly between those
pools.

4.4.4 The pattern based strategies family

1. Payoff zero in the previous round - at the first time step, the agent randomly
attends one of the pools. When the agent has enough balance it moves to the
pool that paid zero payoff in the last time step with the hope of getting some
reward. If there are two pools with zero payoff, the agent makes a random
choise between those pools.

2. The Penny’s game strategy - this strategy is based on Walter Penny solution
to the problem of predicting random binary sequences [94, 95]. There are
higher probabilities of obtaining a certain binary sequence after a given initial
binary sequence. This strategy tries to exploit this curious solution. The agent
always starts in the stable pool, and after three iterations, depending on the
pattern shown in Table 4.1, the agent decides to move to the low pool or to
stay in the stable pool and so on.

3. Sequences of zeros - The idea behind this strategy is the following: The high
pool has much lower probability of paying the payoff than the low pool. This



4.5. Methodology 53

behavior gives rise to very long sequences of payoff zero (in red), as shown
below in the simulated sequence of the first 100 payoffs paid by the high pool.
Assuming that τ = 1, the agent takes advantage of these long sequences of
zeros, moving for at least three iterations to the stable pool and earning an
additional 1$ in respect to the Always high pool strategy. The agent always
starts in the high pool, and every 4 iterations it evaluates the sequence of the
last 4 payoffs paid by the high pool. When it comes across the sequence: [bbb0],
where, b is some number bigger than zero (in green), the agent moves to the
stable pool and stays there for 4 iterations, then it returns to the high pool.
If the high pool did not pay a positive payoff in these 4 iterations, then the
agent earns additional 2$. In the example below, the agent has an advantage
of 4$ over an agent who would always stay in the high pool.

0 0 0 0 80 80 80 0 0 0 0 0 80 0 0 0 80 80 0 0 80 0 80 80 0 0 0 0 80 80 0 80 0 0
80 0 0 0 0 0 0 80 0 80 0 0 0 80 0 0 0 0 80 0 80 0 0 0 0 80 0 80 80 80 80 0 0 0 0
0 0 0 80 80 0 80 0 0 0 0 0 80 0 0 0 0 0 0 0 80 0 80 0 0 0 0 80 0 0 0

Table 4.1. This table represents the 8 possible 3−bit sequences of payoffs in the low pool
and the most probable sequences to occur after them. In the last column the corresponding
action to each initial sequence of payoffs is displayed.

Initial sequence Most probable sequence
Odds in favour
of the probable
sequence

Action

0, 0, 0 40, 0, 0 7 - 1 Move to low pool
0, 0, 40 40, 0, 0 3 - 1 Move to low pool
0, 40, 0 0, 0, 40 2 - 1 Stay in stable pool
0, 40, 40 0, 0, 40 2 - 1 Stay in stable pool
40, 0, 0 40, 40, 0 2 - 1 Move to low pool
40, 0, 40 40, 40, 0 2 - 1 Move to low pool
40, 40, 0 0, 40, 40 3 -1 Stay in stable pool
40, 40, 40 0, 40, 40 7 - 1 Stay in stable pool

4.5 Methodology

To get more insight about different aspects of this system, we have designed four
experiments. In each experiment we have varied some key parameter to understand
its influence on the system. We have repeated each experiment multiple times to
compute aggregated statistics and to be sure that our results are consistent. In this
section we will briefly introduce each experiment and in the next section we will
dive into the results.

1. The mix strategies experiment - the goal of this experiment is to study which
strategy generates the highest balance B on average, when 50 investors (N =
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50) are present in the system assuming that τ = 1. In this set up, the investors
form small groups of 2 − 5 investors. Each group uses one of the strategies
that we have introduced in the previous section. In this experiment we were
also interested in the attendance dynamics to the different pools, or how N in
each pool changes over time. We have simulated the system for 100 iterations
and we have repeated this simulation 100 times.

2. The influence of τ experiment - the goal of this experiment is to study the
influence of τ on the average balance generated by each strategy and the
attendance to the pools. We have increased τ systematically and we have
measured all the observables. We have simulated the system for 1000 iterations
and we have repeated this simulation increasing the value of τ by 0.1 inside
the subset τ [0.1, 5].

3. The Payoff experiment - the goal of this experiment is to study the influence
of the amount (payoff) paid by the high pool and the stable pool on the
average balance of each strategy. We have increased the payoff of the high
pool by 2 and the payoff in the stable pool by 0.1 on each experiment and
we have measured all the observables of interest. We have run the model for
100 iterations and we have computed the average balance of each strategy in
each round. Then we have repeated this simulation 100 times and we have
computed the mean average balance of each strategy in all rounds. We have
repeated this experiment for each payoff paid by the high pool inside the subset
P [40, 120] and for each payoff paid by the stable pool inside the subset P [0, 10].

4. The amount of investors experiment - the objective of this experiment is to
study the influence of the number of investors present in the system on the
average balance of each strategy and the attendance dynamics of the pools.
We have increased the number of investors N by 2 on each experiment and
we have measured the observables of interest. We have run the model for 100
iterations and we have saved the average balance of each strategy and the
attendance to each pool. Then we have repeated this simulation 100 times
and we computed the mean attendance to each pool and the mean average
balance of each strategy. We have repeated this experiment for all N inside
the subset N [20, 100].

4.6 Results

1. The mix strategies experiment - a typical time series generated by this simu-
lation is shown in Fig. 4.3. Three clusters of strategies emerged after only 50
iterations. A big cluster of strategies evolve close to the mean (black line) in
the middle of Fig. 4.3. A cluster of strategies that did better than the mean
is located above the middle cluster and a cluster of strategies that did worse
than the mean is located in the bottom of the figure. There are strategies that
did better than others. For example, the Always the low pool strategy (red
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Figure 4.3. The average balance of each strategy at each time step. At each
iteration we have computed the average balance of all the agents that share the same
strategy. The black line, represents the mean balance of all strategies. The strategies
represented by the following colors: red, blue, grey, yellow, olive and purple, were much
successful (higher) than the mean after 100 iterations.

line) or the Always stable pool strategy (blue line) have got very high balance
on average. An interesting question is if these results will persist, if we repeat
this experiment multiple times and for longer time periods.

To answer these questions, we have started by collecting the closing balances
of all the investors in our model during the first five simulations. Then we
have grouped the investors by their correspondent strategies, and then, we
have plotted the distributions of the closing balance of all strategies, as shown
in the box plots in Fig. 4.3. As shown in Fig. 4.3, the three most successful
strategies were Always low pool, Always high pool and Zero sequences. These
three strategies belong to different families of strategies. To analyze the aver-
age balance of each family of strategies, we have run 100 simulations for 100
iterations each one. Each time step we have computed the average balance of
all the investors that belong to each family of strategies as shown in Fig. 4.5.
Finally, we have collected the average balance on the last iteration (100) of
each strategy and we have computed the corresponding density functions. We
have plotted the density of each strategy within its corresponding familiy to
ilustrate the diviations between different strategies inside each family, as shown
in Figs. 4.6-4.9.

The strategies that belong to the näıve family present the highest means. The
Always low pool strategy (red density plot in Fig. 4.7) is less skewed than
the Always high pool strategy, in terms of mean balance. The low pool pays
higher rewards in average in a steady manner, which leads to high balance
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Figure 4.4. The distribution of the closing balance of each strategy during
the first five simulations.

Figure 4.5. The average balance by families of strategies.At each iteration we
have computed the average balance of all the agents that belong to the same family of
strategies. The black line represents the average balance among all families. The strategies
represented by the blue and the green lines (Näıve, Pattern based) did better than the
average. This two families are much more successful than the other two families.

that is much closer to the mean, compared to the high pool. We believe
that the principal causes of this distribution is the relative high probabilty of
paying a payoff and the conservative behavior of the investors who bet on this
strategy. The Zero sequences strategy has also a very high mean balance, but
in contrast to the näıve strategies it has a very skewed density, much more
than the Always high pool strategy. This observation means that the Zero
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Figure 4.6. The density functions of the strategies belonging to the random
family. The density functions of the Random strategy (pink) and the Random high low

strategy (olivegreen). The dash line represents the center of mass of each density function.

Figure 4.7. The density functions of the strategies belonging to the Näıve
family. The density functions of the Always stable pool strategy (blue), Always high pool

strategy (yellow), Always low pool strategy (red) and the High low strategy (sky). The
dash line represents the center of mass of each density function.

sequences strategy is much more riskier strategy compared to the Always high
pool strategy. In some cases the Zero sequences strategy did much better than
the näıve strategies, but as shown in Fig. 4.4, this cases are rare thus we can
refer to them as outliers.

In this experiment we were also interested in the dynamics of N . We show
in Fig. 4.10 how N in each pool evolved over the first 100 iterations when all
strategies are being used. We can clearly see how the attendance is getting
close to the attractors discussed in previous sections as shown in Fig. 4.1. The
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Figure 4.8. The density functions of the strategies belonging to the aggregated
family. The density function of the Minority in the previous round strategy (purple),
Maximum reward in the previous round strategy (orange), Minimum reward in the previous

round strategy (blue) and Maximum average payoff strategy (brown). The dash line
represents the center of mass of each density function.

Figure 4.9. The density functions of the strategies belonging to the pattern
based family. The density function of the Zero payoff in the last round strategy (green),
Penny’s game strategy (purple) and Zero sequences strategy (grey). The dash line repre-
sents the center of mass of each density function.

high pool attendence is near 20 agents on average, the attendance to the low
pool is a little smaller, but not too far from the 20 attractor, and the attendance
to the stable pool is near 10 agents. These findings show that when agents
face a complex strategic decision making situations (much more complex than
Arthur’s El Farol original problem), if there are many strategies involved, we
will observe the same attendence dynamics emphasized by Arthur in his famuos
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Figure 4.10. Time series of the attendence to the different pools when we run
a mix strategies simulation. This figure shows the evolution of N in each pool at each
time step in the first 100 iterations of the simulation. The black dashed lines represent
the average attendance to each pool in the first 100 iterations. The average attendance to
the high pool, low pool and stable pool is: 19.16, 17.31 and 13.01 investors respectively.

paper. Note that only six from the thirteen strategies involve intrinsically the
attendance to the low or high pools. Another important observation is that
the convergence to those attractors is very fast. It takes about 10 iterations
to converge.

2. The influence of τ experiment - the cost of changing strategy, that is τ , has a
huge effect mainly on the average balance of the strategies that belong to the
Aggregate and the Random families as shown in Fig. 4.11. When τ = 3, almost
all strategies breakdown. It becomes much safer to stay in some pool and do
not move from it. The surprising result is that the Always low pool strategy
seems to be benefited from the increment of τ , since the average balance of the
investors that have used this strategy is increasing relative to all the others.
Another surprising result that can explain, why we see increments in the mean
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Figure 4.11. This figure shows the impact of τ on the average balance of each
strategy. We have run the model for 1000 iterations saving the final average balance of
each strategy in each repetition. We have increased τ by 0.1 in each simulation we have
plotted the average balance of each strategy vs the corresponding value of τ .

Figure 4.12. This figure shows the impact of τ on the attendance to each pool.
We have run the model for 1000 iterations saving the attendence to each pool in the last
iteration. We have increased τ by 0.1 in each simulation and we have plotted the final
attendence to each pool vs the corresponding value of τ .

balance of investors with Always low pool strategy, is that the increment in τ
seems to increase the attendance to the high pool as shown in Fig. 4.12.

3. The payoff experiment - strategies in which the agents attend the high pool
frequently such as Always high pool or Zero sequences are influenced by the
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Figure 4.13. This figure shows the impact of the amount of payoff paid by
the high pool on the average balance of each strategy. Naturally, all the strategies
in which the investors visit in some frequency the high pool are positively influenced by
the increment of P paid by the high pool. The Always high pool and the Zero sequences

strategies enjoy the most from this increment, however only when the payoff is bigger than
105$ they actualy do better than the Always low pool strategy. This result reaffirms the
advantage of the Always low pool strategy over the others.

increments of the payoff paid by this pool as shown in Fig. 4.13. Surprisingly
the Min payoff strategy is also heavily influenced by those increments. For the
stable pool we can appreciate how only the Penny’s game, Always stable pool
and Max payoff in pool last round strategies benefit from these increments in
the payoff paid by the stable pool as shown in Fig. 4.14.

4. The amount of investors experiment - as expected, we have found a negative
effect on the average balance of the different strategies when we increment
the number of investors present in the system. The Always stable pool and
Penny’s game strategies are less sensitive to this increment of N as shown in
Fig. 4.15. They are the best strategies even when 70 investors are present in
the system. There is a critical number of investors (N = 73) in which the
Always stable pool becomes the best strategy to follow. This is meaningful,
since we can clearly see in Fig. 4.15, where each strategy breaksdown relative
to the most safer strategy Always stable pool. Finally, Fig. 4.16 shows how the
increment of N has a positive effect on the attendence to the high pool.

4.7 Conclusions

In this work we have studied the system proposed by the Complexity Challenge
Team from two directions, the ecosystem of strategies and the global dynamics of
the system. We have developed thirteen strategies, some of them very simple and
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Figure 4.14. This figure shows the impact of the payoff amount paid by the
stable pool on the average balance of each strategy. Obviously small increment in
P paid by the stable pool makes it safer and more profitable. As shown in the figure above,
the Always stable pool strategy becomes the most profitable strategy when the payoff paid
by this pool is bigger than 1.6$.

others more complex. Then we have grouped all the strategies in four families of
strategies. We simulate the system using our Netlogo model, and we have find
that the most successful families are the näıve and the Pattern based families. This
means that in this system when the investors use many different strategies, decisions
that are made based on patterns in the data or repetition lead to higher balance
on average. We have learned that the most powerful strategies are the simplest
näıve strategies. The Always low pool is the best strategy even when τ increases.
The Always stable pool strategy becomes the best when N increases over 73 agents.
Although we have simulated a small number of strategies (13 strategies), we have
shown that the average N in each pool approaches the attractor of N = 20 in the
low and in the high pool. This result is surprising because we have thought that
much more strategies are needed to observe this dynamics. In future studies we
want to develop strategies based on machine learning and to study deeper the basic
patterns of the Zero sequences strategy.
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Figure 4.15. This figure shows the impact of the amount of investors present
in the system on the average balance of all strategies. Logically the amount of
investors present in the system has negative effect on their total balances. An interesting
discovery is the resistence of the Penny’s game strategy to this incrementation of investors.

Figure 4.16. This figure shows the impact of the total N in the system on the
average attendance to each pool. Surprisingly, the high pool tends to recieve more
investors on average.





Chapter 5

Making Predictions on

Fractal Basins

“As far as the laws of mathematics refer

to reality, they are not certain; and as far

as they are certain, they do not refer to reality.”

-Albert Einstein

The Duffing oscillator is one of the best-known models of nonlinear oscillators,
with applications in many fields of applied sciences and engineering. It is frequently
used to model nonlinear springs, dissipative systems or the market dynamics. This
system exhibits a fractal phase space for some parameter values. In some cases this
fractal structures verify the Wada property. A Wada basin is essentially, a basin that
simultaneously shares its fractal boundary with two or more basins of attraction.

The immediate consequence of the Wada property is the intrinsic difficulty to
make predictions, since an initial condition located in the Wada boundary can po-
tentially evolve towards any of the attractors presented in the phase space. This is
of a great importance, since we are used to classic determinism ideas, where once
we fix the initial condition, automatically we know the exact evolution of the orbits.
From an experimental point of view, fixing an initial condition with an infinite pre-
cision is not possible, from what it arises to a serious problem of predictability in
physical and economic systems. In this chapter we will study some of the statistical
properties that appear in this scenario.

5.1 Introduction

Predicting the future state of a nonlinear dynamical system may be very challenging.
Recently the use of sophisticated prediction techniques, like neural networks, has
allowed researchers to improve the prediction ability in such systems [96]. But this
type of methods cannot be always easily applied. In many nonlinear dynamical
systems, complex structures arise and change their shape within phase space as

65
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Figure 5.1. Black box diagram. We consider that the dynamical system that we
are going to study is a black box to which we do not have any internal access. We can
only measure the final state of the system for a given initial condition. In this sense, the
problem that we face is very similar to the problem of predicting the final state of a die.

one parameter is varied. Basins of attraction are an interesting example of these
structures in dissipative and Hamiltonian systems. Roughly speaking, we can say
that a basin of attraction is the set of initial conditions that evolve in time towards
a given attractor. In many nonlinear systems there are several attractors coexisting
in phase space, which can have fractal boundaries separating their basins. This fact
can make the study of the global dynamics and the predictability of the system a
very difficult task. Nonlinear systems with fractal basins can be classified basically
in four different categories: intertwinned basins, Wada basins, riddled basins and
sporadically fractal basins [97]. When a dynamical system possesses this kind of
basins it is very difficult to make predictions, due to the fact that there is an intrinsic
uncertainty on the final state of a given initial condition taken in the neighborhood
of the fractal boundary. The physical reason behind this is the finite accuracy in the
measurement of the initial conditions for any real system. Furthermore, in systems
with fractal basins there are infinitely many close points that can go to a different
attractor. The situation gets even more complicated if we do not have access to the
time series of the dynamical system and the only observables of the system are the
attractors.

Although the problem is far from being solved, recently two useful ideas proposed
by Menck et al. and Daza et al. namely basin stability [98] and basin entropy [99]
have shed some light on important properties of complex basin structures. Here, we
present a general procedure to provide some kind of statistical prediction in nonlinear
systems with fractal basins, where the only observables that we have access to are the
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attractors of the system. We assume that we are not able to measure the time series
before they reach the final attractor, but we assume that we have some knowledge
about the probability density function of the initial conditions. In this way, we
consider that the dynamical system is like a black box, as depicted in Fig. 5.1,
where only the final output can be measured. In this framework, the behavior of
the dynamical system is very similar to that of a die, although the behavior of this
one is neither chaotic nor random [100]. The key point of the prediction mechanism
developed here, is (as we show in several ways) that the ratio or probability of initial
conditions going to each attractor in the phase space is scale free. This is precisely
what allows the statistical prediction. We show here how this procedure works for
Wada basins, but it should also work for systems showing any of the other kind of
fractal basins.

A dynamical system has Wada basins if it has three or more basins sharing the
same fractal boundary. This topological idea was introduced by Kennedy and Yorke
[101]. Wada basins usually appear in two-dimensional dynamical systems as a result
of a boundary crisis of a chaotic attractor. This fact often leads to the fractalization
of the entire basin boundary. Wada basin boundaries are frequently observed in
both dissipative and Hamiltonian systems. We can find this topological property in
relation to mechanical models of billiard [102] or chaotic advection of fluid flows [103]
and in the context of the Hénon-Heiles Hamiltonian system in celestial mechanics
[104]. Due to the structural complexity of the Wada basin boundaries, in practice,
these structures imply serious problems in the long term prediction of dynamical
systems, also known as final state sensitivity [105, 106].

Here, we study the Duffing oscillator for a choice of parameters that verifies
the Wada property, based on the work of Aguirre and Sanjuan [107]. The Duffing
oscillator is one of the best known models of nonlinear oscillators, with applications
in many fields of applied sciences and engineering. The structure of the chapter is
as follows. Section 5.2 is devoted to the description of the Duffing oscillator and the
methodology used to explore its phase space. The one-dimensional analysis of the
model is described in Section 5.3. The two-dimensional analysis is done in Section
5.4. The implication of fractal boundaries on the probabilities in ending up in each
basin of attraction is given in Section 5.5. Finally, some conclusions are drawn in
the last section.

5.2 The Duffing oscillator

We consider here the periodically driven Duffing oscillator [111] that is described by
the following differential equation (1),

ẍ+ 0.15ẋ− x+ x3 = 0.245 cos(ωt). (5.1)

The Duffing oscillator of Eq. (5.1) has a transient chaotic behavior and there are
three coexisting periodic attractors whose basins of attraction have Wada bound-
aries1 [107]. We have used the stroboscopic map (with T = 2π) associated to the

1It is said that x belongs to a particular boundary when there is an open set surrounding x
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Duffing oscillator to compute the position of the attractors in phase space. We de-
fine as P1R and P1L the period-1 attractors located on the right and on the left,
respectively. We define as P3L, P3C and P3R the points belonging to the period-3
attractor. The period-1 attractors are located at P1R ≈ (0.815, 0.242) and P1L ≈
(−0.933, 0.299). The period-3 attractor is located at P3L ≈ (−1.412,−0.137),
P3C ≈ (−0.354,−0.614) and P3R ≈ (0.645,−0.464) [107]. The frequency is a
critical parameter in the study of nonlinear oscillators [108, 109]. But this parame-
ter stops being so important in chaotic systems, since they have a broad spectrum
systems which covers a wide range of frequencies [110].

To compute the basins of attraction, we have taken all the initial conditions
inside the square [−2, 2] × [−2, 2] of the phase space, and we have integrated the
system using a fourth-order Runge-Kutta integrator with a fix integration step of
2π/4×105, until their orbits reach the corresponding attractor. Different colors have
been chosen according to which attractor an initial condition goes to, as shown in
Fig. 5.2. Every initial condition belonging to the basins of attraction of the period-1
attractors P1L and P1R have been plotted in red and green respectively. All the
initial conditions belonging to the basin of attraction of the period-3 attractor have
been plotted in blue. The phase space resolution depends on the amount of points
taken in the horizontal and vertical axes. More points imply more resolution. For
example, if we divide ẋ and x in 400, we obtain a 400 × 400 matrix with 160, 000
initial conditions, where every initial condition has a two decimal precision. In the
next sections we have studied the following matrices of initial conditions: 50 × 50,
100× 100, 200× 200, 300× 300, 400× 400, 500× 500, 1000× 1000, 2000× 2000 and
3000 × 3000. We have started with a matrix of 2, 500 (50 × 50) initial conditions
and finished with a matrix of 9× 106 (3000× 3000) initial conditions.

To find the probability of reaching a given state in a dynamical system it is
necessary to know its final probability density function (invariant measure). The
evolution of an arbitrary probability density function in a dynamical system f is
described by the Perron-Frobenius operator.

ρn+1(x) = LPFρn(x), (5.2)

where ρn is the natural invariant after the n− th iteration of the map. The operator
can be explicitly written as,

LPFρn(x) =

∫

ρn(x)δ(x− f(y))dy. (5.3)

When only a finite number of non-chaotic attractors can be found in phase space,
the evolution of the probability density function described by the Perron-Frobenius
operator converges to delta functions. With knowledge of its invariant measure it
is possible to determine the probability of ending on each attractor. However, in

which intersects two basins. The basin boundary is the collection of all the boundary points and
is an invariant set. The basin boundary may be a smooth curve, but it can also have a fractal
structure. A basin boundary is fractal if it contains a transversal homoclinic point [113].
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Figure 5.2. The basins of attraction of the Duffing oscillator of Eq. 1. A fine
grid of 2000× 2000 of initial points is considered and different colors are chosen according
to which attractor an initial condition goes to. The points that end up in the P3 attractor
are colored in blue. The points that go to the P1R attractor are colored in green. The
initial conditions whose final state is P1L are colored in red.

our case it is very difficult to use this analytical approach since we do not know the
explicit expression of the time-2π map of the Duffing oscillator. For that reason, in
the following sections we have used a much more quantitative procedure to compute
the probabilities of the final state of the system. We have done this by directly sam-
pling the entire phase space with a uniform grid of initial conditions, and computing
the ratio of the number of points (of those initial conditions) ending in a particular
final state relative to the number of the sample. Interestingly, we have found that
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this method works even for very low resolution samples.
We have divided the statistical analysis of the model into two parts. First, we

have studied the probabilities obtained by sampling the phase space along horizontal
(or vertical) one-dimensional straight lines. Second, we have used a two-dimensional
grid covering the whole phase space to compute the probabilities associated with
each attractor in phase space.

5.3 One-dimensional analysis

Our goal in the first analysis is to compute the probabilities of ending on a given
attractor, assuming that we know only one of the two coordinates of the initial con-
dition, either x or ẋ. This means that we need to compute a conditional probability.
We could do this formally by taking as our initial probability density function ρ0 the
one that is zero everywhere except in the coordinate that we know, and recursively
applying the Perron-Frobenius operator until it converges. We then integrate the
resulting probability density function in the neighborhood of each attractor to find
the conditional probabilities

P (P1L|x = xi), P (P1R|x = xi), P (P3|x = xi). (5.4)

These are the conditional probabilities of ending up in each attractor given that
we know the coordinate xi of the initial condition. However, as we have already
mentioned, finding the final probability density function using the Perron-Frobenius
operator is usually very complicated.

An alternative way to compute these conditional probabilities is to sample the
phase space in xi along ẋ with a uniform one-dimensional grid, and then compute the
final state of all of those initial conditions. Then taking the ratio of initial conditions
that belongs to each basin of attraction gives us a really good aproximation of
P (P1L|x = xi), P (P1R|x = xi) and P (P3|x = xi). We have done this for every
xi in different resolutions. We have followed a similar procedure to compute the
conditional probabilities P (P1L|ẋ = ẋi), P (P1R|ẋ = ẋi) and P (P3|ẋ = ẋi), where
we assume that we know the coordinate ẋi of the initial condition. We summarize
the results in the diagrams and graphs shown in Figs. 5.3.

As we can see in Figs. 5.3, for the resolutions 300×300 and higher, the conditional
probabilities remain constant for almost every xi. It is also clear in Figs. 5.3 that the
period-3 attractor (blue basin) is the most probable attractor and the two period-1
attractors have almost the same probability (around 0.25). For the interval ẋ =
[0, 0.5], a big change in the trend occurs, when P (P3|ẋ = ẋi) (blue) loses over 24%
of its value and P (P1L|ẋ = ẋi) (red) sums 33% to its value. In this interval, the
P1L attractor (red) is the most common, additionally P (P1R|ẋ = ẋi) (green) sums
20% too and becomes more frequent inside this interval. The location of the two
large basin cells of the period-1 attractors in phase space lies inside this interval,
which explains the new trend of probabilities. In the interval x = [0.8, 1] another
big change in the trend occurs when P (P3|x = xi) (blue) loses about 25% of its value
and P (P1R|x = xi) (green) attractor increases its value by 55% of its value and



5.3. One-dimensional analysis 71

Figure 5.3. Conditional probabilities of each attractor in the Duffing oscillator
for different resolution grids. Panels (a), (d) and (g) are the basins of attraction of
the Duffing oscillator for grids of 50×50, 300×300 and 1000×1000 correspondingly. The
points are colored according to which attractor an initial condition goes to. In panels
(b), (e) and (h) we have plotted the conditional probabilities associated with each vertical
line of the phase space, P (P1L|ẋ = ẋi) (red), P (P1R|ẋ = ẋi) (green) and P (P3|ẋ = ẋi)
(blue). In panels (c), (f) and (i) we have plotted the conditional probabilities associated
with each horizontal line of the phase space, P (P1L|x = xi) (red), P (P1R|x = xi) (green)
and P (P3|x = xi) (blue).
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Figure 5.4. Kernel probability density estimation (KPDE) of the points ratio
associated with each attractor for a horizontal or a vertical line. This figure
shows the KPDE related to each attractor for a random picked horizontal or vertical
line. The horizontal axis measures the ratio points per line. The vertical axis represents
the probability density of each attractor, for horizontal lines on the left and for vertical
lines on the right. Here, γP3 (blue) is the probability density function associated with
the P3 attractor, γP1R (green) is the probability density function associated with the
P1R attractor and γP1L (red) is the probability density function associated with the P1L
attractor. We have repeated the same computation for the following resolutions: 50 × 50
as dash line, 300× 300 as dot dash line and 1000 × 1000 as solid line.

becomes the most frequent attractor in phase space. Additionally, in the interval
x = [1.3, 1.6] there is a peak in P (P1L|x = xi) (red). This attractor sums over 40%
of its value and becomes the most common attractor in this small interval. Again
this result arises from the location of the basin cells of the period-1 attractor in phase
space. However, despite of those big local changes of the conditional probabilities
near to the large basin cells, we find that in the rows or columns with a strong Wada
property (which are the most common) the conditional probabilities are almost
constant. The conditional probabilities only change abruptly in the regions with big
basin cells.

We can also treat the total length (found in a given horizontal or vertical straight
line in the phase space) associated to the basin with each attractor, as a continu-
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ous random variable which will have associated a probability density function (pdf),
γ(L). These pdfs allow us to compute the probability that the length of each at-
tractor of a horizontal (or vertical) straight line (in phase space) is within a ∆δ
interval, this is P (L−∆δ < L < L+∆δ). We have obtained the pdfs by counting
the number of initial conditions for every one-dimensional horizontal (or vertical)
straight line that goes to each attractor, and computing later the histogram of the
number of horizontal (or vertical) lines vs the number of initial conditions. Normal-
izing this histogram by the number of horizontal (or vertical) lines we obtain the
desired pdf. We can show the results of the computed pdfs for different resolutions in
Fig. 5.4. The length associated with each attractor in every straight line is measured
by the number of initial conditions. In order to compare the different resolutions, we
have also normalized the horizontal axes where we represent the ratio of points per
line. As we can see, as the phase space resolution increases the pdf shapes become
smoother. On the one hand, from the statistical coefficients calculated from the
data, we can conclude that the pdf associated with the length of the P3 attractor
in either vertical or horizontal straight lines is not normally distributed and has a
long tail in the left side. On the other hand the pdfs associated with the lengths
in horizontal (or vertical) straight lines for the P1L and P1R attractors, are not
normally distributed either, and have a long tail on the right side. As expected, the
mean of the pdf associated with the P3 attractor doubles the mean of the P1L and
P1R attractors, either in the horizontal or the vertical direction. Interestingly, the
standard deviation is about the same for all the pdfs - in both the horizontal and
vertical directions.

5.4 Two-dimensional analysis

In the two-dimensional case the invariant probability density function would be com-
puted taking as our initial probability density function ρ0, the one that is one ev-
erywhere in the square [−2, 2][−2, 2], and applying recursively the Perron-Frobenius
operator until it converges. We would integrate the resulting probability density
function in the neighborhood of each attractor to find the total probabilities,

P (P1L), P (P1R), P (P3). (5.5)

These are the total probabilities of ending in each attractor assuming that we do
not know any of the coordinates of the initial conditions. However, as in the previ-
ous case, to find the final probability density function using the Perron-Frobenius
operator is usually difficult.

An easy way to approximate the total probabilities is taking a uniform two-
dimensional grid and computing the ratio of initial conditions that belongs to each
basin of attraction. We have done this for different resolutions of the grid as we can
see in Fig. 5.5, where it can be clearly observed that the pattern of the basins of
attraction is almost stable for resolutions higher than 300 × 300. All the basins of
attraction keep their shape near the location of the attractors, but as we move away
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from them, they begin to mix and become fractal. In Table I we summarize the
number of initial conditions taken for every resolution and going to each attractor.

Table 5.1. Points per basin.

Phase space size Precision Initial points P3 (Blue) P1D (Green) P1I (Red)
50× 50 0.08 2,500 1,092 700 708
100× 100 0.04 10,000 4,623 2,687 2,690
200× 200 0.02 40,000 18,248 10,845 10,907
300× 300 0.0133 90,000 41,089 24,326 24,585
400× 400 0.01 160,000 78,158 43,218 43,623
500× 500 0.008 250,000 114,298 67,780 67,922

1, 000× 1, 000 0.004 1,000,000 455,877 270,612 273,511
2, 000× 2, 000 0.002 4,000,000 1,826,335 1,081,648 1,092,017
3, 000× 3, 000 0.00133 9,000,000 4,104,916 2,434,470 2,460,614

For very low grid resolutions there is a large change in the probabilities going
to each attractor. But beyond a given threshold in the resolution, the probabilities
remain constant. This is what we show in Fig. 5.6. We can clearly see how, for a
resolution of 300× 300 or higher, the probabilities converge to constant values. The
total probability of landing in the period-3 attractor P (P3) (blue basin) converges
to 0.456 (45.6%), the total probability of landing in the period-1 attractor to the
right P (P1R) (green basin) converges to 0.270 (27%) and the total probability of
ending in the period-1 attractor to the left P (P1L) (red basin) converges to 0.274
(27.4%). This clearly indicates that the results are robust and can be used in the
statistical prediction that we are looking for. As expected, due to the convergence
of the Perron-Frobenius operator these probabilities are scale free. In Fig. 5.7 we
show how the probability of each attractor changes depending on its location over
the phase space. We have divided the highest resolution phase space into 90, 000
samples squares where each square possesses a sample of 100 grid points. Then,
we have computed the relative frequency of each attractor in each square and we
have used a heatmap to represent the associated probabilities where brighter red
color means high probability and darker red color means less probability. Now we
can actually visualize why and even where the probability of being in the basin of
the period-3 attractor, for example, is greatest over the phase space. The orange
color on the left panel in Fig. 5.7 illustrates how the high probability of the period-3
attractor dominates in the fractalized zones, while in the other two panels the dark
red color illustrates the low probability of the period-1 attractors over the same
palaces in the phase space. The fact that the fractal zones occupy a larger area of
the phase space explains why at the aggregate level we obtain the results above. We
can state that the long term dynamics of this system depends on the attractor that
governs in the fractal zones.

Surprisingly, we find here a very remarkable result in the rows and columns with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5. Basins of attraction for different resolutions. The picture shows
the basin of attraction of the Duffing oscilator for different resolutions, (a) 50 × 50, (b)
100× 100, (c) 200× 200, (d) 300× 300, (e) 400× 400, (f) 500 × 500, (g) 1000 × 1000, (h)
2000× 2000 and (i) 3000 × 3000.

a strong Wada property. In those regions it is satisfied that

P (P1L|x = xi) ≈ P (P1L|ẋ ≈ ẋi) ≈ P (P1L)

P (P1R|x = xi) ≈ P (P1R|ẋ = ẋi) ≈ P (P1R) (5.6)

P (P3|x = xi) ≈ P (P3|ẋ = ẋi) ≈ P (P3).

This means that in the regions with the Wada property the knowledge of one of
the coordinates of the initial condition does not improve our prediction capability.
It is the same as not knowing any of the coordinates of the initial condition. The
conditional probability and the total probability differ only in the regions with large
basin cells.

As we have just seen, the probabilities of each basin of attraction converge to
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Figure 5.6. The attractors probability trends. This figure shows the probabilities
of each basin of attraction in the phase space (vertical axis) and the resolutions of each
phase space (horizontal axis). The blue line represents the initial condition probability
belonging to the period-3 attractor P3, the green line corresponds to the period-1 attractor
P1R, and the red line to the period-1 attractor P1L.

a constant probability when the resolution of the phase space increases as shown
in Fig. 5.6. It seems that improving the resolution does not affect the probabilities
anymore. To show that this result does not have any grid dependence, we have
carried out a Monte Carlo simulation. We have chosen the Monte Carlo method
because the error on the results typically decreases as 1/

√
N [114].

To implement the Monte Carlo method, we have chosen randomly 50, 000 initial
conditions with 15 decimals precision in phase space. This precision is equivalent
to a fine grid of 1016 × 1016 initial points. We have used a uniform probability
distribution to generate the initial conditions as shown in Fig. 5.8. Then, we have
integrated them using a fourth-order Runge-Kutta integrator with a fix integration
step of 2π/200 and classifying them depending on the attractor towards which they
converge. We have chosen bigger integration steps for this calculation because of
the high precision of initial conditions. Next, we have computed the ratio of initial
conditions going to each attractor versus the total number of initial conditions in
the sample to obtain the attractors probabilities. We have obtained the following
results; the total probabilities of the period-1 attractors P1R and P1L are 0.270 and
0.272 respectively. The total probability of the period-3 attractor is 0.458. These
probabilities are almost identical to the probabilities found in the statistical analysis
found with the uniform grid. With this result, we can confirm that the probabilities
obtained with the uniform grid for the statistical predictions of an arbitrary initial
condition are very accurate.
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Figure 5.7. Fluctuation of the local probabilities of the attractors on the
phase space. We have divided the original phase space into 90, 000 samples squares
where each square possesses a sample of 100 grid points from the the original 3000× 3000
phase space. Then, we have computed the relative frequency of each attractor in each
square over the phase space. We have plotted the probability of each attractor on the
phase space separately. We have plotted P3 on the left panel, P1R on the central panel
and P1L on the right panel. When there is 100 percent probability for the square to fall
into a particular attractor we have colored the square in white. When there is no chance
(probability 0) for a particular square to fall into a particular attractor we have colored the
square in black. When the probability of falling into a particular attractor is between 0
and 1 we have colored the square in a red scale color, where dark red is close to probability
0 and yellow is close to probability 1. Note that here we are not plotting the basins of
attraction, but the spatial probability function associated with each attractor.

5.5 Fractal boundaries and probabilities

There is a very intuitive explanation for the convergence of the total probability of
each attractor towards a constant value, as shown in the previous sections. The
fractal basins that we study here have a fractal dimension, though we have not
computed it since it is not relevant for the statistical predictions that we were
studying. Simply by looking at Fig. 5.5 it is clear that we face self similar basins of
attraction that do not change with the scale at which they are measured [115]. The
method used to compute the probability of each basin of attraction in phase space, is
somehow like measuring the area that each basin occupies in the phase space. This
is similar to what happens in the famous coastline paradox [36]. As we increase
the resolution, the perimeter of the coastline increases towards infinity. But the
area enclosed by that perimeter remains constant [116, 37]. A completely analogous
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Figure 5.8. The probability of the attractors when the initial conditions are
chosen randomly. (a) Shows the initial conditions taken in the Monte Carlo method
to compute the probability associated to each attractor. The pie diagram in (b) shows
the probability of each attractor in the phase space according to this sample of initial
conditions.

behavior is found in the case of the Duffing oscillator. We get more points on the
basin boundaries and the precision of each point increases as well. But the area
of each basin of attraction occupies the same space in all scales of the phase space
from a given threshold resolution. This behavior is helpful when we are interested
in the global dynamics of the system. In some dynamical systems with sensitive
dependence on initial conditions, knowing the attractor’s probabilities is enough to
understand the system and to do statistical predictions. In many cases, making
clever decisions in accordance to the probability of every attractor in the system is
good enough.

5.6 Conclusion

In this chapter, we have studied the Duffing oscillator model with a choice of param-
eters showing the Wada property. Then, by using methods from statistical analysis,
the probabilities of ending up in a particular attractor of the phase space have been
found. We have also shown that these probabilities might be scale invariant. This
result is related to the fractal nature of the basins boundaries. A Monte Carlo sim-
ulation has been used to verify the values of the attractor probabilities and we have
found that are very similar to the values calculated in the statistical analysis. We
have shown that knowing the attractors probabilities in some cases is enough to pre-
dict the future state of the system and to tackle the final state sensitivity problem,
even if we do not have any knowledge about the initial conditions of the system. We
have also shown how relatively low grid resolutions (300×300 or higher) are enough
to obtain the statistical information needed for the statistical predictions about the
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future state of the system, even in systems as complicated as the Duffing oscillator
with the Wada property. This means that we can save a lot of time, effort and mem-
ory space when computing the probabilities associated with this kind of systems.
Finally, we have also seen how in terms of prediction, the knowledge of one of the
coordinates of the initial condition, provides similar results to the case when the two
coordinates in the Wada regions are unknown. The technique presented here can be
applied to any dynamical system with fractal basins or even Wada basins over its
phase space. We believe that using this technique with relative low resolution phase
space samples might give a good understanding of the attractors distributions and
probabilities helping decision makers and researchers to make decisions and even
predict, optimizing their computational time and resources.





Chapter 6

Results and Discussion

“And now someone had uncoiled the angle of

that destiny, had set it on another path, had

given the ants the secret of the wheel, the se-

cret of working metals-how many other cultural

handicaps bad been lifted from this ant hill,

breaking the bottleneck of progress?”

-Clifford D. Simak, City

Economic systems have changed dramatically in the past century. Probably,
the technological progress is one of the main drivers for this change. Scientists
understood the power of computational technology a long time ago, and they have
started to use it almost immediately, computing very complicated mathematical
equations or making different virtual models of reality. Computational models give
insights into any system that can be written in code. But when the system in
question, is a complex system, this tool is one of the most useful tools to study
the dynamics that emerge in such systems. Markets or economic organizations
by definition are complex systems and in this thesis, we have used some of the
most advanced techniques to model and to study the intrinsic complexities of these
systems.

Inspired by the complex behaviours of some supplying firms, we have developed
the supply based on demand dynamical model. This simple model studies how firms
behave under uncertainty of demand forecast. It is an iterative model where the firms
must produce all their stock before they know how many products their consumers
will consume. We have found that the model is capable of reproducing many types
of dynamics such as equilibrium, limit cycles, chaos, and even transient chaos under
simple and reasonable economic assumptions. We have found a positive Lyapunov
exponent in a wide range of values of the elasticity of demand and the margin set by
the firm. Additionally, small variations in these parameters will lead to very different
market dynamics. We have shown that the transient chaotic dynamics that arise
naturally in the model are a good approximation of a market crash. We assume
that the elasticity of demand is given by the preferences and the utility functions
of the consumers, but the margin represented by the parameter M is set by the
firm, and this peculiarity allows the firm to adjust the price in light of the market
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circumstances. Applying the partial control method on the price we have shown
that the firm can control the market, preventing the collapse, even when external
disturbances are present in the system. Additionally, the firm can apply the partial
control strategy on the quantity supplied in some special cases and while it is doing
that, it is able to extend the natural barriers of the system supplying more goods
than before. The partial control method has been found suitable for applying on
the demand as well, when a firm with high market power intervenes directly in the
market, buying the excess supply, or advertise to encourage the consumption in the
market. In all cases we have sustained the dynamics in the transient regime with
a term of control much smaller than the external disturbances introduced in the
model.

In our daily life we face complex decision problems, characterized by being highly
dependent on other’s decisions or to some uncertain payoff. The El Farol Bar prob-
lem introduced by the Irish economist Brian Arthur was one of the first attempts to
explore these situations. We have studied a model in which 50 agents must locate
themselves in a pool that pay a payoff that depends on the attendance to the pool
and on some stochastic function. To analyze this model we have developed an agent
based model that takes into account 13 different strategies. After grouping all these
strategies in four different groups, depending on the conceptual approach, we have
found that the näıve behavior is the most successful, in particular the Always low
pool strategy. This strategy has been found to be the most profitable strategy, even
when the cost of switching between the pools is very high or when we increase the
amount of agents to 73. We have shown that when we increase the diversity of
strategies in the system, the attendance converges very fast to the optimal atten-
dance of each pool. When only 13 different strategies are present in the system the
attendance converges in only 10 iterations. This is an interesting result since we
have assumed that more strategies are needed to observe this dynamics.

Although this technique of modeling uncertainty is very beneficial in some com-
plex social situations, uncertainty can be very difficult to define even in deterministic
systems. We have studied the Duffing oscillator model with a choice of parameters
showing the Wada property. We were interested in the statistical properties of the
system when it poses the Wada basins. We have computed the probabilities of
ending up in a particular attractor of the phase space, showing that these probabil-
ities might be scale invariant. This means that globally we can succesfully predict
the system, even if we do not have any knowledge about the initial conditions of
the system. We have also shown how relatively low grid resolutions (300 × 300 or
higher) are enough to obtain the statistical information needed for the statistical
predictions in the Duffing oscillator with the Wada property. We have also shown
that in the Wada basins, knowing half of the information about the initial condition
(one coordinate) does not help us to make predictions about the future state of the
system.
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6.1 Future work

In this thesis, we have explored the dynamics produced by the SBOD model when
one firm interacts with one consumer. An interesting question is what kind of
dynamics will appear in an aggregated market whith many consumers and firms
that follows the same rules of the SBOD model. We think that the right approach
to this problem is using an agent based model because it offers a lot more flexibility
in modelling the consumers and firm’s behaviors. Another idea that deserves more
exploration is if the partial control method would be suitable in such aggregated
market.





Chapter 7

Conclusions

“The noblest pleasure is the joy of understand-

ing.”

-Leonardo da Vinci

Here we summarize the main results of the present thesis:

1. Economics has changed considerably in the last century. The main force that
drove this huge change is without doubt, the computational revolution. Ad-
vances in hardware and software have changed forever the way humans interact,
transfer value or communicate. Besides changing the reality itself, this revolu-
tion has changed the way in which scientists observe and study the economy,
letting them develop new paradigms and models that fit a lot better in some
of the most complex economic phenomena.

2. We have shown that the supply based on demand dynamical model is capable
of producing a rich variety of dynamics; fixed points, limit cycles, chaos and
transient chaos, under simple and reasonable economic assumptions. We have
shown that the price elasticity of demand and the margin imposed by the
firm have huge effects on the market dynamics. Small variations in these two
parameters will lead to different market behaviors. Finally, we have shown
that the final bifurcation can be a good approximation to market collapse.

3. We have applied the partial control method to the supply based on demand
dynamical model in the presence of disturbances, for a particular choice of pa-
rameters where it shows transient chaos. Typical uncontrolled trajectories in
this system follow a transient chaotic motion until they escape to an external
attractor. In the context of our model this escaping dynamics mean a market
collapse. With the goal of preventing the market collapse, we have applied the
partial control method in three different ways. We have begun applying the
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partial control on the price imposed by the firm, then we have applied the con-
trol on the quantity demanded and supplied. We have obtained the respective
safe sets with the Sculpting Algorithm and successfully prevented the collapse
in all cases where the control was a lot smaller than the disturbance.

4. We have studied the system proposed by the Complexity Challenge Team,
which can be considered as a more complex El Farol bar problem. We have
developed an ABM using Netlogo software in which we code 13 different strate-
gies that we grouped in four families. We have found that the most successful
families are the näıve and the pattern based families. This means that in
this system when the agents use many different strategies, decisions that are
built based on patterns in the data or repetition lead to a higher balance on
average. We have found that the most poromising strategy was the Always
low pool even when τ increases. The Always stable pool strategy becomes the
best when N increases over 73 agents. We have also shown that in spite of the
relative small number of strategies (13 strategies), the average N in each pool
approaches the attractor of N = 20 in the low and in the high pool, following
the same dynamics predicted by Brian Arthur in his original paper on El Farol
bar problem.

5. We have studied the Duffing oscillator model for a choice of parameters show-
ing the Wada property. We have shown that knowing the attractors probabil-
ities in some cases is enough to predict the future state of the system and to
tackle the final state sensitivity problem, even if we do not have any knowl-
edge about the initial conditions of the system. We have demonstrated how
relatively low grid resolutions 300×300 or higher, are enough to obtain the sta-
tistical information needed for the statistical predictions about the future state
of the system, even in systems as complicated as the Duffing oscillator with
the Wada property. Finally, we have shown how in terms of prediction, the
knowledge of one of the coordinates of the initial condition, provides similar
results to the case when the two coordinates in the Wada regions are unknown.
The technique presented here can be applied to any dynamical system with
fractal basins or even Wada basins over its phase space.
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Resumen de la tesis en castellano

Introducción

En los últimos años hemos sido testigos de un amplio abanico de avances tecnológicos
que han cambiando nuestra forma de entender la economı́a. Entre estas tecnoloǵıas
quiero destacar los libros contables distribuidos - en particular el Blockchain de Bit-
coin y los contratos inteligentes de Ethereum, el aprendizaje automático y el análisis
masivo de datos, las redes sociales y los modelos empresariales de economı́a com-
partida. Todos estos avances tienen tres cosas en común, Internet, coste marginal
cero de la información digital y por último sistemas y redes de computación muy
avanzados. Estas jóvenes tecnoloǵıas representan y a la vez son el fruto de un
cambio de paradigma en las ciencias económicas. De la teoŕıa económica centrada
en la producción que ha sido la base intelectual y práctica que sostuvo el crec-
imiento económico exponencial vivido en los últimos tres siglos, estamos pasando
rápidamente a otro tipo de economı́a que se puede dividir en tres clases, la economı́a
de la información, la economı́a de la atención y la ingenieŕıa económica de sistemas
descentralizados.

Para estudiar y analizar estos fenómenos económicos debemos ampliar nuestra
caja de herramientas y reciclar nuestras teoŕıas. Por esta razón muchos economistas
en las últimas décadas comenzaron a estudiar la economı́a bajo otro prisma, el prisma
de la complejidad. La ciencia de la complejidad comenzó a desarrollarse en el siglo
pasado y fue evolucionando junto con la computación. Naturalmente las herramien-
tas que ofrece esta nueva ciencia, como por ejemplo simulaciones computacionales
de diferentes tipos, parecen más adecuadas para estudiar fenómenos económicos an-
tiguos y también los emergentes. En este trabajo estudiamos la economı́a desde el
punto de vista de la complejidad, utilizando otro paradigma, modelos no lineales
que describen la economı́a como un sistema abierto compuesto por unos agentes
heterogéneos con racionalidad limitada, tomando decisiones en contextos muy es-
pećıficos que dan lugar a redes de interacciones y fenómenos emergentes. Esta
economı́a está sumergida en una dinámica compleja y fuera de equilibrio evolucio-
nando y cambiando constantemente. Esta tesis tiene como objetivo estudiar las
complejidades de la economı́a utilizando diferentes técnicas de simulación computa-
cional.
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Metodoloǵıa

Las herramientas utilizadas para elaborar este trabajo de investigación han sido fun-
damentalmente de carácter teórico-computacional. Se han utilizado y desarrollado
diversos modelos matemáticos no lineales. La formulación matemática de estos mod-
elos ha sido en forma de mapas discretos y ecuaciones diferenciales ordinarias. Para
su resolución se han empleado métodos tipo Runge-Kutta en la mayoŕıa de las oca-
siones, ajustando las caracteŕısticas del integrador a cada caso, de tal modo que se
obtuviera el mejor compromiso posible entre fiabilidad de los resultados y tiempo de
cómputo. Además, para realizar los cálculos más pesados se han utilizado los recur-
sos del Grupo de Dinámica No Lineal, Teoŕıa del Caos y Sistemas Complejos de la
URJC, servidores de alto rendimiento y un cluster que permite paralelizar los proce-
sos obteniendo un poder de computación superior. Los modelos basados en agentes
se desarrollaron utilizando el software Netlogo y el análisis de datos posterior se ha
realizado con el software R. La programación se ha realizado fundamentalmente en
Matlab, R, Netlogo, C, C++, Fortran y MPI para los procesos en paralelo.

El método de suministro en función de la demanda

El modelo estándar de la demanda y la oferta es de naturaleza estática y asume que
la demanda y la oferta son dos observables independientes uno del otro. La única
forma de influir en la forma o la posición de las curvas de la demanda y la oferta
es a través de una fuerza exterior al propio sistema. Muchas veces se utiliza la tec-
noloǵıa como un fenómeno exógeno al mercado capaz de mover la curva de la oferta
de su posición original. Pero en la realidad uno de los factores más importantes que
determinan la oferta es la propia demanda o mejor dicho la demanda estimada por
los vendedores. Hoy en d́ıa muchas firmas de todos los tamaños invierten muchos
recursos en el estudio de la demanda porque esta información es crucial para el buen
funcionamiento de la empresa. El famoso problema que se centra en producir de
acuerdo con la demanda estimada se conoce en la literatura como el problema del
vendedor de periódicos y se remonta a finales del siglo XIX. Desde entonces y hasta
hoy se han publicado much́ısimos art́ıculos que analizan matemáticamente este prob-
lema, pero muy pocos que investigan el efecto de este comportamiento de las firmas
en la dinámica del mercado. Desarrollomos un modelo dinámico no lineal de la oferta
basada en la demanda y exploramos las dinámicas que este produce. A continuación,
presentaremos una lista de resultados y conclusiones de esta investigación:

1. Desarrollamos el modelo dinámico de la oferta basada en la demanda. Este
modelo simula un mercado en donde los compradores obedecen la ley de la
demanda, es decir cuando más barato es el producto en venta, más cantidad
quieren consumir y los vendedores en cada iteración intentan predecir la de-



Evitando el colapso utilizando el control parcial 97

manda futura para producir los productos exactos que se vayan a consumir.
De esta manera la firma consigue maximizar sus beneficios. Para estudiar
la dinámica que produce este modelo desarrollamos dos comportamientos de
proveedor muy básicos: el proveedor ingenuo y el proveedor cauto y optimista.
Hemos modelado estos comportamientos matemáticamente utilizando la señal
de éxito en la iteración anterior y la función no lineal de producción del provee-
dor. Demostramos que, aunque sean comportamientos muy sencillos, cuando
se iteran producen una dinámica de mercado muy interesante.

2. Describimos una función cuadrática convexa de producción del productor.
Basándonos en la observación de que en algunos casos el coste de producción
de un producto baja con la cantidad producida hasta un punto en donde el
productor necesita más capital para seguir produciendo y esto encarece el coste
de producción de los productos subsecuentes.

3. Mediante simulaciones numéricas, demostramos que para algunos valores de
los parámetros se producen dinámicas de mercado caóticas que en algunos
casos son transitorias. Por ejemplo, cuando la firma aumenta el margen de
beneficios a un nivel determinado la demanda empieza a fluctuar caóticamente
y esto rápidamente se traduce en trayectorias caóticas del precio en el mercado.
Confirmamos estas observaciones calculando los exponentes de Lyapunov y los
diagramas de bifurcación del sistema en estos valores de parámetros.

4. Analizamos la influencia de la elasticidad de la demanda en la dinámica del
mercado. Demostramos que este parámetro se caracteriza por tener un efecto
muy importante sobre la dinámica del mercado, pequeñas variaciones en este
parámetro producen dinámicas muy diferentes.

5. La aparición de caos transitorio en este sistema nos llevó a extender nues-
tras primeras suposiciones del modelo, prohibiéndole a la cantidad ofertada o
demandada obtener valores negativos. De esta manera demostramos que la
bifurcación final significa un colapso de mercado.

Evitando el colapso utilizando el control parcial

Los colapsos económicos son unos de los eventos más catastróficos en las sociedades
modernas. Las heridas que nos ha dejado la crisis financiera del 2008 no han ci-
catrizado aún y nos sirven para recordar que nuestros sistemas económicos son
muy vulnerables a eventos trágicos de esta naturaleza. Existe una extensa liter-
atura alrededor de este fenómeno económico y se centra en tres ĺıneas principales
de investigación. La primera analiza las diferentes causas que encadenan una crisis
económica, la segunda se centra en la predicción de este tipo de evetos, y la última
investiga cómo aplicar control sobre el sistema económico para prevenir colapsos de
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este tipo en el futuro. En este caṕıtulo seguimos la tercera ĺınea de investigación y
aplicamos con éxito por primera vez en la economı́a un método de control llamado
control parcial. Esta es de las pocas evidencias de que es posible controlar el mer-
cado de abajo arriba, sin la necesidad de un órgano central. Estos puntos resumen
lo esencial de esta investigación:

1. Describimos brevemente el modelo dinámico de la oferta basado en la demanda
con énfasis en la existencia de caos transitorio para algunos valores de los
parámetros y explicamos porque la última bifurcación significa colapso del
mercado.

2. El método utilizado en este caṕıtulo para controlar este modelo se basa en un
algoritmo llamado el algoritmo del escultor, que permite encontrar conjuntos
seguros, en los cuales el control aplicado sobre el sistema es menor que el
ruido. El ruido añadido al sistema es un término estocástico que sigue una
distribución uniforme y simula la incertidumbre que podemos encontrar en
sistemas económicos. Explicamos con detalle el funcionamiento del método y
como se aplica a nuestro modelo.

3. Controlamos con éxito las trayectorias del precio en el caso del productor
ingenuo. Una de las principales suposiciones del modelo SBOD, es que el
productor es el único capaz de fijar y cambiar los precios de los productos.
El productor actúa de price maker y el consumidor es price taker. En este
contexto el productor puede variar el precio del producto en cada iteración,
subiéndolo, aumentando el margen de beneficio o bajándolo y reduciendo su
margen de beneficio. De esta manera también con la presencia de ruido en el
precio, el productor ingenuo logra evitar una explosión de precio manteniendo
el precio en la región transitoria y aśı evitar el colapso del mercado. Este tipo
de control es un control de abajo arriba, es decir, ningún órgano central aplica
el control desde arriba sobre el mercado, sino la misma firma lo hace.

4. Aplicamos con éxito el control parcial sobre la demanda en el caso del produc-
tor ingenuo. La demanda es mucho más dif́ıcil de controlar porque depende de
las preferencias individuales de los consumidores. En este contexto aplicamos
el control parcial directamente sobre la demanda como una intervención di-
recta de la empresa en el mercado. Es decir, si hay poca demanda la empresa
por un lado puede adquirir la cantidad necesaria de productos que prevengan
que la demanda caiga a cero. Por otro lado, la empresa puede influenciar la
demanda invirtiendo en publicidad que incentiva o desincentiva la demanda,
de acuerdo con la demanda necesaria. Demostramos también que en casos en
donde existe una firma que tiene un proveedor principal este método de control
también puede ser muy útil.

5. Aplicamos el control parcial sobre la oferta en el caso del productor cauto
y optimista y demostramos que, aplicando el control sobre la cantidad de
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productos ofertada, se puede evitar también un colapso económico, aunque
esto es una propuesta más teórica que las anteriores.

Cuando la repetición es la mejor estrategia

En nuestras sociedades cada vez más interconectadas, debemos tomar decisiones muy
complejas a diario, a veces debemos considerar simultáneamente muchos factores que
están correlacionados, para resolver un problema muy simple. Tradicionalmente, los
economistas neoclásicos utilizan en sus modelos un tipo de agentes llamado Homo
economicus, en otras palabras, personas racionales con un poder computacional in-
finito que maximizan su función de utilidad utilizando toda la información presente
en el sistema. Estos agentes son más parecidos a dioses que a la gente común. Pero
esta visión simplista ha cambiado en el último medio siglo, gracias a las importantes
contribuciones de algunos cient́ıficos que enfocaron sus estudios en analizar como
realmente piensa la gente. Estos estudios han cambiado para siempre nuestra com-
prensión del proceso de toma de decisiones en situaciones inciertas. El paradigma
del agente con racionalidad limitada es muy útil al diseñar mecanismos sociales, pero
es muy dif́ıcil de integrar en los modelos económicos. Los programas informáticos
pueden ayudarnos a resolver este problema, en particular los modelos basados en
agentes. Uno de los ejemplos clásicos del uso de un modelo basado en agentes para
estudiar un problema social complejo es el conocido problema del Bar el Farol in-
troducido por el famoso economista irlandés Brian W. Arthur en 1994. Estudiamos
una extensión de este problema que se lanzó en la primavera de 2018 por el Instituto
Santa Fe, como una competición internacional en la cual participamos. A contin-
uación, resumiremos el desarrollo de esta investigación y las principales conclusiones:

1. Desarrollamos un modelo basado en agentes en donde existen dos tipos de
agentes: los tres grupos (pools) y los inversores. El objetivo de los inversores
es maximizar su beneficio visitando los diferentes grupos (pools) utilizando
alguna estrategia de acción. Desarrollamos 13 estrategias distintas y probamos
su eficacia bajo muchas circunstancias, variando los principales parámetros del
modelo. Agrupamos las distintas estrategias en cuatro familias de estrategias
(ingenuo, aleatorio, agregado y basado en patrones) para estudiar cual es el
mejor principio, para crear una estrategia ganadora.

2. Cuando existen en el sistema 50 inversores que utilizan diferentes estrategias,
encontramos que la familia de estrategias que obtuvo el mejor resultado es
la familia de estrategias ingenuas, en particular la estrategia en donde los
inversores apostaron a lo largo de toda la simulación por el llamado grupo
bajo (low pool). Esta estrategia ha demostrado su fortaleza a lo largo de todos
los experimentos y en situaciones extremas. Calculamos las distribuciones del
balance final de todas las estrategias que participaron repetitivamente en el
experimento, y conclúimos que las estrategias: siempre grupo bajo, siempre
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grupo alto y secuencias de ceros son las que ofrecen los mejores resultados en
términos de balance final. Las distribuciones de cada estrategia son diferentes y
como hemos mencionado anteriormente la estrategia siempre grupo bajo obtuvo
la media más alta entre los tres grupos.

3. En términos de asistencia de inversores a cada uno de los grupos, encontramos
la misma dinámica que descubrió Brian W. Arthur en su art́ıculo original sobre
el Bar el Farol. En nuestro caso, la asistencia en general converge en tan solo
10 iteraciones del modelo a los diferentes atractores. Después de repetir el
experimento 100 veces y calcular la media de asistencia a cada grupo en cada
iteración observamos que la asistencia media al grupo estable fue de 13.01
inversores, la asistencia al grupo bajo fue de 17.31 y la asistencia media al
grupo alto fue de 19.16.

4. El efecto que tiene el coste de cambio de grupo (pool) τ sobre los balances
finales de las diferentes estrategias es otro ejemplo de la fortaleza de la es-
trategia siempre grupo bajo, ya que es la única estrategia que al aumentar τ
aumenta su balance final.

5. Investigamos qué pasa cuando aumentamos el número de inversores en el sis-
tema gradualmente hasta 100. Como cab́ıa esperar la estrategia siempre grupo
estable, gracias a su esquema estable de reparto de recompensas es la única
estrategia a la cual el aumento de inversores no afecta. Lo interesante es
que también en este caso la estrategia siempre grupo bajo demuestra su gran
fortaleza ya que mientras hayan menos de 73 inversores en el sistema esta
estrategia consigue el balance total más alto.

Predicción en cuencas fractales

El oscilador de Duffing es un modelo de oscilador no lineal muy conocido y estudiado
con múltiples aplicaciones en la modelización de muchos sistemas en la ciencia, la
ingenieŕıa y la economı́a. Es frecuentemente utilizado en la modelización de muelles
no lineales, sistemas amortiguados o la dinámica de los mercados. Para algunos
valores de los parámetros de este sistema aparece un espacio de fases fractalizado,
que posee cuencas de Wada. Una cuenca de Wada es aquella para la cual toda su
frontera está formada por puntos de Wada. Un punto de Wada pertenece a tres o
más fronteras de distintas cuencas al mismo tiempo. La principal consecuencia de
este hecho es la dificultad intŕınseca para hacer predicciones, ya que una condición
inicial ubicada en una frontera de Wada puede evolucionar temporalmente hacia
cualquiera de los atractores. Esto tiene una gran importancia, ya que estamos
acostumbrados a la idea del determinismo clásico, donde una vez fijamos la condición
inicial, automáticamente conocemos la evolución de la órbita. Desde un punto de
vista experimental, fijar una condición inicial con precisión infinita no es posible, de
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lo que se deriva un serio problema de predicción en los sistemas f́ısicos y económicos.
En este caṕıtulo llevamos a cabo una profunda investigación estad́ıstica de este
fenómeno y estos son los principales resultados:

1. El resultado principal de este trabajo de investigación, del cual, se derivan
todos los demás, es el siguiente: aumentando la precisión de las condiciones
iniciales o mejorando la resolución del espacio de fases hemos encontrado que
la probabilidad de cada cuenca de atracción tiende a ser fija. Esto es resultado
de la estructura fractal de las cuencas de atracción. Medimos la probabilidad
de cada cuenca de atracción midiendo el área que ocupa en el espacio de fases.
Asumiendo que esta área esta determinada por una frontera fractal nos lleva
a la famosa paradoja de la ĺınea de costa introducida por Mandelbrot. No im-
porta cuánto mejoremos la medición de las condiciones iniciales obteniendo un
espacio de fases con más resolución, la proporción de las cuencas de atracción
se mantendrá fija. Utilizando una simulación de Monte Carlo confirmamos
esta observación.

2. Hemos realizado un análisis unidimensional en donde medimos la probabili-
dad condicional de una condición inicial de pertenecer a una de las cuencas de
atracción dependiendo de una de las coordenadas del espacio de fases. Encon-
tramos que en la probabilidad condicional de pertenecer a alguna cuenca de
atracción cambia drásticamente en las regiones del espacio de fases en donde
se observan claramente los atractores, pero en regiones en donde se observa
la propiedad de Wada (más comunes en el espacio de fases) la probabilidad
condicional de pertenecer a alguna cuenca de atracción es bastante constante.
Esto significa que, si conocemos una coordenada de la condición inicial, (es de-
cir, tenemos en nuestro poder la mitad de la información relacionada con esa
condición inicial) esta información no nos ayuda a hacer mejor las predicciones
sobre el estado final del sistema.

3. Demostramos que, sabiendo únicamente las probabilidades de los atractores
de un sistema dinámico, es suficiente para hacer predicciones también si el
sistema posee la propiedad de Wada. Además, este método funciona también
cuando no tenemos ninguna información de las condiciones iniciales.

4. Para investigar un sistema dinámico, no hace falta estudiar el espacio de fases
con muy alta resolución. En nuestro caso una resolución de 300 × 300 capta
todas las propiedades estad́ısticas globales del sistema. Esto es beneficioso en
cuanto a tiempo de computo y recursos de computación.




