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Abstract: The complexity of the human brain makes its understanding one of the biggest challenges
that science is currently confronting. Due to its complexity, the brain has been studied at many
different levels and from many disciplines and points of view, using a diversity of techniques for
getting meaningful data at each specific level and perspective, producing sometimes data that are
difficult to integrate. In order to advance understanding of the brain, scientists need new tools that
can speed up this analysis process and that can facilitate integrating research results from different
disciplines and techniques. Visualization has proved to be useful in the analysis of complex data, and
this paper focuses on the design of visualization solutions adapted to the specific problems posed by
brain research. In this paper, we propose a unified framework that allows the integration of specific
tools to work together in a coordinated manner in a multiview environment, displaying information
at different levels of abstraction and combining schematic and realistic representations. The two use
cases presented here illustrate the capability of this approach for providing a visual environment that
supports the exploration of the brain at all its organizational levels.

Keywords: neuroscience information visualization; multilevel navigation; nonphotorealistic
rendering

1. Introduction

Understanding the human brain is one of the greatest challenges still open. There are a
number of factors that limit progress in this field. The first one is the brain’s overwhelming
complexity, which comes from the combination of a set of factors: First, the number of
significant components is huge (around 1011 neurons and 1015 synapses in the human
brain [1]); furthermore, other elements such as glia and vasculature are also relevant.
Second, the morphology of each of these elements is far from trivial, as many details
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that determine important aspects of their behavior exist. Third, morphology alone is not
enough, since it is necessary to understand also each element’s function. Fourth, the brain is
not just a collection of complex elements working on their own, but a network of elements,
and the network topology is also central for understanding how the brain works. Finally, it
is necessary to consider not only a stationary network; its dynamic behavior is also central
for understanding the brain’s behavior and how it adapts to changing stimuli.

In order to cope with this complexity, the brain has been studied at many different
levels and from many disciplines and points of view (morphology, physiology, etc.), using
a diversity of techniques for getting meaningful data at each specific level and perspective.
Despite the task’s difficulty, interest in understanding the brain can be tracked back to
the very beginning of science, among other reasons, because of its influence on human
healthy life. The improvement of laboratory equipment and techniques, the availability of
powerful computers and dedicated software, and the appearance of ambitious collaborative
research programs has strongly accelerated the pace at which new advances are being
produced. Nevertheless, there are still many issues where progress is needed, such as in
understanding the brain as a unified system that spans multiple levels of organization
(covering all levels from the molecular to the behavior and cognitive).

The human brain can be seen as a complex processing system that can be structured
into different organizational levels, allowing it to be studied at different scales, among other
reasons, because of the availability of techniques that can provide information at each
specific scale. This approach has provided a good knowledge about each of the individual
levels, but there is still a lack of understanding about the interactions and causal chains
of events among the different levels of the hierarchy needed to result in cognitive and
behavioral processes. One of the reasons for this is the lack of tools that facilitate moving
smoothly across the hierarchy; with respect to this, one of the goals of this paper is to
present a visualization approach that can help in bridging this gap by facilitating users
to combine data and descriptions from different levels of abstraction and standpoints
(restricted so far to morphology and physiology, to soon include connectivity).

Presenting information across the hierarchy of levels at which the brain can be studied
is not easy. The available knowledge and information is by no means comprehensive;
there are still many missing pieces in the puzzle, which makes smooth transitions difficult.
Going down in the hierarchy often means increasing the volume of data by orders of
magnitude. This stands in the way of a well-established principle for information visual-
ization: overview first, zoom and filter, then details-on-demand [2]), since getting one level
down in the hierarchical description of a region easily results in cluttering the visualization
with huge amounts of information that often prevents getting a global view of the data
being analyzed.

This paper presents a framework for the visual exploration of neuroscience data that
can facilitate the analysis of complex scenarios, based on a multilevel approach designed
to follow closely the brain organizational levels which are relevant for a particular task.
In order to remove clutter from visualizations, this framework uses schematic or iconic
symbols that have higher expressive capabilities than realistic (morphologically correct)
representations of the relevant entities. Being based on the possibility of combining
schematic representations of higher order abstractions with other lower level descriptions,
this method can effectively decrease the visual complexity of the scenes presented to
the user. This, in turn, facilitates the analysis task in extensive scenarios, where other
visual representations would be cluttered with unnecessary details. Last, this framework
takes into consideration many of the complexity aspects that hamper neuroscience data
analysis, proposing a visual approach that has proved to be helpful for the exploration
and understanding of massive data and scenarios. A preliminary implementation is also
presented, focused on the morphological aspects of neuronal circuits within the brain cortex
and on certain features of the dendritic spines of cortical pyramidal neurons. This gives rise
to an integrative framework that combines different tools, with complementary approaches
that work in a coordinated manner to provide a multiview interactive environment in
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which it is possible to explore data at different levels of abstraction while applying different
representation techniques.

The paper is organized as follows. After this introduction and a brief review of
previous work, the main aspects of the proposed visualization framework are described,
together with two case studies: a first application for the multilevel navigation around
medium to high complexity neocortex neuronal circuits and a second one for the analysis
of the morphological features of dendritic spines in pyramidal neurons, also within the
neocortex. These two use cases work at different scales, from cortical columns to dendritic
spines. The difficulties associated to the visualization of each of them are different and
require distinct techniques to address their respective challenges. However, the proposed
solution allows the combination of specialized tools, providing a single framework which
allows transversing the entire range of scales, linking the knowledge obtained from each of
them and, therefore, facilitating advancing toward the unraveling of the complete system.
Last, some illustrative results are described and discussed.

Related Work

Visualization, the set of techniques that use computer-generated graphics and rep-
resentations to facilitate human understanding, has attracted a great amount of interest
during the last years [3–5], being a discipline that is quickly reaching maturity. Graphical
representations of data are used to pursue the goal of presenting the information aestheti-
cally while providing insight into the depicted data. Related to this goal, disciplines such
as data or information visualization are becoming especially relevant for the analysis of
systems that are either highly complex or follow the 3Vs rule (volume, velocity, and variety)
that characterizes big data [6]. The strategies behind most visualization techniques rely
on our ability to process information through the visual channel, which is definitely more
efficient in detecting patterns or outstanding elements from graphical representations than
from numerical or tabular representations [7,8].

The increasing complexity of the data sets that can be displayed thanks to the continu-
ous advances in visualization technologies has led to the use of multiscale visualization meth-
ods in a myriad of different fields, ranging from rechargeable metal batteries [9] to molecular
dynamics simulations [10,11] or geomorphology [12], to cite just a few. Apart from that,
there have been different attempts to use coordinated linked views for providing users with
a more complete way to gain insight into such complex data sets [13–15].

Regarding the neuroscience domain, the complexity of the brain makes its study a chal-
lenging job that requires the collaboration of different disciplines. On one side, there is the
extraction of activity data [16]. On the other side, different software tools based on graphi-
cal representations of the data have been successfully used in a wide variety of problems,
such as the exploration of neuronal data (Connectome Explorer [17], Brain Gazer [18], or
Neuron Navigator [19]); segmentation and tracing tasks (NeuroMorphoVis [20], Imaris [21]
or Neurolucida [22]), and reconstruction, visualization, or simulation (NeuroConstruct [23],
Neuronize [24,25], NeuroTessMesh [26], NeuroScheme [27], RTNeuron [28], VIOLA [29]
or ViSimpl [30]), among many others.

However, the extreme complexity of the brain and its multilevel organization require
innovative techniques to describe and analyze each organizational level, placing more
emphasis on the most relevant features under study and less on the least significant ones,
while relating different scales and domains in order to fully explore the system (for example,
for correlating anatomical and functional features). In this sense, alternative strategies
have already been applied through the design of abstract or iconic representations applied
to neural circuits and electrical models [31–37], or the inclusion of nonphotorealistic ren-
dering techniques [38–40]. Some authors have designed multiscale abstract visualization
techniques for the analysis of neurites and their connections, such as [41].

It should be noted that the work presented here goes one step beyond, illustrating
the potential of innovative visualization strategies based on the systematic combination of
accurate (realistic) and abstract (symbolic or iconic) representations, together with trans-
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formed domains. This combination of different kinds of representations with transformed
domains should be (and is) finely tuned to the specific range of tasks to be performed,
which usually involve the exploration of sets of neuroscience data within a multiscale
framework, tightly coupled with the organizational levels of the brain.

2. Visualization in Neuroscience

There are many areas in neuroscience that can benefit from the availability of tools
designed for helping researchers perform typical analysis operations (such as characterize,
compare, select, model, predict, hypothesize, validate, etc.). For example, in a large
collaborative framework such as the Human Brain Project, there are research groups
working on neuron morphology, neuronal circuit simulation, neuromorphic hardware
design, neuroinspired robotics, etc. Usually, many of the analysis operations in these fields
have to be performed on extensive data sets, being impossible for anyone to get a global
overview together with the fine detail needed at a specific region unless the analysis system
provides the possibility of combining representations of different scale or level of detail.
This paper presents a visualization approach based on the combination of symbolic and
realistic views of different expressive power, designed specifically for this purpose.

Figures 1 and 2 present a series of sketches that summarize the main idea proposed in
this paper. For example, let us suppose that a user wants to analyze certain morphological
features of the spines located in a dendrite fragment of a pyramidal cell, within a large
collection of neurons. Figure 1a–c illustrate the sequence of navigation steps followed by
the user in order to select that neuron’s specific area of interest. The spines of the selected
dendrite segment are presented afterwards, ranked according to the user selected features
in Figure 2a–c, using a color code to enhance the variation of the desired morphological
features. These sketches highlight two points:

• The advantage of using abstract representations, which allows condensing large
portions of complex geometry in order to simplify the representation of a scenario,
composed in this case by a potentially large number of neurons within a specific
brain area.

• The benefits obtained by using transformed domains. In this case, representing the
spines extracted out of the dendrite, ranked by the value of the features under analysis,
helps during the analysis stage by providing users with a clear overview of the
spines’ morphological variability (an ordered set of elements is easier to understand,
characterize, and compare than a randomly disordered set).

(a) (b) (c)
Figure 1. Sequence of navigation steps for selecting an area of interest within a specific neuron. (a) Iconic representation of
a neuron; (b) Id. for a dendrite; (c) Full details from a dendrite segment.
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(a)

(b) (c)
Figure 2. Spines from a selected dendrite segment. (a) Spines of a dendrite section ranked by total spine length; (b) Id.,
ranked by neck length; (c) Id., ranked by head volume.

Specifically, the framework presented here merges three tools that cooperatively enable
the combination of abstract and realistic representations spanning the organizational levels
of the cerebral cortex, from the scale of cortical columns to dendritic spines: NeuroScheme,
NeuroTessMesh, and PyramidalExplorer. Neuroscheme provides the visualization of ab-
stract representations at different levels of abstraction, as well as useful functionalities for
filtering, sorting, and selecting elements. These operations can be performed at any level of
abstraction, being automatically propagated to the rest of the organizational levels. The sec-
ond tool, NeuroTessMesh, is oriented to the efficient visualization of neuronal anatomy,
rendering the morphology of cells at different levels of detail. This tool provides realistic
representations of neurons, allowing the (interactive, under conditions) visualization of
complex cortical circuits thanks to the on-the-fly refinement of the polygonal mesh that
approximates the neuronal membrane. Last, PyramidalExplorer has been designed for the
visual exploration and discovery of the detailed structure of the cell microanatomy. This
tool supports the examination of the dendritic spines of a neuronal cell and provides useful
analysis techniques, such as filtering, sorting, or content-based retrieval operations.

These tools are integrated into the framework and can share data interaction opera-
tions such as selection, filtering, or camera movements in coordinated views. For example,
filtering out a cortical layer in NeuroScheme can be automatically propagated to Neu-
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roTessMesh, so that all the morphologies of the neurons belonging to that layer disappear
from the realistic view.

The next section shows the results of applying the proposed framework on two
practical examples involving the visual exploration of complex data sets.

3. Results

The proposed framework has been used to perform two different tasks of exploratory
data analysis of neural data. Each of them addresses the visualization of data sets at
different levels of abstraction and requires specific tools that can collaborate within the
proposed framework, thus providing an environment that supports the visual analysis of
neural morphology at different organizational scales.

3.1. Case Study 1: Navigation Around the Neocortex

The first case study addresses the visual exploration of a set of cortical neurons.
This task can be performed using the multilevel schematic cell depiction features provided
by NeuroScheme, a tool for multilevel navigation around the neocortex designed for facili-
tating the analysis of the morphology, topology, and simulation results of relatively complex
synthetic neocortical neuronal circuits (up to a few million neurons) [27]. For that purpose,
this method uses a multilevel structure where each level corresponds to a different neocorti-
cal organizational level. In this case, the entities that compose the multilevel structure are:
column, microcolumn, neuron, neurite, and (neurite) branch entities, with each of them
having a different symbolic representation (the first three ones are presented in Figure 3).
The selection of any of them involves the selection of all of the lower level elements included
in the entity. As commented before, mixing visualizations of data and structures at different
levels allows users to gain access to the global picture and the desired fine detail when
needed, facilitating also the selection of the part of the circuit to be displayed at each moment.
Neuroscheme can be combined with NeuroTessMesh, in order to show a coordinated view
with the detailed geometry of the neurons (Figure 4).

(a) (b) (c)
Figure 3. Some icons and abstraction levels used in NeuroScheme. (a) Neuron entity; (b) microcolumn entity; (c) col-
umn entity.

(a) (b) (c)
Figure 4. Geometric and abstract windows for exploring a microcolumn. (a) Realistic representation: far view; (b) realistic
representation: closeup view; (c) abstract representation.
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The geometrical and the abstract representations provided here are connected, so that
a selection or modification in the abstract representation is automatically updated in the
geometrical representation. For example, focusing at the neuronal level, if a neuroscientist
is interested in knowing the characteristics of the neurons included in a circuit, their
schematic representation allows him to see at a glance the main circuit’s neuron types
and their most relevant features. Additionally, the schematic neuron representations can
be ranked according to different criteria (such as the value of specific features, like soma
volume or dendritic length), or they can be displayed occupying their real position within
the circuit. After a set of neurons is ranked, groups of neurons can be selected for studying
them in more detail or for analyzing their detailed morphology and circuit location. It has
to be noted that, just like the geometrical and abstract windows, the organizational levels
are also connected. A selection in one level, such as the selection of a group of neurons
at the neuron level, results in displaying only the minicolumns containing the selected
neurons when going one level up in the hierarchy. Whenever a column or microcolumn
layer is selected, only the neurons from that layer are highlighted in the abstract and
geometrical windows and when going down in the hierarchy. Figures 5 and 6 show images
of a column and a microcolumn; please note that the column symbolic representation has
been expanded to show the microcolumns that compose it.

(a) (b) (c)
Figure 5. Visualization of a microcolumn. (a) Realistic representation: far view; (b) realistic representation: closeup view;
(c) abstract representation.

(a) (b) (c)
Figure 6. Microcolumns in a column. (a) Realistic representation: far view; (b) realistic representation: closeup view;
(c) abstract representation.

Regarding the symbolic representations for each organizational level, the highest one
in the hierarchy is the column, being represented by a blue pentagonal shape containing
the average information of the neurons belonging to it (which are depicted according to
the neuron entity, described below). A column can be expanded to view the most relevant
information of each of its layers, showing both the number or pyramidal cells and the
number or interneurons per layer. For each layer, this number is represented using the
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length of a red bar growing leftward for pyramidal cells and rightward for interneurons.
The triangles or circles drawn next to each layer allow selecting all the pyramidal or
interneuron cells of that column layer. A triangle (or a circle) painted in gray represents
that, for that column, there are no pyramidal cells (or interneurons) in that particular layer.

The next organizational level down in the hierarchy corresponds to microcolumns.
They are represented by green hexagonal shapes, containing also information about the
average neurons in that microcolumn. Just like before, microcolumns can be expanded to
inspect layer information. Going another step down the hierarchy, neurons are represented
by circles, having their color encode whether it is an excitatory neuron (blue circle) or
inhibitory neuron (red circle). At the neuron center, a triangle in the pictogram denotes that
it refers to a pyramidal neuron, and a circle denotes that it refers to an interneuron. Other
symbols show degree of dendritic arborization and soma and dendrite area and volume.

The lowest two levels in the hierarchy correspond to the neurite and branch entities.
Just like before, relevant information is graphically presented, letting users select also how
much neurite detail is presented. Additional details can be found in [27].

3.2. Case Study 2: Analysis of Dendritic Spines in Pyramidal Neurons in the Neocortex

The second case of study shows the potential of mapping different quantitative
features across the neurons’ morphological representation. This option facilitates the study
of the features’ spatial distribution, bridging also the gap between the bare statistical
analysis of feature distributions and the performance of visual analysis processes, which
allow studying spatial distributions and detecting the occurrence of patterns in the features’
spacial distribution.

This case of study is based on PyramidalExplorer [42], an interactive tool designed for
exploring and analyzing the organization and architecture of pyramidal neurons. It should
be noted that previously existing tools like Connectome Explorer [17] study aspects such as
if an axon connects with the same dendrite or with different dendrites, as well as whether
synapses are sequential or not within the same dendrite. By contrast, PyramidalExplorer
allows the detection of possible regional differences through the combination of imple-
mented functional models and structural quantitative morphological information. The tool
accepts as input different data, such as electron microscopic reconstructions or confocal
microscopy stacks of high-resolution images. Based on these input data, a model of the
neuron is obtained. Figure 7 presents the 3D reconstruction of a human pyramidal neuron.
In this case, the goal is to analyze the volume of the spines along the dendrites. For that,
the tool provides the following widgets with the aim of:

• Obtaining a list with all the dendritic spines. The spines in this list can be ordered
according to different criteria.

• Allowing the selection of analysis criteria by interacting with the set of considered
spine characteristics.

• Allowing a 3D visualization of the details of each individual spine within the neuron.
• Using the histogram distribution to filter the results and allowing to select the most

adequate color range in order to improve the results visualization.

For the same pyramidal neuron, Figure 8 shows how different morphological char-
acteristics are distributed along the whole neuron, which allows the detection of possible
differences in the regions of the neuron architecture. The extracted morphological fea-
tures are spine length, spine area, spine volume, spine neck mean diameter, and spine
maximum diameter.
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Figure 7. The PyramidalExplorer tool.

The selection of the minimum spine neck mean diameter and the maximum spine
diameter, for example, makes it easy to spot where are the spines that have the narrowest
necks with the largest heads (Figure 8a). As can be seen, the distribution of these spines in
the arbor differs from those with other characteristics (Figure 8b). Additionally, the tool al-
lows linking other types of information to each spine. For example, it is possible to combine
functional models (generated offline) with morphology structural quantitative information
to visualize a membrane potential peak estimation for each spine. Figure 8c) shows how the
membrane potential peak values are distributed along the neuron. Differences in specific
dendritic segments, even within the same dendrite, can be easily spotted.

(a) (b) (c)
Figure 8. Spine comparison results from a human pyramidal neuron. (a) Maximum diameter and minimum mean
neck diameter; (b) maximum mean neck diameter; (c) maximum membrane potential peak.

Last, PyramidalExplorer could be used in combination with other tools, for example,
for the visual analysis of functional information, which requires also the availability of
neuron anatomical details.

4. Discussion

The two use cases presented in this article are just two examples that illustrate different
tasks for the exploratory analysis of neuronal data. The first one deals with the navigation
across a visually complex set of neurons, where complexity comes both from the number
of cells that compose it (in the order of thousands) and from the intricate anatomy of
the neurons themselves. The visualization of a neuronal forest composed of hundreds
or thousands of cells yields cluttered, visually complex images where it is difficult to
distinguish one element from another. In this context, the use of abstract representations
that simplify neuron anatomy decreases drastically visual clutter, displaying the most
relevant information while eliminating minor details. Additionally, structuring these
schematic representations at different levels of abstraction significantly simplifies the
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amount of information associated with the different organizational levels of the brain,
taking therefore advantage of the benefits of encapsulation when analyzing complex
systems. Overall, the combination of schematic representations with the exploitation of
the levels of abstraction concept makes it possible to reduce both visual and cognitive
complexity when visually exploring complex neural scenes.

However, the visualization of the real neuron anatomy is still necessary for study-
ing their morphological features. For that reason, the approach presented here combines
schematic representation at different levels of abstraction with the visualization of mor-
phologically correct representations. This generates clean and compact views that are
efficiently rendered at rates suitable for interactivity. Additionally, this approach provides
combinations of schematic representations that provide overall views with more detailed
data, obtained at lower levels of abstraction, when and where needed. For example,
in Figure 4, it is easy to see that layer 6 in the column contains far more pyramidal neurons
than interneurons. Since the abstraction levels are connected, a simple click on the red
bar representing the number of interneurons would allow to display these cells instantly,
descending to the minicolumn level or the cell level as desired. Furthermore, since the
abstract view and the geometrically realistic view are also connected, once a particular
object has been spotted in the abstract representation, clicking on it can automatically
highlight it in the realistic view and zoom in for an easy location (Figure 4b).

Being able to go from abstract to realistic views provides many additional advantages,
mainly because it lets users to select the kind of representation better suited to a particular
task. For example, abstract views facilitate arranging data according to different criteria,
since in these representations the objects spatial positions do not necessarily have to
correspond to their real anatomical positions. This way, objects in the abstract image can
be reordered according to size, volume, or any meaningful feature, facilitating filtering and
ranking operations. After some elements are selected, it is always possible to display them
in their original locations.

The proposed framework facilitates creating more powerful tools. For example, use
cases 1 and 2 can be connected, so that the exploration of a region of the neocortex can
provide a selection of pyramidal neurons from which the dendritic spines will be later
on analyzed. In general, once certain particular objects have been spotted through the
interaction with the tools, as in the first use case, the framework allows to go beyond and
focus on one of them, descending to a lower level and combining information from different
nature, as it happens in the second use case with functional and morphological information.
This way, Figure 8 shows regional differences based on morphological information (spines’
neck diameter) and functional models (membrane potential).

However, it should be emphasized that complex experimental data sets are not yet
available at present to enable the performance of exploration activities linking all levels of
abstraction. In this sense, our prototype constitutes a pioneering proposal and its ability to
cover all organizational levels of the brain sets the basis for the integration of the specific
knowledge acquired at each of the scales. The tools integrated in the initial prototype are
mainly focused on the visualization of anatomical information; in order to build a fully
integrative framework, it will be necessary to incorporate techniques for the visualization
of neural activity and connectivity data, thereby providing a tool that helps to link the
different brain study domains.

5. Conclusions and Future Work

The analysis of neuroscience data will require, sooner rather than later, the availability
of powerful analysis tools that can help cope with the continuous increase in complexity
found in the data sets provided by new experimental and computational techniques
and infrastructures. In this sense, using symbolic or schematic representations allows
summarizing nonessential details, letting users concentrate on relevant information while
analyzing massive scenarios.
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Additionally, the establishment of large multidisciplinary research initiatives will
demand the availability of tools that can integrate data and models stemming from different
disciplines. In order to meet these demands, new representation models and techniques
will be needed; these models, together with the development of appropriate analysis
techniques, will allow researchers to gain insight into the brain as a unified system, even
though it will be studied from many different perspectives.

The unified framework proposed in this paper, based on the design of symbolic
representations and the use of transformed domains, has been developed having these
two problems in mind. This framework also facilitates the integration of specific tools,
by providing a multiview environment where they can be run in a coordinated manner.
Using this approach, information provided by different techniques and experiments can be
displayed coordinately, at different levels of abstraction, allowing users to navigate among
them, while decreasing the level of visual clutter provided to users through the exploitation
of schematic representations.

With respect to the methods presented here, the possibility of having schematic
representations alleviates the amount of visual clutter provided to users, facilitating the
generation of global views that summarize the most relevant information. At the same time,
having this schematic representation linked to the morphologically detailed information
allows the selection of objects to view in full detail in the 3D space whenever needed.

The representations described in this article, not necessarily linked to any particular
discipline, can be designed for facilitating the fusion of information from different origins
(such as morphological and functional, for instance), because their symbolic or abstract
nature can facilitate combining information and data from multiple sources. Having a rich
variety of representations at different scales can simplify condensing an otherwise over-
whelming amount of detail. The early feedback received from end users, so far, is positive,
since this kind of tools allows them to access to information that was unavailable until now,
or because it facilitates analysis tasks by speeding up the navigation process around large
data sets, allowing them also to combine information gathered at different scales.

Future work includes the application of these techniques to the navigation around
large data sets and repositories, facilitating finding the localization of the desired informa-
tion. An additional line of work is the development of new workflows for improving the
productivity of neuroscientists by providing early insight on the data being collected.
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