
Self-Supervised Collision Handling via Generative 3D Garment Models
for Virtual Try-On

— Supplementary Document —

Igor Santesteban1 Nils Thuerey2 Miguel A. Otaduy1 Dan Casas1

1Universidad Rey Juan Carlos, Spain
2Technical University of Munich, Germany

first.last@{urjc.es}{tum.de}

In this document we provide additional details, including
dataset description, training parameters, and further evalua-
tion, of our paper “Self-Supervised Collision Handling via
Generative 3D Garment Models for Virtual Try-On”.

1. Dataset

1.1. Physical Simulation

In this work we use physical simulation to generate the
ground-truth data to train and validate our model. Specifi-
cally, we use ARCSim [6], an open-source cloth simulator.

We use a fixed timestep of 3.33ms in all our simulations,
and store the results from 1 out of every 10 time steps, to
match the frame rate of the character animations. We use a
diverse set of 56 animations from the CMU Motion Capture
Database in the AMASS dataset, which cover a wide range
of motions, and use the rest of sequences of the dataset for
the tests shown in the video.

We train our model using 17 different body shapes β.
Specifically, we generate 4 samples for each of the first 4
principal components of the shape space in SMPL, leaving
the rest of β parameters in 0. Additionally, we use the aver-
age shape β = 0.

To initialize the simulations with a valid cloth configura-
tion we always start at t-pose and progressively interpolate
towards the initial pose and body shape. Once we reach the
initial state, we simulate the garment until it reaches equi-
librium, and then we run the animation.

For garment materials, we use polyester knit fabrics from
the set of measured materials [11]. Specifically, we use
the gray-interlock material for the t-shirt and the
navy-sparkle-sweat material for the dress. In both
cases we set the damping coefficient to 0.01.

1.2. Projection to Canonical Space

Once we have the simulation data, we run the optimiza-
tion described in Section 4.3 to obtain the projection in the
canonical space. To this end, we solve Equation (9) with
a L-BFGS method and gradients computed with automatic
differentiation in TensorFlow [1]. The weights of the energy
function are set to ω1 = 1e−4, ω2 = 1e−2 for all meshes.

2. Neural Networks
We use TensorFlow [1] to implement all our networks.

All networks use Adam optimizer [3].

2.1. Diffused Human Model

To generate the training data for the different compo-
nents of our diffused human model (e.g., blendshape dis-
placements, rigging weights), we exhaustively sample the
SMPL model as follows. We sample 10,000 points, and
we use libigl [2] to find the closest point in the body sur-
face. Then, from this closest point, we compute ground
truth value (e.g., distance, blendshape displacement, skin-
ning weights, depending on the network we are training) us-
ing barycentric interpolation. For each epoch, we dynami-
cally update the set of samples. Since the garment can move
far from the body surface, we sample points uniformingly
to have similar accuracy in all the 3D space. All terms of
our diffused human model are trained with neural networks
with these parameters: initial learning-rate 1e-4, batch size
256.

Signed Distance Network. The network that approxi-
mates the distance field of the body template follows the ar-
chitecture of SIREN [10], which uses sine activation func-
tions. The network consists of 5 fully-connected hidden lay-



ers with 256 neurons each. We train the network by mini-
mizing the L1 error between the predicted distance and the
ground-truth distance.

Blendshape Networks. For the networks that approxi-
mate the body blendshapes for any arbitrary 3D points, we
use a fully-connected network of 5 hidden layers with 256
neurons. We use ReLU activations. We also tried to use
SIREN for these networks, but had better results using the
architecture of DeepSDF [7].

Skinning Weight Network. Same as blendshape net-
works, but the last activation is Softmax (this makes the
output sum 1 always 1, which is necessary for the skinning
weights). Instead of minimizing the L1 norm of the error,
we minimize the KL divergence, as done in the work of Liu
et al. [5],

2.2. Deformation Subspace

The generative space of garment deformations is ob-
tained by using a Variational Autoencoder (VAE) [4]. Both
the encoder and the decoder share the same architecture: 4
dense layers of size 2000 with ReLU activations, and layer
normalization after each activation. To train the autoen-
coder we first train it during 100 epochs with the learning
rate set to 1e−4 and the weights set to λ1 = 100, λ2 = 0
and λ3 = 1 (i.e., we don’t optimize collisions during this
step). Then we lower the learning rate to 1e−5 and we pro-
gressively raise the KL and collision loss until we reach the
final weights λ1 = 100, λ2 = 10 and λ3 = 1, which are
maintained without change until the network converges.

2.3. Recurrent Regressor

We implement our recurrent regressor R() with 2 GRU
layers of size 500. For the recurrent steps we use a sigmoid
activation whereas for the final output of each layer we ap-
ply the tanh function. We train the network with an initial
learning rate of 1e−4 and batches of size 8, and we set the
weights of the velocity and acceleration losses to ρ1 = 0.5
and ρ2 = 0.1, respectively.

3. Additional Evaluation
3.1. Performance

To further validate the advantage of our model with re-
spect to existing methods that apply a postprocess step to
fix the problematic vertices, we compare the runtime perfor-
mance of both strategies. As we show in Table 1 of this doc-
ument, the cost of evaluating the networks required by our
approach (i.e., the networks of the diffused human model) is
significantly lower than the cost of postprocessing required
by [8] and [9].

Ours [9] [8]

T-shirt (8,710 triangles) 1.4 ms 3.0 ms 210 ms
Dress (23,949 triangles) 2.9 ms 6.9 ms 698 ms

Table 1: Evaluation time of our networks required to ac-
count for body-garment collisions (i.e., diffused body model
to unproject vertices to posed state) vs. postprocessing time
for [8] and [9] using original authors implementation.

3.2. Unposing Evaluation

A fundamental step of our approach is the novel
optimization-based strategy to unpose ground-truth simu-
lated garments described in Section 4.3 of the main docu-
ment. Here we provide additional quantitative evaluation
of this step, and we compare it to state-of-the-art methods
that are based on fixed rigging weights [9, 8], and to a base-
line strategy that uses a rigging weight assignment based
on the per-frame nearest vertex between the simulated gar-
ment and underlying body. To this end, we provide two
metrics: the average triangle strain of the unposed meshes,
which measures the overall distortion with respect to the
template mesh; and the number of collisions in the unposed
mesh. Our strategy leads to significantly lower errors in
both metrics, indicating that unposed meshes have signifi-
cantly fewer collisions and do not suffer from undesired dis-
tortions. This is qualitative shown in Figure 3 of the main
document, and in the supplementary video.

Constant Nearest Oursweights [9, 8] vertex

Strain 5.5 190.8 0.07
Num collisions 218.6 48.6 12.1

Table 2: Strain and average number of collisions in rest
pose.

3.3. Quantitative Comparison

Finally, in Table 3 we quantitatively evaluate our method
and compare it to the approach of Santesteban et al. [9],
which is the only existing work that also models dynamics
as a function of body shape and motion. To this end, we use
5 test sequences and 17 shapes, totaling 12,155 frames, and
we compute error metrics based on per-vertex Euclidean
error, average triangle strain, and average number of col-
lisions. Our method is on par with the per-vertex surface
error of [9], while we significantly reduce the number of
collisions.



Santesteban [9] Ours

Error (cm) 2.9 3.1
Strain 0.006 0.007
Num collisions 80.0 1.3

Table 3: Quantitative evaluation of our approach in 5 test
sequences and 17 body shapes.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 1

[2] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 1

[3] Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 1

[4] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[5] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan,
and Kun Zhou. Neuroskinning: Automatic skin binding
for production characters with deep graph networks. ACM
Transactions on Graphics (Proc. SIGGRAPH), 38(4), July
2019. 2

[6] Rahul Narain, Armin Samii, and James F O’brien. Adaptive
Anisotropic Remeshing for Cloth Simulation. ACM Trans-
actions on Graphics (Proc. SIGGRAPH Asia), 31(6):1–10,
2012. 1

[7] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Represen-
tation. In Proc. of Computer Vision and Pattern Recognition
(CVPR), 2019. 2

[8] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-
Moll. The Virtual Tailor: Predicting Clothing in 3D as a
Function of Human Pose, Shape and Garment Style. In Proc.
of Computer Vision and Pattern Recognition (CVPR), 2020.
2

[9] Igor Santesteban, Miguel A. Otaduy, and Dan Casas.
Learning-Based Animation of Clothing for Virtual Try-On.
Computer Graphics Forum (Proc. Eurographics), 38(2),
2019. 2, 3

[10] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
Neural Representations with Periodic Activation Functions.
In Proc. NeurIPS, 2020. 1

[11] Huamin Wang, James F O’Brien, and Ravi Ramamoor-
thi. Data-Driven Elastic Models for Cloth: Modeling and
Measurement. ACM Transactions on Graphics (Proc. SIG-
GRAPH), 30(4):1–12, 2011. 1


