
Journal of Parallel and Distributed Computing 157 (2021) 243–255

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

MDScale: Scalable multi-GPU bonded and short-range molecular

dynamics

Gonzalo Nicolas Barreales a, Marcos Novalbos c, Miguel A. Otaduy a,b, Alberto Sanchez a,b,∗
a Universidad Rey Juan Carlos, Madrid, Spain
b Research Center for Computational Simulation, Madrid, Spain
c U-tad, Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 November 2019
Received in revised form 24 March 2021
Accepted 12 July 2021
Available online 21 July 2021

Keywords:
Molecular dynamics
Multi-GPU
Large scale
Bonded forces
Van der walls forces
NAMD

GPUs have enabled a drastic change to computing environments, making massively parallel computing
possible. Molecular dynamics is a perfect candidate problem for massively parallel computing, but to date
it has not taken full advantage of multi-GPU environments due to the difficulty of partitioning molecular
dynamics problems and exchanging problem data among compute nodes. These difficulties restrict the
use of GPUs to only some of the computations in a full molecular dynamics problem, and hence
prevent scalability beyond just a few GPUs. This work presents a scalable parallelization solution for the
bonded and short-range forces present in a molecular dynamics problem. Together with existing solutions
for long-range forces, it enables highly scalable, parallel molecular dynamics on multi-GPU computing
environments. Specifically, the proposed solution divides the molecular volume into independent parts
assigned to different GPUs, but it maintains a global bond structure that is efficiently exchanged when
atoms move across GPUs. We demonstrate close-to-linear speedup of the proposed solution, simulating
the dynamics of gigamolecules with 1 billion atoms on a computing environment with 96 GPUs, and
obtaining superior performance to the well known molecular dynamics simulator NAMD.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Molecular systems are composed of a large number of particles
that interact with each other at the atomic level. Molecular dy-
namics simulations [34] attempt to computationally recreate these
interactions to estimate the behavior of molecular systems that
cannot be solved analytically. Among others, they enable the pre-
diction of protein structure and the design of new drugs. For in-
stance, the pharmaceutical industry tries to anticipate the binding
affinity of a ligand in a receptor [32] based on the interactions pro-
duced among all the atoms to be able to analyze their properties
before synthesizing them. This topic is interesting because the syn-
thesis of a molecular system often involves high costs in terms of
materials, laboratory costs and production time. For instance, the
HIV-1 virus capsid model [45] is made of tens of millions of atoms,
providing a platform for further research in targeted pharmacolog-
ical intervention. Molecular dynamics considers the characteristics

* Corresponding author.
E-mail addresses: gonzalo.nicolas@urjc.es (G.N. Barreales),

marcos.novalbos@u-tad.com (M. Novalbos), miguel.otaduy@urjc.es (M.A. Otaduy),
alberto.sanchez@urjc.es (A. Sanchez).
https://doi.org/10.1016/j.jpdc.2021.07.006
0743-7315/© 2021 The Author(s). Published by Elsevier Inc. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
of atoms and their force interactions to faithfully reproduce their
motion for a given time. Discretization methods divide the simu-
lation into time steps, and each time step proceeds by computing
the interaction forces and solving the new atom positions thanks
to numerical integration. The solution to molecular dynamics bears
a high computational and memory cost [24]. Supercomputers arise
as the natural platform for molecular dynamics, and the largest
systems simulated to date have used first-rate supercomputers
with hundreds of thousands of cores [12,17,9]. Moreover, molec-
ular dynamics is a massively parallel problem, and is well suited
to single-GPU architectures. However, it brings multiple challenges
to multi-GPU architectures, which are found today in modern su-
percomputing centers [39]. In addition, GPUs are limited in mem-
ory resources, and the simulation of large molecular systems with
many millions of atoms requires partitioning the computational
cost.

Molecular dynamics problems combine the structural charac-
teristics of mesh-based computational problems (e.g., FEM simu-
lation) and particle systems (e.g., fluids). Therefore, the partition-
ing strategies for neither problem apply to molecular dynamics.
Bonded interactions require maintaining static connectivity infor-
mation during the simulation, which prevents using straightfor-
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.jpdc.2021.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gonzalo.nicolas@urjc.es
mailto:marcos.novalbos@u-tad.com
mailto:miguel.otaduy@urjc.es
mailto:alberto.sanchez@urjc.es
https://doi.org/10.1016/j.jpdc.2021.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
ward spatial partitioning. Non-bonded short-range interactions, on
the other hand, require dynamic neighbor updates, which prevent
using precomputed partitions.

In this work, we present MDScale, a fully scalable multi-GPU
molecular dynamics partitioning algorithm. Specifically, in this pa-
per we solve the scalability of the computation of bonded and
short-range electrostatic forces, which complement existing scal-
able solutions for long-range forces [24]. Our algorithm addresses
the aforementioned challenges, minimizing the communication be-
tween devices in parallel and distributed molecular dynamics, and
thus it achieves close-to-perfect scalability.

At a high level, we succeed to distribute molecular dynamics
among massively parallel compute elements (i.e., the GPUs). All
our algorithms are inherently parallel, and are executed directly
on GPU architectures. We do not use GPUs as mere co-processors
of CPU nodes which handle the distribution of computations. As
a result, we avoid the overhead of CPU-GPU communication and
data management, and we maximize scalability. This is in con-
trast to state-of-the-art distributed molecular dynamics simula-
tors, which share the computation load between the CPU and the
GPU [5,25,27,1,15,19].

At a low level, we have designed data structures and algorithms
to handle efficiently, both in time and space, dynamic partition-
ing. For large molecular dynamics problems, it is imperative to
distribute both computations and data. Then, the main algorith-
mic challenge is to perform efficient dynamic partitioning while
maintaining static connectivity information. We propose an effi-
cient solution, through massively parallel conversion to and from
global connectivity information and local handlers within each par-
tition.

We have implemented our MDScale algorithm on Amazon Web
Services, comparing its performance with the well-known molec-
ular dynamics simulator NAMD [27]. We have simulated bonded
and short-range electrostatic forces of, among other tests, gig-
amolecules of 1 billion atoms, and the results indicate scalability.

The paper is organized as follows. Section 2 analyzes different
parallel implementations of molecular dynamics simulation tech-
niques. Section 3 describes the background of molecular dynamics
and the different types of forces. Section 4 proposes our scal-
able Multi-GPU molecular dynamics simulator and the different
techniques used for optimizing the communication among GPUs.
Section 5 discusses implementation details of our algorithm, as
well as the data structures used for dividing the molecular volume
into independent parts while maintaining the global bond struc-
ture when atoms move. Section 6 presents a complete evaluation
with various tests, comparing the performance of our solution with
NAMD. Lastly, Section 7 discusses the results, sets out the conclu-
sions drawn and proposes future work.

2. Related work

There are different parallel computing algorithms for molecu-
lar dynamics simulation [18,42]. Based on them, several molecular
dynamics simulators [5,25,27,1,15] have been developed to solve
this computational problem. NAMD [27] and GROMACS [1] are
the most widely used molecular dynamics simulators. Specifically,
NAMD treats the molecule as a three-dimensional patchwork quilt.
The number of patches is determined by the size of the simulation
independently of the number of computing elements (CEs). Nearby
patches are kept on the same processor which minimizes the nec-
essary communications. Nonetheless, neither NAMD nor GROMACS
run the entire force calculation on the GPU and performance may
therefore be limited by the CPU. For instance, the calculation in
NAMD of bonded forces and the exchange of data between patches
is done entirely in CPU [28].
244
There are also interactive simulators of molecular dynamics,
whose objective is to accelerate the simulation by imposing exter-
nal restrictions that bias the simulation towards phenomena of in-
terest [37]. Current simulation techniques may fail to capture some
biological processes due to the large amount of time required for
major conformational changes to take place. This can occur when
studying the dynamics of complex biological systems [8] consist-
ing of large molecular systems with millions of particles, such as
virus capsids, or even the entire virus. Calculating this high num-
ber of interactions requires not only high simulation times but also
sufficient computing resources. Running in a massively parallel en-
vironment with hundreds or thousands of GPUs could significantly
improve the performance of the solution.

Most of the current supercomputing centers rely on hybrid ar-
chitectures, consisting not only of a large number of nodes with
multiple CPUs, but also with one or more powerful GPUs with a
greater amount of RAM each. More than 90% of the most pow-
erful supercomputers listed in the TOP500 list [39] are equipped
with GPU devices to increase their computing capacity. Also differ-
ent cloud platforms, such as Amazon Web Services, Google Cloud
Platform and Microsoft Azure, have begun to provide GPUs in their
instances. Multiple GPUs can be used together to massively cal-
culate the large number of interactions between billions of atoms
in parallel, but most of the existing molecular dynamics simula-
tors do not run the entire simulation on GPU and if they do, they
do not scale efficiently. Specifically, ACEMD [15] performs all the
force calculations in a multi-GPU architecture, running each of the
three force types on a different GPU. But this limits the maximum
number of GPUs to use to three. Instead, MDScale simulates large
biological systems by partitioning and running them in large-scale
Multi-GPU environments in a fully scalable way. It therefore makes
it possible to handle an increasing number of atoms by augment-
ing the number of GPUs.

Other algorithms designed for particle systems also use parti-
tioning techniques to simulate massive particle systems [31]. For
instance, particle-based fluid simulation shares many features with
molecular dynamics, as both disciplines deal with particles that
interact with each other. Particle-based fluid simulations can be
solved through the Position Based Dynamics algorithm [21] that is
easily parallelizable [10,11]. However, in this case the particles in-
volved in the simulation are not directly related (bonded) and this
allows them to move independently between the different CEs. In
molecular dynamics, particles (atoms) are physically bonded and
their movement is not totally free, as they are directly coupled to
the motion of the bonded atoms. GPU partitioning requires that
each CE not only has to store the atoms that correspond to it to
execute but also needs to identify those atoms of other CEs with
which its atoms are bonded. MDScale is able to solve this problem
efficiently by running the entire simulation directly on the GPU.

3. Molecular dynamics background

Molecular dynamics is based on the calculation of the new po-
sition of each atom that composes a molecular system according to
the forces that occur among them. Atoms are defined in a three-
dimensional space that represents a molecule within a specific
volume. For instance, Fig. 1(a) shows the 3D representation of a
multi-molecular holoenzyme complex assembled around the adap-
tor protein dApaf-1/DARK/HAC-1, named 4V4L. The set of atoms of
a biomolecule is usually surrounded by water molecules, as shown
in Fig. 1(b), and must meet certain periodic conditions and lim-
its. Periodic boundary conditions imply that an atom that leaves
one side of the simulation volume is supposed to enter the op-
posite side, and the simulation therefore is not affected by any
restriction. The partitioning of the system can be based on differ-

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255

Fig. 1. 4V4L molecule. In (b) the molecule is represented with water molecules around (~650K atoms).
ent topologies [23], which affects the treatment of these periodic
boundary conditions.

Simulation usually involves dividing all the time to be simu-
lated (of the order of seconds or milliseconds) into smaller time
steps of a magnitude of femtoseconds (fs, 10−15 seconds). In each
time step the simulator integrates the forces that affect each atom
to obtain its new velocity and position. The forces acting on each
of the atoms can be divided into:

• Bonded forces given by the bonds of the atoms that together
make up the molecule. These forces are modeled like a spring,
and only act on the atoms that form the bond. The bonded
forces can be different depending on the number of atoms af-
fected by the bond (single, angle, proper and improper). These
forces depend directly of the positions of the affected atoms,
as can be seen in the energy equations of the bonded forces:

Esingle = k(|ri j| − r0)
2

Eangle = kθ (θ − θ0)
2 + kub(|rik| − rub)

2

Edihedral/improper =
{

k(1 + cos(n� + θ)) if n > 0

k(� − θ)2 if n = 0

(1)

• Non-bonded short range or Van der Waals forces are those re-
sulting from interactions between atoms. These interactions
happen between atoms that may be separated. These forces
decay very fast as the distance increase, therefore it is pos-
sible to establish a cutoff radius Rc from where the force is
negligible. The energy equations of the Van der Vaals forces
are:

E vdw = A

r12
i j

− B

r6
i j

(2)

A and B are constants precomputed using parameters σi j and
εi j , which also are precomputed using σ and ε values of the
single atoms:

σi j = σi + σ j

2
εi j =√

εiε j

A = 4σ 12
i j εi j

B = 4σi jεi j
245
where σi j is the distance (finite) at which the potential be-
tween particles i and j is zero, and εi j is the depth of the
potential between particles i and j [6].

• Non-bonded electrostatic or long range forces produced by the
electrostatic charge of atoms. They are calculated using all
interactions among the atoms of the system despite their
distance. There are several methods for calculating these
forces, such as PME [29] or MSM [14], and some implemen-
tation has demonstrated their scalability in Multi-GPU envi-
ronments [24]. Therefore this paper will not discuss these
calculations.

To solve these equations there are many integration methods to
solve particles simulation forces. We can differentiate between first
order methods (Euler methods) or second order methods. In these
second order methods we can include Multiple-Time-Step (MTS)
integrators [16,38]. There are several MTS integrators like Verlet-
I/r-RESPA [13,40], MOLLY [33] or LN [3].

4. Scalable parallel multi-GPU molecular dynamics

Parallelizing a molecular dynamics algorithm to simulate large
molecular volumes in a multi-GPU architecture implies certain
challenges. First, it is necessary to partition the molecule among
the different CEs (GPUs in our case, for best performance). The
partitions are not static, and atoms that move must be exchanged
among CEs during the simulation. In order to obtain a fully scalable
system, each CE must keep only its own data in its local memory.
This strategy minimizes memory usage, and hence it allows larger
partitions and higher performance.

Second, although molecular dynamics can be classified as a
particle system (atoms in this case), it entails other challenges
for parallelization that are not found in regular particle systems.
Specifically, atoms are physically bonded, as seen in (1). A bond
involves a connection between two or more atoms. The movement
of one of these atoms pulls the other atoms of the bond. A CE
cannot simulate independently bonded forces of its own atoms; it
also needs to know the atoms shared with other CEs. When atoms
move, the connections with their bonded atoms must be main-
tained. As bonded atoms may reside on different CEs, this involves
communication between CEs not only to exchange atoms, but also
bonds. Our work addresses the exchange of atom and bond infor-
mation, to allow each CE to efficiently compute all forces of its
corresponding atoms on each time step of the simulation.

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
Fig. 2. Shared data between neighboring CEs, in 2D. Each CE shares data with its
neighbors (8 neighbors in 2D, 26 in 3D). The interface area of CE 5 (striped) con-
tains the data shared by other CEs, necessary for the calculation of its non-bonded
short range forces. In addition, CE 5 has several data shared areas (colored without
stripes). Some of the data is shared with multiple CEs (dark gray color), e.g. the cor-
ner adjacent with CE 1 is shared with CE 1, CE 2 and CE 4. It also shares data with
individual CEs (light grey), such as with CE 2 on top of CE 5. This happens similarly
in other shared areas.

4.1. Sharing atoms

MDScale distributes atoms among the different CEs as shown in
Fig. 2. As atoms can move between CEs, they must communicate
these changes in order to ensure that they own the right atoms
at all times (dynamic partitioning). It is necessary to duplicate the
data of some atoms at the partition boundaries to allow each CE
to correctly calculate the non-bonded short range forces by itself.
Note that these forces depend on the cutoff distance Rc between
atoms as shown in (2). It is also necessary to know the data of all
the atoms surrounding every atom within Rc , even at the edge of
the partition. As a result, we identify three distinct zones in each
CE:

• Private area: atoms that a CE does not share.
• Shared area: atoms shared with other CEs.
• Interface area: atoms not belonging to the CE, but shared by

neighboring CEs to allow the computation of interaction forces
among its private atoms.

Interface and shared zones contain the same data, but in dif-
ferent CEs, i.e. atoms stored in the interface of a CE correspond to
atoms in the shared zone of another CE. The forces of the atoms
within the interface area are calculated on the CE that contains
them in its shared area. The interface area is just a storage to have
the necessary data to calculate the forces of the atoms located at
the edge of each CE. This partitioning system allows each CE to cal-
culate the forces of its private atoms without any need to access
private atoms belonging to other CEs. Atoms are communicated or
updated among CEs only when they move.

We use the cellList algorithm [34,43,7] to partition the system.
This is an algorithm initially designed for the computation of non-
bonded short range forces. It divides the entire molecular system
into cells of equal size. Cells are classified into the three types of
246
areas seen above (see Fig. 3). The cell size is an integer fraction
of the cutoff radius Rc . This means that, for each atom, we can
find all the atoms within Rc into a constant number of cells. The
cellList is fixed in the system, and each atom is initially assigned
to one of these cells according to its x, y, z global position within
the whole molecule. The system assigns the cells with their corre-
sponding atoms to each CE according to their position. The atom
data changes only when the position of the atoms in the cellList
varies. Each predetermined number of steps the positions of the
atoms inside the cellList are recalculated and, if necessary due to
their motion, their data are updated among the CEs. Rc defines
the number of cells that are exchanged with other CEs (interface-
shared area), with the aim of sharing only the data needed to
calculate non-bonded short range forces [35]. Note that each CE
can perform these calculations independently, as it has the data
shared by neighboring CEs in its own interface zone. The forces
of atoms located at the edge of the shared area can be calculated
thanks to the interface cells. We have adapted the data structures
to optimize the simulation, reducing communication times among
the different CEs (see Section 5).

4.2. Sharing bonds

Due to bonds, atoms pull from each other in their motion.
When atoms move between CEs we update and send not only the
atoms, but also the bonds to which they belong (see Fig. 4). We
consider bonds as elements with their own x, y, z positions. They
must be sent when their positions fall within the interface area
of other CEs. Thereafter, each CE stores the corresponding bonds
and atoms and can calculate their bonded and non-bonded short
range forces. Received atoms are positioned in the interface cells.
This implies that the receiver does not calculate the bonded forces
of these atoms; only the sending CE that privately owns them cal-
culates their forces. Receivers therefore do not need the bonds of
interface atoms until they move to their shared cells.

Note that a bond combines two or more atoms, and this union
may involve sharing information between atoms belonging to dif-
ferent CEs. It is therefore necessary to identify each atom as a
whole in order to maintain the static relationship between the
bonded atoms that may be in different CEs. Keeping a list of all
atoms of the molecular volume in each CE involves a high mem-
ory cost, which would prevent scalability of the system. As each
CE only calculates the forces of its shared and private atoms, it
is more memory efficient to store only the necessary atoms and
manage them locally. For this dual global and local vision, we iden-
tify the atoms within the system using two types of identifiers:
i) global: identifies the atom within the whole molecule; and ii) lo-
cal: identifies the atom within each CE. When sending an atom, the
identifier must be converted from local to global and vice versa.

We perform this conversion using a hash table. We have chosen
to use the hash table implementation of Nvidia CUDPP [2], which
allows us to drastically reduce the execution time and memory
usage. In all tests performed, the execution time required by the
transformation using the hash table is less than 0.01% of the sim-
ulation time, which is considered negligible.

Specifically, when a CE receives a new atom, it creates a local
atom and it assigns it the global identifier. The global identifier is
useful for identifying which other atoms of other CEs are bonded.
Local atoms are stored according to their position in the cells to
improve access performance. This arrangement allows fast memory
access and optimization of force calculation for each cell.

MDScale is able to calculate in parallel the bonded forces from
the sorted local data structure. Each local atom identifier contains
references to its bonds, and each bond also contains references to
the atoms it connects, to allow the computation of the bonded
forces. Fig. 5 shows this process.

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255

Fig. 3. Cell types. Each CE contains the three types of cells shown in Fig. 2. Shared cells contain atoms shared with other CEs. Interface cells (striped) contain the atoms
shared by other CEs and therefore overlap with their corresponding shared cells. In this example, the width of the shared area is only one cell, but the method extends to
larger sizes.

Fig. 4. Bonds distributed in two CEs. An atom moving from a private cell to a shared area has to be sent to the corresponding neighbors so that they can calculate their own
non-bonded short range forces. Furthermore, when an atom (e.g. id 43) moves from a shared cell to interface area, it is necessary to send the bonds that affect it, to be able
to simulate the bonded forces in all CEs that share a bond. The new CE needs to know the global identifiers of all atoms belonging to the bond (in this case ids. 43, 44 and
45).
4.3. Multi-GPU hardware architecture

Partitioning large molecular volumes in a multi-GPU environ-
ment requires a hardware communication system. There are two
major types of multi-GPU architectures that can be used for this
purpose. One possibility is to use an on-board hardware architec-
ture with multiple GPUs via GPUDirect, NVLink, NVSwitch or PCIe
connections [20]. This distribution is efficient in terms of commu-
nication between GPUs, since it is done through the motherboard
data bus. But it has a major limitation: the small number of si-
multaneous GPUs that can be used (e.g. only 16 GPUs can be fully
connected with the NVSwitch architecture).
247
Another possibility is to use a multi-GPU architecture with
GPUs distributed across different compute nodes. Each node, which
may contain one or more GPUs, communicates with others us-
ing advanced high-speed networks. Traditionally, information was
sent from the RAM memory of the sending node via its network
interface, and data was received in the RAM memory of the receiv-
ing node. This method caused a delay in communication between
GPUs, because before the data was sent, it was dumped from GPU
to RAM, and when data was received, it had to be dumped back
into the destination GPU memory.

Currently, multi-GPU environments can implement a direct
communication between GPUs through the network interface. This

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255

Fig. 5. Relationship between atoms and bonds. The data structures facilitate the calculation of the bonded forces for each atom without having replicated or inconsistent data.

Fig. 6. Remote GPU-direct architecture.
communication, known as GPUDirect RDMA (remote direct mem-
ory access), allows network devices to directly access GPU memory,
drastically reducing communication times between GPUs by avoid-
ing RAM memory (see Fig. 6). In addition, the standard Message
Passing Interface (MPI) for the development of parallel applica-
tions in distributed environments, via CUDA-aware MPI, allows
these data exchanges to take place transparently. CUDA-aware MPI
abstracts the communication system and enables sending and re-
ceiving GPU buffers directly, without having to first dump them in
RAM memory. This allows the development of our simulator with-
out having to take into account the type of architecture available:
on board, traditional network communication, or GPUDirect RDMA.
Moreover, this abstraction allows to use any of these architectures
in a hybrid way.
248
5. Algorithm overview

We have used a generic Verlet-I/r-RESPA integrator to solve the
equations of motion and calculate the trajectories of atoms due
to the stability and simplicity it provides. It is a MTS integration
method, where each time step is solved in 2 half steps. The first
one gets the velocity of the atoms at half time. The second one
calculates the rest of the velocity and their positions. The formulas
are as follows:

v(t + �t

2
) = v(t) + 1

2m
F (t) (3)

v(t + �t) = v(t + �t

2
) + 1

2m
F (x(t + �t)) (4)

x(t + �t) = x(t) + v(t)�t + 1
F (t)�t2 (5)
2m

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
Algorithm 1 Proposed Multi-GPU Verlet-I/r-RESPA MTS integrator.
1: procedure Step(current Step)
2: integrateHalf V elocity() ← Equation (4)
3: integratePosition() ← Equation (5)
4: transf er Positions(sharedI Ds)
5: if current Step mod stepUpdate = 0 then
6: atomI Ds[]=identi f yE victedAtomI Ds(AtomInf o)

7: bondI Ds[]=identi f yE victedBondsI Ds(AtomInf o, BondElements)
8: transf erE victed(atomI Ds, bondI Ds)
9: updateCellList()

10: sharedI Ds[] = identi f ySharedAtomIds(CellList)
11: transf er Positions(sharedI Ds)

12: computeBondedF orces()
13: computeNonBondedShort RangeF orces()
14: integrateHalf V elocity() ← Equation (3)
15: current Step = current Step + 1

Algorithm 2 Identification of atom identifiers to be shared.
1: procedure IdentifyEvictedAtomIds(AtomInf o)
2: localE victed[] = compute AtomsE victed(AtomInf o)

3: globalE victed[] = hashT able.retrieve(localE victed)

4: mergeSort(globalE victed)

5: return globalE victed

where v(t) represents the last velocity of each atom and x(t) its
last position.

We calculate the new position of each atom by computing the
different bonded and non-bonded short range forces following (1)
and (2). Algorithm 1 shows our implementation of the Verlet-I/r-
RESPA integrator highlighting in brown the modifications with re-
spect to the original algorithm. There are multiple data (atoms and
bonds) exchange functions required for running in a distributed
environment. In our partition, there are some data shared between
CEs, e.g. the positions of the atoms in the shared cells. Each CE
calculates the forces, velocities and positions of the atoms in its
private and shared cells, but not those corresponding to atoms lo-
cated in its interface cells. Each CE sends the positions of the atoms
in its own shared cells and receives the same data for the atoms in
its interface cells. Note that the movement of atoms in each step is
slow and is less than the width of a cell, thus there is no need to
interchange data between the CEs at each step [43]. After a certain
number of steps (stepUpdate), the location of the atoms and bonds
in the cellList has to be recalculated, sending the atoms and bonds
that have left each CE (evicted) to their corresponding neighbors.
First of all, it is necessary to discover the atoms and bonds that
have changed their position in the system and must be transferred
to another CE by means of identifyEvictedAtomsIDs and identifyE-
victedBondsIDs. Algorithm 2 shows how to identify the atoms that
move from shared to interface cells. Similarly, we can extrapolate
this algorithm to Algorithm 3 since we consider bonds as one more
element of the system. Those atoms and bonds outside the CE are
subsequently transferred.

Once each CE receives the new atoms and bonds for its shared
cells, it reallocates all local atoms and bonds in their correspond-
ing cells using updateCellList. This enables a better organization of
atoms and bonds according to their local ids in each CE to improve
performance. As the location of the atoms in the cells has changed,
it is necessary to identify which atoms are currently in the shared

Algorithm 3 Identification of bond identifiers to be shared as in-
terface. Bonds are considered an element of the system, so they
have a x, y, z position and can be placed within the cellList.
1: procedure IdentifyEvictedBondIds(AtomInf o , BondElements)
2: computeBondsPositions(BondElements, AtomInf o)

3: localE victed[]=computeBondsE victed(BondElements, BondPositions)
4: globalE victed[]=hashT able.retrieve(localE victed)

5: mergeSort(globalE victed)

6: return globalE victed
249
Algorithm 4 Identification of atom identifiers to be shared to in-
terface cells of other CEs.
1: procedure IdentifySharedAtomIds(CellList)
2: sharedLocalIds[]
3: sharedCells[] = CellList.get SharedCells()
4: for each item cell in sharedCells do
5: sharedLocalIds.add(cell.get AtomIds())

6: sharedGlobalIds[] = hashT able.retrieve(sharedLocalIds)
7: mergeSort(sharedGlobalIds)
8: return sharedGlobalIds

cells using identifySharedAtomsIds to update the positions of atoms
between CEs. Finally, each CE sends the positions of the atoms lo-
cated in its shared cells with transferPositions. Algorithm 4 shows
how to identify atoms located in the shared cells to subsequently
send only their positions to the interface cells of neighboring CEs.

We use multiple data structures to store the information
needed, optimize calculation forces and exchange data between
CEs. Specifically, we use the following data structures to store the
atoms in each CE:

• AtomInfo contains different information about the atoms (po-
sitions, velocities, physical parameters, and local and global
identifiers).

• AtomData contains the bonds to which an atom is bonded. It
is directly related to AtomInfo.

• CellList contains the cells of each CE, sorted by cell type. Each
cell stores the local identifiers of the atoms it contains.

We use the following data structures to store the bonds and its
relationship to atoms:

• BondElement, AngleElement, DihedralElement, ImproperElement
arrays contain bond data for the calculation of forces, like the
local identifiers of the affected atoms.

• BondPositions, AnglePositions, DihedralPositions, ImproperPositions
arrays contain the position of the bonds in 3D space. These
positions are calculated every stepUpdate and used to transfer
atoms between CEs.

When data is updated between CEs, each CE calculates the new
position of each atom and bond, and stores them in AtomInfo and
BondPositions respectively. The positions of the atoms are used in
the simulation with other data contained in AtomInfo, while Bond-
Positions is only used for data transmission. After a predefined
number of time steps stepUpdate, each CE computes the new lo-
cation of atoms and bonds into the cellList and obtains the new
shared cells to send the atoms belonging to the neighboring CEs.
Each CE updates the positions of the atoms in the interface zone
with data received from the neighboring CEs. At the same time
it sends the position of the atoms in its shared zone. This allows
each CE to compute the new forces with the most recent data of
the simulation.

6. Evaluation

This section analyzes in depth the scalability and different ben-
efits of the proposed approach. This analysis aims to demonstrate
the performance of MDScale compared to the well known molec-
ular dynamics simulator NAMD. We have chosen NAMD because
it provides a wide variety of settings. In particular, in NAMD it is
possible to disable non-bonded long-range forces, which are not
covered in this work. By disabling these forces, we were able to
perform fair comparisons. NAMD allows water molecules to be
simulated as rigid bodies, but we have disabled this option in or-
der to run forces for all the atoms. Both in our MDScale system and
in NAMD we compute bonded forces and short-range non-bonded

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255

Fig. 7. Simulation of 100 steps of 8 million atom water molecules with NAMD and MDScale on an AWS K80 testbed. (a) shows the simulation time. (b) shows the speedup
where the scale is logarithmic in base 2 to be able to appreciate the linear speedup of MDScale. The speedup is calculated using as reference the simulation time with the
least number of CEs (4 in this case) that can hold the complete 8-million-atom system.
forces in all steps. Then, with both systems we reach the same
precision of results for all scenarios. Note that, due to the lack of
non-bonded long-range forces, the validity of the structure of the
molecule over a long time is not measurable. Therefore, we limit
all executions to 100 steps in our comparisons.

NAMD performs force calculations using either CPUs or GPUs
depending on the computational load of each process, assign-
ing heavier tasks to GPUs. The molecular system is divided into
patches, whose number and size does not depend on the number
of CEs, but on the total size of the system. To carry out the cal-
culations, NAMD uses a primary-secondary architecture, where the
primary CE monitors the whole process and sends the patches to
each of the secondary CEs, who calculate the forces of the corre-
sponding atoms. In contrast to MDScale, atoms are not distributed
into patches according to their position, but according to the num-
ber of bonds and the density of atoms. In this way, all patches
have a similar computational load, and a priori no CE should wait
for the others. To enable updates between patches, each patch con-
tains a neighbor list, with the necessary atoms from other patches
to compute the electrostatic forces. These neighbor lists are up-
dated every 10 steps, same as in MDScale. But in contrast to MD-
Scale, the content of the patches does not need to be updated, as
it does not depend on the positions of the atoms. Note that while
NAMD can be affected by load imbalance because neighborhoods
between patches may grow, MDScale may suffer it since the parti-
tioning system is fixed in space.

We have simulated two types of benchmarks. On one hand, wa-
ter molecules which allow us to vary both the number of atoms
and CEs to measure performance, speedup and GPU memory us-
age. On the other hand, well-known molecules to compare the
performance and GPU memory usage with different atom size and
GPU types on realistic scenarios. In all benchmarks, we distribute
the molecules following a binary partition according to [23] in 3
dimensions, taking into account that there are periodic bound-
ary conditions. As mentioned above, we limit all simulations to
100 steps, as this allows us to obtain execution measures without
wasting too many platform resources. We update atoms and bonds
among CEs every 10 steps. Increasing stepUpdate caused the simu-
lations to be unstable, and decreasing it did not imply a significant
difference in the precision of the results obtained. In all cases we
use a cutoff value of 1.0 nm, which is a value commonly used in
practice for molecular dynamics simulation (see e.g. [41,30]).

We have used as testbed two clusters of several GPU instances
running in Amazon Web Services (AWS) [22]. We use p2.xlarge and
250
p3.2xlarge instances respectively, which use Nvidia K80 (p2.xlarge)
and V100 GPUs (p3.2xlarge). Although these types of graphics
cards, K80 or V100, are composed of two GPUs each, AWS virtu-
alization provides only one per instance. Therefore, each instance
runs on a single GPU with 12 GiB RAM on K80 and 16 GiB RAM
on V100.

Firstly, we have compared MDScale with NAMD on a balanced
scenario made of water molecules (8 million atoms in total) on
an AWS K80 testbed. Fig. 7(a) shows the performance with both
simulators. NAMD presents better performance on few CEs. With
water molecules, the cost of bonded forces is low, and NAMD’s
CPU-based computation of these forces turns out more efficient.
In contrast, as the number of CEs increases, MDScale overcomes
NAMD thanks to better scalability. As shown in Fig. 7(b), MDScale
obtains better speedup than NAMD, in particular as the number of
CEs grows. We compute the speedup with respect to the simula-
tion in 4 CEs since the molecular system does not fit in less CEs
due to memory limitations. By increasing the number of CEs to
64 (x16) the speedup obtained by MDScale is 15.76, therefore its
scalability is practically optimal.

As shown in Fig. 8, the data update time between CEs only uses
a small percentage of the simulation time, between 1-6%. The per-
centage grows as the number of nodes increases due to the greater
number of neighbors with whom the information is shared. Even
so, we measure that the memory size used for interface area is
low, not exceeding 3.25% of occupied memory with different num-
ber of CEs. Therefore, 94-99% of the time in the simulation is being
fully parallelized, guaranteeing a high speedup.

Next, we have simulated water molecules with different num-
ber of atoms per CE, but ensuring a balanced load across CEs.
Specifically we have simulated 1, 2 and 4 million atoms per CE
running in 2, 4, 8, 16 and 32 GPUs on an AWS K80 testbed.
Fig. 9 shows the MDScale memory usage per CE for the simu-
lated molecules. The GPU memory usage increases slightly from 2
to 4 CEs and then it is stabilized, ensuring in-memory scalability.
Fig. 10 shows the simulation performance (ps/day) obtained with
MDScale and NAMD with the same molecules. We use this com-
mon measurement unit for comparison since it is useful to know
how many days of simulation time are needed to complete, e.g.,
a microbiology synthesis process. In all cases the same number of
atoms is simulated for both simulators. Note that increasing the
number of elements implies a linear increase in the number of
simulated atoms (e.g. 128 million distributed into 4 million per CE
on 32 GPUs). As the number of atoms per node doubles, the com-

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
Fig. 8. Percentage of the time required in MDScale for updating atoms and bonds
compared to the simulation of 8 million atom water molecules on an AWS K80
testbed.

Table 1
Measures obtained from simulating a water system
with 1 billion atoms on 128 Nvidia Tesla K80 GPUs.

Performance Update transfers Memory usage

0.43 ps/day 6.15% 10.42 GB/CE

Table 2
Measures obtained from simulating water molecules on 96
Nvidia Tesla V100 GPUs.

Num. Atoms Performance Updates Mem. usage

1 Billion 4.8 ps/day 5.78% 12.32 GB/CE
1.2 Billion 2.92 ps/day 5.23% 15.63 GB/CE

putation time is less than double, taking advantage of the massive
parallelism of the GPU. As discussed earlier, NAMD presents bet-
ter results than MDScale under small amounts of water molecules
per CE due to the low number of bonded forces. As the number
of atoms and CEs increases, the capacity of NAMD decreases while
MDScale remains stable. This allows MDScale to handle large-scale
molecular dynamics with a growing amount of atoms by simply
adding GPUs to the infrastructure.

As a demonstration of the scalability of MDScale, we have sim-
ulated a water system with 1 billion atoms, distributed in a bal-
anced way over 128 K80s. Table 1 shows the performance obtained
on the AWS K80 testbed. These measures are in compliance with
Figs. 9 and 10. The simulation uses more than 10 GB per GPU out
of the 12 GB RAM available in each K80. The percentage of time
spent on the exchange and identification of atoms is not significant
and remains almost stable with this amount of atoms and CEs.

The limiting factor for scalability in this case is the GPU mem-
ory size. We have run a similar simulation of water molecules
using an AWS V100 testbed to be able to increase the GPU mem-
ory size. We have been able to run the same number of atoms (1
billion) using only 96 V100, due to the increase in GPU memory
from 12GB in K80 to 16GB in V100. Furthermore, in the same 96
V100 we have been able to simulate up to 1.2 billion atoms. As
it is shown in Table 2, the performance is significantly higher in
comparison to Table 1 due to architectural improvements of the
GPU.

Once the scalability of the proposal has been verified with
water molecules, we have tested its operation in simulations of
some biological macromolecular structures obtained from the Pro-
tein Data Bank [4]. First, we have compared MDScale and NAMD
on a medium-sized molecular system. Specifically, we simulate 100
steps of bonded and non-bonded short ranges forces of the well-
251
Table 3
Measures obtained from simulating 1 billion atoms of
96 4UDF viruses replicated on 96 Nvidia Tesla V100
GPUs.

Performance Update transfers Memory usage

4.02 ps/day 7.10% 13.40 GB/CE

known biomolecule 4V4L [44] replicated 12 times (∼7.5 million
atoms) shown in Fig. 11(a). Second, we have tested a more chal-
lenging scenario, simulating the large molecular system 3J3Q [26]
representing the HIV-1 capsid (∼66 million atoms) shown in
Fig. 11(b). Note that the HIV-1 virus capsid has been previously
simulated using NAMD and CHARMM on the TITAN Supercomputer
with 3880 GPU accelerated Cray-XK nodes [45]. On both molecu-
lar systems, the binary partitioning produces partitions that are far
from perfectly balanced. There are areas with greater density of
atoms and greater number of bonds.

Both molecules were distributed among different numbers of
nodes with their respective GPUs: 4, 8, 16 and 32 for 4V4L and
16 and 32 for 3J3Q, due to memory requirements. As shown in
Fig. 12(a), MDScale outperforms NAMD regarding simulation times.
The performance of NAMD gets worse compared to Fig. 7(a). This is
because, when running a complex molecule system, NAMD spends
time trying to perform load balancing if there is a high number of
patches. For 12x4V4L and 3J3Q the speedup obtained in MDScale
is almost linear: 1.98 and 1.88 respectively with 32 GPUs compared
to 16 GPUs (2x). The difference in performance between the two
tests is due to the greater imbalance of the 3J3Q molecular system.
Additionally, as the size and complexity of the molecule grows,
the performance improvement of MDScale becomes more signifi-
cant.

Fig. 12(b) shows for each molecule the size of the occupied
memory and interface area by CE in MDScale. For instance, the
3J3Q molecule divided into 16 K80s occupies almost the entire
GPU memory. Note that the molecules are divided based on the
position of the atoms, not the complexity of the molecule. This
causes that there are CEs that contain a greater density of atoms
with complex bonds and therefore they require more memory to
store them. This is represented in the figure by standard devia-
tion lines to measure the spread of the memory size distribution.
Despite this load imbalance, as seen, speedup has not been sig-
nificantly affected. The total memory size used decreases almost
linearly as we increase the number of CEs. The memory used by
the interface cells decreases less in comparison. The size of the in-
terface does not depend on the number of atoms being simulated,
but on the size of the cells, the cutoff radius and the number of
neighbors. In any case, note that the interface size is very small
(the scale of the figure is logarithmic) compared to the memory
space required to store the atoms that corresponds to each CE.

Finally, we simulate a very large complex molecular system. In
particular, we have replicated 96 times the 4UDF virus [36] (hu-
man parechovirus neutralization by human monoclonal antibodies,
composed of ∼10.4 million atoms surrounded by water), to ob-
tain a gigamolecule of 1 billion atoms (see Fig. 13). Table 3 shows
the performance obtained in a balanced distribution on a 96 V100
testbed (one CE per 4UDF). The simulation uses more than 13 GB
per GPU of the 16 GB RAM available in each V100. As expected,
performance decreases slightly compared to the simulation of wa-
ter molecules with the same number of atoms and GPUs (see
Table 2), due to the high complexity of the molecule. Neverthe-
less, it shows that MDScale can tackle massive molecules adding
as many GPUs as necessary to cover the molecular size and ob-
taining a good performance.

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255

Fig. 9. MDScale memory usage per CE for the water molecules simulated in Fig. 10.

Fig. 10. Performance of NAMD and MDScale in logarithmic scale increasing the number of GPUs and atoms per CEs to simulate water molecules with tens of millions of
atoms.
7. Conclusions

This article presents a scalable multi-GPU algorithm for bonded
and short-range molecular dynamics, named MDScale, that runs
the entire force calculation on GPUs. Our experiments suggest that
it achieves efficient communication between different number of
CEs and reduced memory usage. We have tested its operation by
comparing it to the well-known molecular dynamics simulator,
NAMD, by running the same simulations of different balanced and
unbalanced molecular systems, like 4V4L and 4UDF replicated sev-
eral times, 3J3Q and tens of millions atoms of water molecules.
Our partitioning system allows us to add as many GPUs as nec-
essary to cover the molecular size without losing performance. As
252
proof of its scalability, we have carried out an evaluation checking
its performance and memory use with different numbers of GPU
instances on Amazon Web Services. Results show a close-to-linear
speedup only minimally affected by different atom densities.

As a limitation, our partitioning system does not guarantee a
load balance between GPUs, as it is done based on the current
position of the atoms, not the complexity of the molecule. In ad-
dition, we have evaluated by simulating only 100 steps of bonded
and non-bonded short range forces. This does not allow us to thor-
oughly test for load imbalance over time. We may want to argue
that molecular dynamics, due to pressure exchange, does not suffer
much load imbalance. As future work, we plan to include non-
bonded electrostatic forces, which were outside the scope of this

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255

Fig. 11. Testbed molecules. (a) 12 molecules of 4V4L made of about 7.5 million atoms including the surrounding water molecules. (b) 3J3Q, HIV-1 capsid made of about 66
million atoms including the surrounding water molecules.

Fig. 12. Simulation of 12x4V4L and 3J3Q molecular systems on an AWS K80 testbed. (a) Comparison of MDScale and NAMD simulation time. The performance of MDScale is
superior in all cases (4, 8, 16 and 32 GPUs) in both scenarios. (b) Memory footprint in MDScale per CE in the 3D binary partition distributed equitably among the different
CEs. The graph is in logarithmic scale to appreciate the evolution of the used memory. Note that the interface area uses a small amount of memory compared to the total
simulation size.

Fig. 13. Gigamolecule composed of 96 4UDF viruses replicated to obtain 1000 million atoms including the surrounding water molecules.
253

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
work. We also intend to offer MDScale as a software as a service
(SaaS) for molecular dynamics simulation where domain experts
can run their own large scale simulations with larger number of
steps.

CRediT authorship contribution statement

Gonzalo Nicolas Barreales: Investigation, Software, Writing –
original draft. Marcos Novalbos: Formal analysis, Software. Miguel
A. Otaduy: Funding acquisition, Methodology, Writing – review &
editing. Alberto Sanchez: Conceptualization, Funding acquisition,
Supervision, Validation, Visualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partly supported by the Spanish Ministry
of Science, Innovation and Universities (grant RTI2018-098694-B-
I00). The evaluation was made possible by a grant from AWS Cloud
Credits for Research.

References

[1] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl,
GROMACS: high performance molecular simulations through multi-level par-
allelism from laptops to supercomputers, SoftwareX 1–2 (2015) 19–25, https://
doi .org /10 .1016 /j .softx .2015 .06 .001.

[2] D.A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J.D.
Owens, N. Amenta, Real-time parallel hashing on the gpu, ACM Trans. Graph.
28 (2009) 154:1–154:9, https://doi .org /10 .1145 /1618452 .1618500.

[3] E. Barth, T. Schlick, Extrapolation versus impulse in multiple-timestepping
schemes. II. linear analysis and applications to Newtonian and Langevin
dynamics, J. Chem. Phys. 109 (1998) 1633–1642, https://doi .org /10 .1063 /1.
476737.

[4] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Res. 28 (2000)
235–242, https://doi .org /10 .1093 /nar /28 .1.235.

[5] B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, et al., CHARMM: the
biomolecular simulation program, J. Comput. Chem. 30 (2009) 1545–1614,
https://doi .org /10 .1002 /jcc .21287.

[6] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, D.C.
Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field
for the simulation of proteins, nucleic acids, and organic molecules, J. Am.
Chem. Soc. 117 (1995) 5179–5197, https://doi .org /10 .1021 /ja00124a002.

[7] M. Dobson, I. Fox, A. Saracino, Cell list algorithms for nonequilibrium molec-
ular dynamics, J. Comput. Phys. 315 (2014), https://doi .org /10 .1016 /j .jcp .2016 .
03 .056.

[8] M. Dreher, M. Piuzzi, A. Turki, M. Chavent, M. Baaden, N. Férey, S. Limet, B.
Raffin, S. Robert, Interactive molecular dynamics: scaling up to large systems,
Proc. Comput. Sci. 18 (2013) 20–29, https://doi .org /10 .1016 /j .procs .2013 .05 .165.

[9] W. Eckhardt, A. Heinecke, R. Bader, M. Brehm, N. Hammer, H. Huber, H.-
G. Kleinhenz, J. Vrabec, H. Hasse, M. Horsch, M. Bernreuther, C.W. Glass, C.
Niethammer, A. Bode, H.-J. Bungartz, 591 TFLOPS multi-trillion particles sim-
ulation on SuperMUC, in: International Supercomputing Conference, Springer
Berlin Heidelberg, Leipzig, Germany, 2013, pp. 1–12.

[10] M. Fratarcangeli, F. Pellacini, A GPU-based implementation of position based
dynamics for interactive deformable bodies, J. Graph. Tools 17 (2015) 59–66,
https://doi .org /10 .1080 /2165347X .2015 .1030525.

[11] M. Fratarcangeli, F. Pellacini, Scalable partitioning for parallel position based
dynamics, Comput. Graph. Forum 34 (2015) 405–413, https://doi .org /10 .1111 /
cgf .12570.

[12] T. Germann, K. Kadau, Trillion-atom molecular dynamics becomes a re-
ality, Int. J. Mod. Phys. C 8 (2008) 1315–1319, https://doi .org /10 .1142 /
S0129183108012911.

[13] H. Grubmüller, H. Heller, A. Windemuth, K. Schulten, Generalized Ver-
let algorithm for efficient molecular dynamics simulations with long-
range interactions, Mol. Simul. 6 (1991) 121–142, https://doi .org /10 .1080 /
08927029108022142.
254
[14] D.J. Hardy, Z. Wu, J.C. Phillips, J.E. Stone, R.D. Skeel, K. Schulten, Multilevel sum-
mation method for electrostatic force evaluation, J. Chem. Theory Comput. 11
(2015) 766–779, https://doi .org /10 .1021 /ct5009075.

[15] M.J. Harvey, G. Giupponi, G.D. Fabritiis, ACEMD: accelerating biomolecular dy-
namics in the microsecond time scale, J. Chem. Theory Comput. 5 (2009)
1632–1639, https://doi .org /10 .1021 /ct9000685.

[16] J. Izaguirre, Q. Ma, T. Matthey, J. Willcock, T. Slabach, B. Moore, G. Via-
montes, Overcoming instabilities in Verlet-I/r-RESPA with the mollified im-
pulse method, in: Computational Methods for Macromolecules: Challenges
and Applications, in: Proceedings of the 3rd International Workshop on Algo-
rithms for Macromolecular Modeling, vol. 24, Springer, New York, USA, 2002,
pp. 146–174.

[17] K. Kadau, T. Germann, P.S. Lomdahl, Molecular dynamics comes of age: 320 bil-
lion atom simulation on BlueGene/L, Int. J. Mod. Phys. C 17 (2006) 1755–1761,
https://doi .org /10 .1142 /S0129183106010182.

[18] S. Kupka, Molecular dynamics on graphics accelerators, in: Proceedings of
CESCG, Institute of Computer Graphics and Algorithms, Castá-Papiernicka Cen-
tre, Slovakia, 2006, pp. 1–4.

[19] L. Lagardère, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z.F. Jing, M. Harger,
H. Torabifard, G.A. Cisneros, M.J. Schnieders, N. Gresh, Y. Maday, P.Y. Ren, J.W.
Ponder, J.-P. Piquemal, Tinker-HP: a massively parallel molecular dynamics
package for multiscale simulations of large complex systems with advanced
point dipole polarizable force fields, Chem. Sci. 9 (2018) 956–972, https://
doi .org /10 .1039 /C7SC04531J.

[20] A. Li, S.L. Song, J. Chen, J. Li, X. Liu, N.R. Tallent, K.J. Barker, Evaluating modern
GPU interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect, IEEE Trans.
Parallel Distrib. Syst. 31 (2020) 94–110.

[21] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff, Position based dynamics,
J. Vis. Comun. Image Represent. 18 (2007) 109–118, https://doi .org /10 .1016 /j .
jvcir.2007.01.005.

[22] G. Nicolas-Barreales, A. Sujar, A. Sanchez, A web-based tool for simulating
molecular dynamics in cloud environments, Electronics 10 (2021) 185, https://
doi .org /10 .3390 /electronics10020185, https://www.mdpi .com /2079 -9292 /10 /2 /
185.

[23] M. Novalbos, J. Gonzalez, M.A. Otaduy, A. Lopez-Medrano, A. Sanchez, On-board
multi-GPU molecular dynamics, in: Proceedings of the Euro-Par 2013 Parallel
Processing, Springer, Aachen, Germany, 2013, pp. 862–873.

[24] M. Novalbos, J. Gonzalez, M.A. Otaduy, R. Martinez-Benito, A. Sanchez, Scalable
on-board multi-GPU simulation of long-range molecular dynamics, in: Proceed-
ings of the Euro-Par 2014 Parallel Processing, Springer, Porto, Portugal, 2014,
pp. 752–763.

[25] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. DeBolt,
D. Ferguson, G. Seibel, P. Kollman, AMBER, a package of computer programs
for applying molecular mechanics, normal mode analysis, molecular dynamics
and free energy calculations to simulate the structural and energetic properties
of molecules, Comput. Phys. Commun. 91 (1995) 1–41, https://doi .org /10 .1016 /
0010 -4655(95)00041 -D.

[26] J.R. Perilla, G. Zhao, P. Zhang, K.J. Schulten, PDB ID: 3J3Q. Atomic-level structure
of the entire HIV-1 capsid, https://doi .org /10 .2210 /pdb3J3Q /pdb, 2013.

[27] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with namd, J.
Comput. Chem. 26 (2005) 1781–1802, https://doi .org /10 .1002 /jcc .20289.

[28] J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel applica-
tion to gpu-accelerated clusters, in: SC ’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, 2008, pp. 1–9.

[29] S. Plimpton, R. Pollock, M. Stevens, Particle-mesh Ewald and rRESPA for parallel
molecular dynamics simulations, in: Proceedings of the Eighth SIAM Confer-
ence on Parallel Processing for Scientific Computing, Society for Industrial &
Applied Mathematics, Minneapolis, Minnesota, USA, 1997, pp. 1–13.

[30] J.-Y. Raty, F. Gygi, G. Galli, Growth of carbon nanotubes on metal nanoparticles:
a microscopic mechanism from ab initio molecular dynamics simulations, Phys.
Rev. Lett. 95 (2005) 096103, https://doi .org /10 .1103 /PhysRevLett .95 .096103,
https://link.aps .org /doi /10 .1103 /PhysRevLett .95 .096103.

[31] E. Rustico, G. Bilotta, G. Gallo, A. Herault, C. Del Negro, Smoothed particle
hydrodynamics simulations on multi-gpu systems, in: 2012 20th Euromicro In-
ternational Conference on Parallel, Distributed and Network-Based Processing,
IEEE Computer Society, Garching, Germany, 2012, pp. 384–391.

[32] V. Salmaso, S. Moro, Bridging molecular docking to molecular dynamics in ex-
ploring ligand-protein recognition process: an overview, Front. Pharmacol. 9
(2018) 923, https://doi .org /10 .3389 /fphar.2018 .00923.

[33] J.M. Sanz-Serna, Mollified impulse methods for highly oscillatory differential
equations, SIAM J. Numer. Anal. 46 (2008) 1040–1059, https://doi .org /10 .1137 /
070681636.

[34] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide,
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[35] L. Schwiebert, E. Hailat, K. Rushaidat, J. Mick, J. Potoff, An efficient cell list
implementation for Monte Carlo simulation on GPUs, CoRR, arXiv:1408 .3764,
2014.

[36] S. Shakeel, B.M. Westerhuis, A. Ora, G. Koen, A.Q. Bakker, Y. Claassen, K. Wag-
ner, T. Beaumont, K.C. Wolthers, S. Butcher, PDB ID: 4UDF. Structural basis of

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1145/1618452.1618500
https://doi.org/10.1063/1.476737
https://doi.org/10.1063/1.476737
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1021/ja00124a002
https://doi.org/10.1016/j.jcp.2016.03.056
https://doi.org/10.1016/j.jcp.2016.03.056
https://doi.org/10.1016/j.procs.2013.05.165
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib7C5528C4C4B4E9509B71CBEDFD4BDF3Bs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib7C5528C4C4B4E9509B71CBEDFD4BDF3Bs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib7C5528C4C4B4E9509B71CBEDFD4BDF3Bs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib7C5528C4C4B4E9509B71CBEDFD4BDF3Bs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib7C5528C4C4B4E9509B71CBEDFD4BDF3Bs1
https://doi.org/10.1080/2165347X.2015.1030525
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1111/cgf.12570
https://doi.org/10.1142/S0129183108012911
https://doi.org/10.1142/S0129183108012911
https://doi.org/10.1080/08927029108022142
https://doi.org/10.1080/08927029108022142
https://doi.org/10.1021/ct5009075
https://doi.org/10.1021/ct9000685
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib08FF6BF6338C8044D63565EA77E1B415s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib08FF6BF6338C8044D63565EA77E1B415s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib08FF6BF6338C8044D63565EA77E1B415s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib08FF6BF6338C8044D63565EA77E1B415s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib08FF6BF6338C8044D63565EA77E1B415s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib08FF6BF6338C8044D63565EA77E1B415s1
https://doi.org/10.1142/S0129183106010182
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibE42688F3CA4696370889F33865A1C596s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibE42688F3CA4696370889F33865A1C596s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibE42688F3CA4696370889F33865A1C596s1
https://doi.org/10.1039/C7SC04531J
https://doi.org/10.1039/C7SC04531J
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib171A592411EDFC9AA80034E23A535771s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib171A592411EDFC9AA80034E23A535771s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib171A592411EDFC9AA80034E23A535771s1
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.3390/electronics10020185
https://doi.org/10.3390/electronics10020185
https://www.mdpi.com/2079-9292/10/2/185
https://www.mdpi.com/2079-9292/10/2/185
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC58063B036F01835877FE6FB9E65861Cs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC58063B036F01835877FE6FB9E65861Cs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC58063B036F01835877FE6FB9E65861Cs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib95266BC5F279B2B28C619F28DDBA6663s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib95266BC5F279B2B28C619F28DDBA6663s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib95266BC5F279B2B28C619F28DDBA6663s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib95266BC5F279B2B28C619F28DDBA6663s1
https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.2210/pdb3J3Q/pdb
https://doi.org/10.1002/jcc.20289
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib2613639A996BF74CB2F6ABCAFE799786s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib2613639A996BF74CB2F6ABCAFE799786s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib2613639A996BF74CB2F6ABCAFE799786s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib912BEB931B91D59ABDB55D53C88FB88Cs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib912BEB931B91D59ABDB55D53C88FB88Cs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib912BEB931B91D59ABDB55D53C88FB88Cs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib912BEB931B91D59ABDB55D53C88FB88Cs1
https://doi.org/10.1103/PhysRevLett.95.096103
https://link.aps.org/doi/10.1103/PhysRevLett.95.096103
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC651042F15DE7AE0D8E0798541627A3Fs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC651042F15DE7AE0D8E0798541627A3Fs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC651042F15DE7AE0D8E0798541627A3Fs1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibC651042F15DE7AE0D8E0798541627A3Fs1
https://doi.org/10.3389/fphar.2018.00923
https://doi.org/10.1137/070681636
https://doi.org/10.1137/070681636
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib39056EC7C7C44C38764A397153A98887s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bib39056EC7C7C44C38764A397153A98887s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibCA1ED5AA2B841D29313BB8F2065ABCF2s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibCA1ED5AA2B841D29313BB8F2065ABCF2s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibCA1ED5AA2B841D29313BB8F2065ABCF2s1

G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
human parechovirus neutralization by human monoclonal antibodies, J. Virol.
89 (2015) 9571–9580, https://doi .org /10 .1128 /JVI .01429 -15.

[37] J. Stone, J. Gullingsrud, K. Schulten, A system for interactive molecular dynam-
ics simulation, in: 2001 ACM Symposium on Interactive 3D Graphics, ACM,
New York, NY, USA, 2001, pp. 191–194.

[38] W. Streett, D. Tildesley, G. Saville, Multiple time-step methods in molec-
ular dynamics, Mol. Phys. 35 (1978) 639–648, https://doi .org /10 .1080 /
00268977800100471.

[39] Top500.org, TOP500 supercomputer sites list statistics, https://www.top500 .
org /statistics /list/, 2018. (Accessed 1 December 2018).

[40] M. Tuckerman, B.J. Berne, G.J. Martyna, Reversible multiple time scale molec-
ular dynamics, J. Chem. Phys. 97 (1992) 1990–2001, https://doi .org /10 .1063 /1.
463137.

[41] F. Vitalini, F. Noé, B. Keller, Molecular dynamics simulations data of the
twenty encoded amino acids in different force fields, Data in Brief 7 (2016)
582–590, https://doi .org /10 .1016 /j .dib .2016 .02 .086, http://www.sciencedirect .
com /science /article /pii /S235234091630110X.

[42] J. Yang, Y. Wang, Y. Chen, GPU accelerated molecular dynamics simulation of
thermal conductivities, J. Comput. Phys. 221 (2007) 799–804, https://doi .org /
10 .1016 /j .jcp .2006 .06 .039.

[43] Z. Yao, J.-S. Wang, G. Liu, M. Cheng, Improved neighbor list algorithm in molec-
ular simulations using cell decomposition and data sorting method, Comput.
Phys. Commun. 161 (2004) 27–35, https://doi .org /10 .1016 /j .cpc .2004 .04 .004.

[44] S. Yuan, M. Topf, L. Dorstyn, S. Kumar, S.J. Ludtke, C.W. Akey, PDB ID: 4V4L.
Structure of the Drosophila apoptosome at 6.9 angstrom resolution, Structure
19 (2011) 128–140, https://doi .org /10 .1016 /j .str.2010 .10 .009.

[45] G. Zhao, J. Perilla, E. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A.M. Gro-
nenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure by
cryo-electron microscopy and all-atom molecular dynamics, Nature 497 (2013)
643–646, https://doi .org /10 .1038 /nature12162.

Gonzalo Nicolas is a pre-doctoral researcher at
Universidad Rey Juan Carlos in Madrid. He obtained
his degree in Computer Science at University of
Leon in 2015 and the Master of Computer Graphics,
Videogames, and Virtual Reality at the Universidad
Rey Juan Carlos in 2016. His main field of research
is HPC and GPU computing. He is currently working
on parallel molecular dynamics simulation using high
performance Multi-GPU architecture to simulate large

molecular systems. He has wide experience in the use of supercomputers,
clusters and cloud computing environments, using hundreds of nodes in
different supercomputing facilities, like Barcelona Supercomputing Center
and Amazon Web Services.

Alberto Sanchez is an associate professor at Uni-
versidad Rey Juan Carlos and researcher at Research
Center for Computational Simulation. He received MS
and PhD degrees, obtaining the Extraordinary PhD
Award, in Computer Science from Universidad Politéc-
nica de Madrid (Spain) in 2004 and 2008, respectively.
Since 2007 he has a faculty position at the Depart-
ment of Computer Science & Statistics, at Universidad
Rey Juan Carlos (Madrid, Spain), where he is currently
255
the vice-rector for digital learning and IT. His primary research areas are
data analysis and visualization, high-performance and large-scale com-
puting, where he has published several journal papers, book chapters
and articles in international conferences. He has also done long place-
ment abroad in some prestigious international researching centers, such
as CERN, NeSC, NRC-Canada and the University of Melbourne. Finally, he
had been also involved in the organization of some international confer-
ences (IDA 2005, HPCS 2012, Cluster 2014) and in more than 25 program
committees of different workshops and conferences.

Marcos Novalbos is a professor at Centro Universi-
tario de Tecnología Arte Digital (U-tad Madrid) of GPU
Processing and High Performance Computing. He re-
ceived his BS (2006) in Computer Science and his PhD
(2015) in Computer Science from the Universidad Rey
Juan Carlos (URJC Spain). Between 2006 and 2018, he
worked as research associate at Grupo de Modelado
y Realidad Virtual (GMRV URJC), working in several
fields related to GPU and MultiGPU optimizations, e.g.

optimizing encryption and hashing algorithms in order to perform faster
in multiGPU clusters. His research interests are centered around the opti-
mization of applications by using GPU and multiCPU systems, with appli-
cations to biomedicine and cryptographic models. He worked at Plebiotic
SL (Madrid, Spain), developing some optimizations in their molecular dy-
namics simulator.

Miguel Otaduy is associate professor at Universi-
dad Rey Juan Carlos (URJC Madrid), where he leads
the Multimodal Simulation Lab, in the Department
of Computer Science. He received his BS (2000) in
Electrical Engineering from Mondragon Unibertsitatea
(Spain), and his MS (2003) and PhD (2004) in Com-
puter Science from the University of North Carolina at
Chapel Hill. Between 2005 and 2008, he worked as re-
search associate at the Computer Graphics Laboratory

of ETH Zurich, before joining URJC.
His research interests are centered around the simulation of mechan-

ical systems in computer graphics, with applications to biomedicine, tex-
tiles, animation, or virtual touch. He has published over 100 papers and is
coinventor of 8 patents. He has led multiple research projects, most no-
tably a 2011 ERC Starting Grant, and a 2017 ERC Consolidator Grant. He
has served as associate editor for journals in computer graphics, virtual re-
ality and robotics, and has been the program chair for several conferences
in computer animation and haptics.

https://doi.org/10.1128/JVI.01429-15
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibA11AE7DDF7CD6BE4251EC41AC437B2B4s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibA11AE7DDF7CD6BE4251EC41AC437B2B4s1
http://refhub.elsevier.com/S0743-7315(21)00152-0/bibA11AE7DDF7CD6BE4251EC41AC437B2B4s1
https://doi.org/10.1080/00268977800100471
https://doi.org/10.1080/00268977800100471
https://www.top500.org/statistics/list/
https://www.top500.org/statistics/list/
https://doi.org/10.1063/1.463137
https://doi.org/10.1063/1.463137
https://doi.org/10.1016/j.dib.2016.02.086
http://www.sciencedirect.com/science/article/pii/S235234091630110X
http://www.sciencedirect.com/science/article/pii/S235234091630110X
https://doi.org/10.1016/j.jcp.2006.06.039
https://doi.org/10.1016/j.jcp.2006.06.039
https://doi.org/10.1016/j.cpc.2004.04.004
https://doi.org/10.1016/j.str.2010.10.009
https://doi.org/10.1038/nature12162

	MDScale: Scalable multi-GPU bonded and short-range molecular dynamics
	1 Introduction
	2 Related work
	3 Molecular dynamics background
	4 Scalable parallel multi-GPU molecular dynamics
	4.1 Sharing atoms
	4.2 Sharing bonds
	4.3 Multi-GPU hardware architecture

	5 Algorithm overview
	6 Evaluation
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

