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GPUs have enabled a drastic change to computing environments, making massively parallel computing 
possible. Molecular dynamics is a perfect candidate problem for massively parallel computing, but to date 
it has not taken full advantage of multi-GPU environments due to the difficulty of partitioning molecular 
dynamics problems and exchanging problem data among compute nodes. These difficulties restrict the 
use of GPUs to only some of the computations in a full molecular dynamics problem, and hence 
prevent scalability beyond just a few GPUs. This work presents a scalable parallelization solution for the 
bonded and short-range forces present in a molecular dynamics problem. Together with existing solutions 
for long-range forces, it enables highly scalable, parallel molecular dynamics on multi-GPU computing 
environments. Specifically, the proposed solution divides the molecular volume into independent parts 
assigned to different GPUs, but it maintains a global bond structure that is efficiently exchanged when 
atoms move across GPUs. We demonstrate close-to-linear speedup of the proposed solution, simulating 
the dynamics of gigamolecules with 1 billion atoms on a computing environment with 96 GPUs, and 
obtaining superior performance to the well known molecular dynamics simulator NAMD.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Molecular systems are composed of a large number of particles 
that interact with each other at the atomic level. Molecular dy-
namics simulations [34] attempt to computationally recreate these 
interactions to estimate the behavior of molecular systems that 
cannot be solved analytically. Among others, they enable the pre-
diction of protein structure and the design of new drugs. For in-
stance, the pharmaceutical industry tries to anticipate the binding 
affinity of a ligand in a receptor [32] based on the interactions pro-
duced among all the atoms to be able to analyze their properties 
before synthesizing them. This topic is interesting because the syn-
thesis of a molecular system often involves high costs in terms of 
materials, laboratory costs and production time. For instance, the 
HIV-1 virus capsid model [45] is made of tens of millions of atoms, 
providing a platform for further research in targeted pharmacolog-
ical intervention. Molecular dynamics considers the characteristics 
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of atoms and their force interactions to faithfully reproduce their 
motion for a given time. Discretization methods divide the simu-
lation into time steps, and each time step proceeds by computing 
the interaction forces and solving the new atom positions thanks 
to numerical integration. The solution to molecular dynamics bears 
a high computational and memory cost [24]. Supercomputers arise 
as the natural platform for molecular dynamics, and the largest 
systems simulated to date have used first-rate supercomputers 
with hundreds of thousands of cores [12,17,9]. Moreover, molec-
ular dynamics is a massively parallel problem, and is well suited 
to single-GPU architectures. However, it brings multiple challenges 
to multi-GPU architectures, which are found today in modern su-
percomputing centers [39]. In addition, GPUs are limited in mem-
ory resources, and the simulation of large molecular systems with 
many millions of atoms requires partitioning the computational 
cost.

Molecular dynamics problems combine the structural charac-
teristics of mesh-based computational problems (e.g., FEM simu-
lation) and particle systems (e.g., fluids). Therefore, the partition-
ing strategies for neither problem apply to molecular dynamics. 
Bonded interactions require maintaining static connectivity infor-
mation during the simulation, which prevents using straightfor-
le under the CC BY-NC-ND license 

https://doi.org/10.1016/j.jpdc.2021.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gonzalo.nicolas@urjc.es
mailto:marcos.novalbos@u-tad.com
mailto:miguel.otaduy@urjc.es
mailto:alberto.sanchez@urjc.es
https://doi.org/10.1016/j.jpdc.2021.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


G.N. Barreales, M. Novalbos, M.A. Otaduy et al. Journal of Parallel and Distributed Computing 157 (2021) 243–255
ward spatial partitioning. Non-bonded short-range interactions, on 
the other hand, require dynamic neighbor updates, which prevent 
using precomputed partitions.

In this work, we present MDScale, a fully scalable multi-GPU 
molecular dynamics partitioning algorithm. Specifically, in this pa-
per we solve the scalability of the computation of bonded and 
short-range electrostatic forces, which complement existing scal-
able solutions for long-range forces [24]. Our algorithm addresses 
the aforementioned challenges, minimizing the communication be-
tween devices in parallel and distributed molecular dynamics, and 
thus it achieves close-to-perfect scalability.

At a high level, we succeed to distribute molecular dynamics 
among massively parallel compute elements (i.e., the GPUs). All 
our algorithms are inherently parallel, and are executed directly 
on GPU architectures. We do not use GPUs as mere co-processors 
of CPU nodes which handle the distribution of computations. As 
a result, we avoid the overhead of CPU-GPU communication and 
data management, and we maximize scalability. This is in con-
trast to state-of-the-art distributed molecular dynamics simula-
tors, which share the computation load between the CPU and the 
GPU [5,25,27,1,15,19].

At a low level, we have designed data structures and algorithms 
to handle efficiently, both in time and space, dynamic partition-
ing. For large molecular dynamics problems, it is imperative to 
distribute both computations and data. Then, the main algorith-
mic challenge is to perform efficient dynamic partitioning while 
maintaining static connectivity information. We propose an effi-
cient solution, through massively parallel conversion to and from 
global connectivity information and local handlers within each par-
tition.

We have implemented our MDScale algorithm on Amazon Web 
Services, comparing its performance with the well-known molec-
ular dynamics simulator NAMD [27]. We have simulated bonded 
and short-range electrostatic forces of, among other tests, gig-
amolecules of 1 billion atoms, and the results indicate scalability.

The paper is organized as follows. Section 2 analyzes different 
parallel implementations of molecular dynamics simulation tech-
niques. Section 3 describes the background of molecular dynamics 
and the different types of forces. Section 4 proposes our scal-
able Multi-GPU molecular dynamics simulator and the different 
techniques used for optimizing the communication among GPUs. 
Section 5 discusses implementation details of our algorithm, as 
well as the data structures used for dividing the molecular volume 
into independent parts while maintaining the global bond struc-
ture when atoms move. Section 6 presents a complete evaluation 
with various tests, comparing the performance of our solution with 
NAMD. Lastly, Section 7 discusses the results, sets out the conclu-
sions drawn and proposes future work.

2. Related work

There are different parallel computing algorithms for molecu-
lar dynamics simulation [18,42]. Based on them, several molecular 
dynamics simulators [5,25,27,1,15] have been developed to solve 
this computational problem. NAMD [27] and GROMACS [1] are 
the most widely used molecular dynamics simulators. Specifically, 
NAMD treats the molecule as a three-dimensional patchwork quilt. 
The number of patches is determined by the size of the simulation 
independently of the number of computing elements (CEs). Nearby 
patches are kept on the same processor which minimizes the nec-
essary communications. Nonetheless, neither NAMD nor GROMACS 
run the entire force calculation on the GPU and performance may 
therefore be limited by the CPU. For instance, the calculation in 
NAMD of bonded forces and the exchange of data between patches 
is done entirely in CPU [28].
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There are also interactive simulators of molecular dynamics, 
whose objective is to accelerate the simulation by imposing exter-
nal restrictions that bias the simulation towards phenomena of in-
terest [37]. Current simulation techniques may fail to capture some 
biological processes due to the large amount of time required for 
major conformational changes to take place. This can occur when 
studying the dynamics of complex biological systems [8] consist-
ing of large molecular systems with millions of particles, such as 
virus capsids, or even the entire virus. Calculating this high num-
ber of interactions requires not only high simulation times but also 
sufficient computing resources. Running in a massively parallel en-
vironment with hundreds or thousands of GPUs could significantly 
improve the performance of the solution.

Most of the current supercomputing centers rely on hybrid ar-
chitectures, consisting not only of a large number of nodes with 
multiple CPUs, but also with one or more powerful GPUs with a 
greater amount of RAM each. More than 90% of the most pow-
erful supercomputers listed in the TOP500 list [39] are equipped 
with GPU devices to increase their computing capacity. Also differ-
ent cloud platforms, such as Amazon Web Services, Google Cloud 
Platform and Microsoft Azure, have begun to provide GPUs in their 
instances. Multiple GPUs can be used together to massively cal-
culate the large number of interactions between billions of atoms 
in parallel, but most of the existing molecular dynamics simula-
tors do not run the entire simulation on GPU and if they do, they 
do not scale efficiently. Specifically, ACEMD [15] performs all the 
force calculations in a multi-GPU architecture, running each of the 
three force types on a different GPU. But this limits the maximum 
number of GPUs to use to three. Instead, MDScale simulates large 
biological systems by partitioning and running them in large-scale 
Multi-GPU environments in a fully scalable way. It therefore makes 
it possible to handle an increasing number of atoms by augment-
ing the number of GPUs.

Other algorithms designed for particle systems also use parti-
tioning techniques to simulate massive particle systems [31]. For 
instance, particle-based fluid simulation shares many features with 
molecular dynamics, as both disciplines deal with particles that 
interact with each other. Particle-based fluid simulations can be 
solved through the Position Based Dynamics algorithm [21] that is 
easily parallelizable [10,11]. However, in this case the particles in-
volved in the simulation are not directly related (bonded) and this 
allows them to move independently between the different CEs. In 
molecular dynamics, particles (atoms) are physically bonded and 
their movement is not totally free, as they are directly coupled to 
the motion of the bonded atoms. GPU partitioning requires that 
each CE not only has to store the atoms that correspond to it to 
execute but also needs to identify those atoms of other CEs with 
which its atoms are bonded. MDScale is able to solve this problem 
efficiently by running the entire simulation directly on the GPU.

3. Molecular dynamics background

Molecular dynamics is based on the calculation of the new po-
sition of each atom that composes a molecular system according to 
the forces that occur among them. Atoms are defined in a three-
dimensional space that represents a molecule within a specific 
volume. For instance, Fig. 1(a) shows the 3D representation of a 
multi-molecular holoenzyme complex assembled around the adap-
tor protein dApaf-1/DARK/HAC-1, named 4V4L. The set of atoms of 
a biomolecule is usually surrounded by water molecules, as shown 
in Fig. 1(b), and must meet certain periodic conditions and lim-
its. Periodic boundary conditions imply that an atom that leaves 
one side of the simulation volume is supposed to enter the op-
posite side, and the simulation therefore is not affected by any 
restriction. The partitioning of the system can be based on differ-
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Fig. 1. 4V4L molecule. In (b) the molecule is represented with water molecules around (~650K atoms).
ent topologies [23], which affects the treatment of these periodic 
boundary conditions.

Simulation usually involves dividing all the time to be simu-
lated (of the order of seconds or milliseconds) into smaller time 
steps of a magnitude of femtoseconds (fs, 10−15 seconds). In each 
time step the simulator integrates the forces that affect each atom 
to obtain its new velocity and position. The forces acting on each 
of the atoms can be divided into:

• Bonded forces given by the bonds of the atoms that together 
make up the molecule. These forces are modeled like a spring, 
and only act on the atoms that form the bond. The bonded 
forces can be different depending on the number of atoms af-
fected by the bond (single, angle, proper and improper). These 
forces depend directly of the positions of the affected atoms, 
as can be seen in the energy equations of the bonded forces:

Esingle = k(|ri j| − r0)
2

Eangle = kθ (θ − θ0)
2 + kub(|rik| − rub)

2

Edihedral/improper =
{

k(1 + cos(n� + θ)) if n > 0

k(� − θ)2 if n = 0

(1)

• Non-bonded short range or Van der Waals forces are those re-
sulting from interactions between atoms. These interactions 
happen between atoms that may be separated. These forces 
decay very fast as the distance increase, therefore it is pos-
sible to establish a cutoff radius Rc from where the force is 
negligible. The energy equations of the Van der Vaals forces 
are:

E vdw = A

r12
i j

− B

r6
i j

(2)

A and B are constants precomputed using parameters σi j and 
εi j , which also are precomputed using σ and ε values of the 
single atoms:

σi j = σi + σ j

2
εi j =√

εiε j

A = 4σ 12
i j εi j

B = 4σi jεi j
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where σi j is the distance (finite) at which the potential be-
tween particles i and j is zero, and εi j is the depth of the 
potential between particles i and j [6].

• Non-bonded electrostatic or long range forces produced by the 
electrostatic charge of atoms. They are calculated using all 
interactions among the atoms of the system despite their 
distance. There are several methods for calculating these 
forces, such as PME [29] or MSM [14], and some implemen-
tation has demonstrated their scalability in Multi-GPU envi-
ronments [24]. Therefore this paper will not discuss these 
calculations.

To solve these equations there are many integration methods to 
solve particles simulation forces. We can differentiate between first 
order methods (Euler methods) or second order methods. In these 
second order methods we can include Multiple-Time-Step (MTS) 
integrators [16,38]. There are several MTS integrators like Verlet-
I/r-RESPA [13,40], MOLLY [33] or LN [3].

4. Scalable parallel multi-GPU molecular dynamics

Parallelizing a molecular dynamics algorithm to simulate large 
molecular volumes in a multi-GPU architecture implies certain 
challenges. First, it is necessary to partition the molecule among 
the different CEs (GPUs in our case, for best performance). The 
partitions are not static, and atoms that move must be exchanged 
among CEs during the simulation. In order to obtain a fully scalable 
system, each CE must keep only its own data in its local memory. 
This strategy minimizes memory usage, and hence it allows larger 
partitions and higher performance.

Second, although molecular dynamics can be classified as a 
particle system (atoms in this case), it entails other challenges 
for parallelization that are not found in regular particle systems. 
Specifically, atoms are physically bonded, as seen in (1). A bond 
involves a connection between two or more atoms. The movement 
of one of these atoms pulls the other atoms of the bond. A CE 
cannot simulate independently bonded forces of its own atoms; it 
also needs to know the atoms shared with other CEs. When atoms 
move, the connections with their bonded atoms must be main-
tained. As bonded atoms may reside on different CEs, this involves 
communication between CEs not only to exchange atoms, but also 
bonds. Our work addresses the exchange of atom and bond infor-
mation, to allow each CE to efficiently compute all forces of its 
corresponding atoms on each time step of the simulation.
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Fig. 2. Shared data between neighboring CEs, in 2D. Each CE shares data with its 
neighbors (8 neighbors in 2D, 26 in 3D). The interface area of CE 5 (striped) con-
tains the data shared by other CEs, necessary for the calculation of its non-bonded 
short range forces. In addition, CE 5 has several data shared areas (colored without 
stripes). Some of the data is shared with multiple CEs (dark gray color), e.g. the cor-
ner adjacent with CE 1 is shared with CE 1, CE 2 and CE 4. It also shares data with 
individual CEs (light grey), such as with CE 2 on top of CE 5. This happens similarly 
in other shared areas.

4.1. Sharing atoms

MDScale distributes atoms among the different CEs as shown in 
Fig. 2. As atoms can move between CEs, they must communicate 
these changes in order to ensure that they own the right atoms 
at all times (dynamic partitioning). It is necessary to duplicate the 
data of some atoms at the partition boundaries to allow each CE 
to correctly calculate the non-bonded short range forces by itself. 
Note that these forces depend on the cutoff distance Rc between 
atoms as shown in (2). It is also necessary to know the data of all 
the atoms surrounding every atom within Rc , even at the edge of 
the partition. As a result, we identify three distinct zones in each 
CE:

• Private area: atoms that a CE does not share.
• Shared area: atoms shared with other CEs.
• Interface area: atoms not belonging to the CE, but shared by 

neighboring CEs to allow the computation of interaction forces 
among its private atoms.

Interface and shared zones contain the same data, but in dif-
ferent CEs, i.e. atoms stored in the interface of a CE correspond to 
atoms in the shared zone of another CE. The forces of the atoms 
within the interface area are calculated on the CE that contains 
them in its shared area. The interface area is just a storage to have 
the necessary data to calculate the forces of the atoms located at 
the edge of each CE. This partitioning system allows each CE to cal-
culate the forces of its private atoms without any need to access 
private atoms belonging to other CEs. Atoms are communicated or 
updated among CEs only when they move.

We use the cellList algorithm [34,43,7] to partition the system. 
This is an algorithm initially designed for the computation of non-
bonded short range forces. It divides the entire molecular system 
into cells of equal size. Cells are classified into the three types of 
246
areas seen above (see Fig. 3). The cell size is an integer fraction 
of the cutoff radius Rc . This means that, for each atom, we can 
find all the atoms within Rc into a constant number of cells. The 
cellList is fixed in the system, and each atom is initially assigned 
to one of these cells according to its x, y, z global position within 
the whole molecule. The system assigns the cells with their corre-
sponding atoms to each CE according to their position. The atom 
data changes only when the position of the atoms in the cellList 
varies. Each predetermined number of steps the positions of the 
atoms inside the cellList are recalculated and, if necessary due to 
their motion, their data are updated among the CEs. Rc defines 
the number of cells that are exchanged with other CEs (interface-
shared area), with the aim of sharing only the data needed to 
calculate non-bonded short range forces [35]. Note that each CE 
can perform these calculations independently, as it has the data 
shared by neighboring CEs in its own interface zone. The forces 
of atoms located at the edge of the shared area can be calculated 
thanks to the interface cells. We have adapted the data structures 
to optimize the simulation, reducing communication times among 
the different CEs (see Section 5).

4.2. Sharing bonds

Due to bonds, atoms pull from each other in their motion. 
When atoms move between CEs we update and send not only the 
atoms, but also the bonds to which they belong (see Fig. 4). We 
consider bonds as elements with their own x, y, z positions. They 
must be sent when their positions fall within the interface area 
of other CEs. Thereafter, each CE stores the corresponding bonds 
and atoms and can calculate their bonded and non-bonded short 
range forces. Received atoms are positioned in the interface cells. 
This implies that the receiver does not calculate the bonded forces 
of these atoms; only the sending CE that privately owns them cal-
culates their forces. Receivers therefore do not need the bonds of 
interface atoms until they move to their shared cells.

Note that a bond combines two or more atoms, and this union 
may involve sharing information between atoms belonging to dif-
ferent CEs. It is therefore necessary to identify each atom as a 
whole in order to maintain the static relationship between the 
bonded atoms that may be in different CEs. Keeping a list of all 
atoms of the molecular volume in each CE involves a high mem-
ory cost, which would prevent scalability of the system. As each 
CE only calculates the forces of its shared and private atoms, it 
is more memory efficient to store only the necessary atoms and 
manage them locally. For this dual global and local vision, we iden-
tify the atoms within the system using two types of identifiers: 
i) global: identifies the atom within the whole molecule; and ii) lo-
cal: identifies the atom within each CE. When sending an atom, the 
identifier must be converted from local to global and vice versa.

We perform this conversion using a hash table. We have chosen 
to use the hash table implementation of Nvidia CUDPP [2], which 
allows us to drastically reduce the execution time and memory 
usage. In all tests performed, the execution time required by the 
transformation using the hash table is less than 0.01% of the sim-
ulation time, which is considered negligible.

Specifically, when a CE receives a new atom, it creates a local 
atom and it assigns it the global identifier. The global identifier is 
useful for identifying which other atoms of other CEs are bonded. 
Local atoms are stored according to their position in the cells to 
improve access performance. This arrangement allows fast memory 
access and optimization of force calculation for each cell.

MDScale is able to calculate in parallel the bonded forces from 
the sorted local data structure. Each local atom identifier contains 
references to its bonds, and each bond also contains references to 
the atoms it connects, to allow the computation of the bonded 
forces. Fig. 5 shows this process.
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Fig. 3. Cell types. Each CE contains the three types of cells shown in Fig. 2. Shared cells contain atoms shared with other CEs. Interface cells (striped) contain the atoms 
shared by other CEs and therefore overlap with their corresponding shared cells. In this example, the width of the shared area is only one cell, but the method extends to 
larger sizes.

Fig. 4. Bonds distributed in two CEs. An atom moving from a private cell to a shared area has to be sent to the corresponding neighbors so that they can calculate their own 
non-bonded short range forces. Furthermore, when an atom (e.g. id 43) moves from a shared cell to interface area, it is necessary to send the bonds that affect it, to be able 
to simulate the bonded forces in all CEs that share a bond. The new CE needs to know the global identifiers of all atoms belonging to the bond (in this case ids. 43, 44 and 
45).
4.3. Multi-GPU hardware architecture

Partitioning large molecular volumes in a multi-GPU environ-
ment requires a hardware communication system. There are two 
major types of multi-GPU architectures that can be used for this 
purpose. One possibility is to use an on-board hardware architec-
ture with multiple GPUs via GPUDirect, NVLink, NVSwitch or PCIe 
connections [20]. This distribution is efficient in terms of commu-
nication between GPUs, since it is done through the motherboard 
data bus. But it has a major limitation: the small number of si-
multaneous GPUs that can be used (e.g. only 16 GPUs can be fully 
connected with the NVSwitch architecture).
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Another possibility is to use a multi-GPU architecture with 
GPUs distributed across different compute nodes. Each node, which 
may contain one or more GPUs, communicates with others us-
ing advanced high-speed networks. Traditionally, information was 
sent from the RAM memory of the sending node via its network 
interface, and data was received in the RAM memory of the receiv-
ing node. This method caused a delay in communication between 
GPUs, because before the data was sent, it was dumped from GPU 
to RAM, and when data was received, it had to be dumped back 
into the destination GPU memory.

Currently, multi-GPU environments can implement a direct 
communication between GPUs through the network interface. This 
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Fig. 5. Relationship between atoms and bonds. The data structures facilitate the calculation of the bonded forces for each atom without having replicated or inconsistent data.

Fig. 6. Remote GPU-direct architecture.
communication, known as GPUDirect RDMA (remote direct mem-
ory access), allows network devices to directly access GPU memory, 
drastically reducing communication times between GPUs by avoid-
ing RAM memory (see Fig. 6). In addition, the standard Message 
Passing Interface (MPI) for the development of parallel applica-
tions in distributed environments, via CUDA-aware MPI, allows 
these data exchanges to take place transparently. CUDA-aware MPI 
abstracts the communication system and enables sending and re-
ceiving GPU buffers directly, without having to first dump them in 
RAM memory. This allows the development of our simulator with-
out having to take into account the type of architecture available: 
on board, traditional network communication, or GPUDirect RDMA. 
Moreover, this abstraction allows to use any of these architectures 
in a hybrid way.
248
5. Algorithm overview

We have used a generic Verlet-I/r-RESPA integrator to solve the 
equations of motion and calculate the trajectories of atoms due 
to the stability and simplicity it provides. It is a MTS integration 
method, where each time step is solved in 2 half steps. The first 
one gets the velocity of the atoms at half time. The second one 
calculates the rest of the velocity and their positions. The formulas 
are as follows:

v(t + �t

2
) = v(t) + 1

2m
F (t) (3)

v(t + �t) = v(t + �t

2
) + 1

2m
F (x(t + �t)) (4)

x(t + �t) = x(t) + v(t)�t + 1
F (t)�t2 (5)
2m
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Algorithm 1 Proposed Multi-GPU Verlet-I/r-RESPA MTS integrator.
1: procedure Step(current Step)
2: integrateHalf V elocity() ← Equation (4)
3: integratePosition() ← Equation (5)
4: transf er Positions(sharedI Ds)
5: if current Step mod stepUpdate = 0 then
6: atomI Ds[]=identi f yE victedAtomI Ds(AtomInf o)

7: bondI Ds[]=identi f yE victedBondsI Ds(AtomInf o, BondElements)
8: transf erE victed(atomI Ds, bondI Ds)
9: updateCellList()

10: sharedI Ds[] = identi f ySharedAtomIds(CellList)
11: transf er Positions(sharedI Ds)

12: computeBondedF orces()
13: computeNonBondedShort RangeF orces()
14: integrateHalf V elocity() ← Equation (3)
15: current Step = current Step + 1

Algorithm 2 Identification of atom identifiers to be shared.
1: procedure IdentifyEvictedAtomIds(AtomInf o)
2: localE victed[] = compute AtomsE victed(AtomInf o)

3: globalE victed[] = hashT able.retrieve(localE victed)

4: mergeSort(globalE victed)

5: return globalE victed

where v(t) represents the last velocity of each atom and x(t) its 
last position.

We calculate the new position of each atom by computing the 
different bonded and non-bonded short range forces following (1)
and (2). Algorithm 1 shows our implementation of the Verlet-I/r-
RESPA integrator highlighting in brown the modifications with re-
spect to the original algorithm. There are multiple data (atoms and 
bonds) exchange functions required for running in a distributed 
environment. In our partition, there are some data shared between 
CEs, e.g. the positions of the atoms in the shared cells. Each CE 
calculates the forces, velocities and positions of the atoms in its 
private and shared cells, but not those corresponding to atoms lo-
cated in its interface cells. Each CE sends the positions of the atoms 
in its own shared cells and receives the same data for the atoms in 
its interface cells. Note that the movement of atoms in each step is 
slow and is less than the width of a cell, thus there is no need to 
interchange data between the CEs at each step [43]. After a certain 
number of steps (stepUpdate), the location of the atoms and bonds 
in the cellList has to be recalculated, sending the atoms and bonds 
that have left each CE (evicted) to their corresponding neighbors. 
First of all, it is necessary to discover the atoms and bonds that 
have changed their position in the system and must be transferred 
to another CE by means of identifyEvictedAtomsIDs and identifyE-
victedBondsIDs. Algorithm 2 shows how to identify the atoms that 
move from shared to interface cells. Similarly, we can extrapolate 
this algorithm to Algorithm 3 since we consider bonds as one more 
element of the system. Those atoms and bonds outside the CE are 
subsequently transferred.

Once each CE receives the new atoms and bonds for its shared 
cells, it reallocates all local atoms and bonds in their correspond-
ing cells using updateCellList. This enables a better organization of 
atoms and bonds according to their local ids in each CE to improve 
performance. As the location of the atoms in the cells has changed, 
it is necessary to identify which atoms are currently in the shared 

Algorithm 3 Identification of bond identifiers to be shared as in-
terface. Bonds are considered an element of the system, so they 
have a x, y, z position and can be placed within the cellList.
1: procedure IdentifyEvictedBondIds(AtomInf o , BondElements)
2: computeBondsPositions(BondElements, AtomInf o)

3: localE victed[]=computeBondsE victed(BondElements, BondPositions)
4: globalE victed[]=hashT able.retrieve(localE victed)

5: mergeSort(globalE victed)

6: return globalE victed
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Algorithm 4 Identification of atom identifiers to be shared to in-
terface cells of other CEs.
1: procedure IdentifySharedAtomIds(CellList)
2: sharedLocalIds[]
3: sharedCells[] = CellList.get SharedCells()
4: for each item cell in sharedCells do
5: sharedLocalIds.add(cell.get AtomIds())

6: sharedGlobalIds[] = hashT able.retrieve(sharedLocalIds)
7: mergeSort(sharedGlobalIds)
8: return sharedGlobalIds

cells using identifySharedAtomsIds to update the positions of atoms 
between CEs. Finally, each CE sends the positions of the atoms lo-
cated in its shared cells with transferPositions. Algorithm 4 shows 
how to identify atoms located in the shared cells to subsequently 
send only their positions to the interface cells of neighboring CEs.

We use multiple data structures to store the information 
needed, optimize calculation forces and exchange data between 
CEs. Specifically, we use the following data structures to store the 
atoms in each CE:

• AtomInfo contains different information about the atoms (po-
sitions, velocities, physical parameters, and local and global 
identifiers).

• AtomData contains the bonds to which an atom is bonded. It 
is directly related to AtomInfo.

• CellList contains the cells of each CE, sorted by cell type. Each 
cell stores the local identifiers of the atoms it contains.

We use the following data structures to store the bonds and its 
relationship to atoms:

• BondElement, AngleElement, DihedralElement, ImproperElement
arrays contain bond data for the calculation of forces, like the 
local identifiers of the affected atoms.

• BondPositions, AnglePositions, DihedralPositions, ImproperPositions
arrays contain the position of the bonds in 3D space. These 
positions are calculated every stepUpdate and used to transfer 
atoms between CEs.

When data is updated between CEs, each CE calculates the new 
position of each atom and bond, and stores them in AtomInfo and 
BondPositions respectively. The positions of the atoms are used in 
the simulation with other data contained in AtomInfo, while Bond-
Positions is only used for data transmission. After a predefined 
number of time steps stepUpdate, each CE computes the new lo-
cation of atoms and bonds into the cellList and obtains the new 
shared cells to send the atoms belonging to the neighboring CEs. 
Each CE updates the positions of the atoms in the interface zone 
with data received from the neighboring CEs. At the same time 
it sends the position of the atoms in its shared zone. This allows 
each CE to compute the new forces with the most recent data of 
the simulation.

6. Evaluation

This section analyzes in depth the scalability and different ben-
efits of the proposed approach. This analysis aims to demonstrate 
the performance of MDScale compared to the well known molec-
ular dynamics simulator NAMD. We have chosen NAMD because 
it provides a wide variety of settings. In particular, in NAMD it is 
possible to disable non-bonded long-range forces, which are not 
covered in this work. By disabling these forces, we were able to 
perform fair comparisons. NAMD allows water molecules to be 
simulated as rigid bodies, but we have disabled this option in or-
der to run forces for all the atoms. Both in our MDScale system and 
in NAMD we compute bonded forces and short-range non-bonded 
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Fig. 7. Simulation of 100 steps of 8 million atom water molecules with NAMD and MDScale on an AWS K80 testbed. (a) shows the simulation time. (b) shows the speedup 
where the scale is logarithmic in base 2 to be able to appreciate the linear speedup of MDScale. The speedup is calculated using as reference the simulation time with the 
least number of CEs (4 in this case) that can hold the complete 8-million-atom system.
forces in all steps. Then, with both systems we reach the same 
precision of results for all scenarios. Note that, due to the lack of 
non-bonded long-range forces, the validity of the structure of the 
molecule over a long time is not measurable. Therefore, we limit 
all executions to 100 steps in our comparisons.

NAMD performs force calculations using either CPUs or GPUs 
depending on the computational load of each process, assign-
ing heavier tasks to GPUs. The molecular system is divided into 
patches, whose number and size does not depend on the number 
of CEs, but on the total size of the system. To carry out the cal-
culations, NAMD uses a primary-secondary architecture, where the 
primary CE monitors the whole process and sends the patches to 
each of the secondary CEs, who calculate the forces of the corre-
sponding atoms. In contrast to MDScale, atoms are not distributed 
into patches according to their position, but according to the num-
ber of bonds and the density of atoms. In this way, all patches 
have a similar computational load, and a priori no CE should wait 
for the others. To enable updates between patches, each patch con-
tains a neighbor list, with the necessary atoms from other patches 
to compute the electrostatic forces. These neighbor lists are up-
dated every 10 steps, same as in MDScale. But in contrast to MD-
Scale, the content of the patches does not need to be updated, as 
it does not depend on the positions of the atoms. Note that while 
NAMD can be affected by load imbalance because neighborhoods 
between patches may grow, MDScale may suffer it since the parti-
tioning system is fixed in space.

We have simulated two types of benchmarks. On one hand, wa-
ter molecules which allow us to vary both the number of atoms 
and CEs to measure performance, speedup and GPU memory us-
age. On the other hand, well-known molecules to compare the 
performance and GPU memory usage with different atom size and 
GPU types on realistic scenarios. In all benchmarks, we distribute 
the molecules following a binary partition according to [23] in 3 
dimensions, taking into account that there are periodic bound-
ary conditions. As mentioned above, we limit all simulations to 
100 steps, as this allows us to obtain execution measures without 
wasting too many platform resources. We update atoms and bonds 
among CEs every 10 steps. Increasing stepUpdate caused the simu-
lations to be unstable, and decreasing it did not imply a significant 
difference in the precision of the results obtained. In all cases we 
use a cutoff value of 1.0 nm, which is a value commonly used in 
practice for molecular dynamics simulation (see e.g. [41,30]).

We have used as testbed two clusters of several GPU instances 
running in Amazon Web Services (AWS) [22]. We use p2.xlarge and 
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p3.2xlarge instances respectively, which use Nvidia K80 (p2.xlarge) 
and V100 GPUs (p3.2xlarge). Although these types of graphics 
cards, K80 or V100, are composed of two GPUs each, AWS virtu-
alization provides only one per instance. Therefore, each instance 
runs on a single GPU with 12 GiB RAM on K80 and 16 GiB RAM 
on V100.

Firstly, we have compared MDScale with NAMD on a balanced 
scenario made of water molecules (8 million atoms in total) on 
an AWS K80 testbed. Fig. 7(a) shows the performance with both 
simulators. NAMD presents better performance on few CEs. With 
water molecules, the cost of bonded forces is low, and NAMD’s 
CPU-based computation of these forces turns out more efficient. 
In contrast, as the number of CEs increases, MDScale overcomes 
NAMD thanks to better scalability. As shown in Fig. 7(b), MDScale 
obtains better speedup than NAMD, in particular as the number of 
CEs grows. We compute the speedup with respect to the simula-
tion in 4 CEs since the molecular system does not fit in less CEs 
due to memory limitations. By increasing the number of CEs to 
64 (x16) the speedup obtained by MDScale is 15.76, therefore its 
scalability is practically optimal.

As shown in Fig. 8, the data update time between CEs only uses 
a small percentage of the simulation time, between 1-6%. The per-
centage grows as the number of nodes increases due to the greater 
number of neighbors with whom the information is shared. Even 
so, we measure that the memory size used for interface area is 
low, not exceeding 3.25% of occupied memory with different num-
ber of CEs. Therefore, 94-99% of the time in the simulation is being 
fully parallelized, guaranteeing a high speedup.

Next, we have simulated water molecules with different num-
ber of atoms per CE, but ensuring a balanced load across CEs. 
Specifically we have simulated 1, 2 and 4 million atoms per CE 
running in 2, 4, 8, 16 and 32 GPUs on an AWS K80 testbed. 
Fig. 9 shows the MDScale memory usage per CE for the simu-
lated molecules. The GPU memory usage increases slightly from 2 
to 4 CEs and then it is stabilized, ensuring in-memory scalability. 
Fig. 10 shows the simulation performance (ps/day) obtained with 
MDScale and NAMD with the same molecules. We use this com-
mon measurement unit for comparison since it is useful to know 
how many days of simulation time are needed to complete, e.g., 
a microbiology synthesis process. In all cases the same number of 
atoms is simulated for both simulators. Note that increasing the 
number of elements implies a linear increase in the number of 
simulated atoms (e.g. 128 million distributed into 4 million per CE 
on 32 GPUs). As the number of atoms per node doubles, the com-
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Fig. 8. Percentage of the time required in MDScale for updating atoms and bonds 
compared to the simulation of 8 million atom water molecules on an AWS K80 
testbed.

Table 1
Measures obtained from simulating a water system 
with 1 billion atoms on 128 Nvidia Tesla K80 GPUs.

Performance Update transfers Memory usage

0.43 ps/day 6.15% 10.42 GB/CE

Table 2
Measures obtained from simulating water molecules on 96 
Nvidia Tesla V100 GPUs.

Num. Atoms Performance Updates Mem. usage

1 Billion 4.8 ps/day 5.78% 12.32 GB/CE
1.2 Billion 2.92 ps/day 5.23% 15.63 GB/CE

putation time is less than double, taking advantage of the massive 
parallelism of the GPU. As discussed earlier, NAMD presents bet-
ter results than MDScale under small amounts of water molecules 
per CE due to the low number of bonded forces. As the number 
of atoms and CEs increases, the capacity of NAMD decreases while 
MDScale remains stable. This allows MDScale to handle large-scale 
molecular dynamics with a growing amount of atoms by simply 
adding GPUs to the infrastructure.

As a demonstration of the scalability of MDScale, we have sim-
ulated a water system with 1 billion atoms, distributed in a bal-
anced way over 128 K80s. Table 1 shows the performance obtained 
on the AWS K80 testbed. These measures are in compliance with 
Figs. 9 and 10. The simulation uses more than 10 GB per GPU out 
of the 12 GB RAM available in each K80. The percentage of time 
spent on the exchange and identification of atoms is not significant 
and remains almost stable with this amount of atoms and CEs.

The limiting factor for scalability in this case is the GPU mem-
ory size. We have run a similar simulation of water molecules 
using an AWS V100 testbed to be able to increase the GPU mem-
ory size. We have been able to run the same number of atoms (1 
billion) using only 96 V100, due to the increase in GPU memory 
from 12GB in K80 to 16GB in V100. Furthermore, in the same 96 
V100 we have been able to simulate up to 1.2 billion atoms. As 
it is shown in Table 2, the performance is significantly higher in 
comparison to Table 1 due to architectural improvements of the 
GPU.

Once the scalability of the proposal has been verified with 
water molecules, we have tested its operation in simulations of 
some biological macromolecular structures obtained from the Pro-
tein Data Bank [4]. First, we have compared MDScale and NAMD 
on a medium-sized molecular system. Specifically, we simulate 100 
steps of bonded and non-bonded short ranges forces of the well-
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Table 3
Measures obtained from simulating 1 billion atoms of 
96 4UDF viruses replicated on 96 Nvidia Tesla V100 
GPUs.

Performance Update transfers Memory usage

4.02 ps/day 7.10% 13.40 GB/CE

known biomolecule 4V4L [44] replicated 12 times (∼7.5 million 
atoms) shown in Fig. 11(a). Second, we have tested a more chal-
lenging scenario, simulating the large molecular system 3J3Q [26]
representing the HIV-1 capsid (∼66 million atoms) shown in 
Fig. 11(b). Note that the HIV-1 virus capsid has been previously 
simulated using NAMD and CHARMM on the TITAN Supercomputer 
with 3880 GPU accelerated Cray-XK nodes [45]. On both molecu-
lar systems, the binary partitioning produces partitions that are far 
from perfectly balanced. There are areas with greater density of 
atoms and greater number of bonds.

Both molecules were distributed among different numbers of 
nodes with their respective GPUs: 4, 8, 16 and 32 for 4V4L and 
16 and 32 for 3J3Q, due to memory requirements. As shown in 
Fig. 12(a), MDScale outperforms NAMD regarding simulation times. 
The performance of NAMD gets worse compared to Fig. 7(a). This is 
because, when running a complex molecule system, NAMD spends 
time trying to perform load balancing if there is a high number of 
patches. For 12x4V4L and 3J3Q the speedup obtained in MDScale 
is almost linear: 1.98 and 1.88 respectively with 32 GPUs compared 
to 16 GPUs (2x). The difference in performance between the two 
tests is due to the greater imbalance of the 3J3Q molecular system. 
Additionally, as the size and complexity of the molecule grows, 
the performance improvement of MDScale becomes more signifi-
cant.

Fig. 12(b) shows for each molecule the size of the occupied 
memory and interface area by CE in MDScale. For instance, the 
3J3Q molecule divided into 16 K80s occupies almost the entire 
GPU memory. Note that the molecules are divided based on the 
position of the atoms, not the complexity of the molecule. This 
causes that there are CEs that contain a greater density of atoms 
with complex bonds and therefore they require more memory to 
store them. This is represented in the figure by standard devia-
tion lines to measure the spread of the memory size distribution. 
Despite this load imbalance, as seen, speedup has not been sig-
nificantly affected. The total memory size used decreases almost 
linearly as we increase the number of CEs. The memory used by 
the interface cells decreases less in comparison. The size of the in-
terface does not depend on the number of atoms being simulated, 
but on the size of the cells, the cutoff radius and the number of 
neighbors. In any case, note that the interface size is very small 
(the scale of the figure is logarithmic) compared to the memory 
space required to store the atoms that corresponds to each CE.

Finally, we simulate a very large complex molecular system. In 
particular, we have replicated 96 times the 4UDF virus [36] (hu-
man parechovirus neutralization by human monoclonal antibodies, 
composed of ∼10.4 million atoms surrounded by water), to ob-
tain a gigamolecule of 1 billion atoms (see Fig. 13). Table 3 shows 
the performance obtained in a balanced distribution on a 96 V100 
testbed (one CE per 4UDF). The simulation uses more than 13 GB 
per GPU of the 16 GB RAM available in each V100. As expected, 
performance decreases slightly compared to the simulation of wa-
ter molecules with the same number of atoms and GPUs (see 
Table 2), due to the high complexity of the molecule. Neverthe-
less, it shows that MDScale can tackle massive molecules adding 
as many GPUs as necessary to cover the molecular size and ob-
taining a good performance.
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Fig. 9. MDScale memory usage per CE for the water molecules simulated in Fig. 10.

Fig. 10. Performance of NAMD and MDScale in logarithmic scale increasing the number of GPUs and atoms per CEs to simulate water molecules with tens of millions of 
atoms.
7. Conclusions

This article presents a scalable multi-GPU algorithm for bonded 
and short-range molecular dynamics, named MDScale, that runs 
the entire force calculation on GPUs. Our experiments suggest that 
it achieves efficient communication between different number of 
CEs and reduced memory usage. We have tested its operation by 
comparing it to the well-known molecular dynamics simulator, 
NAMD, by running the same simulations of different balanced and 
unbalanced molecular systems, like 4V4L and 4UDF replicated sev-
eral times, 3J3Q and tens of millions atoms of water molecules. 
Our partitioning system allows us to add as many GPUs as nec-
essary to cover the molecular size without losing performance. As 
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proof of its scalability, we have carried out an evaluation checking 
its performance and memory use with different numbers of GPU 
instances on Amazon Web Services. Results show a close-to-linear 
speedup only minimally affected by different atom densities.

As a limitation, our partitioning system does not guarantee a 
load balance between GPUs, as it is done based on the current 
position of the atoms, not the complexity of the molecule. In ad-
dition, we have evaluated by simulating only 100 steps of bonded 
and non-bonded short range forces. This does not allow us to thor-
oughly test for load imbalance over time. We may want to argue 
that molecular dynamics, due to pressure exchange, does not suffer 
much load imbalance. As future work, we plan to include non-
bonded electrostatic forces, which were outside the scope of this 
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Fig. 11. Testbed molecules. (a) 12 molecules of 4V4L made of about 7.5 million atoms including the surrounding water molecules. (b) 3J3Q, HIV-1 capsid made of about 66 
million atoms including the surrounding water molecules.

Fig. 12. Simulation of 12x4V4L and 3J3Q molecular systems on an AWS K80 testbed. (a) Comparison of MDScale and NAMD simulation time. The performance of MDScale is 
superior in all cases (4, 8, 16 and 32 GPUs) in both scenarios. (b) Memory footprint in MDScale per CE in the 3D binary partition distributed equitably among the different 
CEs. The graph is in logarithmic scale to appreciate the evolution of the used memory. Note that the interface area uses a small amount of memory compared to the total 
simulation size.

Fig. 13. Gigamolecule composed of 96 4UDF viruses replicated to obtain 1000 million atoms including the surrounding water molecules.
253
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work. We also intend to offer MDScale as a software as a service 
(SaaS) for molecular dynamics simulation where domain experts 
can run their own large scale simulations with larger number of 
steps.
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