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a b s t r a c t 

Image fusion aims at estimating a high-resolution spectral image from a low-spatial-resolution hyper- 

spectral image and a low-spectral-resolution multispectral image. In this regard, compressive spectral 

imaging (CSI) has emerged as an acquisition framework that captures the relevant information of spec- 

tral images using a reduced number of measurements. Recently, various image fusion methods from CSI 

measurements have been proposed. However, these methods exhibit high running times and face the 

challenging task of choosing sparsity-inducing bases. In this paper, a deep network under the algorithm 

unrolling approach is proposed for fusing spectral images from compressive measurements. This architec- 

ture, dubbed LADMM-Net, casts each iteration of a linearized version of the alternating direction method 

of multipliers into a processing layer whose concatenation deploys a deep network. The linearized ap- 

proach enables obtaining fusion estimates without resorting to costly matrix inversions. Furthermore, 

this approach exploits the benefits of learnable transforms to estimate the image details included in both 

the auxiliary variable and the Lagrange multiplier. Finally, the performance of the proposed technique is 

evaluated on two spectral image databases and one dataset captured at the laboratory. Extensive sim- 

ulations show that the proposed method outperforms the state-of-the-art approaches that fuse spectral 

images from compressive measurements. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

A hyperspectral (HS) image can be considered as a three- 

imensional (3-D) data set that contains the light reflective re- 

ponses of a two-dimensional (2-D) scene across tens or hundreds 

f spectral bands ranging from the visible spectrum (VIS, 400–

00 nm) to the shortwave infrared region (SWIR, 70 0–240 0 nm) 

1,2] . HS images provide detailed spectral information of the scene, 

nabling the identification of distinct materials included in the 

overed region. These images have been considered for various ap- 

lications such as precision agriculture, environment monitoring, 

nd medical diagnosis [3,4] . HS imaging sensors commonly cap- 

ure low-spatial-resolution data sets with the goal of achieving a 

igh signal-to-noise ratio (SNR) in the acquired observations. To 

vercome this drawback, data fusion has emerged as a signal pro- 

essing task that focuses on merging the information in HS images 
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ith the information provided by the high-spatial-resolution but 

ow-spectral-resolution multispectral (MS) images [5–7] . 

Fusion methods are typically applied to HS and MS images 

aptured by scanning sensors whose functioning is based on the 

yquist-Shannon sampling theorem [8,9] . Nevertheless, scanning 

ensors require a huge amount of observations to capture the rele- 

ant information in the covered scenes. In this regard, compres- 

ive spectral imaging (CSI) has emerged as an alternative sens- 

ng framework that captures the relevant information embedded 

n spectral images using a reduced set of projections [10] . The 

oded aperture snapshot spectral imaging (CASSI) is the most rep- 

esentative CSI system whose measurements basically are projec- 

ions of encoded versions of the input spectral field [11] . Multi- 

le variants of the CASSI system have been developed including 

he three-dimensional CASSI (3D-CASSI) [10] , the colored CASSI 

C-CASSI) [12] and the snapshot colored CSI (SCCSI) [13] , among 

thers. Various image fusion methods from multi-sensor compres- 

ive measurements have been recently proposed. More precisely, 

hese methods determine the acquisition model that describes the 

ulti-sensor optical system and formulate an optimization prob- 
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em. Then, an iterative algorithm is developed to estimate the 

igh-resolution spectral image from compressive samples [14–16] . 

hese methods assume that high-resolution spectral image can be 

parsely represented on a predefined transform basis and they also 

xhibit high running times. On the other hand, various deep learn- 

ng approaches have been recently developed providing state-of- 

he-art performances for different imaging applications including 

yperspectral image analysis [17] and target detection in SAR im- 

gery [18,19] . However, deep learning approaches typically suffer 

rom a lack of explainability of the inverse mapping that recovers 

he image of interest from degraded measurements [20,21] . 

In this regard, deep algorithm unrolling is an approach for 

olving inverse problems whose performance and interpretabil- 

ty have attracted the attention of the signal and image process- 

ng community in the past decade. This approach takes advan- 

age of both the interpretability of the model-based iterative algo- 

ithms and the remarkable performance of deep neural networks 

21] . Specifically, this approach casts each update step of an it- 

rative algorithm into a network-based structure whose concate- 

ation describes a deep network. The first work in deep algo- 

ithm unrolling was proposed by Gregor and LeCun in the con- 

ext of sparse coding [22] . Basically, this method maps each update 

f the iterative soft-thresholding algorithm (ISTA) to a network- 

ased structure that consists of learning the inversion induced 

y two operators to compute the output estimate. This technique 

s referred to as Learned ISTA (LISTA). A second approach based 

n the ISTA algorithm is the ISTA-Net architecture [23] that has 

een designed to recovering images captured under the compres- 

ive sensing (CS) scheme. This approach exploits the representa- 

ion power of the convolutional neural networks (CNN) to build a 

parsity-inducing nonlinear transform for representing the target 

mage. Furthermore, authors introduce an enhanced version, called 

STA-Net+, that relies on the fact that the image residuals can be 

etter described in a sparsity-promoting dictionary. Recently, the 

DMM-CSNet has been reported in [24,25] for reconstructing im- 

ges from CS samples. In essence, this work proposes two deep 

earning architectures that unroll two versions of the ADMM al- 

orithm, where the matrix inversions are computed using tech- 

iques based on the fast Fourier transform (FFT). Other unrolling 

pproaches for solving inverse problems has been also introduced 

uch as the model-based deep learning (MoDL) architecture [26] , 

he FBPConvNet [20] , and the analytic compressive iterative deep 

ACID) framework [27] . 

This paper focuses on developing a network architecture based 

n the linearized version of the ADMM algorithm [28] to solve the 

mage fusion problem from HS and MS compressive measurements. 

his algorithm unfolding-based network, called LADMM-Net, is an 

nterpretable architecture that exploits the sparsity-inducing non- 

inear transform to estimate the image high-frequency content em- 

edded in both auxiliary and dual variables of the ADMM algo- 

ithm [29] . In essence, the proposed architecture casts each iter- 

tion of the LADMM algorithm into a network-based processing 

ayer whose cascading deploys a deep network. Every layer consists 

f an approximation unit (AU) followed by a network-based refine- 

ent unit (NRU). The AU considers the information embedded in 

he coded aperture patterns as well as the image high-frequency 

ontent computed by the previous layer to obtain an estimate of 

he fused image. In contrast, the NRU is a network-based structure 

hat can be seen as a nonlinear transform function relied on a CNN 

hat estimate the high-frequency information of the target spectral 

mage. The main contributions of this work are synthesized as fol- 

ows. 

1. The proposed approach dubbed LADMM-Net basically is a deep 

learning architecture that solves the data fusion problem from 

HS and MS compressive measurements. In particular, this ap- 
2 
proach casts each iteration of a linearized version of the ADMM 

algorithm into a CNN structure whose cascading describes a 

deep network. Moreover, the linearized version of the ADMM 

allows to estimate approximations of the variable of interest 

without resorting to costly matrix inversions. In addition, the 

information embedded in both the auxiliary variable and the 

Lagrange multiplier is obtained by the network-based structure 

to remarkably improve the fusion estimation. 

2. Secondly, the performance of the proposed architecture is eval- 

uated for two spectral image databases and one real data set 

captured in the laboratory. Furthermore, the proposed deep 

network is tested for different processing layer numbers and 

distinct compression ratios. 

3. Extensive simulations show that that the proposed deep learn- 

ing architecture outperforms other state-of-the-art methods 

that obtain high-resolution images from HS and MS compres- 

sive measurements. Since data fusion can be considered a par- 

ticular inverse problem, the proposed architecture is adapted 

for reconstructing images from compressive random projec- 

tions. 

.1. Related work 

Recently, various algorithm unrolling methods have been de- 

eloped for solving inverse problems [21] . In this regard, LISTA 

s considered the first deep algorithm unrolling technique that 

aps each ISTA iteration into a fully connected neural network. 

his method aims at learning the inverse mapping performed by 

wo matrices used in the ISTA algorithm [22] . It is worth noting 

hat this approach is computationally unfeasible for recovery large- 

ize images such as high-resolution spectral images. On the other 

and, ISTA-Net casts each ISTA iteration into a network structure 

hat learns the soft-thresholding parameter, the regularization pa- 

ameter, and a nonlinear transform [23] . Although the ISTA-Net 

tructure is computationally efficient, this method is affected by 

he limited capacity of convolutional neural networks to learn the 

ntire information embedded in the target image. Compared to 

STA-Net, the proposed approach unfolds a linearized version of 

he ADMM algorithm that alternately solves simple subproblems. 

urthermore, our method attempts to learn a nonlinear transform 

hat describes image details embedded in both the auxiliary vari- 

ble and the Lagrange multiplier improving thus, the reconstruc- 

ion performance while exploiting the computational efficiency of 

onvolutional networks. 

ADMM-CSNet unfolds the ADMM algorithm in the context of 

maging compressive sensing [24,25] . In particular, this technique 

evelops two matrix inversion procedures to estimate the target 

ariable update, one of which is tailored to the measurement ma- 

rices used by compressive sensing magnetic resonance imaging 

CS-MRI). In addition, ADMM-CSNet deploys a set of linear filters 

hat attempts to learn the algorithm parameters, a linear trans- 

orm, and the regularization function. Compared to the ADMM- 

SNet, the proposed approach avoids resorting to matrix inversions 

y updating the target variable performing a computationally effi- 

ient proximal descent step. This minimization step can use any 

fficient measurement matrix such as random matrices and CSI 

ampling matrices. Furthermore, LADMM-Net aims at solving an 

 1 -regularized inverse problem whose proximal mapping reduces 

o the soft-thresholding operator on a shifted version of the auxil- 

ary variable. Finally, our method optimizes an invertible nonlinear 

ransform based on convolutional neural networks to sparsely rep- 

esent image details. 

This paper is organized as follows. Section 2 describes the dual- 

rm architecture based on the 3D-CASSI systems, and Section 3 in- 

roduces the proposed approach for solving the image fusion prob- 

em from compressive projections. The results of extensive simu- 
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Fig. 1. Schematic of the 3D-CASSI optical architecture. 
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ations are shown in Section 4 , and some concluding remarks are 

xposed in Section 5 . 

. Observational model 

In this work, the proposed algorithm unfolding method is used 

o fuse spectral images from compressive measurements captured 

y a dual-arm acquisition system based on the 3D-CASSI architec- 

ure. To this end, we first introduce the foundations of the 3D- 

ASSI optical architecture, and then, we present the acquisition 

odel of the dual-arm system. 

.1. 3D-CASSI System 

In general, the 3D-CASSI architecture is a compressive spectral 

maging (CSI) system that has been designed to obtain the relevant 

nformation of spectral images by capturing a reduced number of 

amera snapshots [10] . This compressive acquisition system has 

een recently used in different applications such as clustering [30] , 

eature fusion [31,32] , spectral image classification [33] , and spec- 

ral image fusion [14,15] . In essence, the 3D-CASSI system projects 

n encoded version of the input spectral image onto a focal plane 

rray (FPA). A schematic of the 3D-CASSI optical architecture is il- 

ustrated in Fig. 1 . As can be seen in this figure, f 0 (u 1 , u 2 , λ) stands

or the spectral density source to be sensed, where ( u 1 , u 2 ) repre-

ents the spatial location and λ stands the wavelength axis [11] . 

he input spectral field f 0 (u 1 , u 2 , λ) is firstly affected by the opti-

al system as follows 

f 1 (u 1 , u 2 , λ) 

= 

∫ ∫ ∫ 
f 0 (u 

′ 
1 , u 

′ 
2 , λ

′ ) h (u 

′ 
1 − u 1 , u 

′ 
2 − u 2 , λ

′ − λ) du 

′ 
1 du 

′ 
2 , dλ′ . (1) 

here h (u 1 , u 2 , λ) is commonly modeled as a shift-invariant im-

ulse response that describes the propagation losses induced by 

he imaging optics. For the sake of simplicity, this impulse re- 

ponse has been typically modeled as h (u 1 , u 2 , λ) = δ(u 1 , u 2 , λ)

11] . Subsequently, f 1 (u 1 , u 2 , λ) is modulated by a colored coded

perture that consists of a 2D array of optical filters, where each 

ptical filter at a specific spatial location modulates the incoming 

ight according to a particular spectral response. It is worth noting 

hat the encoding function depends on the pattern of optical fil- 

ers forming the colored coded aperture [12] . More precisely, the 
3 
ncoding operation can be described as 

f 2 (u 1 , u 2 , λ) = f 1 (u 1 , u 2 , λ) t(u 1 , u 2 , λ) , (2)

here t(u 1 , u 2 , λ) is the spatial-spectral encoding function per- 

ormed by the colored coded aperture. Then, the encoded spectral 

eld is integrated across the system spectral sensitivity � onto the 

PA. In this case, the projected plane is given by 

(u 1 , u 2 ) = 

∫ 
�

f 2 (u 1 , u 2 , λ) dλ. (3) 

.1.1. 3D-CASSI Discrete model 

To describe the intensity captured by an FPA element, consider 

the pixel width and rect 
(

u 1 
� − i, 

u 2 
� − j 

)
the surface covered by 

he FPA element at the discrete spatial location (i, j) [13] . Hence, 

he pixel intensity captured by the detector at the spatial coordi- 

ate (i, j) can be expressed as 

Y ) 
(i, j) 

= 

∫ 
�

∫ 
�

g(u 1 , u 2 ) rect 

(
u 1 

�
− i, 

u 2 

�
− j 

)
du 1 du 2 , (4) 

or i = 0 , . . . , M − 1 and j = 0 , . . . , N − 1 , therefore, the detector has

imensions of M × N pixels. 

A discrete model is frequently used to describe the 3D-CASSI 

ompressive samples. To this end, consider the discrete data cube 

 ∈ R 

M×N×L that describes the input spectral image whose ele- 

ents at the spatial coordinate ( i, j) and the � -th spectral band 

re denoted as (F ) (i, j,� ) for i = 0 , . . . , M − 1 , j = 0 , . . . , N − 1 , and

 = 0 , . . . , L − 1 . Fig. 2 shows the discrete model of the optical phe-

omenon induced by the 3D-CASSI system to capture the compres- 

ive measurements. As can be observed in this figure, the encod- 

ng operation performed by the colored coded aperture is modeled 

s a binary data cube B ∈ { 0 , 1 } M×N×L with entries (B) (i, j,� ) whose

alues depend on the pattern of optical filters [30] . Afterward, the 

ncoded image is obtained as the Hadamard product between the 

nput spectral image F and the colored coded aperture model B, 

.e. F � B with � denoting the element-wise multiplication [12] . 

his encoded version is subsequently projected along the spectral 

xis onto a detector plane, and the measurement captured at the 

patial location ( i , j) can be obtained as 

Y ) 
(i, j) 

= 

[ 

L −1 ∑ 

� =0 

( F � B ) 
(i, j,� ) 

] 

+ ( N ) 
(i, j) 

(5) 
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Fig. 2. A discrete model of the effects induced by the 3D-CASSI architecture to obtain the compressive measurements. The input spectral image F is encoded by the colored 

coded aperture model B according to F � B. Then, the encoded spectral image is projected onto a camera detector to capture the compressive measurements. 
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here N ∈ R 

M×N is the noise matrix that affects the detector mea- 

urements whose entries (N ) 
(i, j) 

are commonly assumed as inde- 

endent and identically distributed (iid) random samples following 

 Gaussian distribution. In general, multiple snapshots are required 

o recover a reliable version of the spectral image from compres- 

ive measurements. In this regard, the 3D-CASSI sample obtained 

t the spatial coordinate ( i , j) and the w -th snapshot can be de-

ned as 

Y 

(w ) ) 
(i, j) 

= 

[ 

L −1 ∑ 

� =0 

(
F � B 

(w ) 
)

(i, j,� ) 

] 

+ 

(
N 

(w ) 
)

(i, j) 

(6) 

or w = 0 , . . . , W − 1 , where B 

(w ) is the model of the colored coded

perture used at the w -th snapshot, W the number of snapshots 

aptured by the multi-frame 3D-CASSI system, and N 

(w ) is the 

oise matrix affecting the w -th snapshot. Various methods that de- 

ign the coded aperture patterns in the context of CASSI acquisi- 

ion architectures have been developed in order to improve spec- 

ral image reconstructions [12,34] . In particular, we use the algo- 

ithm to design multi-frame colored-coded aperture patterns intro- 

uced in [31] that captures the entire spatial-spectral information 

f the input image without redundancy. Notice also that each 3D- 

ASSI snapshot captures an image with dimensions M × N pixels, 

herefore, the compression ratio between the captured data and 

he spectral image of interest is defined as η = 

MNW 

MNL = 

W 

L . Hence, a 

articular compression ratio is achieved by controlling the number 

f snapshots. 

.2. Dual-arm acquisition system 

Fig. 3 illustrates a schematic of the dual-arm architecture that 

aptures the multi-sensor compressive measurements. As can be 

een in this figure, each arm consists of a 3D-CASSI optical sys- 

em that projects an encoded version of the input spectral image 

nto the respective camera detector [10,35] . In particular, the up- 

er part of the dual-arm system called MS 3D-CASSI includes a 

igh-resolution coded aperture and a high-resolution camera de- 

ector. This arm captures poor spectral information due to the 

mall sizes of the optical filters that form the colored coded aper- 

ure. More precisely, this arm aims at recovering a low-spectral- 

esolution multispectral image F ms = ζ(F ) with size M × N × L ms , 

here ζ(·) represents a spectral degradation function, and L ms = 

/q denotes the number of bands of the multispectral image with 
4 
 as the spectral decimation factor. Moreover, the colored coded 

perture model used at the w -th snapshot can be described as 

 

(w ) 
ms ∈ { 0 , 1 } M×N×L ms with entries (B 

(w ) 
ms ) (i, j,� ) 

for i = 0 , . . . , M − 1 ,

j = 0 , . . . , N − 1 , � = 0 , . . . , L ms − 1 , and w = 0 , . . . , W ms − 1 , where

 ms denotes the number of snapshots captured by the MS 3D- 

ASSI system. In consequence, a single sample captured by the MS 

D-CASSI system at the spatial coordinate ( i, j) and w -th snapshot 

an be expressed as 

Y 

(w ) 
ms ) (i, j) 

= 

[ 

L ms −1 ∑ 

� =0 

(
F ms � B 

(w ) 
ms 

)
(i, j,� ) 

] 

+ 

(
N 

(w ) 
ms 

)
(i, j) 

= 

[ 

L ms −1 ∑ 

� =0 

(
ζ(F ) � B 

(w ) 
ms 

)
(i, j,� ) 

] 

+ 

(
N 

(w ) 
ms 

)
(i, j) 

, (7) 

here N 

(w ) 
ms ∈ R 

M×N is the noise matrix affecting the MS 3D-CASSI 

etector at the w -th snapshot. 

On the other hand, the bottom part of the dual system called 

S 3D-CASSI consists of a low-spatial-resolution coded aperture 

nd a low-spatial-resolution camera detector. In contrast to the 

S 3D-CASSI sensor, this arm captures rich spectral information 

f the input image. In this case, the HS 3D-CASSI sensor attempts 

o estimate the low-spatial-resolution image F hs = ξ(F ) with di- 

ensions M hs × N hs × L , where ξ(·) represents the spatial down- 

ampling function, and M hs = M/p; N hs = N/p with p as the spa- 

ial decimation factor. Furthermore, the coded aperture used at 

he w -th snapshot is modeled as B 

(w ) 
hs 

∈ { 0 , 1 } M hs ×N hs ×L with en-

ries (B 

(w ) 
hs 

) (i, j,� ) for i = 0 , . . . , M hs − 1 , j = 0 , . . . , N hs − 1 , and � =
 , . . . , L − 1 , and w = 0 , . . . , W hs − 1 , where W hs is the number of

napshots captured by the HS 3D-CASSI system. Therefore, a single 

easurement captured by the HS 3D-CASSI sensor at the spatial 

oordinate ( i , j) and w -th snapshot can be defined as 

Y 

(w ) 
hs 

) 
(i, j) 

= 

[ 

L −1 ∑ 

l=0 

(
ξ(F ) � B 

(w ) 
hs 

)
(i, j,� ) 

] 

+ 

(
N 

(w ) 
hs 

)
(i, j) 

. (8) 

In summary, the entire set of compressive measurements ob- 

ained by dual-arm system can be succinctly described as 

 

 

 ms = H 

H H ms f f f + n 

n n ms , (9) 

 

 

 = H 

H H f f f + n 

n n , (10) 
hs hs hs 
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Fig. 3. Dual-arm optical architecture to capture hyperspectral and multispectral 3D-CASSI compressive measurements. 
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Fig. 4. (a) Representation of the measurement matrix H H H ms of the MS 3D-CASSI sys- 

tem for M = 8 , N = 8 , L = 4 , q = 2 , and W ms = 2 . Instance of the measurement ma- 

trix H H H hs of the HS 3D-CASSI system for M = 8 , N = 8 , L = 4 , p = 2 , and W hs = 2 . 

o

l

e

s

i

i

c

here y y y ms ∈ R 

MNW ms and y y y hs ∈ R 

M hs N hs W hs are the vectors that con- 

ain the MS and HS compressive samples, respectively; H 

H H ms ∈ 

 

M NW ms ×M NL and H 

H H hs ∈ R 

M hs N hs W hs ×MNL are the measurement ma- 

rices describing MS 3D-CASSI and HS 3D-CASSI acquisition pro- 

esses, respectively; f f f is the spectral image of interest in vector 

orm; and n n n ms and n n n hs are noise vectors. 

In particular, the measurement matrix of the MS 3D-CASSI sen- 

or includes both the spectral decimation function ζ(·) and the ef- 

ect of the colored coded aperture. In this case, the measurement 

atrix can be defined as 

 

H ms ) ( u, v ) = 

⎧ ⎨ 

⎩ 

1 
q 

(
B 

( w ) 
ms 

)
( i, j,� ) 

, if u = i + jM + wMN and 

v = i + jM + ( �q + z m 

) MN 

0 , otherwise 

(11) 

or z m 

= 0 , . . . , q . A representation of the measurement matrix H 

H H ms 

s illustrated in Fig. 4 (a) for M = 8 , N = 8 , L = 4 , q = 2 , and W ms =
 . On the other hand, the measurement matrix of the HS 3D- 

ASSI system should consider the spatial downsampling function 

(·) and the coded aperture pattern. More precisely, this measure- 

ent matrix can be expressed as 

 

H hs ) ( u, v ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
p 2 

(
B 

( w ) 
hs 

)
( i, j,� ) 

, if u = i + jM hs + wM hs N hs 

and v = ip + jp 2 M hs + �p 2 M hs N hs 

+ z h 1 + pM hs z h 2 
0 , otherwise 

(12) 

or z h 1 = 0 , . . . , p and z h 2 = 0 , . . . , p. An example of the measure-

ent matrix H 

H H hs is displayed in Fig. 4 (b) for M = 8 , N = 8 , L = 4 ,

p = 2 , and W = 2 . 
hs 

5 
Assuming that the noise vector entries are random samples 

beying to a Gaussian statistical model, the image fusion prob- 

em reduces to minimize of the sum of the squared errors. How- 

ver, this problem is ill-posed and its respective solution leads to 

everely degraded images. Hence, a regularization term is often 

ncluded to exploit previous knowledge about the target spectral 

mage. A sparsity-inducing term in a given transform transform is 

ommonly included to solve this problem. Thus, the spectral im- 
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ge fusion problem from compressive measurements is formulated 

s 

ˆ f f f = arg min 

f f f 

1 

2 

‖ y y y hs − H 

H H hs f f f ‖ 

2 
2 + 

λ1 

2 

‖ y y y ms − H 

H H ms f f f ‖ 

2 
2 + λ2 ‖ ��� f f f ‖ 1 , 

(13) 

here λ1 and λ2 are regularization parameters. 

. Proposed architecture 

.1. Linearized ADMM 

The alternating direction method of multipliers (ADMM) is a 

ariable splitting optimization approach that has been widely used 

o solve inverse problems involving large-size datasets. This ap- 

roach builds an augmented Lagrangian from a constrained opti- 

ization. Furthermore, the ADMM algorithm estimates the target 

ariable by alternately solving small subproblems [29] . This op- 

imization framework has successfully applied to solve compres- 

ive sensing problems with proven convergence properties [36,37] . 

n contrast to ISTA-based algorithms, ADMM-based approaches 

ave shown in compressive sensing applications faster convergence 

ates and lower reconstruction errors [36] . In addition, in compar- 

son with AMP-based methods, ADMM algorithms do not require 

ailoring a denoising engine to the application at hand. In the con- 

ext of alternating direction methods, the spectral image fusion 

roblem (13) can be reformulated as a constrained optimization 

iven by 

ˆ f f f = arg min f f f 
1 
2 
‖ y y y hs − H 

H H hs f f f ‖ 

2 
2 + 

λ1 

2 
‖ y y y ms − H 

H H ms f f f ‖ 

2 
2 + λ2 ‖ b b b ‖ 1 

s . t . ��� f f f − b b b = 0 , 
(14) 

here b b b is an auxiliary variable under the ADMM framework. In 

his sense, the augmented Lagrangian associated with the con- 

trained optimization (14) can be written as 

 ( f f f , b b b , d d d ) = 

1 

2 

‖ y y y hs − H 

H H hs f f f ‖ 

2 
2 + 

λ1 

2 

‖ y y y ms − H 

H H ms f f f ‖ 

2 
2 + λ2 ‖ b b b ‖ 1 

+ 

ρ

2 

‖ ��� f f f − b b b + d d d ‖ 

2 
2 , (15) 

here ρ > 0 is a penalty parameter and d d d plays the role of the 

agrangian multiplier vector. The ADMM approach attempts to op- 

imize the augmented Lagrangian by iteratively updating the tar- 

et variable f f f , the auxiliary variable b b b , and the Lagrange multiplier 

ector d d d [29] . In this regard, the updating of the target variable at 

he iteration k is estimated by solving the minimization 

f f f (k ) = arg min 

f f f 

1 

2 

‖ y y y hs − H 

H H hs f f f ‖ 

2 
2 + 

λ1 

2 

‖ y y y ms − H 

H H ms f f f ‖ 

2 
2 

+ 

ρ

2 

‖ ��� f f f − b b b + d d d ‖ 

2 
2 , (16) 

hose solution leads to a closed-form expression. However, notice 

hat the estimation of f f f (k ) involves computationally expensive ma- 

rix operations. To overcome this drawback, a linearized version of 

he ADMM algorithm obtains the first-order approximation of the 

ost function around f f f (k −1) [28] shown as follows 

1 

2 

‖ y y y hs − H 

H H hs f f f ‖ 

2 
2 + 

λ1 

2 

‖ y y y ms − H 

H H ms f f f ‖ 

2 
2 + 

ρ

2 

‖ ��� f f f − b b b + d d d ‖ 

2 
2 

≈ 1 

2 

‖ y y y hs − H 

H H hs f f f 
(k −1) ‖ 

2 
2 + 

λ1 

2 

‖ y y y ms − H 

H H ms f f f 
(k −1) ‖ 

2 
2 

· · · + 

ρ

2 

‖ ��� f f f (k −1) − b b b (k −1) + d d d (k −1) ‖ 

2 
2 + 

· · · + 

〈
f f f − f f f (k −1) , ∇( f f f (k −1) ) 

〉
+ 

α

2 

‖ f f f − f f f (k −1) ‖ 

2 
2 

≈ 1 ‖ y y y hs − H 

H H hs f f f 
(k −1) ‖ 

2 
2 + 

λ1 ‖ y y y ms − H 

H H ms f f f 
(k −1) ‖ 

2 
2 
2 2 

6 
· · · + 

ρ

2 

‖ ��� f f f (k −1) − b b b (k −1) + d d d (k −1) ‖ 

2 
2 

· · · + 

α

2 

‖ f f f − f f f (k −1) + 

1 

α
∇( f f f (k −1) ) ‖ 

2 
2 . (17) 

here ∇( f f f (k −1) ) denotes the gradient of the cost function around 

f f f (k −1) given by 

( f f f (k −1) ) = H 

H H 

� 
hs 

(
H 

H H hs f f f 
(k −1) − y y y hs 

)
+ λ1 H 

H H 

� 
ms 

(
H 

H H ms f f f 
(k −1) − y y y ms 

)
+ ρ���� (��� f f f (k −1) − b b b (k −1) + d d d (k −1) 

)
. (18) 

y substituting (18) in (17) , and minimizing the resulting cost 

unction, the update f f f (k ) can be obtained as 

f f f (k ) = f f f (k −1) − 1 

α

[
H 

H H 

� 
hs 

(
H 

H H hs f f f 
(k −1) −y y y hs 

)
+ λ1 H 

H H 

� 
ms 

(
H 

H H ms f f f 
(k −1) − y y y ms 

)
+ ρ���� (��� f f f (k −1) − b b b (k −1) + d d d (k −1) 

)]
. (19) 

In order to update the dual variable at the k -th iteration, the 

lgorithm aims at solving the optimization 

ˆ 
 

 

 

(k ) = arg min 

b b b 

{ 

ρ

2 

‖ � f f f (k ) − b b b + d d d (k −1) ‖ 

2 
2 + λ2 ‖ b b b ‖ 1 

} 

, (20) 

hat describes the proximal mapping when the regularizer is given 

y ‖ b b b ‖ 1 . Notice that the solution to this optimization problem is 

educed to the soft-thresholding operation when the signal of in- 

erest is sparsely represented in a transform domain, i.e. 

 

 

 

(k ) = S ˜ λ
(
� f f f (k ) + d d d (k −1) 

)
, (21) 

here ˜ λ = λ2 /ρ and S ˜ λ(x ) = sign (x ) max { x − ˜ λ, 0 } . Finally, the La-

range multiplier vector is updated at the k -th iteration as follows 

ˆ 
 

 

 

(k ) = d d d (k −1) + ��� f f f − b b b (k ) . (22) 

.2. LADMM-Net 

In this section, we introduce a deep learning architecture called 

ADMM-Net that exploits the advantages of both the LADMM op- 

imization algorithm and the unrolling approach to solve the spec- 

ral image fusion problem from HS and MS compressive measure- 

ents. More precisely, the basic idea is to cast each iteration of 

he LADMM algorithm into a processing block with a convolu- 

ional neural network (CNN). Therefore, the overall architecture 

onsists of multiple processing layers deploying a deep network. 

ig. 5 shows a schematic of the proposed architecture for solving 

he spectral image fusion problem from HS and MS compressive 

easurements. 

Notice that the data fusion problem attempts to describe the 

easurements that minimize the sparse image representation in 

 given transform domain. In general, combinations of orthog- 

nal transforms such as the discrete cosine transform (DCT) or 

he orthogonal discrete wavelet transform (DWT) lead to degraded 

econstructions. Therefore, an approach that includes nonlinear 

ransform functions whose parameters can be learned from avail- 

ble data can be developed to improve the image recovery perfor- 

ance. In this work, we follow a similar approach to that devel- 

ped for the ISTA-Net method [23] . Basically, this approach substi- 

utes the hand-crafted transform by a network structure that can 

e considered as a nonlinear transform function G(·) that induces 

parsity to the image representation. In contrast to the ISTA-Net 

pproach, the transform relied on CNN is optimized to estimate 

oth the auxiliary variable and the Lagrange multiplier that cap- 

ure the high-frequency information of the spectral image of inter- 

st. Notice that the Lagrangian term encloses the information em- 

edded in both the auxiliary variable and the Lagrange multiplier, 

herefore, the proposed network architecture attempts to optimize 

he image prior information and convexity-inducing penalty to im- 

rove the algorithm convergence. As shown below, the proposed 
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Fig. 5. Schematic of the proposed LADMM-Net architecture to solve the spectral image fusion problem from multi-sensor compressive measurements. 

Fig. 6. Schematic of the network-based forward transform (NFT) and the network- 

based inverse transform (NIT) presented for 3-D images. 
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pproach exhibits a superior performance without resorting to the 

arget variable mapping onto the residual domain. 

Fig. 6 shows the structure of the network-based forward trans- 

orm (NFT). As can be seen, this structure consists of a rectified 

inear unit (ReLU) between two convolutional operators [23] . No- 

ice the 3-D shape of the data processed by the network. Specifi- 

ally, the first convolutional operator consists of M filters with size 

 × 3 × L while the second convolutional network contains L filters 

ith size 3 × 3 × M. In addition, the proposed architecture also in- 

ludes a network structure that recovers the image in its conven- 

ional domain. This structure, called network-based inverse trans- 

orm (NIT), is also shown in Fig. 6 . As can be seen in this figure,

he network exhibits the same structure as the NFT network. It is 

orth noting that the NIT should be able to invert the effect of 

he forward transform, i.e. ˜ G (G(x )) ≈ x . This leads to architectures 

ith end-to-end training schemes such that the whole network 

tructure recovers the target image from compressive measure- 

ents. Furthermore, the symmetry of the network-based transform 

unctions is considered during the training stage by including an 

nvertibility error term in the loss function [23] . In this context, 
7 
he spectral image fusion problem from HS and MS compressive 

easurements can be described as 

ˆ f f f = arg min 

f f f 

1 

2 

‖ y y y hs − H 

H H hs f f f ‖ 

2 
2 + 

λ1 

2 

‖ y y y ms − H 

H H ms f f f ‖ 

2 
2 + λ2 ‖G( f f f ) ‖ 1 . 

(23) 

An unrolled algorithm approach is developed to solve this prob- 

em that casts each iteration of the LADMM algorithm to a process- 

ng module dubbed LADMM-Net layer. This layer attempts to effi- 

iently solve the updates (19), (21) , and (22) by exploiting the flex- 

bility of the network-based transform functions. In essence, each 

ADMM-Net layer consists of an approximation unit (AU) and a 

etwork-based refinement unit (NRU) that are described as follows. 

.3. Approximation unit (AU) 

This module estimate the target image according to (19) . This 

nit is also shown in Fig. 5 . Therefore, taking into account that 

f f f (k −1) and r r r (k −1) have been yielded by the previous layer, and con- 

idering the information embedded in the measurement matrices 

 

 

 ms and H 

H H hs , the output of this processing unit is expressed as 

f f f (k ) = f f f (k −1) − 1 

α(k ) 

[
H 

H H 

� 
hs 

(
H 

H H hs f f f 
(k −1) − y y y hs 

)
+ λ(k ) 

1 
H 

H H 

� 
ms 

(
H 

H H ms f f f 
(k −1) − y y y ms 

)
+ ρ(k ) r r r (k −1) 

]
(24) 

here α(k ) is a learnable step-size at the k -the phase; (λ(k ) 
1 

, ρ(k ) ) 

re the learnable regularization parameters at the k -the phase; and 

 

 

 

(k −1) is the augmented Lagragian term computed by the NRU of 

he previous processing layer. Notice that, the learnable parameters 

 α(k ) , λ(k ) 
1 

, ρ(k ) ) are different across the layers. Furthermore, under 

he LADMM approach, the estimate of the target variable f f f (k ) can 

e interpreted as a gradient of the cost function quadratic terms 

round f f f (k −1) . This update does not resort to expensive matrix in- 

ersions. 

.4. Network-based refinement unit (NRU) 

An schematic of this module is also illustrated in Fig. 5 . In par-

icular, the NRU aims at obtaining the update of the dual variable 

 

 

 

(k ) and the Lagrange multiplier d d d (k ) . Taking into account the fu- 

ion problem described in (23) , the dual variable estimate aims to 
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olve the optimization problem given by 

ˆ 
 

 

 

(k ) = arg min 

b b b 

{ 

ρ

2 

‖G( f f f (k ) ) − b b b + d d d (k −1) ‖ 

2 
2 + λ2 ‖ b b b ‖ 1 

} 

, (25) 

hose solution is obtained as 

¯
 

 

 

(k ) = S ˜ λ(k ) ( ̄u 

u u 

(k ) 
) = S ˜ λ(k ) (G( f f f 

(k ) 
) + d d d (k −1) ) , (26) 

here ˜ λ(k ) = λ2 /ρ is the soft-thresholding parameter that is 

earned at the k -th processing stage. To obtain the dual variable 

pdate b b b (k ) , the current estimate of the target variable f f f (k ) should 

e sparsely represented by the nonlinear transform function G(·) 
ecreated by the convolutional neural network. This transform per- 

ormed by the NFT block can be described as f̄ f f 
(k ) = G( f f f (k ) ) . Then,

he dual variable update is obtained according to (26) . In other 

ords, the soft-thresholding is applied to a shifted version of the 

mage transform. The Lagrange multiplier vector estimated by the 

revious layer d d d (k −1) should be available. 

Subsequently, the Lagrange multiplier update is obtained as 

 

 

 

(k ) = d d d (k −1) + G( f f f (k ) ) − b b b (k ) , (27) 

hat also requires d d d (k −1) . Therefore, as can be seen in Fig. 5 , the

ual variable update d d d (k ) is defined as a layer output. 

Upon a closer look of (19) , the term �� (� f f f (k ) + d d d (k ) − b b b (k ) ) can 

e seen as the contribution of the augmented Lagragian term. In 

articular, this vector contains the information of the coefficients 

emoved by the soft-thresholding function that commonly contains 

oth the high-frequency components of the image of interest and 

oefficients associated with the measurement noise. As can be seen 

n (24) , the terms to compute the target variable update are avail- 

ble. Therefore, the residual is computed in the transformed do- 

ain and then the network-based inverse transform (NIT) is ap- 

lied to this subtraction, in other words, 

 

 

 

(k ) = 

˜ G 
(
G( f f f (k ) ) + d d d (k ) − b b b 

(k ) 
)
, (28) 

here r r r (k ) is also defined as an output of the processing layer. The 

nformation of the dual variable is implicitly included in this resid- 

al vector. Hence, the proposed architecture considers the high- 

requency information of the spectral image without remarkably 

ncreasing the memory requirements. 

.5. LADMM-Net Parameters 

Basically, the proposed architecture attempts to learn a set of 

arameters denoted by � whose elements are described as fol- 

ows. First, the step-size α(k ) and the regularization parameters 

 ρ(k ) , λ(k ) 
1 

) are updated in every approximation unit. Furthermore, 

he threshold 

˜ λ(k ) and the parameters of the network-based non- 

inear transforms G (k ) and 

˜ G (k ) are learned in the NRU. In sum- 

ary, the proposed deep network can be described by the set of 

arameters � = { α(k ) , ρ(k ) , λ(k ) 
1 

, ̃  λ(k ) , G (k ) , ˜ G (k ) } K 
k =1 

, where K is the

umber of the LADMM-Net layers. The number of learnable pa- 

ameters that contains the proposed architecture is K(4 + 36 ML ) . 

.5.1. Initialization 

An initial estimate f f f (0) is required by the proposed network- 

ased architecture. In this sense, since the information of the mea- 

urement matrices ( H 

H H ms , H 

H H hs ) is available, an initial approxima- 

ion of the target variable can be computed as f f f (0) = 

1 
2 H 

H H 

� 
ms y y y ms + 

1 
2 H 

H H 

� 
hs 

y y y hs . Moreover, the convolutional neural networks implement- 

ng the invertible nonlinear transforms ( G (k ) , ˜ G (k ) ) are initialized 

ith random values generated by the Xavier method. Finally, al- 

orithm parameters along the multiples layers are initialized as 
(k ) = 0 . 5 , ρ(k ) = 0 . 1 , λ(k ) 

1 
= 1 , ˜ λ(k ) = 0 . 01 , for k = 1 , . . . , K. 
8 
.6. LADMM-Net Training 

In the context of the spectral image fusion from HS and MS 

ompressive measurements, the ground truth image is denoted by 

f f f v . On the other hand, the corresponding HS and MS compres- 

ive projections ( y y y ms , y y y hs ) v can be described as the input dataset. 

herefore, the training set can be built as � = { f f f v , ( y y y ms , y y y hs ) v } B b=1 
.

n this work, we use a similar loss function than that reported in 

23] for the ISTA-Net. Specifically, the training stage attempts to 

inimize the mean square error H(�) data while an invertibility er- 

or H(�) in v that estimates the symmetry degree of network-based 

onlinear transform functions is also considered. Thus, given the 

raining set �, the loss function is defined as 

(�) = H(�) data + γH(�) in v , (29) 

ith 

(�) data = 

1 

B 

B ∑ 

b=1 

‖ f f f v (�, ( y y y ms , y y y hs ) v ) − f f f v ‖ 

2 
2 , (30) 

(�) in v = 

1 

BK 

B ∑ 

b=1 

K ∑ 

k =1 

‖ ̃

 G (G( f f f (k ) )) − f f f (k ) ‖ 

2 
2 , (31) 

here f f f v (�, �) is the fused image recovered by the proposed ar- 

hitecture using the set of learnable parameters � and the com- 

ressive measurements ( y y y ms , y y y hs ) v . Note that K is the number of 

ADMM-Net layers and B is the batch size. In this work, γ is set to 

.1. 

As can be seen, the proposed approach unfolds the linearized 

DMM algorithm whose convergence analysis is developed in 

36,37] . In contrast to the linearized ADMM algorithm that uses 

 predefined transform, the proposed approach attempts to learn 

 nonlinear transform describing the image detail information em- 

edded in both the dual variable and the Lagrange multiplier. In 

his regard, the convergence of the proposed approach shall also 

epend on the parameter setting at the training stage, including 

he initialization of the learnable weights and the learning rate. 

herefore, since the nonlinear nature of the learned transform and 

he huge amount of parameters involved at the learning stage, the 

onvergence analysis is considered an open research problem. 

. Results 

To evaluate the proposed spectral image fusion approach, we 

se two available databases: the Harvard database and the CAVE 

atabase. Furthermore, we test the proposed approach to fuse a 

pectral image from HS and MS compressive measurements cap- 

ured at the laboratory. Finally, the proposed algorithm unrolling 

echnique is extended to recover grayscale images from compres- 

ive random projections. 

.1. Harvard database 

This database consists of fifty high-resolution images that ex- 

ibit indoor and outdoor scenes under natural illumination [38] . 

ince the proposed approach is compared to other model-based 

ethods that sparsely represent the spectral image in a prede- 

ned transform domain, we extracted 72 spectral images with di- 

ensions 512 × 512 pixels and 31 spectral bands in the wavelength 

ange from 420 nm to 720 nm. Fig. 7 (a) displays the RGB compos- 

te of a high-resolution spectral image. 

A dual-arm optical architecture is simulated to generate the 

ulti-sensor compressive measurements. In this case, the HS im- 

ges are obtained as degraded versions of the high-resolution im- 

ges across the spatial coordinates with a 16 : 1 decimation factor, 

.e. p = 4 . More precisely, every HS image signature is yielded by 
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Fig. 7. Harvard database. (a) RGB composite of the high-resolution spectral image; (b) 3D-CASSI shot; (c) 3D-CASSI shot. RGB composite of the spectral image fused by the 

proposed method using (d) 5 layers with PSNR = 33.18 dB and SSIM = 0.927, (E) 7 layers with PSNR = 35.53 dB and SSIM = 0.940, (f) 10 layers with PSNR = 36.38 dB and 

SSIM = 0.945. 

Table 1 

Comparison of the LADMM-Net for different number of layers. 

5 layers 7 layers 10 layers 

PSNR[dB] 34.47 ± 4.16 35.39 ± 3.65 36.15 ± 3.84 

SSIM 0.942 ± 0.036 0.952 ± 0.027 0.955 ± 0.029 

SAM 0.111 ± 0.058 0.100 ± 0.046 0.095 ± 0.051 

Running time [s] 0.15 ± 0.01 0.22 ± 0.01 0.30 ± 0 .02 

Training time 1h29min 2h2min 2h54min 

a

r

w

t

u

o

F

t

g

t  

t

i

5

t

t

c

c

m

d

{  

s

t

m

s

HHH

t

l  

l

f

6

f

b

(

i

q

p

r

l

p

s

i

t

e

l

p

b

a

t

f

t

t

fi

i

t

o

t

s

b

a

i

[

p

a

4

t  

F

i

i

F

t

p

t

v

o

b

s

b

t

r

t

4

veraging neighboring spectral pixels of the corresponding high- 

esolution image. Therefore, every HS image comprises a datacube 

ith dimensions of 128 × 128 pixels and 31 spectral bands. Af- 

erward, the HS compressive measurements are obtained by sim- 

lating a multi-frame HS 3D-CASSI system, where the number 

f acquired snapshots depends on the desired compression ratio. 

ig. 7 (b) displays an HS 3D-CASSI projection for a compression ra- 

io of 25% . On the other hand, the MS images are spectrally de- 

raded versions of the high-resolution images with a 2 : 1 decima- 

ion factor ( q = 2 ). In particular, each band of an MS image is ob-

ained by averaging contiguous spectral bands of the correspond- 

ng high-resolution image. Thus, an MS image exhibits a size of 

12 × 512 × 16 . Subsequently, the MS compressive samples are ob- 

ained by simulating a multi-frame MS 3D-CASSI optical architec- 

ure, where the number of captured snapshots also depends on the 

ompression ratio. Fig. 7 (c) shows a MS 3D-CASSI snapshot for a 

ompression ratio of 25% . 

Specifically, the proposed feature fusion method is imple- 

ented in Pytorch 

1 . The LADMM-Net models are trained for 

ifferent layer numbers N � and different compression ratios 

 25 . 00% , 37 . 50% , 50 . 00% } . In addition, we use 48 high-resolution

pectral images and their respective compressive projections to 

rain the proposed unrolled algorithm. Since sampling matrices de- 

and high storage costs, we exploit the structure of the 3D-CASSI 

ystem to efficiently implement the matrix products that involve 

 

 

 hs and H 

H H ms and their transposes. Moreover, the Adam optimiza- 

ion algorithm was used to train the unfolded network with a 

earning rate ζ = 0 . 0 0 05 , and 256 epochs. To avoid memory over-

oading, the batch size was fixed to 1. The experiments were per- 

ormed on a desktop computer with Intel Core i7 CPU, 3.00 GHz, 

4 GB RAM, and GTX-1050 GPU. 

Fig. 7 (d)-(f) show the RGB composites of the spectral images 

used by the proposed algorithm unrolling approach as the num- 

er of layers increases. Notice that the peak signal-to-noise ratio 

PSNR) and the structural similarity (SSIM) index yielded by fused 

mages are included in the caption of this figure. Furthermore, to 

uantitatively evaluate the performance of the proposed fusion ap- 

roach, Table 1 shows the averages of various performance met- 

ics over 24 testing images as the number of layers increases. More 
1 The source code of the proposed method can be downloaded from this 

ink: https://github.com/JuanMarcosRamirez/LADMM _ Net _ Pytorch 

t

i

n

o

9 
recisely, we include the ensemble average of the PSNR, SSIM, the 

pectral angle mapper (SAM), the running time, and the train- 

ng time. As can be observed in this table, the performance of 

he proposed approach improves as the number of processing lay- 

rs increases. It can be also seen that the computation times are 

arger as the number of layers increases. Nevertheless, the pro- 

osed method yields a remarkable performance for a small num- 

er of processing blocks. It is worth noting that the spectral im- 

ge fusion involves large data sizes, and multiple variables with the 

arget image size should be stored by each processing layer. There- 

ore, the maximum number of processing layers is constrained by 

he GPU memory size. 

For comparison purposes, different methods that fuse spec- 

ral images from compressive measurements are implemented. The 

rst approach aims at recovering both the HS image and the MS 

mage from their respective compressive measurements, and then, 

he fast fusion based on Sylvester equation (FUSE) [8] is applied to 

btain the high-resolution spectral image. This approach is referred 

o as Rec + FUSE. In this case, an ADMM-based algorithm that 

olves an � 1 -regularized inverse problem is used to reconstruct 

oth the HS image and the MS image. Secondly, the spectral im- 

ge fusion from compressive measurements (SIFCM) method [14] is 

mplemented. Additionally, ISTA-Net [23] and OPINE-Net methods 

39] are adapted to the spectral image fusion problem from com- 

ressive measurements. In this experiment, LADMM-Net, ISTA-Net, 

nd OPINE-Net are implemented using 10 processing layers and 

8 training samples. For these deep learning architectures, we use 

he Adam optimization algorithm and a learning rate ζ = 0 . 0 0 05 .

ig. 8 displays the RGB composite of the reconstructed images us- 

ng a compression ratio of 25% . Notice that the PSNR values are 

ncluded in the bottom part of every recovered image. In addition, 

ig. 9 shows the spectral signatures of selected pixels belonging to 

he recovered images. As can be observed in these figures, the pro- 

osed architecture achieves the best performance with respect to 

he other approaches. 

Table 2 quantitatively shows the performance yielded by the 

arious fusion methods from compressive measurements in terms 

f PSNR, SSIM, SAM, and computation time. In particular, this ta- 

le contains the ensemble averages obtained from fusing 24 multi- 

ensor compressive observations for various compression rates. The 

est values are written in bold font. As can be seen in this table, 

he proposed fusion approach provides outstanding image quality 

esults compared to the other methods, while achieving competi- 

ive computational times. 

.2. CAVE Database 

In this experiment, we use the Stuff section of the CAVE spec- 

ral image database. This database contains fifteen high-resolution 

mages of previously constructed scenes under controlled illumi- 

ation [40] . Furthermore, the spectral images exhibit dimensions 

f 512 × 512 × 31 that include reflectance data from 400 nm to 700 

https://github.com/JuanMarcosRamirez/LADMM_Net_Pytorch
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Fig. 8. Harvard database. RGB composite of the reconstructions obtained by the state-of-the-art fusion methods that recover the high-resolution spectral image from 3D- 

CASSI compressive measurements. 

Fig. 9. Original and reconstructed of selected spectral signatures from images in Fig. 8 . 

Table 2 

Comparison of the average reconstruction metrics obtained from 12 testing image of the Harvard database for different compres- 

sion rates. 

Comp. Quality Rec + FUSE SIFCM ISTA-Net OPINE-Net Proposed 

Rate Metric 

25 . 0% PSNR [dB] 31.40 ± 3.11 32.19 ± 2.73 31.10 ± 2.68 35.44 ± 4.26 36.15 ± 3.84 

SSIM 0.904 ± 0.026 0.910 ± 0.027 0.912 ± 0.031 0.935 ± 0.066 0.955 ± 0.029 

SAM 0.097 ± 0.033 0.118 ± 0.040 0.143 ± 0.055 0.124 ± 0.099 0.095 ± 0.051 

Running time [s] 66.08 ± 1.59 224.83 ± 4.11 0.27 ± 0.02 0.26 ± 0.02 0.30 ± 0.02 

Training time - - 2h34min 2h45min 2h54min 

37 . 5% PSNR [dB] 30.27 ± 3.11 30.29 ± 2.55 33.55 ± 2.90 35.05 ± 2.94 37.06 ± 3.35 

SSIM 0.888 ± 0.025 0.894 ± 0.025 0.938 ± 0.031 0.947 ± 0.025 0.965 ± 0.018 

SAM 0.102 ± 0.025 0.105 ± 0.031 0.109 ± 0.050 0.099 ± 0.044 0.083 ± 0.038 

Running time[s] 67.56 ± 1.08 226.71 ± 3.25 0.028 ± 0.05 0.28 ± 0.02 0.30 ± 0.02 

Training time - - 2h43min 2h46min 3h1min 

50 . 0% PSNR [dB] 31.89 ± 3.58 32.25 ± 3.10 36.93 ± 3.46 35.93 ± 2.20 39.47 ± 3.12 

SSIM 0.908 ± 0.024 0.916 ± 0.025 0.956 ± 0.028 0.941 ± 0.019 0.976 ± 0.013 

SAM 0.087 ± 0.024 0.087 ± 0.024 0.088 ± 0.044 0.101 ± 0.034 0.064 ± 0.027 

Running time[s] 69.54 ± 1.80 235.50 ± 5.11 0.30 ± 0.01 0.30 ± 0.01 0.32 ± 0.01 

Training time - - 2h53min 2h55min 3h9min 

10 
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Table 3 

Comparison of the average reconstruction metrics obtained from testing images of the CAVE database for two compression rates. 

Comp. Quality Rec + FUSE SIFCM ISTA-Net OPINE-Net Proposed 

Rate Metric 

25 . 0% PSNR [dB] 24.22 ± 6.50 22.75 ± 4.05 30.63 ± 2.61 36.29 ± 1.63 37.92 ± 0.75 

SSIM 0.571 ± 0.274 0.534 ± 0.176 0.944 ± 0.010 0.964 ± 0.003 0.973 ± 0.006 

SAM 0.362 ± 0.167 0.385 ± 0.148 0.115 ± 0.034 0.081 ± 0.020 0.071 ± 0.027 

Running time [s] 67.57 ± 0.64 223.95 ± 0.49 0.26 ± 0.01 0.27 ± 0.01 0.33 ± 0.03 

Training time - - 45min 47min 49min 

37 . 5% PSNR [dB] 21.62 ± 5.06 22.07 ± 3.50 35.28 ± 2.38 35.93 ± 1.98 41.10 ± 1.21 

SSIM 0.505 ± 0.193 0.516 ± 0.164 0.967 ± 0.006 0.955 ± 0.005 0.988 ± 0.001 

SAM 0.373 ± 0.155 0.371 ± 0.142 0.080 ± 0.021 0.089 ± 0.022 0.051 ± 0.018 

Running time [s] 69.59 ± 1.16 229.25 ± 0.73 0.30 ± 0.03 0.27 ± 0.01 0.32 ± 0.01 

Training time - - 49min 49min 52min 

Fig. 10. CAVE database. RGB composite of the reconstructions obtained by the state-of-the-art fusion methods that recover the high-resolution spectral image from 3D-CASSI 

compressive measurements. 

n

t

t

o

p

p

N

c

t

w

f

p

f

t

o

w

p

d

m

I

s

f  

f

f  

s

s

a

F

u

c

f

o

o

4

c

p

T

o

(

(

t

i

D

t

m. The first column of Fig. 10 displays the RGB composite of three 

esting images. The training set comprises 12 spectral images and 

heir respective compressive measurements for a compression ratio 

f 25% . For this database, we use 256 epochs. For comparative pur- 

oses, we obtain the fused images estimated by the Rec + FUSE ap- 

roach, the SIFCM method, the ISTA-Net technique, and the OPINE- 

et architecture. The last five columns of Fig. 10 shows the RGB 

omposite of spectral images recovered by the various methods. In 

his case, LADMM-Net, ISTA-Net, and OPINE-Net are implemented 

ith 10 processing layers. As can be observed, the proposed image 

usion method outperforms the remaining methods. Table 3 dis- 

lays the performance results obtained by the different spectral 

usion methods in terms of PSNR, SSIM, SAM, running time, and 

raining times. As can be seen in this table, the proposed approach 

utperforms the other methods in terms of image quality metrics, 

hile it also exhibits competitive computation times. 

We also evaluate the performance of the proposed fusion ap- 

roach using a different acquisition setting. More precisely, the 

ual-arm acquisition architecture is simulated to obtain a single 

onochrome snapshot instead of multiple MS 3D-CASSI snapshots. 

n other words, the MS 3D-CASSI arm captures a single high- 

patial-resolution grayscale image with a 31:1 spectral decimation 

actor ( q = 31 ). On the other hand, the HS 3D-CASSI acquires multi-

rame compressive snapshots with a 16:1 spatial downsampling 

t

11 
actor ( p = 4 ). This case can be considered as a compressive hyper-

pectral pansharpening that attempts to obtain a high-resolution 

pectral image from hyperspectral compressive measurements and 

 high-spatial-resolution panchromatic image. The first column of 

ig. 11 displays HS 3D-CASSI snapshots, while the second col- 

mn shows high-spatial-resolution grayscale images. The last four 

olumns in Fig. 11 show the RGB composites obtained by various 

usion methods for this particular acquisition setting. As can be 

bserved in this figure, the proposed architecture outperforms the 

ther approaches achieving an improvement gain of at least 3 dB. 

.3. Laboratory data set 

We also evaluate the proposed reconstruction approach from 

ompressive measurements captured by an optical setup that im- 

lements the dual-arm system based on the 3D-CASSI architecture. 

o be more precise, the experimental setup comprises a 100 mm 

bjective lens, a 100 mm relay lens, a digital micromirror device 

DMD), and a camera detector based on a charged coupled device 

CCD). To obtain the dual-resolution compressive measurements 

he patterns of the coded aperture were separately emulated us- 

ng the DMD. In particular, we fixed the spatial resolution of the 

MD to 256 × 256 to capture the compressive measurements of 

he multispectral arm, while the DMD spatial resolution was fixed 

o 128 × 128 to obtain the compressive samples of the hyperspec- 



J.M. Ramirez, J.I. Martínez-Torre and H. Arguello Signal Processing 189 (2021) 108239 

Fig. 11. CAVE database. RGB composite of the reconstructions obtained by the various fusion methods from hyperspectral compressive measurements and a high-spatial- 

resolution grayscale image. 

Fig. 12. Experimental data set. (a) shot captured by the hyperspectral arm, (b) shot captured by the multispectral arm. RGB composite of fused images obtained by (c) 

Rec + Fuse, (d) SIFCM, (e) ISTA-Net, and (f) the proposed LADMM-Net. 

Fig. 13. (Left) PSNR obtained by the different deep learning approaches versus the epochs for a compression ratio of 25% . (Right) PSNR obtained by the proposed approach 

versus the epochs for different compression rates. 
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ral arm. Figs. 12 (a) and (b) show, respectively, a snapshot captured 

y the hyperspectral arm and a projection obtained by the multi- 

pectral arm. For comparative purposes, Figs. 12 (c)-(e) show the 

GB composites of the spectral images recovered by the methods 

ec + Fuse, SIFCM, and ISTA-Net, respectively. An RGB composite 

f the fused image obtained by the proposed approach is shown in 

ig. 12 (f). 
12 
.4. CS Reconstruction of natural images 

The proposed algorithm unrolling technique can be adapted to 

olve a particular compressive sensing problem. In this section, 

he performance of the proposed architecture is tested to recover 

rayscale images from compressive random projections. In this re- 
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Fig. 14. Baby (upper) and Boy (bottom). Recovered images by the various CS reconstruction methods from compressive measurements with a compression ratio of 25% . 
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ard, the target variable update is given by 

f f f (k ) = f f f (k −1) − 1 

α(k ) 

[
H 

H H 

� (H 

H H f f f (k −1) − y y y 
)

+ ρ(k ) r r r (k −1) 
]

(32) 

here the CS-based acquisition process can be described as y y y = 

 

 

 f f f + ηηη, where y y y ∈ R 

m is the vector containing the compressive 

easurements; H 

H H ∈ R 

m ×n denotes the measurement matrix with 

 	 n ; f f f ∈ R 

n is the image of interest in vector form; and ηηη ∈ R 

M 

s the noise vector whose entries are frequently characterized as 

id random samples following a zero-mean Gaussian distribution 

41,42] . Notice that this network architecture can be used in other 

ompressive sampling applications including sparse channel esti- 

ation [43] , smart grids [44] , among others. 

In this sense, we obtain the training data by extracting B = 

120 image blocks with dimensions 33 × 33 from the Berkeley BSD 

ataset [45] . Furthermore, the testing data set includes 12 standard 

mages with dimensions 256 × 256 . For a given compression ratio, 

he measurement matrix is generated whose elements are random 

amples following a zero-mean Gaussian distribution. The sam- 

ling matrix columns { h j } B j=1 are normalized such that ‖ h j‖ 2 2 = 1

or j = 1 , . . . , B . 

We compare the performance of the proposed deep network 

ith respect to other reconstruction techniques such as the gra- 

ient projection for sparse reconstruction (GPSR) [46] , the lin- 

arized version of the alternating direction method of multipliers 
13 
LADMM) [28] , the denoising-based approximated message pass- 

ng (D-AMP) method [47] , the ReconNet architecture [48] , the 

ISTA approach [22] , the CSNet technique [49] , the ISTA-Net net- 

ork [23] , and the OPINE-Net architecture [39] . Notice that GPSR, 

ADMM, and D-AMP are model-based CS reconstruction methods. 

urthermore, ReconNet and CSNet architectures belong to the class 

f deep learning techniques. Additionally, LISTA, ISTA-Net, OPINE- 

et, and LADMM-Net are algorithm unrolling techniques based on 

eep networks. The algorithm unrolling techniques are tested us- 

ng a similar number of learnable parameters. For this applica- 

ion, different models were trained for distinct compression ratios 

 5% , 10% , 15% , 20% , 25% } with 512 training epochs. 

To evaluate the performance of the proposed algorithm un- 

olling approach at the training stage, Fig. 13 (left) displays the 

verage PSNR of the images recovered by the various network- 

ased methods as the number of learning epochs increases. As 

an be seen in this figure, the proposed approach exhibits an out- 

tanding performance for the entire evaluation interval. Moreover, 

ig. 13 (right) shows the average PSNR of the images recovered by 

he proposed method as the number of epochs increases for dif- 

erent compression ratios. Higher PSNR values are reached in the 

earning curves as the compression ratio increases. To quantita- 

ively evaluate the proposed technique, Table 4 shows the ensem- 

le average of the PSNR in dB obtained by the various CS recon- 
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Table 4 

The ensemble average of the PSNR in DB obtained by the various CS reconstruction methods from 

compressive measurements for different compression ratios. 

Compression rate 

Method 5% 10% 15% 20% 25% 

GPSR 15 . 04 ± 1 . 25 18 . 16 ± 2 . 37 19 . 28 ± 2 . 94 20 . 49 ± 3 . 08 21 . 25 ± 3 . 05 

LADMM 15 . 33 ± 1 . 57 18 . 10 ± 2 . 13 19 . 48 ± 3 . 26 20 . 65 ± 3 . 24 21 . 30 ± 2 . 98 

D-AMP 11 . 23 ± 1 . 10 18 . 24 ± 2 . 00 21 . 82 ± 2 . 97 24 . 64 ± 2 . 98 27 . 58 ± 3 . 84 

ReconNet 12 . 88 ± 1 . 66 21 . 94 ± 3 . 25 22 . 90 ± 3 . 27 23 . 51 ± 3 . 23 23 . 68 ± 3 . 16 

LISTA 20 . 96 ± 3 . 18 22 . 51 ± 3 . 10 23 . 84 ± 3 . 02 24 . 81 ± 3 . 10 24 . 61 ± 2 . 76 

CSNet 21 . 23 ± 3 . 35 23 . 33 ± 3 . 41 24 . 55 ± 3 . 63 25 . 53 ± 3 . 59 26 . 62 ± 3 . 66 

ISTA-Net 21 . 45 ± 3 . 01 22 . 59 ± 3 . 03 24 . 04 ± 3 . 13 25 . 26 ± 3 . 25 26 . 94 ± 3 . 44 

OPINE-Net 21.71 ± 3.12 24 . 46 ± 3 . 50 26.12 ± 3.58 27.50 ±3.66 28.31 ± 3.74 

Proposed 22 . 08 ± 3 . 26 24 . 30 ± 3 . 54 26 . 15 ± 3 . 91 27 . 76 ± 3 . 95 29 . 24 ± 3 . 96 

Fig. 15. Baby (upper) and Boy (bottom). Recovered images by the various CS reconstruction methods from compressive measurements with a compression ratio of 25% . 
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truction methods from compressive random projections for dif- 

erent compression ratios. The higher values are in bold font. As 

an be seen in this table, the proposed approach exhibits a re- 

arkable outcomes across the compression ratios under test. In 

ddition, Fig. 14 illustrates the images recovered by the various 

S reconstruction methods from compressive measurements with 

 compression ratio of 25% . As can be observed in this figure, the 

roposed approach is able to properly recover smooth-wise regions 

reserving, in turn, the structure of the edges. Finally, Fig. 15 dis- 

lays the reconstructed image obtained by various methods relied 

n deep netwoks. Fig. 15 displays the recovered images obtained 

y the different reconstruction methods relied on deep networks. 

utstanding performance is exhibited by the proposed approach. 

. Conclusion 

In this work, a deep learning architecture under the algorithm 

nrolling approach was proposed for estimating high-resolution 

pectral images from multi-sensor compressive measurements. 

ore precisely, the proposed image fusion method cast each iter- 

tion of a linearized version of the ADMM algorithm into a CNN- 

ased structure whose concatenation of deploys a deep network. 

he linearized approach allows estimating the target variable with- 

ut resorting to computationally costly matrix inversions. There- 

ore, the proposed image fusion architecture exhibits competitive 

unning times. On the other hand, the network-based structure 

earns the relevant information embedded in both the auxiliary 

ariable and the Lagrange multiplier that improves the estimation 

erformance. Notice that the network-based architecture learns its 

arameters using an end-to-end training scheme. In addition, we 

valuated the performance of the proposed approach on two spec- 

ral image databases and one real data set. The results yielded by 

he proposed architecture outperformed those obtained by state- 

f-the-art methods. To since the proposed approach can be seen 
14 
s a deep unrolling method for solving inverse problems, the pro- 

osed architecture was tested to reconstruct natural images from 

ompressive random projections. In future work, we are interested 

n evaluating other regularization functions and training different 

eep networks such as convolutional generators, variational au- 

oencoders, and generative adversarial networks. Furthermore, we 

re also interested in implementing the proposed approach in fur- 

her imaging applications including image denoising, inpainting, 

nd deblurring. 
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