
Computers & Industrial Engineering 160 (2021) 107517

a

b

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

A heuristic approach for the online order batching problem with multiple
pickers
Sergio Gil-Borrás a, Eduardo G. Pardo b,∗, Antonio Alonso-Ayuso b, Abraham Duarte b

Dept. Sistemas Informáticos, Universidad Politécnica de Madrid, Spain
Dept. Computer Science, Universidad Rey Juan Carlos, Spain

A R T I C L E I N F O

Keywords:
Online Order Batching Problem
Multiple pickers
Multistart search
Variable Neighborhood Descent

A B S T R A C T

The Online Order Batching Problem with Multiple Pickers (OOBPMP) consists of optimizing the operations
related to the picking process of orders in a warehouse, when the picking policy follows an order batching
strategy. In this case, this variant of the well-known Order Batching Problem considers the existence of multiple
workers in the warehouse and an online arrival of the orders. We study three different objective functions for
the problem: minimizing the completion time, minimizing the picking time, and minimizing the differences
in the workload among the pickers. We have identified and classified all previous works in the literature for
the OOBPMP. Finally, we propose a multistart procedure hybridized with a Variable Neighborhood Descent
metaheuristic to handle the problem. We test our proposal over well-known instances previously reported in
the literature by empirically comparing the performance of our proposal with previous methods in the state
of the art. The statistical tests corroborated the significance of the results obtained.
1. Introduction

The Online Order Batching Problem (OOBP) is an optimization
problem which occurs in a warehouse when the picking policy follows
an order batching strategy, i.e., orders are grouped into batches prior to
be picked, and all orders in the same batch are collected together. The
OOBP is considered a dynamic optimization problem since orders are
received online in the system, which means that the arrival of orders
occurs continuously (24 h a day/7 days a week) while the optimization
algorithms are running. Therefore, an order can arrive to the system
while the picking process of other orders is in progress. The main task
within the OOBP consists of determining the best assignation of the
orders into batches of a maximum predefined capacity (the maximum
load that a picker can carry at the same time), with the aim of per-
forming an efficient picking operation. However, this assignation can
only be considered as one of the subproblems that need to be handled
within the OOBP. Other necessary operations include: establishing a
sequence of the constructed batches, assigning each batch to a picker,
determining the moment in the time for starting the picking (time
window), or designing the route to follow by the picker. Despite the
fact that the previous ones are also optimization problems that could
be considered in isolation, in the context of the OOBP, they are only
parts that need to be taken into account to calculate the main objective
function.

∗ Corresponding author.
E-mail addresses: sergio.gil@upm.es (S. Gil-Borrás), eduardo.pardo@urjc.es (E.G. Pardo), antonio.alonso@urjc.es (A. Alonso-Ayuso),

abraham.duarte@urjc.es (A. Duarte).

Additionally, the picking operation in this context is also influenced
by different static and dynamic parameters (Petersen, 1997). Among
the static ones, we can find parameters related to the warehouse design
such as: the number of blocks, the number of aisles, the width of
each aisle, the number of depots, the position of the depots, etc. Also,
the distribution of the products in the warehouse can sometimes be
considered as a static parameter (other times the same product is stored
in a different position through the time). Furthermore, products can be
placed at random in the warehouse, or following an ABC distribution
(i.e., the most demanded products are placed closer to the depot).
Additionally, it is possible to consider one or more locations for each
kind of products. On the other hand, the dynamic parameters include
aspects such as: the variable number of pickers, the number and size
of the orders arrived to the warehouse, the existence of due dates in
some orders, or the priorities among the items in the same order. Also,
if the storage location of the product varies through the time, it can be
considered a dynamic parameter too.

Previous works in the literature of the OOBP with multiple pickers
(also known in the literature as OOBPMP) have reported different
objective functions within this context. Also, they have studied several
important parameters for the problem. However, in general, they do
not provide a wide comparison framework. Our main hypothesis is
the existence of relationships among the optimization of some of the
previously studied objective functions. Moreover, there might exist
https://doi.org/10.1016/j.cie.2021.107517
Received 26 December 2020; Received in revised form 15 May 2021; Accepted 22
Available online 26 June 2021
0360-8352/© 2021 The Author(s). Published by Elsevier Ltd. This is an open acces
(http://creativecommons.org/licenses/by/4.0/).
June 2021

s article under the CC BY license

https://doi.org/10.1016/j.cie.2021.107517
http://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107517&domain=pdf
mailto:sergio.gil@upm.es
mailto:eduardo.pardo@urjc.es
mailto:antonio.alonso@urjc.es
mailto:abraham.duarte@urjc.es
https://doi.org/10.1016/j.cie.2021.107517
http://creativecommons.org/licenses/by/4.0/

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

2

p
o
s
o
a

v
&
e
I
s
a
i
a
t
o

o
(
m
&
(
J
d

o
a
t
e
c
t
&
A

P
f
t
t

b
a
w
h
f
a
q
c
o

w
o
n
s
m
t
b

t
t
w
o
a
H
m

p
c
c
o
w
S

c
w
t
m
r
o
f
d
u
S
D

important parameters, such as the number of pickers, the time horizon
considered, or the congestion in the arrival of orders that could have
a deep impact on the performance of the algorithms, depending on
the considered objective function. Therefore, the main objective of this
research is to study the different objective functions tackled in the
literature in the context of the OOBPMP. Particularly, we compare the
performance of the most relevant previous methods in combination
with parameters such as the time horizon or the number of pickers,
which influence the congestion rate in the system. Furthermore, we
explore the existence of algorithms with good performance in a wide
range of scenarios.

In this paper, we focus our attention on the OOBP with multiple
pickers for rectangular-shaped single-block warehouses by studying
three objective functions: the minimization of the total picking time,
the minimization of the maximum completion time, and the minimiza-
tion of the differences in the workload of the pickers. These objective
functions are explained in detail Section 3. Our main contributions are:
(i) a comprehensive classification of the studied problem within the
OBP literature and the study and analysis of the previous methods in
the state of the art for the OOBPMP; (ii) a new algorithmic proposal
based on the combination of a multistart procedure (MS) with the
Variable Neighborhood Descent (VND) metaheuristic, named MS-VND;
(iii) the use and study of several objective functions to tackle the
OOBPMP; (iv) an empirical study of the influence of two important
parameters (the congestion in the arrival of orders, and the number of
pickers) in the performance of the algorithms; and (v) the improvement
of the results of the state of art methods, previously proposed for the
same problem, supported by statistical tests.

The rest of this paper is structured as follows: in Section 2, we
provide a comprehensive classification of the studied problem in the
literature and we review the main approaches related with the online
order batching with multiple pickers. In Section 3, we describe in detail
the problem tackled in this work. Then, in Section 4, we present the
algorithms proposed in this paper to tackle the OOBPMP. Particularly,
we use a multistart procedure combined with a Variable Neighborhood
Descent as a local search procedure. Then, a wide number of numerical
experiments are compiled in Section 5. Finally, conclusions and open
research lines are given in Section 6.

. State of the art

This paper is focused on a variant of the online order batching
roblem, which considers multiple pickers in a warehouse. As part
f the picking process of orders in a warehouse, the order batching
trategy has guided practitioners in the field to a wide range of related
ptimization problems. Within this family, problems can be classified
s single/multi-picker and offline/online.

The majority of the previous studies in the literature handle the
ariant with the restriction of considering a single picker (Henn, Koch,

Wäscher, 2012), while a more general and realistic scenario, the
xistence of multiple pickers in the warehouse, has been less studied.
n fact, the multiple-pickers version is a generalization of the case of a
ingle picker. Similarly, offline versions of the OBP (i.e., all orders are
vailable at the beginning of the process) have received more attention
n the literature than the more realistic online versions (i.e., orders
rrive to the system while the picking process is in progress). Notice
hat the online version of the problem is a generalization of the offline
ne.

The most common objective functions studied in the literature of
rder batching problems are the minimization of the picking time
Chen, Wei, & Wang, 2018; Rubrico, Higashi, Tamura, & Ota, 2011), the
inimization of the traveled distance (Öncan, 2015; Pérez-Rodríguez
Hernández-Aguirre, 2015), or the minimization of the tardiness

Menéndez, Bustillo, Pardo, & Duarte, 2017; Zhao, Jiang, Bao, Wang, &
ia, 2019). However, the appearance of multiple workers uncovers ad-

itional objective functions such as: finding a balance in the workload e

2

f the pickers (Zhang, Wang, Chan, & Ruan, 2017), or minimizing the
verage waiting time of the pickers, due to blocking situations among
hem (Chen, Wang, Qi, & Xie, 2013; Chen, Wang, Xie, & Qi, 2016; Hahn
t al., 2017). Similarly, some objective functions only make sense when
onsidering the online version of the problem such as: minimizing the
urnover time (Gil-Borrás, Pardo, Alonso-Ayuso, & Duarte, 2020b; Tang

Chew, 1997) or minimizing the completion time (Gil-Borrás, Pardo,
lonso-Ayuso, & Duarte, 2020a; Henn, 2012).

In this paper, we focus our attention on the Online Order Batching
roblem with multiple pickers. For this variant of the OBP, we have
ound eight different previous proposals in the literature. However,
aking a closer look to each of them, we can find differences among
he constraints considered.

As far as we know, the first approach for the OOBPMP was proposed
y Yu and De Koster (2009). In that paper, the authors dealt with
version of the OOBPMP which considers different picking zones
ithin the warehouse for different pickers. Additionally, the ware-
ouse instances used present random storage policy, and the objective
unction was the minimization of the average throughput time. Yu
nd De Koster (2009) proposed an approximation model based on the
ueuing network theory, to tackle the batching problem. They also
onsidered a S-shape routing strategy and a Poisson distribution for the
rder arrivals.

Rubrico et al. (2011) tackled the Online Rescheduling Problem
ith multiple pickers. In this variant, they considered the existence
f static and dynamic arrival of orders, with the restriction that the
ewly arrived orders were composed of only one type of product. The
tudied objective function in this case was the minimization of the
akespan. Rubrico et al. (2011) proposed a Steepest Descent Inser-

ion method with a Multistage Rescheduling strategy to perform the
atching task. They also considered the S-shape routing algorithm.

Zhang et al. (2017) tackled the OOBPMP with the aim of minimizing
he turnover time, which is also known as the maximum completion
ime of all batches (i.e., the time needed to collect all orders including
aiting, routing, batching and service time). Further than the pursued
bjective function, they also reported the obtained average workload
nd average idle time per picker. Zhang et al. (2017) proposed a
ybrid Rule-Based Algorithm (which includes a strategy based on seed
ethods for batching), and they used the S-shape routing strategy.

In 2018, first, Chen et al. (2018), studied the OOBPMP for a
multiple-block warehouse with narrow aisles (two pickers cannot cross
their routes). In this case, the authors considered that the batches can
be altered once the picker has already begun picking, and that an
order can be split into more than one batch. In this sense, not only
the order arrival is dynamic but also the batch composition might
change at the picking time. The studied objective function consists
of minimizing the service time of a single order. Chen et al. (2018)
roposed a heuristic batching strategy named Green Area, and they
ompared their proposal with several time-window-based strategies,
onsisting of batching together the orders arrived in a particular chunk
f time. They studied either the fixed time window and variable time
indow strategies. For the routing task, they considered both: the
-Shape and the Largest Gap routing algorithms.

Also in 2018, Van Der Gaast, Jargalsaikhan, and Roodbergen (2018)
onsidered the OOBPMP with the possibility of modifying a batch
hich is currently being picked, by adding new orders arrived to

he warehouse. In this case, the objective function studied was the
inimization of the order throughput time (the time that an order

emains in the system, which is also known in the literature as the
rder turnover time). However, despite of minimizing that objective
unction, they reported additional metrics (orders in backlog, tour
uration, replanned tours, picker walking distance, etc.) which were
sed in other papers as objective functions (Henn, Koch, Doerner,
trauss, & Wäscher, 2010; Menéndez, Pardo, Alonso-Ayuso, Molina, &
uarte, 2017; Öncan, 2015; Scholz, Schubert, & Wäscher, 2017; Zhang

t al., 2017). In this case, the layout of the studied warehouse includes

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

e
i
w
s
u
b
m
I

h
a
w

M
p
p
i
f
h
e
a
p
(
w
t
i
w
c
b
o

a
w
f

multiple blocks. Van Der Gaast et al. (2018) proposed the combination
of a method based on linear programming with column generation,
together with Tabu Search and Branch-and-bound pricing, to tackle the
problem. This time, the routing strategy was based on three different
proposals: the Nearest Neighbor, the S-shape, and the Largest Gap.

A more recent approach in the literature within this context is
found in Hojaghania, Nematian, Shojaiea, and Javadi (2019), where the
authors studied the maximum turnover time of an online multipicker
variant, which considers different zones within the warehouse, each of
them operated by a picker. In this paper, the objective function, further
than the turnover time, includes the idle time of the pickers. They
used the proposal in Zhang et al. (2017) as a baseline to compare their
approach. The algorithmic proposal included an Ant Colony Algorithm
and an Artificial Bee Colony for the batching task, and the S-Shape
strategy for the routing task.

Finally, Alipour, Mehrjedrdi, and Mostafaeipour (2020) made an
xtension of a previous algorithm proposed by Henn (2012). The orig-
nal work was designed for an online context with just a single picker
ith the aim of minimizing the completion time. This time, the authors

tudied the maximum completion time in a multipicker scenario by
sing the Iterated Local Search algorithm proposed by Henn as the
atching method, and the S-shape and the Largest-gap as the routing
ethods. The proposal was compared against Clarke & Wright II (C&W

I) and First Come First Served (FCFS) methods as baseline.
As it is possible to observe, despite the fact that all previous variants

andle the Online Order Batching Problem with multiple pickers, the
dditional constraints or objective functions studied are not the same,
hich sometimes make difficult the comparison among the methods.

In this paper, we handle the Online Order Batching Problem with
ultiple Pickers by studying the minimization of the maximum com-

letion time. However, we also evaluate the workload balance of the
ickers and the picking time of our solutions, to provide a wide compar-
son framework for other approaches. In this matter, we consider the
ollowing characteristics/restrictions for the problem: the warehouse
as a single block (instead of the multiple blocks considered in Chen
t al. (2018) or Van Der Gaast et al. (2018)); there are no narrow-
isles restrictions (as the ones introduced in Chen et al. (2018)); once a
icking route has started, the batch and the route cannot be modified
as it happens in Chen et al. (2018) or Van Der Gaast et al. (2018),
here newly arrived orders can be added to batches being collected at

hat moment, and the associated routes adapted); orders cannot be split
n multiple batches (as it is the case in Chen et al. (2018)); the whole
arehouse is handled as a single zone in terms of picking (instead of

onsidering multiple zones as in Yu and De Koster (2009)); orders can
e composed of different kind of products (unlike in the dynamic arrival
f orders used in Rubrico et al. (2011)).

With the previous assumptions at hand and to end this section, we
nalyze in depth the two most similar previous works to our proposal,
hich are used in the experimental section as a comparison framework

or our algorithms: Zhang et al. (2017) and Alipour et al. (2020).
Particularly, Zhang et al. (2017) proposed a batching method based

on the ‘‘seed’’ strategy. This strategy had been previously introduced
in the context of clustering problems (Ho & Tseng, 2006). The adap-
tation from a clustering problem to the batching problem is trivial,
since it consists of selecting an order (that will represent the ‘‘seed’’)
as a centroid of an empty batch (which in this case represents the
cluster). Then, other available orders might be added to the same batch,
depending on the similarity with respect to the selected seed order.
Notice that the addition of orders to that batch is bounded by the
maximum capacity of the batch. The general strategy based on ‘‘seed
methods’’ consists of deciding the criterion to select the seed order
and determining the similarity function between orders. Zhang et al.
(2017) used the Smallest Arrival Time rule to select the ‘‘seed’’ order,
which consists of selecting the earliest available order arrived to the
system. Also, they used the Aisle-Time-Based strategy to determine the

similarity, which takes into consideration two variables: the percentage

3

of common products between the compared orders; and the proximity
of the arrival time between the orders compared. In both cases, the
selection is made on a greedy basis. Once no other orders can be added
to the batch (i.e., the batch is full), the algorithm chooses a new seed
order and so on. Further details of the proposed method can be found
in Zhang et al. (2017). This method was tested over the data sets
provided by Henn (2012) and the arrival of orders is scheduled on a
time horizon of 4 h.

The proposal made by Alipour et al. (2020) is based on the well-
known Iterated Local Search (ILS) previously proposed in Henn (2012),
but adapted to the multipicker scenario. The initial solution was con-
structed based on the First Come First Serve strategy. That solution was
then improved by the ILS method, which is formed by two different
phases: perturbation and improvement. The perturbation selects two
batches at random and exchanges 𝑛 orders also selected at random.
The improvement phase follows a first improvement strategy and it
is based on two different neighborhoods: swap and shift moves. The
swap move selects two orders in different batches and exchanges their
assignation. The shift move inserts one order in another batch. Once all
batches have been conformed, the authors studied different strategies
for selecting the next batch to be collected: FIRST, SHORT, LONG, and
SAV (see Alipour et al. (2020), Henn (2012) for a detailed description
of each of them) being FIRST the most suitable approach. The order
is then assigned to the first picker who becomes available. Finally,
the S-shape and the Largest-gap were tested and compared as routing
methods. The experiments were conducted only with two pickers over
the instances reported in Henn (2012) and the arrival of orders was
scheduled on a time horizon of 8 h.

3. Problem description

The OOBPMP tackled in this paper consists of performing an ef-
ficient picking operation of all products within the orders arrived
online to a warehouse, by following an order picking strategy based
on batches, when multiple pickers are available. The OOBPMP is a
dynamic optimization problem which studies the efficient picking of
orders which arrive online (24/7) to a warehouse. Since the described
scenario is a non-stopping context, to study the problem and the
associated proposals, it is necessary to observe the behavior of the
algorithms in a particular chunk of time (denoted as time horizon).

An order is a list of products demanded by the same customer
at the same time. The products in the same order must be collected
together (i.e., orders cannot be splitted into more than one batch). A
batch is a group of orders with a predefined maximum capacity. It is
assumed that no order is larger than the maximum capacity of a batch.
Each batch is assigned to one picker and all orders in the same batch
are collected together in a single route through the warehouse. An
important issue of the OOBPMP is that the orders are not fully available
at the beginning of the process, but they arrive at the warehouse while
the picking operation has already begun. This is why the problem is
considered online. To handle online problems, it is necessary to define
a time horizon and to observe the behavior of the proposals in that
chunk of time. An additional characteristic of the OOBPMP is that there
are multiple pickers in the warehouse available to perform the picking
operation. Notice that we will not consider interblocking situations
(aisles in the warehouse are wide enough for allowing several pickers
crossing their routes).

When solving the OOBPMP, it is necessary to handle several sub-
problems: to decide when to consider the new orders arrived to the
system (adding); to determine how the orders are grouped into batches
(batching); to choose which batch is going to be collected next (select-
ing/sequencing); to determine which picker is going to retrieve that
batch (assigning); to set the moment in the time when the picker starts
its route (waiting); and to design the route that the picker will follow
(routing).

To better understand the processes involved in the OOBPMP and

the focus of this research, we introduce the activity diagram depicted

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

i
i
W
t
d
b
i
T
i
i
w
s
t
t
a
p
o
r
t
i
o

Fig. 1. Activity diagram of the processes involved in the OOBPMP.
n Fig. 1. In this figure we can observe the main processes involved
n the OOBPMP in the time horizon considered: Adding, Batching,

aiting, Selecting, Assigning, Routing, and Picking (depicted as ac-
ivities/rectangles in the diagram). Also, the diagram represents the
ecisions that need to be taken (depicted as rhombuses) and the possi-
le answers considered (Yes/No). The process flow starts by checking
f there are new orders arrived at the system waiting to be collected.
hen, it tries to group the available orders in efficient batches, depend-

ng on the objective pursued. Once a solution has been conformed,
f there is still available time for batching (usually denoted as ‘‘time
indow’’), the process checks again if new orders have arrived at the

ystem. If so, it incorporates them to the current solution. Otherwise,
he best solution until that moment is moved ahead in the process. At
his point, if there is at least one available picker, a batch is selected and
ssigned to the picker. Finally, a picking route is calculated, and the
icking task starts. The process continues repeatedly until all arrived
rders in the time horizon considered have been processed. In this
esearch, we are interested in the general behavior of the algorithms for
he OOBPMP. Particularly, we focus on the batching task by proposing,
n Section 4.2, a new batching algorithm for the problem. For the rest
f the activities, we describe the strategy followed.
4

3.1. Objective functions

Among the different objective functions previously introduced in the
literature, we focus our attention on three of them:

• Minimization of the picking time: the objective is to minimize
the sum of the picking time spent by each picker in the warehouse
in the duty of collecting a batch. Each tour of a picker in the
warehouse has a picking time associated, which is calculated as
the sum of: the setup time (time needed by the picker to get
ready for starting a new route); the routing time (time needed
by the picker to traverse the warehouse to reach each picking
position); and the extraction time (time needed by the picker to
decelerate/accelerate the picking cart and to extract the items
from their picking locations). Among others, this objective func-
tion has been considered in Chen et al. (2018), Rubrico et al.
(2011) and Gil-Borrás et al. (2020b).

• Minimization of the completion time: the objective is to mini-
mize the total time needed to collect all items from a set of orders
received in a warehouse. This time can also be described as the

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

p
T
t

d
i

a
f

𝑧

𝐴

𝑜

𝐴

𝐴

𝐷

c

𝑇

Fig. 2. Layout of the warehouse studied in this paper, with two cross aisles and a
variable number of parallel aisles.

time elapsed between the moment when the picking starts and
the moment when the last order is handed. Among others, this
objective function has been considered in Henn (2012) and Zhang
et al. (2017).

• Minimization of the differences in the workload: in the case of
multiple pickers, a common objective function is also to minimize
the differences among the workload of the pickers in any sense:
number of orders processed, distance traversed, number of items
retrieved, total time retrieving items, etc. In this case, we look
for the minimization of the maximum difference between the
picking time spent by any picker and the average picking time
of all pickers. Among others, this objective function has been
considered in Menéndez, Pardo, Sánchez-Oro, and Duarte (2017)
and Zhang et al. (2017).

Finally, it is important to notice that a solution for the OOBPMP
consists of the assignation of the orders received in the warehouse to
batches, the assignation of each batch to a picker and the determination
of the moment of time when each picker should start a new route.

3.2. Type of instances/warehouse description

The warehouse structure studied in this paper is the one depicted
in Fig. 2. This structure is the most classical one used in the context
of order batching problems. It presents a rectangular shape with only
one block of parallel aisles and two crossing aisles (one at the back
and one at front of the warehouse). Each parallel aisle contains several
picking positions at each side of the aisle. In the example in Fig. 2, the
warehouse has five parallel aisles formed by shelves with 18 picking
positions considering the shelves at both sides of the aisle. The depot
is the place where pickers start and finish their routes, and it is placed
at the front cross aisle (either at the leftmost corner or at the center of
the aisle).

We consider that only one product is stored per picking position.
Also, a product can only be stored in one picking position along the
whole warehouse and this position does not change through the time.
Products can be stored at random or following the well-known ABC
distribution (i.e., the most demanded products are placed closer to the
depot). No stock limitations are considered for the products.

3.3. Mathematical formulation

In this section, we present a Mixed Integer Non-Linear Mathematical
Model for the OOBPMP. It is important to notice that it is not possible to
mathematically formulate and solve a problem if all input information

is not known beforehand, as it is the case of online problems. However,

5

in this case, the online version of the problem is equal to the offline
version if we observe a particular instant in time, which considers only
the orders which are currently in the system. Previous formulations
for offline variants of the problem are available in the literature.
Particularly, Gil-Borrás et al. (2020b), Henn (2012) studied the offline
model of the OBP with a single picker, while Zhang et al. (2017) studied
the offline model of the OBP with multiple pickers. The ideas presented
here are based on those formulations.

A solution in the context of the OOBPMP consists of the assignation
of the available orders to batches, and the assignation of each batch to a
picker. Then, the evaluation of a solution requires the use of a routing
algorithm, which determines the route necessary to pick all items in
a batch. Therefore, we first present the formalization of the routing
algorithm used in this paper (S-Shape routing algorithm, Hall (1993)).
Particularly, in the context of this problem, we are only interested in
the time that the picker needs to collect the items in the batch.

The S-Shape routing algorithm was previously formalized in Öncan
(2015) and Zhang et al. (2017). First, in Table 1 we compile the
arameters and variables needed to define the algorithm, while in
able 2, we compile the rest of the parameters and variables needed
o define the OOBPMP.

For the sake of simplicity, the variable 𝑑𝑖𝑠𝑗 contains the traveled
istance to collect all orders in batch 𝑗. Notice that the traveled distance
s the sum of the distance traveled through the cross aisles (𝐷𝐻

𝑗) and
the distance traveled through the parallel aisles (𝐷𝑉

𝑗):

𝑑𝑖𝑠𝑗 = 𝐷𝐻
𝑗 +𝐷𝑉

𝑗 (1)

with 𝐷𝐻
𝑗 and 𝐷𝑉

𝑗 calculated as follows:

𝐷𝐻
𝑗 = |𝐴𝐿

𝑗 − 𝐴𝐷
| ⋅ 𝐶 + |𝐴𝐿

𝑗 − 𝐴𝑅
𝑗 | ⋅ 𝐶 + |𝐴𝑅

𝑗 − 𝐴𝐷
| ⋅ 𝐶. (2)

𝐷𝑉
𝑗 =

{

𝐴𝑗𝐿, 𝑜𝑑𝑑𝑗 = 0
(

𝐴𝑗 − 1
)

𝐿 + 2𝐷𝐹
𝑗 , 𝑜𝑑𝑑𝑗 = 1.

(3)

nd the variables needed to compute these distances are calculated as
ollows:

𝑗𝑞 = 𝑝𝑖𝑞 ⋅ 𝑥𝑗𝑖, ∀ 𝑗 ∈ {1,… , 𝑚}, ∀ 𝑖 ∈ {1,… , 𝑛}, ∀ 𝑞 ∈ {1,… , 𝑄}. (4)

𝑗 =
𝑄
∑

𝑞=1
𝑧𝑗𝑞 , ∀ 𝑗 ∈ {1,… , 𝑚}. (5)

𝑑𝑑𝑗 = 𝐴𝑗 mod 2, ∀ 𝑗 ∈ {1,… , 𝑚}. (6)

𝐿
𝑗 = min

𝑞∈{1,…,𝑄}
𝑞 ⋅ 𝑧𝑗𝑞 ∶ (𝑞 ⋅ 𝑧𝑗𝑞 > 0), ∀ 𝑗 ∈ {1,… , 𝑚}. (7)

𝑅
𝑗 = max

𝑞∈{1,…,𝑄}
𝑞 ⋅ 𝑧𝑗𝑞 , ∀ 𝑗 ∈ {1,… , 𝑚}. (8)

𝐹
𝑗 = max

𝑖∈{1,…,𝑛}
𝑙𝑎𝑠𝑡𝑖,𝐴𝑅

𝑗
⋅ 𝑥𝑗𝑖, ∀ 𝑗 ∈ {1,… , 𝑚}. (9)

Once we have defined the distance needed to collect the batch 𝑗, we
an define the function which calculates the routing time as follows:

𝑟𝑜𝑢𝑡𝑖𝑛𝑔
𝑗 =

𝑑𝑖𝑠𝑗
𝑣𝑟𝑜𝑢𝑡𝑖𝑛𝑔

, ∀ 𝑗 ∈ {1,… , 𝑚}. (10)

where 𝑣𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is a parameter which represents the velocity of the picker.
This parameter is compiled in Table 2 together with the rest of the
parameters needed to evaluate a solution.

As it was previously introduced in Henn (2012) and Gil-Borrás et al.
(2020b), the time needed to collect the batch not only depends on the
routing time, but also on the setup time and the extraction time. Let us
denote as 𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔

𝑗 as the time needed to collect the items in the batch
𝑗. More formally,

𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗 = 𝑇 𝑟𝑜𝑢𝑡𝑖𝑛𝑔

𝑗 + 𝑇 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑗 + 𝑡𝑠𝑒𝑡𝑢𝑝, ∀ 𝑗 ∈ {1,… , 𝑚}. (11)

Considering that 𝑤𝑖 is the number of items in the order 𝑖 and
𝑣 is the number of items that the picker is able to search and
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

a

𝑇

w
d

Table 1
Parameters and variables needed for the definition of the S-Shape routing algorithm.
Parameters

𝐶 → Center-to-center distance between two parallel aisles.
𝐿 → Length of a parallel aisle.
𝐴𝐷 → Aisle placed in front of the depot.
𝑄 → Number of parallel aisles in the warehouse.
𝑙𝑎𝑠𝑡𝑖𝑞 → Distance from the front cross aisle to the furthest article placed at aisle 𝑞, demanded

in the order 𝑖.

𝑝𝑖𝑞 →

{

1, if order 𝑖 has an item in the aisle 𝑞,
0, otherwise.

Variables

𝐴𝑗 → Number of aisles that contain at least one pick location in batch 𝑗.
𝐴𝐿

𝑗 → Leftmost aisle that contains at least one pick location in batch 𝑗.
𝐴𝑅

𝑗 → Rightmost aisle that contains at least one pick location in batch 𝑗.
𝐷𝐹

𝑗 → Given the rightmost aisle with an item in batch 𝑗, it measures the distance from the
farthest item to collect to the front aisle.

𝐷𝐻
𝑗 → Distance traveled through the cross aisles to collect batch 𝑗.

𝐷𝑉
𝑗 → Distance traveled through the parallel aisles to collect batch 𝑗.

𝑜𝑑𝑑𝑗 →

{

1, if 𝐴𝑗 is odd,
0, otherwise.

𝑧𝑗𝑞 →

{

1, if batch 𝑗 has an item in aisle 𝑞,
0, otherwise.
Table 2
Parameters and variables for the OOBPMP.
Parameters

𝑛 → Number of orders at the system in a particular time instant.
𝑚 → Upper bound of the number of batches (a straightforward value is 𝑚 = 𝑛).
𝑙 → Number of pickers.
𝑣𝑟𝑜𝑢𝑡𝑖𝑛𝑔 → Number of units of length that the picker can traverse in the warehouse per unit of

time (velocity).
𝑣𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 → Number of items that a picker can search and pick per unit of time.
𝑡𝑠𝑒𝑡𝑢𝑝 → Constant time needed by the picker to process each batch.
𝑤𝑖 → Number of items in order 𝑜𝑖 (1 ≤ 𝑖 ≤ 𝑛).
𝑊 → Maximum capacity of a batch.
𝑎𝑟𝑖 → Arrival time of order 𝑖.

Variables

𝑠𝑡𝑗 → Start time of batch 𝑗.

𝑥𝑗𝑖 →

{

1, if order 𝑖 is assigned to batch 𝑗,
0, otherwise.

𝑦𝑗𝑘 →

{

1, if picker 𝑘 is assigned to batch 𝑗,
0, otherwise.
pick per unit of time, the extraction time for a batch 𝑗 can by defined
s follows:

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑗 =

𝑛
∑

𝑖=1

𝑤𝑖 ⋅ 𝑥𝑗𝑖
𝑣𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

, ∀ 𝑗 ∈ {1,… , 𝑚}. (12)

Finally, 𝑡𝑠𝑒𝑡𝑢𝑝, is a parameter which represents the additional time
needed by the picker to process the batch (either before starting the
picking and/or after finishing it).

Once the model of the routing algorithm has been formalized, we
introduce the models of the three studied problems, whose objective
functions are defined next.

The objective function in (13) minimizes the total picking time
needed to collect all orders arrived to the system. Notice that it avoids
waiting times.

min
𝑚
∑

𝑗=1
𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗 . (13)

The objective function in (14) minimizes the completion time,
hich is determined by the moment in the time when the picker
elivers the last batch.

min max
(

𝑠𝑡𝑗 + 𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔). (14)

𝑗∈{1,…,𝑚} 𝑗

6

Finally, the objective function in (15) minimizes the maximum
difference between the picking time used by the picker which works
the most and the average picking time of all pickers in the system.

min max
𝑘∈{1,…,𝑙}

𝑚
∑

𝑗=1
𝑦𝑗𝑘 ⋅ 𝑇

𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗 −

𝑚
∑

𝑗=1

𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑗

𝑚
. (15)

Next, we define the constraints that must be satisfied by any of the
studied optimization problems.

Constraints in (16) guarantee that each order is assigned only to one
batch:
𝑚
∑

𝑗=1
𝑥𝑗𝑖 = 1, ∀ 𝑖 ∈ {1,… , 𝑛}. (16)

Constraints in (17) guarantee that each batch is assigned only to one
picker:
𝑙

∑

𝑘=1
𝑦𝑗𝑘 = 1, ∀ 𝑗 ∈ {1,… , 𝑚}. (17)

Constraints in (18) guarantee that the maximum capacity of a batch is
not exceeded:
𝑛
∑

𝑤𝑖 ⋅ 𝑥𝑗𝑖 ≤ 𝑊 , ∀ 𝑗 ∈ {1,… , 𝑚}. (18)

𝑖=1

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

C
b

𝑠

C

𝑠

F

𝑥

4

O
t
t
s
s
o
h

4

o
r
p
a
b
t
d
i
t
M

V
i
s
p
i
t
h
o
a
o

c
c
t
r
c
𝑏
𝑝
(
a
𝑓
c

i

1
1
1
1
1
1
1
1
1
1
2
2
2
2

Constraints in (19) guarantee that the batch 𝑗 starts to be collected only
if there is at least one picker available:

𝑠𝑡𝑗 ≥ min
𝑘∈{1,…,𝑙}

max
𝑠∈{1,…,𝑗−1}

𝑦𝑠𝑘 ⋅
(

𝑠𝑡𝑠 + 𝑇 𝑝𝑖𝑐𝑘𝑖𝑛𝑔
𝑠

)

, ∀ 𝑗 ∈ {2,… , 𝑚}. (19)

Constraints in (20) guarantee that the batch 𝑗 starts to be collected,
once the collection of the batch 𝑗 − 1 has already begun:

𝑠𝑡𝑗 ≥ 𝑠𝑡𝑗−1, ∀ 𝑗 ∈ {2,… , 𝑚}. (20)

onstraints in (21) guarantee that the collection of batch 𝑗 do not start
efore the orders assigned to that batch have arrived to the system:

𝑡𝑗 ≥ 𝑎𝑟𝑖 ⋅ 𝑥𝑗𝑖, ∀ 𝑖 ∈ {1,… , 𝑛}, ∀ 𝑗 ∈ {1,… , 𝑚}. (21)

onstraints in (22) state that 𝑠𝑡𝑗 cannot be negative:

𝑡𝑗 ≥ 0, ∀𝑗 ∈ {1,… , 𝑚}. (22)

inally, constraints in (23) state that the variables 𝑥𝑗𝑖 are binary:

𝑗𝑖 ∈ {0, 1}, ∀ 𝑗 ∈ {1,… , 𝑚}, ∀ 𝑖 ∈ {1,… , 𝑛}. (23)

. Algorithmic proposal

In this section, we describe our algorithmic proposal to tackle the
OBPMP. Particularly, we describe the strategy proposed for each of

he aforementioned subproblems within the OOBPMP. Notice that in
his paper we focus our attention on the batching task, while we use
everal well-known/straight-forward strategies to handle the rest of the
ubproblems. Initially, it is necessary to introduce a method in charge
f the synchronization of all involved processes (see Section 4.1) that
appen in the picking process during the considered time horizon.

.1. General schema of the MS-VND

In this section, we describe a general orchestration method which
rganizes all processes involved in the problem and its associated
elationships. This method is in charge of the simulation of the picking
rocess and determines the different aspects involved, such as: the
rrival of orders, the batching operation, the selection of the next
atch to collect, the routing operation, the assignation of batches to
he pickers, the picking of orders, and the update of the associated
ata structures. However, since the main contribution of this paper
s focused on the batching task, we have used the strategies used for
his task (multistart procedure and VND) to denote the algorithm as
S-VND.

In Algorithm 1 we introduce the proposed orchestration method MS-
ND. The algorithm receives the list of orders (𝑜𝑟𝑑𝐿𝑖𝑠𝑡) to collect as an

nput parameter. Notice that, in a real scenario, orders arrive online,
o it means that not all orders are available at the beginning of the
rocess. However, to illustrate the online behavior, we consider that the
nput list of orders contains not only the orders but also the moment in
ime when those orders arrive to the system within the considered time
orizon. It is also important to remark that the schedule of the arrival
f orders is calculated following a Poisson Point process distribution,
s we will describe in Section 5, which will scatter the arrival of the
rders within the considered time horizon, approximately.

The method is continuously running until all orders have been
ollected. It starts by initializing several data structures: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑
ontains the orders which have already arrived to the system but
hat have not been collected yet; 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙, contains a partial tempo-
ary solution (i.e., batches conformed with the orders in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
alculated by the batchingAlgorithm in the current iteration;
𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 contains the best 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 found with the orders in
𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑. Notice that new partial solutions are being calculated
steps 6–11) until the waitingAlgorithm determines that at least
picker can start the picking operation of the next available batch;
𝑖𝑛𝑎𝑙𝑆𝑜𝑙 contains an ordered list of batches with the orders already
ollected.
7

Once all variables have been initialized, the orchestration method
n Algorithm 1 updates the list of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 (step 8) and calcu-

lates a partial solution with the batching algorithm (step 9). Then,
it updates (if necessary) the 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 found with the current
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 obtained (step 10). The update consists of replacing the cur-
rent 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 with 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙. Notice that this update is produced
when either 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 is better than 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 in terms of quality,
or when 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 contains new orders arrived in the system. This
process is repeated while the 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 is empty (i.e., there are
not orders in the system awaiting to be collected) or if there exists a
waiting strategy which determines that the picker should wait for the
arrival of new orders, before starting the picking operation (step 11).

Once there is at least one picker is available (step 13), the
selectingAlgorithm chooses a batch within the 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙
(step 14) and the routingAlgorithm calculates the route to follow
for collecting the orders in the selected batch (step 15). In step 16,
the assigningAlgorithm determines if the selected 𝑏𝑎𝑡𝑐ℎ and its
associated 𝑟𝑜𝑢𝑡𝑒 can be assigned to the selected available 𝑝𝑖𝑐𝑘𝑒𝑟. Notice
that depending on the objective pursued, the assignation might not
be straight forward (i.e., an available picker can be the one with
the larger workload and the method might determine to wait until
another picker becomes available). If the assignation is performed, the
picking operation starts (step 17), the collected orders are removed
from 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 and from the list of 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 (step 18). Finally,
the collected 𝑏𝑎𝑡𝑐ℎ is added to the 𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙 (step 19). The whole
process is repeated until the list of input orders becomes empty and
there are not orders pending to be collected in the system.

Algorithm 1 Orchestration method MS-VND
1: function MS-VND(𝑜𝑟𝑑𝐿𝑖𝑠𝑡)
2: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ← ∅
3: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← ∅
4: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← ∅
5: 𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙 ← ∅
6: do
7: do
8: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ∪ 𝚐𝚎𝚝𝙾𝚛𝚍𝚎𝚛𝚜𝙰𝚛𝚛𝚒𝚟𝚎𝚍(𝑜𝑟𝑑𝐿𝑖𝑠𝑡)
9: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← 𝚋𝚊𝚝𝚌𝚑𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
0: 𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 ← 𝚞𝚙𝚍𝚊𝚝𝚎(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙, 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙)
1: while 𝚠𝚊𝚒𝚝𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)||(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙 = ∅)
2: for each 𝑝𝑖𝑐𝑘𝑒𝑟 ∈ 𝚐𝚎𝚝𝙰𝚟𝚊𝚒𝚕𝚊𝚋𝚕𝚎𝙿𝚒𝚌𝚔𝚎𝚛𝚜() do
3: 𝑏𝑎𝑡𝑐ℎ ← 𝚜𝚎𝚕𝚎𝚌𝚝𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙)
4: 𝑟𝑜𝑢𝑡𝑒 ← 𝚛𝚘𝚞𝚝𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑏𝑎𝑡𝑐ℎ)
5: if 𝚊𝚜𝚜𝚒𝚐𝚗𝚒𝚗𝚐𝙰𝚕𝚐𝚘𝚛𝚒𝚝𝚑𝚖(𝑝𝑖𝑐𝑘𝑒𝑟, 𝑏𝑎𝑡𝑐ℎ, 𝑟𝑜𝑢𝑡𝑒) then
6: 𝚌𝚘𝚕𝚕𝚎𝚌𝚝(𝑝𝑖𝑐𝑘𝑒𝑟, 𝑏𝑎𝑡𝑐ℎ, 𝑟𝑜𝑢𝑡𝑒)
7: 𝚛𝚎𝚖𝚘𝚟𝚎(𝑏𝑒𝑠𝑡𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙, 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑, 𝑏𝑎𝑡𝑐ℎ)
8: 𝚊𝚍𝚍(𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙, 𝑏𝑎𝑡𝑐ℎ)
9: end if
0: end for
1: while (𝑜𝑟𝑑𝐿𝑖𝑠𝑡 ≠ ∅) || (𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑 ≠ ∅)
2: return 𝑓𝑖𝑛𝑎𝑙𝑆𝑜𝑙
3: end function

There are five remarkable methods within the MS-VND procedure
presented in Algorithm 1. The batching algorithm
(batchingAlgorithm), which conforms the batches to be collected,
is described in Section 4.2. The waiting algorithm
(waitingAlgorithm), which determines the time window available
to update the current partial solution, is described in Section 4.3. Notice
that this algorithm determines whether a picker can start the picking
or must wait to improve the current partial solution. The selection al-
gorithm (selectingAlgorithm), which determines the next batch
of the partial solution to be assigned to an available picker, is described
in Section 4.4. The assigning algorithm (assigningAlgorithm),
which determines if the selected batch is assigned to an appropriate
picker by following a workload balance criterion, is described in
Section 4.5. Finally, the routing algorithm (routingAlgorithm),
which determines the route that a picker must follow to collect a batch,
is described in Section 4.6.

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

I
(

t
o
t
w
c
f
i
i
h
s
l
i
(
t
c
p
C
c
(
t

1
1
1

1
h
M
S
O
P

b
o
o
S
m
f
e
(
w
a
e
s
w
m
h
(
c

e
h
p
M
q
o
p
r
t
i
t
p
(
P
O
n
e

4.2. Batching algorithm

In this paper, we focus our attention on the batching algorithm as
one of the key procedures in the context of any variant of the OOBP.
The batching procedure consists of grouping all orders received at the
warehouse in clusters, named batches. Each batch has a maximum
predefined capacity, and all orders in the same batch are collected
together. We propose a batching algorithm (which is introduced in
Algorithm 2) based on the combination of a constructive procedure
(step 2 in Algorithm 2), which is in charge of constructing feasible
solutions for the OOBPMP, and an improvement procedure (step 2 in
Algorithm 2) which is in charge of reaching a local optimum within
the neighborhood of the solution previously constructed. Notice that
this procedure is being continuously run following a multistart strategy
(steps 7 to 11 in Algorithm 1) while the stopping criterion is not met.
n each iteration of those steps, a single call to the batching algorithm
Algorithm 2) is performed, considering a single partial solution at the

same time. This solution might contain one or more batches.

Algorithm 2 Batching Algorithm
1: function batchingAlgorithm(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝𝚒𝚟𝚎(𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑂𝑟𝑑)
3: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝚅𝙽𝙳(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
4: return 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
5: end function

The constructive method is inspired by the ideas presented within
he Greedy Randomized Adaptive Search Procedure (GRASP) method-
logy (Feo & Resende, 1995). Particularly, it uses a greedy function
o build a feasible solution step by step, combining its greediness
ith the randomization of several decisions. The pseudocode of the

onstructive method is presented in Algorithm 3. The method starts
rom an empty solution (step 2) and it adds a new order to the solution
n each iteration (steps 5 to 11). The selection of the order to be added
n each iteration is based in two principles: a greedy function which
elps to select a set of promising candidate orders to be added to the
olution, and a random function which selects one order within the
ist of promising candidate orders. Initially, all available orders are
nserted in the Candidate List (𝐶𝐿) (step 3) and a random value 𝛼
step 4) is calculated. The greedy function (𝚏) evaluates the orders in
he 𝐶𝐿 by measuring the weight of each order in such a way that all
andidate orders are sorted in a descending way based on that weight. A
ercentage of the heaviest orders in the 𝐶𝐿 are included in a Restricted
andidate List (𝑅𝐶𝐿), at step 7, by using the threshold 𝑡ℎ previously
alculated in the step 6. The value of 𝑡ℎ is based on the maximum
arg max 𝚏(𝐶𝐿)) and minimum (arg min 𝚏(𝐶𝐿)) weight of any order in
he 𝐶𝐿, and the previous random value 𝛼 ∈ 𝑈 [0, 1]. Those orders with a

weight over the threshold are inserted in the 𝑅𝐶𝐿. Finally, an order is
selected at random from the 𝑅𝐶𝐿 (step 8), added to the solution (step
9) and removed from the 𝐶𝐿 (step 10).

This procedure determines the sequence in which the orders will
be added to the solution, however it is also necessary to determine
the receiver batch for each particular order. Specifically, the algorithm
starts with an empty batch and it adds the current selected order to the
first batch with enough available space to handle the order. If none of
the previously created batches have enough space, then a new empty
batch is added to the solution.

The improvement phase of this multistart algorithm is based on a
metaheuristic procedure. Particularly, instead of using a simple local
search procedure, we propose the use of a Variable Neighborhood
Descent (VND) method. Therefore, in each iteration, the method con-
structs an efficient solution, and this solution is further improved with
a VND procedure. This schema is repeated until the method runs out
of time, or the maximum number of iterations is reached.

The Variable Neighborhood Descent is a variant of the well-known
Variable Neighborhood Search (VNS) methodology which was pro-
posed by Mladenović and Hansen (1997) with the main idea of chang-
ing the neighborhood structure during the search to reach different
8

Algorithm 3 Constructive procedure
1: function Constructive(𝑜𝑟𝑑𝑒𝑟𝑠)
2: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← ∅
3: 𝐶𝐿 ← 𝑜𝑟𝑑𝑒𝑟𝑠
4: 𝛼 ← 𝚛𝚊𝚗𝚍𝚘𝚖𝚅𝚊𝚕𝚞𝚎()
5: while 𝐶𝐿 ≠ ∅ do
6: 𝑡ℎ ← arg max 𝚏(𝐶𝐿) − 𝛼(arg max 𝚏(𝐶𝐿) − arg min 𝚏(𝐶𝐿))
7: 𝑅𝐶𝐿 ← 𝚋𝚞𝚒𝚕𝚍𝚁𝙲𝙻(𝑡ℎ, 𝐶𝐿)
8: 𝑜𝑟𝑑𝑒𝑟 ← 𝚛𝚊𝚗𝚍𝚘𝚖𝚂𝚎𝚕𝚎𝚌𝚝𝚒𝚘𝚗(𝑅𝐿𝐶)
9: 𝚊𝚍𝚍(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑜𝑟𝑑𝑒𝑟)

10: 𝐶𝐿 ← 𝐶𝐿 ⧵ {𝑜𝑟𝑑𝑒𝑟}
1: end while
2: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
3: end function

local optima. VNS has been used as the main procedure to solve
many optimization problems. The original idea has been extended
with many different variants. The classical ones are: Reduced VNS
(RVNS), Variable Neighborhood Descent (VND), Basic VNS (BVNS),
General VNS (GVNS), Skewed VNS (SVNS), and Variable Neighbor-
hood Decomposition Search (VNDS) (Hansen & Mladenović, 2001;
Hansen, Mladenović, & Moreno-Pérez, 2010; Mladenović & Hansen,
997). Other recent approaches include: Parallel Variable Neighbor-
ood Search (PVNS) (Duarte, Pantrigo, Pardo, & Sánchez-Oro, 2016;
enéndez, Pardo, Sánchez-Oro et al., 2017), Variable Formulation

earch (VFS) (Pardo, Mladenović, Pantrigo, & Duarte, 2013), and Multi-
bjective Variable Neighborhood Search (MO-VNS) (Duarte, Pantrigo,
ardo, & Mladenovic, 2015).

VNS methodology has been previously used in the context of order
atching problems. On one hand, it has been used to tackle several
ffline variants of the problem. As far as we know, the first use
f this methodology to tackle the OBP was proposed by Albareda-
ambola, Alonso-Ayuso, Molina, and De Blas (2009), where the authors
inimized the picking time through the use of a VND. This objective

unction was also studied using BVNS and GVNS in Menéndez, Pardo
t al. (2017), Menéndez, Pardo, Duarte, Alonso-Ayuso, and Molina
2015). Also in an offline context, the minimization of the tardiness
as studied by Henn (2015) with VND and GVNS. This variant was
gain tackled by Menéndez, Bustillo et al. (2017) with a GVNS and, an
xtension of the problem with the same objective function, was also
tudied with a VND by Scholz et al. (2017). Finally, a Parallel VNS
as presented in Menéndez, Pardo, Sánchez-Oro et al. (2017) for the
inimization of the maximum picking time of a batch. On the other
and, VNS has been also used in an online context by Gil-Borrás et al.
2020b). In that paper, the authors proposed a VND to minimize the
ompletion time and the maximum turnover time.

The key idea behind the VNS methodology is the definition and
xploration of different neighborhood structures. These neighborhoods
ave been used for different tasks in the context of order batching
roblems: move orders among batches (Albareda-Sambola et al., 2009;
enéndez, Pardo et al., 2017), sort the batches to establish a se-

uence to collect them (Henn, 2015; Scholz et al., 2017), or assign
rders/batches to pickers (Henn, 2015; Scholz et al., 2017). In this
aper we focus on the task of batching orders. Therefore, we next
eview the neighborhood structures previously proposed to handle this
ask. The most common neighborhood structure used in the literature
s the one defined by the swap operation, consisting of interchanging
wo orders belonging to different batches. This neighborhood has been
reviously studied in Albareda-Sambola et al. (2009), Gil-Borrás et al.
2020b), Henn (2015), Menéndez, Bustillo et al. (2017), Menéndez,
ardo et al. (2017), Menéndez et al. (2015), Menéndez, Pardo, Sánchez-
ro et al. (2017), Scholz et al. (2017). The second most studied
eighborhood in the literature is the one defined by the insert op-
ration, which consists of removing an order from its current batch

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

1
1
1
1
1
1
1
1
1
1
2
2

and assigning it to a new batch. This neighborhood structure has been
previously used in: Albareda-Sambola et al. (2009), Gil-Borrás et al.
(2020b), Henn (2015), Menéndez, Bustillo et al. (2017), Menéndez,
Pardo et al. (2017), Menéndez et al. (2015), Scholz et al. (2017). The
extension of this neighborhood structure, consisting of removing two
orders from a batch and inserting them in another batch was presented
in Albareda-Sambola et al. (2009). Similarly, another extension consists
of removing two orders from a batch and interchanging them with
one order from another batch. This neighborhood was used by Gil-
Borrás et al. (2020b), Menéndez, Pardo et al. (2017). Other complex
neighborhoods have also been explored in previous research, such as:
two consecutive swap/insert operations in chain (Albareda-Sambola
et al., 2009; Menéndez, Pardo et al., 2017; Menéndez, Pardo, Sánchez-
Oro et al., 2017); the insertion of two orders from the same batch in two
different batches (Albareda-Sambola et al., 2009); the insertion of two
orders from different bathes into one batch (Albareda-Sambola et al.,
2009).

The VND strategy proposed in this paper is designed to systemat-
ically explore three different neighborhood structures. The obtained
result from the VND procedure is therefore a local optimum with
respect to all three neighborhood structures considered.

In Algorithm 4 we present the pseudocode of the VND procedure
used in this paper for the OOBPMP. The initial solution received
by the VND as a starting point is calculated with the constructive
procedure previously presented. This solution is explored by three local
search procedures which follow a first improvement strategy. Each
local search explores a different neighborhood and then determines if
an improvement has been made (steps 13 to 18 in Algorithm 4) or not.
If a local search procedure is not able to improve the current solution
by exploring its neighborhood, then the method jumps to the next
available neighborhood, otherwise it returns to the first local search
procedure. The process is repeated until not further improvements are
made with any of the local search methods considered.

Notice that the function used to evaluate the quality of the solution
(𝚎𝚟𝚊𝚕 in Algorithm 4) determines if a new solution visited can be
considered as an improvement during the search. Therefore, different
𝚎𝚟𝚊𝚕 functions might guide the search to different areas of the solution
space. In this paper we have explored two different 𝚎𝚟𝚊𝚕 functions:
the workload balance and the picking time, obtaining two different
search strategies that are compared in Section 5. However, to compute
any of the objective functions considered, it is previously necessary to
compute the picking route using a routing algorithm (see Section 4.6).

The VND in Algorithm 4 is configured with the following local
search procedures:

• The 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝙸𝚗𝚜𝚎𝚛𝚝𝟷𝚡𝟶 is based on an insert neighborhood,
which considers all possible solutions reached by the insertion of
any order in the solution in all available batches.

• The 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟸𝚡𝟷 is based on an interchange neighbor-
hood, which considers all possible solutions reached by the ex-
change of every pair of two orders within the same batch, with
any single order in any other batch.

• The 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟷𝚡𝟷 is based on an interchange neighbor-
hood which considers all possible solutions reached by the inter-
change of any pair of orders assigned to a different batch in the
solution.

Notice that it is mandatory that the resulting batches after any move
within the proposed local search procedures do not violate the maxi-
mum capacity restriction on a batch. Otherwise, the solution obtained
is discarded.

Neighborhood structures are typically sorted depending on its size,
which is usually related to the time needed to explore them, being the
fastest to be explored considered firstly and the slowest considered at
the end. However, this is an empirical rule that can be also tested when

considering a specific set of neighborhoods for a particular optimization

9

Algorithm 4 Variable Neighborhood Descent
1: function VND(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
2: 𝑘 ← 1
3: 𝑘𝑚𝑎𝑥 ← 3
4: 𝑏𝑒𝑠𝑡 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
5: repeat
6: if 𝑘 == 1 then
7: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′ ← 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝙸𝚗𝚜𝚎𝚛𝚝𝟷𝚡𝟶(𝑏𝑒𝑠𝑡)
8: else if 𝑘 == 2 then
9: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′ ← 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟸𝚡𝟷(𝑏𝑒𝑠𝑡)
0: else if 𝑘 == 3 then
1: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′ ← 𝙻𝚘𝚌𝚊𝚕𝚂𝚎𝚊𝚛𝚌𝚑𝚂𝚠𝚊𝚙𝟷𝚡𝟷(𝑏𝑒𝑠𝑡)
2: end if
3: if 𝚎𝚟𝚊𝚕(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′) < 𝚎𝚟𝚊𝚕(𝑏𝑒𝑠𝑡) then
4: 𝑏𝑒𝑠𝑡 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛′

5: 𝑘 = 1
6: else
7: 𝑘 = 𝑘 + 1
8: end if
9: until 𝑘 > 𝑘𝑚𝑎𝑥
0: return 𝑏𝑒𝑠𝑡
1: end function

problem. In this case, the order of the local search procedures and its as-
sociated neighborhoods presented in Algorithm 4 has been empirically
determined.

As a final remark to this section, we would like to remark the
relevance of the strategies chosen to handle the batching task. First,
the use of a multistart procedure is devoted to the online nature of the
problem, since each construction in a multistart strategy can consider
new orders arrived at the system, in addition to the ones available
in the previous iteration. Among the different multistart algorithmic
methodologies, GRASP was selected since it contributes to construct
diverse solutions which make room in the batches constructed, due to
the randomization nature of the procedure. This fact simplifies the task
for local search procedures. Finally, as it was previously reviewed, VNS
methodology resulted a very successful methodology in the past, when
tackling other variants of the OBP. This fact has conducted researchers
to very simple and successful ideas in the definition of neighborhood
structures that can be easily adapted to the OOBPMP. Finally, GRASP
and VNS have been widely combined in the past when tackling hard
optimization problems by typically using VND as the local search phase
of GRASP. This is the reason why VND is selected among the different
variants of VNS.

4.3. Waiting algorithm

The waiting method is in charge of determining the time window
that a picker must wait before starting a new route. Notice that, in some
situations and depending on the objective function considered, it must
be worthy to wait until more orders are available in the system before
composing the batches. This is due to the fact that a larger number of
orders might allow the batching algorithm to configure batches which
retrieval is more efficient. In this paper, we follow the most naive
waiting algorithm used in the literature of the OBP, which establishes
that a picker can start its route as soon as it becomes available and
there is at least one batch ready to be collected.

4.4. Selecting algorithm

Depending on the number of orders arrived to the system, the solu-
tion provided by the batching algorithm might have several batches. In
this case, the selection method is in charge of determining which is the
next batch that must be collected. The method proposed for this task

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

j
c
w
r
f
h
n
i
m

i
m
w

5

r
B
S
T
m
t
t
&
e
e
i
O
a
n
a
p
P
Ž

i
w
u
b
(
i
s
c
i
i
n

e
t
w
t
a
n
r

t
s
p
u
t
e

p

Fig. 3. Example of the route obtained with the S-Shape routing algorithm to collect
the boxes in the figure.

sorts all batches in the current partial solution in a descending way with
respect to its weight. Then, the method selects the heaviest batch as the
next one to be collected. In the case that more than one batch achieves
the largest weight, the tie is broken by selecting the batch which can
be collected faster according to the routing method.

4.5. Assigning algorithm

In warehouses with multiple pickers, the assigning algorithm is in
charge of determining who, among the pickers, will be assigned to the
next waiting batch chosen by the selecting algorithm. This method is
very relevant when the objective is to balance the workload among the
pickers. In this case, we use the method proposed by Zhang et al. (2017)
which assigns the next available batch to the picker that has traveled
less until that moment.

4.6. Routing algorithm

Once there is a waiting batch assigned to an available picker, the
picker must follow an efficient route within the warehouse to collect
all orders in the assigned batch. This route is calculated by the routing
algorithm. Routing algorithms for the OBP have been widely studied in
the literature and it is possible to find exact and heuristic approaches. In
this paper, we propose the use of the S-Shape routing algorithm (Hall,
1993) which has also been referred to as Traversal in the literature.
This method has been widely used due to its simplicity for the pickers
and its fast calculation process. In Fig. 3 we show an example of this
algorithm. In this case, the depot is placed at the front cross aisle at the
leftmost corner. The route starts and ends at the depot and all parallel
aisles with at least an item to be collected are fully traversed except
for the case when the number of aisles with items to collect is odd. In
that situation, the last aisle is entered from the front cross aisle and the
picker performs a U-turn when the last item is reached, to return to the
front cross aisle, as this is the case of the example depicted in Fig. 3.

5. Computational results

The algorithmic proposals presented in this paper have been deeply
evaluated over data sets of instances previously reported in the liter-
ature. In Section 5.1, we describe in detail the characteristics of the
warehouses, orders, and arrival times which compose the instances
used in our experiments.

To test our proposals, we have carried out a wide empirical study
which can be divided in two main parts: on one hand, we have eval-
uated the performance of our methods, by considering three different
10
objective functions: completion time, picking time, and workload bal-
ance, and comparing our results with the previous methods in the state
of the art (see Sections 5.2, 5.3, and 5.4, respectively). For each ob-
ective function, we varied the number of pickers and the time horizon
onsidered. All results were analyzed using statistical tests. Particularly,
e used the Friedman Rank Test (Friedman, 1937) for comparing the

esults of multiple algorithms, and the Wilcoxon Test (Wilcoxon, 1992)
or the comparison of pairs of algorithms. On the other hand, we
ave performed an additional analysis by studying the influence of the
umber of pickers (see Section 5.5) and the influence of the congestion
n the arrival of orders (see Section 5.6), in the performance of the
ethods compared when handling the same scenario.

All methods, including the ones in the state of the art, were coded
n Java 8 and run in an Intel (R) Core (TM) 2 Quad CPU Q6600 2.4 Ghz
achine, with 4 GB DDR2 RAM memory. The operating system used
as Ubuntu 18.04.1 64 bit LTS.

.1. Instances

We have selected two widely used data sets of instances previously
eported in the state of the art of different variants of the Order
atching family of problems. One data set was introduced by Albareda-
ambola et al. (2009) and the other one was presented by Henn (2012).
he specifications and main characteristics of each data set are sum-
arized in Table 3. The data sets were originally designed and used in

he context of the OBP (the offline version of this problem) and used in
he related literature (De Koster, Van der Poort, & Wolters, 1999; Koch

Wäscher, 2016; Menéndez, Bustillo et al., 2017; Menéndez, Pardo
t al., 2017; Menéndez et al., 2015; Menéndez, Pardo, Sánchez-Oro
t al., 2017; Scholz et al., 2017; Scholz & Wäscher, 2017). Later, those
nstances have been adapted for the online multipicker version of the
BP. In this sense it is necessary to determine two additional aspects:
n arrival time for each order within the observed time horizon, and the
umber of pickers. Notice that these instances and the straightforward
daptation to the online multipicker context has also been used in
revious research papers (Alipour et al., 2020; Gil-Borrás et al., 2020b;
érez-Rodríguez, Hernández-Aguirre, & Jöns, 2015; Zhang et al., 2017;
ulj, Kramer, & Schneider, 2018).

Since the experiments in the context of the OOBPMP are performed
n real time, the execution time of the study might be extremely large
hen considering many instances. To avoid this drawback, we have
sed the selection of a representative subset of instances proposed
y Menéndez, Pardo et al. (2017) and later used in Gil-Borrás et al.
2020b), in order to have a reduced data set which can be handled
n a reasonable amount of time. Particularly, the first reduced data
et is composed by 80 instances, while the second reduced data set is
omposed by 64 instances. It is important to notice that the authors
n Menéndez, Pardo et al. (2017) demonstrated that the selection of
nstances they made resulted in a representative data set, avoiding the
ecessity of using a larger number of instances from the same origin.

In addition to the characteristics of the warehouse, it is also nec-
ssary to take into consideration other parameters which affect the
ime needed to perform the picking operation. Particularly, in Table 4
e report: the travel speed of the pickers, once they have started

heir routes; the extraction speed of items, once the picker is placed
t the picking position; and the batch setup time, which contains the
ecessary time to prepare the picking cart before starting the next
oute.

Finally, the arrival of orders to the warehouse in the context of
he OOBPMP is distributed through a particular time horizon. In this
ense, it is necessary to configure a simulation environment, which
rovides the orders to the system prior calculating the batch config-
ration and picking route. The time horizon of the arrival of orders
o the warehouse has been set between 1 and 4 h, depending on the
xperiment.

To simulate the arrival time for each order, we follow a Poisson
oint process. Since the time horizon is set between 1 and 4 h (t =

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

T
a
m

5

c
r
T
e
c
t
w
a

p

Table 3
Warehouse characteristics of the data set introduced in Albareda-Sambola et al. (2009) and Henn (2012).

Albareda-Sambola et al. (2009) Henn (2012)

W1 W2 W3 W4 W5

Storage policy Random/ABC Random/ABC
Depot position Center/Left corner Center
Order size U(1,7) U(2,10) U(5,25) U(1,36) U(5,25)
Item weight 1 1 1 U(1,3) 1
Batch capacity (weight) 12 24 150 80 30 / 45 / 60 / 75
Number of parallel aisles 4 10 25 12 10
Number of items per aisle 2 × 30 2 × 20 2 × 25 2 × 16 2 × 45
Number of items 240 400 1250 384 900
Parallel aisle length 50 m 10 m 50 m 80 m 45 m
Center distance between two consecutive parallel aisles 4.3 m 2.4 m 5 m 15 m 5 m
Number of instances 20 20 20 20 64
Table 4
Configuration parameters proposed in Henn (2012)
involved in the evaluation of the solutions.
Travel speed 48 LU/min
Extraction speed 6 items/min
Batch setup time 3 min

1,2,3,4). The number of events in the interval of length t is a Poisson
random variable 𝑋(𝑡) with mean 𝐸[𝑋(𝑡)] = 𝜆 ∗ 𝑡. The 𝜆 value is selected
depending on the number of orders considered in the experiment. In
this case, the 𝜆 values chosen for our experiments are compiled in

able 5. It is important to remark that the time horizon defined for the
rrival of orders in each experiment, is also the time that all evaluated
ethods are running.

.2. Empirical study of the completion time

In this section, we evaluate the performance of the algorithms when
onsidering the minimization of the completion time, one of the most
eported objective functions used in the state of the art of the OOBPMP.
he completion time indicates the elapsed time since the start of the
xperiment until the moment in time when the last order, among the
onsidered ones in the instances, has been collected and handled in
he depot. This time includes the time needed for any activity in the
arehouse: batching, waiting, selecting, assigning, and routing, and it
lso depends on the number of pickers simultaneously working.

In all experiments of this section, we compare the two previously
roposed methods in the state of the art (Alipour et al., 2020; Zhang

et al., 2017) with the Multistart VND (MS-VND) proposed in this
paper. Notice that we have tested two variants of the MS-VND. Both
methods are equal, but they use a different evaluation function to
guide the search (i.e., the function used to determine which solution
is more promising). The MS-VND-1 uses the workload balance function
to compare two solutions, while the MS-VND-2 uses the picking time
function. The rationale behind this strategy is that just varying the
evaluation function which guides the search, lets the method to explore
different areas of the space search.

First, we have evaluated the impact of the time horizon studied
on the performance of the methods, by considering 2 h time horizon
(see Table 6) and 4 h time horizon (see Table 7). For each considered
time horizon, we have also studied the influence of varying the number
of pickers (2, 3, 4, and 5) for each experiment. Each configuration
has been executed over the 144 instances previously selected and the
results per configuration have been reported separated by the data
set and all together. For each configuration, we report the averaged
values of the objective function (Avg. (s)) and the deviation to the best
value obtained in the experiment (Dev. (%)). In each table, we have
highlighted in bold type font the results obtained by the best algorithm.

We observe that MS-VND-1 is the best overall method in terms of
completion time, since it achieves the smaller deviation to the best

solution in the experiment in most of the studied scenarios. To confirm

11
the relevance of the results found, we have performed a Friedman
rank test (see the row ‘‘2 h’’ in Table 10). The obtained 𝑝-value of
0.000 indicates that the differences among the compared methods
are significant with MS-VND-1 ranking in the first position. Also, we
corroborated that there were significant differences when comparing
only our best variant MS-VND-1 with any of the two methods from the
state of the art in isolation. To that aim, we carried out two Wilcoxon
tests. The obtained 𝑝-values of 0.000 in both comparisons also indicate
that the differences between the compared methods are significant.

The results of the 4 h context presented in Table 7 are very similar
to the 2 h context, resulting again the MS-VND-1, the best method
among the compared ones. The significance of the results was also
corroborated by the Friedman rank test (see row ‘‘4 h’’ in Table 10),
and again confirmed by the Wilcoxon test when comparing MS-VND-1
with each of the previous proposals separately.

We have also studied the behavior of the compared methods with
respect to the completion time, when fixing the number of pickers and
varying the number of available hours for the arrival of orders. In
Table 8 we report the results for 2 pickers and, in Table 9, for 5 pickers.
Again, in both scenarios MS-VND-1 was the best compared method and
the differences found with other methods were statistically significant
(see rows ‘‘2 pickers’’ and ‘‘5 pickers’’ in Table 10).

Analyzing and summarizing our findings about the study of the
completion time, first we would like to highlight the importance of
the use of the completion time as objective function. This is because
minimizing the completion time results in an overall benefit for the
customers since it contributes to reduce the delivery time of products.
Increasing the time horizon for the schedule of the arrival of orders
results in an increase in the completion time. Also, an increase in the
number of pickers reduces the completion time. This point is verified by
all tested methods. However, increasing the number of pickers results
more beneficial for the completion time, with an upper bound of having
a picker available for each order arriving at the system, which clearly
results in unacceptable operational costs. However, this explains why
using the workload balance as the guiding function, which usually
provides solutions with a larger number of batches, helps to minimize
the completion time. Also, it is important to notice that in this paper
we do not consider blocking situations, which would also deteriorate
the solution when increasing the number of pickers.

5.3. Empirical study of the picking time

In this section, we have performed the empirical comparison be-
tween our proposals and the methods from the state of the art when
considering the picking time as objective function. In this scenario, we
have performed the same set of experiments described in Section 5.2,
but reporting the picking time, instead of the completion time. The
picking time indicates the sum of the times spent by the pickers in the
picking task, avoiding any waiting time. Notice that the picking task
includes the setup time (time needed for the pickers prior to starting a

new route to set up the picking cart and to review the assigned route),

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517
Table 5
Values of the Poisson parameter 𝜆, used to distribute the arrival of different number of orders in a particular time
horizon.

#orders

40 60 80 100 150 200 250

Time
horizon

1 h 0.667 1.000 1.334 1.667 2.500 3.334 4.167
2 h 0.334 0.500 0.667 0.834 1.250 1.667 2.084
3 h 0.223 0.334 0.445 0.556 0.834 1.112 1.389
4 h 0.167 0.250 0.334 0.417 0.625 0.834 1.042
Table 6
Comparison of the completion time with the state-of-the-art methods over several 2 h scenarios with different number of pickers.
Instances #pickers Completion time (With 2 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 32600 9.43% 35321 17.59% 30391 0.67% 30251 0.47%
3 22775 8.87% 24872 18.10% 21300 0.77% 21228 0.72%
4 18067 8.35% 19804 18.18% 16864 0.68% 16857 0.93%
5 15377 7.76% 16802 16.35% 14437 1.03% 14412 1.08%

Henn (64)

2 15609 8.95% 15239 5.64% 14386 0.43% 14467 0.93%
3 11416 7.45% 11105 4.41% 10662 0.81% 10692 1.06%
4 9658 6.28% 9417 3.35% 9169 1.04% 9210 1.40%
5 8885 5.99% 8636 2.77% 8458 0.86% 8483 1.15%

All (144)

2 25048 9.22% 26395 12.28% 23278 0.56% 23236 0.68%
3 17727 8.24% 18754 12.01% 16572 0.79% 16545 0.87%
4 14329 7.43% 15187 11.59% 13444 0.84% 13458 1.14%
5 12492 6.90% 13172 10.24% 11780 0.89% 11777 1.05%
Table 7
Comparison of the completion time with the state-of-the-art methods over several 4 h scenarios with different number of pickers.
Instances #pickers Completion time (With 4 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 34700 7.52% 36107 9.99% 32546 0.52% 32460 0.43%
3 25905 5.92% 26784 7.82% 24490 0.43% 24496 0.55%
4 22096 5.61% 22448 5.62% 21001 0.61% 21020 0.86%
5 19987 5.19% 20266 5.02% 19068 0.41% 19123 0.86%

Henn (64)

2 18235 6.56% 17767 3.45% 17164 0.43% 17207 0.62%
3 15968 5.41% 15401 1.48% 15206 0.33% 15278 0.77%
4 15552 5.60% 14867 0.79% 14803 0.38% 14817 0.48%
5 15441 5.60% 14691 0.35% 14655 0.11% 14687 0.32%

All (144)

2 27382 7.09% 27956 7.08% 25709 0.48% 25681 0.52%
3 21489 5.70% 21725 5.00% 20364 0.38% 20399 0.65%
4 19187 5.61% 19079 3.47% 18246 0.51% 18263 0.69%
5 17967 5.37% 17789 2.94% 17106 0.27% 17151 0.62%
Table 8
Comparison of the completion time with the state-of-the-art methods over several 2 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Completion time (With 2 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 32221 11.33% 34795 20.47% 29895 0.68% 29751 0.57%
2 32600 9.43% 35321 17.59% 30391 0.67% 30251 0.47%
3 33472 8.85% 35895 14.45% 31210 0.57% 31166 0.58%
4 34700 7.52% 36107 9.99% 32546 0.52% 32460 0.43%

Henn (64)

1 15206 9.48% 15779 12.50% 13931 0.19% 14049 1.05%
2 15609 8.95% 15239 5.64% 14386 0.43% 14467 0.93%
3 16547 7.74% 16114 4.39% 15439 0.78% 15419 0.49%
4 18235 6.56% 17767 3.45% 17164 0.43% 17207 0.62%

All (144)

1 24659 10.51% 26343 16.93% 22800 0.46% 22772 0.78%
2 25048 9.22% 26395 12.28% 23278 0.56% 23236 0.68%
3 25950 8.36% 27104 9.98% 24201 0.67% 24168 0.54%
4 27382 7.09% 27956 7.08% 25709 0.48% 25681 0.52%
12

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

4
5

r
t
t
h
p
i
p
T
V

Table 9
Comparison of the completion time with the state-of-the-art methods over several 5 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Completion time (With 5 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 14052 10.76% 15141 18.00% 13055 1.11% 13040 1.34%
2 15377 7.64% 16802 16.21% 14437 0.91% 14412 0.96%
3 17546 5.96% 18332 8.33% 16667 0.82% 16631 0.86%
4 19987 5.19% 20266 5.02% 19068 0.41% 19123 0.86%

Henn (64)

1 7079 8.96% 7400 13.00% 6534 0.85% 6598 1.64%
2 8885 5.99% 8636 2.77% 8458 0.86% 8483 1.15%
3 11977 5.64% 11461 0.92% 11441 0.77% 11422 0.62%
4 15441 5.60% 14691 0.35% 14655 0.11% 14687 0.32%

All (144)

1 10953 9.96% 11700 15.78% 10156 0.99% 10177 1.47%
2 12492 6.90% 13172 10.24% 11780 0.89% 11777 1.05%
3 15071 5.82% 15279 5.03% 14344 0.80% 14316 0.75%
4 17967 5.37% 17789 2.94% 17106 0.27% 17151 0.62%
v
o

t
i
v
T
V
2
w
p

w
c
o
p
i
a
i
o
(
d

Table 10
Friedman rank test for different test scenarios, when studying the completion time.

Friendman rank test — Completion time

Alipour et al.
(2020)

Zhang et al.
(2017)

MS-VND-1
(Workload
Balance)

MS-VND-2
(Picking
Time)

Sig.
(𝑝-value)

2 h 3.47 3.16 1.66 1.71 0.000
4 h 3.67 2.69 1.79 1.85 0.000
2 pickers 3.47 3.33 1.56 1.65 0.000
5 pickers 3.45 2.97 1.75 1.81 0.000

the traveling time (time needed by the pickers to reach each picking
position), the time needed to accelerate or decelerate the picking cart,
and the extraction time of the items from the shelves. Particularly, in
Tables 11 and 12 we study the behavior of the algorithms over 2 and

h scenarios, respectively, varying the number of pickers (2, 3, 4, or
). Then, in Tables 13 and 14 we fixed the number of pickers (2 or 5)

and varied the number of available hours (1, 2, 3, or 4) for the arrival
of orders.

In this case, we have also studied the statistical significance of the
results obtained. In Table 15, we report the obtained rank values for
the Friedman tests for each of the studied scenarios. In all cases, the
𝑝-values obtained were 0.000, which indicate significant differences
among the methods. However, this time our best variant was MS-VND-
2, which resulted ranked in the first position in two out of the four
scenarios. On the other hand, the proposal by Alipour et al. (2020)
esulted in the first position in the other two scenarios. Observing
he scenarios where the MS-VND-2 performed better, we can conclude
hat MS-VND-2 is the best method when the warehouse presents a
igher congestion of orders. This might be due to the existence of fewer
ickers working at the studied moment or numerous orders currently
n the system. On the other hand, the method in Alipour et al. (2020)
erformed better when dealing with scenarios with low congestion.
he results between the two best variants of the experiments (MS-
ND-2 and Alipour et al. (2020)) were also observed to be statistically

significant (𝑝-value = 0.000) in three out of the four studied scenarios
(4 h, 2 pickers and 5 pickers) when compared with the Wilcoxon test.
However, in the 2 h scenario, the obtained 𝑝-value = 0.061 indicates
no significant differences between the methods.

Analyzing and summarizing our findings about the study of the
picking time, the optimization of the picking time is usually related to
the energy saving and the enlargement of the life of the machinery.
The larger the number of pickers, the higher the picking time. The
reduction in the picking time is mainly due to the existence of fewer
batches with less empty space. This situation is more suitable when
the number of pickers is small, so there is more time to complete the
13
batches with new arrived orders. Therefore, introducing waiting times
between each departure might result in a reduction of the picking
time, since there are more full batches. The same observation can
be derived from a different perspective, i.e., a larger congestion rate
usually results in better picking times. Also, we noticed that the use
of the same objective function being minimized (picking time) as the
guiding function to determine the search direction is more beneficial
than using the workload balance.

5.4. Empirical study of workload balance

In this section, we have performed the empirical comparison be-
tween our proposals and the methods from the state of the art when
considering the workload balance as the objective function. In this
scenario, we have performed the same set of experiments described in
Sections 5.2 and 5.3, but reporting the workload balance. The workload
balance indicates the difference between the maximum picking time
needed by a picker to complete its assigned tasks, with respect to the
average picking time reported by all pickers. Particularly, in Tables 16
and 17 we study the behavior of the algorithms over 2 and 4 h
scenarios, respectively, varying the number of pickers (2, 3, 4, or 5).
Then, in Tables 18 and 19 we fixed the number of pickers (2 or 5) and
aried the number of available hours (1, 2, 3, or 4) for the arrival of
rders.

In this case, we have also studied the statistical significance of
he results obtained (see Table 20). In all cases, the 𝑝-values obtained
ndicate significant differences among the methods. This time our best
ariant (MS-VND-1) resulted ranked in the first position in all scenarios.
he differences found in the results obtained when comparing MS-
ND-1 and the best algorithm in the state of the art (Zhang et al.,
017) were also observed to be statistically significant when compared
ith the Wilcoxon test, with a 𝑝-value of 0.000 in all comparisons
erformed.

Analyzing and summarizing our findings about the study of the
orkload balance among different workers, we found that it is a key

riterion for maintaining a safe and healthy work environment. This
bjective function has not been deeply studied in the literature and
revious methods usually fail when dealing with it. As observed, the
ncrease in the number of pickers also increases the hardness of finding
better workload balance. On the other hand, higher congestion rates

ncrease the chance of finding a more balanced solution. Again, we
bserved that the use of the same objective function being minimized
workload balance) as the guiding function to determine the search
irection is more beneficial than using the picking time.

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517
Table 11
Comparison of the picking time with the state-of-the-art methods over several 2 h scenarios with different number of pickers.
Instances #pickers Picking time (With 2 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 61755 4.15% 67020 15.50% 60284 5.29% 59558 3.58%
3 62507 2.88% 68045 16.90% 62828 11.07% 61400 7.49%
4 63291 2.11% 69259 19.01% 65323 16.74% 63613 12.64%
5 64166 1.58% 70469 20.64% 68553 23.18% 66372 18.47%

Henn (64)

2 28635 2.95% 29585 6.59% 28231 2.68% 27930 1.32%
3 29407 1.35% 31278 9.73% 30643 8.82% 29859 5.47%
4 30397 0.43% 33684 14.36% 33827 16.24% 32560 11.23%
5 31554 0.17% 36616 20.58% 37252 23.80% 35653 18.04%

All (144)

2 47035 3.62% 50382 11.54% 46038 4.13% 45501 2.57%
3 47796 2.20% 51704 13.71% 48524 10.07% 47382 6.59%
4 48671 1.36% 53448 16.94% 51325 16.52% 49812 12.01%
5 49672 0.95% 55423 20.61% 54641 23.46% 52719 18.28%
Table 12
Comparison of the picking time with the state-of-the-art methods over several 4 h scenarios with different number of pickers.
Instances #pickers Picking time (With 4 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 62887 2.65% 68410 18.95% 63497 14.06% 62589 11.51%
3 64648 1.32% 72511 25.30% 69108 24.54% 67483 20.27%
4 66357 0.97% 76255 31.53% 75349 35.08% 72766 29.37%
5 67975 0.99% 80295 36.60% 81054 43.01% 77856 36.73%

Henn (64)

2 29892 0.82% 33046 14.75% 32497 14.40% 31884 11.53%
3 32097 0.10% 38529 24.84% 39536 29.34% 37810 23.06%
4 33923 0.01% 43621 33.92% 45425 39.84% 42880 32.22%
5 34934 0.00% 47236 41.14% 49013 46.22% 46763 40.08%

All (144)

2 48223 1.84% 52693 17.08% 49719 14.21% 48943 11.52%
3 50181 0.78% 57408 25.10% 55965 26.68% 54295 21.51%
4 51942 0.54% 61751 32.59% 62049 37.20% 59483 30.64%
5 53290 0.55% 65602 38.62% 66814 44.44% 64037 38.22%
Table 13
Comparison of the picking time with the state-of-the-art methods over several 2 pickers scenarios, varying the number of hours for the arrival of orders.
Instances #Hours Picking time (With 2 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 61628 5.30% 65206 12.28% 59418 1.94% 58720 0.57%
2 61755 4.15% 67020 15.50% 60284 5.29% 59558 3.58%
3 62201 3.34% 68234 17.86% 61534 9.49% 60886 7.56%
4 62887 2.65% 68410 18.95% 63497 14.06% 62589 11.51%

Henn (64)

1 28474 3.97% 29941 8.60% 27570 1.18% 27365 0.28%
2 28635 2.95% 29585 6.59% 28231 2.68% 27930 1.32%
3 29183 1.76% 30893 9.38% 29966 7.44% 29496 5.20%
4 29892 0.82% 33046 14.75% 32497 14.40% 31884 11.53%

All (144)

1 46893 4.71% 49533 10.64% 45263 1.61% 44784 0.44%
2 47035 3.62% 50382 11.54% 46038 4.13% 45501 2.57%
3 47526 2.64% 51638 14.09% 47504 8.58% 46935 6.51%
4 48223 1.84% 52693 17.08% 49719 14.21% 48943 11.52%
5.5. Influence of the number of pickers

Our next experiment is devoted to observe the influence of the
number of pickers on the performance of the algorithms compared over
the three objective functions studied. In Fig. 4 we report the averaged
Completion time of all methods for 2 and 4 h scenarios, when varying
the number of pickers. Similarly, in Figs. 5 and 6 we report the results
for the averaged picking time and the averaged workload balance for
the same scenarios.
14
As expected, we can observe a similar influence of the number
of pickers on the completion time (i.e., the larger the number of
pickers, the shorter the completion time) for any of the compared
methods. On the other hand, the performance of the methods in terms
of picking time benefits from higher congestion (i.e., orders arrive in
shorter times). This is due to the fact that a larger number of orders
in the system lets the batching algorithms to conform batches, which
retrieval times are shorter (i.e., the retrieval of each picking route

is more efficient). Finally, when observing the workload balance, all

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

t
t
p
t
p

t
i
a
t
o
p
m
n
c

5

g
a
s
o
c

i
p

i
s
p
p
o
d
i

Table 14
Comparison of the picking time with the state-of-the-art methods over several 5 pickers scenarios, varying the number of hours for the arrival of orders.
Instances #Hours Picking time (With 5 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 62640 2.72% 69096 15.47% 63832 11.43% 61723 6.27%
2 64166 1.58% 70469 20.64% 68553 23.18% 66372 18.47%
3 66219 1.35% 75242 28.24% 75068 34.91% 72064 28.56%
4 67975 0.99% 80295 36.60% 81054 43.01% 77856 36.73%

Henn (64)

1 29290 1.03% 31075 7.57% 30740 8.57% 29792 4.60%
2 31554 0.17% 36616 20.58% 37252 23.80% 35653 18.04%
3 33690 0.05% 42948 33.36% 44502 38.33% 42344 31.96%
4 34934 0.00% 47236 41.14% 49013 46.22% 46763 40.08%

All (144)

1 47818 1.97% 52198 11.96% 49125 10.16% 47531 5.53%
2 49672 0.95% 55423 20.61% 54641 23.46% 52719 18.28%
3 51762 0.77% 60889 30.51% 61483 36.43% 58855 30.07%
4 53290 0.55% 65602 38.62% 66814 44.44% 64037 38.22%
b
o
l

a
p
a
a
o
t
w
a
b
c
p
4
t
m

o
b
f
w
W
o
w

t
t
o
a
t
V
a
t
o
b
t
i
t
t
i
o
w
e

a
M

Table 15
Friedman rank test for different test scenarios, when studying the picking time.

Friendman rank test — Picking time

Alipour et al.
(2020)

Zhang et al.
(2017)

MS-VND-1
(Workload
Balance)

MS-VND-2
(Picking
Time)

Sig.
(𝑝-value)

2 h 1.96 3.44 2.92 1.68 0.000
4 h 1.45 3.12 3.35 2.08 0.000
2 pickers 2.38 3.70 2.43 1.49 0.000
5 pickers 1.51 3.03 3.40 2.05 0.000

methods except the one introduced by Alipour et al. (2020) were able
o maintain the maximum workload difference when increasing either
he time or the number of pickers. However, the method by Alipour
erformed worse with a larger number of pickers. This is due to the fact
hat its algorithm assigns the next available batch to the first available
icker, instead of balancing its assignment.

As a general conclusion, the number of pickers influences the objec-
ive functions studied in different ways. Particularly, we observed that
ncreasing the number of pickers results in shorter completion times
nd lower workload for each picker, however, finding a balance among
he work performed by each picker results more complicated and the
verall picking time increases, since pickers collect fewer items in each
icking tour. Also, we can conclude that less pickers than necessary
ight result in delays in the completion time, while an excessive
umber of pickers might result in more dead time in the activity, larger
osts, and a deterioration in the picking time.

.6. Influence of the congestion rate

This last experiment is devoted to observe the influence of con-
estion in the arrival of orders on the performance of the compared
lgorithms over the three objective functions studied. Particularly, the
cenarios considered range from lower congestion rates (larger number
f available pickers and/or larger arrival time horizons) to higher
ongestion rates (fewer pickers and/or shorter arrival time horizons).

In Fig. 7 we report the averaged completion time in several scenar-
os. Similarly, in Figs. 8 and 9 we report the results for the averaged
icking time and the averaged workload balance for the same scenarios.

As expected, in Fig. 7 we can observe that larger time horizons
mply larger completion times, since the arrival of orders is more
cattered. Also, we can observe that the completion time, when two
ickers are available (Fig. 7(a)) is much larger than the case with five
ickers available (Fig. 7(b)). On the other hand, we observe that when
nly two pickers are available, the increase in the number of hours
oes not produce as large deterioration in the completion time as it
s the case of the five pickers configuration. We can conclude that the
15
enefit of using these algorithms with low congestion rates, in terms
f completion time, is more limited than using them in scenarios with
arger congestion rates.

As far as the picking time is concerned, we observe in Fig. 8, that
larger number of pickers in the same time horizon implies worse

icking times. This is due to the fact that the batches conformed
re less compact (i.e., they have more available space in the batch),
nd therefore there are more batches. Consequently, a larger number
f batches implies more picking routes and therefore larger picking
imes. The same effect can be observed when focusing on scenarios
ith the same number of pickers, but increasing the time horizon
rrival. Larger time for the arrival of orders implies a larger number of
atches and consequently larger picking times. Additionally, among the
ompared algorithms, we can highlight that the approach by Alipour
erforms better in very low congestion rate scenarios (5 pickers and
h time horizon). Again, we can conclude that the benefit of using

hese algorithms with low congestion rates, in terms of picking time, is
ore limited than using them in scenarios with larger congestion rates.

Finally, considering the workload balance reported in Fig. 9, we
bserve that a larger number of pickers difficult an egalitarian distri-
ution of the work. On the other hand, increasing the number of hours
or the arrival of orders does not seem to influence the balance of the
orkload, except for the method of Alipour in the 5 pickers scenario.
e can conclude that the behavior of the proposed algorithms, in terms

f workload balance, is very similar either with low congestion rates or
ith larger congestion rates.

To summarize our findings, we observed in our experiments that
he guiding function has a large impact on the obtained results. Par-
icularly, in this paper, we studied the optimization of three different
bjective functions in the context of the OOBPMP: the workload bal-
nce, the picking time, and the completion time. To handle the previous
ask, we proposed two methods: MS-VND-1 and MS-VND-2. The MS-
ND-1 uses the workload balance function to compare two solutions
nd therefore to guide the search, while the MS-VND-2 uses the picking
ime function for the same task. As it is intuitively expected, using the
bjective function being minimized as a guiding function results in a
etter performance (i.e., MS-VND-1 performed better when minimizing
he workload balance, while MS-VND-2 performed better when min-
mizing the picking time). Finally, when minimizing the completion
ime, we observed that the strategy of using the workload balance as
he guiding function performed better than using the picking time. This
s explained due to the differences in the structure of the solutions
btained with the two different guiding functions. Solutions obtained
ith MS-VND-2 presented fewer number of batches (usually with less
mpty space) than the solutions obtained with MS-VND-1.

In brief, MS-VND-1 is the best method overall when considering
ny of the objective functions, however it is closely followed by the
S-VND-2. The only exception to the previous assertion occurs in the

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517
Table 16
Comparison of the workload balance with the state-of-the-art methods over several 2 h scenarios with different number of pickers.
Instances #pickers Workload balance (With 2 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 448 2845% 387 2446.63% 15 0.00% 284 1769.37%
3 798 2112% 621 1620.24% 36 0.00% 518 1333.94%
4 1110 810% 718 489.00% 122 0.00% 610 399.91%
5 1413 486% 671 178.27% 241 0.00% 611 153.63%

Henn (64)

2 296 686% 246 553.70% 38 0.00% 282 648.57%
3 570 324% 393 192.23% 134 0.00% 410 204.90%
4 935 271% 480 90.55% 252 0.00% 497 97.35%
5 1257 274% 533 58.51% 336 0.00% 502 49.35%

All (144)

2 380 1410% 325 1188.04% 25 0.00% 283 1024.16%
3 697 773% 519 551.10% 80 0.00% 470 488.64%
4 1032 474% 613 240.73% 180 0.00% 560 211.39%
5 1344 374% 609 115.12% 283 0.00% 563 98.64%
Table 17
Comparison of the workload balance with the state-of-the-art methods over several 4 h scenarios with different number of pickers.
Instances #pickers Workload balance (With 4 h)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

2 691 2124.84% 445 1334.25% 31 0.00% 325 947.84%
3 1438 1003.44% 572 338.73% 130 0.00% 496 280.83%
4 2430 1041.98% 644 202.61% 213 0.00% 616 189.60%
5 3230 926.22% 698 121.69% 315 0.00% 653 107.59%

Henn (64)

2 507 439.67% 286 204.78% 94 0.00% 266 182.99%
3 1748 597.61% 382 52.40% 251 0.00% 400 59.66%
4 3001 783.68% 430 26.73% 340 0.00% 414 21.88%
5 4226 1006.96% 440 15.16% 382 0.00% 457 19.76%

All (144)

2 609 932.33% 375 534.98% 59 0.00% 299 406.59%
3 1576 757.56% 487 165.25% 184 0.00% 454 146.83%
4 2684 897.14% 549 103.99% 269 0.00% 526 95.55%
5 3673 965.98% 583 69.22% 345 0.00% 566 64.34%
Table 18
Comparison of the workload balance with the state-of-the-art methods over several 2 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Workload balance (With 2 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 444 3575.43% 404 3248.44% 12 0.00% 311 2473.98%
2 448 2844.79% 387 2446.63% 15 0.00% 284 1769.37%
3 502 1715.66% 379 1271.05% 28 0.00% 303 998.54%
4 691 2124.84% 445 1334.25% 31 0.00% 325 947.84%

Henn (64)

1 283 782.75% 292 813.62% 32 0.00% 267 733.62%
2 296 686.46% 246 553.70% 38 0.00% 282 648.57%
3 422 378.83% 245 177.86% 88 0.00% 202 129.05%
4 507 439.67% 286 204.78% 94 0.00% 266 182.99%

All (144)

1 372 1677.74% 355 1593.93% 21 0.00% 291 1291.37%
2 380 1409.74% 325 1188.04% 25 0.00% 283 1024.16%
3 466 754.91% 319 485.40% 55 0.00% 258 373.66%
4 609 932.33% 375 534.98% 59 0.00% 299 406.59%
picking time with low congestion rates, where the method proposed
by Alipour et al. (2020) performs better than our approaches. These
conclusions can be easily observed in Figs. 4 to 9, where lower values
indicate a better performance, with MS-VND-1 appearing to be the best
choice in most of the figures.

As a general conclusion, the congestion rate depends on the arrival
of orders in a particular time horizon, and on the pickers available at
the warehouse. Also, we can conclude that there exists a relationship
between this rate and the studied objective functions. Studying the
congestion rate could be used in modern and flexible warehouses to
16
determine the number of pickers needed per shift. Higher congestion
rates help to find a better workload balance and result in smaller
picking times, while lower congestion rates favor the completion time,
since it increases the possibilities of having pickers available as soon as
an order arrives to the system.

6. Conclusions

In this paper we have studied the Online Order Batching Prob-
lem with Multiple Pickers. This problem is one of the most realistic

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

v
t
a
s
a
t
c
e
o

Table 19
Comparison of the workload balance with the state-of-the-art methods over several 5 pickers scenarios, varying the number of hours for the arrival of
orders.
Instances #Hours Workload balance (With 5 Pickers)

State of the art Multistart VND

Alipour et al. (2020) Zhang et al. (2017) MS-VND-1 (Workload balance) MS-VND-2 (Picking time)

Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%) Avg. (s) Dev. (%)

Albareda (80)

1 889 533.45% 765 444.73% 140 0.00% 674 380.14%
2 1413 486.32% 671 178.27% 241 0.00% 611 153.63%
3 2169 623.70% 691 130.61% 300 0.00% 668 122.92%
4 3230 926.22% 698 121.69% 315 0.00% 653 107.59%

Henn (64)

1 684 201.68% 576 153.94% 227 0.00% 514 126.70%
2 1257 274.09% 533 58.51% 336 0.00% 502 49.35%
3 2721 568.12% 469 15.14% 407 0.00% 482 18.23%
4 4226 1006.96% 440 15.16% 382 0.00% 457 19.76%

All (144)

1 798 346.39% 681 280.77% 179 0.00% 603 237.24%
2 1344 374.40% 609 115.12% 283 0.00% 563 98.64%
3 2414 594.75% 592 70.47% 348 0.00% 585 68.39%
4 3673 965.98% 583 69.22% 345 0.00% 566 64.34%
Fig. 4. Performance of the algorithms, in terms of completion time, when increasing the number of pickers for 2 and 4 h scenarios.
Fig. 5. Performance of the algorithms, in terms of picking time, when increasing the number of pickers for 2 and 4 h scenarios.
ariants of the Order Batching family of problems, since it considers
he existence of several pickers in the warehouse at the same time,
nd the online arrival of orders to the system. We have classified the
tudied variant and identified all previous methods in the state of the
rt. We noticed that several objective functions had been studied for
he problem, but not all previous papers report all of them. We have
ompiled the most relevant objective functions for the problem and
mpirically analyzed the behavior of the previous methods in the state
f the art for all of them. Particularly, we have studied the minimization
17
of the completion time, the minimization of the picking time, and the
minimization of the differences in workload among the pickers. Then
we have proposed two heuristic approaches based on a multistart VNS
to tackle the problem considering all identified objective functions for
the problem. Our approaches have been compared favorably with the
previous methods and the differences have been found to be significant
when using statistical tests. All experiments were performed over pre-
viously reported instances in the literature. Finally, we have studied
the influence of the increase in the number of pickers available in the

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517
Fig. 6. Performance of the algorithms, in terms of workload balance, when increasing the number of pickers for 2 and 4 h scenarios.
Fig. 7. Performance of the algorithms, in terms of completion time, when increasing the number of hours for the arrival of orders, for 2 and 5 pickers scenarios.
Fig. 8. Performance of the algorithms, in terms of picking time, when increasing the number of hours for the arrival of orders, for 2 and 5 pickers scenarios.
system and the influence of the congestion rate on the arrival of orders
in several scenarios. Next, we expose our conclusions derived from the
analysis of the obtained results.

Search procedures usually use the objective function being opti-
mized to guide the search looking for better solutions. However, this
approach is harder to follow when studying more than one objective
function at the same time. Analyzing the search strategies proposed in
this paper, we observed, as expected, that using the objective function
being optimized as the guiding function usually results in a better
18
performance in the optimization of that specific objective function. In
the case of the OOBPMP, we studied two different guiding functions
and we observed that either using the workload balance or the picking
time results in a reasonable guiding function to reduce the completion
time.

The number of pickers available and the congestion rate in the
arrival of orders highly influence in the efficiency of the warehouse and
both factors are closely related. On one hand, increasing the number

of pickers results in shorter completion times and lower workload for

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

M

Fig. 9. Performance of the algorithms, in terms of workload balance, when increasing the number of hours for the arrival of orders, for 2 and 5 pickers scenarios.
A

C

C

C

D

D

D

F

F

G

G

H

Table 20
Friedman rank test for different test scenarios, when studying the workload balance.

Friendman rank test — Workload balance

Alipour et al.
(2020)

Zhang et al.
(2017)

MS-VND-1
(Workload
Balance)

MS-VND-2
(Picking
Time)

Sig.
(𝑝-value)

2 h 3.37 2.72 1.27 2.64 0.000
4 h 3.66 2.48 1.49 2.37 0.000
2 pickers 3.24 2.88 1.25 2.64 0.000
5 pickers 3.65 2.48 1.45 2.42 0.000

each picker, however, it is harder to find a better balance among the
work performed by each picker, and the overall picking time increases
(since pickers collect fewer items in each picking tour). This fact might
result in an increase in the energy consumption. On the other hand, the
study and segmentation of the congestion rate in the arrival of orders
should be used in modern and flexible warehouses to determine the
number of pickers needed per shift. Fewer pickers than necessary might
result in delays in the completion time. On the contrary, more pickers
than necessary might result in more dead time in the activity and a
deterioration in the picking time.

From a managerial point of view, the optimization of the objective
functions studied in this paper might result in an increase of the
benefits. Particularly, the reduction in the picking time reduces the
energy consumption, while the reduction of the completion time results
in a faster service of products for the customers. On the other hand,
the balance of the workload results in a healthier and safer work
environment and prevents the overload of the machinery.

Since real scenarios look for an increase in the benefits, future
research should focus on multiobjective optimization problems in-
cluding the objective functions studied in this paper and discovering
others. Optimizing several objective functions at the same time will
provide companies with non-dominated solutions that can result useful
in different scenarios.

CRediT authorship contribution statement

Sergio Gil-Borrás: Conceptualization, Investigation, Data curation,
ethodology, Software. Eduardo G. Pardo: Conceptualization, Inves-

tigation, Validation, Writing – original draft. Antonio Alonso-Ayuso:
Supervision, Formal analysis, Writing – reviewing & editing. Abra-
ham Duarte: Supervision, Writing – reviewing & editing, Funding
acquisition.
19
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was partially funded by the projects: RTI2018-094269
-B-I00, and PGC2018-095322-B-C22 from Ministerio de Ciencia, Inno-
vación y Universidades (Spain); by Comunidad de Madrid (Spain) and
European Regional Development Fund (European Union), grant ref.
P2018/TCS-4566; and by Programa Propio de I+D+i de la Universidad
Politécnica de Madrid (Spain) (Programa 466A).

References

Albareda-Sambola, M., Alonso-Ayuso, A., Molina, E., & De Blas, C. S. (2009). Variable
neighborhood search for order batching in a warehouse. Asia-Pacific Journal of
Operational Research, 26(5), 655–683.

lipour, M., Mehrjedrdi, Y. Z., & Mostafaeipour, A. (2020). A rule-based heuristic
algorithm for on-line order batching and scheduling in an order picking warehouse
with multiple pickers. RAIRO-Operations Research, 54(1), 101–107.

hen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing
algorithm for two order pickers with congestion consideration. Computers &
Industrial Engineering, 66(1), 77–85.

hen, F., Wang, H., Xie, Y., & Qi, C. (2016). An ACO-based online routing method
for multiple order pickers with congestion consideration in warehouse. Journal of
Intelligent Manufacturing, 27, 389–408.

hen, F., Wei, Y., & Wang, H. (2018). A heuristic based batching and assigning
method for online customer orders. Flexible Services and Manufacturing Journal,
30(4), 640–685.

e Koster, R. B. M., Van der Poort, E. S., & Wolters, M. (1999). Efficient order
batching methods in warehouses. International Journal of Productions Research,
37(7), 1479–1504.

uarte, A., Pantrigo, J. J., Pardo, E. G., & Mladenovic, N. (2015). Multi-objective vari-
able neighborhood search: an application to combinatorial optimization problems.
Journal of Global Optimization, 63(3), 515–536.

uarte, A., Pantrigo, J. J., Pardo, E. G., & Sánchez-Oro, J. (2016). Parallel variable
neighbourhood search strategies for the cutwidth minimization problem. IMA
Journal of Management Mathematics, 27(1), 55–73.

eo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6, 109–133.

riedman, M. (1937). The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the American Statistical Association, 32(200),
675–701.

il-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., & Duarte, A. (2020a). Fixed versus
variable time window warehousing strategies in real time. Progress in Artificial
Intelligence, 9, 315–324.

il-Borrás, S., Pardo, E. G., Alonso-Ayuso, A., & Duarte, A. (2020b). GRASP with
variable neighborhood descent for the online order batching problem. Journal of
Global Optimization, 78(2), 295–325.

ahn, S., Scholz, A., et al. (2017). Order picking in narrow-aisle warehouses: A fast ap-
proach to minimize waiting times. (Tech. Rep. 170006), Otto-von-Guericke University
Magdeburg, Faculty of Economics and Management, FEMM Working Papers.

http://refhub.elsevier.com/S0360-8352(21)00421-6/sb1
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb1
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb1
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb1
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb1
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb2
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb2
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb2
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb2
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb2
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb3
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb3
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb3
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb3
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb3
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb4
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb4
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb4
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb4
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb4
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb5
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb5
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb5
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb5
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb5
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb6
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb6
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb6
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb6
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb6
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb7
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb7
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb7
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb7
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb7
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb8
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb8
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb8
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb8
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb8
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb9
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb9
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb9
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb10
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb10
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb10
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb10
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb10
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb11
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb11
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb11
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb11
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb11
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb12
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb12
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb12
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb12
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb12
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb13
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb13
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb13
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb13
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb13

S. Gil-Borrás, E.G. Pardo, A. Alonso-Ayuso et al. Computers & Industrial Engineering 160 (2021) 107517

P

P

Y

Z

Z

Ž

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse.
IIE Transactions, 25(4), 76–87.

Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130(3), 449–467.

Hansen, P., Mladenović, N., & Moreno-Pérez, J. A. (2010). Variable neighbourhood
search: methods and applications. Annals of Operations Research, 175(1), 367–407.

Henn, S. (2012). Algorithms for on-line order batching in an order picking warehouse.
Computers & Operations Research, 39(11), 2549–2563.

Henn, S. (2015). Order batching and sequencing for the minimization of the total
tardiness in picker-to-part warehouses. Flexible Services and Manufacturing Journal,
27(1), 86–114.

Henn, S., Koch, S., Doerner, K. F., Strauss, C., & Wäscher, G. (2010). Metaheuristics
for the order batching problem in manual order picking systems. Business Research,
3(1), 82–105.

Henn, S., Koch, S., & Wäscher, G. (2012). Order batching in order picking warehouses:
a survey of solution approaches. In Warehousing in the global supply chain (pp.
105–137). Springer.

Ho, Y.-C., & Tseng, Y.-Y. (2006). A study on order-batching methods of order-picking
in a distribution centre with two cross-aisles. International Journal of Productions
Research, 44(17), 3391–3417.

Hojaghania, L., Nematian, J., Shojaiea, A. A., & Javadi, M. (2019). Metaheuristics for a
new MINLP model with reduced response time for on-line order batching. Scientia
Iranica.

Koch, S., & Wäscher, G. (2016). A grouping genetic algorithm for the order batch-
ing problem in distribution warehouses. Journal of Business Economics, 86(1–2),
131–153.

Menéndez, B., Bustillo, M., Pardo, E. G., & Duarte, A. (2017). General Variable
Neighborhood Search for the Order Batching and Sequencing Problem. European
Journal of Operational Research, 263(1), 82–93.

Menéndez, B., Pardo, E. G., Alonso-Ayuso, A., Molina, E., & Duarte, A. (2017).
Variable neighborhood search strategies for the order batching problem. Computers
& Operations Research, 78, 500–512.

Menéndez, B., Pardo, E. G., Duarte, A., Alonso-Ayuso, A., & Molina, E. (2015). General
variable neighborhood search applied to the picking process in a warehouse.
Electronic Notes in Discrete Mathematics, 47, 77–84.

Menéndez, B., Pardo, E. G., Sánchez-Oro, J., & Duarte, A. (2017). Parallel vari-
able neighborhood search for the min-max order batching problem. International
Transactions in Operational Research, 24(3), 635–662.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers &
Operations Research, 24(11), 1097–1100.
20
Öncan, T. (2015). MILP formulations and an iterated local search algorithm with
tabu thresholding for the order batching problem. European Journal of Operational
Research, 243(1), 142–155.

Pardo, E. G., Mladenović, N., Pantrigo, J. J., & Duarte, A. (2013). Variable formulation
search for the cutwidth minimization problem. Applied Soft Computing, 13(5),
2242–2252.

érez-Rodríguez, R., & Hernández-Aguirre, A. (2015). An estimation of distribution
algorithm-based approach for the order batching problem. Research in Computing
Science, 93(1), 141–150.

érez-Rodríguez, R., Hernández-Aguirre, A., & Jöns, S. (2015). A continuous estimation
of distribution algorithm for the online order-batching problem. International
Journal of Advanced Manufacturing Technology, 79(1), 569–588.

Petersen, C. G. (1997). An evaluation of order picking routeing policies. International
Journal of Operations & Production Management, 17(11), 1098–1111.

Rubrico, J. I. U., Higashi, T., Tamura, H., & Ota, J. (2011). Online rescheduling of mul-
tiple picking agents for warehouse management. Robotics and Computer-Integrated
Manufacturing, 27(1), 62–71.

Scholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers
and due dates–simultaneous solution of order batching, batch assignment and
sequencing, and picker routing problems. European Journal of Operational Research,
263(2), 461–478.

Scholz, A., & Wäscher, G. (2017). Order batching and picker routing in manual order
picking systems: the benefits of integrated routing. Central European Journal of
Operations Research, 25(2), 491–520.

Tang, L. C., & Chew, E. P. (1997). Order picking systems: Batching and storage
assignment strategies. Computers & Industrial Engineering, 33(3), 817–820, Selected
Papers from the Proceedings of 1996 ICC&IC.

Van Der Gaast, J. P., Jargalsaikhan, B., & Roodbergen, K. J. (2018). Dynamic batching
for order picking in warehouses. In 15th IMHRC proceedings - progress in material
handling research: 2018 (pp. 1–8). Savannah, Georgia. USA: Digital Commons
Georgia Southern.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in
statistics (pp. 196–202). Springer.

u, M., & De Koster, R. B. M. (2009). The impact of order batching and picking
area zoning on order picking system performance. European Journal of Operational
Research, 198(2), 480–490.

hang, J., Wang, X., Chan, F. T. S., & Ruan, J. (2017). On-line order batching and
sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied
Mathematical Modelling, 45(Suppl. C), 271–284.

hao, D. G., Jiang, Y., Bao, J. W., Wang, J. Q., & Jia, H. (2019). Study on batching
and picking optimization of marine outfitting pallets. In MATEC web of conferences
ICFMCE 2018 (Vol. 272) (p. 01015). EDP Sciences.

ulj, I., Kramer, S., & Schneider, M. (2018). A hybrid of adaptive large neighborhood
search and tabu search for the order-batching problem. European Journal of
Operational Research, 264(2), 653–664.

http://refhub.elsevier.com/S0360-8352(21)00421-6/sb14
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb14
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb14
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb15
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb15
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb15
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb16
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb16
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb16
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb17
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb17
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb17
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb18
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb18
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb18
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb18
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb18
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb19
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb19
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb19
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb19
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb19
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb20
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb20
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb20
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb20
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb20
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb21
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb21
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb21
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb21
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb21
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb22
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb22
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb22
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb22
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb22
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb23
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb23
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb23
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb23
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb23
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb24
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb24
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb24
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb24
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb24
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb25
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb25
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb25
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb25
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb25
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb26
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb26
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb26
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb26
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb26
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb27
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb27
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb27
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb27
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb27
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb28
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb28
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb28
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb29
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb29
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb29
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb29
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb29
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb30
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb30
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb30
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb30
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb30
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb31
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb31
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb31
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb31
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb31
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb32
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb32
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb32
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb32
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb32
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb33
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb33
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb33
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb34
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb34
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb34
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb34
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb34
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb35
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb36
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb36
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb36
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb36
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb36
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb37
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb37
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb37
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb37
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb37
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb38
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb39
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb39
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb39
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb40
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb40
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb40
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb40
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb40
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb41
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb41
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb41
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb41
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb41
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb42
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb42
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb42
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb42
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb42
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb43
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb43
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb43
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb43
http://refhub.elsevier.com/S0360-8352(21)00421-6/sb43

	A heuristic approach for the online order batching problem with multiple pickers
	Introduction
	State of the art
	Problem description
	Objective functions
	Type of instances/warehouse description
	Mathematical formulation

	Algorithmic proposal
	General schema of the MS-VND
	Batching algorithm
	Waiting algorithm
	Selecting algorithm
	Assigning algorithm
	Routing algorithm

	Computational results
	Instances
	Empirical study of the completion time
	Empirical study of the picking time
	Empirical study of workload balance
	Influence of the number of pickers
	Influence of the congestion rate

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

