
Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-021-09566-x

1 3

A dataset of regressions in web applications detected 
by end‑to‑end tests

Óscar Soto‑Sánchez1 · Michel Maes‑Bermejo1   · Micael Gallego1 · 
Francisco Gortázar1

Accepted: 24 June 2021 
© The Author(s) 2021

Abstract
End-to-end tests present many challenges in the industry. The long-running times of these 
tests make it unsuitable to apply research work on test case prioritization or test case selec-
tion, for instance, on them, as most works on these two problems are based on datasets of 
unit tests. These ones are fast to run, and time is not usually a considered criterion. This is 
because there is no dataset of end-to-end tests, due to the infrastructure needs for running 
this kind of tests, the complexity of the setup and the lack of proper characterization of the 
faults and their fixes. Therefore, running end-to-end tests for any research work is hard and 
time-consuming, and the availability of a dataset containing regression bugs, documenta-
tion and logs for these tests might foster the usage of end-to-end tests in research works. 
This paper presents a) a dataset for this kind of tests, including six well-documented manu-
ally injected regression bugs and their corresponding fixes in three web applications built 
using Java and the Spring framework; b) tools for easing the execution of these tests no 
matter the infrastructure; and c) a comparative study with two well-known datasets of unit 
tests. The comparative study shows that there are important differences between end-to-
end and unit tests, such as their execution time and the amount of resources they consume, 
which are much higher in the end-to-end tests. End-to-end testing deserves some attention 
from researchers. Our dataset is a first effort toward easing the usage of end-to-end tests in 
research works.

Keywords  Dataset · Testing · End-to-end tests

 *	 Michel Maes‑Bermejo 
	 michel.maes@urjc.es

	 Óscar Soto‑Sánchez 
	 oscar.soto@urjc.es

	 Micael Gallego 
	 micael.gallego@urjc.es

	 Francisco Gortázar 
	 francisco.gortazar@urjc.es

1	 Universidad Rey Juan Carlos, Móstoles 28933, Spain

http://orcid.org/0000-0002-8138-9702
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09566-x&domain=pdf


	 Software Quality Journal

1 3

1  Introduction

Empirical studies in software testing research require projects with known regressions that 
are the subject of this study. There are frameworks  Just et  al. (2014), infrastructures Do 
et al. (2005) and repositories Dallmeier and Zimmermann (2007); Spacco et al. (2005) in 
which different researchers have collected (or added manually) and documented existing 
bugs in different projects being available to researchers, allowing studies to be compared 
using the same bug dataset as a reference. The projects considered are usually open-source 
projects, which are more easily available, and they are usually libraries rather than appli-
cations. Some research datasets include the tests that reveal the different bugs. However, 
these tests are mostly unit tests, which in many research works can be a limitation, due to 
the specific characteristics that non-unit tests (integration, end-to-end or performance tests) 
have, such as their higher complexity when configured or the computational resources 
they require, in addition to their running time. The lack of datasets including non-unit tests 
makes researchers ignore them.

Non-unit tests are usually available as part of more complex projects (usually complete 
applications) that expose a front-end to interact with the user, a back-end to handle requests 
and a database to persist the information, as an example. These applications tend to have 
end-to-end tests (e2e), which usually impersonates the user using a browser that interacts 
with the application in order to ensure there are no regressions for the different use cases 
of the application. These tests allow more extensive studies on real-life applications. Some 
problems faced by the industry are based on the non-scalability of continuous integration 
systems in terms of dealing with an ever-increasing code base and tests, as Memon et al. 
(2017) report in Google, where every day 800,000 builds and 150 million test runs are 
performed in more than 13,000 projects. Most of the computational efforts are due to func-
tional tests (integration and end-to-end tests) that require from minutes to hours to execute 
and much more computational resources (memory and CPU) than unit tests do.

We strongly believe that e2e tests should be subject of study, and practitioners are con-
tinuously expressing their frustration due to the several problems that this kind of tests 
have in their CI environments Liang et  al. (2018). For instance, test prioritization might 
help in finding bugs sooner when the allotted test time is limited, for instance taking into 
account the time required by each test to execute. Other techniques might be explored as 
well. For instance, log analysis might indicate a likeliness of a long-running test to fail, 
by comparing the log with a successful one, and therefore, might interrupt the test to save 
some time Sarro (2018).

This paper presents a dataset of regression bugs which are revealed by e2e tests to sup-
port software testing research. A regression bug is defined by Nir et al. (2007) as a bug 
which causes a feature that worked correctly to stop working after a certain event (system 
upgrade, system patching, daylight saving time switch, etc). The contributions of this paper 
are as follows:

–	 A repository comprised three complete web applications with multiple components 
(frontend, backend and a database). Each project consists of a Git repository with dif-
ferent branches that allow to explore the different changes the project has undergone as 
well as the buggy versions that have a documented regression bug. All regressions and 
fixes are properly tagged.

–	 E2e functional tests for each of the projects. Most of the tests use a browser to interact 
with the application, others use the API of the backend. In all the cases, the tests require 



Software Quality Journal	

1 3

the whole application (the backend and a database) to be running. The specificities of 
how to run an application in order to run its e2e tests are one of the deterrents of using 
this kind of tests in research.

–	 Tools to build the projects and run the tests, using Docker1 and Docker Compose. These 
tools allow researchers to reproduce any version of the code in a simple way to check 
the applications and their outputs (both in versions that work correctly and in those that 
contain an error).

–	 Extensive documentation of each regression bug accompanied by all resources that help 
to identify it; logs of the cases where the tests pass and fail, a visual diff-comparative of 
logs and videos of the e2e tests.

–	 A comparative study of unit and e2e tests in terms of running time, CPU and memory. 
Unit tests come from two popular datasets from the state-of-the-art in software testing 
research, and e2e tests come from the dataset proposed in this work.

This paper is an extension of a preliminary paper published in the 13th International 
Conference on the Quality of Information and Communications Technology (QUATIC, 
September 2020) Soto-Sánchez et al. (2020). This extension provides an extended state of 
the art, a more detailed description of the dataset itself, and a new section devoted to study 
how CPU usage, memory and running time metrics are different in this dataset (which uses 
e2e tests) with respect to other datasets of the literature (which uses only unitary tests). It 
also contains a detailed example using the test case prioritization (TCP) problem describ-
ing how different strategies are needed for building better solutions for the problem.

The paper is structured as follows: Previous work is presented in Sect. 2. The character-
istics of the regression bugs are introduced in Sect. 3, and the dataset is described in detail 
in Sect. 4, including some use cases and a detailed example from the TCP problem. Sec-
tion 5 presents a comparative study with other popular datasets containing exclusively unit 
tests. Threats to validity are presented in Sect. 6. Finally, Sect. 7 concludes the paper.

2 � Related work

Datasets containing controlled faults and regressions are useful for doing controlled experi-
ments where algorithms for different problems, like test prioritization, test selection, pre-
dictive analytics, among others, can be assessed. Furthermore, the availability of these 
datasets enables a fair comparison between different algorithms which is critical to under-
stand how each algorithm compares with the others in their respective problems. These 
comparisons help researchers in understanding which techniques work better for a problem.

There have been several attempts at building a dataset of bugs and regression tests for 
them. As early as in 1994, Siemens Corporate Research conducted an experimental study 
that led to building a dataset containing a set of 130 errors Hutchins et al. (1994), intro-
duced manually by the researchers in 7 projects written in C.

To the best of our knowledge, the first dataset of real bugs for use in software research 
is proposed by H. Do et al., Software-Artifact Infrastructure Repository Do et al. (2005), 
an infrastructure of 24 projects with documentation on 662 bugs (only 35 of them are 
real, the rest have been introduced by hand). In most projects, all the bugs are introduced 

1  https://​www.​docker.​com/

https://www.docker.com/


	 Software Quality Journal

1 3

by a single commit, being complicated to treat them individually. It is a dataset oriented 
to studies where the execution of the code is not a priority, oriented to make a static 
analysis of the code like in test case prioritization (TCP). However, the fact that all bugs 
are introduced in a single commit limits the applicability of certain techniques like code 
similarity, and definitely, it cannot be used for fault localization, where researchers look 
at the past commits of the project to determine where a bug was introduced.

Spacco et al. (2005) collected the bugs produced by students in a tool (Marmoset) where 
the code could be uploaded and checked on a server automatically. It includes eight dif-
ferent projects, carried out individually by 73 students, resulting in a total of 569 projects. 
They include not only the errors in the test, but also build errors of the project.

Bugs.jar Saha et al. (2018) is a large-scale dataset for research in automated debugging, 
patching, and testing of Java programs. It contains a total of 1,158 bugs and patches from 
eight large open-source Java projects.

The iBugs Dallmeier and Zimmermann (2007) project provides a repository of real bugs in 
Java projects. It contains 364 bugs, of which there is only one test that reveals the bug, and it 
includes mechanisms to get the corrected version of the bug, as well as its previous version for 
comparison. The dataset tools also allows the execution of the tests in both versions.

Defects4J  Just et  al. (2014) is an extensible framework which provides real bugs to 
enable reproducible studies. This framework contains 835 real bugs from 17 real-world 
open-source projects written in Java. Each bug included in their dataset contains informa-
tion about the commit where the bug is fixed (which includes at least one test that reveals 
the bug), plus a failed commit to compare them. All bugs have their origin in the source 
code and are reproducible (both their failed and fixed versions), and the fix-commit does 
not include changes unrelated to the fix. The most recent version of the dataset includes a 
docker image to ease working with it.

BugsJS Gyimesi et al. (2019) is the first large benchmark of 453 real manually selected 
and validated JavaScript bugs from 10 popular server-side programs. Like Defects4J, 
it facilitates the reproducibility of the execution of the tests, specifically reproducing the 
environment from a Docker image.

Due to the increasing use of Python, datasets of this language have emerged for research. 
One of the most recent and relevant is BugsInPy Widyasari et al. (2020). This dataset is 
inspired by Defects4J and according to the authors follows a similar structure, including 
493 bugs in 17 Python projects.

Another Python dataset, specifically oriented to research in Data Science, is Boa Meets 
Python Biswas et al. (2019), which gathers 1,558 Python projects available in GitHub; all 
of them focused on solving Data Science tasks like machine learning.

Although there are similarities between the dataset proposed in this paper and some 
datasets described here, such as facilitating the reproduction of tests using the Docker plat-
form or labeling of buggy and fixed versions or a detailed documentation of errors, none of 
these datasets have e2e tests. Therefore, this limits the research of specific techniques that 
could work well for e2e tests. Furthermore, some techniques cannot be applied to unit tests, 
like analytics on long-running tests with rather long logs. Our dataset contributes to this 
area by focusing specifically on e2e tests, easing the execution of those tests by providing 
a tool to run them, and carefully design the faults and their fixes. The authors hypothesize 
that this lack of e2e tests in state-of-the-art datasets is due to these tests requiring more 
configuration (deployment of the whole application and its dependencies, like databases, 
and the use of external browsers) and resource consumption (running time, CPU and mem-
ory) than unit tests, making it a challenge to reproduce them correctly. Our dataset simpli-
fies all this configuration by providing a tool to run all the tests easily.



Software Quality Journal	

1 3

3 � Generation of the regression bugs

The main difference between the dataset described in this work and the ones mentioned in 
Sect. 2 is the use of complete applications which are made up of different components: a 
client side (frontend), a server side (backend) and a database, along with e2e tests (in con-
trast to the unit tests used by other existing datasets). This section describes the methodol-
ogy used to generate the bugs as well as their characteristics. The main objective is to make 
the process as close as possible to how actual projects introduce new regression bugs.

To ensure bugs are representative of these web applications, we considered bugs in both the 
frontend and the backend. Frontend bugs are rather difficult to track because the frontend usu-
ally log the problem in the browser. Unless the developer retrieves these logs, they will not be 
available. In the dataset, these logs are available, as they were retrieved when running the tests. 
Some bugs are related to security concerns (pages a user should not see, but that he or she can 
navigate to) to consider as well situations that might compromise the security of the application.

3.1 � Methodology

The approach followed to introduce faults is as follows: a branch per feature development 
model is assumed, where a new branch is created for each feature, and all the work up until 
the feature is finished is done in the branch. At the end, the branch is merged with the main 
branch of the project. Therefore, this branch includes multiple commits, simulating the 
changes that would occur in a real project when adding a new feature. In the dataset, one of 
these commits in the branch will introduce a regression. Some more commits after, the new 
functionality will be tested by launching the tests. At this point, some tests will reveal the 
regression, that will then be fixed and the new feature will be merged to the main branch. 
These steps are explained in detail below and are graphically depicted in Fig. 1, where each 
node represents a commit (a set of changes in the project history).

First a feature branch will be created, namely ( Cbranch ). This branch is created in order to 
add a new feature to the application. At the point of branch creation, Cbranch , all tests pass. 
These tests are the same that will detect in the future the regression.

Once the new branch is created, development of the feature starts, and as a result several 
commits are added to it. One of the commits, Cregression , introduces a regression bug. There-
fore, at least one test would fail at that commit, because all regression bugs introduced are 
caught by at least one test.

However, in the context of continuous integration (CI) it is common that these tests 
are not executed at each commit, so it might be the case that the regression is not detected 
until we try to merge the branch with the main branch. Most CI servers will fail the merge, 
because the tests did not pass. Let us assume the commit at which the error is detected is 
Cerror.

Fig. 1   A simplified example of a 
commit history

CFIX

CBRANCH

CERRORCREGRESSION



	 Software Quality Journal

1 3

Once tests fail at Cerror , developers develop a fix commit, Cfix , that solves the bug. At 
this Cfix commit, all tests pass again and the feature branch can be successfully merged with 
the main branch.

This process was followed by the authors when introducing regression bugs in the three 
web applications of the dataset. As a result, the corresponding branches are quite similar to 
what happens in real projects, but with a proper characterization of how and when the bug 
was introduced, at which commit it was fixed and the specific tests that detect the regres-
sion. Authors think this characterization is important in order to ensure the dataset can be 
used for different problems.

3.2 � Properties

When generating regression bugs, it was ensured that the following properties apply to all 
of them:

–	 The bug is reproducible Any regression bug must be reproducible, i.e., running the 
tests always generates the same output. Notice that this is a decision by the authors and 
does not limit the extensibility of the dataset to include as well flaky tests. These are 
perfectly possible, but out of the scope of this work.

–	 The bug is related to source code The bug cannot be related to the build system, the 
configuration, the environment in which it runs, or the test files. Instead, the root cause 
of the bug must be related to (and can be traced to) a change in the source code of the 
application.

–	 The change is realistic The commit in which the bug is introduced must contain more 
changes than the bug itself. The branch where this bug is placed must contain more 
commits with different changes in the application. This is to imitate the natural changes 
that occur in the application and in which a regression usually appears.

–	 The tests are end-to-end The tests that detect the regression are functional tests that 
use a browser to interacts with the application as a user would do.

4 � Dataset of regression bugs

4.1 � Subject applications

For the realization of our dataset, three applications from the students of the subject Devel-
opment of Web Applications from the Software Engineering degree at Rey Juan Carlos 
University were selected. These projects have been built as complete and functional appli-
cations, getting as close as possible to how an application would be developed in the indus-
try. All the applications consist of a backend written in Java using the Spring framework 
and a frontend, and the three of them require a MySQL database to store contents.

–	 Webapp-1 (social network) This application consists of a backend developed in 
Java with Spring and a frontend developed in Angular with TypeScript. This appli-
cation is a social network of films, series and books.



Software Quality Journal	

1 3

–	 Webapp-2 (online courses) This application consists of a backend developed in 
Java with Spring, and a frontend developed in Angular with TypeScript. This appli-
cation is a platform for online courses.

–	 Webapp-3 (library) This application consists of a backend developed in Java with 
Spring and a frontend developed with Moustache (a template engine) using Spring. 
This application is the web page of a library.

Both Webbapp-1 and Webapp-2 are Single Page Applications (SPA), whereas 
Webapp-3 is a MVC application. The applications presented above are complex to test 
because they are composed of several parts each running in its own process: a backend, 
a frontend running in the browser, and a database. All the parts that make up the appli-
cation must be up and running before any test can be launched (this process is a deter-
rent on the use of e2e tests in academia and is further discussed in Section 4.3). To give 
an idea of the size of the three web applications, Table 1 shows the non-commenting 
source statements (NCSS) metrics for each of them. As shown in the table, they are 
applications with an important size in terms of their lines of code.

4.1.1 � Webapp‑1: social network web application

This application is a social network of multimedia content (films, series and books). It 
allows users to assign a score to the different multimedia content. It is also possible to 
comment on the multimedia content to provide the user’s opinion on the different films, 
series or books. Users can create lists with the multimedia content in order to keep track 
of the things that have been seen or liked the most. The application also has a series of 
graphics with the most valued and most viewed multimedia content in its different sec-
tions (films, series and books). The home page of the application is shown in Fig. 2.

This application has three different roles:

–	 User role will be able to rate the multimedia content, comment on the multimedia 
content and create and manage their lists.

–	 Moderator role adds on top of the permissions granted by the user role the capa-
bility to moderate user comments.

–	 Administrator role adds on top of the moderator role the capability to add, edit 
and delete the different multimedia content contained in the page.

4.1.2 � Webapp‑2: online courses web application

This application is an online course platform. Users can register for the different courses 
offered on the platform. Once a user is enrolled in a course, a list with each of the subjects 
of the course will be accessible. Within each of the subjects, the teachers will upload the 

Table 1   Non-commenting source 
statements (NCSS) metrics

NCSS Webapp-1 Webapp-2 Webapp-3

Backend (Spring) 6,097 4,890 3,832
Frontend (Angular) 26,170 5,452 0
Total 32,267 10,342 3,832



	 Software Quality Journal

1 3

necessary material for the students to study the subject. Teachers will also add assignments 
that the students will have to do to pass the subject. Student passing all the subjects of a 
course, are given a certificate of completion of the course. The home page of the applica-
tion is shown in Fig. 3.

This application has three different roles:

–	 User role will allow students to register for the different courses offered and obtain a 
certificate of completion.

–	 Teacher role will be given to teachers to manage the courses by uploading the neces-
sary material, adding assignments and evaluating the students enrolled on the course.

–	 Administrator role will be given to administrators to manage the creation, edition and 
deletion of the different courses. Within the courses, administrators assign the teachers 
and manage the subjects taught. They are also responsible for creating the platform’s 
teacher accounts.

4.1.3 � Webapp‑3: library web application

This application is a library platform. Users can search resources in the library (books or 
journals) and book them for later collection in person. They can as well specify the day in 
which the resources they have will be returned. This application’s home page is shown in 
Fig. 4.

The application has two different roles:

–	 User role enabling users to book and return the different resources offered by the 
library.

–	 Administrator role enabling administrators to add, edit and delete the different 
resources of the library and create, modify and delete users. This role will also allow 
administrators to manage the return of material and assign fines if a resource is not 
returned on time.

Fig. 2   Webapp-1 home page



Software Quality Journal	

1 3

4.2 � Anatomy of introduced regression bugs

The presented dataset contains three projects (applications) with a total of six regression 
errors, the exact number of regressions that each application contains is shown in Table 2. 
These applications were selected from those developed by the students of the subject 
Development of Web Applications, at the Software Engineering degree at Rey Juan Carlos 
University, and they simulate a real application.

Regression errors presented in this section were introduced by hand by the authors of 
the paper, using the methodology described in section 3. Figure 5 shows how a regres-
sion was introduced in Webapp-1. Each node in the image represents a commit that 
belongs to a branch where a feature is being developed. The image shows two branches, 
namely fixed-footer and refactor-index-charts. Each of the commits may or may not con-
tain a regression. The last commit of the branch, the one merged into the main (master) 
branch, contains the regression bug fixed. The two branches shown in the figure corre-
spond to the 2 regressions added in the Webapp-1; that is, each branch contains a commit 
that introduces a regression, and this regression is fixed in the last commit of the branch.

Fig. 3   Webapp-2 home page



	 Software Quality Journal

1 3

All regression bugs introduced in the different applications of the dataset are presented 
below, and the tests that detect the regression bugs are presented as well. How to run the 
tests is presented in the resource 2 and discussed further in Section 4.3.

–	 Webapp-1 Regression 1 In this regression, the bug is introduced in a frontend com-
ponent, that is, a component that runs as part of the UI in the browser. The error is 
due to a malfunction of an element in the HTML of the page. This element checks if 
a non-existent variable contains a Boolean value. Due to the fact that the variable is 
not defined, an error occurs that prevents the creation of a new list to be presented to 
the user. In order to locate this error, it is necessary to see the video of the execution 
(browser windows are recorded and the videos are available in the dataset). In the video 
recording3 showing the regression it is shown how the add button does not work and 
in the video recording4 of the fixed regression it is shown how the button works again. 
The component in which the bug is found is profile.html, which is part of the frontend. 
The test detecting the regression is TestE2EFront.

Fig. 4   Webapp-3 home page

Table 2   Applications and 
number of regression bugs 
available in our dataset

Application # of regressions

Webapp-1 2
Webapp-2 3
Webapp-3 1

3  https://​git.​io/​Jk9ai
4  https://​git.​io/​Jk98O

2  https://​git.​io/​JOesQ

https://git.io/Jk9ai
https://git.io/Jk98O
https://git.io/JOesQ


Software Quality Journal	

1 3

–	 Webapp-1 Regression 2 The component containing the bug in this regression is part 
of the backend. The error is due to an erroneous count in the number of genres of the 
different multimedia content (films, series and books). The method in charge of this 
operation contains a bug, and the backend API returns a wrong number. The error 
can be caught by looking at the logs returned by the backend. Figure 6 shows a com-
parison of the logs recorded for a version of the application with the regression (left) 
and a version without the regression (right). The figure shows how the API returns a 
different number in both cases (red and green squares in the image). This information 
is available in the repository5. The component in which the bug is found is ApiGender-
Controller.java, which is part of the backend. This fault is detected by the test TestA-
PIRestTemplate.

–	 Webapp-2 Regression 1 The component containing the bug in this regression is part of 
the backend. The error is due to poor management of user permissions. This bad man-
agement allows any user to see another user’s profile when this should not be allowed. 
The error becomes more evident by having a look at the backend and frontend logs. 
Figure 7 shows how the API returns the profile of a user. That should not happen, as 
according to the logs the user is not logged in. By comparing the run of the test in the 
regression commit (red square) and the fixed commit (green square), it is possible to 

Fig. 5   In this figure, we can see the webapp-1 git history graph

Fig. 6   Webapp-1 Regression Bug 2

5  https://​git.​io/​Jk9rY

https://git.io/Jk9rY


	 Software Quality Journal

1 3

see how the version of the application with the regression is returning a user profile. 
This information is available in the repository6. The component containing the bug is 
RestSecurityConfig.java, which is part of the backend. The test revealing this fault is 
TestE2EFront.

–	 Webapp-2 Regression 2 The component containing the bug in this regression is part 
of the backend. The error is due to poor management of user permissions. This bad 
management of permissions prevents the administrator user from being able to delete 
courses registered on the platform. In order to locate this error, it is necessary to be able 
to see the logs offered by the browser, which are not usually available. However, in the 
dataset these logs have been extracted and stored as well. Figure 8 shows how the API 

Fig. 7   Webapp-2 Regression Bug 1

Fig. 8   Webapp-2 Regression Bug 2

6  https://​git.​io/​Jk9Kl

https://git.io/Jk9Kl


Software Quality Journal	

1 3

does not allow an administrator to delete a course. This is clearer by looking at the logs 
of the browser when running the test on the regression commit (red square) and at the 
commit that fixes the regression (green square). This information is available in the 
repository7. The component in which the bug is found is RestSecurityConfig.java which 
is part of the backend. The test revealing this fault is TestE2EFront.

–	 Webapp-2 Regression 3 The component containing the bug in this regression is part 
of the frontend. The error is due to a malfunction of an element in the HTML. This ele-
ment misspells a function name. Due to the fact that the name of the method does not 
exist, there is an error that prevents downloading the course’s content. In order to locate 
this error it is necessary to retrieve the logs offered by the browser. These logs have 
been extracted and included in the dataset. Figure 9 shows how the Angular framework 
reports a property not found error. This bug is easy to catch by looking at the browser 
logs (not usually available). In the figure, the logs of the version of the application with 

Fig. 9   Webapp-2 Regression Bug 3

7  https://​git.​io/​Jk9iE

https://git.io/Jk9iE


	 Software Quality Journal

1 3

the regression (red square) contains an error, which does not appear on the logs of 
the version without the regression (green square). This information is available in the 
repository8. The component in which the bug is found is component.html which is part 
of the frontend. This fault is detected by the test TestE2EFront.

–	 Webapp-3 Regression 1 The component containing the bug in this regression is part 
of the backend. The error is due to poor management of user permissions. This bad 
management allows any user to access the administration panel and make changes to 
the platform as if they were an administrator. The bug can be caught by having a look 
at the backend and frontend logs. Figure 10 shows how the API allows a user without 
an administrator role to access the administration panel. By comparing the logs of a 
version with the regression (red square) and a fixed version (green square) it is pos-
sible to see how in the version with the regression the user could log in and access the 
admin page. This information is available in the repository9. The component in which 
the bug is found is SecurityConfiguration.java, which is part of the backend. The fault 
is revealed by the test TestE2EFront.

4.3 � Running end‑to‑end tests

Running end-to-end tests is not trivial. In order to run them, first the whole application 
must be running. The application is generally comprised of a backend that provides a 
REST API to the fronted, and a database where the application information will be stored. 
Finally, the frontend, which runs in the browser, will connect to the backend API to interact 
with the application.

Although these web applications might have a different way of being run, as a general 
rule it is not usually specified how to run the different components. For instance, usually 
little or nothing at all is said about the database: which version to run or which configura-
tion to apply. This is changing slowly with the advent of Docker containers; nevertheless, 
there is still a need to understand which containers to launch or which parameter to pass 
in. In the dataset, we made an effort to package all applications using Docker containers 

Fig. 10   Webapp-3 Regression Bug 1

8  https://​git.​io/​Jgreen
9  https://​git.​io/​Jk9PE

https://git.io/Jgreen
https://git.io/Jk9PE


Software Quality Journal	

1 3

so that the different parts of the application (backend, frontend, database, web browser and 
test) can be run with a single command.

As an example of the complexity of running e2e tests, this section first shows how to 
run end-to-end tests by hand and then how the same test can be run using the tool provided 
in the dataset, simplifying the run of this kind of tests.

4.3.1 � Running tests manually

For this example, webapp-2 and the regression-1 of the dataset will be used. The example 
run was performed using an Ubuntu 20.04 OS, and all commands were launched in the 
home folder. It is worth noticing that this is the process that a researcher would have to 
follow in order to just run the tests. Collecting detailed information like running times, 
memory and CPU consumption, or logs of the different components require additional 
efforts.

First, the project e2e-tests-dataset must be made available in the system, by cloning its 
Git repository. For this Git 2.17.1 or higher must be installed. Listing 1 shows the com-
mands required for cloning the project.

Second, we move to the folder of the application (webapp-2) and change the branch to 
the branch containing the regression (regression-1). Now, the application is built. As this 
is an SPA application, both the backend and the frontend need to be built. For the com-
pilation, Java 8, Maven 3.6.0, NodeJS 8.17.0 and npm 6.13.4 or higher are needed. Note 

Listing 1   Cloning the e2e-tests-dataset projectCloning the e2e-tests-dataset project

Listing 2   Compilation of application webapp-2 from branch regression-1

Listing 3   Execution of the backend and the frontend of the application webapp2

Listing 4   Launch the webapp-2 application tests



	 Software Quality Journal

1 3

how the versions matter, and the researcher would have to know which specific versions 
to use. Something that is not always clearly stated in the project documentation. Listing 2 
shows the commands required for checking out the branch regression-1 and compiling the 
webapp-2 application.

Third, in order to launch the tests, first the backend and frontend of the application 
should be executed. For running the different parts of the applications, a MySQL 5.7 data-
base, Java 8 and NodeJS 8.17.0 or higher are needed. Notice how standard output is redi-
rected to a log file in order to have the logs of the different components of the application 
available for later inspection. Listing 3 shows the commands required for executing both 
the backend and the frontend of Webapp-2 application.

Fourth, and last, when the application is up, the tests are run. To do so, a Chrome 
75.0.3770.80 web browser or higher must be available in the system, as the tests will start 
a browser and interact with the application through it. Listing  4 shows the commands 
required for launching the tests of the webapp-2 application.

Once the tests have been run, if some of them fail, researchers would be able to check 
the logs of the application reviewing the files ’/tmp/backend-build.log’ for the backend logs 
and ’/tmp/frontend.log’ for the fronted logs. Additionally, the output of the test is available 
in the terminal where they were run. Notice that in this case, the browser logs are not avail-
able. Getting these logs is not as simple as redirecting the standard output of the browser to 
a file. In order to retrieve these logs, the test itself needs to query them through the library 
used to control the browser (Selenium in the dataset). Usually, researchers are not inter-
ested in modifying in any way the original test code.

To run the application webapp-2 from a commit where the regression has been repaired 
(i.e., without the regression), all the previous steps but the first one need to be run again, 
changing the branch to ’regression-fixed-1’ in the second step.

More details on how to manually run the different tests available in the dataset can be 
found in the repository 10.

4.3.2 � Running end‑to‑end tests using the Docker image provided in the dataset

Within the dataset, we provide a Docker image that simplifies the run of e2e tests from 
the dataset. Using this image, there is no need to have development tools or a web browser 
installed locally, which avoids for any problem arising from incorrect versions of the tools, 
or the unavailability of the corresponding web browser. For this example, the webapp-2 

Listing 5   Docker command for launching the webapp-2 application tests in the regression-1 branch

Listing 6   Docker command for launching the tests of the webapp-2 application in the regression-fixed-1 
branch

10  https://​git.​io/​JOesQ

https://git.io/JOesQ


Software Quality Journal	

1 3

and the regression-1 of the dataset will be used. The whole application and the test were 
run in an Ubuntu 20.04 OS, and all commands were launched in the home folder.

In this case, the only requirement is to have a Docker 19.03 or higher installed. Every-
thing can be accomplished with a single command as shown in Listing 5.

Once the tests finish, all the logs will be made available in the folder ’/tmp/e2e-dataset/
logs’. Notice that the researcher might choose any other folder to mount in the container.

Listing 6 shows the command for running the repaired version of the application (the 
one without the regression).

To find out how to run the different tests available in the dataset using the Docker image, 
we reference the reader to the dataset repository.

4.4 � Dataset contents

The dataset contains three web applications. For each application, there are some regres-
sion bugs and tests properly documented. Logs, videos and detailed information of the 
commit where the regression is introduced, as well as the commit where the regression 
is fixed, are included. Any researcher is able to obtain the same logs when running the 
tests on the different highlighted commits. For this purpose, a Docker image is provided to 
allow the deployment and execution of the tests in a simple way. A conceptual model of the 
dataset is presented in Fig. 11.

Each of the artifacts of the dataset is detailed below:

–	 Source code The dataset provides a git code repository with the source code of the 
three applications used for the creation of the regression bugs.

–	 Document with bugs A document is provided describing the regression bugs, explain-
ing how they work, where the regression bug was introduced and the test that detects 
the bug.

Fig. 11   Conceptual model of e2e dataset



	 Software Quality Journal

1 3

–	 Logs with the correct execution The dataset contains text files with the correct run 
output, including backend logs, frontend logs (logs exposed by the frontend part of the 
application on the browser) and test logs.

–	 Logs with the regression bug execution The dataset provides text files with the regres-
sion bug run output, including backend logs, frontend logs and test logs.

–	 Logs comparison The dataset provides a comparison of the logs obtained for the correct 
run and regression bug run. For this comparison, we used the library diff-math-patch11, 
which makes use of the Myer’s algorithm Myers (1986).

–	 Videos The dataset contains two videos of the test, the first video corresponds to a cor-
rect run of the application (the one without the regression) and the second video cor-
responds to the regression bug run.

–	 Docker image The dataset provides a docker image with the projects and all depend-
encies that are needed in order to run the application, along with a script to build the 
image for any commit in history.

In order to be able to collect all the information related to the application run, we have 
used the ElasTest tool Gortazár et al. (2017), (2018); Bertolino et al. (2018) which allowed 
the authors to execute tests, capture the logs and the videos, and produce the log compari-
sons. ElasTest provided as well the browser logs that would have been difficult to obtain 
without modifying the test cases.

The dataset is public and available on this GitHub repository:
https://​github.​com/​e2e-​tests-​datas​et/​e2e-​tests-​datas​et
The rest of this section provides a detailed explanation of the different artifacts of the 

dataset.

4.4.1 � Source code

Each of the three projects is provided under its own folder in the root folder of the dataset 
repository. The actual source code of the application is provided as a git submodule and is 
stored in a separate Git repository. Along with the source code, the project’s folder contains 
a regression folder that includes a subfolder for each regression in the project.

Regression’s folders contain the detailed documentation of the regression along with the 
related artifacts, as described below.

4.4.2 � Document with bugs

Within each regression folder a README.md document is provided, describing in detail 
the regression. Specifically, this document contains:

–	 The branch where the regression is introduced.
–	 The link to the branch within the Git repository.
–	 The test that reveals the regression.
–	 The link to this test.
–	 The files that changed in the branch.
–	 The links to those files.

11  https://​github.​com/​google/​diff-​match-​patch

https://github.com/e2e-tests-dataset/e2e-tests-dataset
https://github.com/google/diff-match-patch


Software Quality Journal	

1 3

–	 A description of the regression.
–	 A description of the tags that leads to the regression commit Cregression and the commit 

that fixes it Cfix.
–	 A description of how to run the tests on such commits.
–	 A description of artifacts that were generated using ElasTest, like logs, log comparisons 

and videos.

4.4.3 � Logs

Within the dataset, we provide logs of the test (or tests) that detect the regression (JUnit 
logs), the logs of the backend, and the logs of the frontend. We ran the test both in the com-
mit that introduced the bug and the commit where the bug is fixed, and logs generated in 
both cases have been stored and provided as part of this dataset. Therefore, researchers can 
use them without having to run the tests themselves.

All logs of the same type (backend, frontend, JUnit) from each of the applications look 
the same. The logs collected by each of them and the way they are displayed in the text file 
are shown below:

–	 Backend logs: These logs are collected from the backend. They contain the date and 
time, the Java class that launched the message and the message itself. The shape of each 
log line is as follows: DATE : HOUR : CLASS : MESSAGE.

–	 Frontend logs: These logs are collected from the web browser when the test is running. 
They include the date and time, the log level (DEBUG, INFO, SEVERE) 12, the compo-
nent logs and the message itself. The shape of each log line is as follows: DATE:HOUR 
: [LEVEL] COMPONENT MESSAGE.

–	 JUnit logs: These logs are collected from the test execution. They contain the date 
and time, the log level (INFO, ERROR) 13, the component that logs the message and 
the message itself. The shape of each log line is as follows: DATE:HOUR : [LEVEL] 
COMPONENT MESSAGE.

Fig. 12   Log comparison regression-2 of webapp-1

12  DEBUG: debugging messages, INFO: information messages, SEVERE: error messages
13  INFO: information messages, ERROR: error messages



	 Software Quality Journal

1 3

4.4.4 � Log comparison

ElasTest was used to run the tests, and it generated comparisons between the logs in CERROR 
and CBRANCH . These comparisons might be useful to quickly detect where logs diverge, and 
therefore, they can provide a clue as to how behaviors are different in the version with the 
error, and the previous version that worked fine (See Fig. 12).

4.4.5 � Videos

By using the ElasTest tool, we were also able to record the browser window. These videos 
were retrieved and uploaded into the dataset in the corresponding regression folder. These 
videos can be used by researchers to develop new techniques enabling automatic detection 
of UI faults (See Fig. 13). The analysis of UI regressions is a common topic in the litera-
ture Sun et al. (2020) and the industry, where tools like Applitools14 provide artificial intel-
ligence for visual recognition.

4.4.6 � Docker image

For researchers to be able to use the dataset successfully in their research, it is of utterly 
importance the reproducibility of the results provided by a dataset. In this case, a special 

Fig. 13   Video regression-3 of webapp-2 checking if a file can be downloaded

14  https://​appli​tools.​com/

https://applitools.com/


Software Quality Journal	

1 3

attention has been paid to enable this reproducibility, by different means. First, CBRANCH , 
CERROR , and CFIX are properly documented for each regression, and tagged appropriately 
for a quick checkout. Second, all the results were collected and ways of reproducing docu-
mented. Finally, a Docker image with all the necessary software in the versions we used, 
is provided, so that tests can be run and artifacts collected using the same set of tools and 
with the same versions.

4.5 � Applications for a dataset of end‑to‑end bugs in software research

In this section, we will present in which cases the bugs included in our dataset may be use-
ful for researching different problems.

Software Testing Education is one of the main lines of research where our dataset would 
be useful. The different artifacts offered by the dataset (logs, comparative logs or videos), the 
simple way to reproduce the cases where the run of the test passes successfully or not and all 
the documentation about each of the bugs can be used to learn more about this kind of tests 
(e2e) and the bugs they can reveal. Another interesting experiment could be to offer the students 
the specific version of the code where the tests fail, offer them the assets mentioned above and 
check if they are able to detect the nature of the failure in order to fix the application.

This dataset could also be used to compare the different proposals of test case prior-
itization (TCP), a subject studied extensively in the literature  Catal and Mishra (2013); 
Hao et al. (2016); Yoo and Harman (2012). These proposals usually use as subjects sim-
ple programs/applications, prioritizing unit tests, with low running times. For example, 
in FAST  Miranda et  al. (2018), authors use Defects4J dataset, which only contains unit 
test with a running time of less than a second. A recent review of the literature on TCP 
techniques in web services reveals that running time is not considered when prioritizing. 
Other metrics such as memory or CPU are not mentioned either. Therefore, time has been 
ignored in the literature, despite being the main reason why tests are prioritized: due to a 
limited time budget.

To illustrate the limitations of using unit tests in this TCP problem, we will use as an 
example the FAST Miranda et al. (2018) algorithm, a solution to TCP based on test code 
similarity. In this work, the authors use as a test subject, the Defects4J dataset, which 

Fig. 14   Test case prioritization 
example. Notice how a given 
prioritization (top) might not be 
so good when time is taken into 
account (middle). At the bottom, 
a possible prioritization that 
mixes running time and other 
criteria

TC-5
50 s

TC-2 TC-3TC-1 TC-5 TC-4

TC-2
180 s

TC-1
360 s

TC-5
50 s

TC-3
55 s

TC-4
53 s

TCP without considering time

TCP considering time

TCP improved solution considering time

TC-4
53 s

TC-1
360 s

TC-3
55 s

TC-2
180 s



	 Software Quality Journal

1 3

contains only unit tests. Their solutions (the prioritized list of test cases) seek to place the 
most dissimilar tests first in order to try to find the faults in the system by running the least 
number of test cases. Figure 14 shows a prioritization that FAST could perform. Assuming 
Test Case 5 is the one revealing bug, finding this bug would require running first another 
two test cases.

At the top of the figure, we show the usual prioritization where all tests running times 
are considered to be the same: the unit tests of the dataset used have such a low running 
time that this metric is not considered when prioritizing (TCP without considering time). If 
these were e2e tests, their running times might well be very different. This is represented in 
the middle (TCP considering time) by adjusting the width of the box such that it is propor-
tional to the running time for the test case. Notice how TC-2 and TC-1 run for much longer 
than the other three test cases. Could one have taken time into account to improve this solu-
tion? We hypothesize that if researchers used datasets with e2e tests, they could propose 
multi-objective solutions, where both similarity and time are prioritized (TCP improved 
solution considering time). Notice how by adopting a multi-criteria approach, better, com-
promised solutions could be found.

Adapting these proposals to the specificities of e2e tests would extend their applicability 
to industrial projects, where running a test before another could save minutes, if not hours.

Automatic Repair is another subject dealt with in the literature Le Goues et al. (2012); 
Qi et  al. (2015); DeMarco et  al. (2014); Xuan et  al. (2015); Durieux et  al. (2015) that 
requires a collection of documented bugs in order to build different proposals. Researchers 
in this field often use simple program examples. Our dataset provides repairable bugs that 
present a challenge, since the error can reveal in any component of the application, includ-
ing in the frontend in the browser.

Bug localization is another research field that can be explored through the glasses of e2e 
tests using this dataset. It could be used to measure the effect of having more or less infor-
mation in the search of bugs Dao et al. (2017); Zhou et al. (2012).

Bug classification is a possible research area that can be explored with our dataset, using all 
the data sources it offers Neelofar et al. (2012); Pingclasai et al. (2013). In applications with 
different components connected to the network or that make use of a database system, they 
can lead to classifications not previously considered. An example could be the classification 
according to where the bug is located (on the web client side or on the server side) or errors 
due to concurrent database access (when several clients access the database at the same time).

5 � Comparative study of resource consumption of e2e and unit tests

The objective of this comparative study is to assess whether there are differences between 
the state-of-the-art datasets and the dataset proposed in this paper that justifies the crea-
tion of a dataset of e2e tests. This comparison aims to check if the differences between e2e 
tests (provided by our dataset) and unit tests (provided in other datasets) are significant in 
terms of resource usage (CPU and memory) and running time, which are critical when run-
ning these e2e tests in CI environments. Running time might render solutions of algorithms 
from the state of the art from problems like TCP and TSP as bad ones, by selecting or pri-
oritizing first test cases that take long-running times, and therefore delaying other test cases 
that might run faster and reveal faults. Additionally, memory might have an impact as this 
resource is limited in CI environments. Selection or prioritization of tests could take into 
account memory in order to consider parallelizing the test case execution. Finally, CPU, 
although it is not bounded as memory and can be shared, might make test cases to fail due 



Software Quality Journal	

1 3

to timeouts. Again, taking into account CPU metrics could bring more robust solutions for 
selecting or prioritizing e2e test cases. These are only some examples on how these metrics 
could be leveraged in a couple of problems, but in other problems, it might be interesting to 
consider them as well when dealing with these kinds of tests.

In our comparative study, three different datasets will be taken into account: Defects4J 
(D4J), BugsJS (BJS) and the one presented in this work (E2E), choosing a subset of five 
different projects from D4J and BJS. We decided to use test cases from different projects 
to avoid bias due to specificities of one project. Some test cases have been selected for 
each dataset on which these metrics will be measured. The framework for comparison 
is as follows: for the dataset presented in this paper, all the three projects with all their 
test cases are selected. For the Defects4J and BugsJS datasets, fifteen test cases were ran-
domly selected by choosing three random tests from each of the five projects randomly 
selected. Random choice was made to avoid any bias. We hypothesize that unitary tests are 
rather fast to run; therefore, we expect little differences between choosing one or another. 
Therefore, we ensured test cases from different projects were selected, but allowed random 
choice of test case within a project as we do not have any indication of whether a test case 
is more representative than another one.

In order to measure running time, CPU utilization and memory, all selected test cases 
were run on the same machine, an Intel i7 3.2GhZ (with eight cores) and 16Gb RAM, one 
at a time. Each test case is run ten times, upper and lower values are removed, and the 
median of the remaining ones was reported. The experiment was carried out using ElasT-
est, a tool that helps in collecting these metrics automatically for test cases. Through this 
tool, it is possible to record the logs of all test cases. In end-to-end tests, as those of our 
dataset, ElasTest records as well logs and metrics for all the components (web server, data-
base and browsers), and videos for the browser interactions that tests perform. For repli-
cation purposes, a detailed description of the experiment is provided in our reproduction 
package 15, including ElasTest TJob (Test Job) specifications to run all the tests.

The results of this comparative study are presented in Table 3. The column dataset-project 
refers to the dataset to which the test case pertain (using the abbreviations mentioned above) 
and the specific project it belongs to. The column test case refers to the executed test case. 
The total time column reports the median of the total running time (in seconds) for all the 
processes, including downloading dependencies and compiling, that are necessary before 
actually running the tests. Test time reports exclusively the test running time. The AvgCPU 
column contains the average CPU utilization (in percentage, where 100% means a CPU is 
being used 100% of the time of 1 core) across all the test running time. Finally, MaxMem 
reports the average memory consumption (in Mb) for the test running time.

Notice that in the case of the dataset provided in this paper, tests usually involve several 
processes, namely a browser, a server and the testing framework itself. In order to measure 
running time, the time has been taken from when the first process starts until the last one 
ends (this process is in all cases the test framework). Regarding the average CPU utiliza-
tion, the CPU of each process were measured separately, and then the sum of the averages 
of each process is calculated. As for memory utilization, the maximum memory used by 
each process was measured and then aggregated.

According to these results, there are important differences between the datasets. Unit 
tests in Defects4J and BugsJS take all below 1 second to run, whereas in our dataset end-
to-end tests are all two or three orders of magnitude above them, ranging from 26 to 85 

15  https://​github.​com/​e2e-​tests-​datas​et/​compa​rative-​exper​iment

https://github.com/e2e-tests-dataset/comparative-experiment


	 Software Quality Journal

1 3

seconds. When compared with the longest test case from BugJS and Defects4J combined 
(namely, testRegExp from Defects4J), that takes 0.431 seconds, the longest end-to-end 
test case took 85.563 seconds, meaning two orders of magnitude difference. Nevertheless, 
we run a statistical test to formally find if there are signification differences in running 
times between unit and e2e tests. Given that we have unpaired data (both samples differ 
in size), we used the Mann–Whitney U test (also known as Wilcoxon sum rank test). The 

Table 3   Metrics gathered for the selected tests of each dataset

Dataset- Test case Total Test Avg MaxMem
Project Time (s) Time (s) CPU (%) (Mb)

BJS-Bower testGetSource 31.455 0.002 114.466 278.708
BJS-Bower testGetTarget 22.344 0.002 123.1 318.308
BJS-Bower testHasNew 22.62 0.013 120.932 315.122
BJS-Eslint testRules 64.858 0.002 111.813 957.609
BJS-Eslint testExecutedOnText 131.909 0.383 61.909 819.397
BJS-Eslint testIgnorePaths 65.706 0.005 109.034 960.766
BJS-Express testAppRequest 25.736 0.035 110.746 193.06
BJS-Express testAppResponse 16.714 0.042 116.273 212.748
BJS-Express testAppUse 16.479 0.033 120.449 218.338
BJS-Pencilblue testGetIdWhere 39.762 0.003 109.885 510.054
BJS-Pencilblue testGetBodyParsers 48.732 0.002 106.99 456.028
BJS-Pencilblue testGetEmbedUrl 39.608 0.017 108.769 525.854
BJS-Shields testNodeifySync 47.537 0.001 118.16 662.162
BJS-Shields testTextMesurer 57.727 0.064 121.549 574.825
BJS-Shields testLRUCache 46.26 0.000 125.29 660.115
D4J-Chart testGenerateURL 16.404 0.052 265.998 564.032
D4J-Chart testCloning 16.426 0.053 266.166 569.639
D4J-Chart testSerialization 24.633 0.079 235.297 548.636
D4J-Closure testGetFunctionFor... 29.479 0.343 302.734 1062.073
D4J-Closure testMergeOverflow... 20.841 0.046 334.589 1031.902
D4J-Closure testRegExp 21.441 0.431 333.046 1081.007
D4J-Lang test_getEnum 39.055 0.004 137.874 648.226
D4J-Lang testLang328 48.2 0.031 130.656 646.4
D4J-Lang testIsAlpha 39.383 0.005 139.807 644.345
D4J-Math testInterval 59.444 0.034 153.397 951.011
D4J-Math testCluster 50.044 0.141 151.373 928.505
D4J-Math testLogGamma... 49.922 0.111 156.083 917.46
D4J-Time testBasicComps1 31.958 0.014 198.817 546.464
D4J-Time testGetMethods 31.99 0.011 200.068 543.315
D4J-Time testIsContiguous_RP 42.276 0.006 185.523 548.605
E2E-WebApp-1 checkCreateList 184.61 27.727 129.082 2555.792
E2E-WebApp-2 checkShowProfile 152.933 26.458 66.956 2681.416
E2E-WebApp-2 checkCreateCourse 172.236 34.194 132.954 2792.77
E2E-WebApp-2 checkDownload 170.486 36.126 132.866 2823.667
E2E-WebApp-3 checkShowAdminPage 210.01 85.563 142.915 2398.944



Software Quality Journal	

1 3

authors established a significance level of 0.01 for the null hypothesis (both samples do 
not have significant differences). When running the statistical test, the authors obtained a 
p-value of 0.00044, therefore rejecting the null hypothesis ( p < 0.1 ). Given the small sam-
ple of our dataset, the z-score needs to be taken into account. The z-score value obtained is 
−3.51196 < −1.96 thus confirming our hypothesis that unit and e2e tests differ in terms of 
running time. We performed a similar comparison in terms of CPU and memory. For CPU, 
the p-value was 0.68916, and therefore the null hypothesis cannot be rejected. In terms of 
CPU, there are no significant differences between unit and e2e tests. Regarding memory, 
the test reports a p-value of 0.00044, and a z-score of -3.51196, confirming that there are 
significant difference between unit and e2e tests in terms of memory consumption.

Given that authors prepared the test cases and used best practices in doing so, running 
times are due to the intrinsic nature of e2e tests. The test needs to start a browser, load pages, 
interact with the elements in the page, and wait until the results of those interactions appear 
in the page. In the meanwhile, the application, as a result of the interactions, is requesting 
data from the database, and rendering content into HTML documents that are returned to the 

Fig. 15   Comparing test time across all test

Fig. 16   Comparing max memory across all test



	 Software Quality Journal

1 3

browser. If several of these interactions happen as part of the test case, the page loading times 
start to sum up. As a result, running times are much longer than those of unit tests.

Regarding memory utilization, unit tests use around 500Mb, and much of that is 
memory used by the Java Virtual Machine and the testing framework, as they run in 
the same process. However, end-to-end tests in our dataset sometimes require 2.5Gb 
of memory. This is three times more than unit tests, and it is due the multiple process 
involved (browser, database and server), each one consuming a considerable amount of 
memory. This might be a limitation when solving some research problems related to test-
ing, as failures might be caused by just lack of memory, something that hardly happens 
in unit tests.

Finally, CPU usage values are quite similar, as none of them are CPU intensive pro-
cesses. It might be expected that end-to-end tests would require more CPU on average, due 
to the run of several processes. However, many times CPU is idle waiting for network mes-
sages or writing to disk, as in the case of the database. Therefore, in general, the CPU usage 
of the different processes involved is not so high, being quite similar as the CPU usage of 
unit tests.

In order to study the variability among different runs of the same test cases, boxplots of 
a subset of the test cases are shown below. Specifically, first three test cases of each dataset 
were selected for comparing Test Time (Fig. 15), Max. Memory (Fig. 16) and average use 
of CPU (Fig. 17).

Both time and memory metrics have little variability in their values for different test 
runs, except for the end-to-end test checkCreateCourse that has a higher variability. This 
variability might have an impact on continuous integration environments if they are not 
sized properly, as the test might exhaust the memory of the environment causing the test 
to fail. These failures might slow down a team that has to check constantly if a failing 
test corresponds to an actual bug or an infrastructure problem. Compared to memory and 
time, the variability in the values of the CPU usage is slightly higher. Although this is 
not as critical as in the case of memory, because CPU can be shared across multiple pro-
cesses, it might cause some applications to run slowly, and timeouts for network calls 
might start to appear, making the test fail without really revealing any problem.

Fig. 17   Comparing average use of CPU across all test



Software Quality Journal	

1 3

6 � Limitations and threats to validity

Authors see mainly two threats to validity for the dataset described in the paper. One threat 
we face is related to external validity, specifically to the representativeness of the selected 
subjects. These projects arise from the academic field, they are not real applications. We 
tried to implement the functionalities of the applications they pretend to imitate without 
being under the property of any company, making them perfect candidates to investigate. 
Most of the open-source code on the internet is code libraries, which do not require e2e 
testing, so it is difficult to find candidate subjects to extend this dataset. The number of 
regression bugs is limited due to the time it takes to develop them (in the context of other 
changes in the project) and document them properly, but the efforts made to introduce them 
are similar to real industrial projects.

The other threat comes from the limitation in the number of projects and bugs. Authors 
aim is to increase the number of projects and bugs, both manually and automatically, so 
that a dataset of significant size can be provided. Nevertheless, the dataset can be extended 
through contributions from other researchers in order to build a bigger dataset of e2e tests.

Another threat is that in e2e testing, many smaller bugs may be hidden behind a revealed 
(inadvertent) bug. Due to the way the dataset has been built, with carefully defining each 
regression and introducing it into the corresponding feature branch, we do not think this threat 
may happen.

7 � Conclusions and future work

This paper presents a dataset of Java applications, with their respective tests, into which 
regressions have been carefully introduced, in such a way that each regression is detected 
by an e2e test. The dataset includes not only the source code of the applications and the 
tests, but also extensive documentation of each of the bugs, logs for the different pieces 
composing the applications, their comparison and video recordings of the execution of 
the tests. We discussed why research works based on unit tests might not generalize well 
when applied to e2e tests. A comparative study with two popular research datasets con-
taining unit tests has been conducted, showing that e2e tests are quite different from unit 
tests in terms of running time and memory consumption, thus deserving some research 
in their own. The study also revealed that in general CPU usage of e2e tests is not very 
different from unit tests. This work intends to be a starting point to create a dataset that 
allows researchers to work with a kind of tests (e2e) not usually considered in academia.

Acknowledgements  This work has been supported by the Government of Spain through project “BugBirth” 
(RTI2018-101963-B-100), the Regional Government of Madrid (CM) through project Cloud4BigData 
(S2013/ICE-2894) cofunded by FSE & FEDER and the European Commission through European Project 
H2020 822717: MICADO.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 



	 Software Quality Journal

1 3

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Bertolino, A., Calabró, A., De Angelis, G., Gallego, M., García, B., Gortázar, F. (2018). When the test-
ing gets tough, the tough get elastest. In: Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings ACM, 17–20.

Biswas, S., Islam, M.J., Huang, Y., Rajan, H. (2019). Boa meets python: a boa dataset of data science 
software in python language. In: 2019 IEEE/ACM 16th International Conference on Mining Soft-
ware Repositories (MSR), 577–581.

Catal, C., & Mishra, D. (2013). Test case prioritization: a systematic mapping study. Software Quality Journal, 
21(3), 445–478.

Dallmeier, V., Zimmermann, T. (2007). Extraction of bug localization benchmarks from history. In: 
Proceedings of the Twenty-second IEEE/ACM International Conference on Automated Software 
Engineering, ASE ’07. ACM, New York, NY, USA 433–436. http://​doi.​acm.​org/​10.​1145/​13216​31.​
13217​02

Dao, T., Zhang, L., Meng, N. (2017). How does execution information help with information-retrieval 
based bug localization? In: 2017 IEEE/ACM 25th International Conference on Program Compre-
hension (ICPC), 241–250. https://​doi.​org/​10.​1109/​ICPC.​2017.​29

DeMarco, F., Xuan, J., Le Berre, D., Monperrus, M. (2014). Automatic repair of buggy if conditions and 
missing preconditions with smt. In: Proceedings of the 6th international workshop on constraints in 
software testing, verification, and analysis, 30–39.

Do, H., Elbaum, S., Rothermel, G. (2005). Supporting controlled experimentation with testing tech-
niques: An infrastructure and its potential impact. Empirical Software Engineering, 10(4), 405–435.

Durieux, T., Martinez, M., Monperrus, M., Sommerard, R., Xuan, J. (2015). Automatic repair of real 
bugs: An experience report on the defects4j dataset.

Gortázar, F., Gallego, M., Donato, M., Pages, E., Edmonds, A., Tuñón, G., Bertolino, A., De Angelis, G., 
Cervantes, A., Bohnert, T.M., et al. (2018). The elastest platform: Supporting automation of end-to-
end testing of large complex applications.

Gortazár, F., Gallego, M., García, B., Carella, G.A., Pauls, M., Gheorghe-Pop, I.D. (2017). Elastestan open 
source project for testing distributed applications with failure injection. In: 2017 IEEE Conference on 
Network Function Virtualization and Software Defined Networks (NFV-SDN), 1–2.

Gyimesi, P., Vancsics, B., Stocco, A., Mazinanian, D., Árpád Beszédes, Ferenc, R., Mesbah, A. (2019). 
BugsJS: A benchmark of javascript bugs. In: Proceedings of 12th IEEE International Conference on 
Software Testing, Verification and Validation (ICST).

Hao, D., Zhang, L., & Mei, H. (2016). Test-case prioritization: achievements and challenges. Frontiers of 
Computer Science, 10(5), 769–777.

Hutchins, M., Foster, H., Goradia, T., Ostrand, T. (1994). Experiments on the effectiveness of dataflow-and 
control-flow-based test adequacy criteria. In: Proceedings of 16th International conference on Software 
engineering, 191–200.

Just, R., Jalali, D., Ernst, M.D. (2014). Defects4j: A database of existing faults to enable controlled testing studies 
for java programs. In: Proceedings of the 2014 International Symposium on Software Testing and Analysis, 
ISSTA 2014, pp. 437–440. ACM, New York, NY, USA. http://​doi.​acm.​org/​10.​1145/​26103​84.​26280​55

Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W. (2012). Genprog: A generic method for automatic 
software repair. IEEE Transactions on Software Engineering, 38(1), 54–72. https://​doi.​org/​10.​1109/​
TSE.​2011.​104

Liang, J., Elbaum, S., Rothermel, G. (2018) Redefining prioritization: Continuous prioritization for continuous 
integration. ICSE ’18. Association for Computing Machinery, New York, NY, USA, 688-698. https://​doi.​
org/​10.​1145/​31801​55.​31802​13

Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., Micco, J. (2017). Taming google-
scale continuous testing. In: Proceedings of the 39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track, ICSE-SEIP ’17, IEEE Press, Piscataway, NJ, USA, 233–
242. https://​doi.​org/​10.​1109/​ICSE-​SEIP.​2017.​16

Miranda, B., Cruciani, E., Verdecchia, R., Bertolino, A. (2018). Fast approaches to scalable similarity-based 
test case prioritization. In: 2018 IEEE/ACM 40th International Conference on Software Engineering 
(ICSE), 222–232. https://​doi.​org/​10.​1145/​31801​55.​31802​10

http://creativecommons.org/licenses/by/4.0/
http://doi.acm.org/10.1145/1321631.1321702
http://doi.acm.org/10.1145/1321631.1321702
https://doi.org/10.1109/ICPC.2017.29
http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3180155.3180213
https://doi.org/10.1145/3180155.3180213
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1145/3180155.3180210


Software Quality Journal	

1 3

Myers, E. W. (1986). Ano (nd) difference algorithm and its variations. Algorithmica, 1(1–4), 251–266.
Neelofar, Javed, M.Y., Mohsin, H. (2012). An automated approach for software bug classification. In: 2012 Sixth 

International Conference on Complex, Intelligent, and Software Intensive Systems, 414–419. https://​doi.​org/​
10.​1109/​CISIS.​2012.​132

Nir, D., Tyszberowicz, S., Yehudai, A. (2007). Locating regression bugs. In: Haifa Verification 
Conference. Springer, 218–234. 

Pingclasai, N., Hata, H., Matsumoto, K. (2013). Classifying bug reports to bugs and other requests using 
topic modeling. In: 2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2, 13–18. 
https://​doi.​org/​10.​1109/​APSEC.​2013.​105

Qi, Z., Long, F., Achour, S., Rinard, M. (2015). An analysis of patch plausibility and correctness for gen-
erate-and-validate patch generation systems. In: Proceedings of the 2015 International Symposium on 
Software Testing and Analysis, 24–36.

Saha, R., Lyu, Y., Lam, W., Yoshida, H., Prasad, M. (2018). Bugs. jar: a large-scale, diverse dataset of real-world java 
bugs. In: 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR), 10–13.

Sarro, F. (2018). Predictive analytics for software testing. In: 2018 IEEE/ACM 11th International Workshop 
on Search-Based Software Testing (SBST), 1.

Soto-Sánchez, O., Maes-Bermejo, M., Gallego, M., Gortázar, F. (2020). A dataset of regressions in web 
applications detected by end to end tests. In: R.d.S.A. Shepperd M. Brito e Abreu F., P.C. R. (eds.) 
Quality of Information and Communications Technology (QUATIC 2020). Springer, 1266.

Spacco, J., Strecker, J., Hovemeyer, D., Pugh, W. (2005). Software repository mining with marmoset: An automated 
programming project snapshot and testing system. In: ACM SIGSOFT Software Engineering Notes, 30, 1–5.

Sun, X., Li, T., Xu, J. (2020). Ui components recognition system based on image understanding. In: 2020 
IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-
C), 65–71. https://​doi.​org/​10.​1109/​QRS-​C51114.​2020.​00022

Widyasari, R., Sim, S.Q., Lok, C., Qi, H., Phan, J., Tay, Q., Tan, C., Wee, F., Tan, J.E., Yieh, Y., Goh, B., 
Thung, F., Kang, H.J., Hoang, T., Lo, D., Ouh, E.L. (2020). Bugsinpy: A database of existing bugs in 
python programs to enable controlled testing and debugging studies. In: Proceedings of the 28th ACM 
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of 
Software Engineering, ESEC/FSE 2020, p. 1556-1560. Association for Computing Machinery, New 
York, NY, USA. https://​doi.​org/​10.​1145/​33680​89.​34179​43

Xuan, J., Matias, M., DeMarco, F., Sebastian, L., Thomas, D., Le Berre, D., Monperrus, M. (2015). Nopol: 
Automatic repair of conditional statement bugs in large-scale object-oriented programs. IEEE Transac-
tions on Software Engineering.

Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and prioritization: a survey. Soft-
ware Testing, Verification and Reliability, 22(2), 67–120.

Zhou, J., Zhang, H., Lo, D. (2012). Where should the bugs be fixed? more accurate information retrieval-
based bug localization based on bug reports. In: 2012 34th International Conference on Software Engi-
neering (ICSE), 14–24. https://​doi.​org/​10.​1109/​ICSE.​2012.​62272​10

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Óscar Soto‑Sánchez  is a predoctoral researcher in the Computing Science 
Department at University Rey Juan Carlos, Móstoles, Madrid, Spain.

https://doi.org/10.1109/CISIS.2012.132
https://doi.org/10.1109/CISIS.2012.132
https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1109/QRS-C51114.2020.00022
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1109/ICSE.2012.6227210


	 Software Quality Journal

1 3

Michel Maes‑Bermejo  is a predoctoral researcher in the Computing 
Science Department at University Rey Juan Carlos, Móstoles, Madrid, 
Spain.

Micael Gallego Carillo  is a full professor in the Computing Science 
Department at University Rey Juan Carlos, Móstoles, Madrid, Spain.is 
a full professor in the Computing Science Department at University 
Rey Juan Carlos, Móstoles, Madrid, Spain.

Francisco Gortázar Bellas  is a full professor in the Computing Science 
Department at University Rey Juan Carlos, Móstoles, Madrid, Spain.


	A dataset of regressions in web applications detected by end-to-end tests
	Abstract
	1 Introduction
	2 Related work
	3 Generation of the regression bugs
	3.1 Methodology
	3.2 Properties

	4 Dataset of regression bugs
	4.1 Subject applications
	4.1.1 Webapp-1: social network web application
	4.1.2 Webapp-2: online courses web application
	4.1.3 Webapp-3: library web application

	4.2 Anatomy of introduced regression bugs
	4.3 Running end-to-end tests
	4.3.1 Running tests manually
	4.3.2 Running end-to-end tests using the Docker image provided in the dataset

	4.4 Dataset contents
	4.4.1 Source code
	4.4.2 Document with bugs
	4.4.3 Logs
	4.4.4 Log comparison
	4.4.5 Videos
	4.4.6 Docker image

	4.5 Applications for a dataset of end-to-end bugs in software research

	5 Comparative study of resource consumption of e2e and unit tests
	6 Limitations and threats to validity
	7 Conclusions and future work
	Acknowledgements 
	References


