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Abstract: The European Union Green Deal aims at curbing planet-warming greenhouse gas 

emissions and introducing clean energy production. But to achieve energy efficiency, the 

opportunity cost of different energies must be assessed. In this article, we analyse two different 

systems for the treatment of wastewater that, at the same time, produce energy for its own 

operation. On the one hand, high-rate algal ponds system (HRAP) is considered; on the other hand, 

we study a conventional activated sludge system which uses photovoltaic power (AS+PV). This 

paper offers a viability analysis of both systems based on the capacity to satisfy their energetic 

consumption. In order to assess this viability, the probability of not achieving the energy 

consumption threshold at least one day is studied. The results point that the AS+PV system self-

sufficiency is achieved using much lesser surfaces than those of HRAP system (for the former, less 

than 6.500 m2, for the latter 40.000 m2). However, the important AS capital cost makes still the HRAP 

system more economic, although storage provides a great advantage for using the AS+PV in 

locations where we have a lot of irradiance. This viability analysis, along with the opportunity cost 

analysis, will be used to assess these two projects devoted to the treatment of wastewater. 

Keywords: EU Green Deal; Horizon 2030; clean energy production; High-rate algal ponds (HRAP); 

activated sludge system (AS); photovoltaic power (PV) 

 

1. Introduction 

In the last decade, the international institutions have a strong commitment with the climate 

neutral economy, as goal for Horizon 2030 [1, 2]. Into this commitment, from 2019, the European 

Union (EU) pass the EU Green Deal, to promote the clean energy production [3, 4]. Growing energy 

demand and water consumption have increased concerns about efficient wastewater treatment. For 

this basic utility, at least two possible systems may be used. One is the activated sludge process, 

a conventional biological process used for reduction of organic matter present in the wastewater. It 

involves the oxidation of carbonaceous biological matter for reduction of the organic pollutants. The 

process takes advantage of aerobic micro-organisms that can digest organic matter in wastewater and 

is then wasted as sludge. Thereby, they remove the non-active microbes from the system and provide 

an effective reduction of pollutant parameters. This system has been installed for various 

municipalities and industries. Another system of wastewater treatment is the high rate algal ponds 

system (HRAP) that have great potential for biofuel production where climate is favourable, since 

the costs of algal cultivation and harvest for biofuel production are covered by the wastewater 

treatment function. It can be used to provide community-level energy supply [5]. Microalgae are 

promising alternative renewable sustainable energy sources as they produce large amounts of 

biomass which can be used for production of “third-generation biofuels” [6]. 
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HRAP system shows important advantages as compared to the AS, among which we can cite the 

biomass production [7], the atmospheric CO2 fixation [8, 9] and a lesser energy consumption [10, 11]. 

Indeed, the wastewater tertiary and quandary treatments take advantage from the microalgae culture 

as, while generating biomass, they take inorganic nitrogen and phosphorus for their growth [12, 13]. 

Moreover, microalgae avoid secondary pollution as they remove heavy metals, as well as certain toxic 

organic compounds.  

 

Regarding the economic aspect, HRAP is considered a low-cost wastewater treatment system as 

compared to conventional electromechanical systems with construction costs typically 70% less than 

AS [14]. Operation cost is also less in HRAP as it requires substantially less energy than activated 

sludge systems [15, 16, 17]. This also cuts down greenhouse gas emissions [18]. Even in HRAPs the 

electricity requirement is only 0.04–0.15 kWh kg-1 O2 produced [19]. The integrated wastewater 

treatment amortized capital and operation costs in HRAP are only 25–33% of those of secondary-

level activated sludge treatment [20, 21]. However, if we intend to cover the same wastewater needs, 

that is, to serve the same population equivalent, as we shall see, the algal wastewater systems have a 

clear disadvantage as compared to activated sludge systems: HRAP takes up a much larger surface 

than the activated sludge systems [18]. The availability of large surface areas, as well as the cost of 

these wide terrains, are the main inconvenient of these algae systems. Thus, they are best fitted for 

rural, suburban and remote communities as they require minimum power and little on-site 

management [23, 18, 14]. 

 

On the other hand, the algal growth is affected by several aspects, such as the interactions among 

physical factors, the nutrient availability, biotic factors, the temperature and the light intensity [12, 

24]. Thus, under outdoor conditions, the meteorology is a decisive element in the algal productivity. 

Indeed, excessively high or low values of temperature or light intensity can lead to the algal 

productivity inhibition. Thus, in the case of outdoor conditions, it is important to analyze the viability 

of algal wastewater plant projects according to these two variables, which can strongly vary along 

the year. 

 

The viability of wastewater treatment plant projects can be assessed by the exceedance probabilities, 

in the same way as the viability of solar plant projects [25]. Indeed, every project output is exceeded 

with certain probability (exceedance probability). Then, as this probability increases, the output 

decreases. That is to say, every exceedance probability is associated with the complementary 

percentile: for example, P90 (exceedance probability of 90%) is associated with percentile 10; P99 

(exceedance probability of 99%) is associated with percentile 1, and so on. According to [26], in the 

assessment of the viability of solar plant projects three exceedance probabilities are recommended 

(P950, P90 and P99). These probabilities represent bad cases (small percentiles) and thus, they allow 

us to estimate damaging outcomes in the project. However, for now we do not have a threshold 

which allows us to qualify a project as viable, or not viable, and this viability depends on each case 

considered. Indeed, the storage capacity, as well as the energy demand, plays a main role in this 

qualification. This handicap is even more evident if we intend to compare several systems, whose 

power needs are very different. Thus, we have to focus the study on their capacity of storage and 

energy demand.  
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Actually, the discontinuity in the productivity can be largely diminished by storage. When we use 

the photovoltaic technology, we may consider solar energy as a random, uncertain, but we can make 

it certain by compensating energy lacks below a certain threshold with energy surpluses. Then, 

entropy as a measure of uncertainty is reduced. Self-sufficiency may be attained taking the 

conventional threshold as the demand, and guaranteeing the supply that meets this demand. In 

economic theory, this is the flow-fund model, the stock being the storage hoarded and the flow being 

the inflows of energy that pass by. We move from a linear economy to a circular economy or even a 

'Spiral Economy' [27, 28]. 

 

Besides, we need to have more environment-concerned storage design and then, natural biomass 

derived carbons are excellent alternatives for substituting conventional carbon materials toward a 

wide range of applications [29, 30]. Some biomass is even recycled from the agricultural or daily 

wastes [31]. In particular, the HRAP system can achieve energetic self-sufficiency from its own 

biomass; the activated sludge system needs an external system that provides energy, for example the 

photovoltaic technology. The different needs of both space and energy consumption between the two 

wastewater treatment systems lead us to assess their viability considering surface needed and 

consumption. We try to achieve the self-sufficiency capacity, in the sense that the energy 

consumption associated to the system is covered by the energy supplied by the system itself. 

 

According to the previous considerations, the main aim of this work is to compare the viability of 

wastewater treatment projects under outdoor conditions by HRAP and by activated sludge 

conventional systems, reinforcing this last system with a PV facility. This viability is based on the 

capacity of project self-sufficiency, and it is assessed from the probability of meeting certain 

consumption thresholds, considering two cases: absence of storage and full capacity of storage. 

Obviously, self-sufficiency does not always imply cheaper energy prices, but we must make the most 

of energy needs for wastewater treatment projects. 

 

The work is organized as follows: first, the models performed to estimate the algal productivity and 

the PV power have been described, as well as the stations where the study takes place. Second, the 

methodology for achieving the aims of the work is presented. Next, the results are shown and 

discussed. In this sense, we develop a large analysis, according to the PV surface, where systems with 

and without storage are considered and compared. Finally, an opportunity cost analysis is included. 

. 

2. Materials and Methods  

The two wastewater systems compared in this work (HRAP and AS+PV) are designed to serve a 

population equivalent to 10,000. The HRAP system defined in this work only consumes 0.06 kwh/m3, 

while the activated sludge conventional system defined in [28] consumes 0.89 kwh/m3. We intend to 

analyse the viability of covering these consumptions in a self-sufficient way: the necessary energy for 

the activated sludge system is provided by a PV system, while the energy for the HRAP system will 

come from algal productivity. In this sense, two aspects must be taken into account: on the one hand, 

the surfaces which must be covered by algal ponds and by PV panels in order to satisfy the respective 

demands; on the other hand, the economic aspect of both systems. 
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1.1. Algal and PV productivity 

 

The algal productivity depends on two meteorological variables: photo-synthetically active radiation 

(PAR) and temperature. In the case of the PV system, its productivity depends on the Global 

Horizontal Irradiance (GHI). We use two scenarios described in [28] to perform two productivity 

models, one for the HRAP system and the other for the activated sludge system. 

 

1.1.1. Algal productivity model  

 

A revision of models developed to estimate the algal productivity can be seen in [29]. In this work, 

we have used the model performed in [30], according to which the productivity 𝑃𝑏𝑖𝑜_𝑒𝑠𝑡  can be 

estimated from the difference between the specific growth rate, 𝐺, and the specific respiration rate, 

𝑅. In turn, these rates can be assessed as follows [31]. 

 

𝐺 =
1

𝑙𝑝
∫ 𝜇𝑚 𝑥

𝜎 𝐼 𝑒−𝜎𝑥𝑧

𝐾𝐼+𝜎 𝐼 𝑒−𝜎𝑥𝑧 𝑑𝑧
𝑙𝑝

0
    (1) 

 

𝑅 = 𝑟 𝑥     (2) 

 

The parameters of these expressions are shown in Table I. 

 

Table 1. Productivity model parameters 

Parameter Units Description  

𝑧 M local depth  

𝜎 m2 kg-1 extinction coefficient  

𝜇𝑚 s-1 specific growth rate  

𝐼 W m-2 

 

Photo-synthetically active 

radiation at the pond top 

surface 

 

 

𝐾𝐼  

 

W kg-1 

 

half-saturation parameter 
 

𝑙𝑝 M pond depth  

𝑇𝑝 ºC pond temperature  

𝑥 kg/m3 biomass concentration  
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𝑟 s-1 respiration coefficient  

 

Where: 

𝜇𝑚 = 𝜇𝑚,𝑚𝑎𝑥∅𝑇  𝐾𝐼 = 𝐾𝐼,𝑚𝑎𝑥∅𝑇  𝑟 = 
𝑟,𝑚𝑎𝑥

∅𝑇    (3) 

 

being ∅𝑇 the temperature-dependent function: 

 

∅𝑇 = 0 if 𝑇𝑝 ≤ 𝑇𝑚𝑖𝑛 or if 𝑇𝑝 ≥ 𝑇𝑚𝑎𝑥 

(4) 

∅𝑇 =
( 𝑇𝑝−𝑇𝑚𝑎𝑥)( 𝑇𝑝−𝑇𝑚𝑖𝑛)

2

( 𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)[( 𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)( 𝑇𝑝−𝑇𝑜𝑝𝑡)−( 𝑇𝑜𝑝𝑡−𝑇𝑚𝑎𝑥)( 𝑇𝑜𝑝𝑡+𝑇𝑚𝑖𝑛−2𝑇𝑝)]
 otherwise 

 

𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the minimum and maximum temperatures, respectively. Thus, they show the minor 

and major thresholds for the specific growth rate; 𝑇𝑜𝑝𝑡 is the optimum temperature for this rate. 

 

Experimental values for these parameters have been taken from [32] (Table II) 

 

Table II. Experimental parameters [31]  

𝑥 

(kg/m3) 

𝑙𝑝 

(m) 

𝜎 

(m2 kg-1) 

𝑇𝑚𝑖𝑛  

(ºC) 

𝑇𝑚𝑎𝑥  

(ºC) 

𝑇𝑜𝑝𝑡 

(ºC) 

𝜇𝑚,𝑚𝑎𝑥  

(s-1) 

𝐾𝐼,𝑚𝑎𝑥  

(W kg-1) 

𝑟,𝑚𝑎𝑥  

(s-1) 

0.4 0.3 120 -10 42.1 35.8 6.48 10-5 7192.92 2.01 10-6 

 

Besides, in this work we have considered the HRAP system described in [28]. The scenario 1 of this 

work considers a system with a total area surface of 40,000 m2 and a flow rate of 1,950 m3d-1, whose 

total energy consumption is 0.06 kwh/m3.      

 

1.1.2. PV productivity model  

 

PV power can be estimated from GHI and temperature using the following expression [33, 34]: 

  

𝑃𝑉𝑒𝑠𝑡 = 𝐺𝐻𝐼 𝑃𝑉𝑖𝑛𝑠  𝑃𝐶𝑆𝑙𝑜𝑠𝑠  𝑆𝑦𝑠𝑡𝑒𝑚𝑙𝑜𝑠𝑠 

1

𝐺𝑠  
𝑇𝑙𝑜𝑠𝑠 

 

where 𝑃𝑉𝑒𝑠𝑡 is the power generation estimation, 𝑃𝑉𝑖𝑛𝑠 is the PV installation capacity, 𝑃𝐶𝑆𝑙𝑜𝑠𝑠  are 

the power losses due to the power conditioning system, 𝑆𝑦𝑠𝑡𝑒𝑚𝑙𝑜𝑠𝑠  are the losses associated to PV 

system, 𝐺𝑠 is the GHI at standard test conditions and 𝑇𝑙𝑜𝑠𝑠 is a reduction parameter related to the 

PV module temperature. This last parameter can be estimated as follows: 

 

𝑇𝑙𝑜𝑠𝑠 = 1 +
𝛼𝑝𝑚𝑎𝑥(𝑇𝑎𝑖𝑟 + ∆𝑇 − 25)

100
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where 𝛼𝑝𝑚𝑎𝑥  is the temperature dependency of PV power generation, 𝑇𝑎𝑖𝑟  is the atmospheric 

temperature and ∆𝑇 is the difference in PV module temperature. 

 

The values taken from [34] for the different parameters are shown in Table III. 

 

Table III. Estimation of parameters for PV 

productivity model 

parameter Units  Estimation 

𝑃𝐶𝑆𝑙𝑜𝑠𝑠                                      

0.95 

𝑆𝑦𝑠𝑡𝑒𝑚𝑙𝑜𝑠𝑠                                

0.95 

 𝐺𝑠                  kw/m2                  

1.0 

𝛼𝑝𝑚𝑎𝑥               %                     -

0.485 

∆𝑇                    ºC                    

20.0 

 

The model above described has been performed again from a scenario described in [28] (scenario 3 

of this work, corresponding to an activated sludge system). The flow rate is the same than in the 

HRAP system (1,950 m3d-1), but the total surface area is much lesser than in the algal pond system 

(only 900 m2 vs. 40,000 m2). The total energy consumption in this system is 0.89 kwh/m3 (much higher 

than that of the first system). 

 

1.2. Data 

 

GHI, PAR and temperature collected from two measurement stations are used for the work. The 

coordinates and type of climate corresponding to both stations are shown in Table IV. 

 

Table IV. Measurement stations 

Station             Coordinates         Climate 

Tabernas  37.09ºN   2.35ºW       Arid Mediterranean 

Lugo                      42.99ºN   7.54ºW              Oceanic 

 

 

The station located in Tabernas (Spain) has an arid Mediterranean climate (BShs in Köppen 

classification) with cool winters and very warm summers. Temperatures range from -5 ° C to 45 ° C. 

Rainfall is very low, accumulating an average of only 243 mm.  

 

On the other hand, Lugo is a city in north-western Spain. It has a humid oceanic climate with dry 

summers, Cfb in the Köppen climate classification. Due to its remoteness from the Atlantic, its annual 

precipitation of 1,084 millimetres can be considered low compared to the near areas.  
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1.3. Methodology 

 

Below we list the steps followed to carry out this work: 

 

a) Algal and PV productivities are estimated from PAR and temperature data in the study 

stations. These estimations are carried out for the two systems studied (HRAP and AS + 

PV), considering the results both with storage and without storage. In turn, the PV 

facility is performed for different surfaces. 

 

b) Probabilities of not achieving the energy consumption threshold (0.89 kwh/m3) one day 

in the activated sludge system, according to the surface occupied by PV panels, are 

determined for each station and for different PV surfaces. 

 

c) Probabilities of not achieving the corresponding HRAP energy consumption threshold 

(0.06 kwh/m3) are also determined for each station.  

 

d) A PV facility viability assessment by exceedance probabilities is also included. For it, P50, 

P90 and P99 are estimated according to the PV surfaces for both cases, with and without 

storage. 

 

e)  Finally, an opportunity cost analysis is included. For this analysis, we have compared 

the costs associated to both studied systems (HRAP and AS + PV). For HRAP case, two 

costs are considered: the capital cost and the terrain cost. For AS + PV, apart from the 

capital cost of AS, the capital and operation cost of PV, the terrain cost and, in case of 

storage, the economic storage pack cost, are considered. Other possible opportunity costs 

are pointed out. 

  

3. Results and discussion 

1.1. Surface analysis 

 

1.1.1. No storage 

 

The intra-annual variability of the HRAP system productivity, along with that of the meteorological 

variables (PAR and temperature) affecting this productivity are shown in Figure 1. This productivity 

has been estimated from the model and scenario previously described (40,000 m2 of surface and flow 

rate of 1,950 m3 d1). 
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Figure 1. Temporal evolution of: PAR (a) and b)); Temperature (c) and d)); Power from biomass 

estimated along with HRAP energy consumption (0.06 kwh/m3) (e) and f)).  

 

The seasonal variability of PAR and temperature can also be observed in the power curves. Regarding 

PAR, Lugo station shows more fluctuations than Tabernas station, due to the oceanic climate of the 

former. In this climate, precisely, the seasonal variation is less pronounced. Thus, as mentioned, the 

power curves under outdoor conditions are clearly affected by these climatological aspects. 

 

On the other hand, the difference between the surfaces occupied by both systems (HRAP and 

activated sludge system) is very large (40,000 m2 vs. 900 m2). The energy consumption of the HRAP 

and of the activated sludge system is also very different (0.06 kwh/m3 vs. 0.89 kwh/m3), so the power 

need is much lower in the case of the algal system. In fact, the power derived from HRAP covers this 

consumption most of the year. However, covering the 900 m2 of the activated sludge system with PV 

panels of 2 m2 with an installation capacity of 400 w (450 solar panels), the PV power never reaches 

this threshold.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0239.v1

https://doi.org/10.20944/preprints202103.0239.v1


 

Thus, in order to achieve self-sufficiency, we need to increase the PV power and thus, the surface 

occupied by panels. In Figure 2, we show the PV power obtained for different areas. 

 

 

 

 

Figure 2. PV power for different areas; the energy consumption threshold (0.89 kwh/m3) is included 

 

 

As surface occupied by the PV facility increases, the number of days in which the energy 

consumption threshold is overcome also increases. The same as the case of power derived from 

biomass, the seasonal evolution, associated to climate characteristic, is evident. This evolution is more 

pronounced in Tabernas and has more daily fluctuations in Lugo. 

 

In order to compare the PV powers (Figure 2) with the energy consumption threshold (0.89 kwh/m3), 

we estimate the probability of not achieving that threshold at least one day, according to the surface 
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occupied by PV panels (Figure 3). This probability can serve to assess the viability of the project when 

a PV facility supplies the energy needed by the activated sludge system. As observed, the decreasing 

slope is very pronounced for smaller surfaces, but later this slope strongly diminishes. This change 

in the slope is more abrupt in the case of Tabernas. In Figure 3, we have included the probabilities of 

not achieving the corresponding HRAP energy consumption threshold (0.06 kwh/m3). These 

probabilities are 0.0546 for Tabernas case and 0.2077 for Lugo. In this situation, the behaviour of both 

systems could be considered similar, as the probabilities of not achieving the corresponding 

thresholds, according to the system considered (HRAP or activated sludge system with PV power) 

are the same. These intersection points are obtained for 6,030 m2 in Tabernas and for 6,552 m2 in Lugo. 

Thus, these surfaces of PV panels are needed to obtain the same probability than in the 40,000 m2 

HRAP system.  

 

 

Figure 3. Probability of not meeting the energy consumption threshold at least one day 

 

1.1.2. With storage 

 

The former study does not consider the possibility of storing the energy surplus during those days 

in which the corresponding energy consumption threshold is exceeded. However, this possibility 

must be taken into account, as it is very difficult to reach the consumption threshold every day. Thus, 

in this section we study the self-sufficiency in both analysed systems assuming that the possible 

energy surplus of one day is available for subsequent days. 

 

1.1.2.1. HRAP system 

 

In the case of the HRAP system, the estimated power from biomass shown in Figure 1 (e) and f)) can 

be modified by storing the energy that overcomes 0.06 kwh/m3 and by supplying this energy those 

days in which the power is lower than this threshold. By this storage system, the power intra-annual 

evolution no longer shows values below 0.06 kwh/m3 (Figure 4). 
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Figure 4. Temporal evolution of power from biomass using storage along with energy consumption 

(0.06 kwh/m3) 

 

1.1.2.2. Activated sludge system with PV panels 

 

Similar to the variability without storage represented in Figure 2, the PV power intra-annual 

variability in case of storage for different PV surfaces is shown in Figure 5. The graphs show that, as 

surface increases, the possibility that the threshold is achieved all days also increases. Indeed, for the 

surfaces represented, this achievement is accomplished from 4,000 m2, in the case of Tabernas, and 

from 6,000 m2, in the case of Lugo. The daily fluctuations are again much more pronounced in Lugo 

than in Tabernas. 
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Figure 5. PV power for different areas considering storage; the energy consumption threshold is 

included (0.89 kwh/m3) 

 

 

Similarly to the case without storage (Figure 3), we can include storage and obtain the probability of 

not achieving the corresponding threshold at least one day according to the surface occupied by PV 

panels (Figure 6). This probability can serve again to assess the viability of the activated sludge 

system based on PV facility. In this case, the null probability is quickly reached (for 2,500 m2 in 

Tabernas and for 3,500 m2 in Lugo), unlike the case without storage where this null probability is 

never reached. That is, the storage allows us to ensure that the demand is always satisfied by using 

much less PV surface, making the project more viable. On the other hand, the probabilities of not 

achieving the corresponding threshold for one day in the HRAP system, when storage is considered, 

are 0 in both stations, as all values overcome this threshold (0.06 kwh/m3) (Figure 4). Thus, 2,500 m2 

in Tabernas and 3,500 m2 in Lugo are, precisely, the surfaces needed to reach the same probability 

than in case of 40,000 m2 HRAP system with storage. Therefore, thanks to storage, the surface needed 

has been greatly reduced in both locations. 

 

 

 

Figure 6. Probability of not meeting the energy consumption threshold considering storage 

 

1.1.3. Storage vs. No storage 

 

The project viability based on PV power has also been assessed by three recommended exceedance 

probabilities (P50, P90 and P99). In Figure 7, exceedance probabilities vs. the PV surface have been 

represented for both cases, with and without storage. Since the PV power increases with the surface 

used, the exceedance probabilities also increase as this surface increases.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0239.v1

https://doi.org/10.20944/preprints202103.0239.v1


 

 

Figure 7. Exceedance probabilities according to the PV surface 

 

As observed, the slopes are higher in Tabernas than in Lugo, as the power achieved by PV is clearly 

higher in Tabernas, with Mediterranean climate, than in Lugo, and this is more evident as the PV 

surface increases. Storage brings probabilities higher or equal than those obtained in absence of 

storage, as power is increased by storage. Besides, storage affects small PV power, so the lower 

percentiles increase with storage. Thus, there is a greater difference between both cases (storage and 

absence of storage) for higher exceedance probabilities, associated to lower percentiles. That is, the 

differences between P99s are higher than the differences between P50s.  

 

These probabilities provide information about the system, but they do not allow us to qualify a project 

as viable or not viable, unlike the study based on the project self-sufficiency. To achieve self-

sufficiency, the estimate of the size of a power facility is of great interest. Indeed, we have above 

estimated the PV facility surface required to satisfy the need of energy consumption in the activated 

sludge system (Figure 3 in absence of storage and Figure 6 with storage). According to the results, 

storage leads to a large diminishing in this surface: in absence of storage, the probability of not 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 March 2021                   doi:10.20944/preprints202103.0239.v1

https://doi.org/10.20944/preprints202103.0239.v1


 

achieving the energy consumption threshold is always higher than zero in both stations, while this 

probability is zero for 2,500 m2 at Tabernas and for 3,500 m2 at Lugo, when storage is considered.  

 

1.2. Opportunity cost analysis 

 

In the previous sections, we have assessed space needs for self-sufficiency of projects. However, the 

EU Green Deal needs also to assess the opportunity cost of different energy sources, in special in 

terms of the availability and possible alternative uses of land or capital. Some green energy sources 

have great inconveniencies in terms of the needs of land and the loss of its alternative uses. Besides, 

the wastewater treatment systems proposed in the work need specific orographic conditions, such as 

non-steep slopes and they must not be installed in protected areas due to environmental reasons. 

Finally, other terrain uses must be considered, such as the profitability of a possible agriculture or 

livestock exploitation, which also implies benefits for farmers drawn from the diversification of 

income. In this sense, we need to take into account that the optimal social and private solutions may 

differ. 

 

The EU Green Deal aims at reaching the target of climate neutrality. Then, we need to decarbonise 

the energy system, prioritise energy efficiency and develop a power sector based largely on 

renewable resources. But this objective will only be achieved by an opportunity cost analysis between 

alternative renewable energies. For instance, the extensive need for terrain in the HRAP projects 

limits their viability and conveniency as compared to AS+PV – the need for land is 40.000 m2 versus 

less than 6.500 m2. However, the prices of both systems also need to be compared. A von Thunen 

framework [35] is suitable for analysing economic decisions when distance from different uses of 

energy matters. Transport is costly and reduces the profitability of bioenergy production when the 

distance to the power plant increases. In this case, distance is zero, but we could compare the result 

obtained with the alternative supplies of energy from other possible locations, as well as the possible 

uses of the energy produced in these locations in other facilities or industries. Some studies compare 

the process which uses the combustion of biomass with that of biocrude extraction [36]. Besides, as 

previously mentioned, different possible uses of the surfaces could be assessed [37, 38]. These price 

comparisons are very specific of each location and moment and, so, they need to be done by each 

project.  

 

Being aware of the circumstantial character of this price analysis, we have made an economic analysis 

comparing the costs associated to both analysed systems, HRAP and activated sludge system with 

PV facility. For HRAP case, two type of costs are considered: the capital cost and the terrain cost. The 

operation and maintenance cost (energy and flocculant consumption) is not included as the energy 

consumption is supplied by the algae itself. According to [28], the capital cost is 192.55 €/p.e. Since 

the system was designed to serve a population equivalent to 10,000 p.e. the total capital cost will be 

1,925,500 €. The terrain cost is also different according to the site considered (71.9 €/m2 at Lugo and 

150.8 €/m2 at Tabernas according to the Spanish Official Statistics, http://www.fomento.es/be2/). As 

regards to the activated sludge system with PV facility, according to [10], the AS construction costs 

are typically 70% higher than those of HRAPs, so the capital costs may be established in 6,418,333 €. 
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On the other hand, the capital and operation cost of PV is 350 €/m2 (an average estimation of the one 

offered in [39]). Additionally, we must add the terrain cost. Finally, we include the economic storage 

pack cost, that according to [40] we can estimate in 200 €/kwh of the battery energy storage systems. 

For the case of Lugo, the need of storage for 3,500 m2 is of 94.7 kwh, while for Tabernas in 2,500 m2, 

this need is of 81.1 kwh. The costs obtained for both systems are shown in Table V: 

 

Table V. Economic costs 

System Station Storage 
Surface 

 (m2) 

Capital cost 

of 

HRAP or 

AS (€) 

Capital and 

Operation 

cost of PV 

(€) 

Storage 

pack 

cost (€) 

Terrain 

cost (€) 

Total cost 

(€) 

HRAP 
Lugo No 40,000 1,925,500   2,876,000 4,801,500 

Tabernas No 40,000 1,925,500   6,032,000 7,957,500 

 

AS + PV 

 

Lugo 

 

No 

 

6,552 

 

6,418,333 

 

2,293,200 

  

471,089 

 

9,182,622 

Yes   3,500 6,418,333 1,225,000 18,940 251,650 7,913,923 

 

Tabernas 

 

No 

 

6,030 

 

6,418,333 

 

2,110,500 
 

 

909,324 

 

9,438,157 

Yes 2,500 6,418,333 875,000 16,220 377,000 7,686,553 

 

As we see, the total cost in the HRAP system is clearly lesser than in the AS+PV system in absence of 

storage. The difference is mainly due to the important capital cost of AS, although the difference in 

the terrain cost is, especially in Tabernas, very high, something that affects more the cost of the HRAP 

system. On the other hand, the presence of storage allows us to reduce significantly the costs of the 

PV facility. For example, in the case of Tabernas, although the HRAP system is less costly than the 

AS+PV system in a -15.7%, storage makes it more costly in a 3.5%. Indeed, storage provides a great 

advantage for using the AS+PV in locations where we have a lot of irradiance, as is the case with 

Tabernas. We can even consider the existence of a threshold of the irradiance needed so as to improve 

the costs of the AS+PV with relation to the HRAP. 

 

Then, the previous considerations about disadvantages linked to large surface needs of HRAP system 

seem to be balanced out by the little requirement of capital linked to HRAP. As we show, this 

opportunity cost analysis is then essential for a better assessment of different energy sources. 

 

5. Conclusions 

Aiming at achieving the energy efficiency proposed by the EU Green Deal, this work compares the 

viability of wastewater treatment projects under outdoor conditions by high rate algal ponds and by 

activated sludge systems, complementing this last system by a PV facility. It introduces a viability 

analysis based on the capacity of project self-sufficiency, so that the energy consumption associated 

to the system is covered by the energy supplied by the system itself. This energy consumption is 

much smaller for HRAPs than for activated sludge systems, in which PV power is needed to 

supplement this energy. However, algal ponds systems require much larger surfaces.  
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In order to assess the mentioned viability, the probability of not achieving the energy consumption 

threshold for at least one day is studied, considering both absence of storage and full capacity of 

storage. 

 

From these considerations, the following conclusions can be drawn out: 

 

1) PV power, the same as power derived from biomass, follows a seasonal evolution associated 

to climate characteristic. In the stations of study, this evolution is more pronounced in 

Tabernas and has more daily fluctuations in Lugo. 

 

2) If we pass from a HRAP system to an activated sludge system with PV power, we can achieve 

the self-sufficiency system by reducing greatly the occupied surface. In Tabernas, we reduce 

it from 40000 m2 in HRAP up to 6030 m2 or 2500 m2 of PV surface – considering, or not 

considering, storage - and up to 6552 m2 or 3500 m2 in Lugo. 

 

3) PV power exceedance probabilities increase with the PV surface, and the probability 

differences between situations with storage and without storage increase for higher 

exceedance probabilities. These probabilities do not allow to qualify a project as viable, or 

not viable, unlike the study based on the project self-sufficiency.  

 

4) Entropy and radical uncertainty are reduced by using the flow-fund model. Governance 

within green energy industries and in the economy as a whole need to include the 

expectation of storage to avoid uncertainty. Storage allows us to reduce significantly the costs 

of the PV facility, so it provides a great advantage for using the AS+PV in locations where we 

have a lot of irradiance. 

 

5) However, economic differences between surface prices should be compared, as well as the 

distance from different uses of energy. Here, we have compared the total cost of the HRAP 

system with that of AS+PV showing that the latter is higher due to the important capital costs 

associated to AS, in spite of the fact that surface needs lead to a significant increase in the cost 

of HRAP systems. 

 

6) As we see, the opportunity cost analysis is essential for a better assessment and 

understanding of different energy sources. 
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