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a b s t r a c t 

In this paper, we analyze the electrical response of an electrode-tissue-electrode system to the appli- 

cation of a dc current for a sufficiently short time in order to obtain coulostatic conditions: A finite 

amount of charge is “instantaneously” and efficiently transferred to the capacitors formed by biological 

membranes at the tissue level and the electrode biointerfacial regions. To allow a more realistic study, 

the capacitances formed by the electrode-tissue interfaces and those of the cell membranes were mod- 

eled using constant phase elements (CPEs). The mathematical expressions for the current, voltage, and 

charge of the CPEs are obtained in response to the sudden injection of the controlled electric charge. 

It is predicted theoretically how, under certain conditions, the current path could be restricted to flow 

through the capacitors formed by the electrode-tissue interfaces and those of the cell membranes, and 

thus, the total charge injected is practically transferred to both types of capacitance (i.e., a coulostatic 

charge injection). Finally, we study the influence of the pulse shape (retaining the coulostatic nature) 

on the technique, from the theoretical perspective of the fractional calculus. The shape of the excitation 

signal is shown to play a dominant role in the coulostatic relaxation processes, in sharp contrast to the 

conventional approach. This methodology could be extended to include the membranes of organelles and 

also to implement a coulostatic test method involving electrical characterizations of biological tissues. 

© 2021 The Author. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

From the study of electrical circuit theory, we know that an im- 

ulse current flowing through a capacitor yields an instantaneous 

in zero time) step-charge or, equivalently, a step voltage. This has 

een used in electrochemistry to quickly charge the double-layer 

apacitance, so that the faradaic current flowing during the charg- 

ng process can be neglected [1] . The subsequent impulse response 

open-circuit voltage) is a relaxation process which allows the ki- 

etic parameters of the electrode reactions to be determined [1–3] . 

or instance, an exponential relaxation is obtained in the simplest, 

ost basic case (i.e., an ideal double-layer capacitance in parallel 

ith a polarization resistance) [4] . This procedure is known as the 

oulostatic test method [1–5] . 

In bioelectrics, the coulostatic charging process can also be ex- 

ended to cells or tissues (see below). Specifically, consider two 

lectrodes placed in a portion of tissue, as shown in Fig. 1 (a). An

lectric current i ( t ) is applied from the electrode on the left and

athered at the electrode on the right. The electrical equivalent 

ircuit (EEC) of Fig. 1 (b), consisting of a constant phase element 
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CPE ET ) and a polarization resistance R P , models the electrode- 

issue biointerface [ 5 , 6 ]. Fig. 1 (c) shows the EEC of the tissue (see

ig. 1 (a)), where the extra- (blue) and intra-cellular (pink) envi- 

onments are modeled as resistive components ( R E and R I , respec- 

ively), and the cell membranes (green) as a non-ideal capacitive 

lement (CPE CM 

) [ 7 , 8 ]. As the two EECs shown in Fig. 1 (b) and (c)

re connected in series, they carry the same input current i ( t ) and,

onsequently, the same charge. The biointerface on the right side 

s not shown in Fig. 1 because its electrical behavior is considered 

o be identical to that on the left. 

Note that CPE ET and CPE CM 

take into account the space distri- 

ution of the electrical properties of the biointerface and the tis- 

ue, respectively [ 5 , 7 , 8 ]. The currents, i Q ET 
(t) and i Q CM 

(t) , and volt-

ges, v Q ET 
(t) and v Q CM 

(t) , for both CPEs are indicated in the EECs of 

ig. 1 (b) and (c). Remember that in a CPE the current i Q ( t ) is pro-

ortional to the derivative of non-integer order (d 

α/d t α , 0 <α< 1) of

he voltage v Q ( t ) across it [ 5 , 7 ]: 

 Q ( t ) = Q 

d 

αv Q ( t ) 
d t α

(1) 

here Q has the units of (farads) ×(seconds) α−1 with i Q ( t ) in am-

eres, v Q ( t ) in volts, and t in seconds. Eq. (1) describes an ideal

apacitor ( C ) for the case α= 1: i (t) = C (d v ( t )/d t ). It can be rewrit-
C C 
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Fig. 1. (a) Illustration of two electrodes placed into a portion of biological tissue 

which constitutes an electrode-tissue-electrode system. The tissue is represented as 

a group of similar eukaryotic cells where intra- and extra-cellular spaces, cell mem- 

branes and nuclei are shown in pink, blue, green, and black, respectively. Electrical 

equivalent circuits (EECs) of the system indicated in Fig. 1 (a): (b) single electrode- 

tissue biointerface, where the constant phase element (CPE ET ) of parameters Q ET 

and αET , and the polarization resistance ( R P ), make up the two-element fractional- 

order model; (c) tissue, where the membrane’s capacitive properties are modeled 

by the CPE CM of parameters Q CM and αCM , and R I and R E are the intra- and extra- 

cellular resistance associated with the electrolytic solutions of each compartment, 

respectively. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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en in terms of the accumulated charge on the CPE, q Q ( t ), as [9] 

 Q ( t ) = Q 

d 

α−1 v Q ( t ) 
d t α−1 

here, for convenience, the fractional integral of order 1–α
0 <α< 1) is expressed in terms of a fractional derivative of order 

–1 (negative value). Although it is not the case here, it is impor- 

ant to note that the scientific literature has shown that the capac- 

tive response of a number of real-world systems, such as batter- 

es [10–12] , supercapacitors [ 12 , 13 ], and/or photo-electrochemical 

ells [14–16] , also exhibits non-ideal dynamics, which leads di- 

ectly to fractional-order phenomena or, more specifically, CPE ef- 

ects. This complicated behavior, which manifests itself mathemat- 

cally as Cole-Cole relaxation processes or power-law decays, re- 

eals the fractional-order nature of anomalous (history-dependent) 

vents occurring in a wide range of applications in many branches 

f science and engineering [17] . In effect, besides providing sim- 

licity and goodness-of-fit with experimental data, the ubiquitous 

ractional-order capacitors (CPEs) predict the capacitive features 

f complex systems, providing an explanation of the underlying 

echanisms. 

Now, for the moment, let the CPEs of Fig. 1 (b) and (c) be ideal

apacitors ( C ET and C CM 

), initially discharged, and i ( t ) an impulse

ource, that is, 

 ( t ) = q in δ( t ) (2) 

here δ( t ) is the unit-impulse (or Dirac delta) function and q in is

he charge associated with the impulse (strength of the impulse). 

heoretically speaking, q in is transferred in zero time to each of the 

ECs of Fig. 1 (b) and (c): 
t

2 
 ( t ) = 0 , t � = 0 

 ∞ 

−∞ 

i ( t ) d t = q in 

A quick analysis can be done as follows. While the current im- 

ulse is applied (“zero” duration), the electrical inertia exhibited 

y both EECs, due to the capacitive components, allows us to re- 

lace the capacitors with short circuits (zero initial voltages). Note 

hat R P is short-circuited by C ET and ideally non-faradaic current 

ows. Just after applying the impulse, the amounts of charge of q in 
nd q in R E /( R E + R I ) are transferred instantaneously to C ET and C CM 

,

espectively. In the latter case, the charge q in transferred is reduced 

y the factor R E /( R E + R I ) and, thus, the coulostatic charging process

n a tissue is limited by the extracellular path R E . We note that if

 E �R I [18] , practically all the current is forced to flow through the 

ell membranes, which favors the interaction between the current 

njected and the cell membranes. Therefore, an efficient approach 

or coulostatic charging of the electrode-tissue-electrode system 

nables “abruptly” (compared to its “electrical inertia”) transfer- 

ing almost all the charge injected into the system to the capaci- 

ors formed by the electrode-tissue interfaces and those of the cell 

embranes. In other words, almost all the charging current flows 

hrough them. 

Nevertheless, in the context of the coulostatic method, the dy- 

amic behavior of the electrode-tissue-electrode system is signif- 

cantly complicated by the presence of CPEs. The fractional-order 

apacitors give rise to a meaningful acceleration of the initial 

egime of the responses during the coulostatic charge injection. 

he transition from the discharge state to the specific instant at 

hich the total charge ( q in ) has been transferred to the CPEs is 

escribed in terms of asymptotic power laws –a characteristic pat- 

ern of fractional relaxation processes–. Consequently, a decrease in 

he value of α results in faster responses, leading from linear re- 

ations ( α= 1: exponential mode relaxation) to non-linear patterns 

0 <α< 1: fractional dynamics approach). Furthermore, it should be 

mphasized that the fractional-order α also alters the dynamics 

f the current, voltage, and charge of the CPEs at multiple time 

cales (timescale-dependent processes). Special functions emerge 

hen dealing with differential equations of non-integer order, im- 

lying that the coulostatic relaxation curves are not described in 

erms of the same functions. In effect, the voltage and current 

charge) of the CPEs are related by a fractional derivative (integral). 

ote that classical exponential processes represent timescale in- 

ariant phenomena. Thus, if one imposes the following conditions: 

i) all the charge injected q in is transferred to the CPEs; (ii) the 

tep-charge changes the voltage across the fractional-order capaci- 

ors by a value inversely proportional to the “pseudo-capacitances”

i.e., almost all the current flows through the CPEs); different con- 

traints are obtained, in sharp contrast to the conventional ap- 

roach. The most restrictive condition should therefore be selected, 

aking into account the electrical inertia of the interfaces and the 

issue. 

From the discussion above, two valuable effects can be expected 

uring a coulostatic charge injection: (i) The faradaic reactions can 

e neglected [ 1 , 4 ], that is, no electrons are transferred between

he electrode and the tissue, and thus, damage to the tissue (by 

eating, pH changes or accumulation of toxic electrochemical prod- 

cts changes [ 6 , 19 ]) or to the electrode itself is minimized; and (ii)

lectric field interactions with the cell membrane (or even intracel- 

ular structures) are favored. Specifically, although it is not the case 

ere, sufficiently short-pulsed electric fields (respect to the cell and 

rganelle membrane charging times) are capable of inducing ef- 

ects on subcellular organelles (such as nuclei and mitochondria), 

hich is of interest in bioengineering and for biomedical applica- 

ions [ 20 , 21 ]. 
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Fig. 2. Waveforms during the charge injection: (a) applied step current i ( t ), of height I , in the electrode-tissue-electrode system; (b) resulting current and (d) voltage CPE CM 

responses, i Q CM 
(t) and v Q CM 

(t) , respectively; (e) current and (f) voltage step responses of the CPE ET , i Q ET 
(t) and v Q ET 

(t) , respectively. Insets in Fig. 2 (d) and (f) show expanded 

views of the transient-voltage responses at sufficiently short times. Fig. 2 (c) shows the applied step current of height I at sufficiently short times, together with the waveforms 

of the resulting currents of CPE CM and CPE ET . Dashed and solid lines indicate the step responses by considering α= 1 (exponential behavior) and 0 <α< 1 (non-exponential 

dynamic), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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The practical implementation of the coulostatic method re- 

uires the use of fractional calculus [ 5 , 22 , 23 ] by including the non-

deal capacitances CPEs, and to approximate the effect of an im- 

ulse current (“infinite” height and “zero” duration). The latter can 

e achieved by a rectangular current pulse whose width is suf- 

ciently short compared to the time constants of the electrode- 

issue-electrode system under study [5] . In the context of litera- 

ure, modified versions of the charge-step method, based on the 

se of finite (or “non-zero”) pulse durations, have been described, 

otivated by the experimental limitations of the technique [24] . 

n effect, the shape of the pulse (e.g., rectangular, triangular or 

elta function) is unimportant as long as the coulostatic nature 

s maintained and ideal capacitors are considered [ 1 , 25 ]. However, 

his idea cannot be extrapolated by considering CPEs. The theory 

f fractional calculus emerges in order to accurately analyze the 

on-ideal capacitive response of an electrode-tissue-electrode sys- 

em, introducing a multiscale generalization inherent in the def- 

nition of the non-integer order derivative over a wide range of 

pace and time. Special functions describe tissue and biointerface 

omplexity through parameters that arise from fractional opera- 

ors within the underlying differential equations of non-integer or- 

er. In turn, it makes analysis of the charge injection processes 

width of the pulse required to guarantee an efficient coulostatic 

pproach) and the subsequent relaxation phenomena (importance 

f the pulse shape) more difficult. These are several reasons why 

urther progress on the knowledge of the coulostatic method is in- 

eed necessary. 

The aim of this paper is to establish the required conditions for 

 coulostatic charge injection into the electrode-tissue-electrode 

ystem shown in Fig. 1 (a) while a dc current is applied, as well as

he study of the subsequent relaxation processes using the math- 

matical tools of fractional calculus. We firstly obtain mathemati- 

al expressions for the current, voltage, and charge for each of the 

PEs shown in Fig. 1 (b) and (c), in response to a current-step in-

ut of height I (see Fig. 2 (a)). From the above, we then obtain the
3 
onstraints on the time interval, immediately after the current is 

pplied, during which an efficient coulostatic charge injection oc- 

urs. Lastly, a detailed analysis of the impact of the pulse shape on 

he coulostatic technique (focused mainly on the timescale just af- 

er the current interruption) is carried out to shed light on the es- 

ential differences between the conventional and generalized pro- 

edure. The methodology described in this paper can be extended 

o consider the organelle membranes of intracellular structures. 

. Theoretical background 

From LTI (linear time-invariant) circuit theory, we know that 

he natural response of a first-order circuit involves the exponen- 

ial function. However, here we will use the Mittag-Leffler function 

o consider the dynamics imposed by the fractional-order (0 <α< 1) 

apacitance, CPE (see Eq. (1) ). It can be verified that the following 

ractional ordinary differential equation models the voltage or cur- 

ent x ( t ) dynamics of the CPEs when the EECs of Fig. 1 (b) and (c)

re driven by a step current source, i (t) = Iu (t) ( u ( t ) is the stan-

ard Heaviside function), 

d 

αx ( t ) 

d t α
+ 

x ( t ) 

τα
= 

x ( ∞ ) 

τα
(3) 

here x ( ∞ ) is the steady-state value. In effect, the forced response, 

ound at t → ∞ , can be obtained from the knowledge of dc circuits 

constant value), i.e., CPEs act as open circuits (dc steady-state). As 

hown in [22] , Eq. (3) can be solved via the Laplace transformation 

f the fractional derivative in Caputo sense with 0 <α< 1, 

d 

α

d t α
x ( t ) = 

1 

�( 1 − α) 

∫ t 

0 

d x ( τ ) 

d τ

d τ

( t − τ ) 
α

ith an analytical solution given by 

 ( t ) = x ( ∞ ) + 

(
x 
(
0 

+ ) − x ( ∞ ) 
)
E α

[
−
(

t 

τ

)α
]

(4) 



E. Hernández-Balaguera Chaos, Solitons and Fractals 145 (2021) 110787 

w  

s

t

E

w

E  

t

E

 

f

t

L

L

2

t  

m

a

v  

l  

t  

v

i

v

w

τ

w

b

r

R

(

m

q

t

o  

1

i

) 

v

q

q

w

(

o

t  

E

t

m

“

c

s

o  

l

e

E

t

t

t

R

a

a

o

E

b

F

c

a  

t

L

2

 

b  

q

a  

c

t

i

v

τ

q

i

v

here x (0 + ) denotes the value of x ( t ) immediately following the

tep change. E α[–( t / τ ) α] is the one-parameter Mittag-Leffler func- 

ion, defined as [ 5 , 7 , 22 , 23 ] 

 α

[
−
(

t 

τ

)α
]

= 

∞ ∑ 

k =0 

[ 
−
(

t 
τ

)α
] k 

�( αk + 1 ) 
, α > 0 (5) 

here � is the Gamma function and τ is the time constant of the 

EC under study. For convenience, we also introduce [ 5 , 22 , 23 ] the

wo-parameter Mittag-Leffler function E α, β [-( t / τ ) α], 

 α,β

[
−
(

t 

τ

)α
]

= 

∞ ∑ 

k =0 

[ 
−
(

t 
τ

)α
] k 

�( αk + β) 
, α, β > 0 (6) 

Note that E 1 [-( t / τ ) 1 ] = E 1,1 [-( t / τ ) 1 ] = e −t / τ . The Laplace transform

ormulas for the fractional derivative and the Mittag-Leffler func- 

ion are given by 

 

{
d 

α

d t α
x ( t ) 

}
= s αX ( s ) − s α−1 x ( 0 ) 

 

{
t β−1 E α,β

[
−
(

t 

τ

)α
]}

= 

s α−β

s α + 1/τα

We first analyze the EEC shown in Fig. 1 (c). 

.1. Current step response of the biological tissue 

Let us consider the CPE CM 

initially discharged. At the instant 

 = 0, a dc current I is applied to the EEC (refer to Fig. 2 (a)). Im-

ediately after the step change (i.e., t = 0 + ), CPE CM 

behaves as 

 short circuit (CPE voltage cannot change abruptly) and thus, 

 Q CM 

( 0 + ) = 0 V and i Q CM 

( 0 + ) = I R E / ( R E + R I ) . For a sufficiently

ong-time ( t → ∞ ), all the current flows through R E : CPE M 

blocks

he dc current i Q CM 

(∞ ) = 0 A and is charged to the voltage

 Q CM 

(∞ ) = IR E . 

Using Eq. (4) with the values found previously, we obtain 

 Q CM 
( t ) = I 

R E 

R E + R I 

E αCM 

[
−
(

t 

τCM 

)αCM 

]
, t > 0 (7) 

 Q CM 
( t ) = IR E 

(
1 − E αCM 

[
−
(

t 

τCM 

)αCM 

])
, t > 0 (8) 

here τ CM 

is the time constant for the EEC of Fig. 1 (c): 

CM 

= [ ( R E + R I ) Q CM 

] 
1 /αCM (9) 

here Q CM 

and αCM 

are the CPE CM 

parameters. Note that τ CM 

can 

e determined by inspection of the EEC: the current source I is 

eplaced by an open circuit and the CPE CM 

“sees” the resistance 

 E + R I . Thus, τ CM 

is the product ( R E + R I ) ×Q CM 

raised to the 1/ αCM 

to give units of time). 

The time-integral of the current i Q CM 

(t) yields the charge accu- 

ulated on CPE CM 

, 

 Q CM 
( t ) = I 

R E 

R E + R I 

tE αCM , 2 

[
−
(

t 

τCM 

)αCM 

]
, t > 0 (10) 

Now, we rewrite the above expressions at sufficiently short 

imes. Eqs. (5) and (6) can be truncated at the third and sec- 

nd terms, respectively, if [( t / τ ) α/ �( α+ 1)] �[( t / τ ) 2 α/ �(2 α+ 1)] and

/ �( β) �[( t / τ ) α/ �( α+ β)], respectively. This gives 

 Q CM 
( t ) = I 

R E 
R E + R I 

[
1 − t αCM 

ταCM 

CM 

�( αCM 

+ 1 ) 

]
, t � τCM 

[
2 
�( 2 αCM 

) 

�( αCM 

) 

]1/αCM 

(11
4 
 Q CM 
( t ) = IR E 

t αCM 

ταCM 

CM 

�( αCM 

+ 1 ) 
, t � τCM 

[
2 

�( 2 αCM 

) 

�( αCM 

) 

]1/αCM 

(12) 

 Q CM 
( t ) = I 

R E 

R E + R I 

t, t � τCM 

[ �( αCM 

+ 2 ) ] 
1/αCM (13) 

If R E �R I , Eq. (13) can be written as 

 Q CM 
( t ) = It , t � τCM 

[ �( αCM 

+ 2 ) ] 
1/αCM , R E � R I (14) 

Comparing the previous constraints, we see that the condition 

hich leads to v Q ET 
(t) and i Q CM 

(t) exhibit a power-law behavior 

 t α) –see Eqs. (11) and (12) – is slightly more restrictive than the 

ne that ensures that almost all injected charge ( I ×t ) is transferred 

o the CPE CM 

–see Eq. (13) –. It is clear that, in the limit αCM 

= 1,

qs. (7) , (8) , and (10) show exponential relaxation patterns, and 

hus the two constraints provide the same result: t �2 τ CM 

. Further- 

ore, we should point out that the difference between these two 

waiting times” increases as the values of α decrease. Thus, the 

ondition of Eq. (13) can be successfully used when one assumes 

ufficiently short times of t and α→ 1 (the non-ideal capacitance 

f the system under study is close to the ideal case) [5] . Neverthe-

ess, the selection of an optimal refinement condition to achieve an 

fficient coulostatic approach is satisfied through the constraint of 

qs. (11) or (12) . For the reader’s convenience, we have extracted 

his restriction and the final condition of Eq. (14) , and now write 

hem separately. 

 � τCM 

[
2 

�( 2 αCM 

) 

�( αCM 

) 

]1/αCM 

(15) 

 E � R I (16) 

Fig. 2 (b) and (c) show the waveform of i Q CM 

(t) –see Eq. (7) –

nd, at sufficiently short times, a portion of the input current step 

nd the graphical representation of Eq. (11) , respectively. On the 

ther hand, Fig. 2 (d) shows the dynamic behavior of v Q CM 

(t) of 

q. (8) , which is similar to that of i Q CM 

(t) of Eq. (7) –see Fig. 2 (b)–

ut involves a Mittag-Leffler rise rather than a decay. The inset of 

ig. 2 (d) shows an expanded view corresponding to Eq. (12) . For 

omparative purposes, the ideal exponential behavior ( αCM 

= 1) is 

lso set out in Fig. 2 (b) and (d) –see dashed lines–. At short (long)

imes, it exhibits a slower (faster) decay than that of the Mittag- 

effler function. 

.2. Current step response of the electrode-tissue biointerface 

The EEC of Fig. 1 (b) can be analyzed from that of Fig. 1 (c)

y considering R I = 0 and renaming R E , τ CM 

, i Q CM 

(t) , v Q CM 

(t) , and

 Q CM 

(t) as R P , τ ET , i Q ET 
(t) , v Q ET 

(t) , and q Q ET 
(t) , respectively. τ ET 

nd q Q ET 
(t) are the time constant for the EEC of Fig. 1 (b) and the

harge accumulated on CPE ET (of parameters Q ET and αET ), respec- 

ively. Now, Eqs. (7) –(13) and (15) are rewritten as follows: 

 Q ET 
( t ) = IE αET 

[
−
(

t 

τET 

)αET 

]
, t > 0 (17) 

 Q ET 
( t ) = IR P 

(
1 − E αET 

[
−
(

t 

τET 

)αET 

])
, t > 0 (18) 

ET = ( R P Q ET ) 
1 /αET (19) 

 Q ET 
( t ) = It E αET , 2 

[
−
(

t 

τET 

)αET 

]
, t > 0 (20) 

 Q ET 
( t ) = I 

[
1 − t αET 

ταET 

ET 
�( αET + 1 ) 

]
, t � τET 

[
2 

�( 2 αET ) 

�( αET ) 

]1/αET 

(21) 

 Q ET 
( t ) = IR P 

t αET 

ταET 

ET 
�( αET + 1 ) 

, t � τET 

[
2 

�( 2 αET ) 

�( αET ) 

]1/αET 

(22) 
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 Q ET 
( t ) = It , t � τET [ �( αET + 2 ) ] 

1/αET (23) 

 � τET 

[
2 

�( 2 αET ) 

�( αET ) 

]1/αET 

(24) 

We also note that Eqs. (17) –(24) can be derived from a previ- 

us paper by the authors [5] , which focused on a generalized pro- 

edure for the coulostatic method using a CPE. Finally, it should 

e mentioned that the corresponding exponential behaviors (ideal 

apacitances) can be found by setting αET = 1 in Eqs. (17) –(24) .

ig. 2 (e), (c), (f), and the inset of Fig. 2 (f) show the graphical

epresentations of Eqs. (17) , (21) , (18) , and (22) , respectively. The

ashed lines indicate i Q ET 
(t) and v Q ET 

(t) for the exponential be- 

avior ( αET = 1). 

.3. Pulse- and impulse-response of the current-excited 

lectrode-tissue system 

From a theoretical point of view, two critical issues emerge on 

onsidering the fractional-order dispersive behavior of the bioelec- 

rochemical system under study using the coulostatic technique: 

i) an instantaneous change in the charge q in (impulse) involves 

nfinite (time-dependent) values of voltage and current for both 

PEs, and (ii) the shape of the coulostatic pulse is of critical im- 

ortance in the method (e.g., relaxation processes). Note that, in 

he ideal cases ( αCM 

= 1 and αET = 1), the charge injected during 

he application of the impulse causes the voltage to vary from 0 

o ( q in R E )/[ C CM 

( R E + R I )] or q in / C ET (finite values) for the EECs of

ig. 1 (c) or 1(b), respectively. Furthermore, the shape of the coulo- 

tatic pulse is unimportant [ 1 , 25 ]. 

To illustrate, we study the behavior of the EECs of Fig. 1 (c) and

b) in response to the rectangular current pulses of width T and 

eight I ( Fig. 3 (a)), commonly used in practice. For convenience, in 

q. (25) , the pulses of current have been stated explicitly in terms 

f the charge q in to be transferred and T . 

 = 

q in 
T 

, 0 < t < T (25) 

hat is, 

 ( t ) = 

q in 
T 

[ u ( t ) − u ( t − T ) ] 

In effect, if T → 0 and ( q in / T ) → ∞ , the pulses approach an im-

ulse function of strength q in (refer to Fig. 3 (a)). As long as i Q CM 

(t)

nd i Q ET 
(t) are roughly constant for 0 < t < T , it can be clearly seen

hat v Q CM 

(T ) and v Q ET 
(T ) are directly proportional to T α–1 (time- 

ependent characteristic). At time t = T , the negative step change of 

he pulse occurs and both voltage values tend to infinity when the 

ulse duration tends to zero (delta function), 

 Q CM 
( T ) = 

q in 
Q CM 

R E 

R E + R I 

T αCM −1 

�( αCM 

+ 1 ) 
→ ∞ , T → 0 

 Q ET 
( T ) = 

q in 
Q ET 

T αET −1 

�( αET + 1 ) 
→ ∞ , T → 0 

Note that these expressions can be found by substituting 

q. (25) in Eqs. (12) and (22) at t = T and using Eqs. (9) and (19) , re-

pectively. This unexpected pattern can be explained from the elec- 

rical representation of a CPE, which involves equivalent networks 

uilt up from an infinite number of RC subcircuits [26] . Immedi- 

tely after the current is switched off, a relaxation process occurs. 

ndeed, the coulostatic method can be interpreted from the per- 

pective of a current interruption method (CIM) where the con- 

tant current is applied for a sufficiently short time (much lower 
5 
han the time constant τ ) [ 7 , 8 ]. Once on open circuit ( i ( t ) = 0 A),

PEs will be discharged through the local resistances ( R E + R I and 

 P in the EECs of Fig. 1 (c) and (b), respectively) and thus, the “in-

ernal currents”, i R CM 

(t) and i R ET 
(t) , could be expressed as 

 R CM 
( t ) = −i Q CM 

( t ) = −Q CM 

d 

αCM v Q CM 
( t ) 

d t αCM 

 R ET 
( t ) = −i Q ET 

( t ) = −Q ET 

d 

αET v Q ET 
( t ) 

d t αET 

here the corresponding voltages moves back to- 

ard 0 V, i.e., v Q CM 

(t) and v Q ET 
(t) decrease from 

 in R E T 
α–1 /[ Q CM 

( R E + R I ) �( αCM 

+ 1)] or q in T 
α–1 /[ Q ET �( αET + 1)] (CPE

oltage cannot change abruptly) to 0 V, as [5] 

 Q CM 
( t ) = 

q in 
Q CM 

R E 

R E + R I 

T αCM −1 

�( αCM 

+ 1 ) 
E αCM 

[
−
(

t − T 

τCM 

)αCM 
]
, t > T 

(26) 

 Q ET 
( t ) = 

q in 
Q ET 

T αET −1 

�( αET + 1 ) 
E αET 

[
−
(

t − T 

τET 

)αET 
]
, t > T (27) 

Eqs. (26) and (27) constitute the analytical expressions of the 

ubsequent open-circuit discharges for the EECs shown in Fig. 1 (c) 

nd (b), respectively, when one approximates the charge impulse 

y a sufficiently short current pulse. In order to establish a com- 

arison between a rectangular and a delta function type of pulse 

input) –see Eqs. (25) and (2) , respectively– in terms of coulostatic 

elaxation curves (output), we first obtain the impulse responses 

f v Q CM 

(t) and v Q ET 
(t) : 

 Q CM 
( t ) = 

q in 
Q CM 

R E 

R E + R I 

t αCM −1 E αCM ,αCM 

[
−
(

t 

τCM 

)αCM 

]
u ( t ) (28) 

 Q ET 
( t ) = 

q in 
Q ET 

t αET −1 E αET ,αET 

[
−
(

t 

τET 

)αET 

]
u ( t ) (29) 

It can be clearly seen that both expressions show a promi- 

ent deviation from the pulse responses and thus, it allows us to 

onfirm that, although the excitation exhibits a coulostatic nature, 

he type of excitation signal determines the shape of the relax- 

tion curve in the context of non-ideal capacitive effects. Fig. 3 (b) 

nd (c) summarize the evolution of the coulostatic charging- 

ischarging processes when T decreases and ( q in / T ) increases: As 

 → 0 and ( q in / T ) → ∞ , the voltage responses v Q CM 

(t) and v Q ET 
(t) for

 < t < T become steeper and steeper, and finally, v Q CM 

(T ) → ∞ and

 Q ET 
(T ) → ∞ (see above). 

Analogously, Fig. 3 (d) and (e) show the waveforms of i Q CM 

(t) 

nd i Q ET 
(t) , respectively. In effect, the resulting currents can be 

ound as the product of Q CM 

or Q ET and the fractional-order 

erivative (d 

α/d t α , 0 <α< 1) of their respective voltages, v Q CM 

(t) 

r v Q ET 
(t) . The portions of the initial-decay regions in pulse re- 

ponses correspond to coulostatic charge injections (i.e., Eqs. (9) , 

11) , (19) , (21) , and (25) ). Note that our predictions make sense be-

ause the CPE voltage cannot change instantaneously and, thus, the 

tep change, at time t = T , yields jump discontinuities (as those at 

 = 0). In turn, these iR-drops involve infinite discontinuities when 

 → 0, seen at the instant immediately following the step change 

 t = T + ): 

 Q CM 

(
T + 

)
= −q in 

R E 

R E + R I 

T αCM −1 

ταCM 

CM 

�( αCM 

+ 1 ) 
→ −∞ , T → 0 

 Q ET 

(
T + 

)
= −q in 

T αET −1 

ταET �( αET + 1 ) 
→ −∞ , T → 0 
ET 
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Fig. 3. Schematic of coulostatic relaxation processes depending on the shape of the signal excitation: (a) Sequence of i ( t ) as T → 0 and ( q in / T ) → ∞ (from a rectangular to a 

delta function type of pulse); (b) and (c), subsequent transient-voltage responses of CPE CM and CPE ET , respectively, i.e., v Q CM 
(t) and v Q ET 

(t) , described in terms of Mittag- 

Leffler functions; (d) and (e), waveforms of the resulting non-ideal capacitive current of CPE CM and CPE ET , respectively, i Q CM 
(t) and i Q ET 

(t) , in response to the excitation signals 

of (a). 
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m CM ET 
For any value of time after charge injection ( t > T ), considering a

ufficiently short duration rectangular current pulse as the excita- 

ion signal, both currents can be expressed as 

 Q CM 
( t ) = −q in 

R E 
R E + R I 

T αCM −1 

ταCM 

CM 

�( αCM 

+ 1 ) 
E αCM 

[
−
(

t − T 

τCM 

)αCM 
]
, t > T (30) 

 Q ET 
( t ) = −q in 

T αET −1 

ταET 

ET 
�( αET + 1 ) 

E αET 

[
−
(

t − T 

τET 

)αET 
]
, t > T (31) 

On the contrary, the current relaxation processes, in the case of 

 “pure coulostatic impulse (delta type)” input, can be expressed 

athematically as follows: 

 Q CM 
( t ) = q in 

R E 
R E + R I 

δ( t ) − q in 
R E 

R E + R I 

t αCM −1 

ταCM 

CM 

E αCM ,αCM 

[
−
(

t 

τCM 

)αCM 

]
u ( t ) (32) 
6 
 Q ET 
( t ) = q in δ( t ) − q in 

t αET −1 

ταET 

ET 

E αET ,αET 

[
−
(

t 

τET 

)αET 

]
u ( t ) (33) 

In general, the theoretical background previously outlined en- 

bles us to determine that, immediately after the application of the 

urrent impulse, the shape of the resulting waveforms is similar 

o those for current-excited pulse responses (relaxation functions 

f the Mittag–Leffler type). Nevertheless, impulse responses show 

ore complicated behaviors: In the limit (delta function), all the 

esulting waveforms suffer infinite discontinuities, and also involve 

aster decay rates than those of the pulse current input. There- 

ore, this straightforward procedure, which is a well-established 

ethodology for ideal behaviors ( α = 1 and α = 1), leads to a 
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ignificant problem in the context of the charge-step method con- 

idering non-ideal capacitive effects: The coulostatic decays are 

ot described in terms of the same relaxation functions when 

he shape of the step-charge supplied to the system is different 

one- or two-parameter Mittag-Leffler functions, see Eqs. (26) –

33) . This should be taken into account in the “graphical analy- 

is” process of experimental data in order to obtain accurate values 

f the electrical parameters and the underlying bioelectrochemical 

rocesses. 

. Discussion 

Again, we begin with the analysis of the tissue response. De- 

ending on the time scale considered, the value of ( t / τ CM 

) governs

he non-exponential behavior of Fig. 2 (b), which involves the de- 

reasing expression of Eq. (11) at sufficiently short times, as shown 

n Fig. 2 (c). Remember that the Mittag-Leffler function exhibits two 

symptotic approximations: an initial fast decay described by the 

tretched exponential function (preceded earlier by Eq. (11) ) and a 

ong tail (inverse power-law behavior) [27–29] . We note that the 

reas under a portion of the waveforms of the current step of 

ig. 2 (a) and i Q CM 

(t) of Fig. 2 (b) are equal to the electrical charges

njected, during that time interval, into the tissue (EEC of Fig. 1 (c)) 

nd cell membranes (modeled as a whole by CPE CM 

), respectively. 

pecifically, Eq. (10) quantifies the electrical charge accumulated 

n CPE CM 

during the interval t = 0 to t , but we are interested in

ufficiently short times in which the tissue exhibits “electrical in- 

rtia” (i.e., t �τ CM 

). 

At times satisfying the constraint imposed by Eq. (15) , the area 

nder the waveform of i Q CM 

(t) is the charge transferred to the cell 

embranes. However, this area is rather lower than that of the 

ortion of the input current step. The difference between the two 

reas involves dissipative losses in the extra- and intra-cellular me- 

ia ( R E and R I , respectively). Thus, the efficiency of a coulostatic 

harging process in a tissue is mainly limited via the extracellu- 

ar path R E . We then see that at sufficiently short times, given by 

q. (15) , and if R E �R I [18] (see Eq. (16) ), the charge transferred to

PE CM 

increases and closely approaches a coulostatic charge injec- 

ion. In effect, Eq. (14) yields I ×t which is the charge accumulated 

n CPE CM 

, and, in turn, the charge injected into the tissue from the 

nput current step, that is, a coulostatic charging process. As men- 

ioned earlier, an ideal coulostatic charging injection is achieved as 

ong as CPE CM 

is replaced by a capacitor, the input current is an 

mpulse and R E /( R I + R E ) = 1 (i.e. R E → ∞ or R I = 0). 

Apart from the notation, as indicated in the last section, 

qs. (17) –(24) are the same as Eqs. (7) –(13) and (15) when R I is

et to zero. Therefore, the waveforms of i Q ET 
(t) and v Q ET 

(t) present 

imilar non-exponential dynamics (regarding the electrode-tissue 

nterface) to those of i Q CM 

(t) and v Q CM 

(t) , respectively. Finally, it 

s important to note that an effective coulostatic charging process 

f the electrode-tissue interface is achieved at times satisfying the 

onstraint of Eq. (24) . 

Let us return to the EEC of the electrode-tissue-electrode sys- 

em (refer to Fig. 1 ). The interconnection of the EECs of Fig. 1 (b)

nd (c) provides a modified Randles circuit [5] , by replacing the 

eries resistance by the modified Fricke and Morse EEC [7] . This 

xpanded circuit allows the anomalous capacitive behavior of both 

henomena (biointerfacial and tissue processes) to be captured ef- 

ectively in a simple manner. From an experimental point of view, 

he study of this double-dispersion model (with different orders of 

he fractional derivative, αCM 

� = αET ) involves a more realistic anal- 

sis than the classical one. It supposes a generalized procedure 

hat leads to an in-depth understanding of the underlying bioelec- 

rochemical and physiological processes (taking into account non- 

ocal interactions and system memory effects). Nevertheless, our 

odel introduces the inherent difficulty of the fractional deriva- 
7 
ive: This is clearly evident if there is a substantial overlap be- 

ween the two cooperative relaxation phenomena (distribution of 

ime constants), that is, τ CM 

comparable to τ ET . We note that 

alues of the order of μs and s for τ CM 

and τ ET , respectively, 

ere previously obtained by the authors: τ CM 

�τ ET [ 5 , 7 , 8 ]. Thus,

he constraint of Eq. (24) may appear more limiting than that of 

q. (15) . In this sense, the coulostatic method, along with a two- 

lectrode measuring system, could be successfully implemented to 

btain the electrical properties of biological tissues. This experi- 

ental protocol could provide immunity to the influence of the 

lectrode polarization impedance if τ ET �τ CM 

, while maintaining 

he intrinsic advantages of the method and the measuring setup. 

n any case, a four-electrode arrangement could be used to avoid 

he effects of the electrode polarization. 

The discussion above enables us to draw the following conclu- 

ions for an electrode-tissue-electrode system driven by a current 

tep input: (i) The constraints of Eqs. (15) –sufficiently short times–

nd (16) –limitation imposed by the extra-cellular resistance– must 

e satisfied for an efficient coulostatic charging process in the tis- 

ue; (ii) the constraint of Eq. (24) at sufficiently short times must 

e satisfied for an efficient coulostatic charge injection into the 

lectrode/tissue interface; and (iii) the constraints of Eqs. (15) , (16) , 

nd (24) must be satisfied at the same time to guarantee an effi- 

ient coulostatic charging process in the electrode-tissue-electrode 

ystem. During the charge injection, CPEs thus act as short cir- 

uits (all the current flows through the cell membranes and non- 

deal biointerfacial capacitance) and no current flows through: (i) 

 E –the membrane effects disappear: the current flows everywhere 

ccording to local ionic conductivity–; and (ii) R P –the faradaic 

eactions can be neglected–. Indeed, an appropriate selection of 

he pulse duration is important to charge only the non-ideal ca- 

acitances, and to avoid faradaic processes and extra-cellular in- 

eractions which would occur at higher levels of total charge 

ith longer pulses. Our model considers the perturbation time 

equired to perform an efficient coulostatic approach applied to 

n electrode-tissue-electrode system, taking into account its com- 

lex and multiscale dynamics (anomalous evolution of transient 

esponses). This is a very serious issue, because erroneous dura- 

ion pulses, apart from being time-consuming, could also possibly 

nject toxic materials into the tissue, cause pH changes in the por- 

ion of the tissue immediately adjacent to the electrode surface, 

r induce thermal injuries, via faradaic processes. Furthermore, 

his would result in bad estimates for the electrical properties 

f the system through the coulostatic relaxation processes. Thus, 

ractional calculus plays a crucial role to obtain accurate informa- 

ion about the electrical properties of many “real-world systems”, 

n particular, the tissue-electrode processes, using the coulostatic 

ethod. 

As a final remark, it should be mentioned that the shape of 

he pulse is of fundamental importance in the method, although 

he coulostatic nature and the strength of the pulse ( q in ) are re-

ained. The essential differences consist of the transient dynamics 

n which: (i) the step-charge is transferred to the CPEs and, even 

ore importantly, (ii) the distributed relaxation processes move 

ack towards the equilibrium state. For instance, the impulse re- 

ponses involve infinite discontinuities and faster relaxation phases 

han those of the pulse responses (see Fig. 3 (b)–(e) and Eqs. (26) –

33) ) and should therefore be taken into account when one deter- 

ines the parameter values of the EECs under study. In compar- 

son with ideal capacitive behavior (classical view), the discharge 

rocess of a CPE (cell membranes at the tissue level and the elec- 

rode biointerfacial regions) depends on the type of charging wave- 

orm. Thus, our results can be used to pave the way to finding 

ore adapted excitation waveforms to estimate the electrical prop- 

rties of these types of bielectrochemical systems in the context of 

he coulostatic method. 
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. Conclusions 

In an electrode-tissue-electrode system driven by a constant dc 

urrent, we have established the required constraints at sufficiently 

hort times for an effective coulostatic charge injection, captur- 

ng the fractional-order dispersive behavior (CPE) of the interfaces 

nd the biological material. In this sense, it is demonstrated that 

he coulostatic charging process in a tissue is limited via the ex- 

racellular path. Also, we show how the shape of the excitation 

ignal (e.g., a rectangular or a delta function type of pulse) af- 

ects the transient dynamics of the coulostatic relaxation processes, 

sing the mathematical tools of fractional calculus. This method- 

logy can be extended to include coulostatic charging of mem- 

ranes of organelles, at the tissue or cellular level. Furthermore, a 

oulostatic test method could be implemented to characterize the 

lectrical properties of the electrode-tissue-electrode, or even the 

lectrical properties of the tissue itself, if the contribution of the 

lectrode-tissue interface can be neglected (i.e., τ ET �τ CM 

). In any 

ase, a four-electrode arrangement could be used to avoid the ef- 

ects of electrode polarization. We hope that the reader will find 

his methodology useful, with possibilities of implementation in 

he context of a very wide range of bio-applications. 

redit author statement 

All work in this single-author paper has been carried out by 

nrique Hernández-Balaguera. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgements 

This work has been supported by the Comunidad de Madrid 

nder the SINFOTON2-CM Research Program, S2018/NMT4326- 

INFOTON2-CM , the Ministerio de Economía, Industria y Com- 

etitividad , Projects MTM2016–80539-C2–1-R and TEC2016–

7242-C3–3-R , the Consejería de Educación, Cultura y Deportes 

f the Junta de Comunidades de Castilla-La Mancha, Project 

BPLY/17/180501/0 0 0380 , and the European Regional Development 

und (fondos FEDER). 

eferences 

[1] van Leeuwen HP . The coulostatic impulse technique: A critical review of its 
features and possibilities. Electrochim Acta 1978;23:207–18 . 

[2] Delahay P . Coulostatic method for kinetic study of fast electrode processes. I. 
Theory. J Phys Chem 1962;66:2204–7 . 

[3] Reinmuth WH . Theory of coulostatic impulse relaxation. Anal Chem 

1962;34:1272–6 . 

[4] Kanno K , Suzuki M , Sato Y . An application of coulostatic method for
rapid evaluation of metal corrosion rate in solution. J Electrochem Soc 

1978;125:1389–93 . 
8 
[5] Hernández-Balaguera E , Polo JL . A generalized procedure for the coulostatic 
method using a constant phase element. Electrochim Acta 2017;233:167–72 . 

[6] Merrill DR , Bikson M , Jefferys JGR . Electrical stimulation of excitable tissue: 
design of efficacious and safe protocols. J Neurosci Methods 2005;141:171–98 . 

[7] Hernández-Balaguera E , López-Dolado E , Polo JL . Obtaining electrical equiva- 
lent circuits of biological tissues using the current interruption method, circuit 

theory and fractional calculus. RSC Adv. 2016;6:22312–19 . 
[8] Hernández-Balaguera E , López-Dolado E , Polo JL . In vivo rat spinal cord 

and striated muscle monitoring using the current interruption method and 

bioimpedance measurements. J Electrochem Soc 2018;165(12):G3099–103 . 
[9] Westerlund S , Ekstam L . Capacitor theory. In: IEEE T on Dielect El, 1; 1994.

p. 826–39 . 
[10] Xu J , Mi CC , Cao B , Cao J . A new method to estimate the state of charge of

lithium-ion batteries based on the battery impedance model. J Power Sources 
2013;233:277–84 . 

[11] Wang B , Li SE , Peng H , Liu Z . Fractional-order modeling and parameter identi-

fication for lithium-ion batteries. J Power Sources 2015;293:151–61 . 
12] Hidalgo-Reyes JI , Gómez-Aguilar JF , Escobar-Jiménez RF , Alvarado–

Martínez VM , López-López MG . Classical and fractional-order modeling 
of equivalent electrical circuits for supercapacitors and batteries, energy man- 

agement strategies for hybrid systems and methods for the state of charge 
estimation: A state of the art review. Microelectron J 2019;85:109–28 . 

[13] Allagui A , Freeborn TJ , Elwakil AS , Fouda ME , Maundy BJ , Radwan AG , Said Z ,

Abdelkareem MA . Review of fractional-order electrical characterization of su- 
percapacitors. J Power Sources 2018;400:457–67 . 

[14] Bisquert J . Theory of the impedance of electron diffusion and recombination in 
a thin layer. J Phys Chem B 2002;106:325–33 . 

[15] Zhang D , Allagui A , Elwakil AS , Nassef AM , Rezk H , Cheng J , Choy WCH . On the
modeling of dispersive transient photocurrent response of organic solar cells. 

Org Electron 2019;70:42–7 . 

[16] Hernández-Balaguera E , Romero B , Arredondo B , del Pozo G , Najafi M , Gala-
gan Y . The dominant role of memory-based capacitive hysteretic currents in 

operation of photovoltaic perovskites. Nano Energy 2020;78:105398 . 
[17] Sun H , Zhang Y , Baleanu D , Chen W , Chen Y . A new collection of real world

applications of fractional calculus in science and engineering. Commun Non- 
linear Sci Numer Simulat 2018;64:213–31 . 

[18] Brown DW , Bahrami AJ , Canton DA , Mukhopadhyay A , Campbell JS , Pierce RH ,

Connolly RJ . Development of an adaptive electroporation system for intratu- 
moral plasmid DNA delivery. Bioelectrochemistry 2018;122:191–8 . 

[19] Hernández-Labrado GR , Polo JL , López-Dolado E , Collazos-Castro JE . Spinal cord 
direct current stimulation: finite element analysis of the electric field and cur- 

rent density. Med Biol Eng Comput 2011;49:417–29 . 
20] Schoenbach KH , Katsuki S , Stark RH , Buescher ES , Beebe SJ . Bioelectrics-new

applications for pulsed power technology. IEEE T Plasma Sci 2002;30:293–300 . 

21] Yao C , Hu X , Mi Y , Li C , Sun C . Window effect of pulsed electric field on bio-
logical cells. IEEE T Dielect El In 2009;16:1259–66 . 

22] Podlubny I . Fractional differential equations: An introduction to fractional 
derivatives, fractional differential equations, to methods of their solution and 

some of their applications. Academic Press; 1999 . 
23] Magin RL . Fractional calculus in bioengineering, Part 1. Crit Rev Biomed Eng 

2004;32:1–104 . 
24] Reller H , Kirowa-Eisner E . The coulostatic method with finite pulse width. J 

Electrochem Soc 1987;134:126–32 . 

25] Bard AJ , Faulkner LR . Electrochemical methods: fundamentals and applications. 
John Wiley & Sons; 2001 . 

26] Hirschorn B , Orazem ME , Tribollet B , Vivier V , Frateur I , Musiani M . Determina-
tion of effective capacitance and film thickness from constant-phase element 

parameters. Electrochim Acta 2010;55:6218–27 . 
27] Hernández-Balaguera E , Vara H , Polo JL . Identification of capacitance distri- 

bution in neuronal membranes from a fractional-order electrical circuit and 

whole-cell patch-clamped cells. J Electrochem Soc 2018;165(12):G3104–11 . 
28] Mainardi F . On some properties of the Mittag-Leffler function E α( −t α), com-

pletely monotone for t>0 with 0 <α< 1. Discrete Contin Dyn Syst Ser B 
2014;19:2267–78 . 

29] Hernández-Balaguera E , Polo JL . On the potential-step hold time when the 
transient-current response exhibits a Mittag-Leffler decay. J Electroanal Chem 

2020;856:113631 . 

https://doi.org/10.13039/100012818
https://doi.org/10.13039/501100010198
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0001
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0001
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0002
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0003
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0003
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0004
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0005
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0005
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0005
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0006
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0007
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0008
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0009
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0011
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0012
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0013
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0014
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0014
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0015
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0016
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0017
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0018
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0019
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0020
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0021
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0022
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0022
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0023
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0023
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0024
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0024
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0024
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0025
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0026
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0027
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0028
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0028
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0029
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0029
http://refhub.elsevier.com/S0960-0779(21)00139-9/sbref0029

	Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus
	1 Introduction
	2 Theoretical background
	2.1 Current step response of the biological tissue
	2.2 Current step response of the electrode-tissue biointerface
	2.3 Pulse- and impulse-response of the current-excited electrode-tissue system

	3 Discussion
	4 Conclusions
	Credit author statement
	Declaration of Competing Interest
	Acknowledgements
	References


