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A B S T R A C T

In present-day in consumers’ homes, there are millions of Internet-connected devices that are known to jointly
represent the Internet of Things (IoT). The development of the IoT industry has led to the emergence of
connected devices and home assistants that create smart living environments. However, the continuously
generated data accumulated by these connected devices create security issues and raise user’s privacy concerns.
The present study aims to explore the main security issues in smart living environments using data mining
techniques. To this end, we applied a three-sentence data mining analysis of 938,258 tweets collected from
Twitter under the user-generated data (UGD) framework. First, sentiment analysis was applied using Textblob
which was tested with support vector classifier, multinomial naïve bayes, logistic regression, and random forest
classifier; as a result, the analyzed tweets were divided into those expressing positive, negative, and neutral
sentiment. Next, a Latent Dirichlet Allocation (LDA) algorithm was applied to divide the sample into topics
related to security issues in smart living environments. Finally, the insights were extracted by applying a
textual analysis process in Python validated with the analysis of frequency and weighted percentage variables
and calculating the statistical measure known as mutual information (MI) to analyze the identified n-grams
(unigrams and bigrams). As a result of the research 10 topics were identified in which we found that the main
security issues are malware, cybersecurity attacks, data storing vulnerabilities, the use of testing software in
IoT, and possible leaks due to the lack of user experience. We discussed different circumstances and causes
that may affect user security and privacy when using IoT devices and emphasized the importance of UGC in
the processing of personal data of IoT device users.
. Introduction

The rapid development of information technologies, the Internet,
nd artificial intelligence, in all their versatile forms, has allowed the
evelopment of connected ecosystems known as smart living envi-
onments [1]. In today’s connected era, there are many sources of
nformation that continuously generate data on user habits, and these
ata generate concerns about data privacy risks [2]. This innovative
aradigm [3], linked to the IoT sector, has given rise to the concept of
oE (Internet of Everything), which links new theoretical frameworks
or the study of emerging research areas related to privacy and data
ecurity [4], as well as the usability of these new technologies [5] for
arious applications on the industrial, professional, or personal level
6].

In the last decade, connected devices and IoT have been among
he most rapidly growing industries [7]. Therefore, millions of devices
re connected to the Internet in consumers’ homes [8] to facilitate
sers’ performance of daily tasks. Today, many consumers actively
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use technology in their lives and develop their business in connected
ecosystems [9]. Accordingly, Bouncken and Barwinski [10] highlighted
the importance of the shared digital identity concept as a collective self-
concept of an in-group towards the creation, application, development,
and emergence of digital technology that creates a sense of community.
The use of this technology can encourage the feeling of both security
and ease of use of these devices [11]. However, users may not be aware
of the privacy and personal information breaches that can occur if these
data are managed illegally or unfairly by technological companies or by
third parties [5,12].

Accordingly, several previous studies warned about the potential
risks of the connected devices’ use when data privacy settings are not
configured or are configured in a wrong way [13,14]. In general, data
resulting from user actions requested by the devices can be used to
identify patterns, trends, or predict user behaviors [15].

Smart living environments are equipped with numerous devices that
collect information in the form of commands and requests issued by
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users [7,16]. Based on these commands, these devices can perform
specific functions, such as turning the light on or off, playing music,
answering questions, turning the TV or other connected machines and
devices on or off, organizing the calendar, the agenda, or sending e-
mails [17]. In the literature, these connected homes are collectively
called smart living environments [18]. These environments have been
studied from the theoretical [19], security [20], innovation [21], and
future [22] perspectives.

Importantly, even if users make only limited use of these technolo-
gies to digitalize their homes or make part of a connected community
[23], they may be unaware that the Internet-connected devices in their
smart living environments can generate data about their personal habits
and interests, which could violate their privacy [24]. In this respect, Lin
and Bergmann [25] and Chow [26] highlighted the concerns about user
privacy and security of users, which is an important topic to thoroughly
explore in the future [27].

It is important to note that, to date, several contributions analyzed
how IoT sensors are added to the home networks when connecting new
devices to the Internet [28]; similarly, other studies investigated the
ways to make these devices safer from the technical point of view [29].
Overall, connected devices are linked to platforms that manage the data
[30], which implies that security of these cloud-based devices should
be a priority [31].

However, at present, most Internet-based connections in homes go
through the same channel—namely, the router that provides Internet
connection [32]. Furthermore, when purchasing connected devices for
their homes, consumers focus on connecting them to other devices,
such as TVs, smart lightbulbs, smart toothbrushes, smart coffee mugs,
smart ovens, smart juicers, smart thermostats, and so forth, overlooking
thus the importance of improving device privacy [33]. Accordingly,
several authors argued that consumers are the party responsible for
safeguarding their own assistants that go through the router, and the
lack of knowledge about the importance of performing appropriate
IoT devices installations in smart home environments can make user
information vulnerable [34,35].

In principle, users should be aware what kind of information about
them can be used when they connect their devices [36], as well as
understand that data breaches, which can put their privacy at risk, may
occur [37]. However, although the main wizards and IoT devices are
developed by large technology companies (e.g., Google, Amazon, or
Apple) that, in principle, invest much effort into making their devices
secure, in reality, the multitude of accesses make these devices unsafe
[38].

Furthermore, while some authors talk about achieving standardiza-
tion to protect IoT devices in smart living environments [39], in reality,
this technology is only developing and must be further improved as its
efficiency and effectiveness progress [40]. An important issue in this
respect is educating users about potential exposure and/or violation of
their personal data in the event of computer attacks [41]. In addition,
the speed at which new IoT device systems develop and grow on the
market suggests that ‘security first’ is a concept that has not yet been
effectively applied [13].

Overall, new connected devices are a result of constant innovation
[21]. Innovation drives the fastest possible launch of new devices in the
market, and such launches frequently occur without rigorous testing
against possible attacks and security beaches [15]. Compromising on
security of new devices leads to the quick detection of security gaps
and to the creation of patches [42]. Over time, as more gaps get
detected and fixed, the devices will start to become more secure [43].
However, this improvement can be counted on only when the devices
are already being used by consumers in the market [44]. Therefore,
the application of ‘security first’ during the development lifecycle of
IoT products should be an essential point of companies’ agenda [44].

While privacy is a complex issue, users are growing increasingly
aware that connected devices must follow certain security protocols
[42]. However, privacy and security of these devices remain a challenge
286
for users who make standard use of these products in their smart living
environments [45].

Therefore, in order to overcome these challenges of security issues
concerns in smart living environments, we aim to explore the security
issues of IoT devices and home assistant in smart living environ-
ments [25] using user generated-content (UGC) and user generated-
data (UGD) published in Twitter as a main source of data. Our second
goal is to establish how these security issues can affect user pri-
vacy [46]. Specifically, the present study addresses the following two
research questions:

• What are the main security issues of IoT devices and home
assistants in smart living environments?

• How can security issues of IoT devices and home assistants in
smart living environments affect user privacy?

The novelty and originality of the present study lies in that, in order
to answer the aforementioned research questions, we used a novel
exploratory methodology based on extracting insights related to secu-
rity and privacy of smart living environments, as this approach has
not been used in the field before using Twitter as a source of UGC
and UGD. Furthermore, to reinforce the results and to allow for the
use of our findings in future research on smart living environments
using the frameworks of UGC and UGD in Twitter, we have constructed
validation of our results using Computer-Aided Text Analysis (CATA)
theoretical framework.

In terms of the methodology, we first applied sentiment analysis
using Textblob which was tested with support vector classifier, multi-
nomial naïve Bayes, logistic regression, and random forest classifier
to divide the sample into tweets expressing positive, negative, and
neutral sentiment. Next, a Latent Dirichlet allocation (LDA) algorithm
was applied to divide the sample into themes related to security issues.
The topics were then tested with the keyness and p-value metrics
to measure their relevance in the database. Finally, insights were
extracted by applying a textual analysis process in Python validated
with the analysis of count and weighted percentage variables following
the CATA validation rules proposed by Short et al. [47] and Täuscher
et al. [48]. Finally, we analyzed the n-grams (unigrams and bigrams)
corresponding to the content of the database extracted from Twitter.

The remainder of this paper is structured as follows. Section 2
presents the literature review Section 3 provides further detail on
the methodology used in the present study. The results are reported
in Section 4. The paper concludes with a discussion (Section 5) and
conclusions (Section 6), including an outline of theoretical and practical
contributions, as well as limitations and further research directions.

2. Literature review

Nowadays, people share massive amounts of personal information,
as well as their thoughts or opinions, through social networks [49].
Social network platforms such as Twitter enable users to interact with
each other through the generation and sharing of content [50], which
allows one to obtain significant insights into user opinions. Moreover,
this content is used by enterprises to improve their managerial deci-
sions, as well as online marketing and communication strategies. In
the form of comments, opinions, and so forth, the content published
on social networks such as Twitter is analyzed under the framework
known as UGC or UGD. The UGC has been consolidated as a relevant
approach for the identification of insights into emerging events in social
networks in the last decade [51].

In this respect, as argued by Sarlan et al. [52], Twitter is one of
the social media that is gaining popularity in terms of spreading public
and private opinions. Therefore, sentiment analysis can be applied to
computationally measure customers’ perceptions. The study of these
perceptions and opinions can help companies to improve their business

strategies or identify pertinent issues in different areas [53].
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With regard to smart environment applications (SEA) that are di-
ectly linked to smart home environments, Alam et al. [54] analyzed
ow social media mining algorithm can help mine user opinions by
lustering textual data into different behaviors. This method combined
ith sentiment analysis and a neural network-driven approach was
emonstrated to improve SCAs’ performance. Furthermore, Webberley
t al. [55] argued that the level of retweeting of a tweet determines
ts interestingness, as it could be seen the signal used for affective
imulation. Therefore, the aim of this study was to help address the
‘filter bubble’’ problem by revealing interesting content.

Today, users interact with a wide range of IoT devices, ranging from
ensors people carry on their wrists to network-connected thermostats
56]. Likewise, users also extensively use home assistant devices to tidy
p rooms, sort laundry, and manage storage when owners are away
57]. In this context, it becomes increasingly difficult to preserve user
ata privacy and control how data are treated [58].

Specifically, while smartphone users manage the permissions
ranted to the apps they deploy on their devices, IoT users interact with
echnologies they did not install and are hardly ever aware of possible
rivacy threats [59]. Unaware of the risks of IoT systems, people give
rivate information about their meaningful choices [58], which makes
hem vulnerable through hardware, software, and side-channels, and
he risks are exacerbated when combined.

In this connection, Alrawi et al. [60] has recently argued that the
oT devices rely on insecure protocols that do not offer confidentiality
r integrity and, therefore, may lack endpoint verification. In another
tudy, home assistants were found to enforce an endpoint to verify the
loud identity [10], but not to enforce the verification of the application
dentity. This leads to vulnerable endpoints when replayed requests
re intended for other applications [61]. Therefore, in the event of
n attack, the information provided by home assistants may reveal a
ighly sensitive private information about user lifestyles [62].

Another group of concerns is related to the cloud context where
ensitive data are stored [63]. These concerns and opinions could be
een on Twitter UGC where the interaction over the past few years has
ncreased.

Indeed, social media platforms have changed how information is
roduced and consumed [64]. In a study on that applied sentiment
nalysis to analyze conferences, Parra et al. [65] found that well-
stablished communities in Twitter present stable patterns, and human–
omputer interaction conferences show consistently more emotion and
higher number of positive tweets than conferences in analytical areas

65]. This evidence validates the use of this social network in research
n emerging causes [62].

A summary of relevant studies that used social networks to extract
oT-related insights using UGC or UGD or highlighted the relevance of
ecurity issues in IoT devices and home assistants is provided in Table 1.

. Methodology

As mentioned above, in the present study, we used a three-step
ethodology to extract UGC insights from Twitter. Data-mining pro-

esses are generally used to create knowledge and identify indicators to
xplore and enrich the research [64]. In the present study, we used the
ATA theoretical framework [47]. CATA defines potential approaches
o construct validation using computer-aided text analysis tools and
o capture theoretically-based constructs of interest. As indicated by
hort et al. [47], Pollach [71], and McKenny et al. [72], software pro-
rams appropriate for studies based on CATA include VBPro, CATPAC,
oncordance, DICTION, General Inquirer, LIWC, NVivo, and MECA.

Furthermore, as argued by Xuanyang et al. [73] and Leon [74], in
rder to improve both the results and the validity of both knowledge
nd theory of the studies based on CATA, the computer text analysis ap-
roach, as well as technologies such as data mining, machine learning,
r prediction algorithms, should be used. Krippendorff [75] also con-
idered the use of data mining, machine learning algorithms and other
 w
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artificial intelligence-based approaches to improve the identification of
insights using computer text analysis methods, highlighting that these
approaches are more efficient than human coding in terms of cost and
speed.

Accordingly, in the present study, we performed sentiment analysis
using Textblob. This approach can be used with technological tools and
approaches such as Support Vector Machines (SVM), Support Vector
Classifiers (SVC), Naïve Bayes or Logistic Regression, among others
[76]. In the present study, we used Textblob, a classification tool
developed in Python, which was tested with a support vector classi-
fier, multinomial naïve Bayes, logistic regression, and random forest
classifier [77].

Secondly, an LDA algorithm – a topic-modeling tool – was applied
to divide the sample into topics related to security issues in smart
living environments and tested with keyness and p-value metrics. Both
opic modeling and the use of LDA algorithms include content analysis
nd development of knowledge extraction models [78]. Similarly, the
ombination of the sentiment analysis results with topic modeling
ncreases the relevance of the procedure validation with CATA, as
he results are filtered by different combinations of text analysis and
ebugging methods [79]. LDA is widely used in scientific research and
ontent analysis approaches [75,78].

Thirdly, as indicated by Short et al. [47], insights can be extracted
y applying the textual analysis process. This process can be developed
sing tools such as NVivo or programming languages such as Python
r R [73,74]. These approaches are used for the analysis of language
ictionaries to calculate the numbers of specific keywords, the weighted
ercentage, or n-grams indicators. These procedures were also used in
he present study, because the textual analysis developed in Python
s structured in theoretical theorems and treatment frameworks of
GC/UGD [2,64] and CATA [47,48]. Specifically, we used Krippen-
orff’s [75,80] assessments for the content analysis of the sample. In
hat follows, each of the developed procedures and the extraction of

he sample are explained in further detail.

.1. Data sampling

As outlined above, in the present study, a three-phase method-
logical approach was used. First, we performed sentiment analysis
hat works with machine learning to subdivide a database of 938,258
weets containing information related to tweets published under the
GC framework containing the hashtags #InternetofThings, #Home-
ssistant or #IoT.

The tweets were collected from the Twitter API from November 1
o December 11, 2020. At the time of data collection, there were no
vents in the sector that could differ in the industry related to the
nternet of Things and HomeAssistant, such as big fairs or events [81].
he results were also filtered based on the elimination of repeated
weets and retweets. Only the texts appearing in the collected tweets
ere analyzed, as the present study is based on the Natural Language
rocessing (NLP) framework that focuses on text analysis as a source
f information [82]. Python and Pandas libraries were used for tweet
xtraction and filtering (see [83]).

In this way, a total of 80,466 repeated tweets and 111,334 retweets
re obtained. Therefore, the final sample after the database debug-
ing and filtering process amounted to 746,458 tweets containing the
ashtags #InternetofThings, #HomeAssistant or #IoT. The database of
46,458 tweets was used to develop the experimental process of CATA
48] based on a UGC sample [84].

.2. Sentiment analysis

In sentiment analysis, different approaches are used to subdivide
he data into categories that express different emotions. In the present
tudy, following the standard procedure in UGC and CATA analysis,

e relied on the NLP framework [82] and focused exclusively on text,
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Table 1
Relevant studies.
Source: The authors.

Authors Aims

Alamsyah et al. [51] This paper argued that Twitter can serve as a source of real-time thoughts and opinions from users that can be used to map the public
opinion towards a topic.

Mishra et al. [66] This study tracked different opinions about a product to analyze them and classify them into positive, negative, or neutral sentiments.
Liu et al. [67] This study unidentified a model to cope with noisy labels, such as emoticons for a clear behavioral classification.
Janssen et al. [68] In this study, key IoT challenges related to security, privacy, and data quality were recognized.
Komninos et al. [69] This paper categorized threats to the security smart grid and home environment to provide countermeasures to preserve user security.
Pecorella et al. [70] In this study, we authors developed a network sentiment analysis to dynamically adapt the security level of the smart home network.
e
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thus disregarding emoticons, images, URLs, or any other multimedia
elements contained in the tweets.

Textblob was used for sentiment analysis. This procedure is com-
monly used in academic research [85]. Textblob is a well-known library
developed in Python programming language and is used to find com-
mon text processing operations [77]. Textblob is built on NLTK and
patterns [86]. While one of the limitations of sentiment analysis is that
it is challenging to apply it to texts that contain connotations, sarcasm,
irony, and so forth, in the present study, we took issues into account
and tried to proceed with the development of the methodology so that
to avoid these challenges [87].

Therefore, the results showed a polarity score that was measured
and classified as polarity or subjectivity. Polarity ranged from −1 to
, and subjectivity from 0.0 to 1.0 [85]. The algorithm that works
ith sentiment analysis was trained a total of 744 times using tweets

hat were manually classified, giving the algorithm in-puts centered on
entiment classification [88]. The algorithm, based on these questions,
earned by itself, and the more tweets it analyzed, the higher was its
uccess rate, since it works with machine learning [84].

Once tweets were divided into different sentiments, we obtained
hree databases of tweets expressing negative, positive, and neutral
entiments. Although sentiment analysis algorithms can indeed divide
he databases into a multitude of sentiments, in the present study, we
ecided to use only three sentiments, because our study objective could
e met by using this standard in the NLP approach methodology.

The article was validated for 5 cross-validations as indicated in
iremath and Patil [85]. For the measurement of the results, the

actors of precision, recall, f1-score, and support were considered (see
ection 4). The results in terms of macro average and weighted average
ere also taken into account. For the classification of patterns in the
nalyzed datasets, we used the following category models:

• Support vector classifier [89]
• Multinomial naïve Bayes [90]
• Logistic regression [89]
• Random forest classifier [91]

.3. Latent Dirichlet Allocation (LDA)

In the next step, the three databases were analyzed with a topic-
odeling algorithm known as LDA [92]. LDA enables the analysis of the
ords that compose the analyzed documents. The LDA algorithm was
eveloped in Python LDA 1.0.5 using Gibbs sampling (MAC version).
sing the LDA algorithm, we obtained major themes in each of the

hree datasets [78].
These themes were consequently divided into feelings, and theme

ames were manually composed of frequently occurring words in each
f the themes [93]. This is a standard approach used in previous
esearch on modeling themes based on text analysis [94].

Overall, the thematic modeling algorithm aims to study the different
nputs understood as the words contained in the different databases
ased on frequency and positioning of words in the documents (Parra
nd Santander, 2015). In this way, a percentage of the relevance of
ach of these words was computed and based on these values, we

dentified and names the themes in the data [95]. As argued by Khan

288
t al. [96], an LDA model is a probabilistic assumption developed in
wo parts. In the first part, words were identified in separate documents
i.e., sentiment databases).

Next, two consecutive steps were performed: in the first step, a
istribution of themes in the sample was identified; in the second step,
he themes were automatically grouped into keyword forms according
o the number of times they were repeated. The equation applied with
ython is shown in Eq. (1).

(

𝛽1∶𝑘, 𝜃1∶𝐷, 𝑍1∶𝐷, 𝜔1∶𝐷
)

=
𝐾
∏

𝑖=1
𝜌(𝛽𝑖)

(

𝛽1
)

×
𝐷
∏

𝑑=1
𝜌
(

𝜃𝑑
)

×
𝑁
∑

𝑛=1
𝜌(𝑍𝑑,𝑛

|

|

𝜃𝑑 )𝜌
(

𝑊𝑑,𝑛
|

|

𝛽1∶𝐾 , 𝑍𝑑,𝑛
)

(1)

𝛽𝑖 Distribution of word in topic i, altogether K topics
𝜃𝑑 Proportions of topics in document d, altogether D documents
𝑧𝑑 Topic assignment in document d
𝑧𝑑,𝑛 Topic assignment for the 𝑛th word in document d, altogether N words
𝑤𝑑 Observed words for document d
𝑤𝑑,𝑛 The 𝑛th word for document d
Next, the automatic division of the words was applied to the analysis

f the themes using the approximation shown in Eq. (2). Based on the
esults, we analyzed the first 10 words of each sub-theme to create the
ames of the themes [84].

(

𝛽1∶𝑘 , 𝜃1∶𝐷, 𝑍1∶𝐷
|

|

𝜔1∶𝐷
)

=
𝜌
(

𝛽1∶𝐾 , 𝜃1∶𝐷, 𝑧1∶𝐷, 𝜔1∶𝐷
)

𝑝
(

𝑤1∶𝐷
) (2)

3.4. Textual analysis

Finally, we applied textual analysis to calculate the weighted per-
centages of a keyword in the analyzed dataset. The textual analysis
approach takes into consideration the analysis of the weight of the
words in the entire database. In this way, a percentage of the relevance
of those words in the database can be evaluated [97]. Based on this per-
centage, researchers can extract insights about the patterns identified
in the database or extract considerations about the object of study to
analyze them from a specific perspective [98].

In the present study, indicators such as weight percentage and
the number of times a word was repeated were considered. This ex-
ploratory approach enabled extracting insights to address the research
questions a [84].

Furthermore, using a well-known approach in NLP [99], we identi-
fied additional n-grams collected from the three datasets. Using Latin
numerical prefixes, an n-gram of size 1 was referred to as a ‘‘unigram’’;
size 2 was a ‘‘bigram’’. Therefore, n-grams relative to unigram (posi-
tive, negative, and neutral) as well as bigram (negative, positive, and
neutral) were identified in the process of textual analysis. In doing so,
we followed Reyes-Menendez et al. [100].

In this way, in other to compute the n-grams analysis we followed
Wu and Su [101] whose validated their hypothesis using the statistical
measure known as mutual information (MI) for n-grams. According to
Reyes-Menendez et al. [100] this statistical measure refers to the prob-
ability of co-occurrence of two indicator variables that are perfectly
correlated.
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Table 2
Model category details.

Sl. No. Model Name Fold_idx Accuracy - Textblob

0 RandomForestClassifier 0 0.511456
1 RandomForestClassifier 1 0.524034
2 RandomForestClassifier 2 0.530548
3 RandomForestClassifier 3 0.542677
4 RandomForestClassifier 4 0.555481
5 LinearSVC 0 0.862758
6 LinearSVC 1 0.859838
7 LinearSVC 2 0.865229
8 LinearSVC 3 0.869946
9 LinearSVC 4 0.866352
10 Multinomial Naïve Bayes 0 0.719677
11 Multinomial Naïve Bayes 1 0.701482
12 Multinomial Naïve Bayes 2 0.739892
13 Multinomial Naïve Bayes 3 0.736523
14 Multinomial Naïve Bayes 4 0.730683
15 LogisticRegression 0 0.836703
16 LogisticRegression 1 0.827942
17 LogisticRegression 2 0.839173
18 LogisticRegression 3 0.836029
19 LogisticRegression 4 0.836029

Authors such as Bouma [102] and Iyengar et al. [103] used MI
o validate whether there is a shared correlation between words and
his measurement must be compared to the indicator frequency (F).
ollowing MI value between random variables X and Y, whose values
ave marginal probabilities as stated by Reyes-Menendez et al. [100],
nd p(x) and p (y), and joint probabilities p(x, y), can be computed
sing Eq. (3).

(𝑋; 𝑌 ) =
∑

x,y
𝑝(𝑥, 𝑦)In

𝜌(𝑥, 𝑦)
𝑝 (𝑥) 𝑝(𝑦)

(3)

A summary of the methodological process is shown in Fig. 1 which
shows the steps of data collection and the methodological process. Re-
garding the sample, Fig. 1 shows the data collection process in Twitter
and its collection date. The use of SA and Textblob was tested with SVC,
MNB, LG, and RFC. Next, topic modeling with LDA was used to obtain
the sample’s sentiments, which were then validated with keyness, p-
value, and the topic’s identification (including the name, sentiment,
and descriptions). Next, we performed of TA using the NLP perspective
and identified n-grams. In this step, WP metrics, total keywords count,
and the n-gram’s sentiments were calculated. Finally, the results were
discussed based on the UGD and UGC theoretical perspective; and
the considerations of the content analysis were proposed in the CATA
conceptual framework. Fig. 1 also shows additional information related
to the use of Python and Textblob.

4. Results

4.1. Results of sentiment analysis

The experiment and approximation were modeled with the support
of the standard classifier methods namely, logistic regression, naïve
Bayes, SVC, and random forest classifier. Accuracy measured the per-
centage of cases when model succeeded. This is one of the most used
metrics in machine learning studies [99]. The highest accuracy result
in this study was found about Linear SVC Sl. No. 8 (0.869946) and 9
(0.866352). As concerns random forest classifier, the highest accuracy
was 0.555481.

The accuracy of multinomial Naïve Bayes amounted to 0.739892,
while that of logistic regression was 0.839173, being this last value of
accuracy the higher found in the analysis.

Table 2 shows the results of the classification experiments, high-
lighting the highest accuracy values achieved using Textblob in each
of the models.

Table 3 summarizes brief scores of the Textblob analysis according
to the model used. IAs can be seen in Table 3, the highest values to
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Table 3
Summarized brief scores.

Sl. No. Model Name Scores of Textblob analysis

1 LinearSVC 0.864825
2 LogisticRegression 0.835175
3 MultinominalNB 0.725651
4 RandomForestClassifier 0.532839

Table 4
Classification report.

Sl. No. Parameters Vader

precision recall f1-score support

1 Negative 0.74 0.81 0.74 20.511
2 Positive 0.84 0.75 0.79 2301
3 Neutral 0.89 0.93 0.92 20.493
4 Accuracy – – 0.85 43.642
5 Macro avg 0.79 0.75 0.73 43.642
6 Weighted avg 0.79 0.82 0.84 43.642

the set of accuracy in the results are those corresponding to linear
SVC and logistic regression, with the values 0.864825 and 0.835175,
respectively.

The classification report presented in Table 4 shows the positive,
negative, or neutral accuracy by Textblob, as well as the recall value
and the fl-score and support values. Accuracy is a metric that measures
the quality of the machine learning model in classification tasks. Recall
measures reflect the quantity that the machine learning model can
identify in a database. F1-score is used to combine precision and
recall measurements into a single value, which is a practical approach,
because it facilitates comparing the combined performance of accuracy
and completeness between various solutions. Finally, support measures
reflect the support of the machine learning machine used to predict the
model. Macro average measures the total average of the model based on
the variables analyzed, while weighted average measures its relativity
in terms of weight. The highest recall values were obtained for negative
and neutral tweets, with the corresponding values of 0.81 and 0.91,
respectively. Positive tweets obtained a 0.75 recall.

4.2. LDA results

Using the LDA algorithm, we identified a total of 10 topics related to
the security or privacy of IoT and home assistants in smart living envi-
ronments. For each of the topics identified in the databases subdivided
into feelings, the first 20 topics of each database were analyzed. To this
end, the first 9–12 words that appeared by relevance as a result of the
automated classification process after applying the LDA were identified.

The topics were named based on the words grouped within them.
In the naming process, we tried to use the most frequent words to form
a title, which is standard approach in LDA studies [104].

Similarly, the topics from which the insights were extracted based
on the sentiment expressed in tweets were named based on the study of
the terms and concepts used in the scientific literature on privacy and
security of IoT devices in smart living environments. From the total
number of topics identified in the LDA process, the topics indicated in
Table 6 were manually selected to answer the research questions.

Furthermore, in order to measure the relevance of the identified
topics, their keyness values were calculated. The keyness is defined as
the strength of the link between the topics; statistically, this measure
determines the log-likelihood score values [105].

In the present study, the keyness was used to measure the statistical
relevance of the topics in the complete database of the tweets upon
filtering. Of note, log-likelihood of >3.8 was statistically significant
when p-value < 0.05. Table 5 summarizes the results regarding the
topics, their descriptions, associated sentiment, keyness, and p-values.
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Fig. 1. Summary of the methodological process.
Table 5
LDA topics results sentiment, Keynes and p-value.

R Topics Description Sent.a Keyness p-value

1 IoT devices Summary of a multitude of content about IoT devices and connected devices N 803.05 0.041
2 Malware Different malware processes found in IoT devices Ne 692.90 0.039
3 Cybersecurity attacks Summary of topics related to the analysis of cyber-attacks Ne 601.23 0.037
4 Cloud-based security Cloud-based security systems to which the devices are connected in smart home environments P 591.83 0.032
5 Storing of data Access to databases that collect user information Ne 583.04 0.031
6 Testing software It Systems in test or users who install smart devices in their homes Ne 467.70 0.028
7 Data Leaks Companies misusing user data that may put users at risk Ne 461.15 0.027
8 Anonymize data Initiatives to support anonymous user data and anonymization processes P 397.84 0.025
9 Cloud companies Companies that store information concerning IoT devices in the cloud N 392.75 0.024
10 Medical technology Digital healthcare and telemedicine-related technologies N 145.21 0.019

aSent. = Sentiment, N = Neutral sentiment; Ne = Negative sentiment; P = Positive sentiment.
able 6
rouped keywords, count, and weighted percentage.
R Word Similar words Frequency WP

1 IoT connected devices, IoT devices for home, programmable IoT devices, IoT sensors, etc. 130772 18.11
2 Malware Malware, malicious software, IoT malware, IoT ransomware threat, etc. 23286 9.78
3 Cybersecurity Cybersecurity attacks, IoT devices attacks, trending IoT malware attack, protect IoT devices, etc. 19019 6.59
4 Cloud Cloud-based security, cloud computing, secure integration, cloud-based IoT security, etc. 17024 5.21
5 Data store Storing of data, IoT data storage, IoT data deluge, data store issues, router data store, etc. 17009 5.21
6 Test Testing software, IoT testing software, IoT testing tools, IoT testing, wireless IoT testing, etc. 16731 4.89
7 Data leaks Data leaks, IoT private data, IoT data breaches, security breaches, IoT-related data leaks, etc. 16240 4.16
8 Anonymize Anonymize IoT data, IoT data streams, IoT-based anonymous functions, anonymization in IoT, etc. 15801 3.67
9 Cloud companies IoT cloud computing, cloud platforms, management of IoT devices, etc. 14010 3.09
10 e-Health Medical technology, digital health services, IoT medical care, e-health, IoT medical devices, etc. 13091 2.99
4.3. Results of textual analysis

In order to proceed with the textual analysis process, we analyzed
the number of times that the keywords were repeated in the databases
and the weighed percentage in the total database [97]. To this end, we
used the NLP framework using Pandas GroupBy in Python.

In this way, the count variables relative to the number of times
the words were repeated and their frequency in the database were
obtained. Table 6 shows similar keyword sets and the total weight in
the database.

Next, we analyzed the n-grams in the databases as one of the proce-
dures highlighted in CATA-based studies. An n-gram model predicts the
occurrence of a word based on the occurrence of its 𝑛−1 previous word.
Similarly, the bigram model (𝑛 = 2) predicts the occurrence of a word
given only its previous word (as 𝑛 − 1 = 1). Based on this approach,
Table 7 lists n-grams divided into feelings for unigrams and bigrams.
Moreover, the analyzed n-grams are supported in placement, allowing
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researchers to take into account the contexts where words occur in
a corpus [106,107]. The context is defined as words that are usually
used together. Reyes-Menendez et al. [100] indicated that, if placement
presents a strong and stable relationship, it is called a lexical or n-gram
package. In Tables 7 to 16, each of the topics is presented per Rank (R)
with the keywords identified in Table 6.

We also list the terms that usually accompany these terms according
to the objectives of the study and therefore removing from the results
those terms that did not fit in to the study research questions as were
categorized as not inclusive. Likewise, in this case the term Freq/count
refers to the total frequency of appearance of the collocates. This is the
sum of FreqL of words that appear on the left on the topic and FreqR
of words that appear on the right of the topic [100].

5. Discussion

The recent massive use of IoT devices, home assistants, and new
intelligent systems has led to the development of new privacy concerns,
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Table 7
N-grams for the collocates of the neutral topic ‘‘IoT’’.

R Collocates for IoT

Freq Freq L Freq R Collocate

1 13336 7901 5435 #IoT
2 7912 134 104 ConnectedDevices
3 2012 780 1232 IoTsensors
4 1003 450 553 Programmable
5 750 359 391 Services

Table 8
N-grams for the collocates of the negative topic ‘‘Malware’’.

R Collocates for Malware

Freq Freq L Freq R Collocate

1 6840 2905 3935 #IoT
2 2081 1032 1978 Malware
3 1145 573 572 Threats
4 791 379 412 Malicious
5 234 130 104 Attacks

Table 9
N-grams for the collocates of the negative topic ‘‘Cybersecurity’’.

R Collocates for Cybersecurity

Freq Freq L Freq R Collocate

1 4091 2074 2017 #IoT
2 3301 1505 1796 IoTattacks
3 2781 1407 1374 IoTsecurity
4 491 249 242 Protections
5 401 141 260 Cyberattacks

Table 10
N-grams for the collocates of the positive topic ‘‘Cloud’’.

R Collocates for Cloud

Freq Freq L Freq R Collocate

1 3911 2842 1069 #IoT
2 2415 1905 510 CloudIoT
3 1703 790 913 Cloudcomputing
4 804 394 410 Cloudsecurity
5 200 106 94 Integrations

Table 11
N-grams for the collocates of the negative topic ‘‘Data store’’.

R Collocates for Data store

Freq Freq L Freq R Collocate

1 3701 1890 1811 #IoT
2 3501 1703 1798 Datastoreage
3 2756 1807 949 Attacks
4 1429 559 870 Issues
5 260 115 145 Router

Table 12
N-grams for the collocates of the negative topic ‘‘Test software’’.

R Collocates for Test software

Freq Freq L Freq R Collocate

1 2591 1590 1001 #IoT
2 2390 1361 1230 Tests
3 301 194 107 Testingtools
4 297 174 123 Wireless
5 241 189 52 Sensors

both for users and companies that manage user data [108]. As argued
by Kong et al. [109], the currency of the 21st century is data and the
insights that can be extracted from data analysis with the techniques
focused on data automation, machine learning, or artificial intelligence.

In line with similar findings reported by Kumar and Patel [110]
and Mohammad [111], the results of the present study revealed that
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Table 13
N-grams for the collocates of the negative topic ‘‘Data leaks’’.

R Collocates for Data leaks

Freq Freq L Freq R Collocate

1 2101 1048 1997 #IoT
2 1801 953 848 Breaches
3 1791 874 917 Leaks
4 1090 671 419 Privacy
5 749 344 405 Users

Table 14
N-grams for the collocates of the positive topic ‘‘Anonymize’’.

R Collocates for Anonymize

Freq Freq L Freq R Collocate

1 1994 793 1201 #IoT
2 1880 781 1099 Anonymize
3 1803 808 995 Data
4 489 389 100 Functions
5 371 156 215 Privacy

Table 15
N-grams for the collocates of the neutral topic ‘‘Cloud companies’’.

R Collocates for Cloud companies

Freq Freq L Freq R Collocate

1 1031 501 530 #IoT
2 1001 701 300 Cloud
3 957 646 311 Computing
4 401 276 125 Management
5 230 129 101 Platforms

Table 16
N-grams for the collocates of the neutral topic ‘‘e-Health’’.

R Collocates for e-Health

Freq Freq L Freq R Collocate

1 976 400 576 #IoT
2 890 549 341 Medical
3 807 401 406 Health
4 602 309 293 Services
5 501 270 231 Hardware

there are concerns regarding how data obtained from connected devices
are managed. These concerns are the main neutral topic identified in
this study (keyness = 803.05; 𝑝 = 0.041), with the textual analysis
frequency of 130.772 and a WP of 18.11. This topic (IoT) stood out in
our analysis of n-grams of the collocates the features of programmable
(Freq 1003) IoT devices and services (Freq 750).

However, with regard to the proposed research objectives, we found
security issues related to malware (keyness = 692.90; 𝑝 = 0.039) that
can be used in connected devices in smart living environments. The
textual analysis results revealed the importance of malicious software,
a specific malware for home assistants, or specific attacks such as
ransomware threat (total frequency 23286 keywords and a WP of 9.78).
These concerns were also identified by Arabo et al. [112]. Also, n-grams
for the collocates of the negative topic malware highlight the specific
concerns about malware (Freq 2081), threats (Freq 1145), malicious
(Freq 791), and attacks (Freq 234).

Similarly, the results of topic-based approach suggest the concerns
related to the issues regarding cyber-attacks (keyness = 601.23; 𝑝 =
0.0379) that could target connected devices in smart living environ-
ments. These issues highlight the relevance of user personal data when
they use these IoT devices in their homes [113], as suggested by the
results of n-grams for the collocates of negative topics related to data
leaks, such as breaches (Freq 1801), leaks (Freq 1791), and privacy
(Freq 1090).

Furthermore, since the IoT device data are usually located and
stored in cloud storage systems [114], these cloud systems can also
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be attacked, and user personal data can reach cybercriminals [115]. In
our results, this topic was associated with positive sentiment (keyness =
591.83, 𝑝 = 0.032), in contrast to the negative topic related to standard
storing of data (keyness = 583.04, p-value = 0.031. As argued by Patel
and Doshi [116] cloud-centric systems – regardless of whether or not
the data come from IoT – are usually one of the points that receive
the most attacks from cyber-criminals, as such data can be used for
extortion or identity theft [117]. Databases that store user data are a
relevant source of data not only for companies that manage and analyze
these data, but also for users and their confidence and trust in using
the Internet products [118]. In our results, the topic of cloud storage
systems had the frequency of 17024 and WP of 5.21.

Furthermore, we also observed the relevance of the data storage
capacity from companies that work with cloud services linked to IoT
devices, with the identification of the neutral topic cloud companies
(keyness = 392.75; 𝑝 = 0.024). Therefore, data management by compa-
nies is a priority for the user data security. As suggested by the n-grams
of neutral topic cloud companies, the data management (Freq 401) and
the use of digital platforms (Freq 230) for data filtering and storage are
relevant to users.

Furthermore, in our results, we also identified a negative topic that
focuses on the use of IoT in the test mode (keyness = 467.70; 𝑝 = 0.028).
Test modes are connected products launched on the market that, owing
to machine learning technology, improve over time [119]. Sometimes,
these devices can cause problems in their operation, although users are
aware that they are using an emerging technology that will improve
and get more intelligent over time [120]. The textual analysis results
showed relative occurrences to test modes of software, hardware, wire-
less among other IoT devices (Freq 16731 keywords, WP of 4.89). In
n-grams for the negatives collocates, testing tools (Freq 301), wireless
(Freq 297) and sensors (Freq 241) gained relevance.

Another concern we identified in the results is that of data leaks (see
also [121]). Both companies and users are aware that their accounts
might be hacked, both on the personal level through their accounts and
through the routers in the smart living environments where the devices
are installed [122]. Therefore, security concerns related to these data
leaks are relevant for the industry (keyness = 461.15, 𝑝 = 0.027)
113]. This negative identified topic links security concerns regarding
nonymity and data. The data anonymity has been identified as a
ositive topic (keyness = 392.75; 𝑝 = 0.024) where, in the study of the
-grams, the functionalities (Freq 489) and the increase of privacy (Freq
72) stood out. However, while this is a regular process undertaken by
ompanies, there are concerns about whether user personal data remain
nonymous as was studied by Madaan et al. [123] and Ishmaev [124].
ur results showed the relevance of these concerns (data leaks topic),
ith the frequency of 16240 keywords and WP of 4.16. Moreover,
e found a direct relationship between the keywords ‘‘breaches’’ (Freq
801) and ‘‘leaks’’ (Freq 1791) and between ‘‘privacy’’ (Freq 1090) and

‘users’’ (Freq 749).
In addition, an important insight offered by our results is related to

he use of IoT and home assistant systems in digital health services. As
uggested by the identified neutral topic ‘‘medical technology’’, these
echnologies are being used as novel forms of support in hardware and
oftware technologies to generate data sources However, this topic was
he least relevant in our data (keyness = 145.21, 𝑝 = 0.019).

Furthermore, the IoT allows for the development of new function-
lities and features that have not been previously used in the health or
nsurance industry [125]. The results of our textual analysis highlighted
he importance of digital health services, medical care, or the use of
he e-health app (Freq 13091; WP 2.99), which was previously studied
reviously by Khemissa and Tandjaoui [126] and Vilela et al. [127].
ikewise, the relevance of this topic to the smart living industry was
onfirmed by n-grams for the collocates—namely, medical (Freq 890),
ealth (807), services (602) and hardware (501).

Accordingly, the strategies focused on the understanding of identity
anagement should be prioritized for further development in the short-
erm future. When buying IoT devices for smart living environments,
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users should understand the technology and risks of buying these
connected products. These initiatives should be carefully considered by
companies that develop these devices and public agencies that work to
educate users on the risks of transforming their homes into smart living
environments.

6. Conclusions

In the present study, we used a three-phase methodology to extract
insights regarding security issues of IoT devices in smart living environ-
ments using data-mining techniques. Based on the results, we identified
10 topics and classified the analyzed tweets into those expressive
three different types of sentiment (positive, negative, and neutral).
More specifically, the positive topics were cloud-based security and
anonymize data; furthermore, negative topics included malware, cy-
bersecurity attacks, storing of data, testing software and data Leaks;
finally, neutral topics were IoT devices, cloud companies, and medical
technology. We also extracted insights regarding the main keywords
that composed the topics and explored the most correlated n-grams.

Based on the results, with regard to our first research question (What
are the main security issues of IoT devices in smart living environments?), we
found that the main security issues are malware, cybersecurity attacks,
data storing vulnerabilities, the use of testing software in IoT, and
possible leaks due to the lack of user experience.

Furthermore, regarding RQ2 (How can security issues of IoT devices
in smart living environments affect the privacy of users who use these
technologies?), using the insights from textual analysis and n-grams,
as well as the identified topics, we discussed different circumstances
and causes that may affect user security and privacy when using IoT
devices. Our results also emphasize the importance of UGC in the
processing of personal data of IoT device users, access to medical
information or disease care, personal habits in home environments or
illegal access to unwanted information by users of these devices has
been highlighted.

Finally, our results also revealed the importance of identity man-
agement in IoT devices used in smart living environments. In this way,
users can be aware of the data they generate as well as of potential
vulnerabilities of the systems, possible gaps, or information leaks.

Theoretical implications
Further research can use the topics identified in the present study to

establish constructs, variables, or indicators that specifically study IoT
privacy risk issues, both within and beyond smart living environments.
In addition, the present study proposes a novel methodology that
contributes to the IoT sector. Therefore, based on the methodological
development focused on data mining and the use of the UGC as a data
source, researchers can develop similar approaches to find insights and
patterns in relation to security issues using the content shared by users
on the Internet and social networks.

Similarly, the insights through textual analysis and the results of
our study of n-grams enable creating substantiate research proposals
and hypotheses to be tested using similar approaches or quantitative
methods to establish their conclusions regarding the IoT industry in
future research.

Practical implications
With regard to practical implications of our findings, agencies and

practitioners can use the results of the present study to establish new
security protocols not only at the technical level, but also at the level
of educational communication, so that to establish fluid channels of
information with users who buy their products and services.

Users should be aware of the security issues that can result from
failed installations of these devices or their misuse. In addition, com-
panies can use our results to better understand users’ appreciation of
the security of IoT connected devices, improve their products, or make
users thoroughly understand the risks of excessive use of such devices.

Limitations and future research
The limitations of the present study are related to the size of the

sample and the time horizon analyzed. Another possible limitation of

this work is our use of exploratory approaches that work with machine
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learning. The more these approaches are trained, the better their pre-
dictive ability. The LDA process using which the identified topics were
named could also a limitation of the present study, since it is a manual
process developed within the standard LDA model approach.

In further research, it would be necessary to focus on improving
the analysis processes used in this study, as well as identify new issues
related to safety of IoT devices and home assistants and user privacy in
smart living environments.
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