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Slicing a model (computing thin slices of a geometric or volumetric model with a sweeping plane) is
necessary for several applications ranging from 3D printing to medical imaging. This paper introduces a
technique designed to compute these slices efficiently, even for huge and complex models. We voxelize
the volume of the model at a required resolution and show how to encode this voxelization in an out-
of-core octree using a novel Sweep Encoding linearization. This approach allows for efficient slicing
with bounded cost per slice. We discuss specific applications, including 3D printing, and compare these
octrees’ performance against the standard representations in the literature.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Slicing a geometric (surface-based or volume) 3D model is the
peration that computes a complete set of thin or planar sections
hile a sweeping plane moves across the model.
This article introduces a technique designed to efficiently deal

ith the slicing process and overcome the main problems of
lassical approaches. These include the massive size of the inter-
ediate representations when complex models are considered.
Slicing is an essential operation in several applications, in-

luding re-slicing processed 3D medical data to stacks of images
cross arbitrary directions, layer-based analysis of atmospheric
nd geological volume models, and 3D printing solid models,
mong others.
In our approach, instead of using the contour generation of

tandard 2D slicing algorithms, we voxelize the model space and
se a volumetric scheme.
We differentiate between 2D slicing of (usually BRep) 3D mod-

ls and volumetric slicing. While 2D slicing algorithms compute
sequence of intersections between a geometric model and a

weeping plane, volumetric slicing algorithms compute the se-
uence of slices—one voxel thick—generated by this sweeping
lane. Classical 2D slices are computed by an object-plane inter-
ection algorithm, whereas ‘‘boundary’’ pixels in volumetric slices
orrespond to voxels being stabbed by any portion of the object
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surface and are detected through a cubic cell—object surface
intersection test. Both being essentially different, the results will
also differ in many cases like objects having faces parallel to the
sweeping plane. Nonetheless, applications using volumetric data
like 3D medical data or 3D printing require volumetric slicing
schemes to precisely model the thickness of the real-world slices
and the 3D nature of the printer ink dots.

We also propose a novel serialization of space subdivision
scheme, specifically well-suited for our problem. Hierarchical
space subdivision solutions have been widely used for solid repre-
sentation as they are easy-to-use data structures that offer many
advantages. They allow significant compression of volume infor-
mation, locally adapt to the model’s features frequency, support
robust boolean operations and morphological operators, and can
be naturally linearized for off-core storage. In what follows, we
will focus on octree representations.

Octrees require setting a maximum depth (resolution) at which
to stop the recursive subdivision. This depth represents the pre-
cision the given octree can represent underlying models or the
highest frequency of features it can capture. Currently, applica-
tions require higher and higher definitions, giving rise to very
large octrees that, therefore, must be stored off-core and paged-in
as required by the algorithms processing them. However, off-
core storage is slower, and, consequently, we must pay attention
to how we store the octree off-core to avoid hindering the
performance of the algorithms of interest. Current commercial
printers (like HP Jet Fusion 5200 Series) feature high resolutions
of up to 1200 vpi in the xy plane and 300 slices per inch with
printing beds of 12× 16× 16 inches, which puts severe demands

on these algorithms. Each of the 4800 slices consists of roughly

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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.7×108 voxels, and they must be produced at the advancement
rate of the printer. Depending on the printing mode, each slice
must be produced in less than seven seconds. This time must
include some expensive computations to achieve a good printed
part quality. Hence, in the printers we used (HP Jet Fusion Series),
the slicing of the model must be done in less than 3 s.

Additionally, it is possible to apply different inks or treatments
to the printed object in some machines. These are useful to
change characteristics like colour and finish. As they add to the fi-
nal cost and are only needed in the object surface, it is essential to
identify and compute all voxels containing the object boundary,
which we call grey voxels. However, 2D slicing is usually com-
puted by intersecting the input model by a sweeping plane, which
does not detect all grey voxels correctly (e.g., when the boundary
of the part contains horizontal faces). Instead, we intersect the
solid model with the cubical cells of the volume voxelization. This
way, we can guarantee that grey voxels separate white from black
voxels, and surface treatments are applied to the whole surface
of the model. Volumetric processing also supports more precise
computations of the voxel coverage along the boundary, further
enhancing the achievable surface quality.

In this paper, we discuss a linearization of octrees especially
conceived to make sequential volumetric slicing efficient. We dub
this linearization Sweep Encoding, firstly introduced in patents
1,2]. We present algorithms to build such octrees and efficiently
xtract slices sweeping through the volume with bounded cost
er slice, which is essential to guarantee the fast-enough com-
utation of the slices during printing. The complexity of most
licing algorithms is input-data bounded (i.e., depends on the
riangular mesh size), making it hard to ascertain hard bounds
n the execution time required to compute a slice. Instead, our
olumetric slicing algorithm is output-data bounded (i.e., de-
ends on the printing resolution). Therefore, for a given ap-
lication, it is possible to offer such performance guarantees,
hich—as we mentioned—are of paramount relevance in some
pplications. Finally, we also discuss a specific application of
hese Sweep octrees in 3D printing and compare this with the
tandard representations in the literature.
The rest of the paper is organized as follows. Section 2 reviews

he most relevant previous work on the subject. In Section 3
e introduce our novel Sweep encoding and explain how it
vercomes the limitations of existing ones. Section 4 explains
ow to construct our octrees from triangular meshes (top-down)
nd stacks of vectorial slices (bottom-up), and Section 5 de-
cribes how to slice them efficiently. Finally, Section 6 discusses
he performance of our method against Depth and Breadth-
irst encodings, and, finally, concluding remarks are provided in
ection 7.

. Previous work

Slicing is commonly performed by obtaining a set of contours
or each slicing plane. Since the planes go through model space,
ost 2D slicing algorithms simulate the movement of a sweeping
lane throughout the mesh of the model [3]. Optimally, a slicing
lgorithm should scale with the number of intersecting triangles
n each slice. The algorithm of Huang et al. [4] is optimal in
his sense for a uniform distribution of slicing planes along their
erpendicular axis.
It must be observed that any 2D slicing process involves two

ain intrinsic problems: the staircase effect and the containment
roblem. The first one is connected to the selected resolution and
ay be alleviated by applying adaptive slicing. This optimization
an be done for triangle meshes [5] or directly to a surface
odel if it is available [6]. Minetto et al. [7] proposed an optimal
lgorithm for uniform and adaptive 2D slicing. Octrees can also be
2

helpful to compute an adaptive slicing of a given model [8]. Given
the total number of slices, positioning them in a provably optimal
way is possible when using variable thickness [9]. Another way
of attacking the staircase problem is to take advantage of the
thermal diffusion of the deposition material, or to exploit free
form material deposition [10], but this is only possible on Fused
Filament printers equipped with a 6-DOF arm. The second issue
(the containment problem) appears when slices do not stab the
object surface and fall entirely inside or outside the model. Slices
above the top of the object or below its bottom fall into this
category, being completely outside in the case of slicing standard
solid parts, but being totally interior, for instance, if what is sliced
is the part mould. Algorithms must detect these cases and classify
(in, out) the corresponding slices in a correct way, based for
instance on neighbour slides, to avoid ending up with erroneous
slices.

One important application for slicing is in additive manufac-
turing [11]. Slicing is one of the main challenges that need to be
solved in 3D printing. Oropallo et al. [12] introduce a technique
designed to deal with the slicing process efficiently. Given the
resolutions needed for high-quality 3D printing, the discretization
of the volume into black, grey, or white voxels needs to be
performed efficiently. Spatial data structures are a cornerstone of
most geometry processing algorithms [13,14]. For our problem,
since we want to store the voxelization of a model to 3D print,
it makes sense to use an octree [15]. At maximum subdivision,
the octree perfectly reflects the uniform voxelization we want to
represent while efficiently exploiting the variable detail inherent
in the model. Indeed, octrees have been applied because of these
same properties to many applications. From isosurface extrac-
tion [16,17] to surface reconstruction [18], segmentation [19],
simplification [20], global illumination [21], and even neural net-
works [22]. Another consequence of the size of voxelizations for
3D printing is that they cannot fit into in-core memory even in
octree form. Octrees have also been adapted to work out-of-core
in many applications, like simplification [23], surface reconstruc-
tion [24], view-dependent visualization [25], and robotics [26].
For certain types of models, like large lattice structures, out-
of-core efficient solutions can be devised without the use of
octrees [27]. Instead, when comparing with algorithms that com-
pute geometry slices, the cost of rasterizing the high-resolution
slices also needs to be factored in for these applications.

Another critical issue is the size of the discretized volumes
that are generated for current printers. Since current technology
allows printing on the micrometre scale, the cost of storing the
resulting voxelization can be prohibitive. Some compression is
necessary. DICOM [28], for example, uses JPEG 2000 to compress
models encoded in this format, but there are multiple methods
available [29]. Modern approaches can also be based on learning
the optimal quantization using deep neural networks [30]. How-
ever, only those that perform lossless compression are useful for
printing [31]. These approaches optimize the applied compres-
sion algorithm to allow efficient rendering. Moreover, in the case
of 3D printing, requirements also include fast and time-bounded
slicing algorithms.

Our method combines all these properties into a single data
structure. The octree allows us to perform voxelization efficiently
in an out-of-core friendly way. The result is a compressed version
of the voxelized model that can be read from disk slice by slice.
This is perhaps its most important feature, as the slicing needs
to be performed fast enough to avoid introducing deformations
during printing. The octree also allows us to compute and encode
all grey voxels efficiently. Thus, it can be seen as a compact rep-
resentation of an occupancy grid, where each voxel is classified
as either white, grey, or black. Black and white voxels are either
entirely inside the solid or entirely outside, respectively. Grey
voxels intersect the boundary and can carry any additional data
that the printing process needs for surface treatment.



M. Comino Trinidad, A. Vinacua, A. Carruesco et al. Computer-Aided Design 146 (2022) 103189

3

j
t
u
n
c
s

n

. Linear octrees and traversal encodings

Octrees are well-known efficient representations for 3D ob-
ects. They are intrinsically a multiresolution representation, con-
aining all members of the family of increasing object resolutions
p to some maximum level of space subdivision [32]. The root
ode is assumed to be at the top of the octal tree, representing the
ontents of a box-shaped universe U . Region octrees [33] repre-
ent objects and 3D structures O contained in U by a hierarchical
set of nodes N , each one representing a box-shaped region of U
resulting from the iterated subdivision of the Universe. Region
octree nodes encode their region’s properties B(N) in a predefined
umber of bits. The minimum number of bits per node bN for

representing homogeneous solid objects is 2, with the property
taking the values EMPTY , PARTIAL and FULL [32].

The original octree representations used a tree structure using
pointers [33]. However, as the complexity of the object shapes
and their required resolution increased, the total octree size be-
came a critical issue. Thus, several pointerless data structures
were proposed, as the linear quadtrees and octrees with loca-
tional codes for non-empty nodes [34] and the depth-first node
traversal sequential encodings [35]. Both proposals can be con-
sidered linear octree encodings, the tree being represented as a
sequential list of nodes.

Traversal octree encodings are a particular case of linear octree
encodings. They derive from different traversal algorithms, and
they represent the tree as a long list of nodes with no pointers
and no extra information. The final octree file size is bN ∗ |N|,
where bN is the number of bits per node and |N| is the total octree
nodes number. Given a traversal tree algorithm, its corresponding
traversal octree encoding is the sequential list of nodes that
results from this traversal. They are application-dependent, being
efficient in applications requiring the encoded traversal.

Having application-dependent traversal octree encodings can
be a wise solution. It is a compact scheme, and huge octrees
can be sequentially requested from external memory in a very
efficient way. Standard traversal octree encodings include Depth-
first [35] and Breadth-first [13]. In Depth-first encodings, any
node Ni is immediately followed in the list by the sub-trees of
its sons, ordered according to a certain function SortSons(N). In
Breadth-first traversal lists, given any two nodes N1 and N2, if
N1.depth < N2.depth, then N1 precedes N2. The function SortSons(N)
is application-dependent and defines the ordering among sib-
lings. In rendering applications, for instance, it could impose a
far-to-near node sorting.

In what follows, we discuss the main properties and applica-
tions of a different traversal octree encoding: the Sweep traversal
encoding. Given a direction d, let us consider the bundle of planes
Pd perpendicular to d that sweep the universe U . In the Sweep
encoding, nodes will be listed in the same order they get stabbed
as Pd sweeps U .

We will basically restrict ourselves to the case in which d
defines one of the three orthogonal directions of the U box.
Without loss of generality, let us assume that d = z+. Then, let
Na and Nb be two octree nodes. We denote by Nz

a the minimum
z coordinate in node Na. Then Na will be listed before Nb if Nz

a <
Nz

b or if Nz
a = Nz

b and Na.depth < Nb.depth or if Nz
a = Nz

b
and Na.depth = Nb.depth but Morton(Nx

a ,N
y
a ) < Morton(Nx

b ,N
y
b ),

where Morton(a, b) is a function that computes the Morton code
(see [36]) for a and b (it is worth noting thatMorton is an arbitrary
example of the aforementioned SortSons function, which is often
used in linearizing 2D information [37,38]). Nodes in this Sweep
encoding will be listed in appearance order when traversing the
tree in a Depth-first way in z and in a Breadth-first way in the
remaining two directions (x, y). See Fig. 1 for an example.

Using location codes for non-empty nodes [34] can be help-

ful in some applications that only require operating with FULL

3

Fig. 1. Example of the Sweep Octree serialization for a simple octree of 3 depth
levels.

nodes. However, its storage requirements are larger than Depth-
first, Breadth-first, and Sweep encodings. Moreover, the particular
interest of these three traversal encodings, mainly for out-of-
core huge models, is application-dependent. The Breadth-first
option can be well suited for progressive model refinement, such
as model transmission to distant users. In contrast, Depth-first
encodings have been successfully used in rendering algorithms.
However, as shown in the following Sections, Sweep encoding
outperforms Depth-first and Breadth-first in the case of sequen-
tially slicing a 3D model by avoiding going back and forth in the
out-of-core file.

4. Overview and sweep octree creation

When considering a representation strategy for 3D models to
be sliced, we need to consider its construction, storage, and slic-
ing costs. The model size (i.e., number of triangles) may directly
impact the construction cost, not necessarily the storage cost. For
instance, highly-tessellated flat surfaces will not translate into
more complex octrees. Instead, the model complexity can directly
impact both construction time and storage size. As the surface’s
geometric complexity increases, this translates into more hetero-
geneous filled/empty regions causing finer sub-division around
the surface and larger octree sizes.

Here, we address the case where, while construction time
and storage size are important, the most critical constraint is
related to the slicing time. For example, each model slice takes
a particular technology-dependent time t to get printed. This
process must be continuous and cannot be delayed or interrupted.
Printers rely on chemical and physical processes to solidify the
slices. A delay in adding the next slice can distort the shape or
the printed part’s mechanical properties. Thus, each model slice
must be available when the previous finishes printing, which
meaning the generation of a slice cannot take longer than a given
parameter tmax.

The 3D printers we have today come in various sizes and
resolutions, but both tend to increase. A commercial printer may
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ave a bed of more than 15 inches on its longest side, with a
esolution of 1200 vpi. The rasterization of a typical large format
rinter, stored most compactly, with only one bit per pixel, may
ccupy in the order of half a terabyte. Even applying image com-
ression algorithms, the resulting voxelization would need many
B of data. On the other hand, that same voxelization can be
epresented with an octree of 15 levels, using a 2-bit encoding for
ach node to determine if it is interior, exterior, or contains the
urface. We store each node using a 16-bit integer encoding the
ype of each of its 8 children. In real-world scenarios, the space to
epresent typically contains large homogeneous volumes (either
olid or empty), so using octrees can dramatically reduce the
emory required to encode these regions, as presented later in

he results section. Compression techniques could further reduce
he memory consumed by the octree, but decompression times
ould also need to be within tmax.
Our proposed Sweep encoding is optimized for slice retrieval

n a specific sweep direction d. Without loss of generality, we
ill assume that the space has been rotated to make the z axis
oincide with d. The user must also specify the rotation around z
nd the bounding box U containing the models (each represented
y its octree root). In the previous example, the edge of this
ounding box would be divided into 215 voxels).
Slicing out-of-core Sweep octrees consist of obtaining the

omplete set of 2D planar sections at given positions when a
weeping plane moves across the model. Let us note Sz the slice
efined by a specific z value, and NminZ and NmaxZ the minimum
nd maximum z coordinates of a particular node N . In this con-
ext, Sweep-encoded models are slicing-friendly because of three
ain properties:

• The out-of-core file is sequentially traversed only once, with
any octree node being accessed a single time. Slicing works
by advancing a front through the out-of-core file.
• While any Sz is computed, only the subset of nodes fulfilling

NminZ ≤ z ≤ NmaxZ must be stored in core memory. These
are the active nodes regarding Sz , which are the subset AN
that is used for the computation of Sz , see Section 5. As z
is incremented, the front moves forward, reading new out-
of-core nodes that become active nodes. Also, previously
active nodes not fulfilling the updated inequality NminZ ≤

z ≤ NmaxZ are discarded and deleted from core memory
(Section 5).
• The footprint of the active nodes in core memory is of the

order of the length of the object surface in the slice. This is
a direct consequence of the Quadtree Complexity Theorem
together with its Octree generalization [13].

In short, the sequential slicing of out-of-core Sweep encoded
models is optimal because out-of-core nodes are visited only once
(we assume that fetching the data is the highest cost in the
process). Due to the nature of the encoding, nodes are always
sequentially accessed. Thus the encoding is also optimal in terms
of page misses because misses will only occur when reading new
memory blocks from the persistent storage. Hence, it is optimal
in the sense that each node will be read from disk exactly once.
Moreover, the slicing algorithm’s footprint in core memory is
bounded by the slices’ geometric complexity. By measuring the
cost per slice as the number of required out-of-core fetches, we
can conclude that the average cost per slice is bounded and equals
the total number of octree nodes divided by the number of slices.

Typical model inputs are either manifold triangular meshes
or a stack of vectorial slices. For printing, these models must
be discretized into regular empty/full cells, but a top-down or
bottom-up strategy should be used depending on the type of
model. These strategies are discussed next.
4

4.1. Top-down construction

The top-down construction approach is the straightforward
method for octree construction when dealing with manifold tri-
angular meshes. We recursively subdivide the Universe U into
eight regular regions and test whether any mesh triangle inter-
sects each of these. For such a task, we use a Fast Triangle-Box
intersection test, based on the Separating Axis Theorem (see [39]
and references therein). Each octree node is tested against the
list of triangles that were found to intersect its parent. If an
intersection is found, the node is labelled as intermediate grey
and recursively subdivided until the target depth is reached. If
no intersection is found, the node is classified as white (outside
the mesh) or black (inside the mesh).

A simple test classifies nodes into white and black (exterior
or interior). We cast a ray from the node’s centre towards a
random direction and find all the intersections with the mesh. If
the number of intersections is odd, the node is classified as black
(interior) and, otherwise, as white. In our implementation, this
process is carried out with the help of the Embree [40] library.

Nodes are serialized and stored into disk at the same time they
are traversed. The sweep traversal is implemented using a stack
of queues. Each node is processed by testing whether any of its
children intersect any mesh triangle. The ones that test positively
(intermediate greys) are annotated to be recursively processed
by queuing them into two different queues: one for the nodes
with higher z coordinate and one for the nodes with lower z
coordinate. Next, both queues are added to a stack. Nodes are
processed in the order they appear in the queues inside the stack,
effectively achieving the desired traversal.

4.2. Bottom-up construction

When dealing with stacks of polygonal slices, the top-down
construction is a highly resource-demanding approach because a
large number of polygons must be analysed to determine the na-
ture of the octree nodes close to the root. Therefore, we propose a
more efficient alternative method to process stacks of polygonal
slices, which consists of computing the corresponding quadtrees
for the slices while incrementally building an octree by collapsing
consecutive quadtree nodes into octree nodes.

The algorithm iterates over the input polygonal slices se-
quentially, generating a single quadtree for all the polygons at
the same height in the stack; this quadtree has the same size
as the octree independently of the size of the polygons of the
slice to ease the subsequent octree construction from the stack
of quadtrees. Then, a pair of quadtrees can be merged into a
grid of octrees because, for each of the 4 terminal nodes of a
quadtree, we can find their adjacent 4 nodes in the other quadtree
(subdividing a bigger terminal node when needed). The merge of
these two quadtrees provides a set of small sub-octrees, which
following the same criteria can be merged with the octrees from
the resulting merge of the 2 subsequent quadtrees, generating
bigger sub-octrees. This process is iterated, generating quadtrees
and collapsing them in sub-octrees until all the polygonal slices
have been processed. At this point, the final octree is generated
from all the sub-octrees that have been incrementally built.

This approach is efficient in terms of algorithm complexity.
Let E be the number of edges of the input, d the depth of the
ctrees and quadtrees. Note that the number of leaves of a fully
ubdivided tree is cd, where c is the number of children at each
ode. Thus quadtrees and octrees may have up to 4d and 8d

eaves, respectively, and we can state that d = logN , were N is the
number of octree leaves. During the quadtrees generation, each
edge will be visited and classified as many times as the depth
of the tree, leading to a cost of O(E logN). The step of combining
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uadtrees to generate small octrees requires visiting the leaves of
ach quadtree once, and the root nodes of the resulting octrees
re consequently visited to merge them into bigger octrees until
eaching the root. Hence, the algorithm visits all the nodes of the
inal octree, and it is well known [13] that an octree with n non-
erminal nodes has N = 7 n + 1 leaves, so the cost of this step
s O(N). Finally, the total cost of the algorithm is the sum of both
steps O(N + E logN).

Nonetheless, octrees with moderate depths may potentially
require a considerable amount of RAM to keep all the inter-
mediate quadtrees and sub-octrees. Further optimizations were
implemented by dumping intermediate sub-octrees to disk when
they reach a certain depth. These are merged into a single octree
once all the polygonal slices have been processed.

5. Octree-based sequential slicing

The sequential slicing operation can be defined as the acquisi-
tion of consecutive 2D slices, from a 3D representation, following
a fixed direction. In the octrees domain, this can be understood
as generating a sequence of quadtrees from an octree. As already
mentioned, let us assume that the sequential slicing is performed
towards the+z axis. Our Sweep octrees allow us to rapidly obtain
consecutive slices by maintaining a state of the slicing process,
which is updated during the retrieval of each slice. Note that
thanks to the Sweep octree serialization, this state requires a
relatively small amount of in-core memory.

Let Ni = (O, d) be a node of the octree, where O is the origin in
3D (the point of the node with minimal x, y, and z coordinates),
and d is its depth level within the octree. Note that octree nodes
are cubic, and their depth determines their size (i.e., side(Ni) = 2d,
assuming that the root node has the maximum depth and the
leaves have 0 depth and unitary sides). Let AN be the list of Ni
that intersect a given slice coordinate z. We will now show how
to compute AN efficiently.

Let StQ be a stack of octree node queues, where each queue
Q contains only nodes of a given depth in the octree. Before ex-
ecuting the algorithm, StQ is initialized with a queue containing
only the root node. The algorithm iteratively processes the queue
on the top of StQ until the stack is empty. At this point, all the
nodes in AN can be used to produce the quadtree.

For each node N in the Q popped from StQ , we read the 16-bits
integer codifying the types of its 8 children. If N intersects with
z, we extract the 8 bits corresponding to the intersected children
5

Algorithm 1 Sweep octree Slicing Algorithm

1: procedure GetSlice(root, sliceZ)
2: if NotInitialized() then
3: Q ← Queue().Push(ROOT )
4: StQ ← Stack < Queue > ().Push(Q )
5: AN ← [ ]
6: else
7: AN ← [Ni from AN if Intersects(Ni, sliceZ)]
8: while StQ .NotEmpty() do
9: higherZ ← Queue()

10: lowerZ ← Queue()
11: Q ← StQ .TopAndPop()
12: while Q .NotEmpty() do
13: N ← Q .FrontAndPop()
14: if Intersects(N, sliceZ) then
15: C ← IntersectedChildren(N, sliceZ)
16: AN.Add(C)
17: higherZ .Push(N.HigherZGreyChildren())
18: lowerZ .Push(N.LowerZGreyChildren())
19: if higherZ .NotEmpty() then
20: StQ .Push(higherZ)
21: if lowerZ .NotEmpty() then
22: StQ .Push(lowerZ)

and add them to AN . Moreover, if any of the 4 descendants
with lower z value is grey, these are added to the lowerZ queue.
Similarly, for those with higher z.

After all nodes in Q have been processed, the higherZ queue is
irst pushed in StQ , followed by lowerZ . Thus, the algorithm will
lways visit first the nodes with lower z. Once the first queue with
eaves is processed, AN will contain all the nodes intersecting the
plane at z. Hence, the quadtree can be easily generated from this
list by projecting each Ni onto the quadtree plane.

AN is reviewed to retrieve the next slice z + 1, and all nodes
that do not intersect its plane are removed. Next, the recursive
process is repeated: the queue on the top of StQ is extracted and
processed (adding more queues to the stack) until a queue with
leaf nodes is processed. The quadtree is finally extracted from the
updated AN list. If the execution is halted, AN , StQ and the reading
pointer to the octree file comprise the state needed to resume the
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Fig. 3. Sweep traversal illustrated on a quadtree. The sweeping direction goes along the x axis.
raversal. In Fig. 3 we illustrate this traversal using a quadtree
nstead of an octree for simplicity.

It is worth mentioning that the slicing time is variable since
ome slices have to parse a larger portion of the serialized octree
o reach the tree leaves. However, these slices’ extra time can be
mortized because the next slices will be obtained much faster.
6

6. Results and discussion

To test our encoding efficiency, we ran tests on a set of public
models (shown in Fig. 2). All tests were run on a commodity PC
equipped with an Intel Core i7-4790K CPU, 32 GB of RAM, 16 GB
of swap memory, and a 2 TB Toshiba DT01ACA200 HDD running
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Fig. 4. Time in seconds to build each of the octrees of the models in our test set
at different resolutions, plotted as a function of the depth of the octree. Notice
the vertical scale is logarithmic.

Table 1
Times in seconds to build representative octrees of the models
in our sample set. The heading indicates the depth of the octree.

10 13 15

Meshed 1.76 24.77 326.51
Jug 4.83 44.03 546.71
Knot 2.24 53.77 804.15
Nefertiti 10.31 22.18 130.04
Box 2.21 80.52 1,345.52
Column 4.89 30.92 338.00
Mandible 1.01 8.95 106.16
Voronoi 8.40 56.18 704.72
Statuette 52.03 87.26 401.54
Dragon 29.57 52.30 195.20

Table 2
Memory (in MB) required to build representative octrees of the
models in our sample set. The heading indicates the depth of
the octree.

10 13 15

Meshed 134 151 322
Jug 228 264 605
Knot 127 151 466
Nefertiti 611 663 703
Box 116 218 1,393
Column 299 315 528
Mandible 121 132 239
Voronoi 424 502 1,418
Statuette 2,414 2,412 2,663
Dragon 1,690 1,724 1,861

Table 3
Sizes of the test models.
Name Vertices Faces Name Vertices Faces

Meshed 597K 1194K Column 257K 516K
Jug 377K 754K Mandible 79K 159K
Knot 69K 138K Voronoi 1009K 2018K
Nefertiti 59K 118K Statuette 5M 10M
Box 50K 103K Dragon 14M 28M

Ubuntu 20.04. Table 3 gives basic data about the complexity of
the chosen models.

However, our algorithm is not very sensitive to the input
esh’s complexity (measured as triangle and vertex counts).

nstead, it is more to the resolution at which we want to generate
he raster slices and the frequency and relative positions of the
urface’s details.
Therefore, we compare the results obtained by constructing

ctrees of all the test models at different resolutions. Table 1 gives
he elapsed times to build a Sweep octree (top-down) of each
7

Table 4
Storage in MB of the resulting octrees for the models in our sample set. The
heading indicates the depth of the octree. We also provide storage spaces for
the compressed octrees using an algorithm (ZIP) that allows sequential partial
decompression.

10 10 (Zip) 13 13 (Zip) 15 15 (Zip)

Meshed 1.49 0.71 96.37 37.12 1543.21 475.90
Jug 2.01 0.80 131.22 37.16 2103.80 451.01
Knot 3.79 1.29 243.76 63.07 3902.20 759.95
Nefertiti 0.46 0.15 29.33 8.19 469.53 118.45
Box 4.07 0.24 368.64 7.49 4292.74 57.41
Column 1.40 0.53 90.07 27.65 1441.63 367.97
Mandible 0.46 0.18 29.58 9.15 473.54 119.86
Voronoi 3.16 0.89 203.58 39.33 3258.46 463.31
Statuette 1.15 0.51 75.24 26.83 1205.51 363.29
Dragon 0.33 0.16 33.98 12.85 544.43 176.59

of these models at three significant depths. We focus on mid-
sized to large octrees as the growth in complexity of the trees is
exponential, and small trees are efficient without resorting to any
smart techniques. Here, we have chosen the depths of 10, 13, and
15 to illustrate the proposed technique’s behaviour. Depth 10 is
a small to medium octree, but depth 15 can be considered large,
with raster slices of about one terapixels. Notice that the con-
struction times, all measured in seconds, are reasonable for most
models and resolutions. While some models at high resolution
may require a longer time, this is acceptable because we target
applications where the slicing is the critical operation that needs
to be fast. We have also implemented an octree encoded in depth-
first order and another in breath-first order. We have observed
that construction times for all three encodings are comparable,
with depth and breadth strategies taking at most 5% less time for
complex models.

In terms of resources needed, the memory footprint of the
algorithms is also relevant. Table 2 gives the maximum memory
allocated during the construction of each of the chosen test
octrees in MB. One can see the variation depending on each
model’s complexity, but they are all suitable for current com-
modity PCs. The time and memory required to build the octrees
are also shown in Figs. 4 and 5. In our Depth-first and Breadth-
first octrees implementations, the depth-first strategy also shows
maximum memory bounds down to a 30% lower than our en-
coding strategy. This happens because our strategy is partially a
breadth-like traversal (that is, more nodes need to be allocated in
the queues simultaneously). However, the memory consumed by
the Breadth-first strategy is notably higher, making the algorithm
crash during the 14-levels octree construction of some models
(knot, box, Voronoi) and the 15-levels construction of all of them
but two (Nefertiti, mandible). Moreover, none of the alternative
encodings are any competition when we turn to slicing times.

Hard-disk storage space can also be relevant for some scenar-
ios. Table 4 shows the resulting size for the chosen test octrees
in MB. This table shows storage sizes for Sweep-encoded models,
but similar sizes were obtained for breadth and depth ones.
Octrees are already efficient space-saving structures. Our results
show that, as one would expect, the octree size is more or less
quadrupled every time we increase the subdivision depth (notice
that the log4 of the storage size in bytes is roughly the depth
of the octree). We also argue that further storage savings can
be achieved by compressing these octrees using any sequentially
coherent compression technique. While the compression step can
take several minutes, this can be considered part of the prepro-
cessing. During slicing, decompression can be performed much
faster and can be limited to the part of the octree containing
the slice. After compression, most storage sizes were reduced to
between a half and a fourth of the original size.
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Fig. 5. Memory required to build the octrees for the different models in our test set, as a function of the desired maximum depth desired. Notice that the vertical
axis has a logarithmic scale.
Fig. 6. From top to bottom, evolution of a moving average of the slicing times for octrees of depth 10, 13 and 15. By buffering a few slices, very steady and fast
esponse times are achieved.
Table 5
Slicing times for our test cases at representative depths. ‘‘min.time’’ is the shortest time in seconds amongst all slices of the model,
while ‘‘max’’ is the maximum for one slice. We also list mean and median as an indication of the distribution. The last column
shows the maximum of a moving average with a window of size 32 over the slicing time. Even in cases where there is a high peak
at some point, the moving average has a much smaller maximum, indicating these complex slices are sparse.

dpth. min.time mean median max max.amort(32)

Box
10 0.0003290000 0.0006783817 0.0005350000 0.0159600000 0.00196478
13 0.00978800 0.01348064 0.01215200 1.0874420 0.11662597
15 0.128302 0.143700 0.138041 15.270142 1.80276238

Column
10 0.0001270000 0.0002126273 0.0001850000 0.0020490000 0.00032816
13 0.002403000 0.003557707 0.003351000 0.136020000 0.01723337
15 0.03177600 0.03575966 0.03487100 2.10993000 0.26555287

Dragon
10 0.0000190000 0.0001137778 0.0000840000 0.0005380000 0.00029003
13 0.00201400 0.00343126 0.00304900 0.00917500 0.00665094
15 0.03717300 0.04803933 0.04586200 0.10158000 0.06629469

Jug
10 0.0000560000 0.0003455797 0.0003050000 0.0018240000 0.00061178
13 0.002517000 0.006002136 0.005585000 0.079564000 0.01949256
15 0.04162600 0.06113728 0.05892350 1.22153000 0.20002022

Knot
10 0.0000970000 0.0006414196 0.0006400000 0.0021130000 0.00102937
13 0.00863800 0.01474788 0.01455550 0.02802500 0.01960109
15 0.1257620 0.1619408 0.1624390 0.3329180 0.18454428

Mandible
10 0.0000500000 0.0002305523 0.0002155000 0.0005830000 0.00031966
13 0.002720000 0.004725723 0.004714000 0.029925000 0.00754619
15 0.04285900 0.05503441 0.05559300 0.46222400 0.09920759

Meshed
10 0.0000600000 0.0003918072 0.0003725000 0.0008790000 0.00050597
13 0.004641000 0.007820344 0.007691000 0.013321000 0.01005569
15 0.06898100 0.09168356 0.09104500 0.24655500 0.10723669

Nefertiti
10 0.0000160000 0.0001066303 0.0000990000 0.0006200000 0.00015656
13 0.000776000 0.001838721 0.001762000 0.011899000 0.00596553
15 0.01665000 0.02470449 0.02437200 0.08321300 0.05752359

Statuette
10 0.000067000 0.000374388 0.000297000 0.001422000 0.00079544
13 0.004921000 0.008796875 0.008080500 0.020403000 0.01530506
15 0.07598600 0.09907725 0.09499900 0.20520000 0.13177856

Voronoi
10 0.0003260000 0.0009024385 0.0007810000 0.0026080000 0.00119328
13 0.00675600 0.01145959 0.01009000 0.15259100 0.02350075
15 0.06658200 0.09016686 0.08421100 2.04826900 0.32094069
8



M. Comino Trinidad, A. Vinacua, A. Carruesco et al. Computer-Aided Design 146 (2022) 103189

p
t
o
l
s
t
o
s
r
e
a

Table 6
Slicing times in seconds when the octree is stored in depth and breadth-first order. In these cases, each slice requires reading essentially the whole tree, so there is
little variability between slices; therefore, we have not computed all slices, but just sampled 20 different slices across the volume of each example part. The results
confirm this lack of variability, as witnessed by the small difference between minimum and maximum slicing time. Therefore, we do not include the mean and
median, but list instead the difference between maximum and minimum time, and the relative increment from min to max. Notice that the relative increment may
be large in cases where the slices are computed very fast (simple models and shallow octrees), but is consistently small when the task is more demanding.

Depth-first encoding Breadth-first encoding

dpth. min.time max max–min max–min(rel) min.time max max–min max–min(rel)

Box 10 0.1560960 0.1754920 1.94E−02 12.43% 0.178665 0.185229 6.56E−03 3.67%
13 10.67690 10.73020 5.33E−02 0.50% 11.8314 11.9644 1.33E−01 1.12%
15 174.7370 176.8460 2.11E+00 1.21% – – – –

Column 10 0.05390520 0.06253500 8.63E−03 16.01% 0.0628137 0.0668119 4.00E−03 6.37%
13 3.533530 3.550640 1.71E−02 0.48% 4.00231 4.09356 9.13E−02 2.28%
15 61.12040 61.30920 1.89E−01 0.31% – – – –

Dragon 10 0.01289600 0.01752450 4.63E−03 35.89% 0.0146542 0.0196814 5.03E−03 34.31%
13 1.331730 1.363930 3.22E−02 2.42% 1.49522 1.55209 5.69E−02 3.80%
15 25.05980 25.11160 5.18E−02 0.21% – – – –

Jug 10 0.07746020 0.08748280 1.00E−02 12.94% 0.0897739 0.0978147 8.04E−03 8.96%
13 5.166720 5.204140 3.74E−02 0.72% 5.82232 5.87855 5.62E−02 0.97%
15 98.62420 98.97470 3.50E−01 0.36% – – – –

Knot 10 0.1455730 0.1607500 1.52E−02 10.43% 0.169513 0.185029 1.55E−02 9.15%
13 9.492730 9.535580 4.28E−02 0.45% 10.8792 11.0553 1.76E−01 1.62%
15 171.1370 173.8530 2.72E+00 1.59% – – – –

Mandible 10 0.01784080 0.01925900 1.42E−03 7.95% 0.0202381 0.0233525 3.11E−03 15.39%
13 1.164350 1.201720 3.74E−02 3.21% 1.28614 1.32016 3.40E−02 2.65%
15 20.1627 20.3921 2.29E−01 1.14% 21.0691 42.1305 2.11E+01 99.96%

Meshed 10 0.05738960 0.06947490 1.21E−02 21.06% 0.0667329 0.0713881 4.66E−03 6.98%
13 3.761970 3.804020 4.21E−02 1.12% 4.19503 4.23941 4.44E−02 1.06%
15 71.21270 72.77700 1.56E+00 2.20% – – – –

Nefertiti 10 0.01755580 0.02362570 6.07E−03 34.57% 0.0200945 0.0241078 4.01E−03 19.97%
13 1.160070 1.191690 3.16E−02 2.73% 1.28258 1.38695 1.04E−01 8.14%
15 19.89330 19.97000 7.67E−02 0.39% 20.7297 33.2014 1.25E+01 60.16%

Statuette 10 0.0444256 0.0538408 9.42E−03 21.19% 0.0511554 0.0554931 4.34E−03 8.48%
13 2.951350 2.982650 3.13E−02 1.06% 3.28848 3.39821 1.10E−01 3.34%
15 55.77830 55.97120 1.93E−01 0.35% – – – –

Voronoi 10 0.1216560 0.1289320 7.28E−03 5.98% 0.141415 0.152172 1.08E−02 7.61%
13 8.078500 8.121470 4.30E−02 0.53% 8.91562 9.08109 1.65E−01 1.86%
15 154.474 157.397 2.92E+03 1.89% – – – –
Fig. 7. Examples of 3D-printed models, their corresponding 3D mesh and some of the generated slices at different z. In this case, the z axis is aligned along the
vertical direction. Voxels are drawn with a 1 pixel black margin for visualization purposes, and a colour scale is used to depict their size (blue illustrates big voxels
and red illustrates small voxels). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Next, we turn to the times spent to compute slices in our
roposed encoding. We have computed equally spaced slices at
he chosen resolution for each model in our test set for octrees
f depths 10, 13, and 15. Table 5 shows for each of these how
ong it took to obtain the quickest (min.time column) and the
lowest (max column) slices for the whole sweep. We also report
he mean and median values of the times required for each
f the slices. Notice that while for large complex models some
lices take long (there is a slice of the Box model at the highest
esolution that took 15 s to compute, although this is a rare
vent), this does not often happen, as shown by the small mean
nd median times in those same cases. Should an application
9

require assurance that slices will be provided within a fixed time
budget, one may buffer a few slices to achieve this. As an example,
the last column of Table 5 shows the amortized time (averaged
time over a batch) per slice if one builds a buffer of 32 slices;
Fig. 6 shows the evolution of the moving average of the slicing
times with a window of 32 slices.

The spikes in these plots correspond to outlier times for some
slices, but the moving average is much smaller, showing that
these outliers are sparse. Larger buffer sizes may be used in
general to achieve even shorter amortized times.

We have computed the slicing times for the two most usual
octree serialization schemes as a contrasting reference. Table 6
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Fig. 8. Mean and variability of the slice generation times using our S-encoding or depth and breadth-like encodings. From top to bottom: slicing times for octrees
of depth 10, 13, and 15. For the breadth-first encoding and depth 15, we were only able to produce slices for the Mandible and Nefertiti models.
The first column displays bars encoding the average slice time and small intervals showing their variances. However, slicing times for the S-encoding are much
smaller and, at the chosen scale, their values look close to 0. Hence, the right column shows boxplots of the S-encoding slicing times at a much finer scale. These
charts have been clipped to 5, 50 and 250 ms respectively, leaving out less than 0.1% of the values.
Our algorithm outperforms both BF and DF. This difference increases proportionally to the model complexity. Depth and breadth encodings present less relative
variability than our method since because generating takes fixed time, equivalent to parsing the whole octree from disk. Instead, our algorithm has more outliers
since the sequential slice generation time depends on the read octree chunk size. This can be alleviated by buffering strategies, as shown in Fig. 6.
gives the times to compute slices in a depth-first octree for the
same models and depths. Here we only report the minimum
and maximum time since these are relatively close in all cases.
For convenience, we also included a column (labelled max–min)
displaying the difference between times for the fastest and slow-
est slice in each case, as well as the relative difference. This
serialization order makes it necessary to read the entire octree
to compute each slice.

As a result, there is slight variation in slicing times, as the
computation is dominated by the traversal cost, as shown in Fig. 8
Therefore, the numbers reported correspond not to an entire span
of slices but to twenty slices that sample the whole span of the
model in each case.

7. Conclusions

In this paper, we have introduced a novel scheme to compute
3D object slices efficiently, even for huge and complex models.
The proposed algorithm can be useful in different applications,
we included some 3D printing results in Fig. 7. We voxelize the
volume of the model at a required resolution and show how to
encode this voxelization in an out-of-core octree linearized in a
Sweep Encoding that allows for efficient slicing with bound cost
per slice.
10
We have concluded that slicing out-of-core Sweep-encoded
models is optimal because out-of-core nodes are visited only once
(we assume that this is the highest cost in the process). Moreover,
we have seen that the slice geometric complexity bounds the
slicing algorithm’s core memory footprint. By measuring the cost
per slice as the number of required out-of-core fetches, we can
conclude that the average cost per slice is bounded.

We have also compared the proposed Sweep Octree encoding
against the standard representations in the literature in terms of
performance. We have shown that Sweep encoding outperforms
them in several examples.
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