Licencia Creative Commons Atribución 4.0 Internacional





# Tema 1: Introducción a la teoría de circuitos

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

## 1.1 La corriente eléctrica



A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

## **1.1 La corriente eléctrica** 1.1.1. Potencia y energía eléctrica

Trabajo de las cargas

$$V_B - V_A = \frac{\Delta U}{Q} = \frac{U_B - U_A}{Q} = -\int_A^B \mathbf{E} \cdot d\mathbf{x}.$$
 (1)  
$$\Delta W_{ext} = -\Delta W = Q(V_B - V_A).$$
 (2)

#### Notación sobre d.d.p.

$$V_{AC} = V_A - V_C = V_A - V_B + V_B - V_C = (V_A - V_B) + (V_B - V_C) = V_{AB} + V_{BC}$$
(3)
$$V_{AC} = V_A - V_C = -(V_C - V_A) = -V_{CA},$$
(4)
$$V_{AA} = 0.$$
(5)

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

3 / 11

**1.1 La corriente eléctrica** Potencia y energía eléctrica

#### Relación entre trabajo y potencia

$$W_{BA} = Q \cdot V_{AB}. \tag{6}$$

$$P = \frac{dW_{BA}}{dt} = \frac{dQ}{dt} \cdot V_{AB} = I \cdot V_{AB}.$$
(7)
$$P = VI.$$
(8)

### Ejercicio

Un elemento de un circuito produce una energía de 10kJ en 5min. Calcular la potencia media producida.



#### Signo de la d.d.p.

•  $V_{AB} > 0$  y los marcadores + y - tal como en la Figura .

•  $-V_{AB} < 0$  y los marcadores + y - invertidos.

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023







## 1.1 La corriente eléctrica

### 1.1.3. Flujo de potencia en un circuito



#### Convenio receptor

con  $V_{AB} > 0$  y la corriente I > 0 dirigida de A hacia B. Con el convenio receptor, P > 0 significa que el receptor **recibe** energía.

#### Convenio generador

con  $V_{AB} > 0$  e I > 0 dirigido de *B* hacia *A*. En el convenio generador, P > 0 significa que el dispositivo **entrega** energía.

## 1.1 La corriente eléctrica

## 1.1.3. Flujo de potencia en un circuito

#### Balance de potencia

$$P_{generada} = P_{absorbida}.$$

A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

(9)

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 1: Introducción a la teoría de circuitos

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

# **1.2 Elementos de circuitos: Resistencias, condensadores y autoinducciones 1.2.1 Resistencias**





#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

## **1.2 Elementos de circuitos** 1.2.1 Resistencias

#### Potencia de resistencias

$$P = VI.$$
 (2)  
$$P = RI^2 = \frac{V^2}{R}.$$
 (3)

## 1.2 Elementos de circuitos

## 1.2.1 Resistencias

## Relación entre resistencia y propiedades de conductores

- Cable longitud /.
- Sección S constante.
- Material homogéneo.

#### Tenemos

$$R = \frac{\rho I}{S}$$

 $\rho$  es una propiedad del material que se llama resistividad en [ $\Omega.m].$  Ejemplos de valores resistividad.

| Material | $\rho_0 (n\Omega \cdot m)$ |
|----------|----------------------------|
| Aluminio | 26,7                       |
| Cobre    | 16,76                      |
| Oro      | 22                         |
| Hierro   | 101                        |
| Níquel   | 69                         |
| Plata    | 16,3                       |
| Plomo    | 206                        |



#### Ejercicio

Un cable de cobre transporta una corriente continua de 20A a lo largo de una distancia de 2000m. A partir de la información disponible en el capítulo, hallar el diámetro del cable para que las pérdidas por disipación en el mismo sean inferiores a 100W.

## **1.2 Elementos de circuitos** 1.2.2 Condensador



6 / 11

# A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

## **1.2 Elementos de circuitos** 1.2.2 Condensador



#### Definición de Capacidad

$$T = \frac{Q}{V_{BA}} = \frac{\varepsilon S}{d} [F]$$
 (5)

#### Relación entre carga y d.d.p

Es una ley lineal

$$Q = C \Delta V$$

(6)

## **1.2 Elementos de circuitos** 1.2.2 Condensador

## Energía en un condensador

$$U = \int_{A}^{B} dW = \int_{A}^{B} CV dV = \frac{1}{2} CV_{AB}^{2}.$$
 (7)

A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023



#### Ejercicio

El condensador está inicialmente cargado con una tensión de 5V y es capaz de almacenar una energía de 10W·h. La resistencia conectada tiene un valor de 100 $\Omega$ .

- Hallar la capacidad del condensador.
- Determinar el tiempo de funcionamiento del condensador como batería (suponinedo una tensión constante).

## **1.2 Elementos de circuitos** 1.2.3 Inductancias



### Flujo del campo magnético

$$\Phi = \int_{S} \mathbf{B} \cdot \mathbf{dS},\tag{8}$$

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

## **1.2 Elementos de circuitos** 1.2.3 Inductancias

$$A \stackrel{+}{\underset{I}{\overset{}}} \underbrace{V_{AB}}{\underset{L}{\overset{}}} B$$

#### Definición del coeficiente de autoinducción

$$L = \frac{\Phi}{I}$$
 [H]

$$E_L = \frac{1}{2}LI^2$$

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

11 / 11

(10)

(9)

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 1: Introducción a la teoría de circuitos

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

**1.3 Generadores y fuentes** 1.3.1 Generador de tensión.



A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

## **1.3 Generadores y fuentes** Fuentes



Ejemplos de símbolos para fuentes en corriente continua.

## **1.3 Generadores y fuentes**

#### 1.3.1 Generador de tensión



## 1.3 Generadores y fuentes

#### 1.3.2 Generador de corriente



**1.3 Generadores y fuentes** 1.3.3 Fuentes dependientes



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 1: Introducción a la teoría de circuitos

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

## **1.4 Análisis de circuitos lineales** Introducción





### Nudo

un nudo es un conductor que se encuentra bajo un potencial eléctrico dado y sobre el que confluyen 2 o más corrientes. Se suele hace referencia al nudo como el punto de interconexión de dichas corrientes.



#### Rama

una rama consiste en la interconexión mediante dipolos de dos nudos. Dados 2 nudos, podemos unirlos mediante una infinidad de tipos de ramas. Por ejemplo, una resistencia entre dos nudos constituiría una rama.



#### Lazo

un lazo es un recorrido cerrado formado por ramas del circuito.

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023



#### Malla

una malla es un lazo que no contiene a ningún otro lazo en su interior<sup>a</sup>.

<sup>a</sup>El concepto de malla está relacionado con los circuitos planos. Son circuitos que se pueden dibujar de tal forma que ninguna rama quede por debajo o por encima de otra, y, por tanto, su representación es completamente bidimensional

## **1.4 Análisis de circuitos lineales** Ejemplo



A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

7 / 36

## **1.4 Análisis de circuitos lineales** Forma de reinterpretar un diagrama



8 / 36
k

Ley de Kirchhoff en corriente

$$\sum_{\in \text{ nudo}} I_k = 0.$$



$$l_1 + l_2 - l_3 - l_4 = 0.$$

(2)

(1)

Ley de Kirchhoff en tensiones

$$\sum_{k \in \text{lazo}} V_k = 0, \tag{3}$$



$$V_{AB} + V_{BE} + V_{EF} + V_{FA} = 0 \tag{4}$$

10 / 36



Aplicación de la ley de Kirchhoff para el balance de tensiones

- 1. Se elige un lazo del circuito, por ejemplo del lazo 1.
- 2. Para sumar las tensiones se elige el sentido de rotación horario siguiendo el lazo. Se elige un punto de salida y se recorre el lazo.
- Dadas las corrientes, se establece la diferencia de potencial de cada elemento según se trate de un receptor o un generador (ver convenio de signos).
- 4. Las tensiones dirigida de a + en el sentido de rotación van sumadas con un signo positivo.
- 5. Las tensiones dirigida de + a se suman con un signo menos.

A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023



A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

# **1.4 Análisis de circuitos lineales 1.4.3 Número de ecuaciones**

Un método general para circuitos planos con *r* ramas consiste en lo siguiente:

- 1. Si existen *n* nudos en el circuito, hay n 1 nudos independientes que proporcionan n 1 relaciones entre corrientes.
- 2. Las r (n 1) = r n + 1 ecuaciones restantes se obtienen gracias a las mallas del circuitos. Es necesario elegir mallas o lazos independientes dentro del circuito con el fin de obtener un sistema de ecuaciones independientes<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Por ejemplo, si se eligen dos lazos que una vez combinados forma un tercero, la combinación de las ecuaciones de los dos primeros lazos formará una ecuación idéntica a la ecuación del tercer lazo.

# **1.4 Análisis de circuitos lineales** 1.4.3 Número de ecuaciones

Ejercicio

# $E \stackrel{+}{=} 2 V_{R2} R_{2} R_{3} R_{4} V_{R}$

En el circuito de la figura siguiente determinar la corriente  $I_3$  así como la tensión  $V_{R2}$ . Datos:  $R_1 = 3\Omega$ ,  $R_2 = 10\Omega$ ,  $R_3 = 4\Omega$ ,  $R_4 = 5\Omega$ . La f.e.m. es E = 10V.

Asociación de resistencias

$$+ \underbrace{V_{R1}}_{R_1} - + \underbrace{V_{R2}}_{I_2} - + \underbrace{V_{Rk}}_{R_2} - \underbrace{V_{Rk}}_{R_k} - \underbrace{V_$$

### Definición de elemento en serie

Se define como elemento en serie a un cierto número de elementos atravesadas por la misma corriente (con sus bornes conectados uno tras otro)

$$R_{eq} = \sum_{k} R_k.$$
 (5)

### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023



### Definición de elemento en paralelo

Se define una asociación en paralelo como una asociación de elementos cuyos bornes están unidos a un mismo par de nudos.

$$1/R_{eq} = \sum_{n=1}^{k} 1/R_n,$$
 (6)

Asociación de condensador

Asociación en serie

$$1/C_{eq} = \sum_k 1/C_k.$$

### Asociación en paralelo

$$C_{eq} = \sum_{k} C_{k}.$$

### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

(7)

(8)

Asociación de inductancias

Asociación en serie

$$L_{eq} = \sum_{k} L_k.$$

### Asociación en paralelo

$$L/L_{eq} = \sum_{k} 1/L_{k},$$

### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

(9)

(10)

Asociación de fuentes de tensión



Asociación de fuentes de corriente



# 1.4.4 Asociación de elementos lineales

Simplificar lo más posible el circuito de la figura siguiente:



21 / 36

# **1.4 Análisis de circuitos lineales** Relación entre circuitos y grafos



# **1.4 Análisis de circuitos lineales** Matriz de incidencia



- *a<sub>ij</sub>* = 1 si el arco *j* incide en el nudo *i* y está orientado alejándose del nudo.
- a<sub>ij</sub> = −1 si el arco j incide en el nudo i y está orientado hacía el nudo.
- $a_{ij} = 0$  si el arco j no incide en el nudo i.

# **1.4 Análisis de circuitos lineales** Matriz de incidencia

### Relación entre matriz de incidencia y ley de Kirchhoff

$$A_t I = 0$$

siendo





### Método de las mallas

Este método reduce el sistema de ecuaciones lineales a resolver pero sólo se aplica a **circuitos planos**.

# 1.4.5 Método de la mallas

El número de ecuaciones obtenidas con el método de las mallas se corresponde con el número de mallas ("las ventanas" del circuito). Se deducen de la forma siguiente:

- Primero se atribuye a cada malla una corriente ficticia que circularía por toda la malla: son las denominadas corrientes de malla. El sentido elegido para estas corrientes es arbitrario, aunque se suele respetar el sentido de las corrientes determinado por las fuentes.
- 2. Se deducen las ecuaciones de las *n* mallas en función de las corrientes anteriormente definidas, aplicando la ley de Kirchhoff en tensión.
- 3. Se obtiene un sistema de *n* ecuaciones con *n* incógnitas que se puede resolver.
- 4. Se transforman las corrientes de malla en las corrientes de rama originales.

A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

### Primer paso

Fijamos el sentido y el nombre de las corrientes de malla.



### Segundo paso

Aplicamos la ley de Kirchhoff en tensiones y obtenemos las ecuaciones.

### Ecuaciones



### Tercer paso

Resolvemos el sistema, con nuestro método preferido.

Datos:  $R_1 = 1\Omega$ ,  $R_2 = 2\Omega$ ,  $R_3 = 3\Omega$ ,  $R_4 = 4\Omega$ ,  $V_1 = 5V$ ,  $V_2 = 10V$ .

Ecuaciones

$$V_{1} - R_{1}(I_{1} + I_{3}) - R_{2}(I_{1} + I_{2}) = 0$$

$$V_{2} - R_{3}(I_{2} - I_{3}) - R_{2}(I_{2} + I_{1}) = 0$$

$$R_{1}(I_{3} + I_{1}) + R_{3}(I_{3} - I_{2}) + R_{4}I_{3} = 0$$

$$\begin{pmatrix} 3 & 2 & 1 \\ 2 & 5 & -3 \\ 1 & -3 & 8 \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \\ I_{3} \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \\ 0 \end{pmatrix}$$

Ecuaciones resueltas.  $I_1 = -0.8A$ ,  $I_2 = 3.06A$ ,  $I_3 = 1.25A$ .

### Cuarto paso

Volvemos a encontrar la corrientes de rama. Se usa el siguiente conenvio:

- Si la corriente de rama  $I_r$  y la corriente de malla  $I_m$  tienen el mismo sentido entonces:  $I_r = I_m$ .
- Si tienen sentidos diferentes entonces:  $I_r = -I_m$ .

Si la rama pertenece a dos mallas, entonces se aplica la suma de las corrientes de mallas usando el convenio anterior. Es decir  $I_r = \pm I_{m1} \pm I_{m2}$  dependiendo de la orientación de las corrientes de mallas.

### Cuarto paso

Aplicación al ejemplo.

### Corrientes de rama

Ecuaciones resueltas  $I_1 = -0.8A$ ,  $I_2 = 3.06A$ ,  $I_3 = 1.25A$ .

$$I_{a} = I_{1} + I_{3}$$

$$I_{b} = I_{1} + I_{2}$$

$$I_{c} = -I_{2} + I_{3}$$

$$I_{d} = I_{3}$$

$$I_a = 0,45$$
A,  $I_b = 2,27$ A,  
 $I_c = -1,81$ A,  $I_d = 1,25$ A.

### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

31 / 36

### Caso de circuitos con fuentes de corriente

- La fuente de corriente pertenece sólo a una malla. En este caso se usa la corriente de la fuente como corriente de malla, y se aplica el método a las *n* − 1 mallas restantes, dado que la corriente de esta malla ya es conocida.
- La fuente de corriente pertenece a dos mallas. Para resolver esta situación se usa una supermalla. Se establecen las corrientes de malla arbitrarias usando el método habitual, pero a la hora de resolver el circuito se forma la ecuación de la supermalla, que consiste en la fusión de las dos mallas que comparten la fuente de corriente. Las ecuaciones de las otras corrientes de malla completan el sistema de ecuaciones para poder resolverlo.

# 1.4.5 Método de la mallas

- Se definen las corrientes  $l_1$  e  $l_2$  como corrientes de malla.
- Se define la supermalla que une las dos mallas definidas por  $I_1$  e  $I_2$ .
- Podemos hallar la ecuación de la supermalla usando la ley de Kirchhoff.
- Se completa el sistema de ecuaciones con la relación entre la fuente de corriente  $I_b$  y las corrientes de malla:  $I_b = I_1 I_2$ .



### Método de las mallas matricial

Para aplicar correctamente el método matricial debemos elegir **todas** las corrientes con el mismo sentido de rotación (horario todas o antihorario todas).

$$\begin{bmatrix} R_{11} & -R_{12} & \dots & -R_{1n} \\ -R_{21} & & & \\ \vdots & & & \vdots \\ -R_{m1} & \dots & -R_{mn} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_m \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{bmatrix}$$

 Cada fila corresponde a un bucle y cada columna a una corriente de malla. Las resistencias R<sub>ii</sub> corresponde a la suma de la resistencias del bucle i recorrida por la corriente I<sub>j</sub>.

■ Las resistencias *R<sub>ij</sub>* corresponden a las resistencias en común entre la malla *i* e *j*.

### Método de las mallas matricial

| [ R <sub>11</sub>        | $-R_{12}$ . |     | $-R_{1n}$ | $\begin{bmatrix} I_1 \end{bmatrix}$ |   | $\begin{bmatrix} e_1 \end{bmatrix}$ |
|--------------------------|-------------|-----|-----------|-------------------------------------|---|-------------------------------------|
| $-R_{21}$                |             |     |           | $I_2$                               |   | <i>e</i> <sub>2</sub>               |
| 1                        |             |     | :         | :                                   | = | ÷                                   |
| $\left[ -R_{m1} \right]$ |             | ••• | $-R_{mn}$ | [ <i>I<sub>m</sub></i> ]            |   | e <sub>m</sub>                      |

- Las tensiones e<sub>i</sub> son la suma de las fuentes de tensión de cada malla (cuidado con el signo).
- No funciona si tenemos fuentes de corriente.

# 1.4.5 Método de la mallas

### Método de las mallas cuando hay fuentes dependientes

- Las étapas a seguir son las mismas que en un circtuito con fuentes independientes.
- Hay que establecer las relaciones de las fuentes dependientes para completar las ecuaciones.



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 1: Introducción a la teoría de circuitos

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

# **1.5 Teoremas de la teoría de circuitos** 1.5.1 El teorema de Millman

### Teorema de Millman

- Suponemos *k* ramas en paralelo.
- Podemos hallar la d.d.p. entre los dos nudos en una única fórmula.



# 1.5 Teoremas de la teoría de circuitos

### 1.5.1 El teorema de Millman

### Teorema de Millman

Escribimos  $\Delta V$  la diferencia de potencial entre los nudos:

Si hay una fuente en serie con una resistencia:

$$V = E_n - R_n I_n. \tag{1}$$

Cuando únicamente existe una resistencia se tiene:

$$V = R_m I_m. \tag{2}$$

Se efectua el balance de corriente con las leyes de Kirchhoff en el nudo:

$$\sum_{j=0}^{\kappa} I_j = 0. \tag{3}$$

# **1.5 Teoremas de la teoría de circuitos** 1.5.1 El teorema de Millman

### Teorema de Millman

Combinamos todas éstas ecuaciones en una única fórmula

$$V = \frac{\sum_{k} E_{k}/R_{k} + \sum_{k} I_{k}}{\sum_{k} 1/R_{k}}$$



(4)

# **1.5 Teoremas de la teoría de circuitos** 1.5.1 El teorema de Millman



A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

# **1.5 Teoremas de la teoría de circuitos** 1.5.2 El teorema de Thévenin

Teorema de Thévenin

Dado un circuito lineal, podemos hallar un equivalente eléctrico entre dos puntos elegidos del circuito.

# **1.5 Teoremas de la teoría de circuitos** 1.5.2 El teorema de Thévenin

### Teorema de Thévenin

Método general para hallar el equivalente:

- El voltaje de Thévenin V<sub>th</sub> se obtiene midiendo el voltaje entre A y B desconectando la posible carga o elementos entre los puntos A y B.
- Para calcular la resistencia de Thévenin R<sub>th</sub>, se ponen en cortocircuito los puntos A y B y se mide la corriente I<sub>cc</sub> que circula entre los dos puntos. La resistencia se obtiene con: R<sub>th</sub> = V<sub>th</sub>/I<sub>cc</sub>.

# **1.5 Teoremas de la teoría de circuitos 1.5.2 El teorema de Thévenin**



A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

8 / 31
# **1.5 Teoremas de la teoría de circuitos** 1.5.2 El teorema de Thévenin

### Método simplificado

Si el circuito no contiene **ninguna fuente dependiente**, el método se puede modificar ligeramente para simplificar el análisis:

- Para calcular la resistencia de Thévenin R<sub>th</sub> se ponen en cortocircuito las fuentes de tensión independientes y se abren la fuentes de corriente independientes. Se calcula de esta forma la resistencia equivalente entre los puntos A y B.
- El voltaje de Thévenin V<sub>th</sub> se obtiene midiendo el voltaje entre A y B sin carga a la salida.

# **1.5 Teoremas de la teoría de circuitos** 1.5.2 El teorema de Thévenin



### Teorema de Norton

- Es el equivalente del teorema de Thévenin para una fuente de corriente.
- Cualquier red lineal vista desde dos puntos se puede modelizar mediante una fuente de corriente y una resistencia equivalente en paralelo.

### Teorema de Norton

Existe también un método para determinar la resistencia de Norton y la fuente de corriente equivalente. Al igual que el método para el equivalente de Thévenin, el de Norton consiste en dos pasos:

- La corriente Norton del circuito se obtiene poniendo la salida en cortocircuito, de tal modo que toda la corriente I<sub>N</sub> fluye por el cortocircuito.
- En circuito abierto, toda la corriente  $I_N$  pasa por la resistencia  $R_N$ , por lo que, a partir de la tensión  $V_{AB}$  en circuito abierto, se puede calcular:  $R_N = V_{AB}/I_N$ .

Forma de pasar de un equivalente Norton a Thévenin

$$I_N = \frac{V_{th}}{R_{th}},$$

$$R_N = R_{th}.$$
(5)
(6)



### Forma de pasar de un equivalente Norton a Thévenin

Esta transformación también es válida para fuentes dependientes.





A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

15 / 31

### Superposición

En un sistema lineal se pueden separar los efectos de las distintas fuentes de tensión o corriente. Es una consecuencia de las propiedades de los circuitos lineales: los efectos debidos a cada fuente se van sumando de manera independiente y lineal.

### Método general

- 1. Se elige una fuente para calcular su efecto sobre el circuito.
- 2. Se anulan las fuentes de tensión colocando un cortocircuito en su lugar y abrimos las fuentes de corriente (se desconectan).
- 3. Se calcula el efecto de la fuente elegida sobre el circuito.
- 4. Se repite el proceso para todas las otras fuentes.
- 5. Se suman todas las corrientes y tensiones obtenidas en cada rama para obtener la tensión final.



Datos:  $R_1 = 1\Omega$ ,  $R_2 = 2\Omega$ ,  $R_3 = 3\Omega$ ,  $R_4 = 4\Omega$ ,  $V_1 = 5V$ ,  $V_2 = 10V$ .

A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

18 / 31

Apagamos  $V_2$ :



Apagamos  $V_1$ :



# **1.5 Teoremas de la teoría de circuitos** 1.5.5 El teorema de Tellegen

### Condiciones

Es un teorema de conservación de la potencia sobre los circuitos muy general. Se aplica a circuitos que cumplen los siguientes requisitos:

- Un circuito con *N* ramas.
- Una diferencia de potencial V<sub>k</sub> entre los extremos de cada rama.
- Se cumple la ley de Kirchhoff en tensión para cada lazo.
- En cada nudo se satisface la ley de Kirchhoff en corriente.

### Teorema de Tellegen

$$\sum_{k=1}^N V_k(t)I_k(t) = 0.$$

# **1.5 Teoremas de la teoría de circuitos 1.5.5 El teorema de Tellegen**

Aplicación



Datos:  $E_1 = 50$ V,  $R_1 = 2,5\Omega$ ,  $R_2 = 20\Omega$ ,  $R_3 = R_4 = 10\Omega$ ,  $R_5 = 20/3\Omega$ .

### Equivalente Y- $\Delta$

Este teorema forma parte de una familia más general de teoremas de transformación de red de elementos pasivos con tres o más terminales.



### Transformación $\Delta \rightarrow Y$

$$R_{a} = \frac{R_{ab}R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{b} = \frac{R_{bc}R_{ab}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{c} = \frac{R_{bc}R_{ca}}{R_{ab} + R_{bc} + R_{ca}}.$$

$$(10)$$

La resistencia equivalente en estrella es el producto de las dos resistencia del esquema en triángulo conectadas al punto estudiado divido, por la suma de las tres resistencias.

Ejemplo:



Datos:

### Transformación $Y \rightarrow \Delta$

$$R_{ab} = \frac{R_a R_b + R_a R_c + R_b R_c}{R_c} \tag{11}$$

$$R_{bc} = \frac{R_a R_b + R_a R_c + R_b R_c}{R_a} \tag{12}$$

$$R_{ca} = \frac{R_a R_b + R_a R_c + R_b R_c}{R_b}.$$
 (13)

Es decir, cada resistencia es la suma de los productos de los pares de resistencias  $(R_iR_j)$  de los nodos correspondientes, dividida entre la resistencia opuesta.

Ejemplo:



### Datos:

Queremos calcular la potencia que proporcionan los generadores de tensión  $V_1$  y  $V_2$  de la siguiente figura:



Datos:  $R_1 = 1\Omega$ ,  $R_2 = 2\Omega$   $R_3 = 3\Omega$ ,  $R_4 = 4\Omega$ ,  $V_1 = 5V$ ,  $V_2 = 10V$ .

### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

28 / 31

# 1.5 Teoremas de la teoría de circuitos

1.5.7 El teorema de máxima transferencia de potencia

### máxima transferencia de potencia

Dado un circuito lineal representado por su equivalente Thévenin, podemos encontrar una condición sobre una **red pasiva** conectada a este equivalente para que la potencia transferida de uno a otro sea máxima.



## 1.5 Teoremas de la teoría de circuitos

1.5.7 El teorema de máxima transferencia de potencia

### máxima transferencia de potencia

Con el circuito reducido podemos calcular la condición sobre  $R_e$  para que la transferencia de potencia  $P_s$  sea un máximo es decir:

$$\frac{\partial P_s}{\partial R_e} = \frac{V_1^2 (R_i + R_e)^2 - V_1^2 R_e 2 (R_i + R_e)}{(R_i + R_e)^4} = 0.$$
(14)

El numerador se anula cuando:

$$R_i = R_e. \tag{15}$$



# **1.5 Teoremas de la teoría de circuitos 1.5.7 El teorema de máxima transferencia de potencia**

Ejemplo: Calcular R para obtener la máxima transferencia de potencia.



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 1: Introducción a la teoría de circuitos

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

# 1.6 Análisis de transitorios

### 1.6.1 Transitorios de primer orden

### Transitorio

En circuitos electrícos lineales se suelen distinguir dos regímenes de funcionamiento:

- Régimen transitorio: périodo de tiempo entre el inicio del funcionamiento y el regimen permanente.
- Régimen permanente: ocurre cuando las variables de referencias no cambian. Se llama también régimen estacionario.

# 1.6 Análisis de transitorios

### 1.6.1 Transitorios de primer orden

### Sistema de primer orden

- Se caracteriza la dinámica de los sistemas lineales por su orden, corresponde al grado u orden de la ecuación diferencial que rige la evolución de la variable que estudiamos.
- Un ejemplo típico es un condensador conectado a una fuente y posiblemente con una resistencia en serie.

### Dinámica del condensador

Un condensador relaciona  $V_c$  entre sus bornes e I mediante la ecuación:

$$\frac{dQ}{dt} = C\frac{dV_c}{dt} = I.$$
 (1)

# **1.6 Análisis de transitorios** 1.6.1 Transitorios de primer orden



4 / 17

# **1.6 Análisis de transitorios**

1.6.1 Transitorios de primer orden

### Circuito RC

La dinámica del circuito RC es típica de un sistema de primer orden.



# **1.6 Análisis de transitorios** 1.6.1 Transitorios de primer orden

### Circuito RC



# **1.6 Análisis de transitorios**

### 1.6.1 Transitorios de primer orden

# Solución con $V_c(0) = 0$

$$V_c(t) = E_0(1 - e^{-t/RC})$$
 para  $t \ge 0.$  (2)

Definimos  $\tau = RC$  el tiempo característico del proceso de carga del condensador.



# **1.6 Análisis de transitorios 1.6.1 Transitorios de primer orden**



# 1.6 Análisis de transitorios

### 1.6.1 Transitorios de primer orden

### Circuitos LR

- Podemos repetir el análisis con un circuito compuesto por una resistencia en serie con una inductancia.
- En una inductancia el flujo magnético es proporcional a la corriente  $\Phi = LI$ .
- Si estudiamos las variaciones de *I* obtenemos:

$$\frac{d\Phi}{dt} = L\frac{dI}{dt},\tag{3}$$

Podemos repetir el análisis anterior para un circuito compuesto de una resistencia en serie con una inductancia. Obtenemos también una dinámica de primer orden.

# **1.6 Análisis de transitorios** 1.6.1 Transitorios de primer orden

### Circuitos LR



# **1.6 Análisis de transitorios**

### 1.6.1 Transitorios de primer orden



# 1.6 Análisis de transitorios

1.6.1 Transitorios de segundo orden

### Circuitos RLC

Al combinar dos elementos que tienen memoria, la dinámica pasa a ser de orden 2.



# **1.6 Análisis de transitorios** 1.6.2 Transitorios de segundo orden

### Circuitos RLC


### 1.6 Análisis de transitorios

### Ecuación canónica

$$\frac{d^2x}{dt^2} + 2\xi\omega_n\frac{dx}{dt} + \omega_n^2x = A\omega_n^2$$

Con las constantes:  $\omega_n = 1/LC$ ,  $\xi = R\sqrt{C/L}/2$ 

#### Ecuación homogénea

$$\frac{d^2x}{dt^2} + 2\xi\omega_n\frac{dx}{dt} + \omega_n^2 x = 0$$

Se buscan soluciones exponenciales de esta ecuación:  $x_h(t) = K e^{\lambda t}$ 

#### Ecuación característica

$$\lambda^2 + 2\xi\omega_n\lambda + \omega_n^2 = 0$$

Las raices de esta ecuación van a determinar el comportamento del circuito.

### 1.6 Análisis de transitorios

### 1.6.2 Transitorios de segundo orden

### Coeficiente de amortiguamiento

Se pueden identificar algunos parámetros del sistema a esta respuesta:

1. El coeficiente de amortiguamiento se define como:

$$\xi = \frac{R}{2} \sqrt{\frac{C}{L}}.$$
 (6)

Este número, controla de alguna forma el número de oscilaciones del sistema antes de llegar al estado estable.

2. La frecuencia de las oscilaciones:

$$\omega_{p} = \omega_{n} \sqrt{1 - \xi^{2}}, \qquad (7)$$

 $\operatorname{con}\,\omega_n=\sqrt{1/(LC)}.$ 

### **1.6 Análisis de transitorios** 1.6.2 Transitorios de segundo orden

### Circuitos LR



### 1.6 Análisis de transitorios

### 1.6.2 Transitorios de segundo orden

#### Coeficiente de amortiguamiento

Depediendo del valor del amortiguamiento, se pueden clasificar los comportamentos en tres grandes clases:

- Los sistemas sobreamortiguados: la respuesta se parece a la respuesta de un sistema de primer orden (ξ > 1).
- Los sistemas con amortiguamiento crítico: la respuesta es la más rápida y la óptima para llegar al régimen permanente ( $\xi = 1$ ).
- Los sistemas subamortiguados: el sistema oscila antes de estabilizarse (0 < ξ < 1).</li>

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 2: Circuitos de corriente alterna

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023





#### Caráceteristicas importantes

- Frecuencia y periodo:  $f_0 = \frac{1}{T_0}$ .
- Expresión temporal:  $V(t) = A\cos(2\pi f_0 t + \phi_0) + V_0$ .
- Fase en función del tiempo:  $\varphi(t) = 2\pi f_0 t + \phi_0$ .
- Relación entre fase y frecuencia:  $\frac{d\varphi}{dt} = 2\pi f_0 = \frac{2\pi}{T_0} = \omega_0$



vector  $(\overrightarrow{OM})$  tiene como coordenadas  $(A\cos(\varphi(t)), A\sin(\varphi(t)))$ . Equivalente en número complejo:

$$z(t) = A\cos(\omega_0 t + \phi_0) + j \cdot A\sin(\omega_0 t + \phi_0) = Ae^{j(\omega_0 t + \phi_0)},$$

donde j es el número imaginario puro tal que  $j^2 = -1$ .

### Expresión de la tensión V(t)

$$V(t) = \Re\{Ae^{j(\omega_0 t + \phi_0)}\} = \Re\{A(\cos(\omega_0 t + \phi_0) + j \cdot \sin(\omega_0 t + \phi_0))\}.$$

#### Uso de la notación compleja

Derivar una señal:

$$\frac{dV(t)}{dt} = \frac{d}{dt} \Re\{Ae^{j(\omega_0 t + \phi_0)}\} = \Re\{Aj\omega_0 e^{j(\omega_0 t + \phi_0)}\}$$

Integrar una señal:

$$\int_{-\infty}^{t} V(x) dx = \int_{-\infty}^{t} \Re\{Ae^{j(\omega_0 x + \phi_0)}\} dx = \Re\{\frac{1}{j\omega_0}Ae^{j(\omega_0 t + \phi_0)} + K\},\$$

Valor eficaz de una señal periódica V(t)

Definición:

$$V_{ef} = \sqrt{\frac{1}{T} \int_0^T \left( V(t) \right)^2 dt},$$

Para una señal sinusoidal de amplitud A:

$$V_{ef} = rac{A}{\sqrt{2}}.$$

Valor cuadrático medio, valor eficaz, valor RMS, son términos equivalentes.



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 2: Circuitos de corriente alterna

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

Consideramos un sistema lineal alimentado con fuentes de tensión alterna.

Consideramos una tensión alterna:

 $V(t) = A\cos(\omega_0 t + \phi_0).$ 

Usando el formalismo de los números complejos se obtiene:

$$V(t) = \Re\{Ae^{j(\omega_0 t + \phi_0)}\} = \Re\left\{\left(Ae^{j\phi_0}
ight) e^{j\omega_0 t}
ight\}.$$

Definimos el fasor  $\tilde{V}$  asociado a la fuente de tensión V(t).

$$ilde{V}=rac{A}{\sqrt{2}}e^{j\phi_0}$$

Notación equivalente:

$$\tilde{V} = \frac{A}{\sqrt{2}} \angle \phi_0.$$

### Ejemplo de aplicación: Suma de señal sinusoidales

A partir de las funciones siguientes, obtener la expresión de la suma de  $V_1 + V_2$ :

$$V_1(t) = \sqrt{2Acos(\omega_0 t)}$$
  
 $V_2(t) = \sqrt{2Bcos(\omega_0 t + \frac{\pi}{2})}$ 



#### 2.2.1 Uso de los fasores

$$\frac{dV}{dt} \rightarrow \tilde{V}' = Aj\omega_0 e^{j\phi_0} = A\omega_0 \angle \phi_0 + \pi/2$$
$$\int V \, dt \rightarrow \tilde{V}'' = A \frac{1}{j\omega_0} e^{j\phi_0} = \frac{A}{\omega_0} \angle \phi_0 - \pi/2$$

2.2.1 Uso de los fasores



Hay dos referencias posible para expresar los fasores:

$$egin{array}{ll} ilde{V}_1 = V_1 otoolog 0^o \ ilde{V}_2 = V_2 otoolog 25^o \end{array}$$

Si, por el contrario, se elige  $\tilde{V}_2$  como referencia, se transforman las expresiones en:

$$egin{array}{ll} ilde{V}_1 = V_1 ota - 25^o \ ilde{V}_2 = V_2 ota 0^o \end{array}$$

2.2.1 Uso de los fasores

De forma general podemos definir los fasores cómo:

$$egin{array}{ll} ilde{V}_1 = V_1 otoolog 0^o + arphi \ ilde{V}_2 = V_2 otoolog 25^o + arphi \end{array}$$

2.2.2 Orden de los fasores y representación temporal



2.2.2 Orden de los fasores y representación temporal



2.2.2 Orden de los fasores y representación temporal



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 2: Circuitos de corriente alterna

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

## 2.3 Resistencias, condensadores e inductancias en corriente alterna

### 2.3.1 Resistencias

Leyde Ohm en su forma más general:

V(t)=RI(t).

Vamos a suponer una tensión sinusoidal:

$$V(t) = \sqrt{2}A\sin(\omega_0 t + \phi_0),$$

a la cual se asocia el siguiente fasor:

$$\tilde{V} = A \angle \phi_0.$$

Usando la ley de Ohm se puede hallar la corriente:

$$I(t) = \frac{\sqrt{2}A}{R}\sin(\omega_0 t + \phi_0).$$

### 2.3 R, C y L en corriente alterna 2.3.1 Resistencias

Tenemos el fasor de corriente:

$$\tilde{I}=\frac{A}{R}\angle\phi_0.$$

Se deduce así la relación entre tensión y corriente en forma fasorial:

 $\tilde{V} = R\tilde{I}.$ 

Este elemento no produce ningún desfase adicional entre la tensión y la corriente.

# 2.3 R, C y L en corriente alterna 2.3.1 Resistencias

Representación del circuito en el dominio temporal y en el dominio de fasores.



Carga de un condensador en función del tiempo:

$$Q(t) = C V(t)$$

Variaciones temporales de la carga:

$$\frac{dQ}{dt} = I(t) = C \frac{dV}{dt}.$$
(1)

También se puede interpretar el condensador como un integrador de corriente:

$$V(t)=\frac{1}{C}\int_{-\infty}^{t}I(x)dx.$$

Si tenemos una tensión sinusoidal de amplitud  $\sqrt{2}V_0$ , fase inicial  $\phi_0$  y frecuencia  $\omega_0$ :

$$V(t) = \sqrt{2}V_0 sin(\omega_0 t + \phi_0),$$

le corresponderá el fasor complejo:

$$\tilde{V}=V_0e^{j\phi_0}=V_0\angle\phi_0.$$

Calculamos la corriente usando la ecuación del condensador

$$I(t)=C\frac{dV}{dt}=C\frac{d}{dt}(\sqrt{2}V_0\sin(\omega_0t+\phi_0))=C\sqrt{2}V_0\omega_0\sin(\omega_0t+\phi_0+\frac{\pi}{2}).$$

Usando fasores podemos simplificar el cálculo:

$$\tilde{l} = C\omega_0 V_0 \angle (\phi_0 + \frac{\pi}{2}) = C\omega_0 e^{j\frac{\pi}{2}} V_0 e^{j\phi_0} = C\omega_0 j V_0 \angle \phi_0 = j C\omega_0 \tilde{V}.$$

Recordamos que derivar una cantidad en el dominio fasorial corresponde a multiplicar por  $j\omega$ . Se despeja la relación directa entre tensión y corriente:

$$\tilde{V} = \frac{1}{j\omega_0 C} \tilde{I}.$$
(2)

Se define la impedancia de un condensador en régimen armónico se expresa como:

$$Z_C = \frac{1}{j\omega_0 C}.$$

Si se define la reactancia como la parte imaginaria de la impedancia:

$$X_C=\frac{1}{\omega_0 C},$$

la impedancia es entonces:

$$Z_C = -jX_C.$$





El circuito de la figura anterior se alimenta mediante una fuente de corriente alterna de frecuencia f = 150Hz. Expresar la corriente y la tensión  $V_c$  del condensador en forma de fasores. Datos del problema: R = 1k $\Omega$ ,  $C = 1\mu$ F,  $\tilde{V}_0 = 10\angle 0$ V, f = 150Hz.



#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

11 / 1

# 2.3 R, C y L en corriente alterna 2.3.3 Inductancias

Ecuaciones de comportamiento de las autoinductancias

Relación flujo-corriente:

 $\Phi = LI$ .

Ley de Faraday:

$$\mathcal{E}=-rac{d\Phi}{dt}.$$

Relación tensión-corriente en bobinas:

$$V_L = \frac{d\Phi}{dt} = \frac{d(LI)}{dt} = L\frac{dI}{dt}.$$

 $\tilde{V}_I$ 

## 2.3 R, C y L en corriente alterna 2.3.3 Inductancias

#### Funcionamiento en régimen de alterna

$$V_L(t) = V_0 \cos(\omega_0 t + \phi).$$

Usamos la ley de la bobina para calcular la corriente:

$$I(t) = \frac{1}{L} \int_{-\infty}^{t} V_L(x) dx = \frac{-1}{\omega_0 L} V_0 \cos(\omega_0 t + \phi) = \frac{-1}{\omega_0 L} V_0 \sin(\omega_0 t + \phi + \frac{\pi}{2}).$$

La corriente también es sinusoidal y tiene un fasor asociado:

$$\tilde{I} = \frac{-1}{\omega_0 L} \frac{V_0}{\sqrt{2}} \angle \left(\phi_0 + \frac{\pi}{2}\right) = \frac{-1}{\omega_0 L} j \frac{V_0}{\sqrt{2}} \angle \phi_0 = \frac{1}{j \omega_0 L} \frac{V_0}{\sqrt{2}} \angle \phi_0 = \frac{1}{j \omega_0 L} \tilde{V}_L.$$

## 2.3 R, C y L en corriente alterna 2.3.3 Inductancias

#### Funcionamiento en régimen de alterna

Aparece por tanto una relación entre tensión y corriente según:

$$\tilde{V}_L = j\omega_0 L \tilde{I} = L\omega_0 \tilde{I} \angle \phi_0 + \frac{\pi}{2}.$$

Se define la impedancia compleja de la inductancia como:

$$Z_L = j\omega_0 L.$$
$$X_L = \omega_0 L.$$
$$\tilde{V}_L = Z_L \tilde{I}.$$
## 2.3 R, C y L en corriente alterna 2.3.3 Inductancias



## 2.3 R, C y L en corriente alterna 2.3.3 Inductancias



En el circuito de la figura anterior aparece una resistencia en serie con una inductancia alimentada por una fuente de tensión alterna de frecuencia f = 1000Hz. Expresar la corriente y la tensión  $\tilde{V}_L$  de la inductancia en forma de fasores. Datos del problema:  $R = 100\Omega$ , L = 10mH,  $\tilde{V}_0 = 10\angle 0$ V.

## 2.3 R, C y L en corriente alterna 2.3.3 Inductancias



## 2.3.4 Fuentes y generadores de corriente alterna

#### Fuente de tensión

$$egin{aligned} V_g(t) &= V_0 \sin(\omega t + arphi), \ & ilde{V}_g &= rac{V_0}{\sqrt{2}} \measuredangle arphi. \end{aligned}$$



## 2.3.4 Fuentes y generadores de corriente alterna

#### Fuente de corriente

$$egin{aligned} & I_g(t) = I_0 \sin(\omega t + arphi), \ & & ilde{I}_g = rac{I_0}{\sqrt{2}} \angle arphi. \end{aligned}$$



## 2.3.5 Ley general de Ohm

Cualquier circuito formado de elementos pasivos lineales se comporta como una única impedancia compleja Z vista entre dos terminales:

$$\tilde{V} = Z\tilde{I},$$



## 2.3.5 Ley general de Ohm



## 2.3.5 Ley general de Ohm

Los elementos lineales de un circuito se asocian de forma idéntica a como se mostró en corriente continua:

Para impedancias en serie:

$$Z_{eq}=Z_1+Z_2+\cdots+Z_n.$$

Para impedancias en paralelo:

$$\frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n}$$

Fuentes de tensión en serie:

$$ilde{V}_{eq} = ilde{V}_1 + ilde{V}_2 + \dots + ilde{V}_n.$$

Fuentes de corriente en paralelo:

$$\tilde{l}_{eq} = \tilde{l}_1 + \tilde{l}_2 + \dots + \tilde{l}_n.$$

Son, básicamente, las mismas reglas de asociación vistas antes. Del mismo modo,

## 2.3.6 Teoría de circuitos en régimen armónico

#### Análisis de circuito

El análisis de circuito ya estudio en corriente continua es válido en corriente alterna si:

- El circuito cumple los requisitos de las leyes de Kirchhoff (para las leyes de corrientes y tensiones).
- Los elementos del circuito son lineales.

Entonces se puede usar la forma fasorial de las tensiones y corrientes.

## 2.3.6 Teoría de circuitos en régimen armónico

#### Leyes de Kirchhoff con fasores

La ley de corrientes se resume en la expresión siguiente:

$$\sum_{\in \text{ nudo}} \tilde{l}_k = 0,$$

para las corrientes  $\tilde{I}_k$  que llegan a un mismo nudo. La segunda ley de Kirchhoff para las tensiones se escribe como:

$$\sum_{k \in \text{ malla}} \tilde{V}_k = 0,$$

para las tensiones con fasor  $\tilde{V}_k$  de un lazo.

## 2.3.6 Teoría de circuitos en régimen armónico

#### Teoremas de circuitos en corriente alterna

Los teoremas siguientes se aplican de forma indiscriminada a circuitos de corriente continua y alterna:

- El teorema de Millman.
- El teorema de Thévenin y Norton.
- El método de las mallas y de los nudos.
- El teorema de máxima transferencia de potencia.
- El teorema de Tellegen.
- El teorema de Kennelly.

## 2.3.7 Diagrama de fasores de un circuito

#### Diagrama con fasores

El diagrama permite comparar los desfases y las amplitudes de distintos fasores en un único esquema. Para su obtención, se procede como sigue:

- 1. Primero, se elige un fasor de referencia.
- 2. Se calcula la expresión de los otros fasores referidos al fasor de referencia.
- 3. Se dibujan en el plano complejo los distintos fasores obtenidos, respetando los módulos y los ángulos obtenidos.

### 2.3.7 Diagrama de fasores de un circuito



27 / 1

## 2.3.7 Diagrama de fasores de un circuito Ejercicio

Construir el diagrama de fasores de la figura siguiente. Datos:  $\tilde{V}_0 = 110$ V,  $C = 50\mu$ F,  $R = 100\Omega$ , L = 100mH, f = 50Hz.



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 2: Circuitos de corriente alterna

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023



Consideramos un sistema de corriente alterna con una tensión V(t) y su corriente I(t):

$$V(t) = \Re\{V_m e^{j(\omega_0 t + \theta_v)}\} = \frac{V_m}{2} \{e^{j(\omega_0 t + \theta_v)} + e^{-(j\omega_0 t + \theta_v)}\}$$
$$I(t) = \Re\{I_m e^{j(\omega_0 t + \theta_i)}\} = \frac{I_m}{2} \{e^{j(\omega_0 t + \theta_i)} + e^{-j(\omega_0 t + \theta_i)}\},$$
(1)

La potencia instantánea se calcula multiplicando las expresiones temporales del voltaje y la intensidad:

$$p(t) = V(t)I(t) = \frac{V_m}{2} \{ e^{j(\omega_0 t + \theta_v)} + e^{-j(\omega_0 t + \theta_v)} \} \frac{I_m}{2} \{ e^{j(\omega_0 t + \theta_i)} + e^{-j(\omega_0 t + \theta_i)} \}$$

Se puede calcular la expresión anterior en una expresión que no depende de números complejos:

$$p(t) = \frac{V_m I_m}{2} \{ \cos(\theta_v - \theta_i) + \cos(2\omega_0 t - (\theta_v - \theta_i)) \}.$$

Reordenamos los términos usando trigonométrico:

$$p(t) = \frac{V_m I_m}{2} \{\cos(\theta_v - \theta_i)(1 + \cos(2\omega_0 t)) + \sin(\theta_v - \theta_i)\sin(2\omega_0 t)\}.$$
(2)

#### Potencia activa

$$P = \frac{V_m I_m}{2} \cos(\phi) = V_0 I_0 \cos(\phi).$$
 [W]

#### Potencia reactiva

$$Q = \frac{V_m I_m}{2} \sin(\phi) = V_0 I_0 \sin(\phi). \text{ [VAR]}$$

#### Ángulo de desfase

El ángulo  $\phi$  es la diferencia de fase entre la tensión y la corriente:

$$\phi = \theta_{\mathbf{v}} - \theta_{\mathbf{i}}.$$

En circuitos lineales, este ángulo se mantiene en el intervalo  $[-\pi/2,\pi/2].$ 

La potencia instantánea se puede escribir más concisamente en términos de P y Q:

$$p(t) = P(1 + \cos(2\omega_0 t)) + Q \sin(2\omega_0 t),$$

donde aparece claramente la contribución de la potencia activa y de la potencia reactiva.



Definición de potencia compleja

Fasor de la potencia compleja:

$$\tilde{S} = P + jQ,$$

El módulo  $|\tilde{S}|$  se se denomina **potencia aparente** en Voltios-Amperio [VA]



#### Relación entre fasores y potencia compleja

Amplitudes complejas de un circuito. Tomando el ejemplo anterior con los siguientes fasores:

$$\begin{split} \tilde{V} &= V_0 \angle \theta_v \\ \tilde{I} &= I_0 \angle \theta_i, \end{split}$$

la potencia compleja se calcula como:

$$ilde{S} = ilde{V} ilde{I}^* = V_0 I_0 \angle ( heta_{v} - heta_i) = V_0 I_0(\cos(\phi) + j\sin(\phi)),$$

donde  $\phi = \theta_v - \theta_i$ . Encontramos de nuevo la expresión de la potencia compleja en forma  $\tilde{S} = P + jQ$ .

## **2.4 Potencia en sistemas de corriente alterna** 2.4.1 Factor de potencia

#### El ángulo $\phi$

El ángulo  $\phi = \theta_v - \theta_i$  se llama también **ángulo de factor de potencia**.

El término  $fp = \cos \phi$  se llama factor de potencia.

Una fórmula alternativa para el factor de potencia se halla despejando la expresión  $P = |S| \cos \phi$ :

$$\cos\phi = \frac{P}{|S|} = \frac{P}{\sqrt{P^2 + Q^2}},$$

## **2.4 Potencia en sistemas de corriente alterna** 2.4.1 Factor de potencia

Al ser el coseno una función par, no hay ninguna manera de distinguir entre un ángulo positivo y un ángulo negativo (cuando el ángulo está comprendido en el intervalo  $[-\pi/2, pi/2]$ ). Se usan entonces los dos términos siguientes:

- Factor de potencia en atraso: cuando la corriente va por detrás de la tensión (\$\phi\$ > 0 tal como se ha definido antes con la tensión como referencia).
- Factor de potencia en adelanto: cuando la tensión va por detrás de la corriente (\u03c6 < 0 tal como se ha definido antes con la tensión como referencia).

El caso  $\phi = 0$  corresponde a una carga puramente resistiva, en donde no hay consumo de energía reactiva.

## 2.4 Potencia en sistemas de corriente alterna2.4.2 Potencia en una resistencia

Calculo de la potencia en una resistencia de valor R alimentada con corriente alterna:

$$\tilde{S} = \tilde{V}\tilde{I}^* = R\tilde{I}\tilde{I}^* = R|\tilde{I}|^2.$$

Esta potencia se puede expresar también haciendo uso de la tensión:

$$ilde{S} = ilde{V} \cdot \left(rac{ ilde{V}^*}{R}
ight) = rac{| ilde{V}|^2}{R}.$$

## 2.4 Potencia en sistemas de corriente alterna2.4.3 Potencia en un condensador

Considerando la impedancia compleja de un condensador, la relación entre tensión y corriente se escribe como:

$$ilde{V} = rac{1}{jC\omega} ilde{I} = rac{1}{C\omega} ilde{I} \angle -rac{\pi}{2}.$$

Para una corriente arbitraria, la potencia se escribe como:

$$\tilde{S} = \tilde{V}\tilde{I}^* = \frac{1}{jC\omega}\tilde{I}\tilde{I}^* = \frac{-j}{C\omega}|\tilde{I}|^2.$$

Se puede derivar una expresión similar en función la tensión:

$$\tilde{S} = \tilde{V}\tilde{I}^* = \tilde{V}\left(jC\omega\tilde{V}\right)^* = -jC\omega|\tilde{V}|^2.$$

## 2.4 Potencia en sistemas de corriente alterna 2.4.4 Potencia en una inductancia

Para una inductancia en corriente alterna, la relación entre tensión y corriente es:

$$\tilde{V} = jL\omega\tilde{I} = L\omega\tilde{I} \angle \frac{\pi}{2}.$$

Dada cierta corriente, la potencia se expresa mediante:

$$\tilde{S} = \tilde{V}\tilde{I}^* = jL\omega\tilde{I}\tilde{I}^* = jL\omega|\tilde{I}|^2 = \frac{j|\tilde{V}|^2}{L\omega}.$$

## **2.4 Potencia en sistemas de corriente alterna** 2.4.5 Potencia en una impedancia compleja

Dada una impedancia equivalente Z, se puede expresar la potencia consumida por esta carga como:

$$\tilde{S} = \tilde{V}\tilde{I}^* = Z\tilde{I}\tilde{I}^* = Z|\tilde{I}|^2.$$

Descomponiendo la impedancia compleja, se obtiene:

$$\tilde{S} = |\tilde{I}|^2(\Re(Z) + j\Im(Z)),$$

o, escrito de otra forma:

$$P = |\tilde{I}|^2 \Re(Z)$$
$$Q = |\tilde{I}|^2 \Im(Z).$$

## **2.4 Potencia en sistemas de corriente alterna** 2.4.5 Potencia en una impedancia compleja

Con la tensión y la impedancia Z de un elemento se puede obtener la potencia de forma análoga:

$$ilde{S} = ilde{V} ilde{I}^* = ilde{V}\left(rac{ ilde{V}}{Z}
ight)^* = ilde{V}rac{ ilde{V}^*}{Z^*} = rac{| ilde{V}|^2}{Z^*}.$$

Se obtiene así la potencia compleja, aunque esta vez aparece el conjugado del fasor de la impedancia compleja  $Z^*$  en el cálculo.

## **2.4 Potencia en sistemas de corriente alterna** 2.4.5 Potencia en una impedancia compleja

Determinar la potencia en cada elemento y la potencia compleja de la fuente de alimentación del circuito de la figura siguiente. Datos del problema:  $R = 10\Omega$ , L = 10mH,  $C = 200\mu$ F,  $\tilde{V} = 10\angle 0$ V y f = 50Hz.



## **2.4 Potencia en sistemas de corriente alterna** 2.4.6 Mejora del factor de potencia



La impedancia equivalente del motor se escribe como:

$$Z=|Z|\angle\varphi_{z},$$

**2.4 Potencia en sistemas de corriente alterna** 2.4.6 Mejora del factor de potencia



La corriente  $\tilde{I}$  se descompone ahora en una corriente  $\tilde{I}_C$  del elemento capacitivo y una corriente  $\tilde{I}_Z$  de la carga. La potencia del sistema total se puede escribir como:

$$ilde{S} = ilde{V} ilde{I}^* = ilde{V}( ilde{I}_c + ilde{I}_Z)^* = ilde{V} ilde{I}^*_c + ilde{V} ilde{I}^*_Z = ilde{S}_c + ilde{S}_Z.$$

La potencia del condensador es reactiva ( $\tilde{S}_c = jQ_c$ ), la potencia total es:

$$\tilde{S} = \tilde{S}_c + \tilde{S}_Z = P_Z + j(Q_Z + Q_c).$$

## 2.4 Potencia en sistemas de corriente alterna2.4.6 Mejora del factor de potencia

El nuevo factor de potencia con la corrección se escribe como:

$$f_{pl} = \cos(\varphi_l) = \frac{P_Z}{|S|} = \frac{P_Z}{\sqrt{P_Z^2 + (Q_Z + Q_c)^2}}.$$
 (3)

La nueva potencia (activa y reactiva) se pueden expresar en función de la carga compleja Z como:

$$\begin{split} \tilde{S}_Z &= \tilde{V}\tilde{I}_Z^* = Z|\tilde{I}_Z|^2 = \frac{|\tilde{V}|^2}{|Z|} \angle \varphi_z \\ P_Z &= |\tilde{V}|^2 \frac{1}{|Z|} \cos(\varphi_z) \\ Q_Z &= |\tilde{V}|^2 \frac{1}{|Z|} \sin(\varphi_z). \end{split}$$

## 2.4 Potencia en sistemas de corriente alterna2.4.6 Mejora del factor de potencia



Despejando  $Q_c$  de la ecuación del factor de potencia, aparece la potencia reactiva del condensador necesaria para obtener un factor de potencia  $f_{pl}$ :

$$Q_c = P_Z \sqrt{\frac{1 - f_{pl}^2}{f_{pl}^2}} - Q_Z.$$

## **2.4 Potencia en sistemas de corriente alterna** 2.4.7 Máxima transferencia de potencia

#### máxima transferencia de potencia

Dado un circuito lineal representado por su equivalente Thévenin, podemos encontrar una condición sobre una **red pasiva** conectada a este equivalente para que la potencia transferida de uno a otro sea máxima.


#### máxima transferencia de potencia

Establecemos la condición de máxima transferencia, es decir vamos a calcular Z que optimiza la potencia transferida por la carga. Primero se calcula la potencia áctiva de la carga Z = R + jX:

$$P = \mathcal{R}\{Z\}|\tilde{I}|^2 = R \left|\frac{V_{th}}{Z_{th}+Z}\right|^2$$

Los valores de R y X van a determinar la potencia transferida, tenemos que buscar para qué valores ocurre este máximo:

$$\frac{\partial P}{\partial R} = \frac{\partial}{\partial R} \left( R \left| \frac{V_{th}}{Z_{th} + Z} \right|^2 \right) = 0; \quad \frac{\partial P}{\partial X} = \frac{\partial}{\partial X} \left( R \left| \frac{V_{th}}{Z_{th} + Z} \right|^2 \right) = 0$$

máxima transferencia de potencia Dado Z = R + jX y  $Z_{th} = R_{th} + jX_{th}$  tenemos:  $\frac{\partial P}{\partial R} = \frac{\partial}{\partial R} \frac{R |V_{th}|^2}{(R_{th} + R)^2 + (X_{th} + X)^2} =$   $= |V_{th}|^2 \frac{(R_{th} + R)^2 + (X_{th} + X)^2 - R \cdot 2(R_{th} + R)}{((R_{th} + R)^2 + (X_{th} + X)^2)^2} = 0$ 

Llegamos a la condición:

$$(R_{th} + R)^2 + (X_{th} + X)^2 - R \cdot 2(R_{th} + R) = 0$$

#### máxima transferencia de potencia

Buscamos el valor de R y X que cumplan con la condición:

$$R = \sqrt{R_{th}^2 + (X_{th} + X)^2}$$

Repetimos el cálculo para X y obtenemos:

$$X = -X_{th}$$

Llegamos a la conclusión:

$$Z_{\rm óptimo} = Z_{th}^* \tag{4}$$

### máxima transferencia de potencia

La potencia transferida es:

$$P_{\text{óptimo}} = \frac{R_{\text{óptimo}} |\tilde{V}_{th}|^2}{(R_{th} + R_{\text{óptimo}})^2} = \frac{|\tilde{V}_{th}|^2}{4R_{\text{óptimo}}}$$
(5)



Calcular el valor de Z que optimice la potencia de salida

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 2: Circuitos de corriente alterna

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

### Cuadripolos

Dos polos corresponden a una tensión de entrada, y los otros dos a una tensión de salida.



- Nos centramos en las tensiones de entrada  $V_{in}$  y de salida  $V_{out}$ .
- Suponemos el sistema LTI: "Linear Time Invariant"
- Estudiamos el sistema en régimen armónico: la señal de entrada sólo es sinusoidal con una frecuencia.

#### Función de transferencia

Análisis en frecuencia con el método de Bode:

- Analizar la relación entre la entrada y la salida de un sistema lineal dada una excitación en forma de onda sinusoidal de cierta frecuencia.
- Esta relación se llama función de transferencia.
- Se estudian la entrada y salida en régimen sinusoidal permanente: es decir en régimen de fasores.

$$H(j\omega) = rac{ ilde{V}_{in}}{ ilde{V}_{out}}$$



$$ilde{V}_C = rac{ ilde{V}_0 Z_c}{Z_{eq}} = rac{ ilde{V}_0}{1 + jRC\omega}$$

En esta ecuación aparece la dependencia de la tensión  $\tilde{V}_C$  con la frecuencia angular  $\omega$ . Tenemos los dos casos límites conocidos para la frecuencia:

■ Para  $\omega \rightarrow 0$ :  $\tilde{V}_C \sim \tilde{V}_0$ , lo que supone que el circuito no tiene influencia en absoluto en corriente continua.

■ Para ω → ∞: Ṽ<sub>C</sub> → 0, lo que supone que el circuito corta toda la tensión de entrada poniendo a cero la salida.

Función de transferencia:

$$H(j\omega) = rac{ ilde{V}_C}{ ilde{V}_0} = rac{1}{1+jRC\omega}.$$

Módulo:

$$|H(j\omega)| = rac{1}{\sqrt{1+(RC\omega)^2}}.$$

Fase: La fase se expresa mediante:

$$\arg(H(j\omega)) = \arg\left(\frac{1}{1+jRC\omega}\right) = -\arg(1+jRC\omega) = \operatorname{atan}(-RC\omega).$$



Módulo en dB nos da la dependencia de la ganancia con la frecuencia:

 $|H(j\omega)|_{\mathrm{dB}} = 20 \log_{10}(|H(j\omega)|) = 20 \log_{10}(1) - 10 \log_{10}(1 + (RC\omega)^2)$ 

Casos límites:

- En bajas frecuencias (ω << 1), la ganancia es unidad, es decir 0dB.
- En altas frecuencias (ω >> 1), la ganancia depende básicamente del término: -20 log<sub>10</sub>(RCω). Cuando se multiplica la frecuencia por 10, la caída de amplitud es de 20dB. En esta zona se dice que el la amplitud cae 20dB por década.



La fase se expresa mediante:

$$\arg(H(j\omega)) = \arg\left(\frac{1}{1+jRC\omega}\right) = -\arg(1+jRC\omega) = \operatorname{atan}(-RC\omega).$$

Al igual que el caso anterior, los dos casos significativos son:

- En bajas frecuencias (ω << 1), la diferencia de fase va a ser prácticamente nula.
- En altas frecuencias ( $\omega >> 1$ ), la diferencia fase va a tender a  $-\pi/2$ .

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 3: Circuitos de corriente trifásica

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

## Definición

Un sistema trifásico tiene tres magnitudes eléctricas sinusoidales con:

- Ia misma amplitud
- Ia misma frecuencia
- fases distintas.

Un ejemplo genérico de sistema de tensiones trifásico a, b y c se puede escribir como:

$$\tilde{V}_{an} = V_0 \angle \theta, \tag{1}$$

$$\tilde{V}_{bn} = V_0 \angle (\theta - 2\pi/3), \tag{2}$$

$$\tilde{V}_{cn} = V_0 \angle (\theta + 2\pi/3). \tag{3}$$

## Características

Sentido directo/indirecto:

- $\tilde{V}_{an} \rightarrow \tilde{V}_{bn} \rightarrow \tilde{V}_{cn}$ , o sentido directo de las fases.
- El sentido indirecto consiste en la secuencia  $V_{an} \rightarrow V_{cn} \rightarrow V_{bn}$ .

Siempre se mantiene la diferencia de  $2\pi/3$  entre fases, pero el orden de asignación de este desfase puede variar.



### Características

Relaciones importantes:



#### Generador en triángulo

Es posible obtener un sistema trifásico con tres generadores dispuestos en triángulo:





## Conexiones entre generadores y cargas trifásicas

Posibles casos de conexión entre generadores y cargas:

- Y-Y.
- Y-△.
- △-Y.
- △-△.

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 3: Circuitos de corriente trifásica

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

## Conexión en estrella

#### Conexión estrella-estrella



### Conexión en estrella: definiciones

En la figura anterior se observan numerosas tensiones e impedancias que pasamos a detallar:

- $\tilde{V}_{an}$ ,  $\tilde{V}_{bn}$ ,  $\tilde{V}_{cn}$  son las tensiones del generador y se corresponden con las tensiones simples.
- $\tilde{I}_a$ ,  $\tilde{I}_b$ ,  $\tilde{I}_c$  son las **corrientes de línea**. El desfase entre ellas también es de  $2\pi/3$ .
- **Z\_{la}, Z\_{lb}, Z\_{lc} son las impedancias de línea**. Al ser el sistema equilibrado son las tres iguales.
- $Z_a$ ,  $Z_b$ ,  $Z_c$  son las impedancias de la carga trifásica. En el caso equilibrado las tres impedancias son iguales.
- $V_{AN}$ ,  $V_{BN}$ ,  $V_{CN}$  son las tres tensiones de la carga trifásica.
- $I_n$  y  $Z_n$  son la impedancia del neutro y la corriente que circula por este cable.





#### Circuitos equilibrados

Cuando el circtuito tiene simetría entre las tres ramas a, b y c del circuito tenemos un circuito equilibrado. En este caso:

$$Z_{la} = Z_{lb} = Z_{lc}$$

$$Z_A = Z_B = Z_C$$

La circulación de corriente en el neutro es nula (aplicamos Milmann entre los dos nudos del circuito).

$$\tilde{I}_a + \tilde{I}_b + \tilde{I}_c = 0.$$

#### Conexión en estrella con circuito equilibrado



## Equivalente monofásico del circuito trifásico

- Aprovechamos la simetría del circuito para centrarnos únicamente en una rama del circuito.
- Al tener un circuito equilibrado, tenemos los neutros del generador y de la carga al mismo potencial.



Equivalente monofásico del circuito trifásico

$$\tilde{I}_a = \frac{\tilde{V}_{an}}{Z_a + Z_{la}} = |\tilde{I}_a| \angle \theta.$$
(1)

A partir de esta corriente se deducen las otras corrientes de línea, sabiendo que el desfase entre ella es de  $\pm 2\pi/3$ .

#### Tensiones de línea

Centramos nuestra atención en la diferencia de potencial entre dos líneas del lado del generador. Por ejemplo  $V_{ab}$ .

$$\tilde{V}_{ab} = \tilde{V}_{an} - \tilde{V}_{bn} = V_0 \angle 0 - V_0 \angle -2\pi/3 = V_0 e^{j0} - V_0 e^{-j2\pi/3} = \dots$$
  
$$\tilde{V}_{ab} = \sqrt{3} V_0 \angle \pi/6.$$

Llegamos a una conclusión importante sobre la relación entre  $ilde{V}_{an}$  y  $ilde{V}_{ab}$ 

$$\tilde{V}_{ab} = \sqrt{3}V_0 \angle \pi/6 = \sqrt{3}\tilde{V}_{an} \angle \pi/6.$$
(2)

Una vez que tenemos el fasor  $\tilde{V}_{ab}$ , podemos hallar  $\tilde{V}_{bc}$  y  $\tilde{V}_{ca}.$ 

$$\begin{split} \tilde{V}_{bc} &= \sqrt{3} \tilde{V}_b \angle \pi/6 \\ \tilde{V}_{ca} &= \sqrt{3} \tilde{V}_c \angle \pi/6 \end{split}$$



### Equivalente entre generador en triángulo y generador en estrella

- Tenemos una fórmula que permite pasar de las tensiones entre dos líneas a y b a una tensión de fase a a neutro n.
- Dado tres fases a, b y c podemos poner un generador en estrella o en triángulo que producirán las mismas corriente en las líneas a, b y c.



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 3: Circuitos de corriente trifásica

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023



# Tema 3: Circuitos de corriente trifásica

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

# 3.3 Conexión en triángulo

# Conexión $\triangle$ - $\triangle$

Podemos conectar un generador en triángulo a una carga en triángulo:



# 3.3 Conexión en triángulo

## Conexión $\triangle$ - $\triangle$

La hipótesis del sistema equilibrado se mantiene, concretamente:

$$Z_{AB} = Z_{BC} = Z_{CA}$$
(1)  
$$Z_{la} = Z_{lb} = Z_{lc}.$$
(2)

Observando la figura anterior, se puede notar dos diferencias importantes respecto de la conexión Y-Y:

- Las tensiones de línea se corresponden con las tensiones de los generadores,  $\tilde{V}_{ab}$ ,  $\tilde{V}_{bc}$  y  $\tilde{V}_{ca}$ .
- Las corrientes de línea (*I*<sub>*aA*</sub>, *I*<sub>*bB*</sub> e *I*<sub>*cC*</sub>) son diferentes de las corrientes de los generadores (*Ĩ*<sub>*ab*</sub>, *Ĩ*<sub>*bc*</sub> e *Ĩ*<sub>*ca*</sub>).

# 3.3 Conexión en triángulo

## $\mathsf{Conexión}\ \triangle\text{-}\triangle$

Se pueden obtener las corrientes de línea mediante las leyes de Kirchhoff, eligiendo  $\varphi=0$  sin perder generalidad:

$$\tilde{I}_B = \tilde{I}_{bc} - \tilde{I}_{ab} = I_0 \angle -2\pi/3 - I_0 \angle 0 = \dots$$
  
$$\dots I_0 (-1/2 - j\sqrt{3}/2 - 1) = \sqrt{3}I_0 \angle -5\pi/6 = \sqrt{3}I_0 \angle -4\pi/6 - \pi/6 = \dots$$
  
$$\dots = \sqrt{3}\tilde{I}_{bc} \angle -\pi/6.$$

En conclusión, las corrientes de línea tal como  $\tilde{I}_A$  están en retardo de  $\pi/6$  (o de 30 grados) respecto de las corrientes del generador en triángulo (como  $\tilde{I}_{ab}$ ) y con una amplitud mayor en  $\sqrt{3}$ :

$$\tilde{I}_A = \sqrt{3}\tilde{I}_{ab} \angle -\pi/6.$$
# 3.3 Conexión en triángulo



# 3.3 Conexión en triángulo

## Equivalente monofásico

Primero se transforma el generador en su equivalente estrella:



# 3.3 Conexión en triángulo

## Equivalente monofásico

Luego se transforma la carga en su equivalente estrella:



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 3: Circuitos de corriente trifásica

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

Conexión Y-Y



## Conexión $\triangle - \triangle$





## Equivalente generador $\triangle - Y$

$$\begin{split} \tilde{V}_{ab} &= \tilde{E}_a - \tilde{E}_b = \tilde{E}_{ab} - Z_{ab}\tilde{I} \\ \tilde{V}_{bc} &= \tilde{E}_b - \tilde{E}_c = \tilde{E}_{bc} - Z_{bc}\tilde{I} \\ \tilde{V}_{ca} &= \tilde{E}_c - \tilde{E}_a = \tilde{E}_{ca} - Z_{ca}\tilde{I} \end{split}$$

Con la hipótesis simplificadora:  $\tilde{E}_a + \tilde{E}_b + \tilde{E}_c = 0$ , obtenmos

$$egin{aligned} & ilde{E}_a = rac{ ilde{V}_{ab} - ilde{V}_{ca}}{3} \ & ilde{E}_b = rac{ ilde{V}_{bc} - ilde{V}_{ab}}{3} \ & ilde{E}_c = rac{ ilde{V}_{ca} - ilde{V}_{bc}}{3} \end{aligned}$$

## Equivalente generador $\triangle - Y$

Con la otra hipótesis simplificadora:  $\tilde{I} = 0$ , obtenmos

$$\begin{split} \tilde{E}_{ab} &= \tilde{E}_a - \tilde{E}_b \\ \tilde{E}_{bc} &= \tilde{E}_b - \tilde{E}_c \\ \tilde{E}_{ca} &= \tilde{E}_c - \tilde{E}_a \end{split}$$

Las impedancias de las fuentes de transforman usando el teorema de Kennely.

### Análisis del circuito Y - Y de cuatro hilos.

Siendo un circuito de dos nudos calcumos  $\tilde{V}_{Nn}$  con Millman:

$$\tilde{V}_{Nn} = \frac{\frac{\tilde{E}_a}{Z_{ga} + Z_{la} + Z_A} + \frac{\tilde{E}_b}{Z_{gb} + Z_{lb} + Z_B} + \frac{\tilde{E}_c}{Z_{gc} + Z_{lc} + Z_C}}{\frac{1}{Z_{ga} + Z_{la} + Z_A} + \frac{1}{Z_{gb} + Z_{lb} + Z_B} + \frac{1}{Z_{gc} + Z_{lc} + Z_C} + \frac{1}{Z_n N}}$$

Después usamos Kirchhoff para hallar las corrientes:

$$\tilde{I}_a = \frac{\tilde{E}_a - \tilde{V}_{Nn}}{Z_{ga} + Z_{la} + Z_A}$$
$$\tilde{I}_b = \frac{\tilde{E}_b - \tilde{V}_{Nn}}{Z_{gb} + Z_{lb} + Z_B}$$
$$\tilde{I}_c = \frac{\tilde{E}_c - \tilde{V}_{Nn}}{Z_{gc} + Z_{lc} + Z_C}$$







Licencia Creative Commons Atribución 4.0 Internacional





# Tema 3: Circuitos de corriente trifásica

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

La evolución temporal de la tensión y de la corriente para un sistema equilibrado en estrella se escribe:

$$V_{an}(t) = V_m \sin(\omega_0 t) \tag{1}$$

$$V_{bn}(t) = V_m \sin(\omega_0 t - 2\pi/3)$$
 (2)

$$V_{cn}(t) = V_m \sin(\omega_0 t + 2\pi/3).$$
 (3)

$$I_a(t) = I_m \sin(\omega_0 t + \varphi) \tag{4}$$

$$I_b(t) = I_m \sin(\omega_0 t + \varphi - 2\pi/3) \tag{5}$$

$$I_c(t) = I_m \sin(\omega_0 t + \varphi + 2\pi/3).$$
(6)

La potencia instantánea suministrada a la carga en todo momento se escribe como:

$$P_{a}(t) = V_{an}(t)I_{a}(t) = V_{m}\sin(\omega_{0}t)I_{m}\sin(\omega_{0}t + \varphi)$$

$$P_{b}(t) = V_{bn}(t)I_{b}(t) = V_{m}\sin(\omega_{0}t - 2\pi/3)I_{m}\sin(\omega_{0}t + \varphi - 2\pi/3)$$

$$P_{c}(t) = V_{cn}(t)I_{c}(t) = V_{m}\sin(\omega_{0}t + 2\pi/3)I_{m}\sin(\omega_{0}t + \varphi + 2\pi/3)$$
(7)

Podemos observar que la suma:  $P_t(t) = P_a(t) + P_b(t) + P_c(t)$ , cuyo resultado es:

$$P_t(t) = P_a(t) + P_b(t) + P_c(t) = 3\frac{V_m I_m}{2}\cos(\varphi).$$

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

3 / 12

#### Potencia compleja

Se ha definido la potencia compleja para un sistema monofásico mediante un fasor. Del mismo modo, para un sistema trifásico se puede definir una cantidad compleja equivalente. Para una carga equilibrada:

$$P = 3\frac{V_m I_m}{2}\cos(\varphi) \tag{10}$$

$$Q = 3\frac{V_m I_m}{2}\sin(\varphi) \tag{11}$$

$$\tilde{S} = P + jQ \tag{12}$$

$$|\tilde{S}| = 3\frac{V_m I_m}{2} \tag{13}$$

$$\tilde{S} = 3\tilde{V}\tilde{I}^* \tag{14}$$

con  $V_m$  e  $I_m$  las amplitudes de las ondas de tensión y corriente.



v

c

Carga trifásica

#### Medida de potencia: 4 líneas

Cada vatímetro produce una lectura:

 $W_1 = V_{an} I_a \cos \varphi_a$  $W_2 = V_{bn} I_b \cos \varphi_b$  $W_3 = V_{cn} I_c \cos \varphi_c$ 





## Medida de potencia: 3 líneas

Cada vatímetro produce una lectura:

$$W_1 = Re\{\tilde{V}_{aO}\tilde{I}_a^*\}$$
$$W_2 = Re\{\tilde{V}_{bO}\tilde{I}_b^*\}$$
$$W_3 = Re\{\tilde{V}_{cO}\tilde{I}_c^*\}$$

Dado:

$$\tilde{V}_{aO} = \tilde{V}_{an} + \tilde{V}_{nO}$$
$$\tilde{I}_a + \tilde{I}_b + \tilde{I}_c = 0$$

#### Tenemos

$$W_1 + W_2 + W_3 = Re\{\tilde{V}_{an}\tilde{I}_a^* + \tilde{V}_{bn}\tilde{I}_b^* + \tilde{V}_{cn}\tilde{I}_c^*\}$$

## Medida de potencia: : método de los dos vatímetros



## Medida de potencia: método de los dos vatímetros

Para el caso de un circuito equilibrado:

$$W_1 = Re\{\tilde{V}_{ac}\tilde{I}_a^*\}$$
$$W_2 = Re\{\tilde{V}_{bc}\tilde{I}_b^*\}$$

Dado:

$$\begin{split} \tilde{V}_{ac} &= \tilde{V}_{an} - \tilde{V}_{cn} \\ \tilde{V}_{bc} &= \tilde{V}_{bn} - \tilde{V}_{cn} \\ \tilde{I}_a + \tilde{I}_b + \tilde{I}_c &= 0 \end{split}$$

#### Tenemos

Wagen

$$W_1 + W_2 = Re\{\tilde{V}_{an}\tilde{I}_a^* - \tilde{V}_{cn}\tilde{I}_a^* + \tilde{V}_{bn}\tilde{I}_b^* - \tilde{V}_{cn}\tilde{I}_b^*\}$$
  
=  $Re\{\tilde{V}_{an}\tilde{I}_a^* + \tilde{V}_{bn}\tilde{I}_b^* + \tilde{V}_{cn}(-\tilde{I}_a^* - \tilde{I}_b^*)\} = P_T$ 

10 / 1

#### Medida de potencia: método de los dos vatímetros

Suponemos  $\tilde{V}_{an} = V \angle 0$ V como referencia de fase e  $\tilde{I}_a = I \angle \varphi$ A, obtenemos  $\tilde{V}_{ab} = \sqrt{3}V \angle 30^o$  y

$$W_1 = Re\{\tilde{V}_{ac}\tilde{I}_a^*\} = Re\{-\sqrt{3}V\angle 150^o \cdot I\angle -\varphi\} = \sqrt{3}VI\cos(-30-\varphi)$$
$$W_2 = Re\{\tilde{V}_{bc}\tilde{I}_b^*\} = Re\{\sqrt{3}V\angle -90^o \cdot I\angle -\varphi + 120\} = \sqrt{3}VI\cos(30-\varphi)$$

#### Tenemos

$$W_1 - W_2 = \sqrt{3}VI(\cos 30 \cos \varphi - \sin 30 \sin \varphi) \dots$$
$$-\sqrt{3}VI(\cos 30 \cos \varphi + \sin 30 \sin \varphi)$$
$$= -2\sqrt{3}VI \sin 30 \sin \varphi = \sqrt{3}VI \sin -\varphi = Q_T/\sqrt{3}$$

#### Medida de potencia: método de los dos vatímetros

Un circuito equilibrado trifásico absorbe una potencia de 30kW con un factor de potencia de 0.8 inductivo. Deducir las lecturas de  $W_1$  y  $W_2$  de los dos vatímetros.

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 4: Fundamentos de Máquinas eléctricas

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

# 4.1 Introducción

## Distribución de energía



## Aspectos magnéticos de la materia





#### Aspectos magnéticos de la materia

Llamando al campo externo  $B_{ext}$  y al campo total  $B_T$ , podemos escribir la relación entre los dos valores de campo:

$$\mathbf{B}_{\mathbf{T}} = \mathbf{B}_{\mathbf{ext}} + \mathbf{B}_{\mathbf{mat}}.$$
 (1)

Para un material lineal:

$$B_T = B_{ext} + B_{mat} = B_{ext} + \chi_m B_{ext} = B_{ext}(1 + \chi_m).$$
 (2)

Definimos la permeabilidad relativa.

$$\mu_r = 1 + \chi_m. \tag{3}$$

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

4 / 16

### Aspectos magnéticos de la materia

Para introducir este parámetro  $\mu$  en la Ecuación (2), definimos la excitación magnética H:

$$B_{ext} = \mu_0 H. \tag{4}$$

De tal modo que la Ecuación (2) se transforma en:

$$B_T = \mu H. \tag{5}$$

## Aspectos magnéticos de la materia

- Al campo "externo" se le llamará excitación magnética.
- El campo total B<sub>T</sub> se llama inducción magnética o densidad de flujo magnético.

Relación entre la excitación magnética H, la inducción magnética B en un material lineal:

$$B = \mu_0 \mu_r H,\tag{6}$$

Unidades:

- La permeabilidad:  $[H \cdot m^{-1}]$ .
- La excitación magnética,  $H: [A \cdot m^{-1}]$  en el SI,
- La inducción magnética en Tesla [T] o a veces en Gauss [G] (1T = 10000G).

| Nombre           | Composición %     | Saturación (G) | Perm.  | Resist. $\mu\Omega.cm$ |
|------------------|-------------------|----------------|--------|------------------------|
| 78 Permalloy     | 78,5 Ni           | 10500          | 70000  | 16                     |
| MoPermalloy      | 79 Ni, 4,0 Mo     | 8000           | 90000  | 55                     |
| Supermalloy      | 79 Ni, 5 Mo       | 7900           | 900000 | 60                     |
| 48~% nickel-iron | 48 Ni             | 16000          | 60000  | 45                     |
| Monimax          | 47 Ni, 3 Mo       | 14500          | 35000  | 80                     |
| Sinimax          | 43 Ni, 3 Si       | 11000          | 35000  | 85                     |
| Mumetal          | 77 Ni, 5 Cu, 2 Cr | 6500           | 85000  | 60                     |
| Deltamax         | 50 Ni             | 15500          | 85000  | 45                     |
|                  |                   |                |        |                        |

## Ejemplo de circuito magnético



#### Fuerza magnetomotriz

Integral de Ampère sobre el contorno:

$$\int_{l} \mathbf{H} \cdot d\mathbf{l} = NI. \tag{7}$$

$$Hl = NI = \mathcal{F},\tag{8}$$

donde  $\mathcal{F}$  es **la fuerza magnetomotriz**, corresponde al producto NI. Es la "fuerza magnética" que genera la excitación magnética H, y su unidad es el Amperio-vuelta [Av].

#### Ley de Hopkinson

Por otro lado, la inducción magnética B se relaciona con esta fuerza  $\mathcal{F}$  gracias a la Ecuación (6):

$$\mathcal{F} = NI = Hl = \frac{Bl}{\mu}.$$
(9)

$$\Phi = \mathbf{B} \cdot d\mathbf{S} = NBS,\tag{10}$$

y su unidad es el Weber [Wb]. Introducimos esta expresión del flujo en la Ecuación (9):

$$\mathcal{F} = \frac{l}{S\mu} \Phi. \tag{11}$$

### Ley de Hopkinson

Esta última expresión establece una relación entre flujo magnético y fuerza magnétomotriz que se generaliza con la **ley de Hopkinson**:

$$\mathcal{F} = \mathcal{R}\Phi,$$
 (12)

donde  $\mathcal{R}$  es **la reluctancia** del circuito magnético. la reluctancia para un circuito magnético líneal sin pérdidas se expresa como:

$$\mathcal{R} = \frac{l}{S\mu}.$$
 (13)

### Relación flujo corriente en el ciruito magnético estudiado

Se puede escribir el flujo magnético en función de la corriente I que alimenta el devanado:

$$\Phi = \frac{NS\mu}{l}I.$$
(14)

Si consideramos el flujo total  $\Phi_B$  en la bobina, debemos multiplicar N veces el flujo anterior<sup>a</sup> y obtenemos:

$$\Phi_B = \frac{N^2 S \mu}{l} I. \tag{15}$$

<sup>a</sup>Éste corresponde a una sección del circuito y podemos asimilar la sección del material con la sección de la bobina.
## Analogía circuitos eléctricos/magnéticos

| Electricidad                    | Magnetismo                     |
|---------------------------------|--------------------------------|
| Corriente $A$                   | Flujo Wb                       |
| Fuerza electromotriz ${\cal V}$ | Fuerza magnetomotriz $Av$      |
| Resistencia $\Omega$            | Reluctancia $Av \cdot Wb^{-1}$ |

### Ejemplo de circuito magnético



#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

14 / 16

## Ejemplo de circuito magnético



#### Ejemplo de circuito magnético

Calcular los flujos magnéticos en el circuito magnético de la figura siguiente, cuando los parámetros del circuito son:  $l_1 = l_3 = 10$ cm,  $l_2 = 4$ cm,  $S_1 = S_2 = S_3 = 81 \cdot 10^{-4}$ m<sup>2</sup>,  $\mu_r = 40000$ , I = 40mA, N = 500.



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 4: Fundamentos de Máquinas eléctricas

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

# 4.4 Magnetización no lineal y saturación del circuito



# 4.4 Magnetización no lineal y saturación del circuito

Curva de magnetización estática



# 4.4 Magnetización no lineal y saturación del circuito

### Cálculo del punto de trabajo



#### Pérdidas por histéresis



#### Pérdidas por histéresis

Las pérdidas totales en un núcleo se establecen en función de la frecuencia del ciclo y del volumen del material:

$$P_{his} = f V \eta B_{max}^{1,6},$$

(1)



#### Pérdidas por corrientes de Foucault

El valor de la potencia disipada depende:

- del volumen V,
- de la intensidad máxima del campo  $B_{max}$ ,
- de la frecuencia f,
- de la conductividad del metal  $\sigma$ .

La potencia disipada en una lámina de espesor a y de volumen V es:

$$P_f = \frac{\pi^2}{6} V a^2 f^2 B_{max}^2 \sigma.$$
<sup>(2)</sup>

#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

8 / 21

#### Pérdidas de hierro

Las pérdidas totales del circuito magnético se van a estimar sumando las pérdidas por histéresis y por corrientes de Foucault:

$$P_{h} = P_{his} + P_{f} = \alpha B_{max}^{1,6} + \beta B_{max}^{2},$$
(3)

donde  $\alpha$  y  $\beta$  constantes que dependen del material. Aproximación con  $\alpha = \beta = 2$ :

$$P_h = P_{his} + P_f = \alpha B_{max}^2 + \beta B_{max}^2 = (\alpha + \beta) B_{max}^2.$$
(4)

## Modelo de circuito magnético



#### Modelo de circuito magnético

La relación entre el flujo total que atraviesa la bobina y la corriente se llama inductancia o autoinductancia de la bobina:

$$L = \frac{\Phi_T}{I} = \frac{N\Phi}{I}.$$
(5)

$$e_{ind} = \frac{d\Phi_T}{dt} = \frac{d(LI)}{dt} = L\frac{dI}{dt},$$
(6)

- *I* es la corriente que permite magnetizar el circuito se la denomina corriente de magnetización *I*<sub>m</sub>.
- Si la tensión  $V_1$  es alterna se obtiene la expresión en fasores:

$$\tilde{V}_1 = jL\omega\tilde{I}_m = jX_m\tilde{I}_m.$$
(7)

## Modelo de circuito magnético

Cálculo de la inductancia equivalente para un circuito magnético lineal:

 $\mathcal{P}$ 

$$L = \frac{\Phi_T}{I} = \frac{N\Phi}{I}.$$
(8)
$$\Phi = \frac{\mathcal{F}}{\mathcal{P}}$$
(9)

$$L = \frac{N\Phi}{I} = \frac{N\mathcal{F}}{I\mathcal{R}} = \frac{N^2}{\mathcal{R}}$$
(10)

#### Modelo de circuito magnético

Debido a que en corriente alterna la tensión V
<sub>1</sub> es proporcional al campo B, las pérdidas del núcleo se van a aproximar por la siguiente expresión:

$$P_h = P_{his} + P_f = \gamma |\tilde{V}_1|^2.$$
 (11)

• Las pérdidas se pueden modelar mediante una resistencia ideal de valor  $R_h = \gamma^{-1}$ . La potencia disipada en esta resistencia vale:

$$P = \frac{|\tilde{V}_1|^2}{R_h} = R_h |\tilde{I}_h|^2,$$
(12)

• La corriente  $\tilde{I}$  de la bobina tiene dos componentes:

$$\tilde{I} = \tilde{I}_h + \tilde{I}_m = \frac{\tilde{V}_1}{R_h} + \frac{\tilde{V}_1}{jL\omega}.$$
(13)

## Modelo de circuito magnético



El modelo equivalente del circuito magnético consiste entonces en dos elementos en paralelo:

- Una inductancia equivalente de magnetización.
- Un elemento  $R_h$  que modela las pérdidas en el hierro.

### Modelo de circuito magnético

Este modelo se puede completar con dos efectos adicionales que se traducen en pérdidas:

- Las pérdidas en el cobre de los cables, que estarían representadas por una simple resistencia r en serie con la fuente de tensión.
- Las pérdidas de flujo magnético.

## Hipótesis

- Vamos a cuantificar cuanta energía puede transformar un circuito magnético.
- Suponemos primero que la bobina transforma toda la energía de eléctrica a magnética.
- Consideramos un núcleo de sección S y de longitud media l con una bobina de N vueltas envuelta alrededor del circuito magnético.

La tensión inducida en la bobina viene dada por:

$$e_{ind} = N \frac{d\Phi}{dt},\tag{14}$$

y la potencia instantánea resulta:

$$P = Ie_{ind} = IN\frac{d\Phi}{dt} = NI\frac{dBS}{dt},$$
(15)

siendo el flujo  $\Phi=BS$  en primera aproximación. Para una sección S es constante:

$$Pdt = NISdB. \tag{16}$$

Integrando con respecto del tiempo, se obtiene una expresión para la energía:

$$W_{\Phi} = \int P \cdot dt = \int NIS \cdot dB = lS \int H \cdot dB.$$
 (17)

Con la aplicación de la ley de Ampère al circuito magnético NI = Hly el volumen del circuito Vol = lS, llegamos a la ecuación que relaciona energía y campo magnético:

$$W_{\Phi} = \operatorname{Vol} \int_{0}^{B_{max}} H \cdot dB.$$
(18)

 $W_{\Phi}$  es la energía almacenada en el volumen Vol cuando el campo magnético tiene el valor  $B_{max}.$ 

Cuando el circuito no es lineal, la energía es proporcional al área a la izquierda de la curva de magnetización multiplicada por el volumen del material como ilustrado en la figura



### Otro cálculo

Existe otro cálculo que permite hallar la energía contenida por el campo magnético:

$$W_{\Phi} = \frac{1}{2} \int_{Vol} \mathbf{B} \cdot \mathbf{H} dv.$$
 (19)

En un material no lineal el campo H es una cierta función de B, y en el caso más general la integral no es inmediata.

## Material lineal

Considerando el caso de un núcleo ferromagnético lineal con  $B = \mu H$ , la ecuación anterior se simplifica adicionalmente:

$$W_{\Phi} = \frac{\text{Vol}}{2} \frac{B_{max}^2}{\mu} = \frac{\text{Vol}}{2} \mu H_{max}^2 \mathbf{J}.$$
 (20)

Estas relaciones vienen a ilustrar tres hechos importantes:

- El campo magnético transporta la energía en el núcleo ferromagnético.
- Esta energía transportada también sufre la limitación de la saturación del núcleo ferromagnético.
- La energía depende del volumen y, por tanto, de la masa de la máquina eléctrica. Las máquinas que generan mucha potencia tendrán un tamaño considerable.

Licencia Creative Commons Atribución 4.0 Internacional





# Tema 4: Fundamentos de Máquinas eléctricas

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

## Flujo y propio y común



Flujo total:

$$\Phi_1 = \Phi_{11} + \Phi_{12}, \tag{1}$$

- $\Phi_{11}$  es la fracción del campo que se cierra en el aire.
- $\Phi_{12}$  la parte del flujo de la bobina 1 que influye en la bobina 2.
- Este flujo  $\Phi_{12}$  es justamente el flujo común  $\Phi_m$  a las dos bobinas.

## Tensiones inducidas

Tensión autoinducida en la primera bobina:

$$V_1 = N_1 \frac{d\Phi_1}{dt} = L_1 \frac{dI_1}{dt}.$$
 (2)

■ Tensión inducida en la segunda bobina debida a la bobina 1 es:

$$V_2 = N_2 \frac{d\Phi_{12}}{dt}.$$
(3)

■ Este flujo total de la bobina 2 es una fracción k<sub>12</sub> ≤ 1 del flujo total de la bobina 1:

$$N_2\Phi_{12} = k_{12}N_1\Phi_1 = k_{12}L_1I_1 = M_{12}I_1,$$

•  $M_{12}$  es un coeficiente que tiene dimensiones de inductancia.

## Tensión $V_2$

La tensión inducida  $V_2$  se expresa como:

$$V_2 = M_{12} \frac{dI_1}{dt}.$$

La tensión  $V_2$  es consecuencia de la influencia de la corriente  $I_1$  mediante el acoplamiento magnético  $M_{12}$ .

(4)

Alimentamos la bobina 2 y bobina 1 en circuito abierto



- En este caso, se genera el flujo propio  $\Phi_2$  creado por la bobina 2 y un flujo  $\Phi_{21}$  que influye a su vez en la bobina 1.
- Las tensiones V<sub>2</sub> y V<sub>1</sub> serían:

$$V_1 = M_{21} \frac{d\Phi_{21}}{dt}$$
,  
$$V_2 = L_2 \frac{dI_2}{dt}$$
,

A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

(5)

## Flujo y propio y común



Flujo a través de cada bobina:

$$\Phi_1 = \Phi_{11} + \Phi_{12} + \Phi_{21},\tag{6}$$

$$\Phi_2 = \Phi_{22} + \Phi_{21} + \Phi_{12}. \tag{7}$$

- $\Phi_{ii}$  que sólo afecta a la propia bobina.
- Flujo  $\Phi_{ij}$  producido por la bobina *i* que influye en la bobina *j*.
- El tercer término es la parte de flujo "ajeno" de acoplamiento A. Wagemakers • Efsice Aplicada a la Ingenería • Curso 2022-2023 6 / 13 6 / 13

Ecuaciones eléctricas

$$V_1 = L_1 \frac{dI_1}{dt} \pm M \frac{dI_2}{dt},\tag{8}$$

$$V_2 = L_2 \frac{dI_2}{dt} \pm M \frac{dI_1}{dt}.$$
(9)

El signo de la segunda contribución depende del sentido de la corriente y del sentido del bobinado, y se ha de determinar caso por caso. Para el régimen sinusoidal permanente:

$$\tilde{V}_1 = jL_1\omega\tilde{I}_1 \pm jM\omega\tilde{I}_2 
\tilde{V}_2 = jL_2\omega\tilde{I}_2 \pm jM\omega\tilde{I}_1$$
(10)



Para determinar el sentido del devanado se marca con un punto el lado de las bobinas de tal manera que las corrientes entrantes por este lado generan un flujo magnético con el mismo sentido.

### Representación en circuitos eléctricos

$$-\underbrace{\overset{L_1}{\overset{\bullet}}_{V_1}}_{V_1} + \underbrace{\overset{I_2}{\overset{\bullet}}_{M}}_{M} + \underbrace{\overset{L_2}{\overset{\bullet}}_{V_2}}_{V_2} -$$

Las corrientes contribuyen de forma positiva a las tensiones resultantes:

$$\widetilde{V}_1 = jL_1\omega\widetilde{I}_1 + jM\omega\widetilde{I}_2, 
\widetilde{V}_2 = jL_2\omega\widetilde{I}_2 + jM\omega\widetilde{I}_1.$$
(11)

## Representación en circuitos eléctricos



#### Representación en circuitos eléctricos



#### A. Wagemakers • Física Aplicada a la Ingenería • Curso 2022-2023

11 / 13
## 4.8 Bobinas acopladas

#### Resumen de casos



## 4.8 Bobinas acopladas

#### Resumen de casos



Licencia Creative Commons Atribución 4.0 Internacional





# Tema 4: Fundamentos de Máquinas eléctricas

Física Aplicada a la Ingeniería

**Alexandre Wagemakers** 

Curso 2022-2023

### Acoplamientos electromagnéticos con un circuito magnético



#### Hipótesis del transformador ideal

- 1. La reluctancia del circuito es cero (la permeabilidad es infinita).
- 2. El coeficiente de acoplamiento entre bobinas es perfecto:  $M = \sqrt{L_1 L_2}.$

### Relación de tensiones:

$$\frac{\tilde{V}_{1}}{\tilde{V}_{2}} = \frac{jL_{1}\omega\tilde{I}_{1} - jM\omega\tilde{I}_{2}}{-jL_{2}\omega\tilde{I}_{2} + jM\omega\tilde{I}_{1}} \qquad (1)$$

$$\frac{\tilde{V}_{1}}{\tilde{V}_{2}} = \frac{L_{1}\tilde{I}_{1} - M\tilde{I}_{2}}{-jL_{2}\omega\tilde{I}_{2} + jM\omega\tilde{I}_{1}} \qquad (2)$$

#### Relaciones de tensiones



Usando la ley de Faraday (descartando las perdidas del núcleo):

$$V_1 = N_1 \frac{d\Phi}{dt}$$
$$V_2 = N_2 \frac{d\Phi}{dt}$$

Despejando el flujo:

$$\frac{V_1}{V_2} = \frac{N_1}{N_2}$$

#### Relaciones de corrientes



Usamos el modelo del núcleo ferromagnético (descartando las perdidas del núcleo):

$$\mathcal{F}_1 - \mathcal{R}\Phi - \mathcal{F}_2 = 0$$

Por hipotesis  $\mathcal{R} \simeq 0$ :

$$\mathcal{F}_1 = \mathcal{F}_1$$
$$N_1 I_1 = N_2 I$$

#### Relaciones del transformador ideal

$$\begin{split} \tilde{I}_1\\ \tilde{I}_2 &= \frac{N_2}{N_1} = \frac{1}{m}\\ \tilde{V}_2\\ \tilde{V}_2 &= \frac{N_1}{N_2} = m\\ \tilde{S}_1 &= \tilde{S}_2 \end{split}$$

No hay perdida de potencia en el transformador ideal.

### Reducción al primario del transformador



#### Modelo completo del transformador

