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ABSTRACT The analysis and exploration of complex data sets are common problems in many areas, includ-
ing scientific and business domains. This need has led to substantial development of the data visualization
field. In this paper, we present VMetaFlow, a graphical meta-framework to design interactive and coordinated
views applications for data visualization. Ourmeta-framework is based on data flow diagrams since they have
proved their value in simplifying the design of data visualizations. VMetaFlow operates as an abstraction
layer that encapsulates and interconnects visualization frameworks in a web-based environment, providing
them with interoperability mechanisms. The only requirement is that the visualization framework must be
accessible through a JavaScript API. We propose a novel data flow model that allows users to define both
interactions between multiple data views and how the data flows between visualization and data processing
modules. In contrast with previous data-flow-based frameworks for visualization, we separate the view
interactions from data items, broadening the expressiveness of our model and supporting the most common
types of multi-view interactions. Our meta-framework allows visualization and data analysis experts to focus
their efforts on creating data representations and transformations for their applications, whereas nonexperts
can reuse previously developed components to design their applications through a user-friendly interface.
We validate our approach through a critical inspection with visualization experts and two case studies.
We have carefully selected these case studies to illustrate its capabilities. Finally, we compare our approach
with the subset flow model designed for multiple coordinated views.

18 INDEX TERMS Coordinated views, data visualization, exploratory visual analysis, visual programming.

I. INTRODUCTION19

The recent technological advances and innovations have20

increased the available data in many areas. Visualization has21

proven to be a powerful tool for analyzing and understanding22

complex data sets. Traditionally, the visualization field has23

been divided into two subfields depending on the nature of24

the data. The scientific visualization subfield (scivis) handles25

spatially structured data, whereas the information visualiza-26

tion subfield (infovis) deals with abstract data [1], [2]. In the27

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu .

infovis context, declarative frameworks for visualization,1 28

such as D3 [4], ggplot2 [5], plotly [6] or Vega [7], stand 29

out. They simplify the task of designing visualizations since 30

the developers have to specify what to do instead of how 31

to do it [8]. Most of these frameworks provide mechanisms 32

to interact with data through data views, which is essential 33

to its understanding [2]. In this regard, it is worth noting 34

Reactive Vega, which offers a robust architecture for declara- 35

tive interactive visualization [7]. As mentioned, visualization 36

1also known as declarative languages for visualization or visualization
grammars [3]
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can be applied to several fields, each of them with specific37

needs and tasks. Although the infovis frameworks, in partic-38

ular declarative frameworks for visualization, have a general39

purpose and can be applied to a wide range of problems,40

they do not usually offer the specific capabilities of the scivis41

frameworks. Each visualization framework has its advantages42

and disadvantages, and therefore there is not a unique strategy43

for all possible scenarios. Covering all the needs of the fields44

in which visualization can be used effectively is unfeasible.45

Besides, new techniques are released every year to address46

specific tasks. This should encourage the designers of these47

frameworks to provide extensibility in a user-friendly way,48

allowing users to incorporate new functionality. Many visual-49

ization frameworks do not provide extensibility capabilities.50

Adding this feature to grammar-based visualization frame-51

works is especially challenging due to their structure and52

high level of abstraction. For this reason, it is necessary to53

allow designers to integrate data views created with different54

visualization frameworks.55

Furthermore, in most cases, a single data view is not56

enough to represent complex data. In this regard, faceting data57

across multiple views is one of the most relevant approaches58

for highlighting different data features and handling visual59

clutter problems. Multiple view strategies can be classified60

into three groups (see [2] for further details): juxtaposition,61

data partitioning, and superimposition. Whereas superimpo-62

sition divides a data visualization in multiple layers, the first63

two approaches (juxtaposition and data partitioning) require64

coordinating multiple data views for their effective imple-65

mentation. A meta-framework to communicate visualization66

frameworks, including declarative-based approaches, that67

could seamlessly include new data visualization techniques68

and provide interoperability among them, could greatly sim-69

plify the task of creating domain-specific applications.70

Some authors have identified that the learning curve of71

most of the available declarative frameworks for visualization72

is still steep, hindering the access to many final users [9].73

Data flow diagrams (DFDs) naturally represent sequences74

of operations and data transformations. Due to their ability75

to divide complex processes into simpler and meaningful76

blocks, they have been used to design visual programming77

frameworks as a higher-level alternative to traditional pro-78

gramming languages (see Section II-C). In the data analysis79

and visualization field, DFD-based visualization frameworks80

have also proven to be valuable tools (see Section II-D).81

In this paper, we propose VMetaFlow, a data visualization82

meta-framework for interactive coordinated-views applica-83

tion design. Our system acts as an abstraction layer over84

existing visualization frameworks providing them with inter-85

operability mechanisms through a novel data flow model.86

We take advantage of the ability of DFDs to simplify complex87

problems to modularize the exploratory analysis task, from88

data processing to visualization. VMetaFlow relies on exist-89

ing visualization frameworks to create each data view and its90

associated interactions. Users can select the most appropriate91

framework for each data view. The only requirement is that92

the visualization framework must be accessible through a 93

JavaScript API. Then, VMetaFlow graphical user interface 94

(GUI) allows users to specify how data flows between views 95

and how these views are coordinated in the sameDFD. In con- 96

trast to other works, we integrate visualization properties 97

(e.g., data encodings, camera position, axis title, selections) 98

within the DFD and decouple them from the data under 99

analysis. Our approach allows users to model the most com- 100

mon types of interactions in juxtaposed and data partitioned 101

multi-view applications (e.g., zoom and pan coordination 102

between two scatter plots – see [2] for further details) and 103

enables fine-grained control over their scope. 104

VMetaFlow was designed for users with different levels 105

of knowledge in data visualization and analysis. Advanced 106

users can extend the functionality of our meta-framework by 107

creating the basic components of the DFD, whereas users 108

without experience in the field of visualization can reuse these 109

components to design applications to analyze their data. 110

Our meta-framework aims to cover two types of visual- 111

ization applications: exploratory analysis and fixed work- 112

flow applications. Both approaches are essential tasks in the 113

data science field. The former allows users to interact with 114

their data to gain preliminary insights and form hypotheses. 115

Whereas the latter allows them to apply predefined methods 116

to known problems for knowledge extraction. These two tasks 117

benefit from defining the application behavior using a DFD. 118

This feature is essential for exploratory analysis because it 119

allows users to interactively modify the workflow structure 120

to test new hypotheses and to include and test new func- 121

tionalities during the prototype development. Furthermore, 122

having access to the DFD helps users understand the data 123

transformation process and enables fast prototyping. 124

We argue that visualization itself is not enough to achieve 125

the objectives of the aforementioned application types 126

because relying only on perception could lead to a misun- 127

derstanding of data meaning. Consequently, we claim that 128

it is essential to provide statistical and data processing tools 129

to confirm or reject the user intuitions. Our meta-framework 130

addresses this by means of cards in which the user can encap- 131

sulate scripts written in several programming languages, such 132

as R, JavaScript, or Python. 133

The main contribution of this paper is to propose and 134

develop a visual meta-framework and data flow model to 135

integrate third-party visualization frameworks and data 136

processing algorithms, providing them with interoperabil- 137

ity mechanisms to design coordinated view applications 138

(see Fig. 1). As mentioned, the only requirement is that the 139

visualization framework must provide JavaScript APIs. Data 140

processing algorithms can be written in several program- 141

ming languages: R, JavaScript or Python. Our data model 142

decouples the visualization properties from the data, allowing 143

users to represent both the flow of data and the interactions 144

between coordinated views. Finally, to support the two types 145

of applications mentioned above and users with different 146

levels of expertise in data analysis and visualization, we have 147

taken into account the following requirements: 148
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1) Data processing. VMetaFlow permits the integration of149

data analysis algorithms within the workflow.150

2) Extensibility and reusability. Our meta-framework151

allows incorporating new visualization techniques, data152

processes, and data types as DFD elements. These153

elements and the DFD layouts can be stored, shared,154

and reused.155

3) Easiness of use. Users can create the DFD by dragging,156

dropping, and connecting elements into the workspace.157

The rest of the paper is organized as follows. Section II158

reviews the most relevant related works. Then, we present an159

overview of the meta-framework in Section III. The compo-160

nents and structure of our DFDs are described in Section IV161

and Section V. In Section VI, we explain the mechanisms162

that our system provides to support extensibility and reusabil-163

ity. The architectural details of VMetaFlow are shown in164

Section VII. Section VIII describes the case studies and the165

external critical inspection carried out to validate our system.166

Finally, Section IX presents our conclusions.167

II. RELATED WORK168

Declarative frameworks for visualization (see Section II-A)169

are widely adopted general-purpose frameworks for data170

visualization design. Their ability to handle abstract data171

at a high level allows them to adapt to numerous fields,172

reducing the designers’ effort. The need to enhance these173

frameworks with domain-specific visualizations motivated174

the development of VMetaFlow. Our meta-framework allows175

the seamless integration of visualization frameworks, includ-176

ing declarative approaches. In this regard, our software177

bridges the gap between declarative frameworks for visual-178

ization and scivis frameworks, such as VTK [10], ITK [11]179

or deck.gl [12]. As mentioned above, the use of multiple data180

views is one of the most popular strategies to handle data181

complexity (see Section II-B). Users can select the visual-182

ization technique that better fits their needs to create each183

data view, enabling their cooperation and addressing their184

diversity.185

Nowadays, data visualization is a popular tool in many186

fields. For this reason, a lot of research in this area has focused187

on simplifying the authoring process so that end users can188

tailor the visualization to their needs. Within this category,189

we find from early approaches, such as SAGE [13], to aca-190

demic prototypes, such as Lyra [14] or iVisDesigner [15],191

or commercial frameworks with thousands of users, such as192

Tableau, the successor of Polaris [16]. Unlike these frame-193

works, VMetaFlow relies on DFDs since they model data194

workflows naturally (see Section II-C). DFDs have been195

used in the data visualization context (see Section II-D).196

Nevertheless, most of them offer a limited set of built-in197

data views and little support for adding visualizations from198

other frameworks. VMetaFlow shares and enhances pre-199

vious data-flow-based visualization frameworks features,200

focusing on providing multiple-view coordination support201

to data views implemented with different visualization202

frameworks.203

A. DECLARATIVE FRAMEWORKS FOR VISUALIZATION 204

Wilkinson’s Grammar of Graphics [17] and HiVE [18] were 205

among the first works to propose the use of declarative 206

specifications for visualization. These approaches provided a 207

high level of abstraction and supported rapid analysis, but did 208

not offer fine control of graphics and interactions [8]. More 209

recent declarative visualization frameworks, such as D3 [4], 210

ggplot2 [5], plotly [6] or Vega [7], have a higher degree of 211

customization, with the drawback of being more complex 212

for users with little or no programming experience. Vega- 213

Lite offers a higher degree of abstraction, but still requires 214

a strong background in programming [3]. In our meta- 215

framework, visualization experts can create data views using 216

the previously mentioned declarative visualization frame- 217

works. Then, domain experts can use them to create multiple- 218

view applications. 219

B. COORDINATED MULTIPLE VIEWS 220

Coordinated multiple views have been a central topic in data 221

visualization and exploratory analysis, as it is a powerful 222

strategy to deal with data complexity [19], [20]. Enabling 223

users to interactively analyze data from multiple and coor- 224

dinated visualizations boosts the knowledge extraction task. 225

In this regard, multiple works have been proposed that tackle 226

this problem from different perspectives. Prates et al. [21] 227

proposed a coordination model based on ontologies. This 228

approach employs semantic representations to relate data 229

items. Those relationships are only contained in the ontology. 230

However, this approach relies on having an ontology about 231

the data to be analyzed, which introduces an overhead that 232

the user has to face. Improvise [22] proposes a coordination 233

model based on live properties, that enable the synchroniza- 234

tion of values from several visualizations through shared 235

objects called variables. To enable coordination, users must 236

link equivalent view properties to the same variable through 237

a menu-based GUI. 238

Although these frameworks are somewhat extensible, data 239

flow diagrams provide a more natural way to define data 240

pipelines and, as demonstrated by Yu and Silva [23], can be 241

tailored to efficiently design multiple-view interactions. 242

C. VISUAL PROGRAMMING 243

Traditionally, a program is generated from a structured 244

sequence of words with a syntactical meaning. Alternatively, 245

visual programs use graphics and two-dimensional layouts as 246

part of the program specification [24]. This approach is easier 247

to understand and work with, as it resembles the human men- 248

tal representation of problems. Unlike the one-dimensional 249

textual way, visual programming uses higher-level descrip- 250

tions of the program functionality. Users without program- 251

ming skills find this approach more accessible [25]. 252

Commonly, visual programming environments use data 253

flow diagrams. These programming environments are based 254

on boxes that encapsulate a piece of functionality and wires 255

that connect them. Data are transformed in the diagram boxes 256
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FIGURE 1. Gene Regulatory Network Analysis. This figure introduces an application example used as a first case study. The left side of the figure shows a
DFD composed of several cards for loading (1a, 4a, 7a), filtering (5a, 6a) and visualizing data(2a, 3a, 5a, 8a). The force-directed graph filters the data
shown in the heatmap and the line chart. We implemented all these data views using different framework. On the other side, a visualization panel with
four views was created from the visualization cards defined in the previous DFD. We are using the same numbering for the DFD cards and their
corresponding visualization panel. We label cards and visualization with the suffix a and b, respectively.

and flows from one execution node to the next one following257

the diagram wires. Early works that followed this approach258

were applied in a wide range of domains such asmusic, image259

processing, or UI construction [26]. Those systems offered a260

wide selection of variations of the data flow that supported261

iteration, procedural abstraction, or type checking, among262

others. Howland et al. [27] successfully applied this model to263

ease out the process of scripting plot events in a role-playing264

game. The data flow model is also employed in Unreal265

Engine [28]. This game development system eases the pro-266

gramming aspect of this domain by representing functions,267

events, and classes as nodes and wiring them together. This268

simplified perspective is used to allow designers to extend269

baseline applications created by programmers. Finally, this270

model is used by the main tech companies in their cloud271

services, to allow the construction of pipelines for machine272

learning and data processing [29], [30], [31].273

Given the aforementioned benefits and the wide adoption274

of this model, we propose a DFD-based visualization meta-275

framework to provide interactivity mechanisms between276

visualization frameworks and data processes developed with277

different programming languages.278

D. DATA FLOW FRAMEWORKS FOR VISUALIZATION279

In the visualization and analysis domain, DFDs have been280

applied in multiple ways. VisComposer [9] uses DFDs to281

intuitively create visualizations. Although its ability to model282

user interactions is limited, it replaces current declarative283

frameworks for visualization. Mendez et al. [32] proposed284

iVoLVER for visualization authoring. Their DFD-based sys-285

tem was designed to support a wide variety of data types and286

sources. Some authors have proposed the use of DFD for287

scivis. In this field, DFDs are primarily used to define 2D or288

3D rendering pipelines [10], [11], [33]. Early systems focused289

on creating workflows that simplified the rendering process 290

of scientific computations. SCIRun [34] provided visualiza- 291

tion as a way of aiding the computation steering of scientific 292

algorithms. IBM Data Explorer [35] established the baseline 293

to tackle several problems inherent in using this approach for 294

data analysis and visualization. The authors proposed a data 295

flow system that supports several types of data, visualizations, 296

and processing modules. Moreover, they focus their work 297

on the optimization of the data flow execution. To this end, 298

they introduce a cache to store the intermediate results of 299

each node and a graph analysis step to identify which nodes 300

should be re-executed. The main focus of these systems is the 301

data processing; the visualization is relegated to represent the 302

results of this task. The use of charts for data exploration and 303

queries is severely restricted. 304

Focusing on the exploratory analysis task, ExPlatesJS [36] 305

and VisTrails [37] are worth noting. The former implements 306

a methodology for separating the visual exploration steps. 307

Whereas the latter provides data provenance support. In addi- 308

tion to the previously mentioned systems, KNIME [38] is 309

an open-source environment for data science that allows col- 310

laboration and workflow reusability. Although VisTrails and 311

KNIME are extensible, all the previous systems mainly rely 312

on their built-in modules and visualizations. Moreover, these 313

systems offer limited support for multiple-view coordina- 314

tion. ExPlatesJS and VisTrails do not provide any support to 315

this end. Whereas KNIME follows a publish-subscribe event 316

model; all visualizations can subscribe to filter or selection 317

events and publish them. The scope of their model is limited 318

to composite views, i.e., events are only distributed between 319

visualizations placed in the same visualization window. This 320

model is not extensible to new interactions, and its restricted 321

scope hinders its applicability in the context of exploratory 322

analysis. 323
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Langner et al. [39] concluded that connecting all views324

by default is not self-evident to users from their user study325

on coordinated and multiple views. Furthermore, Wang Bal-326

donado et al. [40] proposed perceptual cues to display the327

relationship between views as one of the guidelines when328

using multiple views. However, none of the previously men-329

tioned approaches offer this type of visual support. In con-330

trast, VisFlow [23] was specifically designed to overcome331

these constraints. Its authors proposed a data flow model332

called the subset flow model. In this model, users must333

start with an overview of the data and then progressively334

divide it into subsets. This approach simplifies the design335

of data workflows and facilitates the comprehension of their336

corresponding DFDs. Nonetheless, this approach constrains337

the expressiveness of the DFDs. Additionally, in the same338

way as KNIME, VisFlow attaches visualization properties339

to the tabular subset items to coordinate multiple views. For340

this reason, VisFlow only allows users to work with tabular341

data. In this paper, we propose to extend the idea of using342

DFD to design interactions between data visualizations to343

the scenario where those views are created using different344

frameworks. The subset flow model proposed for VisFlow345

suffers from limitations that prevent its use in this case.346

We will discuss these limitations in Section IX.347

III. VMetaFlow OVERVIEW348

Declarative visualization frameworks have boosted the devel-349

opment of applications that use visual embeddings to repre-350

sent complex data. The diverse nature of the fields and tasks351

to which data visualization is applied hinders finding a frame-352

work that outperforms the rest in all scenarios.Moreover, new353

visual representations are developed every year, tailored to354

address the specific needs of tasks in specific domains.355

The use of multiple coordinated views has proven to be356

an effective tool to deal with data complexity. The goal of357

this research is to provide a meta-framework where users358

can integrate several data views regardless of the framework359

employed to implement them and define interactions between360

them seamlessly. To this end, we rely on a DFD model. This361

kind of model has been successfully applied to modelling the362

coordination between data visualizations. Our DFD model363

was design to tackle the following challenges:364

• Integration effort: The development time must be spent365

designing data views and not incorporating them into the366

platform. Our system requires a low number of lines of367

code to integrate visual embeddings.368

• Computational overhead : Adding software layers369

increases the use of memory and computation time. The370

use of these resources must be kept to the minimum.371

• Expressiveness: The data flow model must not limit372

the definition of any possible interaction between data373

views.374

IV. DATA FLOW DIAGRAM ENTITIES375

DFDs naturally divide problems into a sequence of func-376

tional blocks. They are directed graphs that represent how377

information flows from one node to another. VMetaFlow’s 378

cards are the graph nodes, and they encapsulate data pro- 379

cessing algorithms and visualizations, whereas connections 380

specify how the data are transmitted between them. In our 381

approach, visualization and data analysis experts focus their 382

efforts on designing and implementing the application’s func- 383

tional blocks (cards) using the technologies that better fit their 384

needs. Then, the application behavior is described connecting 385

cards in a higher abstraction level graphical interface. 386

A. CARDS 387

Cards are the fundamental component of our model. A card 388

implements a specific functionality, e.g., a scatter plot or a 389

clustering algorithm, using the visualization or data process- 390

ing technology chosen by the programmer. From a technical 391

perspective, a card is an encapsulated self-contained module 392

and has everything it needs to carry out its activity. There- 393

fore, they can be developed independently. To minimize the 394

integration effort, VMetaFlow’s API is constrained to three 395

operations: receive data, send data, and, optionally, change its 396

internal state (properties). Although allowing programmers to 397

store the internal state of the cards is not an essential feature, 398

it improves the expressiveness of the card. For example, 399

it is possible to adapt a cards’ behavior to the user selection 400

history. There are two categories of cards: 401

• Visualization Cards are in charge of creating graphi- 402

cal representation from data. Our system grants them 403

access to a document object model (DOM) node. Any 404

JavaScript API can be used to draw the data view. 405

Additionally, visualization cards can be used to create 406

a GUI for the application, implementing elements such 407

as drop-down menus or buttons. 408

• Data Processing Cards are responsible for loading, stor- 409

ing, and processing data. They do not have access to the 410

interface, and they run asynchronously. 411

B. CONNECTIONS 412

Connections are mechanisms that manage data sharing 413

between the DFD cards by linking cards’ input and output 414

docks. All connections are treated in the same manner to 415

simplify the card design. They are characterized by a data 416

structure which is transmitted from output cards to their 417

connected cards inputs. The format of this structure is strictly 418

enforced. This feature is particularly useful for the integration 419

of different visualization and data processing technologies, 420

as it allows homogenizing the communication between them. 421

The inputs and outputs of a card define its expressiveness. 422

Inputs are associated with card functionalities, whereas out- 423

puts expose the results of the operations carried out by the 424

card, either automatically or determined by user interaction. 425

Data tables are a common way to store information in 426

many scientific and business domains. Many visualization 427

frameworks are focused exclusively on these data structures. 428

VMetaFlow natively implements a set of connections to 429
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FIGURE 2. Dimension Reduction for Dendritic Spine Clustering. The top part of the figure shows a DFD consisting of a data loading
card (1a), transformation of displacement maps to meshes (3a) and dimensionality reduction (5a, 12a, 16a). The data processing
cards (3a, 5a, 12a, 16a) are processed on the server. Tabular data are visualized using scatter plots (2a, 6a, 11a, 13a, 17a) and a bar
chart (10a). The meshes are visualized using three-dimensional viewers (4a, 9a, 15a, 19a). Data selections created in the scatter
plots are used in group creation cards (8a, 14a, 18a). The created groups return to their associated scatter plots and go into the
mesh viewers (9a, 15a, 19a, 4a) and the bar chart (10a). The selection combination card (7a) performs an OR operation on the
selections coming from the first three scatter plots (2a, 6a, 11a). Finally, the selections from scatter plots (2a), (13a) and (17a) are
propagated to the last three-dimensional viewer (4a). On the bottom half, the panel embeds the visualization cards (2a, 13a, 17a,
4a, 10a). We are using the same numbering for the DFD cards and their corresponding visualization panel. Cards are labeled with
the suffix a, whereas visualizations use the suffix b.
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handle tabular data efficiently and supports the most common430

types of card-to-card interactions:431

• Tabular data. It is an array of data rows and the data432

columns descriptions. Since tabular data are the most433

common data type, these connections are optimized434

following the changeset approach used in Reactive435

Vega [7] (see Section VII-B). Output tabular data con-436

nections can be used to implement derived data, filter-437

ing, and aggregation.438

• Selection. It transmits a data query. In contrast to the pre-439

vious connection, it only shares the IDs of the selected440

elements and the range of the selection. It can be used to441

add visualization properties to data subsets.442

• Color. It transmits groups composed of data items IDs,443

a color, and a group name.444

• Option. It allows users to define a set of card proper-445

ties in the output card and use them to configure the446

input card. These connections are useful to link the447

properties of two cards or change visualization options448

directly in an application panel without modifying the449

DFD.450

In addition to these natively available connections,451

VMetaFlow also supports the definition of new connections452

to meet other specific needs and data types.453

C. DATA FLOW MODEL454

Yu and Silva [23] proposed the first DFD model to design455

multiple coordinated view applications. Unfortunately, the456

lack of flexibility of their data subset model hinders the457

system extensibility, preventing its use to coordinate visual-458

izations developed with different frameworks. VMetaFlow’s459

data flow model conceptually classifies connections into460

three groups: data to be processed, visualization properties,461

and card options. Unlike the subset flow model, VMetaFlow462

does not append visualization properties to the data. They463

are defined as separate data. This separation is essential464

for keeping the integration effort low and increasing the465

model expressiveness. The use of separate connections with466

explicit data types unambiguously reveals what is expected467

as input and offered as output. The card programmers can468

clearly define what the card needs and what information469

produces. Our system checks types automatically to prevent470

programming errors. The DFD creation is also simplified471

since needed inputs and offered outputs are explicitly shown472

to the designer. Assigning visualization properties to table473

items severely constrains the model expressiveness. Global474

properties of the visualization cannot be associated with indi-475

vidual items. Operations such as linking the navigation of476

two data views are not possible. Moreover, this approach477

is only valid for tabular data but not for other data types.478

Separating the data and visualization properties allows us479

to extend the system to additional types, such as images or480

b-reps (boundary representations, see Fig. 2).481

Another essential feature of our model is that it allows482

loops. End user’s actions on one card can cause another card483

to change the visualization properties of some data items, and 484

this change can be reflected on the first card. VisFlow does 485

not allow loops. Therefore, in the previous scenario, it would 486

require two data views, one to capture the user actions and 487

another to show the results. 488

V. GRAPHICAL DESIGN FRAMEWORK 489

VMetaFlow provides a GUI to boost the integration of data 490

views and processes. Both DFD and panels are defined 491

through this interface. 492

A. DFD LAYOUT 493

The data processing and visualization pipeline is defined in 494

the DFD layout tab. Available cards are listed in a modal 495

window, and they can be added to the DFD layout via drag 496

and drop operations. A set of input and output docks and a 497

set of options characterize each card. Connections are typed 498

data shared between cards. The icons on the left (inputs) and 499

right (outputs) show a particular card connection dock type. 500

Fig. 3 shows the process of connecting two cards. Setting up 501

their options and connecting their input and output docks with 502

other card docks builds a graph that defines the application 503

behavior. The left image in Fig. 1 and the top image in 504

Fig. 2 illustrate DFDs of two applications. 505

B. PANELS 506

Some works, such as ExPlates, integrate visualizations 507

into the DFD. This approach simplifies the design and 508

exploratory analysis tasks. When creating multi-view appli- 509

cations, designers must consider the cognitive overload of 510

end users [40]. To alleviate visual cluttering, other tools, 511

such as KNIME, separate the multiple-view visualization 512

from the DFD window. Similarly, our GUI separates the data 513

views from the DFD tab using multiple panels. Panels are 514

frames where the results of the DFDs can be visualized. 515

As mentioned in Section I, VMetaFlow aims to cover two 516

types of visualization tasks: exploratory analysis and fixed 517

workflow applications. Data exploration applications benefit 518

from showing the DFD to the final users because it allows 519

them to follow the knowledge extraction process. However, 520

in the static workflow case, users perform a set of actions 521

in a well-known and fixed manner. In this scenario, DFD 522

might distract them from their final goal. The right image in 523

Fig. 1 and the bottom image in Fig. 2 show two panels that 524

arrange visualizations included in their respective DFDs. The 525

number of views that can be shown to the user effectively 526

is limited. With this regard, panels are a way to reduce the 527

number of views shown to the end users at one time. Data 528

views can be grouped based on different criteria, such as a 529

common task or feature. This strategy leaves more room for 530

the visualizations and the DFD in their respective tabs. And it 531

prevents the saturation of the visual channel, enabling users 532

to cope with complex visualizations and covering a broader 533

type of applications. 534
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FIGURE 3. Connecting two cards. The upper row figures show two
unconnected card icons in the DFD layout tab. The card on the left is in
charge of loading a tabular data set, whereas the card on the right is a
visualization card. First, the user clicks on the output card to see the
available connections (second row). Then, the user selects the data dock
on the output card and clicks on the input card to see the compatible
dock (third row). The bottom image shows the two cards connected in the
DFD layout tab.

VI. EXTENSIBILITY & REUSABILITY535

Our system only requires programming skills to create new536

cards and connections. The DFD and panels can be designed537

through our GUI. Adding extensibility and reusability capa-538

bilities to the system enables users with no programming539

skills to develop their applications. Advanced users can create540

new functionality and share them with the community. In this541

section, we discuss the mechanisms that VMetaFlow imple-542

ments to provide extensibility and reusability.543

A. APPLICATIONS544

One of the main reusability features that VMetaFlow offers is545

the capability of exporting the DFD layout. We have created a546

JSON-based DFD interchange format for this purpose. This547

format includes DFD cards and connections along with the548

panels. We bundle it in a compressed file together with the549

implementation of the non-native cards and connections and550

their respective dependencies. We call applications to these551

packages, and they can be imported in other VMetaFlow552

deployments or user accounts.553

B. EXTENDING CARDS554

New cards can be added to VMetaFlow through its GUI.555

New visualizations can be created using any web-based556

framework, such as plotly or Vega. Our Card Creation Assis- 557

tant (see Fig. 4) reduces the integration effort, guiding the 558

design of new cards in 4 steps: 559

Dependencies. In the first step, the card designers select 560

the JavaScript library files. If the desired library is not avail- 561

able on the platform, it can be uploaded at this point. 562

Description. In the second step, the card’s description 563

and supported connections are defined. The designer has 564

to specify the card’s name, identifier, and description. The 565

connection docks can be added in this step by providing their 566

type, name, and description. Additionally, the cardinality of 567

the input docks has to be defined. This parameter establishes 568

the number of incoming connections allowed in a given dock. 569

Lastly, there are default input and output options docks. These 570

connections allow synchronizing options between cards and 571

define the card options in other cards of the DFD. 572

Options. The following step provides a way to create the 573

card’s options. Options are a set of parameters that define the 574

card’s behavior. For example, in a box plot the axis, titles, 575

range, variables, etc. 576

Code. In this step, the designers have to establish the 577

card behavior. The visualization cards are implemented in 578

JavaScript using the web-based visualization API selected 579

in the first step. They are required to complete the init and 580

update functions. The init function is called once and ini- 581

tializes the visualization, whereas update is called when any 582

input connection or state property changes its value. Both 583

functions receive the same set of parameters: (i) the DOM 584

container where the visualization will be embedded, (ii) the 585

Input object that receives all the incoming connections val- 586

ues, (iii) the current card internal State, (iv) a DataHandler 587

instance and (v) a callback function (setProperty). The State 588

parameter grants access to the current internal variables and 589

to the output values. In fact, output connections share the 590

selected State variables with other cards. Developers can add 591

or modify the card’s internal State and output connection 592

values using the setProperty synchronous callback. Finally, 593

the DataHandler object optimizes the tabular data treatment 594

(for further details, Section VII-B). 595

The pipeline to create processing nodes is similar. The 596

main differences are that data processing scripts only have 597

a function and can be written in R, Python or JavaScript. R 598

and Python scripts run on the server-side, whereas JavaScript 599

cards run on the client-side. In order to enable interoper- 600

ability between JavaScript and the other two programming 601

languages, JavaScript objects are transformed to named list 602

in R and to dictionaries in Python. In the same manner, the 603

process function has to be implemented, but it does not have 604

access to a DOM container and the setProperty callback is 605

replaced by setResult. setResult is used to update the card’s 606

internal state and to notify the main thread once processing 607

has concluded. Additionally, the setProgress callback can be 608

optionally used to inform about the progress made in the data 609

processing. 610

Besides creating new cards, the card collection can be 611

extended by importing third-party cards. This functionality 612
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FIGURE 4. Card Creation Assistant GUI. The image shows the second step of the creation process. The user has added an
input data connection and a selection connection. The default option connection is automatically created. Card icons’ final
appearance are displayed in the preview container.

FIGURE 5. Connection Creation Assistant GUI. The property structure is
defined in the second step of this assistant. This structure is a hierarchy
of fields with an associated name and type.

follows the application approach described in the previous613

section.614

C. EXTENDING CONNECTIONS615

Connections define typed data shared between cards.616

Section IV-B describes the natively available data types. Nev-617

ertheless, custom connections can be implemented through618

the Connection Creation Assistant. This GUI subsection is 619

composed of two simple steps (see Fig. 5): 620

Description. Users have to define the connection name, 621

the name of the property to be shared and its associated 622

icon. 623

Structure. The shared data structure is defined. No cod- 624

ing skills are needed to define the connection’s data 625

structure. 626

Although JavaScript is a loosely typed programming lan- 627

guage, the system checks the data structure integrity before 628

sharing it through a connection to prevent errors. 629

VII. ARCHITECTURE 630

Our meta-framework is an additional software layer placed 631

over existing data visualization frameworks and, thus, 632

increasing the use of computational resources. In this section, 633

we describe the architectural details and how the system 634

reduces this overhead. In order to ensure reproducibility, the 635

full implementation of VMetaFlow can be downloaded from 636

https://github.com/VMetaFlow/VMetaFlow. 637

VMetaFlow follows a client-server architecture. JavaScript 638

was mainly used to develop both the front end and back 639

end. The server runs in Node.js to simplify the development 640

of stand-alone applications and reduce the communication 641

complexity with the client since both use the same data 642

structures [41]. The back end stores the user’s data, cards, 643

connections, and applications, whereas the client is in charge 644
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of most of the data processing. However, the server executes645

the R and Python scripts. This separation allows users to shift646

the most time-consuming tasks to the server.647

A. WORK SCHEDULER648

Our work scheduler was designed to avoid unnecessary649

updates. Cards are queued to be updatedwhen: (i) an option of650

the card changes, (ii) the user interacts with the card (only for651

visualization cards) or (iii) the card receives new data. If the652

card state changes, the system checks whether the updated653

properties are connected with other cards and propagates the654

event. The work scheduler queues the cards connected to an655

updated property only if they are not already in the queue.656

Before executing any card, the system ensures that all their657

ancestors have finished their work. Aiming at applying this658

execution model, the system stores the DFD as a directed659

graph.660

B. HANDLING TABULAR DATA661

Nowadays, the visualization of tabular data is especially rele-662

vant in the information visualization field. For this reason,663

VMetaFlow optimizes the treatment of this type of struc-664

tures. Whereas the card’s internal state stores non-tabular665

data variables, the IndexedDB available in most commer-666

cial Internet browsers stores tabular data [42]. This standard667

grants access to a website-specific NoSQL database from the668

browser. The DataHandler instance, available in the card’s669

init and update functions (see in Section VI-B), provides an670

interface to access, modify, and create tabular data.We imple-671

ment the Reactive Vega changeset approach [7] to optimize672

the memory usage and computational performance of our673

system.674

VIII. RESULTS675

In this section, we illustrate the capabilities of our DFD676

model. First, we provide an example of the integration677

effort required to create a bar chart. Then, we present two678

case studies. For the first case study, we implement a gene679

regulatory network analysis to test the expressiveness of680

VMetaFlow. This case study was originally proposed to681

validate the VisFlow’s subset flow model [23]. VMetaFlow682

replicates the case study, using visualization cards developed683

with different frameworks enabling their seamless interac-684

tion. In the second case study, we present a workflow design685

for exploratory analysis from a preliminary stage of ongoing686

research. We highlight the VMetaFlow’s ability to combine687

visualization with automatic data mining techniques. For this688

example, we have built a more complex data flow. Addition-689

ally, new cards have been implemented to visualize new data690

types.691

Critical inspections are common forms of evaluating visu-692

alization frameworks and techniques [43]. To this end, our693

meta-framework was examined by four external experts in694

visualization and computer graphics. In this section, we will695

report their feedback.696

A. CREATING A BAR CHART 697

In Section VI-B, we discussed the complete process of inte- 698

grating new cards, Fig. 6 shows an example of the coding 699

step of this process. This figure illustrates the minimum 700

JavaScript code required to integrate a basic bar chart defined 701

with Vega-Lite. The first step in the init method is to obtain 702

data from the data handler. Next, we code the visualization 703

in the format dictated by Vega-Lite. For the dimensions of the 704

visualization, we use the size of the container that will display 705

it. In addition, two inputs have been defined in the previous 706

step to allow user interaction with the visualization. The value 707

of these fields is extracted through the state variable and used 708

in the visualization specification. Thus, the users can control 709

which data fields they use for grouping and aggregation. 710

Lastly, we use the Vega-Lite API to produce the bar chart 711

in the container. For the update method, we recreate the 712

visualization by calling the init method. 713

B. GENE REGULATORY NETWORK ANALYSIS 714

In this case study, we mimic the analysis task defined to 715

validate VisFlow [23] to show our system’s flexibility and 716

potential to implement any visualization workflow. This task 717

is common in the genetics domain since it shows the regu- 718

lations between the genes, namely which genes activate or 719

repress others. The input data set is a validated regulatory 720

network for Th17 cells [44], that play a central role in the 721

progress of autoimmune diseases and cancer [45]. The appli- 722

cation consists of four coordinated views: a gene regulatory 723

network, a heatmap that shows the gene expression matrix, 724

a line chart for the gene expression profile and a data table 725

with further information on each gene. Each view was imple- 726

mented with a different framework to show how our system 727

provides interoperability capabilities. The gene regulatory 728

network is a directed weighted graph whose nodes are genes, 729

and the edges are transcription factors. The weights represent 730

the confidence score of regulation. This graph was imple- 731

mented using VivaGraphJS [46]. The heatmap was designed 732

with Vega-Lite [3] and illustrates the gene expression matrix, 733

where rows are genes and columns are experimental condi- 734

tions. The line chart is a complementary graph that displays 735

the selected gene expression profiles, namely the rows of the 736

gene expression matrix. We used plotly [6] for its implemen- 737

tation. Finally, we created the data tablewithDataTables [47]. 738

The code of most cards was taken from public and private 739

repositories, andmost of the development time was employed 740

to integration tasks and testing. The developer estimates to 741

have spent 75 minutes in integration tasks. The card imple- 742

mented with VivaGraphJS was the most challenging since it 743

required the development of interface controls. 744

Fig. 1 shows the proposed DFD and the resulting visu- 745

alization cards. The nodes on the first column of the DFD 746

are in charge of loading data: the expression matrix (1a), and 747

the directed graph nodes (4a) and edges (7a). The expression 748

matrix data feed the heatmap (2a) and the line chart (3a), 749

whereas the nodes and edges are visualized in the network 750
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FIGURE 6. Example of a bar chart visualization created using Vega-Lite. The card creation assistant during the coding step. At this point, the default
methods are implemented (init and update). On the right side, the complete code preview is shown to aid the user. We highlighted the code
corresponding to Vega-Lite and the data provided by VMetaFlow in pink and green, respectively.

graph (5a) and the data table (8a). Users can select nodes in751

the network graph. These selections are used to filter (6a) the752

data shown in the line chart and the heatmap. We assigned753

DFD nodes that process or visualize network data and nodes754

that display gene expression matrix data to the red and green755

layers, respectively.756

C. DIMENSION REDUCTION757

The DFD of the second case study implements an exploratory758

analysis workflow designed for a preliminary stage of759

ongoing research. Dendritic spines (spines) are protrusions760

found over the dendritic surface of cerebral cortex pyra-761

midal cells [48]. The shape of the spines is related to762

synaptic plasticity, but their function is unknown. The work-763

flow shown in top side of Fig. 2 explores the possibil-764

ity of applying dimensional reduction techniques for spine765

analysis.766

The analysis starts loading a planar parametrization (dis-767

placement map) of all spines’ surfaces [49]. Each displace-768

ment map is a 65× 65 pixel color image. Unlike 3D meshes,769

dimensionality reduction can be directly applied to these770

structures since they have a fixed size. In this study, we want771

to compare the performance of several dimensionality reduc-772

tion techniques when clustering the planar parameterization773

of dendritic spines according to their shape. In summary, the 774

process we followed for this task consisted in (i) applying 775

the dimensionality reduction technique to the displacement 776

maps, (ii) visualizing the result using a scatter plot, (iii) cre- 777

ating clusters from the data and (iv) analyzing whether all 778

spines in each cluster have the same shape. 779

The displacement map set of all the spines is stored in a 780

tabular structure for simplicity. Card (1a) is in charge of data 781

loading. These data are transferred to dimensionality reduc- 782

tion cards: (5a) performs a Principal Component Analysis 783

(PCA), (12a) uses Isomap, and (16a) uses a Uniform Man- 784

ifold Approximation and Projection (UMAP). These algo- 785

rithms have been implemented using the same card type, 786

configuring its options to select the technique and the number 787

of dimensions in the projected space (3 for PCA and 2 for the 788

rest). To visualize the results, we use three scatter plots for 789

PCA (2a, 6a, and 11a), one for Isomap (13a), and UMAP 790

(17a). The scatter plots propagate their selection to cards 791

designed to create groups of elements (8a, 14a, 18a). The 792

scatter plots linked to the PCA combine the three selections 793

using an OR operator (7a) before (8a). Then, we recover the 794

surface mesh of every spine from its planar representation 795

(3a) to allow the visual inspection of the clusterization in their 796

corresponding 3D-viewer (9a, 15a, 18a). Finally, to compare 797
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the clusterization performed with the three dimensionality798

reduction methods, we use a 3D viewer (4a) and a bar799

chart (10a) that allows data superimposition. To avoid visual800

cluttering, (4a) only shows the data selected on (2a), (13a),801

and (17a).802

We group the visualization cards into four panels to803

reduce the number of views shown at the same time. Three804

panels are used to cluster spines using different projec-805

tions. The last panel compares the clusterization results.806

We illustrate this final panel on the bottom side of Fig. 2.807

As a result of the above analysis, we conclude that UMAP808

should be the preferred DR algorithm for an automatic spine809

classifier.810

As in the previous example, most cards were implemented811

using code taken from public and private repositories, and812

most of the development time was spent integrating and813

testing. The developer estimates to have spent 175minutes on814

integration tasks. 90 minutes were spent in the development815

of the clusterization card (8a, 14a, 18a) since the developer816

had to implement the card’s GUI with JavaScript from the817

ground up.818

D. EXTERNAL CRITICAL INSPECTION819

We have contacted four experts in visualization to provide820

a critical evaluation. None of them has been involved in the821

project, nor have they seen the system beforehand. Half of822

them work in academia, and the other two work for two dif-823

ferent private companies in the visualization field. They have824

a high level of education (three of them have a PhDs, and the825

other a master’s degree). Three of the participants have more826

than ten years of experience, whereas the other has five. The827

samemethodologywas followedwith all participants.We had828

a presentation session with an open debate. All sessions have829

lasted between 50 and 90 minutes. Finally, the experts were830

asked to complete a questionnaire.831

All the participants considered that VMetaFlow provides a832

meta-framework to integrate coordinated view visualizations.833

They noted that our DFD approach allows users to easily834

define card-to-card complex behaviors. They also highlighted835

their value for rapid prototyping and the exploration of new836

ideas. Additionally, the two industry experts emphasized the837

usefulness of allowing the cooperation between workers with838

different levels of knowledge in visualization and data anal-839

ysis. Three of the participants explicitly remarked that they840

consider VMetaFlow simple and user-friendly. One of them841

suggested adding native support for more data types besides842

tabular data and the other suggested adding a tutorial on how843

to create the first DFD. We consider these suggestions as844

limitations of the implementation rather than the conceptual845

framework.846

The fast-prototyping capabilities make VMetaFlow espe-847

cially attractive in academia. Industry experts recognized the848

system value as proof of concept. However, they underline849

several problems that hinder its incorporation into the indus-850

try. They consider that a vast set of predefined cards is needed851

to enable effective use of the meta-framework by users with852

no programming skills. Since the flexibility of VMetaFlow is 853

one of the system’s most relevant advantages, they propose 854

to support natively and efficiently more data types (not just 855

tabular data) to improve capability over existing frameworks. 856

Finally, all experts showed concerns about the data size that 857

can be handled by VMetaFlow. We will further discuss this 858

point in the following section. 859

IX. CONCLUSION 860

Multiple views and interaction have proven to be two of 861

the most valuable approaches to handle complexity in the 862

data visualization field. We designed our system to boost the 863

prototyping of multiple-coordinated-view applications. Each 864

view can be created using the most adequate visualization 865

framework (or even an ad hoc data view implemented by 866

the user), and VMetaFlow simplifies the interaction among 867

them. Cards are the minimal functional unit of our sys- 868

tem. Data views and their corresponding interactions are 869

embedded in individual view cards. Users must divide their 870

problem into visualization and data processing cards which 871

can be implemented using the optimal visualization or data 872

processing technologies to solve each problem. Interactions 873

between views can be described at a higher level in the 874

application DFD. This approach promotes modularity and 875

enables extensibility and reusability, which are essential for 876

fast prototyping. Additionally, extensibility and reusability 877

allow this meta-framework to tackle a wide variety of tasks 878

in different scientific and business domains. VMetaFlow’s 879

DFDs can be used in three different ways to support the 880

types of applications described in Section I: (1) users can 881

interactively manipulate both the DFD and the application 882

panels (exploratory analysis), (2) users can only visual- 883

ize the layout (fixed workflow applications), and (3) users 884

can manipulate the layout and examine the DFD, with- 885

out changing it (exploratory analysis and fixed workflow 886

applications). 887

We separate the data views from theDFD tab to reduce user 888

cognitive overload. However, displaying the visualization on 889

the DFD simplifies interactive exploratory analysis. We are 890

currently working on offering both possibilities, following a 891

similar approach to VisFlow. This framework implements a 892

transition animation between the DFD tab and the display 893

panel that allows users to easily understand the correspon- 894

dence between DFD nodes and views. 895

In VMetaFlow, interactions between views are explicitly 896

defined in the DFD. Several authors have pointed out that the 897

relationship between coordinated views is not always evident 898

[39], [40], [50]. Displaying interactions in theDFDhelpswith 899

the implementation, debugging, and use of coordinated view- 900

based applications. 901

In this paper, we proposed a data flow model that 902

overcomes the limitation of the subset flow model (see 903

Section IV-C for further details). Separating visualization 904

properties from data items provides flexibility to include new 905

data types. Additionally, it allows sharing global visualiza- 906

tion options and properties. Linking cameras is a common 907
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technique used to juxtapose side-by-side views that show908

different data with the same encoding. This behavior cannot909

be implemented following a subset data flow. DFD loops910

are an essential feature to increase the model expressive-911

ness. On the other hand, less flexible models led to sim-912

pler DFDs. The VisFlow’s DFDs can be easily understood913

by novice users. This is a relevant advantage during data914

exploration.915

The data model of our DFD-based system can implement916

any complex juxtaposition (which is the most commonmulti-917

view strategy) behavior once the cards are created. Other918

multiple-view strategies are supported, but constrained. User919

can implement DFDs to partition visualizations into a fixed920

number of views. Other type of partitions, such as hierarchical921

partitions, have to be implemented in a single card. In this922

case, the user would not benefit from our modularized DFD923

approach. Nonetheless, partitioning requires using the same924

view in all partitions. Hence, it does not make sense to925

use different frameworks in each data view. Similarly, layer926

superimposition is limited. Currently, visualization cards can-927

not be superimposed. Card overlapping can be easily included928

in a future version of our system, but more sophisticated929

superimpositions have to be implemented following a single930

card approach. Asmentioned in previous sections, our system931

allows creating cards with multiple data inputs. These cards932

can superimpose data coming from different sources. Nev-933

ertheless, creating interactive multi-layer data views using934

different frameworks is an interesting open problem that will935

be studied in future research.936

There exists a limit on the number of multiple views and937

the interaction complexity that users can manage. We added938

multiple panel support to alleviate this problem, allow-939

ing designers to arrange the visualizations. Each panel can940

focus on specific data features or tasks, and users can941

easily change between them. There are other techniques942

to handle complexity, such as deriving data, filtering, and943

aggregation, which can be included in our system through944

cards.945

Domain experts with little visualization experience can946

create applications reusing existing cards, whereas designers947

with experience in visualization framework APIs can extend948

the system functionalities by developing cards. The two949

industry experts highlighted the usefulness of this approach.950

However, they found it limited in its current state. They951

consider that the current number of predefined cards is insuf-952

ficient for its use by nonexpert users in industry. One of953

them recommends creating an open access repository acces-954

sible from our system to create a community of users and955

contributors.956

Although VMetaFlow has been implemented for handling957

tabular data efficiently, users can define their connection data958

types through the Connection Creation Assistant. It must be959

pointed out that the non-native data treatment is not opti-960

mized. We store the non-native data types in the internal state961

of the card that generates or modifies them. This approach962

is adequate for small data sets or if the data are not modi-963

fied. To promote VMetaFlow over other systems, surveyed 964

external experts recommend extending our meta-framework 965

adding native support to other data types, such as graphs, 966

and finding an efficient way to handle non-native data 967

types. 968

Regarding data analysis capabilities, we have shown in 969

the case studies that VMetaFlow enables to carry out essen- 970

tial operations in this domain, such as dimension reduction. 971

Furthermore, our meta-framework is not limited to those 972

techniques, and any algorithm (implemented in R, Python 973

or JavaScript) can be embedded in a processing card. Some 974

data processing cards run on the server-side, allowing com- 975

putationally demanding tasks to be executed in powerful 976

dedicated servers. We plan to continue developing this idea, 977

preparing the system to run not only processing cards on the 978

server but visualization ones. We will optimize the system to 979

keep the data transfer between the server and the client to the 980

minimum. 981

Despite the popularity of web-based visualization frame- 982

works, all surveyed experts agree on the constraints of these 983

systems when handling large data sets. We believe that a 984

future version of VMetaFlow can get around this limita- 985

tion by adding a third card type. These cards will perform 986

filtering, aggregation, and data derivation on the server- 987

side, only transferring it to the client-side when necessary. 988

This approach will alleviate the computational constraints of 989

web-based visualization frameworks. 990
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