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ABSTRACT The analysis and exploration of complex data sets are common problems in many areas, includ-
ing scientific and business domains. This need has led to substantial development of the data visualization
field. In this paper, we present VMetaFlow, a graphical meta-framework to design interactive and coordinated
views applications for data visualization. Our meta-framework is based on data flow diagrams since they have
proved their value in simplifying the design of data visualizations. VMetaFlow operates as an abstraction
layer that encapsulates and interconnects visualization frameworks in a web-based environment, providing
them with interoperability mechanisms. The only requirement is that the visualization framework must be
accessible through a JavaScript API. We propose a novel data flow model that allows users to define both
interactions between multiple data views and how the data flows between visualization and data processing
modules. In contrast with previous data-flow-based frameworks for visualization, we separate the view
interactions from data items, broadening the expressiveness of our model and supporting the most common
types of multi-view interactions. Our meta-framework allows visualization and data analysis experts to focus
their efforts on creating data representations and transformations for their applications, whereas nonexperts
can reuse previously developed components to design their applications through a user-friendly interface.
We validate our approach through a critical inspection with visualization experts and two case studies.
We have carefully selected these case studies to illustrate its capabilities. Finally, we compare our approach
with the subset flow model designed for multiple coordinated views.

INDEX TERMS Coordinated views, data visualization, exploratory visual analysis, visual programming.

I. INTRODUCTION

The recent technological advances and innovations have
increased the available data in many areas. Visualization has
proven to be a powerful tool for analyzing and understanding
complex data sets. Traditionally, the visualization field has
been divided into two subfields depending on the nature of
the data. The scientific visualization subfield (scivis) handles
spatially structured data, whereas the information visualiza-
tion subfield (infovis) deals with abstract data [1], [2]. In the
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infovis context, declarative frameworks for visualization,!
such as D3 [4], ggplot2 [5], plotly [6] or Vega [7], stand
out. They simplify the task of designing visualizations since
the developers have to specify what to do instead of how
to do it [8]. Most of these frameworks provide mechanisms
to interact with data through data views, which is essential
to its understanding [2]. In this regard, it is worth noting
Reactive Vega, which offers a robust architecture for declara-
tive interactive visualization [7]. As mentioned, visualization

Lalso known as declarative languages for visualization or visualization
grammars [3]
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can be applied to several fields, each of them with specific
needs and tasks. Although the infovis frameworks, in partic-
ular declarative frameworks for visualization, have a general
purpose and can be applied to a wide range of problems,
they do not usually offer the specific capabilities of the scivis
frameworks. Each visualization framework has its advantages
and disadvantages, and therefore there is not a unique strategy
for all possible scenarios. Covering all the needs of the fields
in which visualization can be used effectively is unfeasible.
Besides, new techniques are released every year to address
specific tasks. This should encourage the designers of these
frameworks to provide extensibility in a user-friendly way,
allowing users to incorporate new functionality. Many visual-
ization frameworks do not provide extensibility capabilities.
Adding this feature to grammar-based visualization frame-
works is especially challenging due to their structure and
high level of abstraction. For this reason, it is necessary to
allow designers to integrate data views created with different
visualization frameworks.

Furthermore, in most cases, a single data view is not
enough to represent complex data. In this regard, faceting data
across multiple views is one of the most relevant approaches
for highlighting different data features and handling visual
clutter problems. Multiple view strategies can be classified
into three groups (see [2] for further details): juxtaposition,
data partitioning, and superimposition. Whereas superimpo-
sition divides a data visualization in multiple layers, the first
two approaches (juxtaposition and data partitioning) require
coordinating multiple data views for their effective imple-
mentation. A meta-framework to communicate visualization
frameworks, including declarative-based approaches, that
could seamlessly include new data visualization techniques
and provide interoperability among them, could greatly sim-
plify the task of creating domain-specific applications.

Some authors have identified that the learning curve of
most of the available declarative frameworks for visualization
is still steep, hindering the access to many final users [9].
Data flow diagrams (DFDs) naturally represent sequences
of operations and data transformations. Due to their ability
to divide complex processes into simpler and meaningful
blocks, they have been used to design visual programming
frameworks as a higher-level alternative to traditional pro-
gramming languages (see Section II-C). In the data analysis
and visualization field, DFD-based visualization frameworks
have also proven to be valuable tools (see Section II-D).

In this paper, we propose VMetaFlow, a data visualization
meta-framework for interactive coordinated-views applica-
tion design. Our system acts as an abstraction layer over
existing visualization frameworks providing them with inter-
operability mechanisms through a novel data flow model.
We take advantage of the ability of DFDs to simplify complex
problems to modularize the exploratory analysis task, from
data processing to visualization. VMetaFlow relies on exist-
ing visualization frameworks to create each data view and its
associated interactions. Users can select the most appropriate
framework for each data view. The only requirement is that
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the visualization framework must be accessible through a
JavaScript APL. Then, VMetaFlow graphical user interface
(GUI) allows users to specify how data flows between views
and how these views are coordinated in the same DFD. In con-
trast to other works, we integrate visualization properties
(e.g., data encodings, camera position, axis title, selections)
within the DFD and decouple them from the data under
analysis. Our approach allows users to model the most com-
mon types of interactions in juxtaposed and data partitioned
multi-view applications (e.g., zoom and pan coordination
between two scatter plots — see [2] for further details) and
enables fine-grained control over their scope.

VMetaFlow was designed for users with different levels
of knowledge in data visualization and analysis. Advanced
users can extend the functionality of our meta-framework by
creating the basic components of the DFD, whereas users
without experience in the field of visualization can reuse these
components to design applications to analyze their data.

Our meta-framework aims to cover two types of visual-
ization applications: exploratory analysis and fixed work-
flow applications. Both approaches are essential tasks in the
data science field. The former allows users to interact with
their data to gain preliminary insights and form hypotheses.
Whereas the latter allows them to apply predefined methods
to known problems for knowledge extraction. These two tasks
benefit from defining the application behavior using a DFD.
This feature is essential for exploratory analysis because it
allows users to interactively modify the workflow structure
to test new hypotheses and to include and test new func-
tionalities during the prototype development. Furthermore,
having access to the DFD helps users understand the data
transformation process and enables fast prototyping.

We argue that visualization itself is not enough to achieve
the objectives of the aforementioned application types
because relying only on perception could lead to a misun-
derstanding of data meaning. Consequently, we claim that
it is essential to provide statistical and data processing tools
to confirm or reject the user intuitions. Our meta-framework
addresses this by means of cards in which the user can encap-
sulate scripts written in several programming languages, such
as R, JavaScript, or Python.

The main contribution of this paper is to propose and
develop a visual meta-framework and data flow model to
integrate third-party visualization frameworks and data
processing algorithms, providing them with interoperabil-
ity mechanisms to design coordinated view applications
(see Fig. 1). As mentioned, the only requirement is that the
visualization framework must provide JavaScript APIs. Data
processing algorithms can be written in several program-
ming languages: R, JavaScript or Python. Our data model
decouples the visualization properties from the data, allowing
users to represent both the flow of data and the interactions
between coordinated views. Finally, to support the two types
of applications mentioned above and users with different
levels of expertise in data analysis and visualization, we have
taken into account the following requirements:
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1) Data processing. VMetaFlow permits the integration of
data analysis algorithms within the workflow.

2) Extensibility and reusability. Our meta-framework
allows incorporating new visualization techniques, data
processes, and data types as DFD elements. These
elements and the DFD layouts can be stored, shared,
and reused.

3) Easiness of use. Users can create the DFD by dragging,
dropping, and connecting elements into the workspace.

The rest of the paper is organized as follows. Section II

reviews the most relevant related works. Then, we present an
overview of the meta-framework in Section III. The compo-
nents and structure of our DFDs are described in Section IV
and Section V. In Section VI, we explain the mechanisms
that our system provides to support extensibility and reusabil-
ity. The architectural details of VMetaFlow are shown in
Section VII. Section VIII describes the case studies and the
external critical inspection carried out to validate our system.
Finally, Section IX presents our conclusions.

Il. RELATED WORK

Declarative frameworks for visualization (see Section II-A)
are widely adopted general-purpose frameworks for data
visualization design. Their ability to handle abstract data
at a high level allows them to adapt to numerous fields,
reducing the designers’ effort. The need to enhance these
frameworks with domain-specific visualizations motivated
the development of VMetaFlow. Our meta-framework allows
the seamless integration of visualization frameworks, includ-
ing declarative approaches. In this regard, our software
bridges the gap between declarative frameworks for visual-
ization and scivis frameworks, such as VTK [10], ITK [11]
or deck.gl [12]. As mentioned above, the use of multiple data
views is one of the most popular strategies to handle data
complexity (see Section II-B). Users can select the visual-
ization technique that better fits their needs to create each
data view, enabling their cooperation and addressing their
diversity.

Nowadays, data visualization is a popular tool in many
fields. For this reason, a lot of research in this area has focused
on simplifying the authoring process so that end users can
tailor the visualization to their needs. Within this category,
we find from early approaches, such as SAGE [13], to aca-
demic prototypes, such as Lyra [14] or iVisDesigner [15],
or commercial frameworks with thousands of users, such as
Tableau, the successor of Polaris [16]. Unlike these frame-
works, VMetaFlow relies on DFDs since they model data
workflows naturally (see Section II-C). DFDs have been
used in the data visualization context (see Section II-D).
Nevertheless, most of them offer a limited set of built-in
data views and little support for adding visualizations from
other frameworks. VMetaFlow shares and enhances pre-
vious data-flow-based visualization frameworks features,
focusing on providing multiple-view coordination support
to data views implemented with different visualization
frameworks.
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A. DECLARATIVE FRAMEWORKS FOR VISUALIZATION
Wilkinson’s Grammar of Graphics [17] and HiVE [18] were
among the first works to propose the use of declarative
specifications for visualization. These approaches provided a
high level of abstraction and supported rapid analysis, but did
not offer fine control of graphics and interactions [8]. More
recent declarative visualization frameworks, such as D3 [4],
ggplot2 [5], plotly [6] or Vega [7], have a higher degree of
customization, with the drawback of being more complex
for users with little or no programming experience. Vega-
Lite offers a higher degree of abstraction, but still requires
a strong background in programming [3]. In our meta-
framework, visualization experts can create data views using
the previously mentioned declarative visualization frame-
works. Then, domain experts can use them to create multiple-
view applications.

B. COORDINATED MULTIPLE VIEWS
Coordinated multiple views have been a central topic in data
visualization and exploratory analysis, as it is a powerful
strategy to deal with data complexity [19], [20]. Enabling
users to interactively analyze data from multiple and coor-
dinated visualizations boosts the knowledge extraction task.
In this regard, multiple works have been proposed that tackle
this problem from different perspectives. Prates er al. [21]
proposed a coordination model based on ontologies. This
approach employs semantic representations to relate data
items. Those relationships are only contained in the ontology.
However, this approach relies on having an ontology about
the data to be analyzed, which introduces an overhead that
the user has to face. Improvise [22] proposes a coordination
model based on live properties, that enable the synchroniza-
tion of values from several visualizations through shared
objects called variables. To enable coordination, users must
link equivalent view properties to the same variable through
a menu-based GUL

Although these frameworks are somewhat extensible, data
flow diagrams provide a more natural way to define data
pipelines and, as demonstrated by Yu and Silva [23], can be
tailored to efficiently design multiple-view interactions.

C. VISUAL PROGRAMMING
Traditionally, a program is generated from a structured
sequence of words with a syntactical meaning. Alternatively,
visual programs use graphics and two-dimensional layouts as
part of the program specification [24]. This approach is easier
to understand and work with, as it resembles the human men-
tal representation of problems. Unlike the one-dimensional
textual way, visual programming uses higher-level descrip-
tions of the program functionality. Users without program-
ming skills find this approach more accessible [25].
Commonly, visual programming environments use data
flow diagrams. These programming environments are based
on boxes that encapsulate a piece of functionality and wires
that connect them. Data are transformed in the diagram boxes
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FIGURE 1. Gene Regulatory Network Analysis. This figure introduces an application example used as a first case study. The left side of the figure shows a
DFD composed of several cards for loading (1a, 4a, 7a), filtering (5a, 6a) and visualizing data(2a, 3a, 5a, 8a). The force-directed graph filters the data
shown in the heatmap and the line chart. We implemented all these data views using different framework. On the other side, a visualization panel with
four views was created from the visualization cards defined in the previous DFD. We are using the same numbering for the DFD cards and their
corresponding visualization panel. We label cards and visualization with the suffix a and b, respectively.

and flows from one execution node to the next one following
the diagram wires. Early works that followed this approach
were applied in a wide range of domains such as music, image
processing, or UI construction [26]. Those systems offered a
wide selection of variations of the data flow that supported
iteration, procedural abstraction, or type checking, among
others. Howland et al. [27] successfully applied this model to
ease out the process of scripting plot events in a role-playing
game. The data flow model is also employed in Unreal
Engine [28]. This game development system eases the pro-
gramming aspect of this domain by representing functions,
events, and classes as nodes and wiring them together. This
simplified perspective is used to allow designers to extend
baseline applications created by programmers. Finally, this
model is used by the main tech companies in their cloud
services, to allow the construction of pipelines for machine
learning and data processing [29], [30], [31].

Given the aforementioned benefits and the wide adoption
of this model, we propose a DFD-based visualization meta-
framework to provide interactivity mechanisms between
visualization frameworks and data processes developed with
different programming languages.

D. DATA FLOW FRAMEWORKS FOR VISUALIZATION

In the visualization and analysis domain, DFDs have been
applied in multiple ways. VisComposer [9] uses DFDs to
intuitively create visualizations. Although its ability to model
user interactions is limited, it replaces current declarative
frameworks for visualization. Mendez et al. [32] proposed
iVOoLVER for visualization authoring. Their DFD-based sys-
tem was designed to support a wide variety of data types and
sources. Some authors have proposed the use of DFD for
scivis. In this field, DFDs are primarily used to define 2D or
3D rendering pipelines [10], [11], [33]. Early systems focused
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on creating workflows that simplified the rendering process
of scientific computations. SCIRun [34] provided visualiza-
tion as a way of aiding the computation steering of scientific
algorithms. IBM Data Explorer [35] established the baseline
to tackle several problems inherent in using this approach for
data analysis and visualization. The authors proposed a data
flow system that supports several types of data, visualizations,
and processing modules. Moreover, they focus their work
on the optimization of the data flow execution. To this end,
they introduce a cache to store the intermediate results of
each node and a graph analysis step to identify which nodes
should be re-executed. The main focus of these systems is the
data processing; the visualization is relegated to represent the
results of this task. The use of charts for data exploration and
queries is severely restricted.

Focusing on the exploratory analysis task, ExPlatesJS [36]
and VisTrails [37] are worth noting. The former implements
a methodology for separating the visual exploration steps.
Whereas the latter provides data provenance support. In addi-
tion to the previously mentioned systems, KNIME [38] is
an open-source environment for data science that allows col-
laboration and workflow reusability. Although VisTrails and
KNIME are extensible, all the previous systems mainly rely
on their built-in modules and visualizations. Moreover, these
systems offer limited support for multiple-view coordina-
tion. ExPlatesJS and VisTrails do not provide any support to
this end. Whereas KNIME follows a publish-subscribe event
model; all visualizations can subscribe to filter or selection
events and publish them. The scope of their model is limited
to composite views, i.e., events are only distributed between
visualizations placed in the same visualization window. This
model is not extensible to new interactions, and its restricted
scope hinders its applicability in the context of exploratory
analysis.
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Langner et al. [39] concluded that connecting all views
by default is not self-evident to users from their user study
on coordinated and multiple views. Furthermore, Wang Bal-
donado et al. [40] proposed perceptual cues to display the
relationship between views as one of the guidelines when
using multiple views. However, none of the previously men-
tioned approaches offer this type of visual support. In con-
trast, VisFlow [23] was specifically designed to overcome
these constraints. Its authors proposed a data flow model
called the subset flow model. In this model, users must
start with an overview of the data and then progressively
divide it into subsets. This approach simplifies the design
of data workflows and facilitates the comprehension of their
corresponding DFDs. Nonetheless, this approach constrains
the expressiveness of the DFDs. Additionally, in the same
way as KNIME, VisFlow attaches visualization properties
to the tabular subset items to coordinate multiple views. For
this reason, VisFlow only allows users to work with tabular
data. In this paper, we propose to extend the idea of using
DFD to design interactions between data visualizations to
the scenario where those views are created using different
frameworks. The subset flow model proposed for VisFlow
suffers from limitations that prevent its use in this case.
We will discuss these limitations in Section IX.

lll. VMetaFlow OVERVIEW

Declarative visualization frameworks have boosted the devel-
opment of applications that use visual embeddings to repre-
sent complex data. The diverse nature of the fields and tasks
to which data visualization is applied hinders finding a frame-
work that outperforms the rest in all scenarios. Moreover, new
visual representations are developed every year, tailored to
address the specific needs of tasks in specific domains.

The use of multiple coordinated views has proven to be
an effective tool to deal with data complexity. The goal of
this research is to provide a meta-framework where users
can integrate several data views regardless of the framework
employed to implement them and define interactions between
them seamlessly. To this end, we rely on a DFD model. This
kind of model has been successfully applied to modelling the
coordination between data visualizations. Our DFD model
was design to tackle the following challenges:

o Integration effort: The development time must be spent
designing data views and not incorporating them into the
platform. Our system requires a low number of lines of
code to integrate visual embeddings.

o Computational overhead: Adding software layers
increases the use of memory and computation time. The
use of these resources must be kept to the minimum.

o Expressiveness: The data flow model must not limit
the definition of any possible interaction between data
views.

IV. DATA FLOW DIAGRAM ENTITIES
DFDs naturally divide problems into a sequence of func-
tional blocks. They are directed graphs that represent how
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information flows from one node to another. VMetaFlow’s
cards are the graph nodes, and they encapsulate data pro-
cessing algorithms and visualizations, whereas connections
specify how the data are transmitted between them. In our
approach, visualization and data analysis experts focus their
efforts on designing and implementing the application’s func-
tional blocks (cards) using the technologies that better fit their
needs. Then, the application behavior is described connecting
cards in a higher abstraction level graphical interface.

A. CARDS

Cards are the fundamental component of our model. A card
implements a specific functionality, e.g., a scatter plot or a
clustering algorithm, using the visualization or data process-
ing technology chosen by the programmer. From a technical
perspective, a card is an encapsulated self-contained module
and has everything it needs to carry out its activity. There-
fore, they can be developed independently. To minimize the
integration effort, VMetaFlow’s API is constrained to three
operations: receive data, send data, and, optionally, change its
internal state (properties). Although allowing programmers to
store the internal state of the cards is not an essential feature,
it improves the expressiveness of the card. For example,
it is possible to adapt a cards’ behavior to the user selection
history. There are two categories of cards:

o Visualization Cards are in charge of creating graphi-
cal representation from data. Our system grants them
access to a document object model (DOM) node. Any
JavaScript API can be used to draw the data view.
Additionally, visualization cards can be used to create
a GUI for the application, implementing elements such
as drop-down menus or buttons.

o Data Processing Cards are responsible for loading, stor-
ing, and processing data. They do not have access to the
interface, and they run asynchronously.

B. CONNECTIONS
Connections are mechanisms that manage data sharing
between the DFD cards by linking cards’ input and output
docks. All connections are treated in the same manner to
simplify the card design. They are characterized by a data
structure which is transmitted from output cards to their
connected cards inputs. The format of this structure is strictly
enforced. This feature is particularly useful for the integration
of different visualization and data processing technologies,
as it allows homogenizing the communication between them.
The inputs and outputs of a card define its expressiveness.
Inputs are associated with card functionalities, whereas out-
puts expose the results of the operations carried out by the
card, either automatically or determined by user interaction.
Data tables are a common way to store information in
many scientific and business domains. Many visualization
frameworks are focused exclusively on these data structures.
VMetaFlow natively implements a set of connections to
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FIGURE 2. Dimension Reduction for Dendritic Spine Clustering. The top part of the figure shows a DFD consisting of a data loading
card (1a), transformation of displacement maps to meshes (3a) and dimensionality reduction (5a, 12a, 16a). The data processing
cards (3a, 5a, 12a, 16a) are processed on the server. Tabular data are visualized using scatter plots (2a, 6a, 11a, 13a, 17a) and a bar
chart (10a). The meshes are visualized using three-dimensional viewers (4a, 9a, 15a, 19a). Data selections created in the scatter
plots are used in group creation cards (8a, 14a, 18a). The created groups return to their associated scatter plots and go into the
mesh viewers (9a, 15a, 193, 4a) and the bar chart (10a). The selection combination card (7a) performs an OR operation on the
selections coming from the first three scatter plots (2a, 6a, 11a). Finally, the selections from scatter plots (2a), (13a) and (17a) are
propagated to the last three-dimensional viewer (4a). On the bottom half, the panel embeds the visualization cards (2a, 13a, 17a,
4a, 10a). We are using the same numbering for the DFD cards and their corresponding visualization panel. Cards are labeled with
the suffix a, whereas visualizations use the suffix b.
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handle tabular data efficiently and supports the most common
types of card-to-card interactions:

o Tabular data. It is an array of data rows and the data
columns descriptions. Since tabular data are the most
common data type, these connections are optimized
following the changeset approach used in Reactive
Vega [7] (see Section VII-B). Output tabular data con-
nections can be used to implement derived data, filter-
ing, and aggregation.

o Selection. It transmits a data query. In contrast to the pre-
vious connection, it only shares the IDs of the selected
elements and the range of the selection. It can be used to
add visualization properties to data subsets.

e Color. It transmits groups composed of data items IDs,
a color, and a group name.

o Option. It allows users to define a set of card proper-
ties in the output card and use them to configure the
input card. These connections are useful to link the
properties of two cards or change visualization options
directly in an application panel without modifying the
DFD.

In addition to these natively available connections,
VMetaFlow also supports the definition of new connections
to meet other specific needs and data types.

C. DATA FLOW MODEL
Yu and Silva [23] proposed the first DFD model to design
multiple coordinated view applications. Unfortunately, the
lack of flexibility of their data subset model hinders the
system extensibility, preventing its use to coordinate visual-
izations developed with different frameworks. VMetaFlow’s
data flow model conceptually classifies connections into
three groups: data to be processed, visualization properties,
and card options. Unlike the subset flow model, VMetaFlow
does not append visualization properties to the data. They
are defined as separate data. This separation is essential
for keeping the integration effort low and increasing the
model expressiveness. The use of separate connections with
explicit data types unambiguously reveals what is expected
as input and offered as output. The card programmers can
clearly define what the card needs and what information
produces. Our system checks types automatically to prevent
programming errors. The DFD creation is also simplified
since needed inputs and offered outputs are explicitly shown
to the designer. Assigning visualization properties to table
items severely constrains the model expressiveness. Global
properties of the visualization cannot be associated with indi-
vidual items. Operations such as linking the navigation of
two data views are not possible. Moreover, this approach
is only valid for tabular data but not for other data types.
Separating the data and visualization properties allows us
to extend the system to additional types, such as images or
b-reps (boundary representations, see Fig. 2).

Another essential feature of our model is that it allows
loops. End user’s actions on one card can cause another card
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to change the visualization properties of some data items, and
this change can be reflected on the first card. VisFlow does
not allow loops. Therefore, in the previous scenario, it would
require two data views, one to capture the user actions and
another to show the results.

V. GRAPHICAL DESIGN FRAMEWORK

VMetaFlow provides a GUI to boost the integration of data
views and processes. Both DFD and panels are defined
through this interface.

A. DFD LAYOUT

The data processing and visualization pipeline is defined in
the DFD layout tab. Available cards are listed in a modal
window, and they can be added to the DFD layout via drag
and drop operations. A set of input and output docks and a
set of options characterize each card. Connections are typed
data shared between cards. The icons on the left (inputs) and
right (outputs) show a particular card connection dock type.
Fig. 3 shows the process of connecting two cards. Setting up
their options and connecting their input and output docks with
other card docks builds a graph that defines the application
behavior. The left image in Fig. 1 and the top image in
Fig. 2 illustrate DFDs of two applications.

B. PANELS

Some works, such as ExPlates, integrate visualizations
into the DFD. This approach simplifies the design and
exploratory analysis tasks. When creating multi-view appli-
cations, designers must consider the cognitive overload of
end users [40]. To alleviate visual cluttering, other tools,
such as KNIME, separate the multiple-view visualization
from the DFD window. Similarly, our GUI separates the data
views from the DFD tab using multiple panels. Panels are
frames where the results of the DFDs can be visualized.
As mentioned in Section I, VMetaFlow aims to cover two
types of visualization tasks: exploratory analysis and fixed
workflow applications. Data exploration applications benefit
from showing the DFD to the final users because it allows
them to follow the knowledge extraction process. However,
in the static workflow case, users perform a set of actions
in a well-known and fixed manner. In this scenario, DFD
might distract them from their final goal. The right image in
Fig. 1 and the bottom image in Fig. 2 show two panels that
arrange visualizations included in their respective DFDs. The
number of views that can be shown to the user effectively
is limited. With this regard, panels are a way to reduce the
number of views shown to the end users at one time. Data
views can be grouped based on different criteria, such as a
common task or feature. This strategy leaves more room for
the visualizations and the DFD in their respective tabs. And it
prevents the saturation of the visual channel, enabling users
to cope with complex visualizations and covering a broader
type of applications.
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FIGURE 3. Connecting two cards. The upper row figures show two
unconnected card icons in the DFD layout tab. The card on the left is in
charge of loading a tabular data set, whereas the card on the right is a
visualization card. First, the user clicks on the output card to see the
available connections (second row). Then, the user selects the data dock
on the output card and clicks on the input card to see the compatible
dock (third row). The bottom image shows the two cards connected in the
DFD layout tab.

VI. EXTENSIBILITY & REUSABILITY

Our system only requires programming skills to create new
cards and connections. The DFD and panels can be designed
through our GUI. Adding extensibility and reusability capa-
bilities to the system enables users with no programming
skills to develop their applications. Advanced users can create
new functionality and share them with the community. In this
section, we discuss the mechanisms that VMetaFlow imple-
ments to provide extensibility and reusability.

A. APPLICATIONS

One of the main reusability features that VMetaFlow offers is
the capability of exporting the DFD layout. We have created a
JSON-based DFD interchange format for this purpose. This
format includes DFD cards and connections along with the
panels. We bundle it in a compressed file together with the
implementation of the non-native cards and connections and
their respective dependencies. We call applications to these
packages, and they can be imported in other VMetaFlow
deployments or user accounts.

B. EXTENDING CARDS
New cards can be added to VMetaFlow through its GUI.
New visualizations can be created using any web-based
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framework, such as plotly or Vega. Our Card Creation Assis-
tant (see Fig. 4) reduces the integration effort, guiding the
design of new cards in 4 steps:

Dependencies. In the first step, the card designers select
the JavaScript library files. If the desired library is not avail-
able on the platform, it can be uploaded at this point.

Description. In the second step, the card’s description
and supported connections are defined. The designer has
to specify the card’s name, identifier, and description. The
connection docks can be added in this step by providing their
type, name, and description. Additionally, the cardinality of
the input docks has to be defined. This parameter establishes
the number of incoming connections allowed in a given dock.
Lastly, there are default input and output options docks. These
connections allow synchronizing options between cards and
define the card options in other cards of the DFD.

Options. The following step provides a way to create the
card’s options. Options are a set of parameters that define the
card’s behavior. For example, in a box plot the axis, titles,
range, variables, etc.

Code. In this step, the designers have to establish the
card behavior. The visualization cards are implemented in
JavaScript using the web-based visualization API selected
in the first step. They are required to complete the init and
update functions. The init function is called once and ini-
tializes the visualization, whereas update is called when any
input connection or state property changes its value. Both
functions receive the same set of parameters: (i) the DOM
container where the visualization will be embedded, (ii) the
Input object that receives all the incoming connections val-
ues, (iii) the current card internal State, (iv) a DataHandler
instance and (v) a callback function (setProperty). The State
parameter grants access to the current internal variables and
to the output values. In fact, output connections share the
selected State variables with other cards. Developers can add
or modify the card’s internal State and output connection
values using the setProperty synchronous callback. Finally,
the DataHandler object optimizes the tabular data treatment
(for further details, Section VII-B).

The pipeline to create processing nodes is similar. The
main differences are that data processing scripts only have
a function and can be written in R, Python or JavaScript. R
and Python scripts run on the server-side, whereas JavaScript
cards run on the client-side. In order to enable interoper-
ability between JavaScript and the other two programming
languages, JavaScript objects are transformed to named list
in R and to dictionaries in Python. In the same manner, the
process function has to be implemented, but it does not have
access to a DOM container and the setProperty callback is
replaced by setResult. setResult is used to update the card’s
internal state and to notify the main thread once processing
has concluded. Additionally, the setProgress callback can be
optionally used to inform about the progress made in the data
processing.

Besides creating new cards, the card collection can be
extended by importing third-party cards. This functionality
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FIGURE 4. Card Creation Assistant GUI. The image shows the second step of the creation process. The user has added an
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FIGURE 5. Connection Creation Assistant GUI. The property structure is
defined in the second step of this assistant. This structure is a hierarchy
of fields with an associated name and type.

follows the application approach described in the previous
section.

C. EXTENDING CONNECTIONS

Connections define typed data shared between cards.
Section IV-B describes the natively available data types. Nev-
ertheless, custom connections can be implemented through
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the Connection Creation Assistant. This GUI subsection is
composed of two simple steps (see Fig. 5):

Description. Users have to define the connection name,
the name of the property to be shared and its associated
icon.

Structure. The shared data structure is defined. No cod-
ing skills are needed to define the connection’s data
structure.

Although JavaScript is a loosely typed programming lan-
guage, the system checks the data structure integrity before
sharing it through a connection to prevent errors.

VII. ARCHITECTURE
Our meta-framework is an additional software layer placed
over existing data visualization frameworks and, thus,
increasing the use of computational resources. In this section,
we describe the architectural details and how the system
reduces this overhead. In order to ensure reproducibility, the
full implementation of VMetaFlow can be downloaded from
https://github.com/VMetaFlow/VMetaFlow.
VMetaFlow follows a client-server architecture. JavaScript
was mainly used to develop both the front end and back
end. The server runs in Node.js to simplify the development
of stand-alone applications and reduce the communication
complexity with the client since both use the same data
structures [41]. The back end stores the user’s data, cards,
connections, and applications, whereas the client is in charge
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of most of the data processing. However, the server executes
the R and Python scripts. This separation allows users to shift
the most time-consuming tasks to the server.

A. WORK SCHEDULER

Our work scheduler was designed to avoid unnecessary
updates. Cards are queued to be updated when: (i) an option of
the card changes, (ii) the user interacts with the card (only for
visualization cards) or (iii) the card receives new data. If the
card state changes, the system checks whether the updated
properties are connected with other cards and propagates the
event. The work scheduler queues the cards connected to an
updated property only if they are not already in the queue.
Before executing any card, the system ensures that all their
ancestors have finished their work. Aiming at applying this
execution model, the system stores the DFD as a directed
graph.

B. HANDLING TABULAR DATA

Nowadays, the visualization of tabular data is especially rele-
vant in the information visualization field. For this reason,
VMetaFlow optimizes the treatment of this type of struc-
tures. Whereas the card’s internal state stores non-tabular
data variables, the IndexedDB available in most commer-
cial Internet browsers stores tabular data [42]. This standard
grants access to a website-specific NoSQL database from the
browser. The DataHandler instance, available in the card’s
init and update functions (see in Section VI-B), provides an
interface to access, modify, and create tabular data. We imple-
ment the Reactive Vega changeset approach [7] to optimize
the memory usage and computational performance of our
system.

VIIl. RESULTS

In this section, we illustrate the capabilities of our DFD
model. First, we provide an example of the integration
effort required to create a bar chart. Then, we present two
case studies. For the first case study, we implement a gene
regulatory network analysis to test the expressiveness of
VMetaFlow. This case study was originally proposed to
validate the VisFlow’s subset flow model [23]. VMetaFlow
replicates the case study, using visualization cards developed
with different frameworks enabling their seamless interac-
tion. In the second case study, we present a workflow design
for exploratory analysis from a preliminary stage of ongoing
research. We highlight the VMetaFlow’s ability to combine
visualization with automatic data mining techniques. For this
example, we have built a more complex data flow. Addition-
ally, new cards have been implemented to visualize new data
types.

Critical inspections are common forms of evaluating visu-
alization frameworks and techniques [43]. To this end, our
meta-framework was examined by four external experts in
visualization and computer graphics. In this section, we will
report their feedback.
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A. CREATING A BAR CHART

In Section VI-B, we discussed the complete process of inte-
grating new cards, Fig. 6 shows an example of the coding
step of this process. This figure illustrates the minimum
JavaScript code required to integrate a basic bar chart defined
with Vega-Lite. The first step in the init method is to obtain
data from the data handler. Next, we code the visualization
in the format dictated by Vega-Lite. For the dimensions of the
visualization, we use the size of the container that will display
it. In addition, two inputs have been defined in the previous
step to allow user interaction with the visualization. The value
of these fields is extracted through the state variable and used
in the visualization specification. Thus, the users can control
which data fields they use for grouping and aggregation.
Lastly, we use the Vega-Lite API to produce the bar chart
in the container. For the update method, we recreate the
visualization by calling the init method.

B. GENE REGULATORY NETWORK ANALYSIS

In this case study, we mimic the analysis task defined to
validate VisFlow [23] to show our system’s flexibility and
potential to implement any visualization workflow. This task
is common in the genetics domain since it shows the regu-
lations between the genes, namely which genes activate or
repress others. The input data set is a validated regulatory
network for Th17 cells [44], that play a central role in the
progress of autoimmune diseases and cancer [45]. The appli-
cation consists of four coordinated views: a gene regulatory
network, a heatmap that shows the gene expression matrix,
a line chart for the gene expression profile and a data table
with further information on each gene. Each view was imple-
mented with a different framework to show how our system
provides interoperability capabilities. The gene regulatory
network is a directed weighted graph whose nodes are genes,
and the edges are transcription factors. The weights represent
the confidence score of regulation. This graph was imple-
mented using VivaGraphJS [46]. The heatmap was designed
with Vega-Lite [3] and illustrates the gene expression matrix,
where rows are genes and columns are experimental condi-
tions. The line chart is a complementary graph that displays
the selected gene expression profiles, namely the rows of the
gene expression matrix. We used plotly [6] for its implemen-
tation. Finally, we created the data table with DataTables [47].
The code of most cards was taken from public and private
repositories, and most of the development time was employed
to integration tasks and testing. The developer estimates to
have spent 75 minutes in integration tasks. The card imple-
mented with VivaGraphJS was the most challenging since it
required the development of interface controls.

Fig. 1 shows the proposed DFD and the resulting visu-
alization cards. The nodes on the first column of the DFD
are in charge of loading data: the expression matrix (1a), and
the directed graph nodes (4a) and edges (7a). The expression
matrix data feed the heatmap (2a) and the line chart (3a),
whereas the nodes and edges are visualized in the network
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FIGURE 6. Example of a bar chart visualization created using Vega-Lite. The card creation assistant during the coding step. At this point, the default
methods are implemented (init and update). On the right side, the complete code preview is shown to aid the user. We highlighted the code
corresponding to Vega-Lite and the data provided by VMetaFlow in pink and green, respectively.

graph (5a) and the data table (8a). Users can select nodes in
the network graph. These selections are used to filter (6a) the
data shown in the line chart and the heatmap. We assigned
DFD nodes that process or visualize network data and nodes
that display gene expression matrix data to the red and green
layers, respectively.

C. DIMENSION REDUCTION

The DFD of the second case study implements an exploratory
analysis workflow designed for a preliminary stage of
ongoing research. Dendritic spines (spines) are protrusions
found over the dendritic surface of cerebral cortex pyra-
midal cells [48]. The shape of the spines is related to
synaptic plasticity, but their function is unknown. The work-
flow shown in top side of Fig. 2 explores the possibil-
ity of applying dimensional reduction techniques for spine
analysis.

The analysis starts loading a planar parametrization (dis-
placement map) of all spines’ surfaces [49]. Each displace-
ment map is a 65 x 65 pixel color image. Unlike 3D meshes,
dimensionality reduction can be directly applied to these
structures since they have a fixed size. In this study, we want
to compare the performance of several dimensionality reduc-
tion techniques when clustering the planar parameterization
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of dendritic spines according to their shape. In summary, the
process we followed for this task consisted in (i) applying
the dimensionality reduction technique to the displacement
maps, (ii) visualizing the result using a scatter plot, (iii) cre-
ating clusters from the data and (iv) analyzing whether all
spines in each cluster have the same shape.

The displacement map set of all the spines is stored in a
tabular structure for simplicity. Card (1a) is in charge of data
loading. These data are transferred to dimensionality reduc-
tion cards: (5a) performs a Principal Component Analysis
(PCA), (12a) uses Isomap, and (16a) uses a Uniform Man-
ifold Approximation and Projection (UMAP). These algo-
rithms have been implemented using the same card type,
configuring its options to select the technique and the number
of dimensions in the projected space (3 for PCA and 2 for the
rest). To visualize the results, we use three scatter plots for
PCA (2a, 6a, and 11a), one for Isomap (13a), and UMAP
(17a). The scatter plots propagate their selection to cards
designed to create groups of elements (8a, 14a, 18a). The
scatter plots linked to the PCA combine the three selections
using an OR operator (7a) before (8a). Then, we recover the
surface mesh of every spine from its planar representation
(3a) to allow the visual inspection of the clusterization in their
corresponding 3D-viewer (9a, 15a, 18a). Finally, to compare
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the clusterization performed with the three dimensionality
reduction methods, we use a 3D viewer (4a) and a bar
chart (10a) that allows data superimposition. To avoid visual
cluttering, (4a) only shows the data selected on (2a), (13a),
and (17a).

We group the visualization cards into four panels to
reduce the number of views shown at the same time. Three
panels are used to cluster spines using different projec-
tions. The last panel compares the clusterization results.
We illustrate this final panel on the bottom side of Fig. 2.
As a result of the above analysis, we conclude that UMAP
should be the preferred DR algorithm for an automatic spine
classifier.

As in the previous example, most cards were implemented
using code taken from public and private repositories, and
most of the development time was spent integrating and
testing. The developer estimates to have spent 175 minutes on
integration tasks. 90 minutes were spent in the development
of the clusterization card (8a, 14a, 18a) since the developer
had to implement the card’s GUI with JavaScript from the
ground up.

D. EXTERNAL CRITICAL INSPECTION

We have contacted four experts in visualization to provide
a critical evaluation. None of them has been involved in the
project, nor have they seen the system beforehand. Half of
them work in academia, and the other two work for two dif-
ferent private companies in the visualization field. They have
a high level of education (three of them have a PhDs, and the
other a master’s degree). Three of the participants have more
than ten years of experience, whereas the other has five. The
same methodology was followed with all participants. We had
a presentation session with an open debate. All sessions have
lasted between 50 and 90 minutes. Finally, the experts were
asked to complete a questionnaire.

All the participants considered that VMetaFlow provides a
meta-framework to integrate coordinated view visualizations.
They noted that our DFD approach allows users to easily
define card-to-card complex behaviors. They also highlighted
their value for rapid prototyping and the exploration of new
ideas. Additionally, the two industry experts emphasized the
usefulness of allowing the cooperation between workers with
different levels of knowledge in visualization and data anal-
ysis. Three of the participants explicitly remarked that they
consider VMetaFlow simple and user-friendly. One of them
suggested adding native support for more data types besides
tabular data and the other suggested adding a tutorial on how
to create the first DFD. We consider these suggestions as
limitations of the implementation rather than the conceptual
framework.

The fast-prototyping capabilities make VMetaFlow espe-
cially attractive in academia. Industry experts recognized the
system value as proof of concept. However, they underline
several problems that hinder its incorporation into the indus-
try. They consider that a vast set of predefined cards is needed
to enable effective use of the meta-framework by users with
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no programming skills. Since the flexibility of VMetaFlow is
one of the system’s most relevant advantages, they propose
to support natively and efficiently more data types (not just
tabular data) to improve capability over existing frameworks.
Finally, all experts showed concerns about the data size that
can be handled by VMetaFlow. We will further discuss this
point in the following section.

IX. CONCLUSION

Multiple views and interaction have proven to be two of
the most valuable approaches to handle complexity in the
data visualization field. We designed our system to boost the
prototyping of multiple-coordinated-view applications. Each
view can be created using the most adequate visualization
framework (or even an ad hoc data view implemented by
the user), and VMetaFlow simplifies the interaction among
them. Cards are the minimal functional unit of our sys-
tem. Data views and their corresponding interactions are
embedded in individual view cards. Users must divide their
problem into visualization and data processing cards which
can be implemented using the optimal visualization or data
processing technologies to solve each problem. Interactions
between views can be described at a higher level in the
application DFD. This approach promotes modularity and
enables extensibility and reusability, which are essential for
fast prototyping. Additionally, extensibility and reusability
allow this meta-framework to tackle a wide variety of tasks
in different scientific and business domains. VMetaFlow’s
DFDs can be used in three different ways to support the
types of applications described in Section I: (1) users can
interactively manipulate both the DFD and the application
panels (exploratory analysis), (2) users can only visual-
ize the layout (fixed workflow applications), and (3) users
can manipulate the layout and examine the DFD, with-
out changing it (exploratory analysis and fixed workflow
applications).

We separate the data views from the DFD tab to reduce user
cognitive overload. However, displaying the visualization on
the DFD simplifies interactive exploratory analysis. We are
currently working on offering both possibilities, following a
similar approach to VisFlow. This framework implements a
transition animation between the DFD tab and the display
panel that allows users to easily understand the correspon-
dence between DFD nodes and views.

In VMetaFlow, interactions between views are explicitly
defined in the DFD. Several authors have pointed out that the
relationship between coordinated views is not always evident
[39], [40], [50]. Displaying interactions in the DFD helps with
the implementation, debugging, and use of coordinated view-
based applications.

In this paper, we proposed a data flow model that
overcomes the limitation of the subset flow model (see
Section IV-C for further details). Separating visualization
properties from data items provides flexibility to include new
data types. Additionally, it allows sharing global visualiza-
tion options and properties. Linking cameras is a common
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technique used to juxtapose side-by-side views that show
different data with the same encoding. This behavior cannot
be implemented following a subset data flow. DFD loops
are an essential feature to increase the model expressive-
ness. On the other hand, less flexible models led to sim-
pler DFDs. The VisFlow’s DFDs can be easily understood
by novice users. This is a relevant advantage during data
exploration.

The data model of our DFD-based system can implement
any complex juxtaposition (which is the most common multi-
view strategy) behavior once the cards are created. Other
multiple-view strategies are supported, but constrained. User
can implement DFDs to partition visualizations into a fixed
number of views. Other type of partitions, such as hierarchical
partitions, have to be implemented in a single card. In this
case, the user would not benefit from our modularized DFD
approach. Nonetheless, partitioning requires using the same
view in all partitions. Hence, it does not make sense to
use different frameworks in each data view. Similarly, layer
superimposition is limited. Currently, visualization cards can-
not be superimposed. Card overlapping can be easily included
in a future version of our system, but more sophisticated
superimpositions have to be implemented following a single
card approach. As mentioned in previous sections, our system
allows creating cards with multiple data inputs. These cards
can superimpose data coming from different sources. Nev-
ertheless, creating interactive multi-layer data views using
different frameworks is an interesting open problem that will
be studied in future research.

There exists a limit on the number of multiple views and
the interaction complexity that users can manage. We added
multiple panel support to alleviate this problem, allow-
ing designers to arrange the visualizations. Each panel can
focus on specific data features or tasks, and users can
easily change between them. There are other techniques
to handle complexity, such as deriving data, filtering, and
aggregation, which can be included in our system through
cards.

Domain experts with little visualization experience can
create applications reusing existing cards, whereas designers
with experience in visualization framework APIs can extend
the system functionalities by developing cards. The two
industry experts highlighted the usefulness of this approach.
However, they found it limited in its current state. They
consider that the current number of predefined cards is insuf-
ficient for its use by nonexpert users in industry. One of
them recommends creating an open access repository acces-
sible from our system to create a community of users and
contributors.

Although VMetaFlow has been implemented for handling
tabular data efficiently, users can define their connection data
types through the Connection Creation Assistant. It must be
pointed out that the non-native data treatment is not opti-
mized. We store the non-native data types in the internal state
of the card that generates or modifies them. This approach
is adequate for small data sets or if the data are not modi-
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fied. To promote VMetaFlow over other systems, surveyed
external experts recommend extending our meta-framework
adding native support to other data types, such as graphs,
and finding an efficient way to handle non-native data
types.

Regarding data analysis capabilities, we have shown in
the case studies that VMetaFlow enables to carry out essen-
tial operations in this domain, such as dimension reduction.
Furthermore, our meta-framework is not limited to those
techniques, and any algorithm (implemented in R, Python
or JavaScript) can be embedded in a processing card. Some
data processing cards run on the server-side, allowing com-
putationally demanding tasks to be executed in powerful
dedicated servers. We plan to continue developing this idea,
preparing the system to run not only processing cards on the
server but visualization ones. We will optimize the system to
keep the data transfer between the server and the client to the
minimum.

Despite the popularity of web-based visualization frame-
works, all surveyed experts agree on the constraints of these
systems when handling large data sets. We believe that a
future version of VMetaFlow can get around this limita-
tion by adding a third card type. These cards will perform
filtering, aggregation, and data derivation on the server-
side, only transferring it to the client-side when necessary.
This approach will alleviate the computational constraints of
web-based visualization frameworks.
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