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Abstract

Currently, the main challenge for global aviation is to ensure that the predicted growth in
air traffic for the coming decades remains sustainable from an environmental point of view,
and that the air traffic management system meets the expected demand for increased capacity.
Formation flight offers great promise in terms of improving both the environmental impact of
aviation and the capacity of the air traffic management system.

This thesis addresses the formation mission design problem for commercial aircraft in the
presence of uncertainties. Specifically, it considers uncertainties in the departure times of
the aircraft and in the fuel burn savings for the trailing aircraft. Given several commercial
flights, the problem consists in arranging them in formation or solo flights and finding the
trajectories that minimize the expected value of the direct operating cost of the flights. Since
each aircraft can fly solo or in different positions inside a formation, the mission is modeled
as a stochastic switched dynamical system, in which flight modes of the aircraft are described
by sets of stochastic ordinary differential equations, the discrete states of the system describe
the combination of flight modes of the individual aircraft, and the switching logic among the
discrete states is defined by logical constraints.

The formation mission design problem is formulated as an optimal control problem of a
stochastic switched dynamical system and solved using nonintrusive generalized polynomial
chaos based stochastic collocation. The stochastic collocation method converts the stochastic
switched optimal control problem into an augmented deterministic switched optimal control
problem. With this approach, a small number of sample points of the random parameters
are used to jointly solve particular instances of the switched optimal control problem. The
obtained solutions are then expressed as orthogonal polynomial expansions in terms of the
random parameters using these sample points. Depending on the distributions of the random
parameters, different types of orthogonal polynomials can be chosen to achieve better
precision. This technique allows statistical and global sensitivity analysis of the stochastic
solutions to be conducted at a low computational cost. The augmented deterministic switched
optimal control problem has been then solved using an embedding approach, which allows
switching decision among discrete states to be modeled without relying on binary variables.
The resulting problem is a classical optimal control problem which has been solved using a
knotting pseudospectral method.

The aim of this study is to establish if, in the presence of uncertainties, a formation mission
is beneficial with respect to solo flight in terms of the expected value of the direct operating
costs. Several numerical experiments have been conducted in which uncertainties regarding
the departure times and on the fuel saving during formation flight have been considered. The
obtained results demonstrate that benefits can be achieved even in the presence of these
uncertainties and that formation flight has great potential to reduce fuel consumption and
emissions in commercial aviation.
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Resumen extendido

Antecedentes

Conseguir un futuro sostenible del tráfico aéreo mundial es uno de los principales retos
de la aviación internacional. De hecho, el sector de la aviación es uno de los principales
responsables de las emisiones de gases de efecto invernadero y del calentamiento global.
Antes de la pandemia ocasionada por la COVID-19, la Asociación Internacional de Transporte
Aéreo (IATA) estimaba que el número de pasajeros se duplicaría en las próximas dos décadas,
agravando la problemática actual. A pesar de que las estimaciones previstas se han visto
severamente afectadas por la pandemia, se espera una vuelta a la normalidad en los próximos
años y una tasa de crecimiento del tráfico aéreo mundial similar a valores previos a la crisis.
Este incremento esperado del tráfico aéreo, hace aún más difícil asegurar un futuro sostenible
del sector. Por todo ello, el sector de la aviación es clave en el compromiso hacia un futuro
más sostenible, exigiendo la búsqueda de nuevas soluciones que mitiguen su impacto negativo
en el planeta por parte de todos los actores implicados. En este sentido, el vuelo en formación
tiene un gran potencial para contribuir significativamente, no solo a la mitigación del impacto
medio ambiental de la aviación, sino también al aumento de la capacidad del sistema de
gestión del tráfico aéreo (ATM).

En el vuelo en formación, dos o más aeronaves vuelan a distancias cortas entre ellas.
Este concepto surgió de la observación del vuelo en formación de diferentes especies de aves
durante sus migraciones. Posteriormente, se demostró que el vuelo en formación mejora no
solo la eficiencia de vuelo para las aves, sino que también ofrece un beneficio aerodinámico
significativo para las aeronaves, ofreciendo una reducción en el consumo de combustible y en
la emisión de gases contaminantes. Los beneficios conseguidos debidos al vuelo en formación
dependen de varios factores, siendo la separación longitudinal entre las aeronaves uno de los
principales. Las formaciones en las que las aeronaves vuelan a distancias longitudinales entre
10 y 40 envergaduras son denominadas formaciones extendidas. Este tipo de formaciones
representan una solución de compromiso entre seguridad operacional y eficiencia.

En esta tesis se aborda el estudio de formaciones extendidas en la aviación comercial. En
particular, se estudia el diseño de misiones de vuelo en formación rentables desde un punto de
vista económico y medio ambiental, en presencia de diferentes fuentes de incertidumbre, en
concreto, los tiempos de salida de las aeronaves y el ahorro de combustible obtenido debido
al vuelo en formación.

Objetivos

El principal objetivo de esta tesis es resolver el problema de diseño de misiones de vuelo
en formación para aeronaves comerciales en presencia de incertidumbres. El planificador de
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misiones estocásticas de vuelo en formación propuesto debe incluir modelos dinámicos precisos
del vuelo en formación de la aeronave, información sobre los vuelos como, por ejemplo, el
lugar y las horas de salida y llegada, la predicción meteorológica, el modelo de los efectos de
la formación sobre el consumo de combustible para la aeronave seguidora, las funciones de
densidad de probabilidad que caracterizan los parámetros del problema y el funcional objetivo
que refleje los costes directos operativos de la misión.

El planificador estocástico de misiones de vuelo en formación presentado en esta tesis, debe
encontrar la solución óptima del problema, para un máximo de tres aeronaves candidatas al
vuelo en formación, estableciendo si el vuelo en formación es óptimo o no, y determinando
las trayectorias estocásticas óptimas de cada aeronave. La solución debe incluir los valores
esperados y las desviaciones típicas de las coordenadas geográficas y de la temporización de
los puntos de encuentro y de separación entre las aeronaves, así como los valores esperados
y las desviaciones típicas de los tiempos de llegada de las aeronaves.

Metodología

En primer lugar, se ha resuelto el problema determinista de diseño de misiones de
vuelo en formación. Este ha sido formulado como un problema de control óptimo para un
sistema dinámico de tipo switched con restricciones lógicas en forma disyuntiva. Gracias
al uso de técnicas de control óptimo, en la formulación del problema se pueden incluir
modelos dinámicos precisos de las aeronaves y predicciones meteorológicas, para así mejorar
la predictibilidad de las trayectorias y las estimaciones del ahorro de combustible. Para
la resolución de este problema de control óptimo se ha utilizado la técnica denominada
embedding. El uso de esta técnica permite tratar la dinámica conmutada del sistema y las
restricciones lógicas disyuntivas de forma eficiente. Además, la lógica de conmutación entre
estados discretos puede ser modelada sin usar variables binarias, el número de conmutaciones
no debe ser establecido por adelantado y el valor óptimo de los tiempos de conmutación entre
los diferentes estados discretos es obtenido sin la necesidad de introducir dichos tiempos como
incógnitas del problema de control óptimo. Por tanto, el problema resultante es un problema
de control óptimo clásico, el cual puede ser resuelto usando técnicas numéricas de control
óptimo tradicionales. En concreto, en esta tesis, se han utilizado las técnicas numéricas
llamadas pseudospectral knotting methods.

En segundo lugar, se ha resuelto el problema de diseño de misiones de vuelo en formación
bajo incertidumbre, el cual ha sido formulado como un problema de control óptimo de un
sistema estocástico de tipo switched. Este problema se ha resuelto usando métodos no
intrusivos de colocación estocástica, en particular se ha utilizado el método denominado
generalized polynomial chaos. Gracias a esta metodología, el problema mencionado es
transformado en un problema de control óptimo determinista de tipo switched aumentado en
un espacio de estados de mayor dimensión. Este problema puede ser resuelto utilizando la
metodología descrita anteriormente para el problema determinista.

Por último, se ha realizado un análisis estadístico y de sensibilidad global de la solución
estocástica obtenida. Gracias a la metodología usada para resolver el problema de diseño de
misiones de vuelo en formación en presencia de incertidumbres, dicho análisis se puede realizar
con un bajo coste computacional.
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Resultados

Los resultados obtenidos demuestran que el vuelo en formación es económica y medio
ambientalmente rentable para aeronaves comerciales, no solo bajo un marco determinista
sino también en presencia de incertidumbres. En particular, se han llevado a cabo varios
experimentos numéricos teniendo en cuenta incertidumbre en los tiempo de salida de las
aeronaves y en el ahorro de combustible obtenido gracias al vuelo en formación.

Los resultados obtenidos demuestran que la metodología propuesta es idónea para ser
incorporada en los sistemas terrestres usados por los despachadores de vuelo, como sistema
de apoyo para el diseño de misiones de vuelo en formación para aerolíneas o alianzas
entre aerolíneas. Gracias a la metodología empleada, los tiempos de computación se
reducen significativamente con respecto a enfoques previos al problema de diseño de misiones
estocásticas de vuelo en formación, haciendo que el algoritmo propuesto en esta tesis sea
adecuado para cualquier fase de planificación del vuelo,es decir, para las fases estratégicas y
tácticas de planificación, y también la fase operacional del vuelo.

Conclusiones

La metodología propuesta para el diseño de misiones de vuelo en formación en presencia
de incertidumbre ha sido probada en diferentes escenarios basados en modelos de aeronaves
y predicción meteorológica realistas, demostrando la efectividad de la metodología propuesta
en esta tesis.

En primer lugar, gracias a la formulación del problema como un problema de control
óptimo de un sistema de tipo switched estocástico, se pueden incluir modelos dinámicos
precisos de las aeronaves y del vuelo en formación, así como predicciones meteorológicas, lo
cual mejora la predictibilidad de las trayectorias y la estimación de los beneficios en términos
de ahorro de combustible obtenidos gracias al vuelo en formación.

Además, la metodología utilizada para el tratamiento de la dinámica de conmutación del
problema así como de las restricciones lógicas disyuntivas del mismo, la técnica embedding,
permite una disminución significativa del tiempo de computación necesario para la obtención
de la solución. Asimismo, es fácilmente escalable para problemas de diseño de misiones de
vuelo en formación en las que se consideren un mayor número de aeronaves involucradas.

Por último, el problema de diseño de misiones de vuelo en formación en presencia de
incertidumbre ha sido resuelto por métodos no intrusivos de colocación estocástica, los cuales
son adecuados no sólo para la resolución del problema, sino también para poder llevar a cabo
un análisis estadístico y de sensibilidad global de la solución estocástica obtenida.
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"You tell me when you want it and where you want it to land, and I’ll do it
backwards and tell you when to take off "

Katherine Johnson
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Chapter 1

Introduction

1.1 Motivation

The aviation sector represents a major challenge to the environment, being one of the top
ten emitters of greenhouse gases (GHG) in the world, and accounting for approximately 4% of
human contribution to the global warming [Klöwer et al., 2021, Lee et al., 2009]. According
to a recent report by the intergovernmental panel on climate change (IPCC) [IPCC, 2018], a
leading climate science body, aviation is a crucial sector to the threat of climate change and
global warming. Indeed, although air transport is only responsible for 14% of the transport
sector’s carbon dioxide emissions, far less than other modes of transport like light-duty vehicles
(30%) and heavy-duty vehicles (36%), it seems to be harder to decarbonize. The reason for
this lies in the predicted growth rate for air traffic, which is projected to be greater than for
other modes of transport.

The predicted growth rate for air traffic is another concerning aspect. Before the COVID-
19 crisis, the compound annual growth rate (CAGR) forecast over the next two decades,
assessed by the international air transport association (IATA), estimated that the number of
flights was expected to continue increasing by 3.5% annually, which translates to twice the
current number of passengers by 2040 [IATA, 2016]. It is well known that the COVID-19
pandemic has severely affected the whole aviation sector, international commercial flights in
particular, and, consequently, air traffic has plummeted by more than two thirds compared with
previous levels.1 At present, vaccination rates, travel restrictions, and quarantine procedures
are rendering it unclear how quickly the aviation sector will return to normal values. However,
air traffic growth is expected to recover to pre-crisis levels within the next few years, while
continuing to increase annually [Lai et al., 2022]. This continuous growth in air traffic demand
imposes the search for new solutions to mitigate its potential negative effects on our planet.

1https://www.eurocontrol.int/covid19
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Unfortunately, the measures taken by the aviation sector until recently are considered to be
insufficient to mitigate its impact on climate change. Current policies should be strengthened
and a firm commitment from all the stakeholders is essential to success. For instance, the IATA
is looking for improvements in different areas in order to achieve a reduction in net aviation
CO2 emissions of 50% by 2050, relative to 2005 levels [IATA, 2013]. The different measures
considered can be classified into technical improvements, including more efficient aircraft
and engines, operational measures, including more efficient flight procedures and airport
operations, and the search of alternative, more sustainable fuels [Abrantes et al., 2021].
Fig. 1.1 gives a schematic overview of the potential contribution of the mentioned measures
to the reduction of the net CO2 emissions of international aviation.

Fig. 1.1: Potential contribution of different measures to the reduction of the net CO2 emissions of
international aviation. Source: IATA [IATA, 2013].

As such, the predicted effects of the aviation sector on climate change are greater than
desired [IPCC, 2018, ICAO, 2016], and a great effort is required to mitigate them. In this
regard, formation flight has the potential to make a significant contribution. Furthermore,
formation flight offers great promise not only with regard to mitigating the environmental
impact of aviation but also in terms of increasing air traffic management (ATM) capacity and
reducing air traffic control workload, which represents another major challenge of the sector.

1.2 Formation flight

Formation flight is where two or more aircraft fly at a short distance from each
other. The notion of formation flight arose from the observation of nature, in par-
ticular from the different species of bird that fly in formation during their migrations
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[Lissaman and Shollenberger, 1970]. Aircraft formation flight was first introduced in military
aviation for mutual defense during missions, concentrating the fire power during attacks, and,
consequently, improving combat efficiency. Later, it was demonstrated that formation flight
led to notable efficiency improvements for the birds and that substantial fuel savings were
also possible for aircraft flying in formation. The reduction achieved strongly depends on the
longitudinal distance between aircraft, this being negligible over approximately 40 wingspans.
Formations in which aircraft fly at a longitudinal distance between 10 and 40 wingspans are
called extended formations [Durango et al., 2016]. They represent a trade-off between safety
and efficiency. This thesis will investigate the possibility of implementing extended formations
in commercial aviation. In particular, the focus is on the possibility of implementing econom-
ically and environmentally beneficial formation flights in the presence of different sources of
uncertainty, namely the departure times of the flights and the fuel savings during formation
flight.

Fig. 1.2: Two civil aircraft in formation flight. Source: Airbus2

2

The key enabling factors for this concept of operation consist of a formation control
system to keep the aircraft flying in formation at the optimal relative position to optimize the
fuel burn savings for the trailing aircraft and an ATM system capable of synchronizing flights
departing from different airports to ensure that the formation mission occurs as planned.
Within a formation flight, instabilities such as meandering and external factors may affect the
motion of the vortices. It is therefore important to maintain the relative position between
the follower aircraft and the leader’s wake vortices precisely, as the fuel burn savings are very
sensitive to that relative positioning. This can be done using a formation control system
capable of continuously locating the wake vortices, maintaining the aircraft in the optimal

2https://www.airbus.com/en/innovation/disruptive-concepts/biomimicry/fellofly
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relative position, and, in this way, optimizing the fuel savings during the formation flight
[Caprace et al., 2019]. While technical issues related to maintaining an efficient and safe
formation flight have been solved in recent years, some concerns have yet to be addressed.
In particular, a major change in airworthiness standards, policies, and procedures is required.
At the 40th international civil aviation organization (ICAO) Assembly, formation flight was
proposed as a strategic objective, and the necessity of developing a new operational concept
including reduced separations between aircraft to allow formation flights was established
[Abeyratne, 2020].

Due to its potential for reducing fuel consumption and GHG emissions, formation flight
has recently attracted increasing interest, and the studies on the aerodynamics of formation
flight have given way to studies on formation flight planning. The majority of the commercial
formation flight planning studies are based on geometric models which do not allow use
of either accurate dynamic models or meteorological forecasts. The past few years have
brought with them some research studies [Hartjes et al., 2018, Hartjes et al., 2019] in which
the mission design problem has been studied for two- and three-aircraft formations using a
multiphase optimal control approach. This methodology has clear advantages compared to
previous ones since the optimal control approach allows the use of accurate models, improving
the predictability of the trajectories. However, using the multiphase approach implies having
a fixed switching structure in advance, that is to say, knowing the transition among phases
established in advance. Since the switching structure of the optimal solution is unknown
for the formation mission design problem, any combination should be addressed and, then,
the obtained solutions must be compared to establish which one corresponds to the minimum
operation-related aircraft costs, also known as direct operating costs (DOC) [Camilleri, 2018].
Thus, this approach is feasible if the number of flights considered is low and both the type of
formation and the relative position of each aircraft in the formation are fixed. Otherwise, the
number of combinations quickly increases with the number of flights, making the previous
approach hardly scalable.

A more general framework is therefore needed, which is able to design formation missions
solving a single optimal control problem (OCP) in which neither the number of phases nor the
switching structure is known in advance. Moreover, this approach should be easily scalable to
design, for instance, formation missions involving more than three flights. For this purpose,
the formation mission design problem can be formulated as an OCP of a switched dynamical
system. These systems are described by both continuous and discrete dynamics in which the
transitions among discrete states are not established in advance. In particular, each aircraft has
different flight modes, namely solo flight and flight in different positions within a formation,
and their combination is represented by the discrete state of the switched dynamical system,
which models their joint dynamic behavior. Each flight mode will be represented by different
dynamical equations, which may or may not include formation flight benefits in terms of fuel
savings. Additionally, logical constraints in disjunctive form, based on the streamwise distance
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between aircraft, model the switching logic among the discrete states of the system. To solve
the proposed problem, the embedding technique [Bengea et al., 2011] has been employed to
obtain a new smooth formulation of the problem in which the switching dynamics are defined
without binary variables together with equality and inequality constraints. The obtained
problem can be solved using classical optimal control techniques.

In addition to using accurate models, the operational concept of the formation flight entails
a deeper understanding of how uncertainties affect the trajectories of each aircraft involved
in the formation. In particular, addressing the uncertainty quantification in formation flight
design problems is essential to improving the predictability of the trajectories and achieving
more realistic solutions and estimations of the costs and the formation benefits. There are
different sources of uncertainties which can affect the whole ATM system. One of the main
ones is uncertainty in flight departure times, which causes trajectory uncertainty and ATM-
context inefficiencies [Rivas and Vazquez, 2016]. Timing is also a crucial factor in formation
missions. Effectively, considering the usual cruise speed of most long-haul commercial aircraft,
missing the rendezvous location by, for instance, ten minutes means spatially missing the
partner aircraft by 150 km. Such cases require catch-up maneuvers, which result in a loss of
performance compared to the planned formation mission. As such, uncertainties in departure
times have been considered in the formation mission design problem, along with uncertainties
in the fuel savings during formation flight. These uncertain parameters have been modeled
as random variables described by probability density functions.

1.3 Description of the problem

The stochastic formation flight mission design problem can be formulated as follows.
Given several commercial flights together with the relevant weather forecast, the problem
consists in establishing how to organize them in formation, of two- or three-aircraft, or solo
flights and in finding the trajectories that minimize the expected DOC value of the formation
mission. To solve it, the formation mission design problem is formulated as an OCP of a
stochastic switched dynamical system and solved using nonintrusive generalized polynomial
chaos (gPC) based stochastic collocation [Matsuno et al., 2015, Li et al., 2014]. The gPC
method converts the stochastic switched OCP into an augmented deterministic switched
OCP, which can be solved using the embedding approach together with classical numerical
optimal control techniques. This technique allows statistical and global sensitivity analysis of
the stochastic solutions to be conducted at a low computational cost.

The solution of the formation mission design problem in the presence of uncertainties is
stochastic, i.e, its components are random processes, which can be characterized by their
mean and standard deviation functions. The expected values and the standard deviations of
the latitude and longitude of the optimal trajectories with respect to the expected value of
the timing and the expected values and standard deviations of the timing of the trajectory as
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functions of the expected value of the distance are useful for ATM purposes such as conflict
detection and traffic synchronization. The expected values and standard deviations of the
fuel consumption and final time of each flight of the formation mission permit the DOC to
be estimated in such a way that airlines can establish to what extent a formation mission is
economically beneficial.

The relative contributions of each random variable to the variability of the latitude and
longitude of the optimal trajectories of each aircraft as functions of the expected value of
timing and the variability of the timing of the trajectories of each aircraft as functions of
the expected value of the distance allow both the ATM staff to establish which sources of
uncertainty must be reduced to increase the predictability of the trajectories and airlines to
determine what sources of uncertainty must be reduced to decrease the DOC.

It is well known that uncertainty regarding the weather forecast, in particular the wind
field, is of particular interest in the context of optimization trajectories. However, the
stochastic impact of the wind field in the formation mission design problem has not been
considered. Being a random function of space and time, a wind field should be modeled as
a stochastic process. Although generalized polynomial chaos can be employed to represent
stochastic processes, specific techniques are needed for their representation, such as the
Karhunen–Loève expansion. As a consequence, the dimensionality of the problem increases,
as does the complexity of dealing with it. Therefore, it is assumed that the aircraft model is
accurately known, as is the corresponding weather forecast. Neither storms nor operational
uncertainties have been considered. The study of the formation mission design problem in
the presence of stochastic processes such as uncertain wind field, is left for future research.
In this thesis, only random variables have been considered.

Recently, the aviation industry has shown renewed interest in achieving the real
implementation of commercial formation flight. Indeed, during the completion of this thesis,
the Airbus Fello’fly project [Airbus, b] has been carried out, in which Airbus collaborated with
airlines, air navigation service providers, and civil aviation authorities to tackle the challenges
of formation flight and demonstrate its operational feasibility. The first flight test in the field
of transoceanic flights was conducted in November 2021.3 This test, in which a system for
formation flight control proved itself in an operational environment, shows that this technology
has reached the highest readiness level, according to the European Union’s scale [Héder, 2017].

1.4 Objectives of the thesis

The general objective of this thesis is to solve the formation mission design problem for
commercial aircraft in the presence of uncertainties.

The stochastic formation mission planner should include accurate dynamic models of the
aircraft involved in the formation mission, the relevant flight data such as departure and

3https://simpleflying.com/airbus-a350s-bird-like-flight/
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arrival times and locations, wind forecast, a model of the effects of flying in formation on the
fuel consumption of the trailing aircraft, the probability density functions that characterize
the uncertain parameters of the problem, and an objective functional reflecting the DOC of
the formation mission.

The stochastic formation mission planner presented in this thesis, which is based on
stochastic optimal control, finds the optimal solution for up to three aircraft candidates to
fly in formation, establishing how to arrange them in formation or solo and determining the
stochastic optimal trajectories. The stochastic solution of the formation mission planning
problem includes the expected values and standard deviations of the latitude, longitude, and
timing of the optimal trajectories. The solution also includes the expected values and standard
deviations of the latitude, longitude, and timing of the rendezvous and splitting points as well
as the expected values and standard deviations of the arrival times of the flights. Finally,
by performing the sensitivity analysis of the solutions, the relative influence of the uncertain
parameters of the problem on the variability of the stochastic solution components can be
estimated. The schematic representation of the elements of the formation mission planner is
given in Fig. 1.3.

The general objective of this thesis has been divided into several specific objectives:

• Reviewing existing literature on formation mission planning.

• Developing accurate dynamic models of commercial aircraft.

• Devising a method for incorporating the wind forecast into an optimal control problem.

• Formulating the deterministic formation mission design problem as an OCP of a switched
dynamical system.

• Developing appropriate optimal control techniques to solve the deterministic formation
mission design problem.

• Formulating the stochastic formation mission design problem as a stochastic OCP of a
switched dynamical system.

• Developing the appropriate optimal control techniques to solve the stochastic formation
mission design problem.

• Numerically solving several instances of the stochastic formation mission design problem
in the presence of uncertainties regarding aircraft departure times and the fuel savings
during formation flight to demonstrate the effectiveness of the method.

• Performing sensitivity analyses of the stochastic solution to estimate the relative
influence of the uncertain parameters of the problem on the variability of the solution
components.
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The solutions obtained demonstrate that formation flight is environmentally and econom-
ically beneficial in the presence of uncertainties regarding the departure times of the aircraft
currently observed at major international airports and the fuel savings achieved during forma-
tion flight.

The formation mission planner presented in this thesis is intended to be incorporated into
a ground-based system which could be used by flight dispatchers as a support system to
design formation missions for airlines or airline alliances. Flight dispatchers are employed by
airlines who are responsible for compiling and modifying the flight plan. They also monitor
the aircraft during flight. The computational time of the proposed algorithm makes it suitable
for the strategic and tactical planning phases of the flight, as well as for the operational phase,
in other words, during flight.

Flight dynamics

Flight data

Direct operating costs

Weather forecast

Formation flight model

Sources of uncertainty

Formation
mission
planner

Optimal trajectories
(expected values + STD)

Optimal rendezvous
locations and times

Optimal splitting
locations and times

Sensitivity analysis

Fig. 1.3: Schematic representation of the elements of the stochastic formation mission planner
presented in this thesis.

1.5 Contributions of the thesis

The contributions of this thesis to the state of the art in formation mission planning can
be summarized as follows:

Contribution A: First, an innovative approach to the deterministic formation mission
design problem is proposed which is formulated as an optimal problem of a switched
dynamical system with logical constraints in disjunctive form and solved using an
embedding approach. The optimal control formulation of the problem allows accurate
dynamic models of aircraft and meteorological forecasts to be included in the problem
formulation in order to improve the predictability of the trajectories and the estimation of
the fuel savings. Modeling the formation mission as a switched dynamical system allows
previous approaches such as the multiphase approach, to be avoided. The embedding
method employed to solve the resulting OCP of a switched dynamical system is able
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to deal with both the switching dynamics of the system and the logical constraints in
disjunctive form in an efficient way. Additionally, the switching logic among discrete
states can be modeled without using binary variables, the number of switches does
not have to be established in advance, and the optimal values of the switching times
between discrete states are obtained without introducing them as unknowns of the
OCP. Therefore, the resulting problem is a classical OCP, which has been solved using
a pseudospectral knotting method leading to significant reductions in the computational
time with respect to previous approaches.

Contribution B: Then, considering the presence of uncertainties in the problem, the
methodology for the solution of the stochastic formation mission design problem has
been introduced, which is formulated as an OCP of a stochastic switched system. The
uncertainties are represented by random variables characterized by probability density
functions. This problem is solved using an approach based on gPC, in which the
stochastic switched OCP is transformed into an augmented deterministic switched
OCP in a higher dimensional state space. This problem is thus solved using the same
methodology described in Contribution A. Several numerical experiments have been
conducted in which uncertainties regarding the departure times and the fuel saving
during formation flight have been considered, demonstrating its effectiveness.

Contribution C: Finally, the methodology used to solve the formation mission design
problem in the presence of uncertainties makes it possible to conduct statistical and
global sensitivity analysis of the stochastic solution at a low computational cost. The
statistic analysis consists in the computation of the expected values and standard
deviations of the geographical coordinates and timing of the aircraft trajectories obtained
in the stochastic solution. The purpose of the sensitivity analysis is to estimate the
relative contribution of the random parameters to the variability of the components of
the stochastic solution with the aim of reducing its variability acting on the source of
uncertainty.

1.6 Outline of the thesis

The rest of the document is organized as follows. In Chapter 2, an overview of formation
flight is given. In Chapter 3, the model of the system that represents the formation flight is
introduced. In Chapter 4, the optimal control method employed to solve the deterministic
formation mission design problem is introduced. In Chapter 5, a general overview to numerical
methods for optimal control is given. In Chapter 6, the stochastic optimal control method
employed to solve the stochastic formation mission design problem is introduced. In Chapter
7, the methodology introduced in Chapter 4 is employed to solve three different formation
mission design problems in the absence of uncertainties. In Chapter 8, the methodology
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introduced in Chapter 6 is employed to solve two different formation mission design problems
in the presence of uncertainties. Finally, the conclusions and a discussion of the future work
are outlined in Chapter 9.



Chapter 2

Formation Flight

This chapter gives an overview of formation flight. First, the potential advantages and
challenges of the introduction of formation flight in commercial aviation are discussed. Later,
the most important studies on formation flight are surveyed. After that, the principles of
formation flight are introduced. Finally, the main types of formation are described along with
the influence of several parameters in fuel savings achieved in formation flight such as the
longitudinal spacing between aircraft, the shape of the formation, the relative position of the
heaviest aircraft, and the number of aircraft within a formation.

2.1 Introduction: Advantages and challenges of formation flight

As stated in Chapter 1, the current GHG emissions caused by civil aviation have become
a priority at international level. Formation flight has the potential not only to mitigate the
environmental impact of aviation but also to increase the capacity of the ATM. According
to [ICAO, 1944], “the formation operates as a single aircraft with regard to navigation and
position reporting,” meaning that two or three aircraft flying in formation would be treated
as a single aircraft for air traffic control purposes. This would help to reduce their workload.
Furthermore, formation flight may even provide enhanced inter-aircraft communication,
since the proximity between aircraft enables cost reductions and limits jamming sensitivity
[Klavins, 2004].

Therefore, the question that naturally arises is what needs to be changed in the current
paradigm to ensure effective implementation of formation flight in commercial aviation.
Surprisingly, making today’s aircraft appropriate to fly in formation does not require significant
changes to the current aircraft appearance. However, the possibility of implementing
formation flight in commercial aviation depends upon several factors, such as defining a new
concept of operation for formation flight of commercial aircraft, changing the international
airworthiness regulation, updating the ATM system in such a way that formation flights
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and solo flights can share the same airspace, creating alliances among airlines for sharing
the benefit derived from formation flight, and developing the avionics systems for formation
control. These complex issues will be discussed in the following sections.

2.1.1 Operational concept and airworthiness regulation for formation flight

Safety is the greatest concern in commercial flights, and the short longitudinal distances
between aircraft needed for formation flight are not currently allowed. However, both the euro-
pean aviation safety agency (EASA) and the federal aviation Administration (FAA) have been
considering formation flight for commercial aircraft in recent years [Durango et al., 2016]. In
2019, at the ICAO 40th Assembly [Abeyratne, 2020] [Assembly 40th, 2019], formation flight
was presented as a strategic objective and the following challenges for the upcoming triennium
were established:

• A new operational concept should be established, including new separation schemes,
specific procedures, and reduced separations to allow the formation.

• International standards and recommended practices should be developed by a multidis-
ciplinary technical panel in which industry groups should be included.

2.1.2 Sharing benefits among airlines

As mentioned in Chapter 1, not all the aircraft flying in an extended formation benefit
individually from formation flight since only the trailing aircraft save fuel. Additionally, flying
in formation requires a spatial and temporal modification to the optimal individual trajectories,
which could correspond to higher DOC for some of the flights. This means that formation
flight offers a reduction in the total cost of the formation mission, i.e, considering all aircraft
in the formation, not in the costs of the individual flights.

Furthermore, it is improbable that two or three flights that are good candidates for
inclusion in a formation mission belong to the same airline. This means that the actual
implementation of formation flight for commercial aircraft requires the creation of alliances
among airlines to share the costs and benefits derived from formation flight. In the ICAO
standards and recommendations mentioned above, a special mention to actions on airline
alliances should be included [Xu et al., 2014].

2.1.3 Avionic systems for formation control

As outlined in Chapter 1, fuel savings in formation flight are generated for the trailing
aircraft flying in the upwash of the wake vortex generated by the leader aircraft. To optimize
the fuel savings, the trailing aircraft has to be positioned with precision with respect to the
wake vortex of the leader aircraft. Thus, achieving a better understanding of generation and
evolution of the wake vortices is mandatory for the real implementation of formation flight,
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together with the creation of reliable technology for detecting them and positioning aircraft
with respect them.

As shown in [Hallock and Holzäpfel, 2018], a review of recent research on wake vortex
research, characterizing them is highly complex, mostly because of the large number of
parameters involved in the model. Some of them are related to the leader aircraft that
generates the vortex, such as weight, wingspan, speed, high lift devices settings, and thrust.
Other parameters are related to the trailing aircraft, such as the weight or the speed, which
are also involved in the case of formation flight. Meteorological variables, such as wind field
and turbulence, also come into play when modeling wake vortices. However, as pointed out in
[Ning, 2011], considering typical atmospheric conditions, the wake vortex of the leader aircraft
causes low turbulence disturbances for the trailing aircraft in those extended formations in
which the streamwise distance between the leader and trailing aircraft is greater than 10
wingspans.

Several research studies have demonstrated the possibility of “visualizing” the wake
vortices of the leader aircraft for accurate positioning of the trailing aircraft with respect to
the leader’s wake vortex [Caprace et al., 2019]. This positioning system is based on the light
detection and ranging (LiDAR) onboard technology [Michel et al., 2020], which allows the
wake vortex generated by the leader aircraft to be accurately tracked by the trailing aircraft.
Experimental flight tests have been conducted with an onboard LiDAR in the trailing aircraft
providing real-time measurements of velocities of the wake vortex generated by the leader.
Dynamic flight simulations described in [Vechtel et al., 2018] demonstrate that it is possible
to maintain the position of the trailing aircraft in the wake vortex generated by the leader
accurately using a regular autopilot.

These results demonstrate that formation control systems have been improved in recent
years, permitting the trailing aircraft to position itself with precision in the optimal location
while surfing the vortex generated by the leader aircraft.

The main aircraft manufacturers have begun developing the technology to implement
formation flight. Airbus, the major European aircraft manufacturer, is undertaking an
ambitious project called Fello’fly [Airbus, a] which aims to demonstrate the technical,
operational, and commercial viability of formation flight for long-haul commercial flights. In
this project, Airbus is collaborating with two European airlines, Frenchbee and scandinavian
airlines system (SAS), as well as air navigation service providers such as France’s direction des
services de la navigation aérienne (DSNA), the UK’s national air traffic services (NATS) and
EUROCONTROL, NAVCANADA, and the irish aviation authority (IAA) in order to tackle
the challenges of formation flight. The project also benefits from the support of the Direction
Gènèrale de l’Aviation Civile (DGAC), the French Civil Aviation Authority. The objective of
this project is not only to demonstrate the operational feasibility of the project but also to
identify safety procedures and standards for transatlantic operations, enabling a controlled
entry into service by 2025.
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On November 9, 2021, the first formation flight test was carried out in the field of
transoceanic flights.1 Two wide-body Airbus aircraft, A350-900 and A350-1000, performed
the first transatlantic formation flight from Toulouse–Blagnac Airport to Montréal–Trudeau
International Airport. In this formation flight test, the observed reduction in fuel consumption
was over 5% and 6 tons of CO2 were saved.

Fig. 2.1: Fello’fly Airbus project [Airbus, a].

Boeing has also conducted research activity on formation flight involving flight tests on
Boeing’s ecoDemonstrator platform [Flanzer et al., 2020].

2.2 Studies on formation flight

2.2.1 Studies on the aerodynamics of formation flight

Studying nature and trying to imitate it has often been a very effective way to find
innovative solutions to human problems. Formation flight is undoubtedly a fine example
of this. The concept of formation flight arose from the observation of nature, where
many species of bird fly in formation during their migrations. In 1914, Wieselsberger
established the aerodynamic aspects concerning the power savings which may give birds
flying in formation an aerodynamic benefit [Wieselsberger, 1914]. Over the next half-
century, this aerodynamic theory was developed including less simplified analysis. In
[Lissaman and Shollenberger, 1970], the authors theoretically affirm that a flock of 25 birds
flying in V-formation could achieve a range increase of over 70% with respect to solo flight.
Additionally, the aerodynamic benefit achieved by birds in a formation can also be obtained
by any body immersed in a fluid, including fishes, airplanes, and submarines.

At a later point in time, the efficiency obtained in flock formations was therefore
extended to aircraft formations. These initial studies mainly focused on the aerodynamics

1https://simpleflying.com/airbus-a350s-bird-like-flight/
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of formation flight to assess the potential benefits in terms of induced drag reductions
and, consequently, potential fuel burn reductions [Ning et al., 2011, Kless et al., 2013,
Slotnick, 2014]. Experimental studies on formation flight have also been carried out. One
of the most exhaustive works was conducted within the Surfing Aircraft Vortices for Energy
($AVE) project [Bieniawski et al., 2014]. The results obtained using two C-17 aircraft, at
longitudinal distances of between 18 and 70 wingspans, revealed fuel savings of up to 11%
[Haalas et al., 2014, Flanzer et al., 2014] for the trailing aircraft. The results of another
experimental study [Vachon et al., 2002], obtained using two F/A-18 flying closer, at a
longitudinal distance of up to 6.6 wingspans, returned fuel savings of just over 18% for
the trailing aircraft.

In addition to these studies on the aerodynamics of formation flight focused on estimating
the potential induced drag and fuel burn reductions, other research activities have been
conducted to study different practical aspects of formation flight, such as the formation
control problem under actuator and sensor faults [Liu et al., 2019] and the collision avoidance
in formation flight [Seo et al., 2017].

2.2.2 Studies on formation flight planning

Studies on the aerodynamics of formation flight have given way to studies on for-
mation flight planning [Xu et al., 2014, Kent and Richards, 2015, Blake and Flanzer, 2016,
Bower et al., 2009, Hartjes et al., 2018, Hartjes et al., 2019, Kent and Richards, 2021], most
of which focus on extended formations. In these studies, the formation flight planning prob-
lem has been solved as a bilevel optimization problem, in which the higher level problem
is the optimal partner allocation problem and the lower level problem is the mission design
problem. A conceptual representation of these two problems is given in Fig. 2.2. Consider a
set of transoceanic flights, represented in blue in Fig. 2.2(a). Solving the partner allocation
problem for this set of flights consists in establishing how to group them into smaller subsets
which contain potential partners of beneficial formation missions in terms of overall DOC.
For instance, to solve the partner allocation problem for the eastbound set of flights, first
the westbound flights are disregarded and then potential partners are selected based on the
distance between the departure and arrival airports and the schedule of each flight. The
subsets of flights with potential for profitable formations, s1, s2, . . . , ss, are shown in orange
in Fig. 2.2(b), Fig. 2.2(c), and Fig. 2.2(d). Note that although these figures represent subsets
of three flights, these sets can have cardinality two or three.

Once the subsets of flights that are potential candidates for profitable formation missions
have been compiled, the formation mission design problem is solved for each subset of flights
to determine the optimal trajectories of the aircraft. The optimal routes calculated solving
the formation mission design problem for each group of flights are represented in green in
Fig. 2.2(e), Fig. 2.2(f), and Fig. 2.2(g). They correspond to a three-aircraft formation mission,
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a two-aircraft formation flight plus one solo flight, and a three-aircraft solo flight mission,
respectively. As can be seen in the figures, the flights of subsets s2 and ss do not result
in three-aircraft formation missions. Therefore, better partners for these flights should be
sought.

...

...

Partner allocation problem

Formation mission design problem

Fig. 2.2: Conceptual representation of the partner allocation and the formation mission design
problems. (a) Original set of flights. (b), (c), and (d) groups of flights determined in the partner
allocation problem. (e), (f), and (g) optimal routes obtained in the formation mission design problem.

Although the mission design and the partner allocation problems are intrinsically very
different, the existing interconnection between them has resulted in their being addressed
together in several studies such as [Xu et al., 2014] and [Kent and Richards, 2015], in
which the Breguet range equation and the Fermat point extension problem were employed,
respectively. [Kent and Richards, 2021] the most recent formation flight research at the
time of writing this thesis, also investigated the potential for two commercial aircraft flying
in formation for different cases using an analytical geometric method. Other examples
are [Blake and Flanzer, 2016, Bower et al., 2009], in which geometric methods were also
employed. In these approaches, the inherent combinatorial complexity of the partner
allocation problem, which quickly grows with the number of flights, forced the introduction
of simplifications such as using approximated dynamic models of the aircraft and neglecting
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the meteorological forecast.
In [Hartjes et al., 2018], the mission design problem was studied for two-aircraft forma-

tions using a multiphase optimal control approach. In this case, the number of phases and the
structure of the formation missions is unique and known in advance. There are five phases.
The first two correspond to the flights from the departure locations to the rendezvous point,
after which the formation flight, which corresponds to the third phase, starts. The other two
flight phases correspond to the flights from the splitting point to the arrival locations. In
this case, a solution is found using multiphase optimal control techniques and compared with
the solution of a solo flight mission to establish which results in minimum DOC. The same
framework used in [Hartjes et al., 2018] is extended in [Hartjes et al., 2019] to design three-
aircraft formation missions. However, only in the latter was a wind field model, obtained from
a weather database using a polynomial regression, taken into account. In contrast to two-
aircraft formation missions, the structure of three-aircraft formation missions is not unique
and, consequently, many different cases must be considered, including the case in which one
or all the aircraft fly solo. The obtained solutions must be then compared to establish which
corresponds to the minimum DOC. This drawback is due to the fact that the multiphase
optimal control approach is only able to tackle optimal control problems with a fixed switch-
ing structure, in other words, with transitions among phases established in advance. This
approach is feasible if the number of flights considered is low and the type of formation
and the relative position of each aircraft in the formation are fixed. Otherwise, the number
of combinations quickly increases with the number of flights, making the previous approach
hardly scalable.

In this thesis, only the mission design problem has been addressed using optimal control
techniques, including accurate dynamic models of the aircraft and the wind forecast. A new
approach to this problem is proposed, which avoids the multiphase approach employed in
[Hartjes et al., 2018, Hartjes et al., 2019].

2.3 Principles of formation flight

Formation flight is based on the fact that any aircraft moving through a fluid generates
lift by imparting a swirling motion to the air. In particular, an aircraft flying in the cruise
phase produces a vortex wake which mainly maintains its structure and intensity for several
kilometers. This wake is characterized by a downwash region in the center of the wake and two
similar upwash regions outside of the vortex core. A schematic representation of these upwash
and downwash regions is given in Fig. 2.3. A second aircraft flying in either of these upwash
regions, will increase its apparent angle of attack obtaining useful energy. The increment
of the apparent angle of attack produces an effective forward rotation of the lift vector, L⃗,
resulting in a lower lift-dependent component of drag, Di. Thus, a significant decrease in
induced drag is achieved [Ning et al., 2011]. For a better understanding, the apparent and
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Fig. 2.3: Vertical component of the induced air velocity field (not to scale). Figure adapted from
[Ning, 2011].

induced angle of attack, αe and αi respectively, the local and induced velocities, ul and wi
respectively, and the lift and induced drag vector for both solo and formation flight are given
in Fig. 2.4, where sub-index SF has been used to indicate “Solo Flight” and sub-index FF
indicates “Formation Flight”. Additionally, the components related to SF are represented in
blue, whereas the components related to FF are represented in green. The total angle of
attack, α, together with the free flowing fluid velocity, u∞, have been represented in black.
Notice that the total angle of attack is defined by the following sum of the apparent and the
induced angle of attack,

α = αi,SF + αe,SF = αi,FF + αe,FF . (2.1)

From Eq. (2.1), it is easy to see that an increase of the apparent angle of attack is
obtained due to the formation flight, which results in a decrease of the induced angle of
attack. Consequently, both the induced velocity and the induced drag are reduced.

2.4 Types of formations

Formations can be classified based on the longitudinal distance between aircraft in close
and extended formations or based on their relative positions in V, inverted-V, and echelon
formations.

2.4.1 Close and extended formations

Regarding the optimal positioning, the lateral and the streamwise distance gain signif-
icance. In particular, the longitudinal spacing between aircraft, usually expressed in terms
of wingspans, is used to classify formations. In the literature, the formations in which the
longitudinal distance between the leader and trailing aircraft is less than 10 wingspans are
called close formations, whereas those in which this distance is between 10 and 40 wingspans
are called extended formations [Durango et al., 2016]. Close formations provide the greatest
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Fig. 2.4: Impact of the formation flight on the induced velocity, on the apparent angle of attack and
on the induced drag.

benefits in terms of induced drag reduction while the potential induced drag reduction is lower
in extended formations, especially in separations of more than 20 wingspans. However, ex-
tended formations are intrinsically safer than close formations - a crucial aspect in commercial
flights. Therefore, in this thesis, only extended formations are permitted. In particular, a
conservative approach in which the formation benefits are negligible for separations of more
than 20 wingspans is considered, and longitudinal distances lower than 10 wingspans are
prohibited.

2.4.2 V, inverted-V, and in-line formations

Furthermore, if three or more aircraft are involved in the formation, a second classification
can be made according to the shape of the formation. In this case, three types of formations
can be distinguished: the V formation, the inverted V formation and the in-line or echelon
formation. These different types of formation are represented in Fig. 2.5.

The V formation is the most common in the nature, being that chosen by birds to fly
in formation. Considering three-aircraft formation flights, in a V formation, one aircraft is
the leader, and the two trailing aircraft fly in the upwash regions of the two wake vortices
generated by the leader aircraft. In the inverted-V formation, as its name suggests, the
configuration is the opposite: there are two leaders and one trailing aircraft, which, flying in
the upwash regions of the wake vortices generated by the two leader aircraft, benefits twice
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Fig. 2.5: three-aircraft formation configurations: V, inverted-V, and in-line formation (not to scale).

from formation flight. Finally, in the in-line formation, there is one leader aircraft followed by
one first trailing aircraft, usually referred to as the intermediate aircraft, which is followed by
another trailing aircraft.

In both the V formation and in-line formation, two aircraft benefit from the formation,
while in the inverted-V formation, just one of them benefits. In the inverted-V formation, the
trailing aircraft has a more symmetric load condition, which is clearly an advantage for the
stability and control of the aircraft. However, in the inverted-V formation, finding the optimal
position of the trailing aircraft is more challenging because it must be determined with respect
to two aircraft at the same time, making this type of formation difficult to implement and
the fuel savings more sensitive to position errors. As shown in [Ning et al., 2011], inverted-V
formation offers lower benefits when compared to other types of formation.

In [Ning et al., 2011], other aerodynamic aspects of formation flight were studied,
particularly for extended formations. The obtained results show that inverted-V formations
would be less affected by viscous and compressibility effects due to a more symmetric loading
compared with the others types of formation. Even though it is possible, choosing the type of
formation and the relative position of each aircraft in the formation have not been included
in the formulation of the formation mission design problem proposed in this thesis. Thus, in
the numerical experiments conducted in this thesis, the in-line formation has been chosen and
the relative position of each aircraft in the formation has been established in advance.

2.4.3 Choice of the leader aircraft of a formation

This section discusses the choice of the leader aircraft of a formation based on the relative
weight of the aircraft.

By definition, the overall drag D can be expressed by the sum of two terms: the zero-lift
drag, D0 =

1
2
ρV 2SCD0, and the induced drag, Di =

1
2
ρV 2SKCL

2, therefore

D =D0 +Di =
1
2
ρV 2S(CD0 +KCL

2
), (2.2)

where ρ is the air density, S is the reference wing surface area, V is the aircraft airspeed, and
W is the aircraft weight.
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In straight and level flight, the induced drag can be expressed in terms of the weight of
the aircraft as:

Di =
KW 2

1
2
ρV 2S

. (2.3)

According to Eq. (2.3), placing the heavy aircraft as the trailing aircraft would lead
to greater benefits. The heavier the trailing aircraft, the higher induced drag Di will
be and, consequently, higher benefits will be achieved from the formation flight for the
same rate of induced drag reduction. Some studies on formation flight planning such as
[Hartjes et al., 2018, Hartjes et al., 2019] are based on this statement.

However, the weight of the leader aircraft also has an impact on the wake intensity. The
heavier the leader aircraft, the stronger the wake vortex intensity will be and therefore greater
rates of induced drag reduction could be achieved [Marks and Gollnick, 2016]. This runs
contrary to the above statement, leading to the conclusion that, depending on the particular
conditions of the formation flight, the ideal relative position of the heaviest aircraft within a
formation may change. [Voskuijl, 2017], addressed a comparison between different scenarios
for two-aircraft formations, pre-establishing the heavy aircraft as both, the leader and the
trailing aircraft, in each scenario. According to the results obtained, the authors conclude
that, in the proposed scenarios, the total fuel burn reduction is higher when the heaviest
aircraft is flying as the trailing one.

In this thesis, following [Voskuijl, 2017] and [Ning, 2011], it will be assumed that the
leader vortex is not significantly influenced by the weight of the aircraft and, therefore, that
the highest fuel savings are obtained by positioning the heaviest aircraft as the trailing one.

2.4.4 Influence of the number of aircraft on the fuel savings

In [Lissaman and Shollenberger, 1970], formations composed by different numbers of birds
were analyzed, concluding that the more birds involved, the better drag savings were obtained,
up to a theoretical limit. In this aspect, formation flight differs between birds and aircraft.
Indeed, it has been proven in [Ning et al., 2011] that increasing the number of aircraft in the
formation asymptotically reduces the benefits obtained from the formation flight. Additionally,
the difficulty in synchronizing more than three flights makes formations of more than three
aircraft operationally impractical [Durango et al., 2016, Ning et al., 2011]. For these reasons,
only formations of up to three aircraft have been considered in this thesis.

2.5 Conclusions

Formation flight has great potential to contribute significantly to reducing fuel consump-
tion and the environmental impact of the air transport sector while increasing its capacity.
These advantages can be achieved by updating aircraft avionics and air traffic management
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technologies and procedures. Its potentialities have been widely demonstrated from the aero-
dynamic point of view via numerical simulations and flight tests. Flight safety aspects have
been also addressed, leading to the proposal of extended formations for commercial formation
flight, which are intrinsically safer than close formations. Although formation flight is still not
a reality for commercial aviation, international aviation organizations, aircraft manufacturers,
airlines, air traffic service providers, and researchers are collaborating to make formation flight
for commercial aircraft possible in the near future. The challenging Fello’fly Airbus project is
a great indication of this.



Chapter 3

Model of the System

This chapter introduces the model of the system that represents the formation flight. The
use of accurate dynamic models of aircraft and reliable meteorological forecast is mandatory
in order to improve the predictability of the trajectories and obtain realistic estimations of the
fuel savings. First, the dynamic model used to represent aircraft in solo flight is presented,
together with the path constraints. Later, the dynamic model used to represent aircraft in
formation flight is described. After that, the wind model is presented. Finally, the model of
the direct operating costs of airlines is discussed.

3.1 Solo flight model

In aircraft trajectory optimization problems developed within the ATM context, a three
degrees of freedom point-mass dynamic model of the aircraft is usually employed. In this
model, the aircraft is represented as a point with variable mass due to the fuel consumption,
moving in a four-dimensional space characterized by the three spatial dimensions together
with time.

In this section, first, the reference systems are introduced. Later, some usual assumptions
made to build an aircraft model to be used in the ATM context are described. After that,
some simplifications are introduced to the model. Finally, the flight envelope is presented.

3.1.1 Reference systems

Several specific reference systems are used in flight mechanics to represent the elements
involved in the motion of the aircraft, such as forces, torques, and velocities. The aim of these
reference systems is to obtain practical expressions of the kinematic and dynamic equations
of the aircraft [Tierno et al., 2012]. The reference systems of interest are the following: the
Earth-Centered, Earth-Fixed (ECEF) reference frame, the local horizon reference frame, and
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the wind-fixed reference frame.

ECEF reference frame

The ECEF reference frame, FECEF , as its name suggests, is a geocentric system, the axes
of which are fixed with respect to the Earth's surface and rotate with the Earth. In particular,
its origin is the center of gravity of the Earth and its axes are defined as follows: the x axis,
xECEF , points towards the intersection of the Equator and the Greenwich meridian; the z
axis, zECEF , points towards the North Pole; and, finally, the y axis, yECEF , completes a
right-hand-oriented axes system.

Local horizon reference frame

The local horizon reference frame, FLH , has its origin at the center of mass of the aircraft
and its axes are defined as follows: the z axis, zLH , points towards the center of the Earth; the
x axis, xLH , is contained in a horizontal plane and points towards a fixed direction of it, in this
case, the north direction; and, finally, the y axis, yLH , is also contained in a horizontal plane
completing a right-hand-oriented axes system, pointing therefore towards the east direction.

Wind-fixed reference frame

To define the wind-fixed reference frame, the following assumption is made:

Assumption A: The aircraft has a plane of symmetry.

Thus, the wind-fixed reference frame, FWF , is an aircraft-centered system, the axes of
which rotate with the airspeed vector. In particular, its origin is the center of mass of the
aircraft and its axes are defined as follows: the x axis, xW , is aligned with the airspeed vector;
the z axis, zW , is contained in the plane of symmetry of the aircraft, orthogonal to xW , and
points downward in the usual flight attitude; and, finally, the y axis, yW , is orthogonal to the
plane of symmetry of the aircraft, completing a right-hand-oriented axes system.

The local horizon reference frame, FLH , can be obtained from the ECEF reference frame,
FECEF , through the rotations defined by the well known Euler angles, i.e., three consecutive
rotations in the three-dimensional Euclidean space in a particular order, in this case, following
the Tait-Bryan conversion, the order is z-y-x. Before performing these rotations, a translation
is needed in order to make the origins of both reference systems match.

Similarly, the wind-fixed reference frame can be easily obtained from the local horizon
reference frame by using the rotations defined by the Euler angles. For further information
about the reference frames or about Euler's rotation theorem, please see [Hull, 2007].
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3.1.2 Modeling assumptions

The following modeling assumptions are usually introduced in ATM-related studies
[Hull, 2007, Tierno et al., 2012].

The first assumption comes from considering the ECEF reference system as an inertial
reference system which is actually a non-inertial reference system.

Assumption B: The Earth is considered flat, nonrotating and the ECEF reference frame
can be considered inertial.

Other modeling assumptions made in this thesis are the following:

Assumption C: The Earth is approximated as a sphere. In addition, typical aircraft cruise
altitudes mean the acceleration due to gravity can be safely considered as a constant
value: g = 9.81 m/s2.

Assumption D: The vertical component of the wind speed is considered to be negligible.
Dynamic effects of wind are neglected.

Assumption E: All dynamic effects associated with elastic deformations, degrees of
freedom of articulated subsystems such as flaps or rudders, or kinetic momentum of
rotating subsystems with respect to the aircraft are neglected.

Assumption F: The only external forces acting on the aircraft are the propulsive,
aerodynamic, and gravitational forces.

As a consequence of the former hypotheses, the aircraft is considered as a rigid solid with
six degrees of freedom. The set of differential equations involving forces and torques that
describes the dynamics of the aircraft should be solved simultaneously. However, the following
assumption is introduced to simplify the solution:

Assumption G: Control surface deflections have quite lower effects on the aerodynamic
forces than the corresponding effects on the aerodynamic torques.

This assumption allows forces and torques scalar equations to be decoupled leading to
a three degrees of freedom point variable-mass dynamic model of the aircraft. Additional
hypotheses made in this thesis are the following:

Assumption H: Since most jet airplanes have engines rigidly coupled with the aircraft
structure, aircraft are assumed to have fixed engines in this thesis.

Assumption I: The aircraft is considered as a point variable-mass, as can be seen in the
fuel mass flow equation. However, the low rate of variation of the mass of the aircraft
leads it to be considered as a constant for the derivation of the kinematics and dynamics
equations of motion.
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Assumption J: A symmetric and coordinated flight is assumed and, hence, the airspeed
vector, the propulsive forces and the aerodynamic forces are contained in the plane of
symmetry of the aircraft.

Assumption K: A small thrust angle of attack is considered.
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Fig. 3.1: Frontal, top, and lateral views of the aircraft together with the forces acting on it.

Considering the above assumptions and expressing the Euler's rotation using the Tait-
Bryan convention for the wind-fixed reference frame with respect to the local horizon reference
frame, the following angles will be used in the dynamics model of the aircraft:

• The heading angle, χ, (0 ⩽ χ ⩽ 2π), defined as the angle between the xLH axis and the
airspeed vector projection on the horizontal plane.

• The flight path angle, γ, (−π/2 ⩽ γ ⩽ +π/2), defined as the angle between the airspeed
vector and its projection on the horizontal plane.

• The bank angle, µ, (−π ⩽ µ ⩽ +π), defined as the angle between the yW axis and the
(yW − zW ) plane intersection with the horizontal plane.

A schematic representation of the forces acting on an aircraft together with the heading,
flight path, and bank angles is given in Fig. 3.1.
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3.1.3 Equations of motion

Taking into account the above assumptions, the motion of the aircraft can be described
as a three degrees of freedom point variable-mass dynamic model defined by three dynamic
equations, three kinematic equations, and one equation describing the fuel consumption flow
rate. The equations of motion are hence defined by the following ordinary differential equations
(ODE) system:

φ̇ =
V cosχ cosγ + VWN

RE + h
,

λ̇ =
V sinχ cosγ + VWE

cosφ ⋅ (RE + h)
,

ḣ = V sin γ,

mV̇ = T −D −mg sin γ,

−mg cosγ sinµ =mV (γ̇ sinµ − χ̇ cosγ cosµ) ,

L −mg cosγ cosµ =mV (γ̇ cosµ + χ̇ cosγ sinµ) ,

ṁ = −Tη,

(3.1)

where φ, λ, and h are the three-dimensional position variables, latitude, longitude, and
altitude, respectively, V is the true airspeed, χ represents the heading angle, γ represents
the flight path angle, and m is the mass of the aircraft. T is the thrust force and µ the
bank angle. The lift force is L = qSCL, where q = 1

2ρV
2 is the dynamic pressure, ρ is the air

density, and S is the reference wing surface area. The aerodynamic drag force is D = qSCD,
where CD is the drag coefficient. RE is the Earth's radius.

A relationship between both aerodynamic coefficients, CL and CD, exists, which is known
as drag polar, that is CD = CD(CL). In this thesis, the following assumption about the drag
polar has been made.

Assumption L: A parabolic drag polar is assumed.

Hence, considering Assumption L, a parabolic drag polar can be expressed as: CD =

CD0+KC
2
L, where CD0 is the zero-lift drag component and K is the induced drag coefficient.

Other parameters and variables include the Earth's radius RE and the gravitational
acceleration g. VWE

and VWN
are the components of the wind velocity vector in eastward

and northward directions, respectively. η is the thrust-specific fuel consumption. In particular,
using Eurocontrol's base of aircraft data (BADA)1 performance model for jet engines, the
following equation applies:

η = Cf1 (1 + V

Cf2

) , (3.2)

1https://www.eurocontrol.int/model/bada
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where Cf1 and Cf2 are empirical thrust-specific fuel consumption coefficients.

The BADA performance model provides accurate aircraft performance modeling such as
fuel consumption, aerodynamic performance, and speed model, among others, for several
types of commercial aircraft along different flight segments. Additionally, flight envelope
information is also provided. Two families of aircraft performance modeling are available:
BADA Family 3 and the newest BADA Family 4. In this thesis, BADA version 3.6
[Eurocontrol, 2013] has been used.

In general, the state and control variables are functions of time. The aerodynamic forces,
L and D, are functions of their aerodynamic coefficient as well as of the atmospheric variables
such as the density of the air ρ and the true airspeed of the aircraft V . Likewise, atmospheric
variables depend on the position of the aircraft. Additionally, using the drag polar relationship,
the relation between both aerodynamic coefficients can be taken into account. Finally, the
components of the wind field depend on the position of the aircraft. For the sake of simplicity
of the exposition, all these functional dependencies have been omitted.

Rearranging the last two dynamic equations in the ODE system (3.1), the explicit
expressions for γ̇ and χ̇ can be obtained, producing the following equivalent ODE system:

φ̇ =
V cosχ cosγ + VWN

RE + h
,

λ̇ =
V sinχ cosγ + VWE

cosφ ⋅ (RE + h)
,

ḣ = V sin γ,

V̇ =
T −D −mg sin γ

m
,

χ̇ =
L sinµ
mV cosγ

,

γ̇ =
L cosµ −mg cosγ

mV
,

ṁ = −Tη,

(3.3)

where the state vector has seven components: the three dimensional position variables, φ,
λ, and h, the true airspeed V , the heading angle χ, the flight path angle γ, and the mass
of the aircraft m. In this set of equations, the control vector has three components: the
thrust force T , the lift coefficient CL, and the bank angle µ. Thus, for aircraft p, the
state vector is xp = (φp, λp, hp, Vp, χp, γp,mp) ,∀p ∈ {1, . . . ,Na}, and the control vector is
up = (Tp,CLp , µp) ,∀p ∈ {1, . . . ,Na}, with Na the number of aircraft involved in the mission
design problem.
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3.1.4 Flight envelope

Flight envelope constraints represent aircraft performance limitations. These constraints
make reference to flight altitude, load factor, and airspeed, among others, and they can be
stated in the form ηl(t) ≤ η(t) ≤ ηu(t), where η is the state or control variable and ηl and ηu
are the minimum and maximum allowed values of the variable, respectively. The BADA has
been employed again to impose the following constraints:

Vmin ≤ VCAS ≤ VMO,

mmin ≤ m ≤ mmax,

M ≤ MMO,

Tmin ≤ T ≤ Tmax,

CLmin ≤ CL ≤ CLmax,

(3.4)

where VCAS is the calibrated airspeed, Vmin and VMO are the minimum and maximum
operating calibrated speeds, respectively, mmin and mmax are the minimum and maximum
aircraft masses, respectively, M is the Mach number and MMO is the maximum operating
Mach number, Tmin and Tmax are the minimum and maximum available engine thrusts,
respectively, and CLmin and CLmax are the minimum and maximum lift coefficients,
respectively. Finally, µmax is the maximum bank angle set by the air navigation regulations
in civil flight. Furthermore, the BADA includes the equation Vmin = CVminVs, where CVmin

is the minimum speed coefficient and Vs is the stall speed for each flight phase.

The VCAS can be calculated as a function of the true airspeed VTAS [Eurocontrol, 2013],
by the following expression:

VTAS = [
2
υ

p

ρ
{(1 + p0

p
[(1 + υ

2
ρ0
p0
V 2
CAS)

1/υ
− 1])

υ

− 1}]
0.5

, (3.5)

where p is the air pressure, ρ is the air density, and p0 = 101325 Pa and ρ0 = 1.225 kg/m3

are the air pressure and the air density at mean sea level (MSL), respectively. Finally, υ is
defined as υ = κ − 1

κ
, where κ = 1.4 is the adiabatic index of air.

For turbofan-propelled aircraft, assuming standard atmosphere conditions, the maximum
thrust Tmax is defined by the following empirical expression:

Tmax = CTcr ⋅CTC,1 ⋅ [1 −
Hp

CTC,2

+CTC,3 ⋅H
2
p] , (3.6)

where CTcr is the maximum cruise thrust coefficient, CTC,1 , CTC,2 , and CTC,3 are the empirical
thrust coefficients, and Hp is the geopotential pressure altitude.
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3.2 Formation flight aircraft dynamics

The differential algebraic equations (DAE) system (3.3) is applicable to any aircraft in any
phase of solo flight. However, depending on the aircraft type, the aerodynamic coefficients,
the wingspan, and the reference surface, among others, the parameters of this DAE system
change. In formation flight, further modifications must be introduced into the dynamic
equations of the trailing aircraft.

As stated in Chapter 2, extended formations are intrinsically safer than close formations,
which is why only extended formations have been considered in this thesis. In extended
formations, aircraft fly with a longitudinal separation of more than 10 wingspans but the
potential fuel burn reduction for the trailing aircraft has a significant decrease beyond
20-wingspans'separation. Therefore, in this thesis, the formation benefits are considered
negligible for separations of more than 20 wingspans and the constraint introduced to model
the distance which leads to fuel burn reductions in the trailing aircraft during formation flight
is the following:

10b ≤ Dpq ≤ 20b, ∀p, q ∈ {1, . . . ,Na}, p < q, (3.7)

where b is the wingspan of the leader aircraft and Dpq is the great-circle distance between
aircraft p and q at time t.

The haversine formula has been used to determine the great-circle distance D between
two points given their latitudes and longitudes:

D = 2RE arcsin
⎛

⎝

√

sin2 (
φq − φp

2
) + cos(φp) cos(φq) sin2 (

λq − λp

2
)
⎞

⎠
, (3.8)

where (φq, λq) and (φp, λp) are the latitude and longitude of aircraft q and p, respectively,
at any time.

As mentioned in Chapter 2, due to the formation flight, a significant decrease in induced
drag is achieved for the trailing aircraft. According to Assumption L, the expression of the
parabolic drag polar is

CD = CD0 +CDi, (3.9)

where CD0 is the parasitic drag, which represents the aerodynamics clean performance of the
aircraft, and CDi is the induced drag, that is, the drag component due to lift. The induced
drag can be expressed by

CDi =
C2
L

π ⋅AR ⋅ e
=KC2

L, (3.10)

where AR = b2/S is the aspect ratio, e is an efficiency factor, which will be equal to the
unity for elliptical lift distribution and lower than the unity for any other distribution, and
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Solo flight Formation flight

Dpq ≥ 20b 10b ≤ Dpq ≤ 20b

CD = CD0 +KC
2
L CD = CD0 + (1 − ε)KC2

L

Table 3.1: Longitudinal distance constraints and parabolic drag polar in solo and formation flights.

K = 1/(π ⋅AR ⋅ e) is the lift-induced drag coefficient.
As mentioned in Chapter 2, due to formation flight, a significant decrease in the induced

drag, KC2
L, is achieved for the trailing aircraft, hence, the parabolic drag polar for a trailing

aircraft flying in a formation can be expressed as [Hartjes et al., 2018], [Hartjes et al., 2019]

CD = CD0 + (1 − ε)KC2
L, (3.11)

where ε represents the rate of induced drag reduction achieved for the trailing aircraft. The
value of ε is highly dependent on the type of aircraft involved in the formation, the streamwise
and the lateral distance between aircraft, the type of formation flight, and the wind, among
others. According to [Ning, 2011], in which a zero wind field has been assumed, a maximum
reduction in the induced drag of 30±3% is achieved in a two-aircraft formation and a maximum
reduction in the induced drag of 40 ± 6% in a three-aircraft formation (95% confidence
intervals).

Therefore, during formation flight, the dynamics model of the leader aircraft is represented
by the ODE system (3.3) with the standard parabolic drag polar, whereas the dynamic model
of the trailing aircraft is represented by the same set of equations but replacing the standard
parabolic drag polar by Eq. (3.11). The selection of the form of the drag polar is made based
on the longitudinal distance between aircraft, as schematically illustrated in Table 3.1.

Considering that aircraft will not join in formation during the take-off, landing, and
approach phases of flight [Hartjes et al., 2018], in the mission design problem studied in
this thesis, only the cruise phase of the flights is considered. Moreover, the motion of the
aircraft involved in the formation flight is restricted to the horizontal plane at cruise flight
level, not allowing changes in the flight level. Thus, in addition to the assumptions of Section
3.1, the following assumption is made:

Assumption M: The flight path angle is zero, γ = 0.

Considering Assumption M, the dynamic models of the aircraft can be simplified. The
resulting simplified model is a two degrees of freedom point variable-mass dynamic obtained
by substituting γ = 0 in the DAE system (3.3). The motion of the aircraft restricted to the
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horizontal cruise plane is described by the following set of kinematics and dynamics DAE:

φ̇ =
V cosχ + VWN

RE + h
,

λ̇ =
V sinχ + VWE

cosφ ⋅ (RE + h)
,

V̇ =
T −D

m
,

χ̇ =
L sinµ
mV

,

ṁ = −Tη,

(3.12)

together with the following algebraic equation:

L =
mg

cosµ
, (3.13)

where the state vector has only five components, two less than DAE system (3.3): the two
dimensional position variables, latitude and longitude, denoted by φ and λ, respectively; the
heading angle χ; the true airspeed V ; and the mass of the aircraft m.

In this set of equations, the control vector formally includes three components: the
thrust force T , the lift coefficient CL, and the bank angle µ. However, two control
variables are directly related due to the requirement of equilibrium of forces given by
Eq. (3.13) and, therefore, the number of control variables is two. Thus, for aircraft p,
the state vector is xp = (φp, λp, Vp, χp,mp) ,∀p ∈ {1, . . . ,Na}, and the control vector is
up = (Tp, µp(CLp)) ,∀p ∈ {1, . . . ,Na}, with Na the number of aircraft involved in the mission
design problem.

Note that, for problem conditioning and numerical stability, normalized versions of both the
DAE system (3.12) and Eq. (3.13) have been used in this thesis in the numerical experiments
described in chapters 7 and 8.

Concerning the formation flight modeling, the following assumption has been adopted:

Assumption N: The benefits obtained by flying in a formation are modeled as a rate of
reduction in fuel burn consumption.

Considering Assumption N, the fuel savings factor can be directly introduced in the last
differential equation of the DAE system (3.12) instead of considering the reduction in the
induced drag. With Rfuel being the rate of reduction in fuel burn consumption due to the
formation flight, the mass flow rate equation for the trailing aircraft during the formation
flight can be expressed as

ṁ = −[1 −Rfuel] ⋅ T ⋅ η. (3.14)

A schematic description of the differences between the flight models employed in this
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Solo flight Formation flight

Dpq ≥ 20b 10b ≤ Dpq ≤ 20b

φ̇ = V cosχ + VWN

RE + h
, φ̇ = V cosχ + VWN

RE + h
,

λ̇ = V sinχ + VWE

cosφ ⋅ (RE + h)
, λ̇ = V sinχ + VWE

cosφ ⋅ (RE + h)
,

V̇ = T −D

m
, V̇ = T −D

m
,

χ̇ = L sinµ
mV

, χ̇ = L sinµ
mV

,

ṁ = −Tη, ṁ = −[1 −Rfuel] ⋅ T ⋅ η,

L = mg

cosµ
, L = mg

cosµ

Table 3.2: Longitudinal distance constraints and dynamic model in solo and formation flights.

thesis to describe the solo and formation flights is given in 3.2. The model is selected based
on the longitudinal distance between aircraft.

It is quite difficult to model the drag reduction ε and, hence, the fuel burn reduction
Rfuel achieved during a formation flight, since there are many factors to take into account.
The number of aircraft involved in the formation, their type, size, and weight, the ability of
the trailing aircraft to place itself in the optimum location of the wake, and the stresses and
vibrations induced, among others, strongly influence the benefits of the formation.

It is important to point out that the full three degrees of freedom point variable-mass
dynamic model described in the DAE system (3.3) with the induced drag reduction modeling
described by Eq. (3.11) could have been employed in the formation mission planner presented
in this thesis. However, using the full model makes the statement of the problem, its numerical
resolution, and the analysis of the results more complicated. For this reason, the reduced
model has been used in this thesis.

Taking into account the assumptions made in this section, the obtained results are slightly
less accurate. In particular, taking Assumption M and Assumption N into consideration
may lead to a loss of accuracy in the speed profile and flight altitude. In [Ning, 2011], the
aerodynamic performance of extended formations is analyzed in detail. The results show
that aircraft within a formation fly at a slower cruise speed than in their respective solo
flights, as this helps to achieve a reduction in the penalties associated with viscosity and
compressibility effects induced by the formation flight. Consequently, aircraft within the
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formation would also need to fly at a lower altitude, at a higher lift coefficient, or a combination
of both compared with solo flight. Therefore, aircraft in formation tend to cruise at a slightly
lower speed than when flying solo, as shown in [Voskuijl, 2017], [Hartjes et al., 2018], and
[Hartjes et al., 2019].

Other assumptions made in the formation mission design problem presented in this thesis
regard the relative position of each aircraft, which is set in advance, and the type of formation
allowed in three-aircraft formations, which is the in-line formation.

Finally, a maximum detour time from the solo flight time has been set in order to perform
a more realistic formulation of the formation mission design problem, according to the usual
operational requirements.

3.3 Wind model

ERA-Interim [Dee et al., 2011] is a third-generation global atmospheric reanalysis pro-
duced by the european centre for medium-range weather forecasts (ECMWF). Climate re-
analysis consists in systematic and coherent assimilation of the global meteorological data
constrained by the available observations obtained from different sources during the period
of reanalysis, such as radiosondes or aircraft, and prior state estimates using an invariant
consistent assimilation scheme and an integrated meteorological model. The third-generation
reanalysis data refers to the last generation, which was developed in 2010s and significantly
enhanced the spatiotemporal resolution of the former ones.

Gridded data products, which can be found in the ERA-Interim database, include a
wide variety of atmospheric parameters relevant to the mission design problem such as air
temperature, pressure, and wind at different altitudes and sea-surface temperatures. In this
thesis, the components of the wind velocity in eastwards and northwards directions have been
used.

ERA-Interim is presented as a regular latitude-longitude grid, with a spatial resolution from
0.25○×0.25○ to 3○×3○ for the deterministic reanalysis, at 37 atmospheric levels corresponding
to different pressure levels from 1 to 1000 hPa. The temporal coverage is four times daily,
returning six-hour data. In this study, the chosen pressure level was 200 hPa, corresponding
to the cruise altitude. The selected spatial resolution was 0.5○ × 0.5○. Finally, the selected
day was April 30, 2019, at 12:00. To include atmospheric data in the hybrid optimal control
problem used to solve the mission design problem, an analytic function that approximates the
data must be determined. For this purpose, radial basis functions (RBF) [Buhmann, 2003]
have been used.

The RBF technique approximates multivariate functions using the distance measure
concept to obtain a function approximation from a set of known input data. In particular, given
a set of known input data, a function approximation at any point is obtained constructing a
linear space which depends on the relative position of the evaluated point with respect to the
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known observations according to an arbitrary distance measure. RBF consider interpolating
functions of the form

F (x) = c0 +
N−1
∑
i=0

ccϕ(∥ x −Ri ∥), (3.15)

where x ∈ RN is the input data vector and N is its dimension, F (x) is the function
approximation, ϕ is the basis function, and Ri is a vector containing the centers, which
are the reference points of the basis functions. c0 and cc are constant coefficients calculated
by the RBF method, in particular, c0 is the bias term. The Euclidean norm is used to compute
the distance between the input points and the centers. There are different options for the
choice of the basis functions. In this thesis, Gaussian basis functions have been selected,
expressed as follows:

ϕ(x) = e(−x
2
/2σ), (3.16)

where σ is a scaling parameter.
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Fig. 3.2: Eastward wind speed on April 30, 2019 at 12:00.

Eastwards and northwards components of the wind speed taken from ERA-Interim and
then approximated by the RBF method are represented in Fig. 3.2 and Fig. 3.3, respectively.

3.4 Model of the direct operating costs

According to the different operational functions within an airline, the costs can be
classified into three major groups [Camilleri, 2018, ICAO, 2017]: flight operating costs, ground
operating costs, and system operating costs. Any expense related to the operation of the
aircraft is included in the flight operating costs, for example flight crew salaries, maintenance
and fuel and oil expenses as well as aircraft ownership, depreciation and amortization.
Passenger handling, cargo handling, and aircraft servicing belong to the ground operating
costs. Landing fees together with reservation and ticketing services expenses are also included
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Fig. 3.3: Northward wind speed on April 30, 2019 at 12:00.

in this group. Finally, any corporate costs are included in the system operating costs. For
instance, this applies to marketing and administrative costs, publicity costs, and on-board
passenger services such as meals and entertainment. Fig. 3.4 gives a schematic categorization
of the above costs. The historical percentage associated with flight operating costs is the

Flight
operating costs

Ground
operating costs

System
operating costs

Flight crew
Fuel & oil

Maintenance
Aircraft ownership

Aircraft servicing
Passenger handling
Cargo handling

Sales fees

Passenger services
Advertising
General

Administrative

Fig. 3.4: Main functional expenses classified into flight, ground, and system operating costs.

greatest, amounting to half the total costs. Ground operating costs make up around 30%
and, therefor esystem operating costs account for the lowest share of approximately 20%.

Direct operating costs, also known as DOC, are particularly important in trajectory
optimization purposes, because not only do they represent a great rate of the whole costs of an
airline, but they also depend critically on the performance of the flights. These expenses are
usually divided into three different groups: flight operating costs such as flight crew salaries,
fuel and oil, and airport and en-route charges; costs related to maintenance and overhaul; and
aircraft depreciation. Fuel and oil consumption cost is of great importance since it represents
about 20-30% of the total cost of an airline. Notice that several of the costs included in the
DOC are indirectly time-related costs such as flight crew salaries, maintenance and overhaul,
and aircraft depreciation.

The choice of the objective functional is decisive in any trajectory optimization problems
in which the fuel consumption is, in general, minimized. However, two inherently competing
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criteria must be considered in formation mission design problems: fuel consumption and
flight time. Indeed, on the one hand, formation flight, in general, reduces the total fuel
consumption and, on the other hand, it usually requires an increase in the total flight time to
create the formation itself. Therefore, the need to get away from traditional fuel consumption
minimization criteria is clearly evident in formation mission design problems. Although costs
related to the duration of the flight and to fuel consumption are both included in the DOC,
evaluating the DOC as a whole is quite challenging because it entails modeling all the costs
associated with aircraft flying operations, which is beyond the scope of this thesis. Therefore,
instead of using the DOC, the cost index (CI) has been employed in the objective functional.
The CI is defined as the ratio between time-related and fuel-related operational costs, Ctime
and Cfuel, respectively, for a specific flight as follows:

CI =
Ctime
Cfuel

. (3.17)

Choosing the CI based on the interests of the airlines for the flights involved in a formation
mission makes it possible to obtain a solution that represents the desired balance between
flight time-related and fuel-related operational costs.

In this thesis, fuel consumption and flight time are combined in the objective functional
using weighting coefficients based on typical CI values. No other costs have been considered.

The objective functional J for Na aircraft, is defined as follows:

min J = αt
Na

∑
p=1

tflightp + αf
Na

∑
p=1

mfp , (3.18)

where αt and αf are the time and the fuel burn weighting parameters, respectively,
tflightp ,∀p ∈ {1, . . . ,Na}, is the total flight time for aircraft p, and mfp ,∀p ∈ {1, . . . ,Na}, is
the fuel consumption for aircraft p.

It is worth mentioning that the initial fuel loaded into an aircraft that has good chances of
benefitting from a formation flight could be considerably lower than the amount of fuel loaded
into the same aircraft without good chances to benefit from a formation flight. Nevertheless,
in this thesis, a more conservative approach has been adopted and all aircraft are loaded with
the same amount of fuel as in solo flight, even if this factor will result in lower benefits in
terms of DOC.

3.5 Conclusions

In this chapter, the model of the system that represents the formation flight has been
introduced. It includes the wind model and the model of the direct operation costs of the
flight based on typical cost index values, combining fuel consumption, and flight time. A
detailed description of the modeling assumptions has been made. The main assumption is
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that formation flight is allowed only in the cruise phase of the flight, and, therefore, only this
phase of the flight has been considered in the formulation of the formation mission design
problem. Considering only this phase of the flight, in which aircraft fly in the horizontal
plane, leads to a reduction of their dynamic models. Another important assumption is that
the benefits achieved by the trailing and the intermediate aircraft due to the formation flight
can be directly modeled as a rate of reduction in the fuel consumption instead of in the induced
drag. Although accuracy is lost due to these assumptions, they lead to a simplification in the
statement of the problem, its numerical resolution, and the analysis of the results. However, it
is important to point out that the methodology employed in this thesis to solve the formation
mission design problem could have been applied to the full model without introducing any
simplification.



Chapter 4

Deterministic Optimal Control Approach

In this chapter, the optimal control method employed to solve the deterministic formation
mission design problem is introduced. First, the formulation of the formation mission design
problem is presented. It is formulated as an optimal control problem for a switched dynamical
system with logical constraints in disjunctive form. Switched dynamical systems, which are
described by both a continuous and a discrete dynamics, are employed to represent the
formation flight and logical constraints in disjunctive form are used to model the discrete
dynamics of the switched system. In these constraints, binary or integer variables are used
to model switching decisions. Finally, the embedding approach is described, which is used to
convert the original switched optimal control problem into a smooth optimal control problem,
in which the logical constraints in disjunctive form are converted into equality and inequality
constraints without binary or integer variables.

4.1 The smooth optimal control problem

Consider a dynamical system described by a differential equation

ẋ(t) = f(t, x(t), u(t)), (4.1)

in which variable t represents the time variable and the functions x(t) and u(t) represent the
state and the control input of the system, respectively. Let

J(t, x(t), u(t)), (4.2)

be a cost functional, which maps the time variable and the state and control functions into a
single number.

An instance of a smooth OCP can be informally stated as follows: determine the control
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input that steers the system from an initial state to a final state minimizing the cost functional
J . In general, the time variable and the control and state functions are subject to constraints.

This simple instance of an OCP corresponds to a single-phase OCP. In general, optimal
control models include more than one phase. Each phase in an OCP represents a portion of
the trajectory of a dynamical system, and may be subject to different equations of motion,
different time discretization, different control parameterizations, or different path constraints.

A different set of ODEs can be employed in each phase to reflect the switching behaviour
of a dynamical system. A specific time discretization fitted to the dynamics of that portion
of the trajectory can be used in every phase. For instance, if one part of a trajectory has
slower dynamics and another part has faster dynamics, the time interval can be split into two
phases with coarser time discretization for the first phase and a finer time discretization for
the second phase. In the control parameterization method, the control space is discretized
by approximating the control function using a linear combination of basis functions. In this
way, the OCP is reduced to a NLP with a finite number of decision variables. Different
control parameterizations such as piecewise constant and piecewise linear, can be employed
in the same problem by defining different phases. Different path constraints, which are bound
constraints on some performance parameter, can also be imposed within each phase. Phases
are also necessary to impose intermediate constraints upon some variables. This can be done
by imposing them as boundary constraints at the junction between two phases. Finally, linkage
constraints should be enforced in order to assemble all the phases of the problem to get a
unique trajectory for the system [Falck et al., 2021].

OCP can be formulated for continuous-time dynamical systems, as is the case in this
thesis, and for discrete-time dynamical systems. OCP formulations may also include binary
or integer variables to model decision-making processes.

As mentioned before, in general, optimal control problems include not only differential
constraints but also algebraic constraints and path constraints. A more general formulation
of a continuous smooth OCP is the following:

min
u∈Ω

J (t, x(t), u(t)) =M(tF , xF ) + ∫
tF

tI
L(t, x(t), u(t))dt, (4.3a)

s.t. ẋ(t) = f(t, x(t), u(t)), (4.3b)
0 = g(t, x(t), u(t)), (4.3c)
ηl(t) ≤ η(t, x(t), u(t)) ≤ ηu(t), (4.3d)
x(tI) = xI ∈ Rn, (4.3e)
x(tF ) = xF ∈ Rn, (4.3f)

where u(t) ∈ Rm, x(t) ∈ Rn, and Eq. (4.3a) represents the performance index of the OCP,
in which J is a Bolza cost functional, consisting of two terms, the endpoint cost functional
M, also known as Mayer term, which is defined on a neighborhood of B, and the running
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cost functional, L, also known as Lagrange term, which is a continuously differentiable
functional. The control input u(t) is constrained to belong, at each time instant, to the
bounded and convex set Ω. Eqs. (4.3b) and (4.3c) represent the set of algebraic-differential
equations, where function f determines the dynamics of the system and function g describes
the right-hand side of the algebraic constraints. The problem can be also constrained by
path constraints represented by Eq. (4.3d), where ηl and ηu represent the lower and upper
bound for each function η. Finally, Eqs. (4.3e) and (4.3f) represents the initial and final
boundary conditions, respectively. The initial time tI , the initial state x(tI), the final time
tF , and final state x(tF ) are assumed to be restricted to a boundary set B as follows:
(tI , x(tI), tF , x(tF )) ∈ B = TI ×BI × TF ×BF ⊂ R2n+2.

In typical aerospace optimization problems the performance index of Eq. (4.3a) only
contains the Mayer term. This is the case of this thesis, in which the objective functional in
Eq. (3.18) is in Mayer form and represents a combination of fuel consumption and flight time
of the aircraft.

Eqs. (4.3b) and (4.3c) correspond to the DAE systems given in Table 3.2, which describe
the motion of each aircraft involved in a formation. In particular, the DAE system in the left
column of the table describes the solo flight and the flight of the leader of a formation, and
the DAE system in the right column of the table describes the flight of the intermediate and
trailing aircraft of a formation.

The path constraints represented by Eq. (4.3d) correspond to the flight envelope given
in Eq. (3.4). These constraints are usually given in terms of lower and upper bounds for
several state and control variables such as flight altitude, load factor and airspeed. Notice
that, Eqs.(4.3c) and (4.3d) also include logical constraints based on the stream-wise distance
between aircraft, which are used in this thesis to model the switching between solo flight
mode and formation flight mode for each aircraft. These constraints will be discussed later,
in Section 4.2.4 of this chapter.

Eqs. (4.3e) and (4.3f) represent the initial and final conditions which are specified for each
experiment in chapters 7 and 8.

For the sake of ease of exposition, in the formulation of the OCP for switched dynamical
systems presented in the following section, neither algebraic equations nor path constraints
have been included.

4.2 The switched optimal control problem

In this thesis, the formation mission design problem is formulated as an OCP for a switched
dynamical system. Switched systems are described by both a continuous and a discrete
dynamics in which the transitions among discrete states are not established in advance. In
particular, each aircraft has different flight modes, namely solo flight and flight in different
positions inside a formation, and their combination is represented by the discrete state of the
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switched dynamical system, which models their joint dynamic behavior. Each flight mode will
be represented by different dynamical equations which may include or not formation flight
benefits in terms of fuel savings.

In this section, following [Bengea et al., 2011], the formulation of a simple OCP given
in Section 4.1, is generalized for switched systems, introducing the switched optimal control
problem (SOCP) for two-switched dynamical systems. Hereinafter, subindex "S" has been
employed in the formulation of the OCP for switched dynamical systems for the sake of clarity.
In particular, the dynamical model of a two-switched dynamical system can be represented by

ẋS(t) = fvS(t)(t, xS(t), uS(t)),

xS(tI) = xI ∈ Rn, (4.4)
xS(tF ) = xF ∈ Rn,

vS(t) ∈ {0,1}, tI ≤ t ≤ tF .

In this model, the continuously differentiable vector fields, f0, f1 ∶ R×Rn ×Rm → Rn, specify
the dynamics of the two possible modes of the system. The control input uS(t) ∈ Ω ⊂ Rm

is constrained to belong, at each time instant t, to the bounded and convex set Ω.
The binary variable vS(t) is the mode selection variable that identifies which of the two
possible system modes, f0 or f1, is active. Thus, both of them, uS(t) and vS(t), can be
regarded as control variables. The initial time tI , the initial state xS(tI), the final time
tF , and final state xS(tF ) are assumed to be restricted to a boundary set B as follows:
(tI , xS(tI), tF , xS(tF )) ∈ B = TI × BI × TF × BF ⊂ R2n+2. The performance index of the
SOCP has the following form

JS (t, xS(t), uS(t), vS(t)) =MS(tF , xF ) + ∫
tF

tI
LvS(t)(t, xS(t), uS(t))dt, (4.5)

where the endpoint cost functionMS is defined on a neighborhood of B and formally coincide
with function M, and L0 and L1 are real-valued continuously differentiable functions that
represent the running cost of operation of the system in each mode.

The SOCP is thus stated as follows

min
uS∈Ω,vS∈{0,1}

JS (t, xS(t), uS(t), vS(t)) , (4.6)

subject to dynamical equations and endpoint constraints from the set of Eqs. (4.4).
Note that, although the statements of the OCP and the SOCP are quite similar, they

are very different in their essence. The fact that the binary variable, vS(t) ∈ {0,1}, appears
within the SOCP formulation, requires an additional transformation of this kind of problems
to enable the use of classical optimal control techniques to solve it. To do so, the embedding
approach is introduced in the following section.
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4.2.1 Specification of the switched optimal control problem

In the formation mission design problem posed in this thesis, each aircraft has different
flight modes, namely solo flight and flight in different positions inside a formation, solo flight
(SF) or formation flight (FF), respectively, and their combination is represented by the discrete
state of the switched dynamical system, which models their joint dynamic behavior. Therefore,
the problem will be formulated as an OCP for a switched dynamical system, following the
SOCP formulation. Each flight mode will be represented by different dynamical equations
which may include or not formation flight benefits in terms of fuel savings.

4.2.2 The embedding approach

In this section the embedding approach employed to transform a SOCP into an embedded
optimal control problem (EOCP) is presented. In this way, a smooth OCP without binary
variables is obtained, reducing the computational complexity of finding the solution.

Similarly to previous sections, subindex "E" has been employed in the formulation of the
EOCP for sake of clarity. Following again [Bengea et al., 2011], the differential equation of
the set of Eqs. (4.4) can be rewritten as follows

ẋE(t) = [1 − vE(t)]f0(t, xE(t), uE0(t)) + vE(t)f1(t, xE(t), uE1(t)). (4.7)

The dynamical constraint from the set of Eqs. (4.4) and Eq. (4.7) formally coincide under the
conditions vE(t) = vS(t) and uE0(t) = uE1(t) = uS(t). However, in Eq. (4.7), vE(t) ∈ [0,1],
while in Eq. (4.4), vS(t) ∈ {0,1}, which is the key feature of the embedding approach
[Bengea and DeCarlo, 2005, Bengea et al., 2011]. This method is based on solving the SOCP
defined above, using only continuous control variables vE(t) ∈ [0,1], uE0(t), uE1(t) ∈ Ω.
In this way, the original switched system is embedded into a larger family of systems
parameterized by vE(t) ∈ [0,1]. The performance index of the SOCP from Eq.(4.5) is
rewritten as

JE (t, xE(t), uE0(t), uE1(t), vE(t)) =M(tF , xE(tF ))

+∫

tF

tI
([1 − vE(t)]L0(t, xE(t), uE0(t)) + vE(t)L1(t, xE(t), uE1(t)))dt. (4.8)

The EOCP is thus formulated as

min
uE0 ,uE1∈Ω,vE∈[0,1]

JE (t, xE(t), uE0(t), uE1(t), vE(t)) , (4.9)

subject to dynamical equations and endpoint constraints from the set of Eqs. (4.7), which is
an OCP without binary variables. Therefore, classical techniques from optimal control theory
can be applied to solve it.
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It has been shown in [Bengea and DeCarlo, 2005] and [Bengea et al., 2011] that, once a
solution of the EOCP has been obtained, either the solution is of the switched type, that is, vE
takes only the values 0 and 1, or suboptimal trajectories of the SOCP can be constructed that
can approach the value of the cost for the EOCP arbitrarily closely, and satisfy the boundary
conditions within ε, with arbitrary ε > 0. A thorough discussion about the relationship between
the solutions of the SOCP and the EOCP can be found in [Bengea and DeCarlo, 2005] and
[Bengea et al., 2011].

In Section 4.2.4, this approach is particularized to the formation mission design problem
in which each aircraft can have different dynamic behavior depending on flying in solitaire, or
in a different position within the formation.

4.2.3 Logical constraints modeling

The approach proposed in [Wei et al., 2008] has been employed to transform logical
constraints in disjunctive form into inequality and equality constraints that involve only
continuous auxiliary variables.

It has been shown in [Cavalier et al., 1990] that every Boolean expression can be
transformed into conjunctive normal form (CNF). Hence, there is no loss of generality in
considering that any logical constraint can be formulated as a CNF expression

Q1 ∧Q2 ∧ . . . ∧Qn, (4.10)

in conjunctive form, where the symbol ∧ denotes the “and” operator and

Qi = P
1
i ∨ P

2
i ∨ . . . ∨ P

mi
i , ∀i ∈ {1,2, . . . , n}, (4.11)

where Qi is expressed in disjunctive form, in which the symbol ∨ denotes the “or” operator
and the proposition P ji is either Xj

i or ¬Xj
i . The term Xj

i is a literal that can be either True
or False and the symbol ¬ represents the “negation” operator.

Term Xj
i represents statements such as “D12(t) ≥ 20b ”. Therefore, P ji takes the form

P ji ≡ {gji (x(t)) ≤ 0} , (4.12)

∀i ∈ {1,2, . . . , n}, ∀j ∈ {1,2, . . . ,mi}, where gji ∶ Rnx → R is assumed to be a C1 function.
To incorporate logical constraints in a OCP, they must be converted into a set of equality

or inequality constraints. Additionally, if binary variables are not used, the combinatorial
complexity of integer programming is avoided. Notice that, conjunctions from Eq. (4.10) can
be easily included in a OCP are equivalent to Qi,∀i ∈ {1,2, . . . , n}. To be able to transform
the disjunctions into a set of inequality constraints, a continuous variable αji (t) ∈ [0,1] is



4.2. The switched optimal control problem 45

defined and associated with each P ji in Eq. (4.12). Thus, Eq. (4.11) can be rewritten as

∀i ∈ {1,2, . . . , n},∀j ∈ {1,2, . . . ,mi} ∶ αji (t) ⋅ g
j
i (x(t)) ≤ 0,

and 0 ≤ αji (t) ≤ 1, (4.13)

and
mi

∑
j=1

αji (t) = 1,

The first constraint in (4.13) shows that when αji (t) = 0 the constraint gji (x(t)) ≤ 0 is not
forced to be fulfilled. In contrast, if 0 < αji (t) ≤ 1, then αji (t)⋅g

j
i (x(t)) ≤ 0, and, consequently,

the constraint gji (x(t)) ≤ 0 is forced to be fulfilled. The last equation in the system (4.13)
guarantees that, at least, one of the propositions P ji holds.

In the next section, this approach will be applied to the formation mission design problem
in which logical constraints involve the longitudinal distance between aircraft.

4.2.4 Specification of the embedded optimal control problem with equality and
inequality constraints

In this section, the embedding approach is applied to the SOCP described in Section 4.2
and the logical constraints in disjunctive form based on the stream-wise distance between
aircraft are converted into a set of inequality and equality constraints which will be added to
the EOCP.

In the formation mission design problem posed in this thesis, not all the dynamic
Eqs. (3.12) are subject to switches. More specifically, the equations of motion associated
to the state variables φ, λ, χ, and V , do not switch whereas the aircraft's mass flow rate does
when the aircraft p joins or leaves a formation as a trailing or an intermediate aircraft. To
model this switching, mass flow rate equations considering fuel savings and not considering
them, are combined using the selection variable vEp(t), p ∈ {1, . . . ,Na} as follows

∀p ∈ {1, . . . ,Na} ∶

φ̇p =
Vp ⋅ cosχp + VWN

RE + hp
,

λ̇p =
Vp ⋅ sinχp + VWE

cosφp ⋅ (RE + hp)
,

χ̇p =
Lp ⋅ sinµp
Vp ⋅mp

,

V̇p =
Tp −Dp

mp
,

ṁp = (1 − vEp) ⋅ [−Tp ⋅ ηp] + vEp ⋅ [−(1 −Rfuelp) ⋅ Tp ⋅ ηp],

(4.14)

where vEp(t) = 1 corresponds to FF and vEp(t) = 0 to SF.
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Thus, each aircraft has a different individual dynamic behavior which corresponds to SF
or FF in a different position within the in-line formation. The combination of these behaviors
represents the discrete states of the switched system that models the joint dynamic behavior
of all the aircraft.

However, in mission design problems, the switching control variables vEp(t), p ∈

{1, . . . ,Na} depend on the state variables, in particular on the geographical coordinates of
the aircraft. Indeed, not all transitions between discrete states are possible at any time,
since while the distance between aircraft is larger than 20 wingspans, FF can not take place.
Furthermore, the switching control variables depend on one another. For instance, in a two-
aircraft formation, if one aircraft is selected as the trailing aircraft the other one is forced to
be the leader and vice versa. Similarly, in a three-aircraft formation, if one position in the
formation is assigned to one aircraft, the other ones must fly in another position.

Thus, the switched system that represents the joint dynamic behavior of all the aircraft
involved in the mission design problem should follow some rules that are specified using
logical constraints. In particular, the switching logic among the discrete states of the system
presented in the SOCP presented in this thesis, are modeled by logical constraints in disjunctive
form, based on the stream-wise distance between aircraft. As stated in Eq. (3.7), it has
been considered that the great-circle distance between aircraft in FF is between 10 and 20
wingspans, and is greater than 20 wingspans in case of SF. Hence, the distance between
aircraft satisfies

∀p, q ∈ {1, . . . ,Na}, p < q ∶ 10b ≤ Dpq(t) ≤ 20b, (4.15)
or Dpq(t) ≥ 20b.

Using simple Boolean algebra, Eq.(4.15) can be rewritten as

∀p, q ∈ {1, . . . ,Na}, p < q ∶ 10b ≤ Dpq(t), (4.16)
and Dpq(t) ≤ 20b or Dpq(t) ≥ 20b.

To transform the disjunctions into a set of equality and inequality constraints, a new
variable is defined. Thus, in two-aircraft mission design problems, only a continuous variable
related to the longitudinal distance D12 should be defined, whereas, in three-aircraft mission
design problems three continuous variables must be introduced, which are related to the
longitudinal distances D12,D13,D23. Thus, calling the new continuous variable αpq(t) ∈ [0,1],
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∀p, q ∈ {1, . . . ,Na}, p < q, the logical constraints in Eq.(4.16) can be rewritten as

∀p, q ∈ {1, . . . ,Na}, p < q ∶ αpq(t) (Dpq(t) − 20b) ≤ 0,

and (1 − αpq(t)) (20b −Dpq(t)) ≤ 0, (4.17)
and 0 ≤ αpq(t) ≤ 1,

and Dpq(t) ≥ 10b.

For aircraft p and q, if Dpq(t) > 20b, αpq(t) must be zero in order to satisfy the second
constraint in (4.17). Otherwise, when Dpq(t) ≤ 20b, the variable αpq(t) = 1, to fulfill the
second constraint in the above set of equations. Formation flight benefits will be achieved
only when αpq(t) = 1. In any case, the last constraint in (4.17) ensures that the longitudinal
distance between aircraft will always satisfy the safety minimum distance of 10b.

It can be observed that nature of the variables vEp(t), ∀p ∈ {1, . . . ,Na}, and αpq(t),
∀p, q ∈ {1, . . . ,Na}, p < q, is similar. The variable vEp(t) selects equations of the dynamic
model for aircraft p, whereas the variable αpq(t) selects constraints. Therefore, although, for
the sake of clarity, a different notation has been employed in the previous sections to describe
them, the variables αpq(t) and vEp(t) are directly related by the following equivalence

∀p, q ∈ {1, . . . ,Na}, p < q ∶ αpq(t) = vEp(t), (4.18)

where aircraft p is supposed to be the trailing aircraft. Therefore, the variable vEq(t), which
selects equations of the dynamic model for aircraft q, must be zero regardless of the value
of variable αpq(t), as aircraft q will be the leader one and, hence, it will achieve no benefits
from the formation.

It is important to notice that the equivalence in Eq. (4.18) between the continuous
variables obtained from the embedding approach, used to model the switched dynamical
system and transform the logical constraints in disjunctive form into inequality and equality
constraints, need not necessarily be fulfilled in others EOCPs.

4.3 Conclusions

In this chapter, the optimal control method employed to solve the deterministic formation
mission design problem has been presented. The problem is formulated as an optimal control
of a switched dynamical system which has been converted into a smooth optimal control
problem using the embedding approach. The embedding approach is a unifying technique
able to efficiently tackle both the switching dynamics and the logical constrains of the optimal
control problem, transforming it into a smooth optimal control problem, which can be solved
using classical optimal control techniques. The main advantages of this approach are that
the multiphase formulation is avoided, as well as the use of integer variables, decreasing
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the computational time and effort in finding the solution. This approach has substantial
advantages compared to multiphase approaches, which are based on exhaustively analyzing
every possible formation mission individually and then, comparing the results. Additionally, it
is easily scalable to design formation mission problems with an arbitrary number of flights.



Chapter 5

Numerical Optimal Control Methods

In this chapter, a general overview to numerical methods for optimal control is given.
They can be classified in indirect and direct numerical methods based on whether they are
based on optimality conditions or not. Direct methods can be classified into shooting and
collocation methods. The latter, can be classified into local and global collocation methods.
The main advantages and disadvantages of each class of methods is discussed.

5.1 Introduction: direct and indirect numerical optimal control methods

Two different numerical approaches have been traditionally followed to solve OCPs,
indirect and direct methods.

The indirect methods follow the strategy of “first optimize, then discretize” and are based
on the Pontryagin’s Maximum Principle. By contrast, direct methods follow the strategy of
“first discretize, then optimize” and transcribe an infinite-dimensional OCP into a finite-
dimensional optimization problem, which, in general, is a nonlinear programming (NLP)
problem [Betts, 2010].

Indirect methods are based on the necessary conditions of the Pontryagin’s maximum
principle. However, these conditions depend on the constraints of the OCP and change
when some constraints become active, i.e., when the state or the control variables reach the
boundary of their admissible sets. The main drawback of this setting is that it is not possible
to know in advance when this occurs, and therefore, it is not easy to derive a general numerical
method from these conditions. Moreover, accurate initial guesses are required, not only for
state and control variables, as it is in many numerical methods, but also for the costate
variables, which are non-intuitive and therefore, very difficult to be accurately established.
For the same reasons, analytical solutions can be obtained only for the simplest OCPs.

Direct methods do not rely on the necessary conditions of the Pontryagin’s maximum
principle. They are numerical methods in which the process to obtain the optimal solution
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of the OCP is quite easier than in indirect methods, because although, in general, large scale
NLP problems are obtained with a great amount of variables and constraints, fast and reliable
NLP solvers are available to solve them. In Fig. 5.1, a schematic overview of both advantages
and disadvantages of each approach is given.

Since the advantages of direct methods outweigh their disadvantages compared to indirect
approaches, in this thesis, a direct approach has been employed to solve OCPs.

Direct Methods Indirect Methods

No optimality conditions needed
No initial guess for

costate variables needed
Easy to solve

PROS

Less accuracyCONS

More accurate
Less computationally demanding

Optimality conditions needed
Initial guess for costate

variables needed

Fig. 5.1: Advantages and disadvantages of direct and indirect methods.

5.2 Direct methods

Direct methods can be divided in two main categories, direct shooting methods and direct
collocation methods, as shown in Fig. 5.2.

Direct shooting methods can be further divided into two categories: single and multiple
shooting methods. Single shooting methods are control parameterization methods in which
a time grid is defined and the controls are discretized on that grid as a set of NLP variables,
while the states are discretized using numerical integration. These methods are the simplest
technique to numerically solve OCPs. The major advantage of them is that, although a
high-dimensional state vector is involved in the problem, the transcribed problem will have
few degrees of freedom. Additionally, only initial guesses for controls are required. However,
the main disadvantage of single shooting is that this technique is quite sensitive to initial
conditions.

These drawbacks make them poorly suitable for solving most OCPs [Betts, 2010]. To
reduce the sensitivity to initial conditions of the single shooting method, the multiple shooting
method has been devised, in which the time interval is split into shorter subintervals, and
thereafter, the problem is transcribed as in the single shooting methods, where the initial
state of each subinterval is a variable of the resulting NLP problem. In the multiple shooting
method, although the sensitivity-related issues are fixed, the number of variables involved in
the NLP problem increases.

Direct collocation methods do not rely only on parameterization of the control, they rely
on parameterization of both state and control. Within collocation methods, there are two
major groups: local collocation and global collocation methods. As its name suggests, in
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Direct Methods

Shooting methods

Single
shooting

Multiple
shooting

Collocation methods

Global
collocation

Local
collocation

Fig. 5.2: Direct methods classification.

local collocation methods local approximations of states and controls are made, and local
integration techniques are applied for the differential equations that represent the dynamic
system. Local collocation methods are the simplest collocation methods and are less accurate
than global collocation methods [Huntington and Rao, 2008]. Some of the best-known local
collocation methods are the trapezoidal and the Hermite-Simpson collocation schemes. The
main difference between them is the kind of functions that are employed to approximate the
system dynamics in each of them, being piecewise linear functions in the trapezoidal scheme
and piecewise quadratic functions in the Hermite-Simpson collocation scheme. Unlike local
collocation methods, global ones use global polynomials to approximate the states across the
whole time interval. The main family of global collocation methods are the pseudospectral
methods (PSM). In this thesis, PSM have been used. They will be introduced in the next
section.

5.3 Pseudospectral methods

PSM are a type of direct global collocation methods which use global polynomials
to parameterize the state variables. The nodes are generally obtained from a Gaussian
quadrature, which is employed to collocate the set of differential-algebraic equations. The
use of global polynomials, instead of using piecewise-continuous polynomials as interpolant
between prescribed subintervals, makes PSM more efficient and simpler than other direct
methods [Fahroo and Ross, 2000].

The first step to introduce PSM is to transform the original time variable, t ∈ I = [tI , tF ],
into a new time variable, τ ∈ [−1,+1]. The transformation that relates both time variables is
the following

t =
(tF − tI) τ + (tF + tI)

2
. (5.1)

From Eq. (5.1), it is easy to obtain the following relationship:

dt =
tF − tI

2
dτ. (5.2)

In trajectory optimization problems, the four most commonly used sets of collocation points
are the Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), also known as direct LGR,
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Flipped Legendre-Gauss-Radau (f-LGR), and Legendre-Gauss-Lobatto (LGL) points. Notice
that, although in all these methods the discretization points employed in the problem must
lie in the [−1,+1] interval, this is not required for the collocation points. Indeed, although
the position of the points changes from one set of collocation points to another, as described
in detail below, the major difference between the methods is that, depending on the set
of collocation points chosen, both, one, or none endpoints of the interval [−1,+1] will be
excluded in the approximation of the control variables [Garg et al., 2011].

Collocation points are roots of orthogonal polynomials, or linear combinations of them and
its derivatives [Huntington, 2007, Garg et al., 2009]. In particular, the four sets of collocations
points seen above are based on Legendre polynomials. Denoting the Legendre polynomial of
k-th degree as PK , whereK represents the total number of discretization points, the particular
relationship between the different sets of collocation points and the Legendre polynomial is
specified in Fig. 5.3.

Roots from

PK(τ)

ṖK−1(τ) including endpoints -1 and +1

PK−1(τ) + PK(τ)

PK(τ) − PK−1(τ)

LG

LGL

LGR

f-LGR

Fig. 5.3: Roots of the Legendre polynomials, or combinations of them, for different sets of collocation
points.

In Fig. 5.4 a schematic overview of the positioning of the points for the different collocation
schemes is given. In particular, it can be seen that both endpoints are included in the LGL
points, i.e. τ ∈ [−1,1], neither of them are included in the LG points, i.e. τ ∈ (−1,1) and
just one of the endpoints is included in the LGR points. If the initial point -1 is included,
i.e. τ ∈ [−1,1), the set of collocation points are usually called just LGR points or direct LGR
points, whereas, when the terminal endpoint +1 is included, i.e. τ ∈ (−1,1], the resulting set
of points is known as the f-LGR points. Notice that, while the LG and LGL points located
symmetrically with respect to the origin, the direct LGR and f-LGR points are not.

Since in the LG points, the endpoints are not included, additional quadrature constraints
are necessary in order to force collocation at initial and terminal endpoints. These additional
constraints make the problem resolution unnecessarily more complicated. This drawback
can be overcome using the LGL points. However, the use of the LGL points has some
additional drawbacks such as the slow convergence of the costate variables. Finally, due
to their asymmetric positioning with respect to the origin, both direct LGR and f-LGR
collocation points, are good candidates, because they permit collocation at endpoints without
significant convergence issues for the costate variables [Fahroo and Ross, 2008, Garg, 2011].
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Fig. 5.4: Schematic comparison between the LG, LGR, f-LGR, and LGL collocation points.

In [Garg et al., 2009], it is stated that direct LGR and f-LGR collocation points are useful
in infinite-horizon problems and in finite-horizon problems in which endpoints constraints are
involved or the state at the terminal time is included in the objective function.Therefore, PSM
based on f-LGR points have been employed in this thesis, which will be introduced in the next
section.

5.3.1 Pseudospectral method using f-LGR points

In this section, following [Garg et al., 2011, Garg et al., 2009], the PSM using the f-LGR
collocation points will be presented. Consider K flipped Radau collocation points lying on
the interval τ ∈ (−1,1] and N discretization points lying on the interval τ ∈ [−1,1], which
include the mentioned K collocation points together with the initial endpoint -1. In this case,
K = N − 1. For a better understanding of their position, a schematic representation of the
position of the f-LGR collocation points and the corresponding discretization points, is given
in Fig. 5.5.

Fig. 5.5: Schematic representation of the position of the f-LGR collocation points and the
corresponding discretization points.

Thus, considering the time transformation defined in Eq. (5.1), each component j-th of
the state variable evaluated at the k-th collocation point, xj(τk), can be approximated using
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a basis of N Lagrange polynomials Li, i = 1, . . . ,N , by the following expression:

xj(τk) ≈
N

∑
i=1
xj(τi)Li(τk), for k = 1, . . . ,K, (5.3)

where the nodes τi, i = 1, . . . ,N are the discretization points, τk, k = 1, . . . ,K are the
collocation points, and Li(τk) is a Lagrange polynomials basis particularized for each
collocation point k, given by the Lagrange polynomial interpolation:

Li(τ) =
N

∏
j=1
j≠i

τ − τj

τi − τj
. (5.4)

Differentiating Eq. (5.3), and defining a new matrix Dki, which satisfies Dki = L̇i(τk), yields

ẋj(τk) ≈
N

∑
i=1
xj(τi)L̇i(τk) =

N

∑
i=1
Dkixj(τi), for k = 1, . . . ,K. (5.5)

PSM are characterized by the differentiation matrix D ∈ RK×N , which is used to approximate
the derivative of the state at the collocation points. The differentiation matrix for the f-LGR
collocation points is defined as follows:

Dki =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ġ(τk)

(τk − τi)ġ(τi)
, for k ≠ i,

g̈(τi)

2ġ(τi)
, for k = i,

(5.6)

where the function g(τi) = (1+τi)[PK(τi)−PK−1(τi)], based on the roots of the combination
of Legendre polynomials for the f-LGR points, shown in Fig. 5.3.

Notice that, with the method explained here, increasing the degree of the Lagrange
polynomials allows the state variables to be approximated at every discretization point,
including both endpoints.

However, the control variables are only discretized and approximated at the f-LGR
collocation points using N − 1 Lagrange polynomials. Therefore, the j-th component of
the control can be approximated as follows:

uj(τk) ≈
N

∑
i=2
uj(τi)Li(τk), for k = 1, . . . ,K. (5.7)

Using Eq. (5.2), the first time derivative of the j-th of the state variable, with respect to
t ∈ I = [tI , tF ], ẋj(t), can be expressed as follows:

ẋj(t) =
2

tF − tI

N

∑
i=1
Dkixj(τi), for k = 1, . . . ,K. (5.8)
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Thus, the differential equation (4.1) of the OCP, ẋ(t) = f(t, x(t), u(t)), will be incorporated
in the NLP problem as:

N

∑
i=1
Dkixj(τi) −

tF − tI
2

f(τk, x(τk), u(τk)) = 0. (5.9)

As mentioned before, global polynomials are used in PSM. Discontinuities in the time
derivatives of the state or control variables can not be accurately approximated using this type
of polynomials. The EOCP described in Section 4.2.2, which arises in solving the formation
mission design problem, is a nonsmooth OCP with discontinuities in the time derivatives of the
state and control variables caused by the switches in the dynamic constraints of the problem.
Additionally, in the EOCP, the initial and final times of each flight are, in general, different
and, consequently, the collocation nodes of each flight do not match. However, to model the
logical constraints from Eq. (4.16) that describe the switching logic among discrete states of
the switched dynamical system that represent the formation flight, it is necessary to have the
same set nodes for all the flights involved, at least during the flight phases in which aircraft
fly in formation. These reasons make PSM not very suitable in dealing with the non-smooth
EOCP. Therefore, an extension of the PSM, called pseudospectral knotting method has been
employed in this thesis, which is outlined in the next section.

5.3.2 Pseudospectral knotting method

Pseudospectral knotting methods generalize the spectral patching method by the exchange
of information across the different patches among standard PSM in the form of switching
conditions [Ross and Fahroo, 2004]. These constraints are localized at the so-called knots
of the problem. The knots are some special nodes which enable the global time interval to
be divided into several time subintervals to apply PSM over each subinterval. So, the knots
represent double nodes, coinciding with the last node of one subinterval or patch and with
the first node of the following subinterval. Different kind of knots can be defined such as soft
or hard knots, or free or fixed knots.

In relation to the numerical difficulties associated to the nonsmoothness of the mis-
sion design problem, the Gibbs phenomenon should also be mentioned. This phe-
nomenon appears when a nonsmooth function is approximated with some smooth functions
[Ross and Fahroo, 2004], and the pseudospectral knotting method allows this phenomenon
to be prevented.

5.4 Solution of the embedded optimal control problem

In this section, the specification of the PSM employed to solve the formation mission
design problem studied in this thesis is given. The peculiarities of the problem that make
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it to be solved using the knotting PSM are discussed and the solver employed to solve the
resulting NLP problem is described.

The deterministic formation mission design problem presented in Chapter 4 is formulated
as a SOCP, which has been transcribed into an EOCP using the embedding approach. Finally,
the knotting PSM is applied to solve the EOCP.

Following [Ross and Fahroo, 2004], in the formation mission design problems solved in this
thesis, only two interior soft knots are considered, independently of the number of aircraft
involved in the formation. Additionally, initial-time and final-time conditions are considered as
part of the general framework of knots. In particular, the knots corresponding with the initial-
time and final-time are defined as hard knots because they are intrinsic to the formulation of
the problem.

The interior knots are defined as free knots but constrained by the condition that the time
position of the first interior knot, tk1 , should be greater than the initial times of all flights,
max(tI,p), and the time position of the second one, tk2 , should be smaller than the final times
of all flights, min(tF,p), as schematically shown in Fig. 5.6. On this basis, three different time
intervals, I1, I2, and I3, have been considered for each flight:

• I1: before the first interior knot: tp ∈ [tI,p, tk1),∀p ∈ {1, . . . ,Na}, formation is
not allowed.

• I2: between the two interior knots: tp ∈ [tk1 , tk2], ∀p ∈ {1, . . . ,Na}, formation is
allowed.

• I3: after the second interior knot: tp ∈ (tk2 , tF,p],∀p ∈ {1, . . . ,Na}, formation is
not allowed.

In Fig. 5.7 a schematic representation of the three different time intervals, I1, I2, and I3,
and the knots and nodes of the problem are presented. The vertical lines correspond to the
times of each node, and the big points represent the knots.

tI,1 

tI,2 

tI,3 

tF,1 

tF,2 

tF,3 

time 

max(tI,p) min(tF,p) 
 

Fig. 5.6: Schematic flight times representation in a three-aircraft mission design problem.

It is easy to see that, in two-aircraft formation design problems, the formation can
only happen if both aircraft are flying, in other words, during the overlapped flight time
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[Xu et al., 2014]. Thus, the formation is only allowed during the second time interval, I2,
and the collocation points of all the aircraft are forced to be the same in this interval. Notice
that, as mentioned before, the two interior knots of the problem should be greater than
max(tI,p) and lower than min(tF,p), but are not fixed to be equal to those values. Thus,
the time value of the interior knots should be also determined in the solution. The same
assumption has been taken for three-aircraft formations.
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Fig. 5.7: Knots and nodes. Figure adapted from [Ross and Fahroo, 2004].

In short, the resulting EOCP together with the inequality and equality constraints given
in Section 4.2.4 can be solved using traditional optimal control techniques.

There are several integrated software packages available to solve OCPs using direct
collocation methods such as DIDO [Ross, 2020], GPOPS [Rao et al., 2009] and GPOPS-II
[Patterson and Rao, 2014]. All of them implement PSM and are user-friendly, in the sense
that they allow people with no knowledge of the underlying pseudospectral theory to use them.
However, they are commercial software packages for the commercial Matlab environment. To
gain a deeper insight into knotting PSM and to avoid dependance from commercial software,
the knotting pseudospectral method has been implemented from scratch in this thesis. The
four different collocation points schemes have been implemented and tested, obtaining that
f-LGR points show the best convergence for the formation mission design problem. Therefore,
the Radau knotting PSM have been selected to transcribe the EOCP into a NLP problem.

The resulting NLP problem has been modeled using Pyomo [Hart et al., 2012], an open-
source Python-based software package for modeling complex optimization problems, and
solved using interior point optimizer (IPOPT) solver, an open-source software package suitable
for large-scale nonlinear optimization. It implements an interior-point line-search filter method
and can be employed to solve general NLP problems [Wächter and Biegler, 2006].
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5.5 Conclusions

In this chapter, the main numerical methods for optimal control have been described.
The accuracy of global collocation methods has led to choose in this thesis a pseudospectral
method to solve optimal control problems, namely the pseudospectral method based on
the Flipped Legendre-Gauss-Radau collocation points, which is especially suitable due to
the presence of endpoints constraints in the optimal control problem and the state at the
terminal time in the objective functional. The peculiarities of the formation mission design
problem studied in this thesis, has made it necessary to use a special pseudospectral method,
the knotting pseudospectral method. To gain a deeper insight into these methods and to
avoid dependance from commercial software, the knotting pseudospectral method has been
implemented from scratch in this thesis.



Chapter 6

Stochastic Optimal Control Approach

In this chapter, the stochastic optimal control method employed to solve the stochastic
formation mission design problem is introduced. First, the main sources of uncertainty in
air traffic management are described. Later, the formulation of the stochastic switched
optimal control problem is introduced. After that, the methodology to convert the stochastic
constraints into deterministic constraints and the stochastic objective functional into a
deterministic objective functional is described. This methodology is based on nonintrusive
generalized polynomial chaos stochastic collocation. Finally, the method employed to conduct
the sensitivity analysis is described, the aim of which is to identify the random variables
that have more influence on the variability of a component of the solution of the stochastic
formation mission design problem.

6.1 Introduction

An OCP of a stochastic switched dynamical system is an OCP in which the continuous
dynamics of the system is represented by stochastic differential equations, the objective
functional is a stochastic functional, and the constraints, which are defined by means of
stochastic functions, must be satisfied almost surely, i.e., with probability 1. The set of
possible exceptions in which the constraints are not satisfied may be non-empty but must
have probability 0. Therefore, in this thesis, the adjective stochastic means that the functions
and the solutions of the differential equations depend on a vector of random variables. This
problem is referred to as the stochastic switched optimal control problem (SSOCP).

Modeling, control, and optimal control of stochastic switched systems are addressed in
[Alwan and Liu, 2018, Zhu, 2019], in which the random factors acting on the continuous
dynamic models of the switched system in each discrete state are represented by some
idealized processes such as the Wiener process, and tools such as stochastic calculus have
been employed to obtain solutions.
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Another approach to model uncertainties in switched dynamical systems is to treat
uncertainties as random variables or random processes and recast the original deterministic
switched dynamical system as a stochastic switched dynamical system. This type of stochastic
systems are different from those represented by classical stochastic differential equations,
where the random inputs are idealized processes. Consider a stochastic optimal control
problem in which only random variables are present in its formulation like in the formation
mission design problem studied in this thesis. One of the most commonly used methods
to solve OCPs of stochastic dynamical systems of this type is the Monte Carlo sampling
[Shapiro, 2003], in which independent realizations of the random variables are generated
based on their probability distributions. For each realization, the OCP becomes deterministic.
After solving the deterministic instances of the problem that correspond to these realizations of
the random variables, an ensemble of solutions is obtained, from which statistical information
can be extracted. Although Monte Carlo sampling is straightforward to apply as it only
requires iterative resolutions of deterministic instances of the OCP, it requires a large number
of solutions, because the solution statistics converge relatively slowly. For example, the mean
value typically converges as 1/

√
N , where N is the number of realizations. The need for

large number of solutions for accurate results can lead to an excessive computational cost,
especially for OCPs that are already computationally intensive in the deterministic settings,
as the mission design problem considered in this thesis. The Generalized Polynomial Chaos
(gPC) expansion can contribute to alleviating this drawback.

A systematic and coherent presentation of numerical strategies for uncertainty quantifica-
tion and stochastic computing is given in [Xiu, 2010], with a focus on the methods based on
the gPC approach. Both the intrusive stochastic Galerkin and the nonintrusive stochastic col-
location approaches to gPC are illustrated in detail. The nonintrusive stochastic collocation
approach based on regression is described in [Sudret, 2008] and [Blatman and Sudret, 2010].

In this thesis, a stochastic collocation method has been selected. With this approach, a
small number of sample points of the random variables are used to jointly solve particular
instances of the SSOCP. The obtained solutions are then expressed as orthogonal polynomial
expansions in terms of the random variables using these sample points. This is a nonintrusive
methodology because the model equations are not altered. Depending on the distributions
of the random variables, different types of orthogonal polynomials can be chosen to achieve
better numerical precision. This technique allows statistical and sensitivity analysis of the
stochastic solutions to be conducted at a low computational cost. Thus, the gPC method
converts the SSOCP into an augmented deterministic SOCP, in which particular instances of
the SSOCP are solved together as a single deterministic OCP. It is important to point out
that the gPC method is applicable to solve the SSOCP when the solution depends smoothly
on the random variables. This means that the solutions obtained for each combination of
sample points of the random variables must give rise to the same discrete solution, i.e., to
the same sequence of discrete states of the switched dynamical system that represents the
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formation mission.

Sources of uncertainty in ATM

In [Cook et al., 2015], the different sources of uncertainty that affect ATM have been
classified according to the following five major groups:

• Data uncertainty. This type of uncertainty is due to the presence of some level of
uncertainty in the data or some degree of inaccuracy in the models.

• Data unavailability. In this case, there is lack of information due to managerial or
technological barriers.

• Operational uncertainty. In this case, uncertainty is due to decisions taken by humans,
e.g. air traffic controllers, flight dispatchers, and pilots.

• Equipment uncertainty. This type of uncertainty is due to problems with aircraft or
with the communications, navigation and surveillance equipment.

• Weather uncertainty. This type of uncertainty is due to the presence of winds,
thunderstorms, snowfalls, and fog.

From all this sources of uncertainty, it is well known that uncertainty in flight departure times
is among the main causes of trajectory uncertainty, which generates inefficiency in the ATM
system [Rivas and Vazquez, 2016]. Timing is not only crucial in general ATM operations,
but also in formation missions. Indeed, considering the usual cruise speed of most long-haul
commercial aircraft, missing the rendezvous location by, for instance, ten minutes means
spatially missing the partner aircraft by 150 km. Such cases require catch-up maneuvers,
which result in a loss of performance compared to the planned formation mission.

General ATM uncertainties

Sources of uncertainty

Data uncertainty & unavailability

Operational uncertainty

Equipment uncertainty

Weather uncertainty

FF inherent uncertainties
Relative positioning uncertainty

Induced drag reduction
factor uncertainty

Fuel savings uncertainty

Fig. 6.1: Sources of uncertainty affecting formation flight.

Additionally to the former general ATM-related uncertainties, there are uncertainties
inherent to formation flight.

As seen in Chapter 2, in extended formations, due to the great distance between the leader
and the follower aircraft, instabilities such as meandering and external factors, may affect the
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motion of the vortices. It is therefore important to maintain the relative position between the
follower aircraft and the leader’s wake vortices precisely, as the potential formation benefits
are very sensitive to that relative positioning. However, the relative positioning between the
follower aircraft and the leader’s wake vortices can not be kept precisely. Therefore, the
induced drag reduction factor and the fuel savings achieved in formation flight are actually
uncertainties of the formation mission design problem. Fig. 6.1 gives a schematic overview of
both, general uncertainties related to ATM and uncertainties inherent to formation flight.

A great number of research studies focused on stochastic modeling. In [Shone et al., 2021]
a review of the literature on stochastic modeling with applications to ATM is provided, include
literature on stochastic optimal control.

Most of these studies focused on the conflict detection and resolution problem. In
[Hu et al., 2005], the problem of aircraft conflict prediction is studied for two-aircraft midair
encounters. First, a model is presented for prediction of the aircraft positions along a time
horizon, during which each aircraft is following a prescribed flight plan in the presence of
additive wind perturbations on its velocity. Then, a method for estimating the probability of
conflict is proposed. This method is based on a Markov chain approximation of the stochastic
processes that models the aircraft flight. In [Prandini and Hu, 2009], the aircraft conflict
prediction problem is formulated as a reachability problem in a stochastic hybrid system
framework. Specifically, a switching diffusion model is employed to predict the future positions
of an aircraft following a given flight plan, and the probability that the aircraft enters an unsafe
region of the airspace is estimated using a numerical algorithm for reachability computation.

In [Li et al., 2014], an approach to aircraft trajectory optimization in the presence of
uncertainties based on gPC is presented, where only one random variable has been considered,
which represents an uncertain aerodynamic parameter of the dynamic model of the aircraft.
This random variable has been modeled as a uniformly distributed random variable. In
[Matsuno et al., 2015], a stochastic optimal control method based on gPC is developed for
determining conflict-free aircraft trajectories under wind uncertainty. The random processes
that represent the components of the wind speed are approximated as a linear combination of
deterministic functions multiplied by independent random variables using the Karhunen-Loève
expansion.

Although there is a growing interest in addressing uncertainties in the field of ATM, there
are very few studies that study formation flight for commercial aircraft in the presence of
uncertainties. One of these few research studies is [Kent and Richards, 2014], in which the
impact of ground delays on formation flight is studied using stochastic dynamic programming.

Specification of the stochastic formation mission design problem

In this thesis, the formation mission design problem for commercial aircraft in the presence
of uncertainties in some of the parameters and boundary conditions of the problem is studied.
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Given several commercial flights, the stochastic formation mission design problem consists in
establishing how to organize them in formation or solo flights and in finding the trajectories
that minimize the expected value of the DOC of the formation mission in the presence of
uncertainties. Since each aircraft can fly solo or in various positions within a formation, the
mission is modeled as a stochastic switched dynamical system, in which the flight modes of
the aircraft are described by sets of stochastic ordinary differential equations, the discrete state
describes the combination of flight modes of the individual aircraft, and logical constraints
establish the switching logic among the discrete states of the system. Stochastic switched
dynamical systems inherit all the features of the deterministic switched dynamical systems
seen in Chapter 4.

Both the discrete and the continuous dynamics are affected by uncertainties. This general
definition can encompass a wide range of stochastic phenomena. In this thesis, only the
stochastic hybrid systems in which random variables only affect the continuous dynamics
have been considered. Specifically, random variables represent uncertain in the departure
times of the aircraft and in the fuel burn savings for the trailing aircraft. The probability
distribution functions of these random variables are assumed to be known.

In the following section, the formulation of an OCP of a stochastic switched dynamical
system is introduced.

6.2 The stochastic switched optimal control problem

The presence of random variables in the SOCP converts it into an SSOCP. In the formation
mission design problem studied in this thesis, not all the elements of the SSOCP contain
random variables. Specifically, the fuel consumption reduction factor Rfuel in the mass flow
rate equation (3.14) of the aircraft flying in formation as a trailing or an intermediate aircraft
is a random variable. In contrast, the equations of motion associated with the state variables
φ, λ, χ, and V do not contain random variables. The departure times of the aircraft are
also assumed to be random variables of the SSOCP. One of these departure times coincides
with tI , the initial time of the formation mission. These random variables are assumed to be
independent and characterized by probability density functions.

Let θ = (θ1, θ2, . . . , θN) be the vector of random variables that represent the random
parameters of the SOCP. For sake of clarity, hereinafter the subindex "SS" will be employed
in the formulation of the OCP for stochastic switched dynamical systems. It is assumed that
the control vector uSS(t) is deterministic and, therefore, it is a function of time only, whereas
the state vector xSS(t, θ) is stochastic and, therefore, it is a function of both time and the
vector of random variables, θ [Li et al., 2014].

The continuous-time SSOCP has been formulated as in [Li et al., 2014], namely all the
elements of the problem depend on θ and the dynamic equations, the path constraints, and
the boundary conditions must be satisfied almost surely. In the formulation of the SSOCP,
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the dynamical equations and endpoint constraints are:

ẋSS(t, θ) = fSS,vSS(t)(t, xSS(t, θ), uSS(t), θ) a.s.,
xSS(tI , θ) = xI ∈ Rn a.s., (6.1)
xSS(tF , θ) = xF ∈ Rn a.s.,

vSS(t) ∈ {0,1}, tI ≤ t ≤ tF .

The performance index of the SSOCP has the following form:

JSS (t, xSS(t, θ), uSS(t), vSS(t), θ) =

MSS(tF , xF , θ) + ∫
tF

tI
LSS,vSS(t)(t, xSS(t, θ), uSS(t), θ)dt.

(6.2)

The SSOCP is thus stated as follows

min
uSS∈Ω,vSS∈{0,1}

JSS (t, xSS(t, θ), uSS(t), vSS(t), θ) , (6.3)

subject to dynamical equations and endpoint constraints from the set of Eqs. (6.1). It can be
seen that the difference between the formulations of the deterministic SOCP and the SSOCP
is that the vector random variables θ is included in the latter.

It is important to point out that probabilistic constraints, also known as chance constraints,
could be introduced in the formulation of the SSOCP [Matsuno et al., 2015]. However, in
this thesis, chance constraints have not been considered in the formulation of the SSOCP
employed to solve the stochastic formation mission design problem.

6.2.1 The generalized polynomial chaos expansion

In this section, following [Li et al., 2014, Matsuno et al., 2015], the gPC expansion is
introduced and the method for determining the stochastic solution of the SSOCP and
computing its statistical information is described.

Using the gPC expansion, the stochastic solution of the SSOCP can be approximated by
a finite sum of orthogonal polynomials. The P-th order gPC approximation of the stochastic
solution of the SSOCP, z(t, θ), can be expressed as

zP (t, θ) =
M

∑
m=1

Cm(t)Φm(θ), (6.4)

where θ = (θ1, θ2, . . . , θN) is a vector of independent random variables, Cm(t) are the
corresponding coefficients of the expansion, which can be obtained using either a nonintrusive
or an intrusive approach, and Φm(θ) are the multivariate orthogonal polynomial basis
functions, which are calculated from the li-th order one-dimensional polynomial basis function
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φ(li)(θi) of the random variable θi by means of the tensor product rule as follows:

Φm(θ) =
N

∏
i=1
φ
(li)
i (θi). (6.5)

Notice that, in Eq. (6.5), a unique combination of li, i = 1,2, . . . ,N , corresponds to each
subscript m, which satisfy the condition ∑Ni=1 li ≤ P . The number of tensor product basis
functions is M = (

N+P
N

).

Orthogonal polynomials basis functions

The orthonormal polynomials in Eq. (6.5) satisfy the following orthogonality condition

E[φ
(j)
i (θi) φ

(k)
i (θi)] = ∫ φ

(j)
i (θi) φ

(k)
i (θi)ρi(θi)dθi = δjk, (6.6)

where E is the expected value operator, ρi(θi) is the probability density function (PDF) of
the random variable θi, and δjk is the Kronecker delta function.

To improve convergence, the choice of the orthogonal polynomials should be made on
the basis PDF ρi(θi). For instance, the Legendre polynomials are the best choice for uniform
random variables, whereas Hermite polynomials are the best option for Gaussian random
variables. Some relationships between continuous and discrete probability distributions and
their correspondent gPC basis polynomials are shown in Tables 6.1 and 6.2, respectively.

Distribution gPC basis polynomial
Gaussian Hermite
Uniform Legendre
Gamma Laguerre

Table 6.1: Correspondence between continuous random variables type and the gPC basis polynomial.

Distribution gPC basis polynomial
Poisson Charlier
Binomial Krawtchouk
Hypergeometric Hahn

Table 6.2: Correspondence between discrete random variables type and the gPC basis polynomial.

6.2.2 The stochastic collocation approach

The expansion coefficientes, Cm(t), can be obtained using intrusive or nonintrusive
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approaches.

In the stochastic Galerkin method, the gPC expansions in terms of the random variables
that represent the sources of uncertainty such as parameters and boundary conditions, are
first determined and then the gPC expansions are substituted into the model equations. The
Galerkin projection is then performed to project the model equations onto the random space
spanned by the polynomial basis. This projection transforms each stochastic equation of the
model into a set of coupled deterministic equations. Finally, the resulting system of equations
is solved with a suitable numerical method. This is an intrusive methodology in the sense
that the model equations are altered. The stochastic Galerkin method can be challenging
when the stochastic model equations take complicated forms. In this case, the derivation of
the set of deterministic equations can be very difficult or even impossible [Li et al., 2014].

Within the nonintrusive methods, the regression approach and the stochastic collocation
method can be employed. The nonintrusive stochastic collocation approach based on
regression is described in [Sudret, 2008] and [Blatman and Sudret, 2010]. This method is
specially appropriate when the number of random variables considered is high, in general,
larger than 10 variables [Matsuno et al., 2015]. In stochastic collocation methods the
stochastic model equations are satisfied at a discrete set of points, called nodes, in the
corresponding random space. From this point of view, all classical sampling methods
like Monte Carlo sampling are collocation methods. However, in stochastic collocation,
polynomial approximation theory is employed to locate the nodes, known as collocation points,
strategically to increase the numerical accuracy and significantly reduce the sample points.

In this thesis, the coefficients Cm(t) of the expansion (6.4) are calculated using a
nonintrusive gPC based stochastic collocation method as follows

Cm = E[z(t, θ)Φm(θ)] = ∫ z(t, θ)Φm(θ)ρ(θ)dθ, (6.7)

where ρ(θ) = ∏
N
i=1 ρi(θi) is the joint probability density function of the vector of random

variables θ.

A Gaussian quadrature can be employed to approximate the integral in Eq. (6.7) using a
set of q collocation points θ(j)i for each random variable θi and calculating the corresponding
set of quadrature weights α(j)

i , j = 1,2, . . . , q.

Higher precision in the quadrature can be achieved by increasing the number of collocation
points q. Using the tensor product rule, the total number of collocation points is qN . This
number, which could become large when N , the number of random variables in θ, grows, can
be reduced to Q using the sparse grid quadrature based on the Smolyak rule [Xiu, 2010].

Let θ(j) be the collocation points and α(j), j = 1, . . . ,Q, the corresponding weights.
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Then, the coefficients of the expansion Cm in Eq. (6.7) are approximated by:

Cm ≈

Q

∑
j=1

z(t, θ(j))Φm(θ(j))α(j), (6.8)

where z(t, θ(j)) denotes the solution of the augmented SOCP obtained using the j-th
collocation point θ(j) and Φm(θ(j)) represents the multivariate orthogonal polynomial basis
function evaluated at the j-th collocation point θ(j). Thus, the SSOCP is converted into an
augmented deterministic SOCP, in which particular instances of the SSOCP, which correspond
to the collocation points of the random variables, are combined into a single optimal control
problem. The resulting augmented SOCP is solved by means of the numerical methods
described in chapters 4 and 5. The expected value and variance of the stochastic solution
zP (t, θ) are calculated using the coefficients of the expansion as follows:

E[zP (t, θ)] = C1(t), (6.9)

VAR[zP (t, θ)] =
M

∑
m=2

C2
m(t), (6.10)

where VAR denotes the variance operator. As stated in Eqs. (6.9) and (6.10), the expected
value coincides with the first coefficient, whereas the variance is the sum of the squares
of the other coefficients of the gPC expansion. Using the former expressions, statistical
information of the solutions of the SSOCP can be easily computed. Additionally, the mean
and the standard deviation of some component of the stochastic solution can be expressed
as a function of the variables of the SSOCP and included in the objective functional and the
constraints of the problem.

A complete treatment of the gPC expansion can be found in the monography [Xiu, 2010],
whereas the procedure followed to determine the stochastic solution of the SSOCP and to
compute its statistical information is schematically represented in Fig. 6.2. Further details
can be found in [Li et al., 2014, Matsuno et al., 2015].

6.2.3 Specification of the stochastic switched optimal control problem

Following the technique described in [Li et al., 2014], the stochastic constraints from
Eqs. (6.1) have been converted into deterministic constraints. Likewise, the stochastic
objective functional of the SSOCP from Eq. (6.2) has been converted into a deterministic
functional by taking its expected value. The new formulation of the SSOCP can be expressed
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Determine the set of collocation points
θ(j) and compute the associated
weights α(j), j = 1, . . . ,Q, for
the vector random variable θ.

Vector
random
variable θ

Calculate the value of the orthonormal
polynomial Φm(θ(j)) at each collocation
point θ(j), j = 1, . . . ,Q,m = 1, . . . ,M .

Solve the augmented SOCP for computing
the deterministic solutions z(t, θ(j)) of
the SSOCP at each collocation point
θ(j), j = 1, . . . ,Q, using deterministic
numerical methods (Chapters 4 and 5)

Aircraft
model,
wind

forecast,
flight data

Determine the approximated values
of the coefficients of the expansion
Cm(t),m = 1, ...,M , using Eq. (6.8).

Calculate the approximate
stochastic solution zP (t, θ) of
the SSOCP using Eq. (6.4).

Compute the mean and variance functions
of the approximate stochastic solution
z(t, θ) using Eqs. (6.9) and (6.10).

Fig. 6.2: Schematic diagram of the procedure for determining the stochastic solution of the SSOCP
and computing its statistical information.

as follows

min
uSS∈Ω,
vSS∈{0,1}

JSS = E [MSS(tF , xF , θ) + ∫
tF

tI
LSS,vSS(t)(t, xSS(t, θ), uSS(t), θ)dt]

s.t.

ẋ1SS
(t, θ1) = fSS,vSS(t)(t, xSS(t, θ1), uSS(t), θ

(1)
),

ẋ2SS
(t, θ2) = fSS,vSS(t)(t, xSS(t, θ2), uSS(t), θ

(2)
),

⋮

ẋNSS
(t, θN) = fSS,vSS(t)(t, xSS(t, θN), uSS(t), θ

(Q)
),

E [xSS(tI , θ)] = xI ∈ Rn,

E [xSS(tF , θ)] = xF ∈ Rn,

vSS(t) ∈ {0,1}, tI ≤ t ≤ tF ,

(6.11)
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where θ(1), θ(2), . . . , θ(Q) are the Q collocation points of the vector random variable θ.

Solution of the stochastic switched optimal control problem

As already seen in Chapter 4, deterministic switched dynamical systems are described by
both a continuous and a discrete dynamics, in which the transitions among discrete states are
not established in advance. Stochastic switched dynamical systems inherit all the features of
the deterministic switched dynamical systems.

The stochastic collocation method converts the SSOCP into an augmented deterministic
SOCP. With this approach, a small number of sample points of the random parameters are
employed to jointly solve particular instances of the SOCP. The same methodology as the
one explained in Chapter 4 for deterministic SOCP can be followed, obtaining an augmented
deterministic EOCP with inequality and equality constraints which can be solved using the
optimal control techniques explained in Chapter 5.

The solution of the SSOCP includes both the state and control variables of the system
that represent the formation mission. Due to the presence of the vector of random variables in
the SSOCP, the solution is stochastic, i.e., it depends on the actual realization of the vector
random variable. In particular, it is a random function of state or time. Therefore, the solution
is actually a random process, characterized by the mean function and the corresponding 95%
confidence envelope. Specifically, the observed values of a state variable at a given time t is
a random variable. In this case, the random process is a random function of time. Likewise,
the time at which a given value of the state variable is reached is a random variable. This
means that the timing of the trajectories, which is defined as the time at which a state is
reached, is also a random process. In this case, the random process is a random function of
the state. In this paper, the timing of the trajectories is represented as a random function of
the orthodromic distance from the departure location. For the sake of ease of exposition, the
stochastic solution of the SSOCP is denoted in the following sections as a random function of
time. All the random variables observed at specific time instants or states are characterized
by their expected values and by the corresponding 95% confidence intervals, including the
arrival times and the fuel consumption of the aircraft of the formation mission.

6.3 Sensitivity analysis of the solution

The purpose of the sensitivity analysis is to identify the random variables that have more
influence on the variability of a component of the stochastic solution with the aim of reducing
its variability acting on the source. Therefore, in this thesis, a global sensitivity analysis of
the stochastic solution is also conducted [Saltelli et al., 2008] in the numerical experiment
that involves two random variables such as Experiment B presented in Chapter 8, in which a
two-aircraft transoceanic mission design problem with uncertainty in the departure times of
both flights is addressed.
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In particular, the aim of the variance-based sensitivity analysis is to quantify what
proportion of the variance of each component of the solution z(t, θ) of the formation mission
design problem is due to the variance of each component θj , j = 1,2, . . . ,N of the random
vector θ.

In this thesis, this analysis relies on the computation of the so-called Sobol’ indices, under
the assumption that the random variables in θ are independent [Saltelli et al., 2008]. Sobol’
indices can be directly derived from the coefficients Cm(t) of the gPC expansion (6.4) as
explained in [Trucchia et al., 2019].

Following [Trucchia et al., 2019], the Sobol’ index Si,j(t) for the i-th component of the
solution z(t, θ) and the j-th component of the random variable θ can be expressed as

Si,j(t) =
1

VARi
∑
m∈I

C2
m(t), (6.12)

where VARi is the variance calculated in Eq.(6.10) for the i-th component of the solution
and I is the set of multi-indices such that the computation of Si,j(t) only includes terms that
depend on the random variable θj , j = 1,2, . . . ,N .

6.4 Conclusions

In this chapter, the formulation of the stochastic optimal control problem employed to
model the stochastic formation mission design problem is presented and the approach followed
to solve it is described. It is a nonintrusive polynomial chaos based stochastic collocation
method, which converts the stochastic switched optimal control problem into an augmented
deterministic switched optimal control problem. With this approach, a small number of sample
points of the random parameters are used to jointly solve particular instances of the switched
optimal control problem. The obtained solutions are then expressed as orthogonal polynomial
expansions in terms of the random parameters using these sample points. The technique
allows statistical and global sensitivity analysis of the stochastic solutions to be conducted at
a low computational cost.



Chapter 7

Deterministic Formation Mission Design Problem

In this chapter, to show the effectiveness of the methodology described in Chapter 4 in
solving the formation mission design problem in the absence of uncertainties, the results
of three different numerical experiments will be described. All the experiments involve
transoceanic eastbound flights operated by Airbus 330-200 aircraft. In the first experiment,
a two-aircraft formation mission design problem is solved, in which one flight’s departure
time is free. Then, the optimal solution of this problem has been assumed as the baseline
case for the next experiment, in which different delays in the departure times of both flights
have been considered. Finally, a three-aircraft formation mission design problem is solved, in
which different fuel savings schemes have been considered. For each experiment, a detailed
description of the results is given together with a comparison with the results obtained in solo
flights.

7.1 General description of the experiments

The following numerical experiments have been carried out:

• Experiment A: Two-aircraft transoceanic mission design with one flight’s departure time
free.

• Experiment B: Two-aircraft transoceanic mission design with delays in the departure
times.

• Experiment C: Three-aircraft transoceanic mission design with different fuel savings
schemes.

All the experiments involve transoceanic eastbound flights. Wind data from the ERA-
INTERIM reanalysis database has been used. As mentioned above, in this study only the
cruise phase has been modeled, the rest of the flight phases are neglected. Thus, the initial
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and final cruise phase locations of the cruise phase of the flights have been assumed to be the
latitudes and longitudes of the departure and arrival airports of each flight at cruise altitude.
Airbus A330-200 aircraft BADA models have been considered for each flight. The initial mass
of each aircraft is assigned as well as the initial and final velocities, which have been set at
typical cruise values for the selected aircraft models. The initial heading angle is set to the
initial heading angle of the orthodromic path between the initial and final locations of each
flight. Arrival times are left free and a constraint on the maximum temporal deviation from
the scheduled arrival time of 45 minutes has been introduced for each flight. The time and
fuel burn weighting parameters, αt and αf , in the objective functional have been set to 0.3
and 0.7, respectively, based on the CI definition, as explained in Section 3.4.

The numerical experiments have been conducted on a 3.6 GHz Intel Core i9 computer
with 32 GB RAM. The computational times reported in this section include both the time
required to generate the warm-start solution and the time to find the optimal solution of the
problem. The warm-start solution is a feasible solution of the problem generated by the NLP
solver from initial guesses of the solution. The initial guesses for the latitude, the longitude
and the heading angle have been generated using the orthodromic between departure and
arrival locations of each flight. Typical cruise velocity and fuel consumption of the aircraft
model selected have been used to generate the initial guesses of the velocity and the mass of
each aircraft during the flight, respectively.

7.2 Experiment A: Two-aircraft transoceanic mission design with one flight’s
departure time free

7.2.1 Description of the experiment

Experiment A involves two transoceanic eastbound flights, Flight 1 and Flight 2, with
given fuel savings for the trailing aircraft and boundary values of the state variables. Flight
1 and Flight 2 are operated by Aircraft 1 and Aircraft 2, respectively. In the SOCP stated
to solve the mission design problem, the departure time of Flight 1 is fixed, whereas the
departure time of Flight 2 is left free. In case of formation, Aircraft 1 will be the trailing
one and Aircraft 2 will be the leader. Solving this problem entails to decide which mode of
flight, i.e. formation or solo flight, is optimal, the optimal trajectories of the aircraft and the
optimal departure time of Flight 2. Additionally, in case of formation flight, the rendezvous
and splitting locations and times must also be determined. To check the optimality of the
obtained solution, a comparison between formation flight and solo flight results has been
carried out.

The two transoceanic flights considered in this experiment have the following departure
and arrival locations:

• Flight 1: New York (JFK) - Madrid (MAD).
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• Flight 2: Montreal (YUL) - London (LHR).

The fuel burn savings for the trailing aircraft is set to 10%. The departure time of Flight
1 has been set to 10:15. The boundary conditions for the state variables of each aircraft are
listed in Table 7.1.

Symbol Units Flight 1 Flight 2
φI [deg] 40.64 45.47
φF [deg] 40.48 51.47
λI [deg] -73.78 -73.74
λF [deg] -3.57 -0.45
χI [deg] 66.51 55.70
VI [m/s] 240 240
VF [m/s] 220 220
mI [kg] 220 000 215 000

Table 7.1: Experiment A: Boundary conditions.

As mentioned above, the formation configuration is selected in advance. In case of
formation flight, Aircraft 1, associated to Flight 1, is forced to be the trailing aircraft. Hence,
Aircraft 2, associated to Flight 2, will be the leader one.

7.2.2 Results

Optimal routes

In the optimal solution, formation flight has been selected as the optimal solution and the
obtained optimal departure time for Flight 2 has been 10:50, 35 minutes after the departure
of Flight 1. The obtained optimal formation flight routes are represented in Fig. 7.1, together
with the solo flight routes and the wind field. In this figure, dashed lines are used to plot solo
flight routes and solid lines are used to represent formation flight routes. Green and blue lines
represent Flight 1 and Flight 2, respectively.

Flight 1 starts 35 minutes before Flight 2, and due to this difference in the departure
times, the optimal solution implies a large initial detour of Flight 1 with respect to solo flight,
in order to join Flight 2 as soon as possible, thereby, the rendezvous point is very close to the
departure location of Flight 2.

Optimal state and control variables

The corresponding state and control variables are represented in Fig. 7.2 and Fig. 7.3,
respectively. For a better understanding of these figures, the portions of the plots of the
variables that correspond to formation flight have been represented on a grey background. It
can be observed that the heading angle and the Mach number of both aircraft are the same
during the formation, as opposed to the mass flow rate which is different for each aircraft.
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Fig. 7.1: Experiment A: Solo and formation flight routes.
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Fig. 7.2: Experiment A: State variables.
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Fig. 7.3: Experiment A: Control variables.

All the state variables vary smoothly, except the heading angle and the Mach number at
the beginning and at the end of the flight. This behavior of the state variables is typical in
boundary value problems, in which a quick maneuver is necessary to steer each aircraft from
its initial state to its optimal route and from the optimal route to the final state. On the
other hand, the control variables vary in a quite smooth way except around the switching
instants. Notice that, the Gibbs phenomenon, described in Section 5.3.2, is present near the
rendezvous and the splitting locations. However, this non-smooth behavior at the switching
times lasts for a very short period of time compared with the total flight time.

Flight Fuel Covered DOC
Time [h] Burn [kg] Distance [km] [mu]

Formation F. 7.68 46543.93 6716.44 40875.15
Solo F. 7.47 48596.82 6205.81 42085.37

Table 7.2: Experiment A: Solo and formation flight results for Flight 1.
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Flight Fuel Covered DOC
Time [h] Burn [kg] Distance [km] [mu]

Formation F. 6.19 40130.77 5348.58 34776.74
Solo F. 6.18 39683.14 5462.84 34452.60

Table 7.3: Experiment A: Solo and formation flight results for Flight 2.

In this experiment, the great circle distance between departure and arrival locations of
Flight 1 is 5761.08 km and the great circle distance between departure and arrival locations of
Flight 2 is 5214.72 km. For these flights, the great circle distance between departure locations
is 537.00 km and the great circle distance between arrival locations is 1244.77 km. Thus,
this scenario and the selected fuel burn saving for the trailing aircraft can be considered not
optimistic for formation flight.

Comparison with the results obtained in solo flight

Tables 7.2 and 7.3 summarize the results obtained in formation and solo flights for Flight 1
and Flight 2, respectively. As expected, the flight times increase for both aircraft in formation
flight with respect to solo flight, although for Flight 2 this flight time increment is negligible.
Moreover, the fuel consumption of Aircraft 2, the leader aircraft, increases whereas the fuel
consumption of Aircraft 1, the trailing one, decreases. The DOC is expressed in generic
monetary units, mu. The total DOC of formation flight is almost one thousand generic
monetary units lower than that of the solo flight, which amounts to more than one percent
of reduction. For Flight 1, the total flight distance covered in formation flight is more than
500 km larger than in solo flight. Surprisingly, for Flight 2, the total flight distance covered
in formation flight is smaller than the distance covered in solo flight. Obviously, both of them
are higher than the great circle distance. The reason behind this unexpected result for Flight
2 is the Jet Stream. Indeed, in order to get the greatest benefits from the wind field, Aircraft
2 in solo flight takes a route more than 200 km longer than the orthodromic route. In case
of formation, this large detour, which would involve both aircraft, becomes less advantageous
and therefore it does not appear in the optimal solution.

7.3 Experiment B: Two-aircraft transoceanic mission design with delays in the
departure times

7.3.1 Description of the experiment

The flights considered in Experiment B, Flight 1 and Flight 2, have the same departure
and arrival locations, the same boundary values for the state variables of each aircraft, and
the same fuel burn savings for the trailing aircraft as in Experiment A. As before, in case of
formation flight, Aircraft 1, associated to Flight 1, is forced to be the trailing aircraft and
Aircraft 2, associated to Flight 2, is the leader one. The difference with respect to Experiment
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A is that several delays in the departure times of both flights have been considered.
This experiment has been carried out to determine how delays in the departure times of

both flights affect the formation flight, in terms of routes, rendezvous and splitting locations
and times, until formation flight becomes non-optimal and, as a consequence, solo flights are
selected by the algorithm.

Delays [min]
Cases Flight 1 Flight 2
B1 20 0
B2 15 0
B3 10 0
B4 5 0
B5 - -
B6 0 5
B7 0 10
B8 0 15
B9 0 20
B10 0 25

Table 7.4: Experiment B: Delays in the departure time with respect to the baseline scenario for the
different cases.

For this analysis, several numerical simulations have been conducted introducing delays
in the departure times of both flights in Experiment A, namely, 10:15 for Flight 1 and 10:50
for Flight 2, which represents the baseline case. In particular, five-minute increments in the
delays have been considered for each flight. The actual values of the delays are listed in Table
7.4, in which each case is identified by a different symbol B1, . . . ,B10, being B5 the baseline
case.

7.3.2 Results

Optimal routes

For a better understanding of the results, the optimal aircraft routes obtained for different
delays in the departure times are represented together in Fig. 7.4, in which the green and
blue lines represent the optimal routes of Flight 1 and Flight 2, respectively. The optimal
route obtained in the baseline case, B5, is represented with a thicker line. Notice that, in this
figure, the scale is not the same for latitude and longitude axes, and the symbols on the third
axis denote the different cases.

Optimal rendezvous and splitting locations and times

In particular, Fig. 7.4 shows the rendezvous and splitting locations for each case, which are
represented with small black stars and triangles, respectively. It can be observed that there is a
great dependency of the location of the rendezvous points on the delay. For instance, in cases
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Fig. 7.4: Experiment B: Routes obtained in the different cases considered.

B6 and B7, the rendezvous location is very close to the departure location of Flight 2. On the
contrary, the splitting locations barely change with delay. When the delay on one departure
time increases, since it takes more time for the delayed aircraft to reach the other one, the
rendezvous point changes. However, once the formation is created, both aircraft follow a very
similar route for all the cases regardless of the delay in the departure time, and therefore,
the optimal splitting locations do not change significantly. In Table 7.5, the rendezvous and
splitting locations and the distance covered flying in formation obtained in cases B2, . . . ,B9

are displayed. Notice the proximity of the splitting locations in all the cases and the closeness
among the rendezvous locations in cases B6 and B7 and the departure location of Flight 2.
On the contrary, the individual flight times and the duration of the formation flight, as well

Rendezvous Splitting FF
(Lat, Lon) [deg] (Lat, Lon) [deg] Distance [km]

B2 (51.26, -65.69) (57.05, -17.13) 3208.86
B3 (49.15, -68.85) (57.04, -17.11) 3536.29
B4 (47.10,-71.22) (57.04, -17.06) 3829.61
B5 (46.04, -72.86) (57.05, -16.83) 4024.45
B6 (45.48, -73.71) (57.06, -16.71) 4130.80
B7 (45.49, -73.72) (57.06, -16.71) 4130.68
B8 (47.59, -71.91) (57.06, -16.69) 3823.66
B9 (49.92, -69.09) (57.06, -16.73) 3523.89

Table 7.5: Experiment B: Rendezvous and splitting locations and formation flight distance.
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as the rendezvous and splitting times significantly change due to the initial detour made by
both aircraft to create the formation. In Table 7.6, the rendezvous and splitting times and
the duration of the formation flight for each case are listed. Notice that in cases B1 and B10

solo flight is the optimal option. Therefore, the corresponding results have not been reported
in tables and figures, where only the results obtained in formation flight are given. Further
information on the results of cases B1 and B10 can be found in the results of Experiment A.

Time [h]
Rendezvous Splitting FF duration

B2 1.58 5.21 3.63
B3 1.22 5.21 3.99
B4 0.90 5.22 4.33
B5 0.70 5.24 4.54
B6 0.67 5.32 4.66
B7 0.75 5.40 4.66
B8 1.15 5.45 4.30
B9 1.61 5.58 3.96

Table 7.6: Experiment B: Rendezvous and splitting times and formation flight duration.

Direct operating costs

The main results in terms of the objective functional are reported in Table 7.7. In
particular, the variations in the flight time and in the fuel consumption for each flight and
the reduction in the DOC obtained in cases B2, . . . ,B9, all of them compared to solo flights
results, are reported. It can be observed that, in general, the more the flight time of Flight 1
increases, the less the flight time of Flight 2 does and vice versa. Additionally, for those cases
in which Flight 2 is delayed, the flight time increment of Flight 2 is very small. About the
fuel burn, it can be seen that the greatest benefits for the trailing aircraft are achieved in the
baseline case, which is the optimal one, as established in Experiment A. Notice the similarity
among increments in fuel burn for Flight 2 in the results of cases B6,B7,B8, and B9, in
which Flight 2 has a delay in the departure time. The greatest DOC reduction is 1.17% and
the smallest is 0.02%. This tiny DOC reduction implies that flying in formation in case B9

has negligible benefits, which could be further reduced by any contingency during the flight.
In general, one may conclude that the greatest flight distances covered in formation flight

correspond to the highest total benefits in the fuel burn reduction. However, comparing the
results displayed in tables 7.5 and 7.7, it is easy to check that longer distances covered in
formation flight and greater duration of formation flight do not always imply more benefits
in terms of reduction of DOC. It can be seen in tables 7.5 and 7.6, that in the results of
cases B6 and B7, aircraft are flying 4.66 hours and about 4130 km in formation, being the
greatest duration of formation flights and the greatest distance covered in formation flights,
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∆ Time [%] ∆ Fuel burn [%]
Flight 1 Flight 2 Flight 1 Flight 2 ∆ DOC [%]

B2 +2.56 + 3.96 -3.30 + 1.97 -0.14
B3 +2.56 + 2.60 -3.74 + 1.80 -0.51
B4 +2.57 + 1.26 -4.13 + 1.55 -0.89
B5 +2.79 + 0.05 -4.22 + 1.13 -1.17
B6 +3.79 + 0.14 -4.15 + 1.01 -1.09
B7 +4.94 + 0.13 -3.74 + 1.01 -0.79
B8 +6.07 + 0.08 -3.06 + 1.01 -0.36
B9 +7.25 + 0.07 -2.54 + 1.00 -0.02

Table 7.7: Experiment B: Flight times, fuel burn and DOC variations compared to solo flights.

respectively. Nevertheless, as it can be observed in Table 7.7, the corresponding reductions
in the DOC with respect to solo flights are 1.09% and 0.79%, respectively. The reduction
of the DOC is slightly smaller than the one obtained in the baseline case, which amounts to
1.17%.

Table 7.8 has been added to give information about the total detour done by each flight.
As in Experiment A, in all the cases considered in Experiment B there is a reduction in
the distance covered by Flight 2 in formation flight compared to solo flight. Noteworthy is
the great detour made by Flight 1 in the formation flight solution: about 500 kilometers of
diversion from the solo flight route.

∆ Distance [km]
Flight 1 Flight 2

B2 451.21 -123.32
B3 455.03 -127.23
B4 467.05 -123.25
B5 510.62 -114.26
B6 543.56 -108.73
B7 544.79 -111.76
B8 516.48 -110.18
B9 507.60 -109.73

Table 7.8: Experiment B: Extra distance covered compared to solo flight distance.

Computational time

Computational times have been quantified in order to show the advantages in terms
of computational time to solve the formation mission design problem given by the method
presented in this thesis with respect the multiphase approach. The same instances of the
problem have been solved with both techniques.

The average computational time to find the solution has been 4.234 s. For the
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sake of comparison, the same problem has been solved using a multiphase method
[Hartjes et al., 2019]. In this case, two different OCP have been solved, namely, one in
which aircraft flight solo and another one in which they are forced to fly in formation. The
average computational time has been 7.784 s.

7.4 Experiment C: Three-aircraft transoceanic mission design with different fuel
savings schemes

7.4.1 Description of the experiment

Experiment C involves three transoceanic eastbound flights, Flight 1, Flight 2 and Flight
3, with given fuel savings scheme and boundary values of the state variables. Flight 1, Flight
2, and Flight 3 are operated by Aircraft 1, Aircraft 2, and Aircraft 3, respectively. The three
flights considered in this experiment have the following departure and arrival locations, the
first two of them being the same as in Experiment A:

• Flight 1: New York (JFK) - Madrid (MAD).

• Flight 2: Montreal (YUL) - London (LHR).

• Flight 3: Boston (BOS) - Paris (CDG).

The departure times of Flights 1,2, and 3, are set to 10:15, 10:50, and 10:30, respectively.
The first two of them are the same as in Experiment A. The boundary conditions for the state
variables of the three aircraft are given in Table 7.9. The boundary conditions for the state
variables of Aircraft 1 and Aircraft 2 are the same as in Experiment A.

Symbol Units Flight 1 Flight 2 Flight 3
φI [deg] 40.64 45.47 42.36
φF [deg] 40.48 51.47 48.85
λI [deg] -73.78 -73.74 -71.06
λF [deg] -3.57 -0.45 2.35
χI [deg] 66.51 55.70 56.46
VI [m/s] 240 240 240
VF [m/s] 220 220 220
mI [kg] 220 000 215 000 210 000

Table 7.9: Experiment C: Boundary conditions for the three flights.

The relative position of each aircraft in the formation is selected in advance. In case of
two-aircraft formation flights that include Aircraft 3, Aircraft 3 will be the leader aircraft and
Aircraft 1 or Aircraft 2 will be the trailing. In case of two-aircraft formation flights that do
not include Aircraft 3, Aircraft 2 will be the leader aircraft and Aircraft 1 will be the trailing.
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In case of three-aircraft formation flights, Aircraft 3 will be the leader aircraft, Aircraft 2 the
intermediate, and Aircraft 1 the trailing.

Table 7.10 summarizes the results obtained assuming that each flight is performed as
a solo flight. It can be observed that the flight times, the fuel consumption, the covered
distance, and the DOC of each flight are quite different.

Flight 1 Flight 2 Flight 3
Flight Time [h] 7.47 6.19 6.90
Fuel burn [kg] 48596.82 39683.14 42877.40

Covered Distance [km] 6205.81 5462.84 5945.89
DOC [mu] 42087.53 34462.32 37466.18

Table 7.10: Experiment C: Results for the three solo flights.

An analysis is performed to determine how the fuel savings scheme affects the formation
flight, in terms of routes, rendezvous and splitting locations and times, and flight times.

As already mentioned, the only formation configuration allowed is the in-line formation and
the relative position of the aircraft in the formation is fixed. The considered benefits for the
intermediate and the trailing aircraft range from 6% to 14%. Several numerical simulations
have been conducted introducing changes in the fuel savings for the intermediate and trailing
aircraft, in which each case is identified by a different symbol C1, . . . ,C5. The fuel savings
considered in the different cases for the intermediate and trailing aircraft have been listed in
Table 7.11.

Fuel savings [%]
C1 6
C2 8
C3 10
C4 12
C5 14

Table 7.11: Experiment C: Fuel savings for the intermediate and the trailing aircraft, in the different
cases.

7.4.2 Results

Optimal routes

The optimal formation flight routes obtained in case C3 are represented in Fig. 7.5,
together with the solo flight routes and the wind field. In this figure, dashed lines are used
to plot solo flight routes and solid lines are used to represent formation flight routes. Green,
blue, and red lines represent Flight 1, Flight 2, and Flight 3, respectively. For the sake of
brevity, the routes obtained in the other cases have been omitted.
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Fig. 7.5: Experiment C: Solo and formation flight routes.

In the optimal solutions of all the cases considered, there are five discrete states of the
switched dynamical system that represent the joint behavior of the aircraft. In Fig. 7.6 a
schematic representation of these five discrete states, from State I to State V, is given. In
particular, each discrete state is characterized by the following modes

• State I: all the aircraft fly in solo mode.

• State II: two aircraft fly in formation and one in solo mode.

• State III: all the aircraft fly in formation.

• State IV: two aircraft fly in formation and one in solo mode.

• State V: all the aircraft fly in solo mode.

     I         II                                         III                                     IV       V 

     RV2 

     RV1 

     SP2 

     SP1 

     Dep.1 

     Dep.2 

     Dep.3 

     Dest.2 

     Dest.1 

     Dest.3 

States 

Fig. 7.6: Experiment C: Discrete states representation for three-aircraft formation.



84 Deterministic Formation Mission Design Problem

It is easy to see that in the switches among these discrete states, there are two rendezvous
points, RV1 and RV2, where RV1 is the first one and RV2 is the second one, and two splitting
points, SP1 and SP2 , where SP1 is the first one and SP2 is the second one. In Fig. 7.6, the
points RV1, RV2, SP1, and SP2 are represented with grey points. Small triangles have been
used to represent the departure and destination of each flight.

Optimal rendezvous and splitting locations and times

Figs. 7.7 and 7.8 represent the three-aircraft routes obtained in cases C1, . . . ,C5. In these
figures, the behavior of the rendezvous and splitting locations, respectively, is detailed. It can
be observed that the location of both rendezvous points, RV1 and RV2, and the location of
the second splitting point, SP2, do not present significant variations in the different cases.
On the contrary, the location of the first splitting point, SP1, notably changes, differing in
some cases in more than 1000 km. This variation in the location of SP1, which is the point
in which there is a switch between State III and State IV, implies that the three-aircraft
formation time and distance largely depend on the fuel savings scheme. Consequently, the
formation time and distance in State IV also have a high dependency on it. Results in tables
7.12 and 7.13 confirm this conclusion. It can also be observed in these tables that, in all
the considered cases, the formation times and distances corresponding to discrete State II are
small compared to other discrete states.
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Fig. 7.7: Experiment C: Routes obtained in the different cases considered. Detail of the rendezvous
locations.
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Fig. 7.8: Experiment C: Routes obtained in the different cases considered. Detail of the splitting
locations.

Formation distances [km]
Cases State II State III State IV
C1 113.53 3008.99 1371.24
C2 38.19 3323.62 1142.36
C3 41.01 3743.05 737.69
C4 44.48 3847.74 595.32
C5 41.44 4229.41 257.29

Table 7.12: Experiment C: Formation distances for the two- and three-aircraft formation phases.

Formation times [h]
Cases State II State III State IV
C1 0.13 3.30 1.72
C2 0.06 3.69 1.43
C3 0.05 4.26 0.92
C4 0.04 4.42 0.84
C5 0.06 4.92 0.74

Table 7.13: Experiment C: Formation times for the two- and three-aircraft formation phases.

Direct operating costs

The main results related to the objective functional obtained in Experiment C are reported
in Table 7.14. In particular, the increase of the flight time of each flight, the reduction or
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increase of the fuel burn and the reduction in the DOC with respect to the results obtained
assuming each flight is performed as a solo flight, are reported. It can be seen in this table
that, for case C5, the reduction in the DOC is almost 4% comparing to the case in which
formation is not allowed.

∆ Time [%] ∆ Fuel burn [%]
Flight 1 Flight 2 Flight 3 Flight 1 Flight 2 Flight 3 ∆DOC [%]

C1 2.28 0.13 0.30 -1.83 -4.17 0.90 -1.14
C2 2.45 -0.02 0.16 -2.87 -5.81 1.10 -1.80
C3 2.89 -0.06 0.10 -4.15 -7.39 1.25 -2.51
C4 2.90 -0.19 0.01 -5.29 -9.14 1.41 -3.25
C5 3.54 -0.10 0.02 -6.69 -10.64 1.45 -3.97

Table 7.14: Experiment C: Total flight times, fuel burn and DOC reduction compared to solo flights,
in the different cases.

Computational time

The average computational time to find the solution has been 15.274 s. For the
sake of comparison, the same problem has been solved using a multiphase method
[Hartjes et al., 2019]. In this case, 13 different OCP have been solved, since, in this case,
there are 13 possible flight phase sequencing options, as shown in [Hartjes et al., 2019]. The
average computational time has been 90.948 s. This shows that the method presented in this
thesis is able to drastically reduce the computational time to solve formation mission design
problems.

7.5 Conclusions

The results of the numerical experiments described in this chapter show that delays and
changes in the fuel savings scheme have significant influence on the formation mission. The
results show that a reduction of, approximately, 1% and 4% in terms of the DOC can be
achieved for two- and three- aircraft formations, respectively, compared to solo flights, in
non-optimistic scenarios, as the ones selected in this chapter. The results demonstrate that
the proposed method for formation mission design in the absence of uncertainties is fast,
accurate and easily scalable. The average computational times to find the solution for two-
and three- aircraft mission design problems using a common desktop computer have been
around 4 and 15 seconds, respectively, which translates to one half and one sixth of the
computational time required by the multiphase method, respectively.



Chapter 8

Stochastic Formation Mission Design Problem

In this chapter, to show the effectiveness of the methodology described in Chapter 6, in
solving the formation mission design problem in the presence of uncertainties, the results of two
different numerical experiments will be described. All the experiments involve transoceanic
eastbound flights operated by Airbus 330-200. In the first experiment, a three-aircraft
formation mission design problem is solved, in which uncertainty regarding fuel burn savings
is considered. In the second experiment, a two-aircraft formation mission design problem
is solved, in which uncertainty regarding departure times of the aircraft is considered. For
each experiment, a detailed description of the results is given along with a comparison with
the results obtained in the absence of uncertainties and in solo flights. Finally, a sensitivity
analysis of the stochastic solutions of the second experiment has been conducted.

8.1 General description of the experiments

The following numerical experiments have been carried out:

• Experiment A: Three-aircraft transoceanic mission design with uncertainty in the fuel
burn savings.

• Experiment B: Two-aircraft transoceanic mission design with uncertainty in departure
times of the flights.

Both experiments involve transoceanic eastbound flights. Wind data from the ERA-Interim
reanalysis database of the ECMWF are used. As mentioned in Chapter 3, in this thesis only
the cruise phase has been considered; the rest of the flight phases are neglected. Thus, the
initial and final locations of the cruise phase of the flights are assumed to be the latitudes and
longitudes of the departure and arrival airports of each flight at cruise altitude. Airbus A330-
200 aircraft BADA models are considered for each flight. The initial masses of the aircraft
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are assigned, as are the initial and final velocities, which are set at typical cruise values for
the selected aircraft models. The initial heading angles are set to the initial heading angles
of the orthodromic paths between the initial and final locations of each flight. The time and
fuel burn weighting parameters, αt and αf , in the objective functional (3.18) are set to 0.3
and 0.7, respectively, based on the CI definition, as explained in Section 3.4.

The numerical experiments have been conducted on a 3.6 GHz Intel Core i9 computer
with 32 GB RAM. The computational times reported in the following sections include both
the time required to generate the warm-start solution and the time to find the optimal solution
of the problem. The warm-start solution is a feasible solution of the problem generated by
the NLP solver from an initial guess of the solution. Several initial guesses have been tried
to obtain the warm-started solution in order to ensure that the global optimum is reached.
Initial guesses for the latitude, the longitude, and the heading angle are generated using the
orthodromic paths between the departure and arrival locations of each flight. Typical cruise
velocity and fuel consumption of the aircraft model selected are used to generate the initial
guesses of the velocity and the mass of each aircraft during the flight, respectively.

8.2 Experiment A: Three-aircraft transoceanic mission design with uncertainty in
the fuel burn savings

8.2.1 Description of the experiment

Experiment A involves three transoceanic eastbound flights, Flight 1, Flight 2, and Flight
3, with uncertainty in the fuel burn savings for the trailing aircraft. The three flights considered
in this experiment have the following departure and arrival locations:

• Flight 1: New York (JFK) - Paris (CDG).

• Flight 2: Boston (BOS) - Madrid (MAD).

• Flight 3: Montreal (YUL) - London (LHR).

The departure times of Flight 1, Flight 2, and Flight 3 are set to 10:15, 10:30, and 10:50,
respectively. The boundary conditions for the state variables of the three aircraft are given in
Table 8.1. Flight 1, Flight 2, and Flight 3 are operated by Aircraft 1, Aircraft 2, and Aircraft
3, respectively.

The relative position of each aircraft in the formation is selected in advance. In case of
two-aircraft formation flights that include Aircraft 2, Aircraft 2 will be the leader aircraft and
Aircraft 1 or Aircraft 3 will be the trailing. In case of two-aircraft formation flights that do
not include Aircraft 2, Aircraft 3 will be the leader aircraft and Aircraft 1 will be the trailing.
In case of three-aircraft formation flights, Aircraft 2 will be the leader aircraft, Aircraft 3 the
intermediate, and Aircraft 1 the trailing.
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Symbol Units Flight 1 Flight 2 Flight 3
φI [deg] 40.64 42.36 45.47
φF [deg] 48.85 40.48 51.47
λI [deg] -73.78 -71.06 -73.74
λF [deg] 2.35 -3.57 -0.12
χI [deg] +54.26 69.25 +55.53
VI [m/s] 240 240 240
VF [m/s] 220 220 220
mI [kg] 215 000 210 000 220 000

Table 8.1: Experiment A: Boundary conditions of the three flights.

The random variable that represents the fuel burn savings for the trailing aircraft is denoted
by θ. This random variable is modeled as a Gaussian random variable with mean 0.1 and
standard deviation 0.02, i.e., θ ∼ N (0.1,0.02), based on several aerodynamic models and
flight tests reported in [Kent and Richards, 2021]. The departure times are fixed.

Solving this problem entails deciding which mode of flight, i.e., formation or solo flight,
is optimal, the expected values and standard deviations of the latitude and longitude of
the optimal trajectories of each aircraft as functions of time, and the expected values and
standard deviation of the timing of the trajectory as functions of the orthodromic distance
from the departure locations. They include the expected values and the standard deviations
of the arrival times and, in the case of formation flight, the expected values and the standard
deviations of the latitude, longitude, and time of the rendezvous and splitting locations.

8.2.2 Results

The sequence of discrete states obtained in the solution is the following:

• State 1: All the aircraft fly solo.

• State 2: Aircraft 1 and Aircraft 2 fly in a two-aircraft formation and Aircraft 3 flies
solo.

• State 3: All the aircraft fly in a three-aircraft formation.

• State 4: Aircraft 1 and Aircraft 3 fly in a two-aircraft formation and Aircraft 2 flies
solo.

• State 5: All the aircraft fly solo.

Optimal routes

The expected values of the longitude and latitude of the optimal routes obtained in the
solution together with the corresponding 95% confidence envelopes are represented on the
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Fig. 8.1: Experiment A: Expected values of the latitude and longitude of the optimal trajectories of
each aircraft together with the corresponding 95% confidence envelopes represented on the relevant
map together with the wind field.

relevant map together with the wind field in Fig. 8.1 and as functions of time in Fig. 8.2.(a)
and Fig. 8.2.(b), respectively.

Optimal state and control variables

The expected values of the rest of the state variables, namely, the mass, the heading
angle, and the Mach number, together with the corresponding 95% confidence envelopes are
represented as functions of time in Fig. 8.2.(c), Fig. 8.2.(d), and Fig. 8.2.(e), respectively.
The expected values of the control variables are represented for the three flights in Fig. 8.3.
Green, blue, and red lines correspond to Flight 1, Flight 2, and Flight 3, respectively. For a
better understanding of these figures, the portions of the plots of the variables that correspond
to formation flight are represented on a gray background. In particular, the portions of the
plots that correspond to State 2 and State 4, which includes a two-aircraft formation, are
represented on a light gray background, whereas the portion of the plots that correspond to
State 3, which includes a three-aircraft formation, is represented on a dark gray background.

It is important to note that all the optimal solutions obtained considering the fuel
burn savings that correspond to the nodes of the gPC expansion of the random variable
θ ∼ N (0.1,0.02) are formation missions with the same structure.

The control variables vary in a quite smooth way.

Optimal rendezvous and splitting times

The expected values of the rendezvous and splitting times are reported in Table 8.2
together with the corresponding 95% confidence interval. State 2, in which Aircraft 1 and
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Fig. 8.2: Experiment A: Expected values of the state variables of the optimal trajectories of each
aircraft together with the corresponding 95% confidence envelopes.

Aircraft 2 fly in formation and Aircraft 3 flies solo, has the shortest duration.
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Fig. 8.3: Experiment A: Expected values of the control variables of each aircraft.

Spatial variability

Regarding the spatial variability of the solution, it can be observed in Fig. 8.1, Fig. 8.2.(a),
and Fig. 8.2.(b), that both geographical coordinates have a similar behavior. In the first two
discrete states, the spatial variability is rather low, and in State 3, it is almost negligible.
Then, near the first splitting location, the spatial variability starts increasing for all the flights.
Finally, it decreases when the aircraft are approaching the final locations. Hence, the second
splitting location has a significant dependency on the random variable θ and, consequently,
both the duration and the traveled distance in State 3 have a significant dependency on it.
Flight 2 has the greatest spatial variability.

Temporal variability

In addition to the spatial variability, the temporal variability is also quantified in order
to have complete information regarding the spatio-temporal variability of the solution. The
expected values of the timing of the solution together with the corresponding 95% confidence
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envelopes are represented in Fig. 8.4 as functions of the orthodromic distance from the
departure location of each flight. It can be observed in this figure that the temporal variability
is very low in all the flights. In particular, in Flight 1 and Flight 3, the temporal variability is
almost negligible during the whole flight time, whereas, in Flight 2, it starts increasing after
the first splitting location. However, despite this increase, it is very low in Flight 2 as well,
leading to the conclusion that the temporal variability of all the flights slightly depends on
the random variable θ.
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Fig. 8.4: Experiment A: Expected values of the timing of the optimal trajectories of each aircraft
together with the corresponding 95% envelopes.

It can be observed in Table 8.2, in which the expected values and the 95% confidence
intervals of the rendezvous and splitting times are reported, that the amplitudes of these
intervals are lower for the rendezvous times than for the splitting times, but remains fairly
small for both of them.
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Expected value 95% confidence interval
First rendezvous time [h] 0.88 [0.87, 0.89]
Second rendezvous time [h] 1.32 [1.32, 1.32]
First splitting time [h] 4.19 [4.17, 4.21]
Second splitting time [h] 5.95 [5.92, 5.98]

Table 8.2: Experiment A: Expected values and 95% confidence intervals of the rendezvous and
splitting times.

Direct operating costs

The expected values and the 95% confidence intervals for both the flight time, expressed
in hours, and the fuel burn, expressed in tonnes, for each flight are listed in Table 8.3. From
the amplitudes of the 95% confidence intervals, it is easy to see that, as already mentioned,
the flight time variability is rather low. In contrast, as expected, the uncertainty in the fuel
burn savings has a significant impact on the variability of the fuel consumption.

Flight time [h] Fuel burn [t]
Expected value 95% confidence interval Expected value 95% confidence interval

Flight 1 7.13 [7.12, 7.15] 42.47 [41.19, 43.74]
Flight 2 7.47 [7.43, 7.52] 46.24 [45.90, 46.58]
Flight 3 6.16 [6.15, 6.18] 38.00 [36.58, 39.42]

Table 8.3: Experiment A: Expected values and 95% confidence intervals of flight times and fuel
consumption of each flight.

Comparison with the results obtained in solo flight

To quantify the benefits of formation flight with respect to solo flight, the expected
values of the flight time and the fuel consumption, along with the expected value of the
corresponding DOC expressed in monetary units, mu, are estimated assuming that the three
flights are performed as solo flights. The obtained results are reported in Table 8.4. For the
sake of comparison, the expected values of the DOC obtained in both formation and solo
flights of the three aircraft are reported in Table 8.5. It is remarkable that, in spite of the
uncertainties considered in the fuel burn savings for the trailing aircraft, the reduction in the
total DOC achieved with formation flight amounts to 2.16%.

Flight time [h] Fuel burn [t] DOC [mu]
Flight 1 7.06 45.73 39635.79
Flight 2 7.32 45.44 39713.60
Flight 3 6.02 39.52 34165.60

Table 8.4: Experiment A: Expected values of flight times, fuel consumption, and DOC in solo flight
of the three aircraft.
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Flight 1 Flight 2 Flight 3 Total
DOC solo flight [mu] 39635.79 39713.60 34165.60 113514.99
DOC formation flight [mu] 37429.40 40435.59 33252.80 111117.79
∆DOC [%] -5.89 +1.79 -2.75 -2.16

Table 8.5: Experiment A: Expected values of the DOC in solo and formation flights of the three
aircraft.

Comparison with the results obtained in deterministic formation mission design

To quantify the effects of the uncertainty in the fuel burn savings for the trailing aircraft
on the DOC, the same formation mission is designed in the absence of uncertainty, in which
the fuel burn savings for both the trailing and intermediate aircraft are set to 10%. For
the sake of comparison, the obtained results in terms of the DOC for the deterministic and
stochastic formation missions are summarized in Table 8.6. It can be seen that the increment
of the total DOC due to the presence of uncertainties amounts to 1.60%.

Flight 1 Flight 2 Flight 3 Total
Deterministic DOC [mu] 36178.9 40205.67 32980.96 109365.53
Stochastic DOC [mu] (expected value) 37429.40 40435.59 33252.80 111117.79
∆DOC [%] +3.45 +0.57 +0.82 +1.60

Table 8.6: Experiment A: Values of the DOC in deterministic and stochastic formation missions of
the three aircraft.

8.3 Experiment B: Two-aircraft transoceanic mission design with uncertainty in the
departure times of the flights

8.3.1 Description of the experiment

Experiment B involves two transoceanic eastbound flights, Flight 1 and Flight 2, with
uncertainty in the departure times of the flights. The flights considered in this experiment
have the same departure and arrival locations and the same boundary values for the state
variables as Flight 1 and Flight 2 in Experiment A. They have the following departure and
arrival locations:

• Flight 1: New York (JFK) - Paris (CDG).

• Flight 2: Boston (BOS) - Madrid (MAD).

The departure times of Flight 1 and Flight 2 are set to 10:15 and 10:30, respectively. The
boundary conditions for the state variables of the two aircraft are given in Table 8.1. Flight
1 and Flight 2 are operated by Aircraft 1 and Aircraft 2, respectively.

As in Experiment A, the formation configuration is selected in advance. In case of
formation flight, Aircraft 1 will be the trailing aircraft and Aircraft 2 the leader. In this
experiment, the fuel burn savings for the trailing aircraft are set to 10%.
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The random variables that represent the delays with respect to the scheduled departure
times of Flight 1 and Flight 2 from JFK and BOS airports are denoted by θ1 and θ2, respectively.
These random variables have been modeled using a Gaussian mixture distribution, the
parameters of which are estimated from real delay data obtained from the Transtats online
database1 of the U.S. Bureau of Transportation Statistics. This database provides detailed
information on the U.S. transportation systems, including data on departure delays by airport
and airline. The expectation-maximization algorithm for fitting mixture-of-Gaussian models
to data is employed for this purpose [Murphy, 2012]. Departure delay data corresponding to
April 2019 are used.

The resulting Gaussian mixture probability density functions that model the random
variables θ1 and θ2 that represent the departure delays at JFK and BOS airports both have
4 components. The values of the parameters of the Gaussian mixture probability density
functions are given in Table 8.7, where pi,j , i = 1,2, j = 1,2,3,4 are the weights of the
Gaussian component probability density functions of θi, which are probabilities that sum to 1,
and µi,j and σi,j are their means and standard deviations, respectively. This result is consistent
with previous studies on estimation of flight departure delay distributions [Tu et al., 2008].
Fig. 8.5 shows in black the obtained Gaussian mixture distribution of the departure delays of
Flight 1 and Flight 2 from JFK and BOS airports, respectively, together with the histogram
of the data. A bin width of 2 minutes is used for the histograms. The components of the
Gaussian mixture distribution are represented by dotted lines. The mean and the standard
deviation of the random variable θ1 are -1.67 min and 7.69 min, respectively. The mean and
the standard deviation of the random variable θ2 are -0.88 min and 10.37 min, respectively.

Departure
airport

Random
variable

pi,1, pi,2, pi,3, pi,4 µi,1,µi,2,µi,3,µi,4 σi,1,σi,2,σi,3,σi,4

Flight 1 JFK θ1 0.39, 0.17, 0.27, 0.17 -4.94, 11.94, -0.99, -8.91 2.20, 7.17, 2.93, 2.89
Flight 2 BOS θ2 0.24, 0.56, 0.06, 0.14 -1.76, -6.61, 28.67, 10.92 3.39, 3.70, 5.68, 5.78

Table 8.7: Experiment B: Estimated parameters of the Gaussian mixture probability density functions
that model the departure delays of the flights.

As in Experiment A, solving this problem entails deciding which mode of flight is optimal,
the expected values and standard deviations of the latitude and longitude of the optimal
trajectories of each aircraft as functions of time, and the expected values and standard
deviation of the timing of the trajectory as functions of the distance.

8.3.2 Results

The sequence of discrete states obtained in the solution is the following:

• State 1: Both aircraft fly solo.
1https://www.transtats.bts.gov/

https://www.transtats.bts.gov/ 
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(a) θ2, departure delay of Flight 1, JFK airport (b) θ2, departure delay of Flight 2, BOS airport

Fig. 8.5: Experiment B: Estimated probability density functions of the random variables θ1 and θ2
that represent the departure delays of each flight.

• State 2: The aircraft fly in formation.

• State 3: Both aircraft fly solo.
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Fig. 8.6: Experiment B: Expected values of the longitude and latitude of the optimal trajectories of
each aircraft together with the corresponding 95% confidence envelopes represented on the relevant
map together with the wind field.

Optimal routes

The expected values of the longitude and latitude of the optimal routes obtained in the
solution together with the corresponding 95% confidence envelopes are represented on the
relevant map together with the wind field in Fig. 8.6 and as functions of time in Fig. 8.7.(a).
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Optimal state and control variables

The expected values of the rest of the state variables, namely, the mass, the heading
angle, and the Mach number, together with the corresponding 95% confidence envelopes are
represented as functions of time in Fig. 8.7.(c), Fig. 8.7.(d), and Fig. 8.7.(e), respectively.
The expected values of the control variables are represented for the two flights in Fig. 8.8.
Green and blue lines correspond to Flight 1 and Flight 2, respectively. As in Experiment A,
the portions of the plots of the variables that correspond to State 2, in which the aircraft fly
in formation, are represented on a gray background.

It is important to note that all the optimal solutions obtained considering the fuel burn
savings that correspond to the nodes of the gPC expansion of the two random variables are
formation missions with the same structure.

The control variables vary in a quite smooth way. Comparing the expected values of the
state variables and the corresponding 95% confidence envelopes represented as functions of
time in Fig. 8.7 with the corresponding ones of Experiment A given in Fig. 8.2, the high
variability in every state variable of each flight is striking. In particular, the Mach number
variability in the early part of the flight is especially worthy of note. This is due to the fact that
anticipations and delays in the departure times of the flights are compensated by increments
and reductions of their velocities.

Optimal rendezvous and splitting times

The expected values of the rendezvous and splitting times are reported in Table 8.8
together with the corresponding 95% confidence intervals. State 2, in which the aircraft fly
in formation, has the longest duration.

Spatial variability

Regarding the spatial variability of the solution, it can be observed in Fig. 8.6, Fig. 8.7.(a),
and Fig. 8.7.(b) that the longitude variability is greater in State 2, in which the aircraft fly
in formation. In contrast, the latitude variability has a minimum in State 2, which is located
around the maximum value of this geographical coordinate. Aircraft 2, the leading aircraft,
has the greatest spatial variability.

Temporal variability

As in Experiment A, in addition to the spatial variability, the temporal variability is also
quantified in order to have complete information regarding the spatio-temporal variability of
the solution. The expected values of the timing of the solution together with the corresponding
95% confidence envelopes are represented in Fig. 8.9, as functions of the orthodromic distance
from the departure locations of each flight. It can be observed in this figure that the temporal



8.3. Experiment B: Two-aircraft mission design with uncertain departure times 99

5000 10000 15000 20000 25000
Time [s]

70

60

50

40

30

20

10

0

Lo
n 

[d
eg

]

Aircraft 1
Aircraft 2

(a) Longitude

5000 10000 15000 20000 25000
Time [s]

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

La
t [

de
g]

Aircraft 1
Aircraft 2

(b) Latitude

5000 10000 15000 20000 25000
Time [s]

1.7

1.8

1.9

2.0

2.1

2.2

M
as

s [
10

5  k
g]

Aircraft 1
Aircraft 2

(c) Mass

5000 10000 15000 20000 25000
Time [s]

20

40

60

80

100

120

140

160
He

ad
in

g 
an

gl
e 

[d
eg

]

Aircraft 1
Aircraft 2

(d) Heading angle

5000 10000 15000 20000 25000
Time [s]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ac

h

Aircraft 1
Aircraft 2

(e) Mach number

Fig. 8.7: Experiment B: Expected values of the state variables of the optimal trajectories of each
aircraft together with the corresponding 95% confidence envelopes.

variability has a similar behavior for both flights, remaining nearly constant throughout the
flight. As in the case of spatial variability, the temporal variability of the flights in Experiment
B is considerably greater than the temporal variability of the flights in Experiment A. As
expected, uncertainty in the departure times of the flights has a significant impact on the
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Fig. 8.8: Experiment B: Expected values of the control variables of each aircraft.

temporal variability of the trajectories, more than the uncertainty in the fuel burn savings for
the trailing aircraft.
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Fig. 8.9: Experiment B: Expected values of the timing of the optimal trajectories of each aircraft
together with the corresponding 95% envelopes.
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It can be observed in Table 8.8, in which the expected values and the 95% confidence
intervals of the rendezvous and splitting times are reported, that the amplitudes of these
intervals are similar for the rendezvous and splitting times, being, in both cases, considerably
greater than the amplitudes of the 95% confidence intervals of the rendezvous and splitting
times obtained in Experiment A.

Expected value 95% confidence interval
Rendezvous time [h] 1.61 [1.29, 1.94]
Splitting time [h] 5.03 [4.71, 5.34]

Table 8.8: Experiment B: Expected values and 95% confidence intervals of the rendezvous and
splitting times.

Direct operating costs

The expected values and the 95% confidence intervals for both the flight time, expressed
in hours, and the fuel burn, expressed in tonnes, for each flight are listed in Table 8.9. From
the amplitudes of the 95% confidence intervals, it is easy to see that, as already mentioned,
the flight time variability is rather high. Additionally, the uncertainty in the departure times
also has a significant impact on the variability of the fuel consumption.

Flight time [h] Fuel burn [t]
Expected value 95% confidence interval Expected value 95% confidence interval

Flight 1 7.18 [6.86, 7.50] 43.58 [42.52, 44.63]
Flight 2 7.70 [7.37, 8.02] 46.69 [46.27, 47.11]

Table 8.9: Experiment B: Expected values and 95% confidence intervals of flight times and fuel
consumption of each flight.

Comparison with the results obtained in solo flight

To quantify the benefits of formation flight with respect to solo flight, the expected values
of the flight time and the fuel consumption along with the expected value of the corresponding
DOC expressed in monetary units, mu, for the two solo flights, given in the first two rows
of Table 8.4, are compared to the expected values of the DOC obtained in formation flight.
The obtained results are reported in Table 8.10. It can be observed that, in the presence
of uncertainties regarding the departure times of the flights, the probability density funcion
of which is estimated from real departure delay data, small benefits are expected in terms of
the reduction of the total DOC, which amount to only 0.11%. However, in real-life scenarios,
some mitigation measures could be implemented to reduce the negative impact of flight delays
on the benefits of formation flight such as adjusting the flight plan of the formation mission
before departure when one of the flights of a formation is delayed.
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Flight 1 Flight 2 Total
DOC solo flight [mu] 39635.79 39713.60 79349.39
DOC formation flight [mu] 38260.39 40999.01 79259.39
∆DOC [%] -3.59 +3.14% -0.11

Table 8.10: Experiment B: Expected values of the DOC in solo and formation flights of the two
aircraft.

Comparison with the results obtained in deterministic formation missions

To quantify the effects of the uncertainty in the departure delays on the DOC, the same
formation mission is designed in the absence of uncertainty, in which no delays are considered.
For the sake of comparison, the obtained results in terms of the DOC for the deterministic
and stochastic formation missions are summarized in Table 8.11. It can be seen that the
increment of the total DOC due to the presence of uncertainties amounts to 3.76%.

Flight 1 Flight 2 Total
Deterministic DOC [mu] 36178.90 40205.67 76384.57
Stochastic DOC [mu] (expected value) 38260.39 40999.01 79259.39
∆DOC [%] +5.75 +1.97 +3.76

Table 8.11: Experiment B: Values of the DOC in deterministic and stochastic formation missions of
the two aircraft.

Based on the results of the two experiments, it is possible to conclude that uncertainties
have a significant impact on the formation flight benefits in terms of the reduction of the
DOC. In particular, the uncertainties regarding the departure times have a far greater impact
on the DOC than the uncertainties regarding the fuel burn savings. These results demonstrate
that formation flight is economically beneficial in the presence of uncertainties regarding the
fuel savings for the trailing aircraft and in the departure times of the aircraft.

In the next section, a sensitivity analysis of the solution of this experiment to the random
variables that represent the departure times of the flights is carried out. The purpose of this
analysis is to quantify how much uncertainty in each component of the solution is due to the
different sources of uncertainty considered in the experiment.

8.3.3 Sensitivity analysis

In this section, following Section 6.3, a variance-based sensitivity analysis of the results
obtained in Experiment B is conducted through the computation of the Sobol’ indices. The
aim of this variance-based sensitivity analysis is to quantify what proportion of the variance
of the latitude and the longitude of flight k of the solution of the formation mission design
problem, λk(t, θ) and φk(t, θ), respectively, is due to the variance of each departure delays
of Flight 1 and Flight 2, θ1 and θ2, respectively.

The analysis of the sensitivity of the components of the solution obtained in Experiment
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Fig. 8.10: Experiment B: Sobol’ indices of the geographical coordinates of the optimal trajectories of
each flight. Gray and black lines correspond to the random variables θ1 and θ2, respectively.

B to the two random variables θ1 and θ2 that represent the departure delays of Flight 1
and Flight 2, respectively, is carried out employing this approach. The Sobol’ indices of the
latitude and longitude of Flight k, k = 1,2 with respect to the random variable θj , j = 1,2
are denoted by S lat

k,j and S lon
k,j , respectively. They represent the proportions of the variance

of the geographical coordinates of the optimal route of Flight k that is due to the variance
of the departure time of Flight j. The Sobol’ indices of the longitude and latitude of the
optimal routes obtained in the solution of Experiment B are represented as functions of time
in Fig. 8.10, in which Sobol’ indices associated with θ1 and θ2 are plotted in gray and black,
respectively.

It can be seen in Fig. 8.10.(a) and Fig. 8.10.(b) that during the whole flight, most of
the variance of both geographical coordinates of the optimal route of Flight 1 is due to
the variance of the random variable θ1. In particular, the percentage of the variance of the
longitude of Flight 1 due to the variance of θ1 is around 90%, while the percentage of the
variance of the latitude of Flight 1 due to the variance of the same random variable is between
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60% and 90% during the whole flight time.
It can be seen in Fig. 8.10.(c) and Fig. 8.10.(d) that during the whole flight, most of the

variance of the longitude of the optimal route of Flight 2 is due to the variance of the random
variable θ1. In contrast, the relative influence of the variance of the random variables θ1 and
θ2 on the variance of the latitude of the optimal route of Flight 2 changes along the flight.
In particular, in the first part of Flight 2, up to 8000 seconds, approximately, the variance
of the random variable θ2 has the most influence on the variance of the latitude of Flight
2. After that, there is an intermediate part of Flight 2, between 8000 and 14000 seconds,
approximately, in which the variances of θ1 and θ2 have a similar influence on the variance of
the latitude of Flight 2. Finally, in the last part of Flight 2, the influence of the variance of
θ1 on the variance of the latitude of Flight 2 becomes predominant, reaching a percentage of
90%.
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Fig. 8.11: Experiment B: Sobol’ indices of the timing of the optimal trajectories of each flight. Gray
and black lines correspond to the random variables θ1 and θ2, respectively.

The Sobol’ indices of the timing of Flight k, k = 1,2 with respect to the random variable
θj , j = 1,2 are denoted by Stiming

k,j (dk), where dk is the orthodromic distance of flight k from
the departure location. They numerically quantify the proportion of the variance of the timing
of the optimal route of flight k that is due to the variance of θj . The Sobol’ indices of the
timing of the optimal routes obtained in the solution of Experiment B are represented as
functions of the orthodromic distance in Fig. 8.11, in which Sobol’ indices associated with θ1

and θ2 are plotted in gray and black, respectively. It can be seen in this figure that, during
the whole flight, most of the variance of the timing of the optimal route of Flight 1 is due to
the variance of the random variable θ1, with a percentage of about 80%. On the contrary,
the relative influence of the variance of the random variables θ1 and θ2 on the variance of
the timing of the optimal route of Flight 2 changes along the flight. In particular, in the first
part of Flight 2, up to the distance of 1000 km, approximately, the variance of θ2 has the
most influence on the variance of the timing of the optimal route of Flight 2. After that, the
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influence of the variance of θ1 on the variance of the timing of the optimal route of Flight 2
becomes predominant, reaching a percentage of 80%.

8.4 Conclusions

The results of the numerical experiments described in this chapter show that uncertainties
have a significant impact on the potential benefits of a formation mission. In particular, the
uncertainties regarding the departure times have a greater impact on the direct operating
costs than the uncertainties regarding the fuel burn savings. The results reveal that the
increment of the direct operating costs due to the presence of uncertainties amounts to
1.60% and 3.76% in Experiment A and Experiment B, respectively. However, even in the
presence of uncertainties, reductions of the direct operating costs are expected with formation
flight compared to solo flight in both experiments. The results also give interesting additional
information, revealing, for instance, that one random variable may have predominant influence
on the variability of a component of the solution. They also indicate that the relative influence
of the random variables on the variability of a component of the solution may change during
the flight. The results of the numerical experiments described in this chapter show that the
proposed methodology is an effective tool for solving the formation mission design problem
for commercial aircraft in the presence of uncertainties.
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Chapter 9

Conclusions and Future Research

In this thesis, the formation mission design problem in the presence of uncertainties has
been solved using stochastic optimal control techniques, with the aim of demonstrating the
economical feasibility of formation flight in commercial aviation.

First, the formation mission design problem for commercial aircraft has been studied in
the absence of uncertainties. A novel framework to solve the problem has been presented, in
which the formation mission is modeled as a switched dynamical system, aircraft are assumed
to have two flight modes, namely solo and formation flight, and the discrete state of the
switched dynamical system is the result of their combination. The discrete dynamics of the
system has been modeled using logical constraints in disjunctive form. Thus, the formation
mission design problem has been formulated as an optimal control problem for a switched
dynamical system with logical constraints in disjunctive form. The optimal control approach
allows accurate flight dynamics models and meteorological forecast to be taken into account,
improving trajectory predictability and the estimation of both flight time and fuel consumption
of the aircraft involved in the formation mission design problem.

The switched optimal control problem has been solved using the embedding approach.
The embedding approach is a unifying technique able to efficiently tackle both the switching
dynamics and the logical constrains of the switched optimal control problem, transforming
it into a smooth optimal control problem, which has been solved using classical numerical
optimal control techniques. Specifically, direct numerical optimal control techniques based on
pseudospectral knotting methods have been used. The main advantages of this approach are
that the multiphase formulation is avoided, as well as the use of binary variables, decreasing
the computational time and effort in finding the solution. This approach is substantially
different from previous approaches, which are based on exhaustively analyzing every possible
formation mission individually and then comparing the results. Additionally, this approach is
easily scalable to design formation mission problems with an arbitrary number of aircraft.
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Several numerical experiments have been conducted with two and three transoceanic
flights. Additionally, an analysis of the solutions has also been carried out in order to study
how the delays in the departure time and changes in the fuel saving scheme influence the
formation mission. The results indicate that delays and changes in the fuel savings scheme
have significant influence on the formation mission. This suggests that a deeper understanding
of the effects of uncertainties in these and other parameters on the formation mission is needed.

Therefore, the formation mission design problem for commercial aircraft in the presence
of uncertainties has been addressed. Uncertainties are represented by random variables
characterized by probability density functions. The formation mission design problem in
the presence of uncertainties has been formulated as an stochastic switched optimal control
problem and solved using the generalized polynomial chaos expansion, by means of which
the original stochastic switched optimal control problem is transformed into an equivalent
deterministic switched optimal control problem in a higher dimensional state space. The
generalized polynomial chaos expansion allows, not only a statistical analysis, but also a
sensitivity analysis of the stochastic solutions to be conducted at a low computational cost to
estimate the relative contribution of each random variable to the variability of the components
of the solution.

Several numerical experiments have been conducted with two and three transoceanic
flights. The results of the numerical experiments indicate that uncertainties have a significant
impact on the potential benefits of a formation mission. The results of the sensitivity analysis
reveal that one random variable may have predominant influence on the variability of a
component of the solution. They also indicate that the relative influence of the random
variables on the variability of a component of the solution may change during the flight.

The results of the numerical experiments demonstrate that formation flight is economically
beneficial in the presence of realistic levels of uncertainty in the fuel savings for the trailing
aircraft and in the departure times of the aircraft. The results of the numerical experiments
also show that the proposed frameworks for formation mission design in the presence of
uncertainty is fast and accurate. These features, makes the proposed approach suitable to be
incorporated in a ground-based system which could be used by flight dispatchers as a support
system to design formation missions for airlines or airline alliances. The computational time
of the proposed algorithm makes it suitable for the strategic and tactical planning phases of
the flight, as well as for the operational phase, that is, during the flight.

9.1 Open problems and future research

Due to the complexity of the formation flight planning problem, after studying the
formation mission design problem, there are several open problems, which will subject of
future research. They will be described in this section.

As said in Chapter 2, the formation flight planning problem can be split into two
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subproblems, namely the partner allocation problem and the formation mission design problem.
The former, which consists in establishing how to group a set of longhaul flights into smaller
subsets that contain potential partners of beneficial formation missions in terms of the overall
DOC, has not been studied in this thesis. Thus, due to its close relation with the formation
mission design problem, the partner allocation problem will be one of the first to be studied.
Preliminary research indicates that this problem could be solved by first calculating the optimal
solo flight trajectories using the numerical optimal control methods described in Chapter
5 and, then, applying a suitable spatiotemporal geo-referenced data clustering algorithm
[Ansari et al., 2020] such as those introduced in [Vieira et al., 2009] and [Jeung et al., 2010],
to solve the problem of finding objects that move together in a spatiotemporal geo-referenced
dataset, which are referred to as flocks or convoys. In [Aung and Tan, 2010] an extended
version of this problem is studied, in which the members of the convoy can change over time.

As explained in Chapter 3, a fuel consumption reduction model has been employed for
the trailing aircraft, instead of an induced drag reduction model. Therefore, to improve the
estimations of the benefits achieved by formation flight and, consequently, the DOC of the
formation mission, the latter model should be adopted.

In all the experiments described in this thesis, only one type of formation has been
considered and the leader of the formation has been set in advance. Therefore, to improve the
methodology proposed in this thesis, after a thorough study of the aerodynamics of formation
flight, some other functionalities should be included, such as the possibility of choosing the
optimal type of formation for a given formation mission and the optimal positions of the
leader and the trailing aircraft in the formation.

In this thesis, accurate dynamic models of the aircraft have been considered to solve the
formation mission design problem. However, some simplifying assumptions, which have been
outlined in Chapter 3, have been introduced, such as the reduced two degree of freedom point
variable-mass dynamic aircraft model. Therefore, to improve the accuracy of the solutions and
the predictability of the resulting aircraft trajectories, a non-reduced three degree of freedom
point variable-mass dynamic aircraft model should be employed.

Although the wind field has been included in the dynamic models of the aircraft in all
the numerical experiments, it has been considered as a deterministic vector field, which is
not a realistic assumption. Therefore, to improve the accuracy of the solutions and the
predictability of the resulting aircraft trajectories, uncertainties regarding the wind forecast
should be considered. Being a random function of space and time, the wind field should
be modeled as a stochastic process. Although the generalized polynomial chaos expansion
can be employed to represent stochastic processes, specific techniques are needed for their
representation, such as the Karhunen–Loève expansion.

In Experiment B described in Chapter 8, two sources of uncertainties have been considered,
namely the departure time of the flights, which have been quantified using the generalized
polynomial chaos expansion. However, they have been assumed to be independent random
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variables. In the presence of dependent random variables, the Vine Copula technique
[Torre et al., 2019] must be used before applying the generalized polynomial chaos expansion.
In both cases, increasing the number of sources of uncertainties considered in the problem,
increases the dimensionality of the problem and, consequently, sparse grid numerical methods
should be used such as the Smolyak sparse quadrature [Xiu, 2010].

Finally, most realistic instances of the formation mission design problem could be solved
including probabilistic constraints, also known as chance constraints [Kim and Braatz, 2012]
in the formulation of the problem. Chance constraints can be included in the formulation of
the problem using the generalized polynomial chaos expansion.
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