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Resumen

Antecedentes

Las empresas necesitan responder a los nuevos retos que surgen en sus procesos produc-
tivos, y para ello requieren hacer un uso eficiente de los recursos de los que disponen. Los
cada vez más complejos procesos productivos hacen que no sea posible llevar a cabo una
optimización de los recursos de forma manual y sea necesario emplear sistemas expertos
de ayuda a la toma de decisiones.

Para solventar esta necesidad, las empresas recurren a consultoras con gran experiencia
para construir los sistemas expertos que les permitirán tomar decisiones más precisas y con
menos errores. En este contexto, la consultora española IDOM Consulting, Engineering,
Architecture (IDOM), líder en el sector industrial con presencia en más de 125 países y
más de 3.000 empleados, utiliza diferentes tecnologías para abordar los problemas de sus
clientes. Entre estas tecnologías, se encuentran complejos sistemas de simulación y algunos
modelos de optimización.

El desarrollo de esta tesis doctoral viene motivado por la necesidad de dotar a IDOM
de las herramientas necesarias para el desarrollo de modelos y métodos de optimización
matemática complejos que ayuden al proceso de toma de decisiones de sus clientes. La
investigación se ha desarrollado en el marco del programa de doctorado industrial del
Gobierno de la Comunidad de Madrid IND2018/TIC-9614 entre la consultora IDOM y la
Universidad Rey Juan Carlos.

Objetivos

El objetivo principal de esta tesis doctoral es desarrollar herramientas que ayuden a
las empresas a abordar problemas complejos que aparecen en la toma de decisiones de sus
procesos productivos y así mejorar su eficiencia operativa. En concreto, se han desarrollado
modelos matemáticos para la toma de decisiones eficientes en el proceso de planificación de
dos conocidas empresas internacionales. Este objetivo general se plasma en los siguientes
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objetivos parciales:

• El desarrollo de un modelo de planificación estratégica para determinar la política de
gestión adecuada en la red de puntos de venta de una compañía en el sector del retail.
El objetivo consiste en decidir qué puntos de venta deben seguir formando parte de
la red y cuáles deben ser cerrados; además, para los que permanecen abiertos, se
decidirá qué tipo de gestión es el más adecuado: gestión propia; gestión externa,
pero dentro de la cadena; sólo suministro de producto, pero sin pertenecer a la
cadena o venta a un competidor.

• El desarrollo de un modelo de planificación operativa para una empresa que se dedica
al corte de bobinas de acero. Entre sus procesos se encuentra el corte longitudinal
de bobinas de acero que consiste en desenrollar y cortar a lo largo las bobinas de
gran tamaño para obtener bobinas más estrechas denominadas flejes. El objetivo que
se persigue es la obtención de un plan de corte que indique qué bobinas se deben
seleccionar del stock y cómo tienen que ser los patrones de corte para satisfacer la
demanda de flejes y minimizar el sobrante generado. Es necesario tener en cuenta
las restricciones de los clientes y de la operativa a la hora de definir los patrones
de corte, por lo que resulta muy complejo realizar la planificación de forma manual.
Una característica determinante de este problema es que la demanda viene dada en
peso de producto y este puede servirse en uno o más flejes no necesariamente iguales.
Cada fleje tiene que respetar los límites inferiores y superiores de peso y de diámetro
impuestos por el cliente. Esto obliga a incluir cortes transversales en las bobinas.

• La integración de la fase de asignación de máquinas de corte, la selección de bobinas
y el diseño de patrones de corte para la misma empresa del punto anterior. A partir
de las limitaciones observadas en el modelo de planificación operativo para el corte
de bobinas de acero (la imposibilidad de cortar algunos patrones en las máquinas
disponibles y el desequilibrio en la carga de trabajo de las máquinas), se estudia una
ampliación del problema para integrar la siguiente fase del proceso productivo: la
asignación de bobinas a las líneas de corte. La empresa dispone de varias máquinas
o líneas de corte con diferentes características (velocidad de procesamiento, configu-
ración de cuchillas, ancho mínimo de corte, etc.) que imponen diferentes condiciones
a los patrones de corte que se pueden obtener. Además de los objetivos considerados
en el problema anterior, la empresa desea equilibrar la carga de trabajo entre las
distintas líneas de corte para mejorar la productividad del proceso.
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RESUMEN

Metodología

Para llevar a cabo los objetivos propuestos anteriormente se utiliza la optimización
matemática. Se trata de una disciplina muy potente para optimizar los recursos y ayudar
a las empresas a tomar decisiones mejores y más informadas.

Los modelos de optimización matemática son representaciones de sistemas reales que
permiten abordar estos problemas y encontrar buenas configuraciones de los mismos. Me-
diante el uso de ecuaciones e inecuaciones (preferiblemente lineales) se pueden representar
las relaciones entre los elementos del sistema y encontrar el mejor valor para las variables
de decisión a partir de una función objetivo que permite evaluar cada posible solución.

Se considera que la optimización matemática tiene su origen en 1947, cuando George
Dantzig publicó el algoritmo del Simplex1 (Dantzig, 1947) y desde ese momento se ha
convertido en una herramienta esencial en la planificación y gestión óptima de recursos.
El algoritmo del Simplex permite resolver problemas en los que todas las variables son
continuas y tanto la función objetivo como las restricciones son lineales. El desarrollo de
versiones mejoradas de este algoritmo, incluso de alternativas de complejidad polinomial
(como los algoritmos de punto interior (Karmarkar, 1984)), y la potencia actual de los
ordenadores hacen posible que hoy por hoy se pueda resolver prácticamente cualquier
problema de optimización lineal continua (la limitación suele venir dada por la memoria del
ordenador y no por su capacidad de cómputo). Esto permite abordar problemas complejos,
aunque es el uso de variables enteras (en particular, binarias, que permiten representar
decisiones dicotómicas) lo que ha mostrado el verdadero potencial de la optimización
matemática.

Los modelos matemáticos de optimización lineal entera son aquellos en los que algunas
de las variables solo pueden tomar valores enteros, mientras que tanto la función objetivo
como las restricciones son expresiones lineales. La inclusión de variables enteras en el
problema introduce un grado de complejidad muy alto, lo que hace que incluso problemas
de pequeña dimensión (cientos de variables o restricciones) sean difíciles de resolver en
tiempo de computación razonable.

Los métodos clásicos de resolución de este tipo de problemas parten de una relajación
del problema original: destacan el algoritmo Branch and Bound, introducido por Land and
Doig (1960), y los métodos basados en planos de corte, introducidos en Gomory (1958) y
Gomory (1960). En 1991, se propusieron los métodos de Branch and Cut (Padberg and
Rinaldi, 1991), que combinan los dos anteriores y que son los que se utilizan en las librerías
de optimización comerciales.

1Elegido como uno de los 10 algoritmos más importantes del siglo XX por la ACM (Cipra, 2000)
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Sin embargo, incluso con los métodos más eficientes, no siempre es posible encontrar
una solución factible al problema o una buena solución en tiempo razonable. Por ello,
en los últimos tiempos el desarrollo de métodos aproximados (no exactos) ha tenido un
gran desarrollo. Estos procedimientos no exactos, las metaheurísticas o matheurísticas,
son útiles para obtener soluciones en tiempos de computación razonables.

Esta tesis doctoral se centra en la construcción de modelos de optimización matemática
entera mixta para abordar los tres problemas planteados. Para el primero de ellos, la
gestión de la red de puntos de venta, se desarrolla inicialmente un modelo de optimización
entera no lineal para, a continuación, plantear una reformulación de las expresiones no
lineales, obteniendo un modelo lineal. Para el segundo problema, la obtención del plan
de corte diario para el proceso de corte longitudinal de bobinas de acero, se plantea un
modelo de optimización lineal entera mixta. Por último, el problema de corte y asignación
de máquinas se resuelve mediante una extensión de este último modelo. Todos los modelos
se formulan mediante el uso del lenguaje algebraico AMPL (Fourer et al., 1990) y se
resuelven con la librería de optimización Gurobi (Gurobi Optimization, 2020).

Resultados

Los modelos planteados se han desarrollado en colaboración con dos empresas inter-
nacionales, una en el sector del retail y otra en el sector del acero. En el primer caso, el
modelo ha permitido mejorar el conocimiento del que la empresa disponía sobre la red de
ventas; mientras que en el segundo se ha logrado una transferencia directa de los resultados
gracias a la implantación de los modelos propuestos en el sistema de planificación de la
empresa. Se detallan a continuación los resultados obtenidos:

• Deslocalización de servicios en el sector retail: Se ha estudiado el problema del redise-
ño de la red de puntos de venta de una compañía en el sector del retail, considerando
posibles cierres o cambios de gestión de los puntos de venta. Para abordar este pro-
blema se ha propuesto un modelo de optimización matemática que permite decidir
cambios en el tipo de gestión o el cierre de los puntos de venta, con el objetivo de
mejorar el funcionamiento de la red. El tipo de decisiones que se extraen de este mo-
delo no se aplican directamente sobre la estructura de la red, ya que afectan otros
criterios que no siempre es posible tener en cuenta (política de empresa, competen-
cia, etc.). Sin embargo, el modelo permite conocer cuál es la mejor estructura para
maximizar el beneficio y poder tomar las decisiones de una manera más informada.
Los resultados obtenidos se reflejan en el siguiente artículo que ha sido publicado:
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RESUMEN

Sierra-Paradinas, M., Alonso-Ayuso, A., Martín-Campo, F.J.,
Rodríguez-Calo, F. & Lasso, E. (2020), ‘Facilities Delocation in the Re-
tail Sector: A Mixed 0-1 Nonlinear Optimization Model and Its Linear
Reformulation’, Mathematics 8(11):1986. doi:10.3390/math8111986.

• Planificación del corte longitudinal de bobinas de acero: Se ha desarrollado un modelo
de optimización lineal entera que permite obtener un plan de corte para el proceso
de corte longitudinal de bobinas de acero con el fin de satisfacer la demanda. El plan
de corte define qué bobinas serán seleccionadas del stock y los patrones de corte para
cada una de ellas. El modelo desarrollado ha permitido dotar a la empresa de una
herramienta de planificación que mejora su operativa actual reduciendo los tiempos
invertidos en la planificación del proceso y mejorando en varios aspectos operativos.
Por un lado, se mejora sensiblemente el uso de las bobinas respecto de la operativa
actual, pasando de utilizar el 50 % del material para servir los pedidos de los clientes
a utilizar el 80 %. Esto supone una reducción considerable en el sobrante generado,
tanto reutilizable como no reutilizable. Por otro lado, el modelo propone soluciones en
las que se seleccionan bobinas más pequeñas del stock que corresponden con restos de
procesos de corte anteriores. Esto, unido a la menor generación de sobrante, supondrá
a medio plazo una reducción del stock procesado con la consiguiente mejora de la
gestión del stock. Por último, el modelo permite ajustar mejor el peso servido al
realmente demandado, por lo que se consigue mejorar los beneficios de la empresa al
reducir las penalizaciones o descuentos debidos a estas desviaciones. Los resultados
obtenidos han sido publicados en el siguiente artículo:

Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-
Campo, F.J., & Gallego, M. (2021), ‘An exact model for a slitting pro-
blem in the steel industry’, European Journal of Operational Research
295(1), 336-347. doi:10.1016/j.ejor.2021.02.048.

• Planificación del corte longitudinal de bobinas de acero incluyendo la asignación a la
máquina de corte: Se ha desarrollado un modelo que integra el proceso de selección
de bobinas y diseño del patrón de corte con el proceso de asignación de máquinas de
corte a cada bobina. Aunque este modelo todavía no se encuentra en producción, si
la empresa finalmente lo implanta, permitirá una mejor planificación del proceso de
corte longitudinal, ya que, sin empeorar significativamente los objetivos considerados
en el problema anterior, se consigue mejorar la distribución de la carga de traba-
jo entre las distintas máquinas y se resuelven algunos problemas de infactibilidad
que aparecían en el modelo anterior. Por último, permite incluir en la planificación
pedidos que se pueden servir en varios días, lo que obliga a finalizar solo aquellos
pedidos que deben servirse en un determinado periodo, pero se puede iniciar el corte
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de futuros pedidos, siempre y cuando se consiga una mejora en el aprovechamiento
de las bobinas. Los resultados obtenidos se detallan en el siguiente artículo, enviado
para su publicación:

Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-
Campo, F.J., & Gallego, M. (submitted March 2022), ‘An exact mo-
del for the 1.5-dimensional cutting stock problem in the steel industry
with heterogeneous parallel slitting lines allocation’, European Journal
of Operational Research

Conclusiones

Se ha logrado el principal objetivo de esta investigación, que era desarrollar herramien-
tas que ayuden a las empresas a abordar problemas complejos que aparecen en la toma de
decisiones de sus procesos productivos. Esto se ha llevado a cabo mediante el desarrollo
de un modelo de planificación estratégica para determinar la política de gestión adecuada
en la red de puntos de venta de una compañía en el sector del retail, el desarrollo de un
modelo de planificación operativa para una empresa que se dedica al corte de bobinas de
acero, y la posterior integración de la fase de asignación de líneas de corte a la planificación
de los patrones de corte.

El desarrollo de estos modelos ha motivado una transferencia científica al tejido indus-
trial, al haber aportado soluciones innovadoras a complejos problemas de planificación.
Además, en uno de los casos, se ha logrado la implantación de los modelos propuestos en
el sistema de planificación de la empresa.

xx



Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Mathematical optimisation . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Financial support . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Firms need to respond to emerging challenges in terms of its processes. To reach
their business goals they need to efficiently use the resources they own. The increasingly
complex processes make more difficult to optimise the resources manually and, therefore,
it is necessary to use expert systems for this purpose.

Companies often rely on other experienced consulting firms to build these expert sys-
tems that will allow them to make more accurate decisions with fewer errors. In this con-
text, the Spanish consulting firm IDOM Consulting, Engineering, Architecture (IDOM),
leader in the industrial sector with presence in more than 125 countries and more than
3,000 employees, uses different technologies to address the problems of its clients. Among
them there are complex simulation systems and some optimisation models.

The development of this PhD thesis is motivated by the need to provide IDOM with
the necessary tools for the development of complex mathematical optimisation models
and methods to assist the business decision-making process of their clients. The re-
search has been developed under the framework of the industrial doctorate programme
IND2018/TIC-9614 from the Government of the Region of Madrid, between the consulting
firm IDOM and Rey Juan Carlos University.
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1.2 Objectives

This PhD thesis has been developed under an industrial doctorate programme, and for
that reason, the main objective is to develop decision support systems to help companies
to tackle their complex business problems, and make optimal decisions that maximize their
operational efficiency. In particular, mathematical optimisation is used as a tool for effi-
cient decision making in the planning process of two well known international companies.
This wide objective is achieved through the following particular objectives:

• To develop a strategical planning model to determine the appropriate management
policy for a network of stores in the retail sector. The aim is to decide which type of
management policy is the most suitable for each store and whether or not the store
should continue to be part of the network.

• To develop an operational planning model for a steel manufacturing company to de-
fine a daily cutting plan. Its main process consists in cutting coils of steel lengthwise
to obtain narrower coils known as strips. This cutting process is known as slitting.
The aim is to provide the company with a cutting plan indicating which coils need
to be cut and how to cut them to satisfy the demand of steel strips and minimise
the leftovers generated in the process. The customers’ restrictions and operational
constraints need to be taken into account when defining the cutting patterns, making
very complex to define the planning in a manual way.

• Based on the limitations observed in the operational model for the slitting of steel
coils, an extension of the problem is studied to integrate the following phase of the
production process: the allocation of coils to the slitting lines. The company owns
several cutting lines with different characteristics and each of them imposes different
conditions on the cutting patterns that can be obtained. Besides the goals considered
in the previous problem the company would like to balance the workload among the
different slitting lines.

1.3 Mathematical optimisation

Mathematical optimisation is a powerful discipline to optimise the resources and to
help companies to make better and more informed decisions. An essential characteristic
of a mathematical optimisation problem is that it involves a set of decisions that interact
in complex ways, impacting various areas of the operations of companies and influencing
other decisions.

Mathematical optimisation models are representations of real systems that allow us
to deal with these complex problems. The decisions are represented by variables whose
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values we seek to determine, and the relationships between the elements of the system are
represented by equations and inequalities (preferably linear). To find the best value of the
decision variables an objective function is optimised.

Mathematical optimisation is considered to have its origins in 1947, when George
Dantzig published the Simplex algorithm1 (Dantzig, 1947), and has since become an es-
sential tool in optimal resource planning and management. The Simplex algorithm allow
us to solve problems where the decisions can be represented by continuous variables that
appear linearly in the objective function and constraints of the model. The development
of improved versions of the Simplex algorithm, including a polynomial-time algorithm
proposed by Karmarkar (1984), and the current performance of computers make possible
to solve virtually all continuous linear optimisation models.

However, the majority of business problems include some decisions that need to be
modelled as integer variables (in particular, binary variables, which make possible to rep-
resent dichotomous decisions). Mathematical integer linear optimisation models are those
in which some of the variables can only have integer values and appear in the objective and
constraints linearly. The inclusion of integer variables introduces a high degree of com-
plexity, making even small problems (hundreds of variables and/or constraints) difficult
to solve in reasonable computational times.

The classical methods for solving this type of problems are based on a relaxation of the
original problem. The two main algorithms are the Branch and Bound, introduced in Land
and Doig (1960) and improved with the tree structure in Dakin (1965), and the Gomory
Cutting planes, introduced in Gomory (1958) (for pure integer linear optimisation models)
and Gomory (1960) (for mixed integer linear optimisation models). These algorithms
were improved by an algorithm that integrates both procedures, the Branch and Cut
algorithm, that was proved to be efficient for the Travelling Salesman Problem in Padberg
and Rinaldi (1991). Nowadays, the Branch and Cut algorithm is the one implemented in
the commercial optimisers for mixed integer linear optimisation models.

The use of integer variables allows us to make a more accurate representation of the
real system, but even with the most efficient methods, it is not always possible to find a
feasible solution or a good solution in reasonable computational time. In recent years, the
development of approximate (non-exact) methods such as, metaheuristics or matheuristics,
has increased and proved to be a useful tool to obtain solutions in reasonable computational
times.

In this work, three mathematical integer optimisation models are presented to address
1Considered one of the most important algorithms developed in the XXth century(Cipra, 2000)
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three complex business problems. In Chapter 2 the facilities delocation problem is intro-
duced together with the mathematical non-linear integer optimisation model proposed,
and its linear reformulation. In Chapter 3, the slitting problem in the steel industry and
the mathematical linear integer optimisation model to solve it are presented. Chapter 4
extends the slitting problem described in the previous chapter with the integration of the
slitting lines allocation. Finally, Chapter 5 summarizes the contributions produced in this
thesis, and outlines some lines of future research. All models have been implemented using
the algebraic modelling language AMPL (Fourer et al., 1990) and solved with the Gurobi
optimiser (Gurobi Optimization, 2020).

1.4 Financial support

This research has been financially supported by the following institutions:

• Rey Juan Carlos University, through its research assistance programme.

• IDOM Consulting, Engineering, Architecture, financing the work contract of the
author of this thesis.

• Government of Spain, with the grant RTI2018-094269-B-I00.

• Government of the Region of Madrid, via the industrial doctorate programme
IND2018/TIC-9614.
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Chapter 2

Facilities delocation in the retail
sector.
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2.1 Introduction

This chapter addresses the problem of facilities delocation in the retail sector by propos-
ing a novel mixed 0-1 linear optimisation model. The aim of the problem is to decide
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whether to close existing stores or consider an alternative type of store management pol-
icy aimed at optimising the profit of the entire retail network. Each management policy
has a different repercussion on the final profit of the stores due to the different margins
obtained from the customers. Furthermore, closing stores can cause customers to leave
the whole retail network according to their behavior.

Due to the commercial requirements concerning customer behavior, a set of non-linear
constraints appears in the definition of the model. Classical Fortet inequalities are used
in order to linearise the constraints and, therefore, obtain a mixed 0-1 linear optimisation
model. As a result of the size of the network, border constraints have been imposed to
obtain results in a reasonable computing time. The model implementation is done by
introducing smart sets of indices to reduce the number of constraints and variables. The
computational experiments present a real-world case study using data provided by the
company and, a set of computational experiments using data randomly generated.

The findings of this chapter have been published in:

Sierra-Paradinas, M., Alonso-Ayuso, A., Martín-Campo, F.J.,
Rodríguez-Calo, F. & Lasso, E. (2020), ‘Facilities Delocation in the Re-
tail Sector: A Mixed 0-1 Nonlinear Optimization Model and Its Linear
Reformulation’, Mathematics 8(11):1986. doi:10.3390/math8111986.

The chapter is organised as follows: Section 2.2 presents some literature review. Section
2.3 is intended to present a general description of the problem and the assumptions to be
considered. Section 2.4 introduces the notation as well as the Mixed 0-1 Non-Linear
optimisation model formulation. Section 2.5 presents the model reformulation to obtain
a 0-1 Linear optimisation model. In Section 2.6, the main computational results are
reported. Finally, Section 2.7 concludes and presents future lines of research.

2.2 Literature review

Facility location problems have been broadly studied in the literature. Their objective
is to determine the best place to open new facilities within a region to satisfy the demand
of the customers. The best location depends on the criteria considered from a wide range
of options. The p-median whose first mathematical optimisation model was introduced in
ReVelle and Swain (1970), the p-centre introduced in Hakimi (1964) and Hakimi (1965),
or the capacitated facility location problems introduced by Balinski (1965) are some of
the most well-known problems related to the field of location.

There are models available for locating public and retail facilities, emergency services
and plants or warehouses, among others. These location problems can be solved by using
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(integer or continuous) linear optimisation, heuristic and meta-heuristic approaches. A
comprehensive state of the art in this area can be found in Laporte et al. (2015) among
many other interesting references.

The majority of the location problems involve the location or relocation of new facil-
ities. The concept of delocation, defined as the operation cease of existing facilities (see
Bhaumik (2010)), has been recently introduced. As shown in ReVelle et al. (2007), there
have been several delocation problems in both the private and the public sectors. An
example of facility closures in the transport sector is provided by Murray and Wu (2003)
which detail various modelling approaches, that address a reduction of the current number
of stops along a bus route in order to promote faster transit speeds and greater geographic
coverage given a travel time budget.

Delocation has also been a subject of study for educational organisations. An example
can be seen, in Bruno and Andersen (1982) where they present a model to determine
school closures in a medium sized school district in California.

As regards the banking sector, the need to address the closure of facilities is shown
in Morrison and O’Brien (2001), Wang et al. (2003), Monteiro and Fontes (2005), Ruiz-
Hernández et al. (2015) and Ruiz-Hernández and Delgado-Gómez (2016) among others. A
budget constraint location problem is presented in Wang et al. (2003) to locate and relocate
bank-branches in a large-sized town. The authors consider both, opening new facilities
while at the same time closing some of the existing ones. In Monteiro and Fontes (2005),
a local search heuristic is proposed to address the problem of bank-branch restructuring.
In Ruiz-Hernández et al. (2015), a model for re-sizing the bank network is presented
with the aim of maintaining a constant service level, and deciding which branches should
continue in business and which should be replaced. More recently, in Ruiz-Hernández and
Delgado-Gómez (2016), a stochastic optimisation model has been introduced to restructure
a network of capacitated bank-branches by considering uncertainty in the demand.

Store closures have also been a topic of concern in the retail sector. Evidence of this fact
is shown in Shields and Kures (2007), which investigate the spatial and economic factors
that influenced the decision of a major American retailer to close part of its network
of stores. A further example on this interest is studied in ReVelle et al. (2007), which
introduces two models to reduce the number of facilities in a given area with and without
strong competition. In the first case the aim is to reduce the number of facilities to a fixed
number, by minimising the impact on the loss of demand to the competitors. In the second
case, the measure of the decline of the service is minimised. On the same line, in Bhaumik
(2010), a model is presented to downsize an existing distribution network of a firm with
known supplier locations. The firm seeks the closure of a fixed number of the supplier
nodes. The model assumes that all demand nodes must be served by their respective
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supplier unless the existing supplier is removed. Recently, in Yavari and Mousavi-Saleh
(2019), a problem of restructuring bi-level facilities was presented. The aim consisted of
minimising costs by opening auxiliary facilities and closing or resizing the existing facilities
maintaining an overall coverage.

The underlying problem presented in this chapter considers three different elements
simultaneously: facilities delocation, modifications on management policies and network
restructuring. As stated above, there are many references where some mathematical opti-
misation models have been proposed in order to deal with delocation problems. However,
to our knowledge, there are no optimisation models that consider all these characteristics
together. Then, we present a model that restructures the network of stores of a retail
chain by delocating and changing management policy decisions in order to maximize the
total profit of the network. As an initial approach, a Mixed 0-1 Non-Linear optimisation
model is proposed. As a second step, the model is reformulated in order to linearise the
non-linear expressions. As a result, a Mixed 0-1 Linear optimisation model is proposed.
These models have been validated with the real-world data provided by a well-known
international company.

2.3 Problem description

The delocation problem has been addressed in the literature for several reasons as
discussed in Section 2.2. In our case, the manager of a retail chain seeks to optimise the
management of the network of stores of the retail chain. The retail chain itself or an
external dealer can operate these stores. In these case, the manager would like to know
whether it is appropriate to either stop operating the stores or change the management
policy.

The network consists of a set of stores all over a specific region. Currently, each
store is managed by one of the different management policies considered in the network.
Decisions about the change in the management policy are centralised and are mainly
based on whether the store generates profits for the company or not. We distinguish two
different types of stores in terms of the decisions that can be made about them: non-
fixed and fixed stores. The impossibility of delocation or modification of the management
policy characterise fixed stores. Then, decisions concerning delocation or modification of
the management policy can be made only for non-fixed stores. It is the company, based
on the contracts they have with the different stores, that decides which store is fixed or
non-fixed.

The overall benefit is obtained from the purchase of goods made by customers in the
stores. Each management policy has different repercussions on the final profit of the stores
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due to the profit margins imposed by the retail chain or external dealers. The customers
of the company can be classified in two different classes: major customers, those who are
large-scale consumers (usually professionals) with price fixing agreements, and the rest
of the customers that usually have loyalty cards to obtain discounts or other advantages.
Each customer consumes in a certain set of stores owing to the customer-store agreements.
We can distinguish two types of customer behaviour with respect to each store regarding
their commitment to the retail chain: customers with a tendency-to-abandon the network
and customers with a tendency-to-stay in the network. On the one hand, a customer with
a tendency-to-abandon a certain store will leave the network altogether if that store is
delocated and, thus, will no longer consume in that retail chain. On the other hand, a
customer with a tendency-to-stay in a certain store will continue consuming in the network
in case the store is delocated. Notice that customers with loyalty cards may decide whether
to continue consuming in the retail chain (in case one of their preferred stores is closed)
whereas the major customers will remain in the network. The company know this aspect
beforehand since it is aware of all of the costumer-store agreements. Therefore, a customer
will only leave the network if a store where the customer has a tendency-to-abandon is
delocated or if all stores where the customer consumes are delocated. Notice that this
behaviour occurs particularity in this company chain since it depends on agreements and
not on distances. The distances in this problem are not relevant, which is a feature that
differs from the rest of the traditional literature. Furthermore, store capacities are not
considered since the company is the one responsible for supplying the products to any
given store within the network. Finally, the consumption in the delocated stores by those
customers that do not leave the network is distributed among the remaining stores where
they consume.

In order to maintain a certain service level, the retail chain has imposed a minimum
number of stores that must stay open, but not which specific one of them. It is important
to point out that the store delocation process has a fixed cost associated to it.

A more precise description of the issues involved, as well as the assumptions for ad-
dressing them, is presented below.

2.3.1 Types of stores and management policies

There are two different types of stores that are considered: fixed and non-fixed stores.
Fixed stores must maintain their management policy and no decisions can be made over
them. On the other hand, both decisions, on delocating or modifying management policy,
can be issued on the non-fixed stores. Let us denote J as the set of stores in the network,
where J F ⊂ J is the subset of fixed stores and J NF ⊂ J the subset of non-fixed stores.
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For the stores in the latter set, a delocation cost given by cj is considered and applied in
case of delocation. Notice that J = J F ∪ J NF.

As stated above, each store j ∈ J can be run by different management policies. Let us
denote K as the set of management policies and Kj the specific set of management policies
available for a certain store j.

For each store j ∈ J NF, the decision made can be either to delocate the facility or
to change the management policy within Kj . In the case where the management policy
changes from k1 ∈ Kj to k2 ∈ Kj there will be a variation in the volume of goods consumed,
given by a percentage of the initial total consumption of goods which is given, ejk2 . The
extra volume will be charged at the profit margin rjk2 .

In our case, we consider four different management policies depending on the admin-
istration and ownership of the stores. Type A refers to a policy whereby the company
both, owns and operates the store. Type B means that the company owns the store but
an external dealer operates it. Although one may think this is a franchise arrangement, it
is not exactly the case, since a third party operates the store but not with the brand image
and other common specifications within the franchise arrangements. Type C implies that
an external dealer owns the store but the company operates it (which is usually named a
lease agreement) and, finally, if the store is managed by Type D, an external dealer both,
owns and operates the store, and the company simply supplies its products. Only the fol-
lowing management changes are allowed. If the store is managed as Type A, then it could
be changed to Type B, meaning that an external dealer will operate the store. If the store
is managed as Type C, then it could be changed to Type D. Types B and D management
policies are not allowed to be modified although those stores can be delocated. Therefore,
stores Type B or D must remain unchanged if they are not delocated.

2.3.2 Customers and their behaviour

The network is used by a set of customers I that can be classified in different ways
depending on the types of stores where they consume and their behaviour given by the
tendency to leave or not the network. This tendency mainly depends on the type of
agreement between the company and the customer. For major customers, who have special
agreements with the company, due to their large amount of consumption, the tendency to
abandon is not common. However, when the agreement is in the form of a loyalty card,
the customer may decide whether or not to continue consuming in the retail chain if one
or some stores are closed. Moreover, a customer may have a subset of stores such that,
if one of them is delocated, then, he/she leaves the network due to their dissatisfaction,
for instance. This kind of customer is said to have a tendency-to-abandon the network in
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each store of this subset. However, if none of these stores is closed but some of the others
in which the customers consume are delocated, they remain in the network and distribute
their consumption in the delocated stores among those that remain open. The tendency
to abandon or not is given and calculated by using machine learning techniques whatever
the type of store (fixed or non fixed) where the customer consumes. Taking into account
this tendency to abandon, customers will leave the network in the following situations
when:

• At least one store in which they have a tendency to abandon is delocated.

• All stores in which they consume are delocated.

The behaviour of customers with respect to each store in which they consume, affects
the total consumption in the whole network and, thus, the final profit of the retail chain.
Notice that the information about the behaviour of customers is known in advance for all
stores.

Regarding the types of stores where a customer consumes, we can distinguish between
customers consuming in at least one non-fixed store and customers that only consume at
fixed stores. The latter can be removed from the problem, since they will not change their
pattern of consumption even though their incomes should be added to the total income
of the company. We therefore assume that all customers in I consume in at least one
non-fixed store. It is important to analyse the behaviour of these customers with respect
to the non-fixed stores in which they consume. Then, the following subsets are defined:

• IL, customers who can leave the network if some of the stores in which they consume
are delocated. Three different kinds of customers can be considered here:

– IA, customers with a tendency-to-abandon the network in every non-fixed store
where they consume. A customer in IA leaves the network if at least one non-
fixed store in which he/she consumes is delocated.

– IBA, customers with a tendency-to-abandon the network in some, but not all,
non-fixed stores where they consume. A customer in IBA leaves the network
if at least one store in which he/she has a tendency-to-abandon is delocated.
However, the client does not leave the network in case the stores where they
do not have a tendency-to-abandon are delocated. In the latter case, their con-
sumption in those delocated stores will be distributed among the non-delocated
stores in which they still consume.

– INS, customers consuming only in non-fixed stores and without a tendency-
to-abandon in any of them. A customer in INS leaves the network if every
store in which the client consumes is delocated. However, if at least one store
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IA IBA INSIL :

ISIF

Elements

Customer

Fixed store

Non fixed store

Management policy

Type A

Type B

Type C

Type D

Tendency

No abandon

Abandon

Figure 2.1: Classification of the customers.

in which they consume remains in the network, their consumption in those
delocated stores will be distributed among the non-delocated stores in which
he/she consumes.

• IS, customers who will never leave the network whether or not any of the stores
in which they consume are delocated. These customers consume in at least one
fixed store and they do not have a tendency-to-abandon the network in any of the
non-fixed stores where they consume. The customer’s consumption in the delocated
stores is distributed among the rest of stores where he/she consumes.

Figure 2.1 shows an example of these sets of customers. Fixed and non-fixed stores are
represented by different shapes and each customer is linked by an arrow to the stores where
he/she consumes; dotted arrows indicate that the customer has a tendency-to-abandon the
network if the corresponding stores are delocated. Note that IF , the set of customers that
only consume at fixed stores, will be removed from the problem since they have no impact
on the optimal solution.

The amount of goods consumed by each customer in the stores is known in advance,
as well as the profit margins that each customer provides to the chain; this profit dif-
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1 2

6

before delocating

3 6

after delocating

Figure 2.2: Proportional reassignment of goods.

fers for every customer, store and management policy. When a store is delocated, the
customers can either abandon the whole network or keep consuming in the rest of the
stores, depending on their behaviour. In the latter case, the goods they consumed in the
delocating stores are distributed among the remaining stores in a proportional way, given
by the amount of goods that each customer is consuming in the stores that remain open.
Let us define the increase of goods by customer and store as yij . In order to illustrate
the proportional reassignment of goods, Figure 2.2 shows one customer which consumes
in three different stores, 1, 2 and 6 units, respectively. If the store in which the customer
consumes 6 units is delocated, these units will be proportionally distributed in the two
remaining stores, hence the final amounts of goods 3 = 1 + 1·6

1+2 and 6 = 2 + 2·6
1+2 units,

respectively.

2.3.3 Problem hypotheses

In summary, the problem studied considers the following hypotheses:

• The network consists of a set of stores all over a specific region.

• At the present time, each store is managed by one of the four different management
policies considered.

• The stores are divided into two groups regarding the decisions that can be made
concerning them: non-fixed and fixed stores. Fixed stores are characterised by the
impossibility of delocation or modification of management policy. On the other hand,
both types of decisions can be made for non-fixed stores.

• The global profit is obtained from the consumption of goods by customers in the
stores. Profit margins vary depending on the type of management policy.

• Each customer consumes in a certain set of stores due to customer-store agreements.
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• We can distinguish two types of customer behaviour: customers with a tendency-
to-abandon a certain store will leave the entire network if that store is delocated,
customers with a tendency-to-stay in a certain store will remain consuming in the
network in case the store is delocated. In the latter behaviour the consumption in
the delocated stores is proportionally distributed among the remaining stores where
the customer consumes.

• The tendency-to-abandon or to-stay is given as a parameter and calculated by using
machine learning techniques for all stores (fixed or non fixed) where the customer
consumes.

• This behaviour is particularly notable in this company chain since it depends on
agreements and not on distances.

• Store capacities are not considered since the company is the one responsible of sup-
plying the products to every store within the network.

• In order to maintain a service level, a minimum number of stores must remain open.

• The store delocation process has a fixed cost associated to it.

2.4 First approach: a Mixed 0-1 NonLinear optimisation
model

A mathematical Mixed 0-1 NonLinear optimisation model is presented as follows, where
all the elements are defined.

2.4.1 Notation

Sets

J , set of stores, divided in two groups: J F and J NF, set of fixed and non-fixed stores,
respectively.

I, set of customers. Note that only customers that consume in at least one non-fixed
store are considered here, since, customers consuming only in fixed stores do not
imply any change in the company’s profit. Set I can be partitioned in the following
subsets:

• IL, customers who may leave the network if some of the stores in which they
consume are delocated:

– IA, customers with a tendency to abandon the network in every non-fixed
store where they consume.

14
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– IBA, customers with a tendency to abandon the network in some, but not
all, non-fixed stores where they consume.

– INS, customers consuming only in non-fixed stores without a tendency to
abandon any of them.

• IS, customers consuming in at least one fixed store and without a tendency to
abandon any non-fixed stores.

Ji, set of stores where the customer i consumes in, i ∈ I. Ji is divided in J F
i and J NF

i ,
the sets of fixed and non-fixed stores, respectively.

J A
i , set of stores where customer i has a tendency to abandon the network (i.e., customer

i leaves the network if a store in J A
i is delocated), i ∈ IA ∪ IBA. Note: J A

i ⊆ J NF
i .

K, set of management policies, such as company ownership, the company operates the
store or there is an external dealer for instance. The set of possible management
policies for store j will be denoted as Kj , j ∈ J .

Parameters

p, service level, given by the number of (fixed and non-fixed) stores that must remain
open.

cj , delocation costs of any store j, j ∈ J NF.

ejk, percentage of extra volume of goods consumed in store j with management policy k

(if there is no profit, ejk = 0), j ∈ J , k ∈ Kj .

rjk, profit margin to be applied to the extra volume of goods in store j with management
policy k, j ∈ J , k ∈ Kj .

gij , initial amount of goods consumed by customer i in store j, i ∈ I, j ∈ Ji.

mijk, unit profit obtained by customer i in store j with management policy k, i ∈ I,
j ∈ Ji, k ∈ Kj .

Mi, upper bound of the volume of goods consumed by customer i, i ∈ I.

k∗
j , management policy of any fixed store j ∈ J F. Note: k∗

j ∈ Kj .

Decision variables

αj = 1, if the (non-fixed) store j is delocated and, 0 otherwise, j ∈ J NF.

γjk = 1, if the (non-fixed) store j is managed with management policy k and, 0 otherwise,
j ∈ J NF, k ∈ Kj .

15
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βi = 1, if customer i leaves the network and, 0 otherwise, i ∈ IL.

xi, total amount of goods consumed by customer i in all the delocated stores (must be
transferred to the non-delocated stores), i ∈ I \ IA.

yij , increase in the consumption of goods of customer i in store j if at least one of the
stores where i consumes is delocated, i ∈ I \ IA, j ∈ Ji.

zijk, increase in the consumption of goods of customer i in store j if the store is managed
by policy k, i ∈ I \ IA, j ∈ Ji, k ∈ Kj .

2.4.2 Mathematical formulation

Objective function

The objective of the problem is to maximise the profit defined as the profit from the
sales in the whole network minus the restructuring network costs:

max z = PRS + PRO + PCM − CD (2.1)

where PRS represents the Profit obtained from the Regular Sales, PRO represents the
Profit obtained from the increase of sales in the stores that Remain Open, PCM represents
the Profit obtained when there is a Change of Management policy and CD the Cost due
to the Delocation of the stores.

PRS =
∑

i∈IA∪IBA

( ∑
j∈J F

i

mijk∗
j
gij +

∑
j∈J NF

i

∑
k∈Kj

mijkgijγjk

)
(1 − βi)+

∑
i∈INS

∑
j∈J NF

i

∑
k∈Kj

mijkgijγjk(1 − βi)+

∑
i∈IS

( ∑
j∈J F

i

mijk∗
j
gij +

∑
j∈J NF

i

∑
k∈Kj

mijkgijγjk

)
(2.1a)

PRO =
∑

i∈I\IA

∑
j∈J F

i

mijk∗
j
yij +

∑
i∈I\IA

∑
j∈J NF

i

∑
k∈Kj

mijkzijk (2.1b)

PCM =
∑
i∈I

∑
j∈J NF

i

∑
k∈Kj

rjkejkgijγjk (2.1c)

CD =
∑

j∈J NF

cjαj (2.1d)

Note that the expression (2.1a) has a quadratic term in the first and second terms. In
Section 2.5 an equivalent formulation with linear expressions is presented.
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Constraints

1. Type of management: Constraints (2.2) state that a non-fixed store must be either
managed with only one policy or be delocated.

∑
k∈Kj

γjk + αj = 1 ∀j ∈ J NF (2.2)

2. Service level: Constraint (2.3) ensures a proper service level by maintaining a mini-
mum of p stores open.

|J | −
∑

j∈J NF

αj ≥ p (2.3)

3. Customer’s behaviour: Constraints (2.4) force a customer to leave the network if a
store in which he/she has a tendency to abandon is delocated; on the other hand,
constraints (2.5) state that a customer in IA ∪ IBA does not leave the network if
none of the stores in which he/she has a tendency to abandon are delocated, that
is, if he/she leaves the network, at least one store in which he/she has a tendency to
abandon must have been delocated. For customers without a tendency to abandon
the network that only consume at non-fixed stores, constraints (2.6) ensure those
customers remain in the network if at least one of their stores remains open, while
constraints (2.7) force them to leave the network if all stores where they consume
are delocated, that is, if the customer does not abandon the network, then, at least
one of the stores in which he/she consumes remains open.

αj ≤ βi ∀i ∈ IA ∪ IBA, j ∈ J A
i (2.4)

βi ≤
∑

j∈J A
i

αj ∀i ∈ IA ∪ IBA (2.5)

βi ≤ αj ∀i ∈ INS, j ∈ Ji (2.6)∑
j∈Ji

αj ≤ |Ji| − 1 + βi ∀i ∈ INS (2.7)

4. Consumption in the network: Constraints (2.8) compute, for each customer, the
amount of goods that must be transferred from the delocated stores in which he/she
consumes to the stores that remain open. Constraints (2.9)–(2.12) compute the in-
crease of consumption of goods in some stores for those customers in I \ IA, thas
is, customers that could stay in the network although some of the stores where they
consume are delocated. For each customer, goods originally consumed in the delo-
cated stores must be transferred to the non-delocated stores in which the customer
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continues consuming. The increase in store j will be zero if customer i leaves the
network (βi = 1) or if store j is delocated (αj = 1); otherwise, the total amount of
goods consumed in all delocated stores where customer i consume,

∑
j∈JNF

i

gijαj ,

is distributed among the non-delocated stores where the customer consumes in pro-
portion to the quantity that the customer originally consumed in those stores, that
is.

gij∑
j′∈J F

i

gij′ +
∑

j′∈J NF
i

gij′(1 − αj′)
.

Notice that the denominator in this weighting factor could be 0 for customers that
only consume in non-fixed stores if all these stores are delocated; in such a case,
constraints (2.9) cannot force yij to be equal to 0, but constraints (2.13)-(2.14),
together with (2.2), will do so.

∑
j∈J NF

i

gijαj = xi ∀i ∈ I \ IA (2.8)

( ∑
j′∈J F

i

gij′ +
∑

j′∈J NF
i

gij′(1 − αj′)
)
yij =

gij(1 − βi)(1 − αj)xi ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.9)

( ∑
j′∈J F

i

gij′ +
∑

j′∈J NF
i

gij′(1 − αj′)
)
yij =

gij(1 − αj)xi ∀i ∈ IS, j ∈ J NF
i (2.10)

( ∑
j′∈J F

i

gij′ +
∑

j′∈J NF
i

gij′(1 − αj′)
)
yij =

gij(1 − βi)xi ∀i ∈ IBA, j ∈ J F
i (2.11)

( ∑
j′∈J F

i

gij′ +
∑

j′∈J NF
i

gij′(1 − αj′)
)
yij =

gijxi ∀i ∈ IS, j ∈ J F
i (2.12)

5. Profit in the network: Constraints (2.13)-(2.14) relate variables γjk, yij and zijk to
include the increase of goods with the appropriate profit margin depending on the
final management policy. These constraints are only defined for non-fixed stores, as
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they are the only ones whose management policy can be modified.

yij =
∑

k∈Kj

zijk ∀i ∈ I \ IA, j ∈ J NF
i (2.13)

zijk ≤ Miγjk ∀i ∈ I \ IA, j ∈ J NF
i , k ∈ Kj (2.14)

6. Variables’ domain: Constraints (2.15)-(2.20) define the domain for the variables in
the model.

αj ∈ {0, 1} ∀j ∈ J NF (2.15)

γjk ∈ {0, 1} ∀j ∈ J NF, k ∈ Kj (2.16)

βi ∈ {0, 1} ∀i ∈ IL (2.17)

xi ∈ R+
0 ∀i ∈ I \ IA (2.18)

yij ∈ R+
0 ∀i ∈ I \ IA, j ∈ Ji (2.19)

zijk ∈ R+
0 ∀i ∈ I \ IA, j ∈ Ji, k ∈ Kj (2.20)

2.5 Model reformulation: A Mixed 0-1 Linear optimisation
model

The above described model contains non-linear expressions. The non-linearities appear
in the model through the term (2.1a) in the objective function and the constraints (2.9)–
(2.12). The algorithms developed for these types of models do not provide an optimal
solution in a reasonable computational time. Hence we will work with a new Mixed 0-1
Linear optimisation model by substituting the non-linear equations in the model with an
equivalent linear representation.

2.5.1 Linearisation of the nonlinear equations

Objective function

In order to linearise the quadratic term defined by the product of two 0-1 variables
in term (2.1a) of the objective function, new auxiliary 0-1 variables σijk are defined rep-
resenting the product (1 − βi)γjk, for i ∈ IL, j ∈ J NF

i and k ∈ Kj , such that, σijk = 1
if customer i does not leave the network and store j uses management policy k and 0
otherwise.

Variables σijk are computed from the variables βi and γjk through the following con-
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straints:

σijk ≤ γjk ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj

σijk ≤ 1 − βi ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj

σijk ≥ γjk − βi ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj

Constraints related to the increase of goods consumption

Further down we present an equivalent linear formulation to constraints (2.9)–(2.12) in
order to obtain a completely linear model, reducing complexity although the dimensions
of the model increase.

Constraints (2.9)–(2.12) contain a quadratic term in the left-hand-side (the product of a
continuous variable yij and, a 0-1 variable, αj). An equivalent linear representation of this
product can be obtained by using Fortet inequalities. The Fortet inequalities are presented
in Fortet (1960) and Hammer and Rudeau (1968). They deal with the linearisation of the
product involving a binary, say b, and a nonnegative continuous variable, say c. In order
to linearise the product c · b, a new nonnegative continuous variable k is introduced, where
k = c · b as well as the following set of constraints:

k ≤ c, k ≤ Mb, c − k ≤ M(1 − b),

where M is a big enough parameter that should be adjusted to strengthen the linear
relaxation of the problem. From this system, if b = 0 then k = 0, and if b = 1 then,
necessarily k = c, which models the product c · b.

Applying Fortet inequalities scheme, product (1 − αj′)yij can be replaced with the
auxiliary continuous variable u1

ijj′ = (1 − αj′)yij , together with the following set of con-
straints:

u1
ijj′ ≤ yij ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF

i

u1
ijj′ ≤ Mij(1 − αj′) ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF

i

yij − u1
ijj′ ≤ Mijαj′ ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF

i

where Mij can be set as
Mij =

∑
j′∈J NF

i :j′ ̸=j

gij′ .

With this reformulation, the left-hand-side is linearised.

The right-hand-side of the constraints also contains non linear terms that are linearised
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by using Fortet inequalities once more:

• Constraints (2.9), defined for i ∈ IBA ∪ INS and j ∈ J NF
i :

Constraints (2.9) contain a cubic term, (1 − αj)(1 − βi)xi. A new binary auxiliary
variable δij is introduced to represent the product (1−αj)(1−βi), such that, if either
one of αj or βi is equal to 1, then automatically δij = 0. Then, δij = 1 if customer i

does not leave the network and store j is not delocated and 0 otherwise. Variables
δij are computed by using variables αj and βi through the following constraints:

δij + αj ≤ 1 ∀i ∈ IBA ∪ INS, j ∈ J NF
i

δij + βi ≤ 1 ∀i ∈ IBA ∪ INS, j ∈ J NF
i

δij + αj + βi ≥ 1 ∀i ∈ IBA ∪ INS, j ∈ J NF
i

Replacing this new variable in xi(1 − αj)(1 − βi), the result is xiδij . The latter
expression is a product of a continuous variable, xi, and a 0 − 1 variable δij , that
can also be linearised using the Fortet inequalities scheme. Therefore, a new con-
tinuous variable has to be introduced, u2

ij = xiδij , together with the following set of
additional constraints:

u2
ij ≤ xi ∀i ∈ IBA ∪ INS, j ∈ J NF

i

u2
ij ≤ Mijδij ∀i ∈ IBA ∪ INS, j ∈ J NF

i

xi − u2
ij ≤ Mij(1 − δij) ∀i ∈ IBA ∪ INS, j ∈ J NF

i

where Mij can be set as
Mij =

∑
j′∈J NF

i :j′ ̸=j

gij′ .

• Constraints (2.10), defined for i ∈ IS and j ∈ J NF
i :

These constraints contain a quadratic term, (1 − αj)xi. By using the Fortet in-
equalities scheme, this product can be replaced by a new continuous variable, u3

ij =
xi(1 − αj), and the following set of additional constraints:

u3
ij ≤ xi ∀i ∈ IS, j ∈ J NF

i

u3
ij ≤ Mij(1 − αj) ∀i ∈ IS, j ∈ J NF

i

xi − u3
ij ≤ Mijαj ∀i ∈ IS, j ∈ J NF

i
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where Mij can be set as
Mij =

∑
j′∈J NF

i :j′ ̸=j

gij′ .

• Constraints (2.11), defined for i ∈ IBA and j ∈ J F
i :

These constraints contain a quadratic term, (1 − βi)xi. Yet again, the Fortet in-
equalities scheme can be used to linearise this quadratic term. Therefore, a new
continuous variable has to be introduced, u4

i = xi(1 − βi), and the following set of
additional constraints:

u4
i ≤ xi ∀i ∈ IBA : J F

i ̸= ∅

u4
i ≤ Mij(1 − βi) ∀i ∈ IBA : J F

i ̸= ∅

xi − u4
i ≤ Mijβi ∀i ∈ IBA : J F

i ̸= ∅

where Mij can be set as
Mij =

∑
j′∈J NF

i :j′ ̸=j

gij′ .

• Constraints (2.12), defined for i ∈ IS and j ∈ J F
i :

Once the left hand side of the constraints has been linearised, these constrains be-
come linear.

2.5.2 Mathematical formulation

Taking into account all the linearisation process performed above, model (2.1)–(2.20)
can be replaced by an equivalent linear reformulation substituting the non-linear con-
straints (2.1a) and (2.9)–(2.12) by their corresponding sets of constraints and auxiliary
variables.

Then, the notation for the Mixed 0-1 linear optimisation reformulation has the follow-
ing different elements with respect to the non-linear model:

Additional auxiliary binary variables

δij = 1 if customer i ∈ IBA ∪ INS leaves the network or store j ∈ J NF
i is delocated and 0

otherwise.

σijk = 1 if customer i ∈ IL leaves the network or store j ∈ J NF
i is operated with man-

agement policy k ∈ Kj and 0 otherwise.
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Additional auxiliary continuous variables

u1
ijj′ , nonnegative continuous variables for each customer i ∈ I \ IA and stores j ∈ Ji,

j′ ∈ J NF
i .

u2
ij , nonnegative continuous variables for each customer i ∈ IBA ∪INS and store j ∈ J NF

i .

u3
ij , nonnegative continuous variables for each customer i ∈ IS and store j ∈ J NF

i .

u4
i , nonnegative continuous variables for each customer i ∈ IBA : J F

i ̸= ∅.

New linear constraints

• Equation (2.1a) must be substituted by its equivalent set of linear constraints:

PRS =
∑

i∈IA∪IBA

( ∑
j∈J F

i

mijk∗
j
gij(1 − βi) +

∑
j∈J NF

i

∑
k∈Kj

mijkgijσijk

)
+

∑
i∈INS

∑
j∈J NF

i

∑
k∈Kj

mijkgijσijk+

∑
i∈IS

( ∑
j∈J F

i

mijk∗
j
gij +

∑
j∈J NF

i

∑
k∈Kj

mijkgijγjk

)
(2.21)

σijk ≤ γjk ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj (2.22)

σijk ≤ 1 − βi ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj (2.23)

σijk ≥ γjk − βi ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj (2.24)

• Constraints (2.9)–(2.12) must be substituted by their equivalent set of linear con-
straints:

u1
ijj′ ≤ yij ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF

i (2.25)

u1
ijj′ ≤ Mij(1 − αj′) ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF

i (2.26)

yij − u1
ijj′ ≤ Mijαj′ ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF

i (2.27)∑
j′∈J F

i

gij′yij +
∑

j′∈J NF
i

gij′u1
ijj′ = giju2

ij ∀i ∈ IBA, j ∈ J NF
i (2.28)

∑
j′∈Ji

gij′u1
ijj′ = giju2

ij ∀i ∈ INS, j ∈ Ji (2.29)

δij ≤ 1 − αj ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.30)

δij ≤ 1 − βi ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.31)

δij ≥ 1 − αj − βi ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.32)

u2
ij ≤ xi ∀i ∈ IBA ∪ INS, j ∈ J NF

i (2.33)
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u2
ij ≤ Mijδij ∀i ∈ IBA ∪ INS, j ∈ J NF

i (2.34)

xi − u2
ij ≤ Mij(1 − δij) ∀i ∈ IBA ∪ INS, j ∈ J NF

i (2.35)∑
j′∈J F

i

gij′yij +
∑

j′∈J NF
i

gij′u1
ijj′ = giju3

ij ∀i ∈ IS, j ∈ J NF
i (2.36)

u3
ij ≤ xi ∀i ∈ IS, j ∈ J NF

i (2.37)

u3
ij ≤ Mij(1 − αj) ∀i ∈ IS, j ∈ J NF

i (2.38)

xi − u3
ij ≤ Mijαj ∀i ∈ IS, j ∈ J NF

i (2.39)∑
j′∈J F

i

gij′yij +
∑

j′∈J NF
i

gij′u1
ijj′ = giju4

i ∀i ∈ IBA, j ∈ J F
i (2.40)

u4
i ≤ xi ∀i ∈ IBA : J F

i ̸= ∅ (2.41)

u4
i ≤ Mij(1 − βi) ∀i ∈ IBA : J F

i ̸= ∅ (2.42)

xi − u4
i ≤ Mijβi ∀i ∈ IBA : J F

i ̸= ∅ (2.43)∑
j′∈J F

i

gij′yij +
∑

j′∈J NF
i

gij′u1
ijj′ = gijxi ∀i ∈ IS, j ∈ J F

i (2.44)

• The model can be tightened by adding new constraints that allow certain feasible
solutions to be cutoff of its linear relaxation without eliminating any other feasible
solution from the original model:

δij =
∑

k∈Kj

σijk ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.45)

σijk ≤ δij ∀i ∈ IBA ∪ INS, j ∈ J NF
i , k ∈ Kj (2.46)

• Variables’ domain:

σijk ∈ {0, 1} ∀i ∈ IL, j ∈ J NF
i , k ∈ Kj (2.47)

δij ∈ {0, 1} ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.48)

u1
ijj′ ∈ R+

0 ∀i ∈ I \ IA, j ∈ Ji, j′ ∈ J NF
i (2.49)

u2
ij ∈ R+

0 ∀i ∈ IBA ∪ INS, j ∈ J NF
i (2.50)

u3
ij ∈ R+

0 ∀i ∈ IS, j ∈ J NF
i (2.51)

u4
i ∈ R+

0 ∀i ∈ IBA : J F
i ̸= ∅ (2.52)

2.6 Computational experience

The model described above has been tested by using real-world data taken from a case
involving an international company interested in knowing the best management policy
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Category of customers IA IBA INS IS

Distribution 63.0 12.5 19.6 4.9

Table 2.1: Distribution (%) of the customers into the different categories.

for its network of stores. The goal of the company is to choose the most appropriate
management policy for each store so as to maximise the total profit of the company. The
possibility of delocating the stores was considered in conjunction with four different types
of management policy.

2.6.1 Case study analysis

The network consists of 20 stores (6 fixed and 14 non fixed). In the initial configuration
of the network, the stores belong to any of types A (owned and operated by the company),
C (owned by an external dealer but operated by the company) or D (owned and operated
by an external dealer). The model can make decisions on the following management policy
changes: if the store is managed as Type A, then it could be replaced with Type B; if the
store is managed as Type C, then it could be changed to Type D and, finally, the stores
under management type D must remain under this management policy or otherwise they
are delocated. In our experiments, there is no limit in the number of stores that can be
delocated.

The network serves a number of between 15000 and 20000 customers, each of them
consuming in one or more stores which are distributed in a region of approximately 1200
km2. On average, each customer consumes in 2.1 different stores. Fig. 2.3a shows the
percentage of customers in the network consuming in one store, two stores, etc. Note
that almost 60% of the customers visit only one store. There are some customers who
visit more than 6 stores, although they can be considered outliers. Fig. 2.3b shows the
percentage of customers that are served by each store. There are five stores attending a
high number of customers (more than 3000), but the other 15 have a number of customers,
approximately between 1000 and 3000. Table 2.1 reports the distribution of the customers
in the different categories.

In order to guarantee the confidentiality of the data, the initial profit given by the
term ∑

i∈I

∑
j∈Ji

∑
k∈Kj

mijkgij ,

and the initial amount of goods sold in the stores given by

∑
i∈I

∑
j∈Ji

gij
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Figure 2.4: Distribution of consumption.

are set to 1000. Using this number as a reference, the consumption of goods per customer
varies depending on the stores, with an average consumption of 0.05 units. Fig. 2.4
shows the distribution of the consumption per store and customer. Fig. 2.4a shows the
distribution of consumption of each customer in the stores. It clearly shows an asymmetric
distribution, where most of the customers consume very little while there are few customers
with a much higher level of consumption. Focusing on the stores, for each of the 20
stores we have calculated the average consumption that each customer consumes in the
store; this amount is represented in Fig. 2.4b. Note that stores #4, #11, #12, and #15
have customers with higher levels of consumption (specially store #4), while there are no
significant differences among the rest of the stores.
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Result Value
Final profit (Obj. Func.) 1262.1
Initial profit 1000.0
Amount of lost sales (%) 28.3
Churn rate (% customers) 19.9
Number of delocated stores 3

Table 2.2: Results of the case study.

The commercial margins are different depending on the customer, the store and the
type of management policy, and in some cases they are even found to be negative. Finally,
the percentage of customers who have a tendency to leave the network in at least one store
is about 75%. This is used to classify the customers in different sets, taking into account
their tendency to leave the network and the stores where they consume.

The model has been implemented in the algebraic modelling language AMPL (Fourer
et al., 1990) and solved using the Gurobi v.7.0.0 optimiser (Gurobi Optimization, 2020)
in a computer with an Intel Core i7-7700HQ, 2.80GHz, 16GB RAM, Xubuntu 16.04 SO.
The main characteristics of the proposed solution are reported in Table 2.2.

This solution, which is obtained in 310 secs., implies the delocation of 3 stores with a
26.21% increase in the total profit while the 17 remaining stores sell 28.3% less. Further-
more, there is a 19.9% decrease in the number of customers (churn rate).

Table 2.3 reports more detailed information about the network of stores before and
after optimisation: whether the store is fixed or not; management policy; amount of
product sold and profit of each store before and after the optimisation process; and the
churn rate (percentage of customers of each store leaving the network).

There is evidence that the solution proposed here involves changes in six of the stores.
The three stores owned and managed by the company (type A) are put into a dealer
operating arrangement (type B), and the three stores of type D (an external dealer both
owns and operates the store) are delocated, while the other 14 stores remain in the same
situation. Note that the model does not consider the customers re-allocation, that is, if a
store is delocated, then its customers either leave the network or continue to purchase in
the remaining stores where they were already consuming, however, they do not start to
purchase in new stores. In our case, the delocation of three stores implies that between
84% to 91.8% of their customers leave the network, but there are some other customers
that continue purchasing in the other stores where they were already consuming.

The distribution of profit that the company obtains at each store before and after the
optimisation is shown in Figure 2.5.
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Store Management policy Consumption Profit Churn
ID Fixed Initial Final Initial Final Initial Final Rate (%)
1 No TypeD TypeD 39.8 36.3 12.2 11.4 11.4
2 No TypeD TypeD 108.1 89.9 -55.5 -45.0 15.3
3 No TypeD TypeD 41.1 36.6 -23.4 -20.3 15.1
4 No TypeD Delocated 65.3 0.0 -56.8 0.0 85.6
5 Yes TypeD TypeD 25.3 21.1 -21.2 -16.1 18.4
6 No TypeD TypeD 31.9 27.9 -1.4 -1.5 18.4
7 Yes TypeD TypeD 59.4 49.9 -36.3 -30.0 9.8
8 No TypeD TypeD 18.4 16.6 2.9 3.5 15.9
9 No TypeD TypeD 38.6 32.2 -24.0 -19.1 18.9
10 No TypeA TypeB 131.5 120.4 394.6 460.0 9.7
11 Yes TypeD TypeD 39.5 30.7 2.0 2.7 8.8
12 Yes TypeC TypeC 8.8 8.0 31.7 29.5 15.5
13 Yes TypeC TypeC 24.3 21.0 103.5 87.7 5.7
14 Yes TypeC TypeC 26.3 23.7 100.5 89.3 5.9
15 No TypeD Delocated 68.8 0.0 -50.8 0.0 84.0
16 No TypeD Delocated 53.3 0.0 -59.4 0.0 91.8
17 No TypeA TypeB 89.5 80.7 297.9 308.8 10.6
18 No TypeA TypeB 74.6 69.3 246.6 264.5 11.6
19 No TypeA TypeB 34.0 31.6 119.6 120.7 11.6
20 No TypeD TypeD 21.4 20.8 17.3 16.0 23.1
Network 1000.0 716.7 1000.0 1262.1 19.9

Table 2.3: Characteristics of the stores before and after optimisation.

When comparing the profits before and after the optimisation process, we observe that
several stores initially had losses. This is due to the fact that some of their customers had
a negative commercial margin. After optimisation, three of the stores with higher losses
are delocated (stores #4, #15 and #16) and overall losses are reduced by 60%. However,
there are some stores that also have large losses, store #2 for instance, that continue in
the network. The explanation behind this is that even though some of their customers do
not provide profits in these stores, the profit they provide in other stores where they also
consume offset the losses. Therefore, although the model focuses on individual stores, it
proposes a reorganisation based on the network as a whole and not only on the stores with
losses.

2.6.2 Extended experiments analysis

Since the company is interested in solving the problem in the future, for a larger
network covering all the stores, different instances where solved by increasing the number
of facilities. Table 2.4 reports the results obtained for the different instances. For each
instance, the following data are reported: the number of stores and their initial distribution
among the different types (A, B, C and D, fixed, non fixed); the range of the number
of customers (in thousands), the number of constraints and variables in the optimisation
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Figure 2.5: Distribution of sales profit in the stores.

model); zIP , the value of the objective function for the optimal solution (as was previously
presented, the initial profit for each instance has been set to 1000); the value of the
objective function for the linear relaxation of the problem (zLP ), the relative gap between
zLP and zIP in % (GAP), computed as 100ZLP −ZIP

ZIP
and the total computing time in

seconds. Furthermore, the variation (in %) on profit and consumption of the solution is
reported as well as the percentage of customers that leave the network (churn rate) and
the number of stores that are delocated (all of them initially were type D).

The solution obtained includes the following changes: all A-stores are changed to B-
stores, B and C-stores remain under the same management policy and D-stores remain
under the same management policy or they are delocated (see the last column in Table 2.4).

The computational time needed to obtain the optimal solution increases as the number
of stores increases. The largest instance solved in a reasonable computing time (less than
24 hours, fixed as stopping criterion) has 35 stores. Hence, the model faces a problem when
considering larger areas of the network. It should be noted that the higher the dimensions
of the problem, the greater the gap between the optimal solution for the continuous linear
relaxation and the optimal solution of the problem (see GAP in Table 2.4). This illustrates
the complexity involved in solving large instances. Therefore, other alternative lines of
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research must be investigated in order to deal with problems of this kind.

2.7 Conclusions and future research

A model to address the problem of redesigning the network of stores of a retail chain
has been presented in this chapter. The model aims to decide whether the stores should be
removed from the network, or whether the type of management policy applied to some of
these stores should be modified. Under the proposed model, simultaneous consideration is
given to: the delocation of facilities, changes in management policies, and the restructuring
of the network. In addition, customer behaviour is also considered. This behaviour is based
on the type of customers: major customers and the remaining customers who usually have
a loyalty card. These customers can decide whether to continue consuming in the retail
chain on the basis of their behaviour when some of the stores are closed. Moreover, it is
possible to adapt this model to different business sectors by considering a network with
retail facilities and agreements with their customers.

The model has been tested using a network with real data. In this particular instance
the total profit increased by more than 20% and the percentage of non-fixed delocated
stores was around 40%. At the same time, it tends to delocate the stores with negative
profits as long as it does not cause too many customers to leave. Moreover, it also allows
a change in the management policy whenever it brings higher profits to the company.

Our approach has also been tested in different instances, by increasing the number of
stores considered. The model achieved results considering up to 35 stores in a reasonable
computational time for these types of decisions (less than 24h).

From a business point of view, the application of this model will provide a better
management of the network and therefore increase the company’s profits. It will also
provide a better knowledge of the network of stores facilitating the decision making process.

In order to be able to solve larger instances, a future line of research would be to
implement a metaheuristic approach as for example evolutionary algorithms. In this case,
we would consider each store as an individual and the objective function F would act as
the fitness function.

From a business perspective it would be interesting to perform a sensitivity analysis
to obtain a clearer understanding of the effect of each of the model’s parameters on the
final configuration of the network.
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CHAPTER 3. THE SLITTING PROBLEM IN THE STEEL INDUSTRY

3.1 Introduction

The previous chapter introduced a strategic planning problem and a mathematical op-
timisation model to facilitate the decision making process and provide a better knowledge
of the network of stores of a retail chain. In this chapter, a mathematical methodology
for operational planning is presented. Within this context, the chapter proposes a math-
ematical optimisation model to solve the slitting problem in Cortichapa, a Spanish steel
manufacturing company which is part of Comercial de Laminados group.

The slitting problem occurs when large width steel coils are slit into narrower coils,
known as strips, to meet the requirements of the customers. A major challenge is defining
a cutting plan to fulfil all these requirements, as well as ongoing operational constraints
and customer demands. As part of the cutting plan, the coils to be used and their cutting
patterns are decided. The company looks for a reduction of the leftovers generated in the
entire process, while maximising the overall accuracy of the orders. These leftovers may
be used in the future as part of new orders provided they are able to respond to specific
requirements, or otherwise they are discarded and considered as scrap.

This chapter introduces a mixed integer linear optimisation model to respond to the
specific slitting problem of Cortichapa. The model is validated with real data and it
outperforms the results obtained by the company in different ways: by adjusting the
orders that are to be served, by reducing the amount of scrap and by using the retails for
future orders. Furthermore, the model is solved in only a few minutes, while the company
needs several hours to prepare the scheduling in the current planning process.

The findings of this chapter have been published in:

Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-
Campo, F.J., & Gallego, M. (2021), ‘An exact model for a slitting prob-
lem in the steel industry’, European Journal of Operational Research
295(1), 336-347. doi:10.1016/j.ejor.2021.02.048.

The remaining part of this chapter is organised as follows. Section 3.2 presents some
literature review related to the slitting problem in the steel industry and in the field of
Operations Research. Section 3.3 introduces and details the problem under study. Section
3.4 presents the mixed integer linear optimisation model proposed to solve the problem.
In Section 3.5, an extensive computational experience, based on a real-world situation, is
introduced. Finally, Section 3.6 provides the conclusions and future research.

34

https://doi.org/10.1016/j.ejor.2021.02.048


3.2. LITERATURE REVIEW

3.2 Literature review

3.2.1 The slitting problem in the steel industry

Cutting processes are an essential part of the operations carried out in steel manufac-
turing companies and, therefore, need to be efficiently planned. On a worldwide basis, the
steel industry plays an important role. In 2020, steel mills produced 1,878 million tonnes
of crude steel, 7.4% of which was produced within the European Union and 56.7% within
China. In 2020, the largest producer in the world was China Baowu Group with an annual
tonnage of 115 million tonnes, followed by ArcelorMittal with an annual tonnage of 78
million tonnes (World Steel Association, 2021).

The steel industry needs to respond to emerging challenges in terms of its processes,
with optimisation methods being considered as an essential tool for the continuous im-
provement of the production processes and how they are managed (Mukherjee and Ray,
2006). Applications of optimisation methods in the steel industry can be seen in Haessler
(1978), Ferreira et al. (1990), Vasko et al. (1992), Valério de Carvalho and Rodrigues
(1995), Dutta and Fourer (2001) and Santos et al. (2018). In particular, the slitting prob-
lem has been frequently investigated, such as in Coffield and Crisp (1976), Haessler (1978),
Sarker (1988), Sweeney and Haessler (1990), Ferreira et al. (1990), Vasko et al. (1992) and
Valério de Carvalho and Rodrigues (1995).

3.2.2 The slitting problem in OR

In the field of Operations Research, the problem of laying out cutting patterns has been
tackled through the family of Cutting Stock Problems (CSPs). The CSP, as stated in Ben
Amor and Valério de Carvalho (2005), consists in determining the most effective way to cut
a set of large objects into smaller ones. The CSP has been broadly studied in the literature
and has been also known as Trim Loss Problems (TLP) (see Dyckhoff et al. (1985)).
Kantorovich (1960) and Eisemann (1957) are responsible for the fundamental works of
the CSP. Kantorovich’s work, first published in 1939, introduces the first mathematical
formulation for the one-dimensional TLP. Eisemann’s work defines the TLP for rolls of
material and proposes a linear programming model to solve this problem. A few years
later, Gilmore and Gomory (1961) introduced a method based on duality with the aim
of determining all possible cutting patterns, overcoming the difficulty of dealing with a
large number of variables. This method used to solve the original CSP is considered as the
classical approach. Consequently, these authors extended and adapted the method to the
specific trim problem (Gilmore and Gomory, 1963) and to the two-dimensional Cutting
Stock Problem (2D-CSP) (Gilmore and Gomory, 1965). Later, in Valério de Carvalho
(1998) a new formulation is introduced for the one-dimensional Cutting Stock Problem
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(1D-CSP) and an exact solution is found using column generation and Branch-and-Bound
techniques. On the other hand, there have been a number of alternative approaches to
solve the different variants of the problem (see Hinxman (1980) and Delorme et al. (2016)).
Also an extensive revision of linear programming models for bin packing and cutting stock
problems can be found in Valério de Carvalho (2002).

An initial, simplified version of the problem presented in this chapter can be viewed
more as a generalisation of the classical 1D-CSP. The coils held in stock have a specific
width and external diameter, which are not necessarily the same for all of them, in other
words, the stock is heterogeneous. These coils are then cut to produce strips to match the
widths requested by the customers, taking into account that the number of knives used
in the cutting process is limited. In the same way as in the 1D-CSP, the model should
include constraints to ensure that the maximum number of slits and that the total width
of the coil are not exceeded. Considering the cutting and packing typology described in
Dyckhoff (1990), this first simplified version of the problem can be classified as 1/V/D/M,
where 1 refers to a one-dimensional problem, V indicates that all of the items requested
should be allocated to a set of large objects, D indicates that the large objects available
may be of different sizes, while M means that there are many items and different sizes.

However, in the case of our problem, the orders are not based on the number of strips
required, but rather by the total weight to be served for a specific strip width. Since not
all coils share the same diameter, the weight of a strip will depend on the selected coil from
which it is obtained. Therefore, it is impossible to know in advance the number of strips
needed to meet the demand. It should be noted that if all coils share the same diameter,
the transformation between the total weight and number of strips could be performed and
we would be facing a 1D-CSP. CSPs with two relevant dimensions, where one is fixed
(the width of the strips) and the other is variable (the weight of the strips) are named
one-and-a-half-dimensional CSP (1.5D-CSP) (Hinxman, 1980). This type of problem also
differs from the 2D-CSP, where rectangles of a fixed length and width are cut from the
rectangular stock. Examples of 2D-CSP can be found in Beasley (1985) and Hifi and
M’Hallah (2006).

Several authors have considered different versions of 1.5D-CSP. Haessler (1978) dealt
with the 1.5D-CSP in the metal industry. They assumed that each selected coil should be
completely processed and proposed a heuristic procedure that would sequentially satisfy
the requirements of each order, while controlling both trim losses and slitter changes. Saraç
and Özdemir (2003) proposed a genetic algorithm to solve a multi-objective mathematical
model for the 1.5D assortment problem. Gasimov et al. (2007) presented a 1.5D cutting
stock and assortment problem which involved determining the number of different widths
of the rolls in stock and the cutting patterns used. They propose a new multi-objective
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mixed integer linear programming model and an equivalent nonlinear version. A detailed
survey of 1.5D-CSP’s from 1965 to 1990 can be found in Sweeney and Paternoster (1992).

The problem addressed in this chapter also includes additional differences relative to
the 1D-CSP. These include certain requirements, which should be fulfilled by the products
that are ordered, such as the maximum diameter allowed for the strips being supplied.
In many instances, the maximum diameters allowed for the orders are smaller than the
diameter of the coils in stock. When this occurs, slitting the coils is not sufficient to meet
these requirements so additional crosscuts are necessary to reduce the diameter. These
crosscuts are guillotine cuts that cross the entire width of the coil from one edge to the
other. This reduces the diameter of the coil and the strips obtained from it, to either by
half or by a third and so forth, depending on the number of crosscuts performed. Although
the problem considers crosscuts, it cannot be regarded as a 2D-CSP, since the length of
the strips is not pre-set and it implies a continuous decision variable in the mathematical
model.

Another important characteristic of our problem that differentiates it from the classic
CSP, is the assortment of large objects. The coils held in stock are strongly heterogeneous.
According to the extended typology of Wäscher et al. (2007), our problem can be classified
as a residual cutting stock problem (RSCP). Gradišar et al. (1999) argue that a traditional
pattern-oriented approach is possible only when the stock is of the same size or of several
standard sizes, thus inappropriate for this type of problem. There is a need to use item-
oriented approaches, which are characterised by treating each item to be cut, individually.
Therefore, we propose an item-oriented solution based on a mixed integer programming
model. In this regard, other item-oriented approaches have been studied in the literature.
For example, Gradišar et al. (1999) proposes a Sequential Heuristic Procedure to solve the
problem of reducing trim losses in one-dimensional stock cutting, when all stock lengths
are different.

As a consequence of the manner in which the coils are processed and cut, there is a
wide variety of sizes held in stock. When the coils are cut into the exact number of strips
required, this may result in a large number of strips that are not assigned to any specific
order (these are the leftovers of the cutting process). As stated in Tomat and Gradišar
(2017) the existence of leftovers is common during the cutting process. If they are greater
than a certain threshold, they are considered as usable leftovers (UL) and are returned
to the stock to be used for future orders. This problem is known as the Cutting Stock
Problem with Usable Leftovers (CSPUL) (Cherri et al., 2009). In this respect, several
papers have previously dealt with UL. In Coelho et al. (2017) the possibility of generating
standard pieces from the leftovers during the cutting process, is considered to reduce waste
material. In Abuabara and Morabito (2008) two mixed integer programming formulations
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are presented to deal with a one-dimensional cutting stock problem that arises in the
manufacturing of agricultural light aircraft. Both models minimise the total trim loss
considering the possibility of generating leftovers for future reuse. As in the CSP, the
CSPUL can be classified as 1D, 1.5D and 2D. Cherri et al. (2012) consider the 1D-CSPUL
where the UL are kept for future use, prioritising the use of leftovers compared to the
standard pieces held in stock. A survey on the 1D-CSPUL can be seen in Cherri et al.
(2014). Examples of the 2D-CSPUL are found in Andrade et al. (2014) and Birgin et al.
(2019). Therefore, we consider the leftovers of the process to be usable if specific conditions
are met and are preferred to as opposed to obtaining scrap.

The underlying problem studied in this chapter can be classified as a 1.5 dimensional
residual cutting stock with usable leftovers (1.5D-RCSPUL), where crosscuts are permitted
to reduce the diameter of the resulting strips and knives constraints are considered. The
stock consists of coils of different sizes containing leftovers from previous cutting processes.
We have developed a mixed integer linear optimisation model for this problem taking into
account two main goals, which are related to the leftovers generated in the process, and
the precision carried out when serving the customer’s orders. Insofar as we are aware,
no such problem has been previously discussed. Furthermore, our methodology has been
validated by the company that proposed the problem, and it has significantly improved
its current planning operation.

3.2.3 Summary of references

Table 3.1 presents a summary of the main characteristics and solution methods studied
in the references that have been cited. In the table, the type of industry is specified only
where the papers mention it, the rest could be applied to a wide range of them. The
check mark “✓” refers to a defined problem characteristic. It should be noted that the
problem characteristic is undefined for the cells marked with “-”. Finally, in the Mod-
elling approach and Solution approach columns, MILP/MINLP represent mixed-integer
linear/nonlinear programming; ILP represents integer linear programming; LP represents
linear programming; DP represents dynamic programming and “Survey” indicates that it
is a survey type research.

3.3 Problem description

The production planning of steel strips is mainly based on the customer demand.
Customers place orders for the strips, by specifying a certain width and a total weight. A
combination of knives is set in the slitting machine (one knife more than the number of
strips obtained). The strips are slit from the coils in stock which, besides new coils, also
include leftovers from older cutting processes. Once a coil is selected to be processed, it
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Stock Customers Scrap

Scrap

Retails

(a) Slit coil producing different strips

Stock Customers Scrap

(b) No slits performed

Figure 3.1: Different possibilities to allocate orders to coils.

is unwound in the slitting machine, which is equipped with a variable and limited number
of knives to perform the corresponding cuts. While the slitting process is carried out, the
coil is rewound, and a set of strips is obtained.

Figure 3.1a represents an unwound coil, where four knives have been set into the slitting
machine to obtain three different strips, which is represented by the grey area. Knives
at both extremes are necessary in order to keep the coil uniform, therefore, a minimum
edge trim will always be required. The material on the outer sides of the extreme knives,
which is illustrated by the black area in the figure, represents the leftovers of the process.
These leftovers are usable and kept in stock when their width and weight are greater than
a certain threshold. Whenever this occurs they are referred to as retails, otherwise, the
leftovers are considered as scrap. When the width of the order perfectly matches the width
of the coil, the coil is served as a complete strip so edge trimming is not required, since
no slits are performed, as shown in Figure 3.1b.

3.3.1 Restrictions of the customers

In the case of this company, there are particular restrictions imposed by the customers
that affect the way their orders need to be served. These restrictions include the maximum
weight of the strip and the maximum external diameter allowed. It should be noted that
given some properties such as width, thickness, density and internal diameter of the strip,
the weight of a strip can be obtained from its external diameter. Hence, both requirements
can be given in terms of a maximum allowed weight for the strips where the most restrictive
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Stock Customers Scrap

(a) Strips obtained without crosscuts

Stock Customers Scrap

(b) Strips obtained when a crosscut is made and the slitting process continues

Stock Customers Scrap

(c) Strips obtained when a crosscut is made and the slitting process is stopped

Figure 3.2: Example of strips obtained.

one is considered. For each order, the maximum allowed weight for the strips, as well as
the size of the coil, would define the number of strips served.

In order to reduce the diameter, and consequently the weight of the strips to meet
the customers’ requirements, it is possible to make one or more guillotine crosscuts with
a shear blade. These cuts affect all the strips assigned to the coil and must ensure that
each resulting strip has a certain weight which lies within the limits set by the customer.
These limits may vary from customer to customer. For this reason, it is worth noting that
the knives cannot be redirected after a crosscut remaining the cutting pattern the same.
Figure 3.2 presents an example of how a crosscut reduces the external diameter or weight
of the finished strips. In Figure 3.2a the external diameter of the finished strips is greater
than those in Figure 3.2b where a crosscut has been performed.
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Each time a crosscut is carried out, a decision must be made on whether to continue
cutting or stop the cutting process. In the latter case, the remaining part of the coil is
rewound and kept in stock for future cutting processes. It should be noted that this partial
rewound process produces coils in stock with a variety of external diameters (see Figure
3.2c).

3.3.2 Compatibility of stock and orders

An additional feature that complicates the problem lies in the quality requirements
requested by the customer, regarding the product being served. The company handles
more than 20 parameters that define the technical characteristics of each coil, the type of
material, its thickness, etc. For each of these parameters, the customer requests specific
values and, in some cases, small tolerances are allowed. For example, the type of material
has to match both the order and stock. However, if the order requires a thickness of 2
mm with a tolerance of 0.1 mm, the thickness of the stock could range between 1.9 mm
and 2.1 mm. These requirements should be considered in order to determine the set of
compatible coils for each order. Nevertheless, since the tolerances are so small, the costs
involved for the company are fairly insignificant.

These compatibility requirements create a problem that is more difficult to solve, as
the same coil can be used to serve orders with different characteristics. As a result, the
problem cannot be easily separated into several sub-problems. An illustrative example
is shown in Figure 3.3, where any R type coil is compatible with order 1, but not with
order 2. However, the M-coil is compatible with both orders 1 and 2. This situation can
arise, for example, when customers allow their orders to be served with better quality
products than requested, or with a certain thickness tolerance. It should be noted that
this characteristic introduces a new difficulty: an order can be served with coils of different
densities or weights per linear metre. Therefore, converting weight to length on a general
basis for all coils is not possible and has to be carried out for each coil individually.

3.3.3 Cutting patterns

A number of cutting scenarios may arise, resulting in various types of cutting patterns,
which are shown in Figure 4. With regard to slitting the coil, two situations may occur:
(A) the strip width matches the coil width and, (B) the strip width is narrower than the
coil width. In case A, the coil is not slit while in case B, the coil is slit and at least two
knives are needed for the slitting machine to perform the cuts. In both cases, A and B, the
coil can be fully used lengthwise (cases A1, A2, B1 and B2 in Figure 3.4) or partially used
(cases A3 and B3 in Figure 3.4). In cases A3 and B3, the remaining part without slits is
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Figure 3.3: Illustrative example of compatibility between orders and stock.
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Figure 3.4: Different cutting patterns considered.

rewound and restocked. One or more guillotine crosscuts may be performed in order to
meet the maximum strip weight requirements (cases A2, A3, B2 and B3).

3.3.4 Goals

The company pursues the following goals, namely:

• Maximise the utilisation of each coil.

The company currently uses about 50-60% of the weight of the coils to meet demand.
The leftovers of the cutting process are 1) discarded if their weight or width are not
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deviation (%)
-8 -6 -4 -2 0 2 64 8

penalisation

][

convex penalisation
linear approximation

Figure 3.5: Penalisation of deviation from actual weight for each order.

large enough; 2) stocked for future use; or 3) used to prepare strips for expected
future orders. Based on past record data, the company can forecast future demand
and then seek to make efficient use of the unused pieces by anticipating future
demand. These three situations imply economic costs to the company that include
the generation of scrap, inventory costs and the risk of producing non-demanded
strips that would cause an increase in the stock.

In order to improve the current operation process, the model includes a penalisation
for the weight of the leftovers. This penalisation is greater for scrap than for retails.
It should be noted that the third option, that of anticipating possible future demand,
is only carried out by the company as a last option to reduce scrap, and it is not
contemplated in the model.

• Adjust the weight served to the real demand.

Owing to the way the company operates, it is very difficult to serve the exact amount
of product that each customer has requested. Currently, the company works with a
±20% tolerance; this seems reasonable for the company since most of the customers
are regular ones and, therefore, part of the demand can be transferred to other days,
usually at a cost in the form of a discount. To reduce this deviation, the objective
function includes a penalisation. A non-linear (convex) function is used which results
in larger deviations being more penalised than smaller ones. This convex function
can be approximated by a piece-wise linear function without the need of binary
variables. More specifically, we have considered two intervals for the approximation:
up to a certain level, deviations are acceptable as it is rather difficult to meet the
exact weight ordered for all of the customers, but for deviations over the maximum
desired deviation, a greater penalisation is imposed. Either way, a maximum allowed
deviation is established. Figure 3.5 shows an example, where a deviation up to 4%
of the weight ordered is less penalised than a deviation from 4% to 8%. The latter
is the maximum deviation allowed.
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3.3.5 Problem hypotheses

In summary, the problem under study considers the following hypotheses:

• Customers place their orders by specifying a certain width and total weight. Neither
the number of strips nor their weight are predefined.

• All strips supplied should meet the customer’s requirements in terms of a maximum
permitted weight.

• The existing stock consists of coils with different sizes, and includes the retails from
former cutting processes.

• Compatibility requirements imply that different types of coils are considered for a
given order.

• Both slits and guillotine crosscuts are considered.

• After a crosscut, the reconfiguration of knives is not allowed. Either the rest of the
coil is cut with the same configuration of the knives or it is rewound and kept in
stock.

• A minimum edge trim is required when slitting the coil.

• Leftovers are divided into retails (usable leftovers) and scrap.

• Customer’s orders have to be fulfilled. A maximum allowed deviation on the weight
served with respect to the requested weight is considered.

3.4 Mixed Integer Linear optimisation model

Below, a Mixed Integer Linear optimisation model to solve the problem is presented1.

3.4.1 Notation

• O, set of customer’s orders. The following information is given for each order o ∈ O:

wo, width (m) of strips.

bo, required weight (kg).

bo, maximum weight (kg) allowed for each single strip of the order.

uo, ud
o , maximum absolute deviation on the required weight (kg) that is permitted
and desired, respectively.

1For the sake of clarity, the notation presented in this chapter differs slightly from the one introduced
in Sierra-Paradinas et al. (2021).
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• C, set of coils in stock. For each coil c ∈ C the following data are known:

Wc, width (m).

Bc, weight (kg).

Lc, length (m).

Lc, Lc, for partially used coils, minimum and maximum length (m) used from the
coil, respectively. Lc is such that it guarantees that the rest of the coil can be
rewound and kept in stock.

Dc, weight (kg) per m2. It depends on the density and thickness of the coil.

kc, maximum number of knives.

Jc = {1, . . . , kc − 1}, index set for the slits performed.

Oc, set of orders that are compatible with the coil.

• Parameters for operation settings:

r, minimum edge trim required for quality purposes.

a, b, minimum width and weight required for a trim waste to be reusable, respec-
tively.

• Objective function:

q, qd penalisation for the allowed and desired deviation of the weight served with
respect to the required weight, respectively. Note: q > qd.

Decision variables

βc = 1, if coil c is used, 0 otherwise, c ∈ C.

γT
c = 1, if coil c is fully used lengthwise, 0 otherwise, c ∈ C.

γP
c = 1, if coil c is partially used lengthwise, 0 otherwise, c ∈ C.

αc0 = 1, if coil c is used without slitting, 0 otherwise, c ∈ C.

αcj = 1, if the j-th slit is performed in coil c, 0 otherwise, c ∈ C, j ∈ Jc : j > 0.

µocj = 1, if order o is assigned to the j-th slit of coil c, 0 otherwise, c ∈ C, o ∈ Oc, j ∈ Jc.

θc = 1 if trim waste of coil c is reusable, 0 otherwise, c ∈ C.

δc, number of guillotine crosscuts made in the used part of coil c, c ∈ C. It should be
noted that this variable does not count the last crosscut made if the coil is partially
used, in other words, it only counts the crosscuts made to assure that the weights
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Lc

Ac

Lc
Lc

xc

Figure 3.6: Parameters referred to a given coil.

Fully used lengthwise Partially used

γT
c = 1, xc = Lc γP

c = 1, Lc ≤ xc ≤ Lc

(1) No cross-cut (2) Cross-cut (3) Cross-cut

(A) No slit αc1 = 0, δc = 0 αc1 = 0, δc > 0 αc1 = 0, δc ≥ 0
(B) Slit αc1 = 1, δc = 0 αc1 = 1, δc > 0 αc1 = 1, δc ≥ 0

Table 3.2: Relationship between variables and the different cutting patterns for a coil c.

of the strips are less than the maximum allowed. Observe Figure 3.2b where β = 1
and Figure 3.2c where β = 0.

xc, used length of coil c, c ∈ C.

vocj , length of the strip of order o obtained from the j-th slit made in coil c, c ∈ C, o ∈
Oc, j ∈ Jc.

u+
o , u−

o , excess and lack of weight served for order o, o ∈ O.

ud+
o , ud−

o , excess and lack of weight served for order o within the maximum desired devi-
ation, o ∈ O.

yc, width of the leftovers of coil c ∈ C which is broken down in the sum of yr
c, for retails

and ys
c, for scrap, c ∈ C.

zr
c, zs

c, weight of the retails and scrap of coil c, c ∈ C.

Figure 3.6 shows some elements of the notation on an unwound coil and Table 3.2 indi-
cates how the values of the variables determine the different cutting patterns described in
Figure 3.4.
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3.4.2 Mathematical formulation

Objective function

The objective function is a weighted sum of three elements:

min ω1f1 + ω2f2 + ω3f3, (3.1)

where ω1, ω2 and ω3 represent the weights assigned to each component:

f1: Usable leftovers or retails. There are two kinds of usable leftovers: the rewound coils
obtained from the partially used coils and retails that appear when a coil is not fully
used widthwise.

f1 =
∑
c∈C

(
Bcβc − DcWcxc

)
+ zr

c (3.2)

f2: Scrap. Leftovers whose weight and/or width are below a certain threshold.

f2 =
∑
c∈C

zs
c (3.3)

f3: Difference between the weight served and the weight that is actually ordered by each
customer. Two different penalisations are considered: qd for deviation within the
desirable limits and q for the excess deviation over these desirable limits.

f3 =
∑
o∈O

(
q(u+

o + u−
o ) + (qd − q)(ud+

o + ud−
o )

)
(3.4)

Constraints

1. Cutting patterns: Constraints (3.5) state, for each used coil, whether it is served
with or without slitting. Constraints (3.6) force not to make a slit if the previous slit
has not been performed, in other words, introduce an order in the slits. Constraints
(3.7) state, for used coils, whether they are completely or partially slit. Constraints
(3.8) guaranty that no guillotine crosscuts are performed on unused coils.

αc0 + αc1 = βc ∀c ∈ C (3.5)

αcj ≤ αcj−1 ∀c ∈ C, j ∈ Jc : j > 1 (3.6)

γT
c + γP

c = βc ∀c ∈ C (3.7)

βc ≤ Gcβc ∀c ∈ C, (3.8)

Where Gc is an upper bound of the number of guillotine crosscuts in coil c.
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2. Assignment of orders to strips: Constraints (3.9) assign exactly one order to each
strip (it should be noted that an order can be assigned to one or more strips).
Constraints (3.10) ensure that the width of each coil is not exceeded. Constraints
(3.11) ensure a minimum edge trim in slit coils.

∑
o∈Oc

µocj = αcj ∀c ∈ C, j ∈ Jc (3.9)

∑
j∈Jc

∑
o∈Oc

aoµocj + yc = Wcβc ∀c ∈ C (3.10)

2rαc1 ≤ yc ≤ Wcαc1 ∀c ∈ C (3.11)

3. Bounds on the used length of the coils: Constraints (3.12) force the used length of
the coils to be equal to the total length of the coil when it is completely slit and
between the given bounds when it is partially slit.

Lcγ
T
c + Lcγ

P
c ≤ xc ≤ Lcγ

T
c + Lcγ

P
c ∀c ∈ C (3.12)

4. Length of the strips ordered: Constraints (3.13) allow to assign a length only to the
strips assigned to the orders. Constraints (3.14) guaranty the length of all the strips
in a coil to be equal to the used length of the coil.

Lcµocj ≤ vocj ≤ Lcµocj ∀c ∈ C, o ∈ Oc, j ∈ Jc (3.13)

0 ≤ xc − vocj ≤ Lc(1 − µocj) ∀c ∈ C, o ∈ Oc, j ∈ Jc (3.14)

5. Guillotine crosscuts: Constraints (3.15) compute the number of guillotine crosscuts
needed in coil c to keep the weight of the strips lower than the maximum allowed
for each order assigned to this coil.

(Dcwo)vocj ≤ bo(βc + 1) ∀c ∈ C, o ∈ Oc, j ∈ Jc (3.15)

6. Demand: Constraints (3.16) –(3.17) compute the lack or excess weight served to
each order.

∑
c∈C:o∈Oc

∑
j∈Jc

(Dcwo)vocj − u+
o + u−

o = bo ∀o ∈ O (3.16)

ud+
o ≤ u+

o , ud−
o ≤ u−

o ∀o ∈ O (3.17)

7. Leftovers: When leftovers are rewound for further use, they are considered as usable.
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Alternatively, the material is discarded and considered as scrap. When leftovers are
usable, there is always a weight that represents the minimum edge trim required
which is considered as scrap. Thus, the width of the leftovers can be divided into
usable (retails) and non-usable (scrap) parts (3.18). In an analogous manner, the
weight of the leftovers can also be divided into usable and non-usable parts (3.19).
Constraints (3.20)-(3.23) assure that if leftovers are usable, their width and weight
should be at least the minimum established. Failure to comply with at least one
of these conditions will result in the leftovers as being considered scrap. Finally,
constraints (3.24) state that leftovers only appear when the coil is slit.

yc = yr
c + ys

c ∀c ∈ C (3.18)

(DcWc)xc −
∑

o∈Oc

∑
j∈Jc

(Dcwo)vocj = zr
c + zs

c ∀c ∈ C (3.19)

aθc ≤ yr
c ≤ Wcθc ∀c ∈ C (3.20)

bθc ≤ zr
c ≤ Bcθc ∀c ∈ C (3.21)

rθc ≤ ys
c ≤ rθc + sc(1 − θc) ∀c ∈ C (3.22)

(DcrLc)θc ≤ zs
c ≤ (DcrLc)θc + Bc(1 − θc) ∀c ∈ C (3.23)

θc ≤ αc1 ∀c ∈ C (3.24)

Constant sc in constraints (3.22) are an upper bound of the width of the leftovers
of coil c to be considered as scrap. It can be computed as the maximum between a

and the width corresponding to the leftovers of weight b:

sc = max
{

a,
b

DcLc

}

8. Variables’ domain:

βc, γT
c , γP

c , θc ∈ {0, 1} ∀c ∈ C (3.25)

xc, yc, yr
c, ys

c, zr
c, zs

c ∈ R+
0 ∀c ∈ C (3.26)

δc ∈ Z+
0 ∀c ∈ C (3.27)

αcj ∈ {0, 1} ∀c ∈ C, j ∈ Jc (3.28)

u+
o , u−

o ∈ [0, uo] ∀o ∈ O (3.29)

ud+
o , ud−

o ∈ [0, ud
o ] ∀o ∈ O (3.30)

µocj ∈ {0, 1} ∀c ∈ C, o ∈ Oc, j ∈ Jc (3.31)

vocj ∈ R+
0 ∀c ∈ C, o ∈ Oc, j ∈ Jc (3.32)
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3.5 Computational experience

This section presents the computational results of the experiments that have been
carried out to validate the model proposed above: a comparison with the current operation
implemented by the company, a sensitivity analysis varying the weights of the objective
function and the limits of the desired deviation, and an extended experiment to asses the
limits of the model.

3.5.1 Data description

For the experiments, we have used real data provided by Cortichapa, a Spanish steel
manufacturing company interested in improving the planning of steel strip production.
The company holds a permanent stock level of about 40,000 tonnes, consisting of approx-
imately 3,000 coils of different sizes and types of products (including retails from previous
cutting processes). Table 3.3 reports the range of values for the main characteristics of
the coils in stock: their width, thickness, weight and external diameter. The thickness
of the coil is directly related to the maximum number of knives that can be configured
in the slitting machine (varying from 4 to 18 knives). Furthermore, the company uses
around twenty additional parameters to define the compatibility between the orders and
coils, such as type of material, quality, mechanical and physical characteristics of the coil.

It should be noted that the unused and processed coils have different characteristics,
thus making the problem more difficult to deal with. Fig. 3.7 shows the distribution
of widths for both types of coils. It can be observed that the processed coils are much
narrower than the unused ones, but in both cases, there is a great diversity of widths in
the stock. The company currently designs the patterns manually and, given the difficulty
of the problem, it tends to select the unused coils, which are wider and easier to obtain
feasible cutting patterns from. These operations gradually lead to an increase in the
number of processed coils in the stock.

Concerning the demand, Table 3.4 reports the range of values for the main charac-
teristics of the orders: the width and thickness of the strips, the total amount of weight
ordered, and the maximum weight allowed for each strip. The widths of the strips are
extremely diverse depending on the order, even for orders from the same customer. For
illustrative purposes, Figure 3.8 shows the distribution of the widths of the strips for four
different customers, demonstrating the diversity of the demand, even for the same cus-
tomer. Such diversity leads to the need to lay out completely different cutting patterns,
depending on the demand at the time of planning.

Some customers allow a certain degree of tolerance in the thickness; this tolerance can
range from 0.05 mm to 0.21 mm. The coils held in stock have an external diameter that
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Min. Max.
Width (mm) 19 2,000
Thickness (mm) 0.32 5.0
Weight (kg) 40 27,530
External diameter (mm) 600 1,980

Table 3.3: Main characteristics of coils in stock.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Unused

Processed

Width (mm)

Figure 3.7: Coils width distribution.

Min. Max.
Width (mm) 19 1500
Thickness (mm) 0.32 5.0
Total weight (kg) 80 25,000
Max. strips’ weight (kg) 120 24,000

Table 3.4: Main characteristics of orders.

0 200 400 600 800 1,000 1,200 1,400 1,600

Customer 1

Customer 2

Customer 3

Customer 4

Width (mm)

Figure 3.8: Orders’ width distribution by customer.
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Instance # orders Total required
weight (t)

# compatible
coils

Weight of
compatible coils (t)

I01 15 115 380 5,192
I02 7 104 76 1,085
I03 14 83 222 2,972
I04 9 90 175 2,486
I05 14 112 193 2,74
I06 11 97 271 4,024
I07 8 74 65 954
I08 7 92 207 2,027
I09 7 123 154 2,442
I10 13 123 180 1,941
I11 10 61 68 999

Table 3.5: Main characteristics of instances.

may reach 1980 mm, providing that the maximum diameter established by the customer
may be under that value, it would be necessary to include crosscuts to ensure that the
strips served do not exceed this limit. Another aspect that may imply crosscuts is the
maximum weight per strip that varies from 120 to 24000 kg. Finally, the widths of the
coils vary from 19 mm to 2000 mm, while customers demand strips that range from 19
mm to 1500 mm.

3.5.2 Current operation

For 11 working days in 2019, we were provided with the solution applied by the com-
pany which was compared with the one provided by the model. The actual planning of the
cutting process takes several hours and very often, there are situations where the company
cannot find a way to complete and fulfil all its orders in one day. In other words, the weight
served in one day is not within the permitted deviations from the total weight required.
Consequently, those orders remain open for the next day. In addition, as mentioned before,
the anticipation of future demand is practised by the company (a posteriori) by planning
make-to-stock orders to complete the coils used. In order to validate the model, and at the
company’s request, the records only include confirmed orders that have been completely
fulfilled, thereby allowing there to be a comparison between both solutions.

Table 3.5 reports the main characteristics of the instances tested: number of orders,
total weight required in tonnes, number of compatible coils in stock and their total weight
in tonnes. Additionally, for each instance, Figure 3.9 shows the distribution of the weights
of the orders (3.9a) and the distribution of the weights of the compatible coils in the stock
(3.9b). It should be noted that instances I03 and I11 have mainly small orders and little
variability, while the variability in the weight of the order is greater for instances I02, I09
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Figure 3.9: Distribution of order and compatible coils sizes for the current operation
instances.
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and I10. Regarding the weight of the coil, the instances are more homogeneous.

Table 3.6 reports the main performance indicators of the solution currently imple-
mented in the company. In each instance, the number of coils used in the solution and
their total weight in kg are indicated, together with the coils served, the retail weights
and the weights of the scrap. In addition, the percentage that each weight represents
over the total weight used is also indicated. Leftovers are considered retail when their
widths and weights are greater than 100 mm and 500 kg respectively. The Slit and Cross
columns provide the number of slits performed on average per coil, and the total number
of guillotine crosscuts made in the solution, respectively. The Rew. column provides the
number of coils that are rewound. Deviations up to ±20% from the required weight are
allowed and, in order to measure how the solution behaves in this matter, we define the
order accuracy as the ratio between the required weight and the served weight. In this
way, the order accuracy values over 1 indicate that the served weight is more than the
required weight. Finally, the last three columns of Table 3.6 report the minimum, average
and maximum values of the order accuracy obtained using the current solution established
by the company. As an illustrative example of this indicator, in instance 1, at least 84%
(resp. 117% maximum) of the required weight was served for all of the orders, the average
being 101%.

3.5.3 Experiments

The model has been implemented using the algebraic modeling language AMPL (Fourer
et al., 1990) and solved using the MIP Gurobi v.9.0.2 optimiser (Gurobi Optimization,
2020) in a virtual machine managed by OpenStack with 4 CPUs, 8GB RAM, Ubuntu
18.04 OS. The default Gurobi settings are used, except for the time limit, which is set to
10 minutes, unless otherwise stated.

Different experiments have been performed varying the weights of the objective func-
tion: minimizing both retail sales and scrap, as well as the deviation from the weight
required for each order.

Regarding the first goal, a higher penalisation has been assigned to the scrap than to
the retails, while for the second goal; the maximum deviation allowed has been set equal to
±20%, which is the one currently used by the company. In addition to this value, different
limits have been tested for the desired deviation: ±20%, ±10% and ±5%. In order to
achieve solutions that are adjusted as close as possible to the required limits, deviations
above the required limit have been further penalised. In particular, the values used for q

and qd are 10 and 1, respectively.

Furthermore, three different weight combinations (ω1, ω2, ω3) have been tested and
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Table 3.6: Real operation performance indicators.
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Figure 3.10: Utilisation of coils for the different combinations of weights and desired
deviations.

are used to penalise retails, scrap and deviation from the weight ordered, respectively,
W1 = (1, 3, 2), W2 = (1, 4, 2) and W3 = (1, 4, 3).

Each of the combinations has been tested in the set of instances presented above.
Figure 3.10 shows the performance of the model: the percentage of the weight served to
customers over the weight of the used coils, the percentage of the weight of the retails
held in stock and the percentage of scrap that is discarded. These data correspond to the
aggregation of all the orders included in all instances.

Moreover, it can be observed that in almost all cases, more than 80% of the total
weight is served to customers, and the higher the maximum desired deviation, the more
efficient the coil usage, although the differences are not really significant. The performance
of the model for both, W2 and W3 weights, is very similar. It is worth noting that the
penalisation set W1 provides an increase of 1% in the weight served together with an
increase of 1% in scrap.

The distribution of the order accuracy is represented in Figure 3.11. Each box-plot
shows the distribution of the accuracy obtained in all orders of the instances. As would be
expected, one can observe that in the three penalisation sets used, the variability of the
deviations is reduced as is the maximum desired deviation. Although the differences are
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Figure 3.11: Order accuracy variability for the different combinations of weights and
desired deviations.

not very relevant, we have decided to discard the penalisation set W1 since it increases
the scrap, which is contrary to one of the goals of the company. It is worth pointing out
that in all cases, very few orders are outside the desired limits, although it can be observed
that the penalisation set W3 is slightly better adjusted than W2.

Therefore, taking into account the information in Figures 3.10 and 3.11 and although
the differences are not very distinguishable, we will use penalisation set W3 and a maxi-
mum desired deviation of ±5% for the remaining analysis.

Table 3.7 reports a number of statistics on the computational performance of the model.
The following information is presented for each instance: the number of constraints, the
variables, the integer and binary variables, the value of the objective function within the
best feasible solution provided, and the optimality gap (in %) for this solution. It is
possible to observe that in eight of the instances, the model provides an optimal solution,
and in only three instances, I03, I07 and I08, the optimality gap is greater than 9%. It
is worth noting that, as we will observe below, in instance I08, there is an optimality gap
greater than 23%, 98% of the weight of the used coils is served to the customers and the
order accuracy varies between 0.99 and 1.01. Therefore, it appears that the optimality
gap is quite large because of the quality of the lower bound, while the proposed solution is
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Ins. cons. vars. int.vars. 0-1 vars. time (s) ZIP gap
I01 57590 30077 380 17510 264.39 34501.3 0.00
I02 8233 4378 76 2560 1.51 17484.1 0.00
I03 39154 20404 222 11388 600.19 27811.7 10.24
I04 28045 14650 175 8242 275.53 15310.5 0.00
I05 23984 12644 193 7489 10.28 39692.5 0.00
I06 39503 20669 271 11918 125.63 40634.8 0.00
I07 12215 6383 65 3482 600.21 20654.3 9.28
I08 40573 21058 207 11688 600.23 7457.3 23.63
I09 23733 12402 154 7114 126.60 20167.0 0.00
I10 20090 10659 180 6208 3.20 80280.3 0.00
I11 8760 4632 68 2736 1.74 68563.4 0.00

Table 3.7: Computational statistics: Model dimensions and solution.

close to the optimal one. The model was run for two hours for each instance, and obtained
a gap of 0% for instances I03 and I07 with the same objective value, whereas the gap of
instance I08 was reduced to 7% and the best known solution improved 5%.

3.5.4 Interpretation of the obtained results

Table 3.8 reports a number of statistics on the quality of the solution after solving
the proposed mathematical model in the same terms as in Table 4. It also indicates the
number and weight of coils used, the coils served, the retails and the scrap, including the
percentage that each of these weights represents over the total weight used, the number
of slits and crosscuts performed and, finally, the minimum, the average and the maximum
order accuracy achieved.

Figures 3.12 and 3.13 provide a graphical comparison between the performance of
the solution proposed by the mathematical model and the solution which is currently
implemented in the company.

Figure 3.12 shows the utilisation of the coils for both solutions. On average, under the
solution that is currently applied, 52.3% of the total weight is used to serve the orders,
47% of it is retails and the remaining 0.7% is considered as scrap. On the other hand,
under the solution proposed by the model, 79.7% of the total weight is served, 18.8% is
stocked as retails and the remaining 1.5% is considered as scrap. Although the amount of
scrap increases from 0.7% to 1.5%, there is a more efficient use of the coils, since the model
manages to reduce the weight of the retails to one third. This implies a direct reduction in
the management costs of these retails, and, consequently, a reduction in the management
costs in the warehouse. In general terms, the mathematical model aims at increasing the
use of the coils by using the available stock, while at the same time, reducing it since the
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Table 3.8: Model performance indicators.
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Figure 3.12: Utilisation of coils in the solution proposed by the model and the solution
currently implemented.
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Figure 3.13: Order accuracy variability in the solution proposed by the model and the
solution currently implemented.

amount of retails is also reduced.

Figure 3.13 shows the distribution of the order accuracy for both solutions. The
horizontal band with a white background corresponds to the maximum desired deviation
of 5%. It is evident how clearly the model provides solutions as most of the orders are
within these limits (except for instances I05 and I11 which have an order accuracy below
95%). In addition, it can be observed that in the boxplot boxes (representing the distance
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Figure 3.14: Number and weight of the used coils in the current and model solutions.

between the first and third quartiles), the variability of the model solution is far lower
since the boxes are much narrower and the whiskers considerably shorter. In other words,
using the mathematical model, is possible to provide solutions that are better suited to
the weight required by the customers with a consequent saving in material.

Finally, Figure 3.14 shows a scatter plot indicating the number of used coils along
with their weight, for both, the currently used and the model solutions. Each instance is
represented by two points connected by an arrow. One point for the current solution and
the other for the model solution. A trend line is also shown, representing the relationship
between the number of coils and their weight. It can be observed that in all cases, the
weight of the used coils is lower in the solution proposed by the model (downward arrows)
and there is also a clear tendency to use more coils in this solution (rightward arrows):
there are only three cases where the current solution uses more coils. In addition, the
dotted arrow shows the average values in terms of used weight and number of coils for the
current and model solutions. On average, the number of coils increases while the weight
used decreases. Therefore, it can be determined that the model proposes solutions where
the coils are smaller. These small coils often correspond to retails from previous days
which are more difficult to allocate, since the company tends to use large coils on a daily
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basis, which provides more flexibility in the planning. It is worth noting that this strategy
will imply an increase in the stock, contrary to the solutions provided by the model which
optimises the management of the available stock more efficiently.

3.5.5 Extended computational experiment

In order to assess the limits of the model, larger instances have been generated and
solved by increasing the number of orders and coils in stock. Instances with 15, 30,
60, 90 and 120 orders are created and for each orders’ size two different sets of stock
are generated resulting in a total of ten different scenarios. For each scenario, 5 different
instances are created by randomly selecting orders from a list of orders of the company and
coils from the available stock, taking into account stock-orders compatibility. Therefore,
the computational experiment includes 50 instances. The computational time limit for
solving each instance has been set to 20 minutes.

Table 3.9 reports the average values obtained for each scenario. The following data
are reported: the number of orders and coils, the dimensions of the model (number of
constraints, variables, integer and binary variables), the computational time in seconds
(time), the value of the objective function for the best known feasible solution (ZIP ) and
the optimality gap given in % (gap). Last columns present the proportion of the weight
of the coils used to serve orders, retails and scrap (minimum, mean and maximum values
of the instances solved for each scenario are reported).

Regarding the performance of the model, it may be observed that as the size of the
instances increases so does the optimality gap. Furthermore, in scenarios 9 and 10 only 4
and 3 out of 5 instances, respectively, were solved within 20 minutes. These results suggest
that for larger problems the model will need more time to obtain a feasible solution
and other strategies would have to be investigated to obtain good feasible solutions in
reasonable time, such as heuristic or metaheuristic approaches.

However, if we observe the quality of the solution, we may highlight that the utilisation
of the coils is similar in all scenarios, even for those with a large optimality gap. On
average, 76.6% of the coils is used to serve orders, 22.3% is intended for retails and only
1.1% is considered as scrap. This distribution is similar to the one obtained in the previous
instances (see Table 3.8).

3.6 Conclusions and future research

A mixed integer linear optimisation model has been presented to address the specific
cutting stock problem in a Spanish steel manufacturing company. The model has been
validated with real data provided by the company, and has succeeded in surpassing its
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Table 3.9: Computational statistics: Average values for each scenario.
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current performance. One of the main benefits of this approach is the reduction of the
time needed to design the cutting plans.

Mathematical optimisation is able to provide solutions which are difficult to analyse
manually. Moreover, mathematical optimisation avoids mistakes caused by human errors,
such as scheduling wrong quantities, which imply higher costs for the company. In technical
terms, the model provides us with solutions that increase the size of each used coil that is
effectively sent to the customers, and decrease the retails accordingly. This fact represents
an improvement in the stock management such as saving time in locating the coils, as well
as reducing the management costs of the raw materials. Besides these issues, the model
is able to respond more efficiently to customers’ orders by delivering the orders with a
weight that is much closer to the one ordered.

As it has been studied in the extended computational experience, as the number of or-
ders and available stock increase, so does the difficulty in solving the problem. A heuristic
approach is currently being investigated to deal with larger instances. Due to the charac-
teristics of the problem, a matheuristic strategy that decomposes the orders according to a
rule based in the compatibility matrix between orders and stock could also be investigated
in order to deal with larger instances.

As far as the future investigation is concerned, the company is interested in carrying
out a planning process over several days simultaneously and identify the more appropriate
slitting line among the ones they own. Therefore, in our particular case, this new model
needs to include more orders with their corresponding deadlines, and an allocation of the
workload over different slitting lines, indicating which coils should be cut in each line
to maximise the productivity of the cutting process. This new model will be far more
complex and it will require more computational effort to solve full-size instances.

The new problem that arises when introducing the slitting lines allocation, and the
mathematical optimisation model developed to solve it are described in the upcoming
chapter.

65





Chapter 4

The slitting problem in the steel
industry with slitting lines
allocation

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Slitting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Operational restrictions . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Cutting patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Mixed Integer Linear optimisation model . . . . . . . . . . . . . 75

4.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . 77

4.4.3 Symmetry breaking constraints . . . . . . . . . . . . . . . . . . . 83

4.5 Computational experience . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Impact of the symmetry breaking constraints . . . . . . . . . . . 85

4.5.3 Multi-criteria analysis . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.4 Computational results . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.5 Planning in two independent stages vs the integrated model . . . 94

4.6 Conclusions and future research . . . . . . . . . . . . . . . . . . 97

67



CHAPTER 4. THE SLITTING PROCESS WITH SLITTING LINES ALLOCATION

4.1 Introduction

This chapter introduces an extension of the mathematical optimisation model pre-
sented in Chapter 3 in order to include the slitting lines allocation. After deciding which
coils to cut and how to cut them to satisfy the demand of the steel strips, one key element
in the planning of the slitting process is deciding the slitting line where each coil will be
slit. The coils have to be processed on one slitting line from a heterogeneous set of lines,
and therefore the cutting pattern also needs to meet the ongoing operational constraints
imposed by the cutting lines.

The technical differences among the lines limit the allocation of the coils-pattern-
slitting line, producing a high impact on the company performance. Therefore, it is
necessary to integrate the slitting line allocation into the coil selection and pattern defini-
tion. The integrated model is validated with real data provided by the same Spanish steel
manufacturing company, and outperforms the results obtained when this integration is not
considered, thereby improving the company’s performance, without reducing the quality
of the solutions. Additionally, three different objectives are considered: the reduction of
the leftovers generated in the process, the maximisation of the overall accuracy of the
orders and the minimisation of the makespan, by performing a multi-criteria analysis.

In addition to the slitting lines allocation, the mathematical optimisation model pre-
sented in this chapter introduces some other differences with respect to the model presented
in the previous chapter to better fit the problem of the company:

• We consider the restrictions imposed by the slitting lines in the definition of the
cutting patterns. In particular, the maximum number of knives allowed now will
also depend on the slitting line, and the crosscuts could also be performed due the
slitting lines limitations.

• Regarding the customer’s orders, we will have some orders that do not need to
be completed within the cutting plan, allowing the model to decide whether to plan
those orders or not. These orders can be seen as a way of anticipating future demand,
being only served if the leftovers are reduced.

• In the previous model, edge trimming was considered in only one edge of the coil,
and the other edge was considered as the leftovers (at least edge trim wider). In
the new formulation, we consider that in case the coil is slit the coil is trimmed at
both edges. It might be one strip dedicated to leftovers if it is not assigned to orders
widthwise.

• To decide whether the leftovers are reusable or not we will consider the weight of
each resulting strip obtained after crosscuts are performed. In the previuous model
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we would consider the corresponding weight of the total length used.

The main results of this chapter have been submitted to:

Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-
Campo, F.J., & Gallego, M. (submitted March 2022), ‘An exact model
for the 1.5-dimensional cutting stock problem in the steel industry with
heterogeneous parallel slitting lines allocation’, European Journal of Op-
erational Research

The remaining part of this chapter is organised as follows. Section 4.2 presents some
literature review relevant to this field. Section 4.3 introduces a detailed problem descrip-
tion. Section 4.4 presents the mixed integer linear optimisation model proposed to solve
the problem. In Section 4.5 an extensive computational experiment is carried out, based
on a real-world situation, including a multi-criteria analysis. Finally, Section 4.6 provides
the conclusions obtained and outlines several future research lines.

4.2 Literature review

A detailed literature review of the general CSP introduced in this work has been
presented in the previous chapter in Section 3.2, and therefore this section is devoted
to introduce some state of the art in the combination of CSP’s with other other close
problems.

In recent years, owing to the development in optimisation software and computers,
it is common for CSP to be combined with other related problems. For instance, once
the cutting patterns are defined, the original products have to be cut into cutting lines.
The sequence in which patterns are assigned in the cutting lines has a great impact on
the performance, since changing the pattern requires the machine setup to be adjusted,
with a consequent loss of time. In Giannelos and Georgiadis (2001) a Mixed Integer
Programming (MIP) model is presented to address the scheduling of cutting operations
on multiple parallel slitting machines. In Meng et al. (2019) a Genetic Algorithm is
proposed to solve the scheduling of cutting-stock processes on multiple identical parallel
machines. In these works, the set of possible patterns is determined a priori, reducing the
cutting problem to the selection of the pattern applied to each element of the stock. This
strategy of using a predefined set of patterns is very common in the literature, since it
reduces the complexity of the problem and allows calculating the pattern change time of
the cutting lines, which is a key element in sequencing.

However, regarding our problem, there is a wide variety of coils in stock (including
leftovers from previous slitting processes) and a wide range of order widths that vary over

69



CHAPTER 4. THE SLITTING PROCESS WITH SLITTING LINES ALLOCATION

time. Consequently, this makes the predefined pattern approach inappropriate. Addition-
ally, the company has different types of slitting lines, as a result of its product needs or
because they have been acquired over time. Each line has different characteristics, such as
the maximum number of knives and minimum distance between them, or the limits in the
width of the material to be cut, among others. Due to these differences, it may happen
that some patterns cannot be cut by any available slitting line, or that some lines end up
overloaded. In order to avoid these situations so as to obtain valid cutting patterns, one
alternative is to integrate the slitting line allocation and the cutting patterns layout, in
such a way that the pattern for a coil is laid out taking into account the restrictions of the
slitting line, on which the coil will be cut. We address a variant of the CSP that combines
the layout of the cutting patterns and the assignment of the slitting line, where each coil
will be slit with its corresponding speed. To the best of our knowledge, this integration
has not been studied previously in the literature.

The most common objectives in CSP are the reduction of leftovers, the reduction of
the amount of product used, and when sequencing is included, the reduction of machine
usage time. It is common to combine more than one of these objectives. Campello et al.
(2019) introduce a multi-objective model for the lot-sizing and cutting stock problem
where different goals are studied: production cost, object storage and machine setup for lot
sizing, and waste of material and holding costs for the resulting pieces. Song et al. (2006)
present a multi-objective formulation to deal with two goals: trim loss and production
time. Braga et al. (2016), combine production time and waste generated in the same
objective function to deal with scheduling alongside the cutting plan. In our problem,
we deal with three objectives: the minimisation of leftovers generated in the process, the
maximisation of productivity of the slitting lines, and the minimisation of the deviation
between the served and ordered weight.

4.3 Problem description

As stated before, planning the slitting process refers to the process of selecting a subset
of compatible coils, laying out the cutting patterns for these coils, and assigning the slitting
line (and the speed) where each coil will be cut. The planning of the slitting process is
done on a make-to-order basis. At the beginning of the planning horizon, the company
has a list of orders. Each order corresponds to an amount (in kg) of material (with specific
characteristics such as thickness and other quality parameters) that can be served in one
or more strips of a given width. Additionally, each customer establishes upper and lower
limits on the weight and external diameter of each strip. Due to the complexity of the
process, it is rather difficult to serve the exact weight demanded by all the customers and,
as a consequence, deviations between the weight ordered and the total weight served, are
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acceptable to a certain extent (±20% tolerance). For better planning, some orders are
required to be completed in the current cutting plan, while others are not. The latter can
be partially completed, and they remain open until they are completed in the following
cutting plans.

At a first step, compatible coils, with the material characteristics of the orders, are
selected from the available stock. This stock is formed by unused coils and processed
coils (reusable leftovers from previous cutting processes) of different widths and external
diameters. Customers allow for certain tolerances on the thickness and quality parameters,
which makes it possible to serve an order with coils of different characteristics, and to
use the same coil to serve orders with different characteristics. Although these tolerances
provide an advantage by giving more flexibility, they increase the level of difficulty, making
the problem non-separable by either quality characteristics or thickness.

The cutting patterns must not only satisfy the restrictions imposed by the customers on
the final strips, but also the restrictions imposed by the slitting lines. Usually, a company
has more than one slitting line with different characteristics. Therefore, the allocation
of the coil to a slitting line depends on the coil characteristics (width, thickness, weight,
and external diameter) lying between the minimum and maximum values allowed by the
slitting line, as well as the cutting pattern laid out for the coil (number of knives, minimum
cutting width, etc.). Furthermore, these restrictions are different for each cutting speed
of the slitting line.

4.3.1 Slitting lines

Once the patterns for all selected coils have been laid out, the slitting process is carried
out on the slitting lines and begins with the loading of the steel coil onto the uncoiler. The
uncoiler is one of three major parts of the slitting line along with the slitter and the recoiler.
After the coil is uncoiled and flattened, it is moved through the slitter, which consists of
two parallel arbours mounted with rotary cutting knives. These knives penetrate the coil
as it moves, performing the cuts and separating the strips from one another. The recoiler
collects the slit strips and rolls them up. Finally, the finished strips are pushed off of the
recoiler. The slitting line has a shear blade to perform guillotine crosscuts used to reduce
the diameter of the final strips. We will say a coil is cut in i + 1 passes if i crosscuts are
performed. If no crosscuts are performed (i = 0) the coil is cut in a single pass. A diagram
of a slitting line is shown in Fig. 4.1.

71



CHAPTER 4. THE SLITTING PROCESS WITH SLITTING LINES ALLOCATION

Figure 4.1: Diagram of a slitting line. Image extracted from Coowor.com (2022).

4.3.2 Operational restrictions

The following restrictions have to be taken into account when laying out the cutting
patterns:

• Customer’s restrictions: In addition to the width of the strips and total weight to be
served, customers set maximum weight and maximum external diameter limitations
for the strips. This restriction directly affects the number of crosscuts required. Note
that given the width, thickness, density and internal diameter, the weight can be
obtained from the external diameter and vice versa.

• Slitting line restrictions:

– Maximum number of knives, which depends on the thickness and hardness of
the coil, and the cutting speed of the slitting line, making the maximum number
of strips on a coil dependent on the assigned slitting line.

– Minimum cutting width between two knives, which prevents some orders from
being allocated to coils slit on certain machines. As with the maximum number
of knives, the minimum cutting width will vary depending on the speed of
the slitting line, and the thickness and hardness of the coil. Note that this
restriction applies also to the strip of leftovers.

– Edge trim: To maintain uniformity in the cutting process, a minimum edge
trimming is required when slitting the coil. These trims require one knife on
each side of the coil so that n knives yield n − 1 strips. Edge trimming is not
required on coils served as strips without slitting.

– Maximum weight of strips. This restriction, combined with that imposed by
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Figure 4.2: Typologies of cutting patterns.

customers, makes it necessary to make crosscuts to reduce the weight of the set
of final strips. Note that it is imposed on the sum of strips obtained in each
pass and not on every single strip.

– Lower and upper limits on the external diameter of the set of strips. The upper
limit can force crosscuts.

Note that these restrictions can be different for each slitting line.

4.3.3 Cutting patterns

Despite the new restrictions imposed by the slitting lines, the cutting patterns that can
be obtained are the same as the ones introduced in the previous chapter. The six types
of cutting patterns are shown in Fig. 4.2 and respond to three key decisions: whether or
not the coil is cut, whether or not crosscuts are made, and whether the length of the coil
is partially or fully used. Note that in these cases the edge trim is represented in both
extremes of the coil. The simplest cutting pattern is represented in Fig. 4.2(a), where
different orders of strip widths are assigned to the coil widthwise. If the sum of the widths
of the strips assigned to the coil is lower than the width of the coil, the last strip will be
considered as a leftover.

The cutting patterns may also include guillotine crosscuts, but in this case, they may
be due to the slitting line restrictions. Note that a guillotine crosscut imposes the same
length (l) for all strips in the coil (for every pass), even if they belong to different orders or
leftovers, and that the configuration of knives remains the same after the crosscut (see Fig.
4.2(b)). Therefore, it must be ensured that all strips have a specific weight and diameter
within the limits set by the customer and the slitting line.
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Each time a crosscut is performed, it is possible to continue slitting the coil or stop
cutting, rewind the remainder of the coil and stock it for future use. In Fig. 4.2(c)
two crosscuts have been performed: one to reduce the diameter of the resulting strips
and another to rewind the rest of the coil. The slitting pattern is maintained after the
first crosscut. Processed coils cannot be rewound after a crosscut and have to be used
completely lengthwise.

Occasionally, a coil in stock may meet all the requirements of an order: its width is
exactly as ordered and its weight and external diameter are within the limits specified
by the customer. In this case, it is not necessary to use the slitting line and the coil is
automatically served to the customer (see Fig. 4.2(d)). If the coil exceeds the maximum
weight or external diameter limits, crosscuts can be made; in this case, edge trimming is
not required (see Fig. 4.2(e,f)).

4.3.4 Goals

In addition to the goals described in the previous chapter: a reduction in leftovers and
customer satisfaction, the company pursues to maximise the productivity of the process.

The most important of these goals is the reduction of leftovers. As stated before, a
leftover is defined as the part of the coil that is not used to serve orders; they appear
lengthwise if the coil is rewound after a crosscut (rolled leftovers, see Fig. 4.2(c,f)) or
widthwise if it is not possible to complete the width of the coil with orders (see Fig.
4.2(a,b,c)). Leftovers with a weight and width above a given minimum are considered to
be retails, otherwise, they are considered as scrap. The retails are stored for future use
and, therefore, are preferred to scrap. Rolled leftovers are permitted only if they can be
reused and are therefore included with the retails. Edge trim is considered as scrap.

The second goal considered by the company is related to productivity: The less time-
consuming a cutting plan takes, the better it is. The three relevant elements for reducing
the processing time are: 1) the number of crosscuts; 2) the load balance between the
different slitting lines, since if all the lines have a similar workload, the makespan is
reduced; and 3) the speed at which each coil is cut.

The last goal remains to be, as in the previous chapter, to maximise the satisfaction
of their customers. As in Chapter 3, this is measured by the order accuracy, which is an
indicator of the deviation between the weight ordered and the weight served. The better
the accuracy of the orders, the higher the customer satisfaction.
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4.4 Mixed Integer Linear optimisation model

In this section, we present a Mixed Integer Linear optimisation model to solve the
previously described problem. For the sake of clarity, the complete notation, as well as
the model equations, are introduced in detail.

4.4.1 Notation

• O, set of customers’ orders. The following information is given for each order o ∈ O:

wo, width (m) of strips.

bo, required weight (kg).

bo, maximum weight (kg) allowed for each single strip in the order.

uo, maximum deviation allowed (kg) for the ordered weight.

• M, set of slitting lines. The following information is given for each slitting line
m ∈ M:

Sm, set of different available speeds.

Cm, set of compatible coils.

bm, maximum output weight (kg) for the set of strips obtained in each pass.

• C, set of coils in stock. For each coil c ∈ C, the following information is known:

Oc, set of compatible orders.

Mc, set of compatible slitting lines.

Wc, Bc, Lc, width (m), weight (kg) and length (m), respectively.

Lc, Lc, minimum and maximum length (m) used if the coil is partially used. Lc

is such that it ensures that the external diameter of the resulting strips does
not exceed the limits of the slitting lines. The maximum length is such that it
ensures that the remainder of the coil can be rewound and kept in stock to be
reused.

Dc, weight (kg) per m2. It depends on the density and thickness of the coil.

p̂cm, maximum number of passes that can be performed if it is cut on the slitting line
m (it is obtained from the minimum external diameter allowed for the resulting
strips).

Ic, maximum number of passes that can be performed, Ic = max
m∈ Mc

{p̂cm}.
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k̂cms, maximum number of knives allowed if it is cut on the slitting line m at speed
s.

Jc, maximum number of strips that can be obtained, Jc = max
m∈ Mc,s∈ Sm

{k̂cms − 1}.

ŵcms, minimum width of strips (m) if it is cut on the slitting line m at speed s.

wc, minimum width of strips (m), wc = min
m∈ Mc,s∈ Sm

{ŵcms}.

lcm, lcm, minimum and maximum strip lengths (m) if it is cut on slitting line m

(obtained from the external diameter limits allowed on each slitting line).

q̂cm, maximum process time (min) on slitting line m (including the time to perform
possible crosscuts).

t̂cms, cutting time (min) on slitting line m at speed s.

• O∗, set of orders that need to be completed within the cutting plan, O∗ ⊂ O.

• C∗, set of processed coils in stock, C∗ ⊂ C.

• Parameters for operation settings:

Ŵ , largest minimum cutting width (m) among all slitting lines.

t, time (min) used to perform a crosscut.

r, minimum edge trim (m) required to maintain the uniformity of the cut.

a, b, minimum width (m) and weight (kg) of strip leftovers to be considered retails,
respectively.

Decision variables

αcj = 1, if the j-th strip is obtained from coil c, 0 otherwise, c ∈ C, 1 ≤ j ≤ Jc.

βE
c = 1, if edge trimming is needed in coil c, 0 otherwise, c ∈ C.

βT
c = 1, if there is no need for edge trimming in coil c, 0 otherwise, c ∈ C.

γT
c = 1, if coil c is fully used lengthwise, 0 otherwise, c ∈ C.

γP
c = 1, if coil c is partially used lengthwise, 0 otherwise, c ∈ C.

δci = 1, if strips from coil c are served in i passes, 0 otherwise, c ∈ C, 1 ≤ i ≤ Ic.

λc = 1, if coil c needs to go through the slitting lines, 0 otherwise, c ∈ C.

µocj = 1, if order o is assigned to the j-th strip of coil c, 0 otherwise, o ∈ Oc, c ∈ C, 1 ≤
j ≤ Jc.
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φoc = 1, if order o is assigned to coil c, 0 otherwise, o ∈ Oc, c ∈ C.

τc = 1, if coil c has leftovers widthwise, 0 otherwise, c ∈ C.

θc = 1, if the strip of leftovers of coil c is for retails, 0 otherwise, c ∈ C.

ρcms = 1, if coil c is cut on slitting line m at speed s, 0 otherwise, c ∈ C, m ∈ Mc, s ∈ Sm.

xc, used length of coil c, c ∈ C.

x̂ci, length of strips of coil c if it is cut in i passes, c ∈ C, 1 ≤ i ≤ Ic.

vocj , length of the j-th strip of order o obtained from coil c, o ∈ Oc, c ∈ C, 1 ≤ j ≤ Jc.

uocji, weight of each piece of the j-th strip of order o obtained from coil c if it is cut in i

passes, o ∈ Oc, c ∈ C, 1 ≤ j ≤ Jc, 1 ≤ i ≤ Ic.

u+
o , u−

o , excess and lack, respectively, of weight served for order o, o ∈ O.

yc, width of the strip of leftovers of coil c ∈ C, which is broken down in the sum of yr
c, for

retails and ys
c, for scrap, c ∈ C.

zci, weight of each piece of the leftover strip of coil c if it is cut in i passes, which is broken
down in the sum of zr

ci, for retails and, zs
ci, for scrap, c ∈ C, 1 ≤ i ≤ Ic.

ec, weight of edge trim of coil c, c ∈ C.

tcm, processing time of coil c on slitting line m (considering both, the time used to perform
crosscuts and the time to cut the coil), c ∈ C, m ∈ Mc.

Cmax, makespan of all slitting lines.

4.4.2 Mathematical formulation

Objective function

The objective function is a weighted sum of three elements that represent the different
goals considered by the company:

min ω1f1 + ω2f2 + ω3f3, (4.1)

where ω1, ω2 and ω3 are decision maker’s weights assigned to each component:

f1: Reduction in leftovers. It considers the strips of leftovers (retails and scrap), and
the rolled leftovers. Each term includes a weight (s1, s2 and s3) to penalise more
the scrap and rolled leftovers.

f1 =
(
s1

∑
c∈C

∑
1≤i≤Ic

izr
ci + s2

∑
c∈C

∑
1≤i≤Ic

izs
ci + s3

∑
c∈C

(
Bcαc1 − DcWcxc

))
(4.2)
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f2: Productivity maximisation. It consists in the minimisation of a combination of the
sum of the processing time of coils and the makespan. The makespan is prioritised
through the extra weights s4 and s5.

f2 =
(
s4

∑
m∈M

∑
c∈Cm

tcm + s5Cmax

)
(4.3)

f3: Customer satisfaction. Measured by the deviation of the served weight from the
ordered weight. Note that the lack of weight is only penalised for orders that have
to be completed within the cutting plan.

f3 =
(∑

o∈O
u+

o +
∑

o∈O∗
u−

o

)
(4.4)

Constraints

1. Cutting patterns: Constraints (4.5) state, for used coils (αc1 = 1), whether they are
served with or without edge trimming, while constraints (4.6) state whether they are
completely or partially used lengthwise. Constraints (4.7) guarantee that processed
coils cannot be rewound. Constraints (4.8) force not to assign a strip if the previous
strip has not been assigned, inducing an order in the strips. Constraints (4.9) force
edge trimming in coils with at least two strips. Constraints (4.10) force the choice of
the number of pieces into which the strips will be divided and, therefore, define the
number of passes. Note that all strips in the same coil will be divided into the same
number of pieces. Constraints (4.11)–(4.13) force a coil to be sent to a slitting line
either if it is slit, partially used lengthwise or if a crosscut has been performed, while
constraints (4.14) guarantee that only the coils in one of the previous situations are
sent to a slitting line. Constraints (4.15) state that a coil is cut only if it is used.

βT
c + βE

c = αc1 ∀c ∈ C (4.5)

γT
c + γP

c = αc1 ∀c ∈ C (4.6)

γP
c = 0 ∀c ∈ C∗ (4.7)

αcj ≤ αcj−1 ∀c ∈ C, 2 ≤ j ≤ Jc (4.8)

αc2 ≤ βE
c ∀c ∈ C (4.9)∑

1≤i≤Ic

δci = αc1 ∀c ∈ C (4.10)

βE
c ≤ λc ∀c ∈ C (4.11)

γP
c ≤ λc ∀c ∈ C (4.12)
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∑
2≤i≤Ic

δci ≤ λc ∀c ∈ C (4.13)

λc ≤ βE
c + γP

c +
∑

2≤i≤Ic

δci ∀c ∈ C (4.14)

λc ≤ αc1 ∀c ∈ C (4.15)

2. Assignment of the strips: Constraints (4.16) assign the second strip to leftovers or
orders, while constraints (4.17) guarantee that coils from which only one strip can
be obtained, do not have leftovers widthwise. The assignment of the leftover strip to
the second strip is a technical procedure to reduce the set of feasible solutions: the
strip which is considered as leftover is irrelevant in terms of feasibility or optimality.
Constraints (4.18) guarantee that every other strip is assigned to an order (it should
be noted that an order can be assigned to one or more strips). Constraints (4.19)
and (4.20) guarantee that an order is assigned to a coil if the order has been assigned
to at least one strip of the coil. Constraints (4.21) ensure that the width of each
coil is not exceeded. This means that if the coil is used, the sum of the width of the
strips assigned to orders, the width of the leftover strip, and the width of the edge
trim, is exactly the width of the coil. Constraints (4.22) ensure that the width of
the strip assigned to leftovers is zero for the coils without a strip of leftovers.

∑
o∈Oc

µoc2 + τc = αc2 ∀c ∈ C (4.16)

τc = 0 ∀c ∈ C : Jc = 1 (4.17)∑
o∈Oc

µocj = αcj ∀c ∈ C, 1 ≤ j ≤ Jc : j ̸= 2 (4.18)

µocj ≤ φoc ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc (4.19)

φoc ≤
∑

1≤j≤Jc

µocj ∀c ∈ C, o ∈ Oc (4.20)

∑
1≤j≤Jc

∑
o∈Oc

aoµocj + yc + 2rβE
c = Wcαc1 ∀c ∈ C (4.21)

yc ≤ (Wc − 2r − wc)τc ∀c ∈ C (4.22)

3. Bounds on the used length of the coils: Constraints (4.23) force the used length
of the coils to be equal to the total length of the coil when it is completely used
lengthwise, and between given bounds when it is partially used lengthwise.

Lcγ
T
c + Lcγ

P
c ≤ xc ≤ Lcγ

T
c + Lcγ

P
c ∀c ∈ C (4.23)

4. Length of the strips: Constraints (4.24) guarantee that the sum of the lengths of
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all the strips in a coil is equal to the used length of the coil. Constraints (4.25)
ensure that only the assigned strips have a non-negative length. Constraints (4.26)
and (4.27) calculate the length of final strips (pieces obtained from one strip after
crosscuts).

0 ≤ xc − vocj ≤ Lc(1 − µocj) ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc (4.24)

Lcµocj ≤ vocj ≤ Lcµocj ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc (4.25)∑
1≤i≤Ic

ix̂ci = xc ∀c ∈ C (4.26)

ix̂ci ≤ Lcδci ∀c ∈ C, 1 ≤ i ≤ Ic (4.27)

5. Weight of the strips: Constraints (4.28) and (4.29) calculate the weight of the final
strips after a crosscut has been performed, and force the weight of these strips to
be under the maximum allowed for each order. Constraints (4.30)–(4.31) calculate
the weight of the leftover strips. Constraints (4.32)–(4.34) calculate the weight of
the edge trim. Note that we are applying the Fortet inequalities (see Fortet (1960);
Hammer and Rudeau (1968)) to obtain a linear equivalence of the term 2rDcxcβ

E
c

which corresponds to the weight of edge trim.

∑
1≤i≤Ic

iuocji = Dcaovocj ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc (4.28)

uocji ≤ boδci ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc, 1 ≤ i ≤ Ic (4.29)

∑
1≤i≤Ic

∑
o∈Oc

∑
1≤j≤Jc

iuocji+∑
1≤i≤Ic

izci + ec = AcDcxc ∀c ∈ C (4.30)

izci ≤ Bcδci ∀c ∈ C, 1 ≤ i ≤ Ic (4.31)

ec ≤ 2rDcxc ∀c ∈ C (4.32)

ec ≤ 2rDcLcβ
E
c ∀c ∈ C (4.33)

2rDcxc − ec ≤ 2rDcLc(1 − βE
c ) ∀c ∈ C (4.34)

6. Slitting lines: Constraints (4.35) assign one slitting line to the coils to be cut. Con-
straints (4.36) limit the number of knives. Constraints (4.37) and (4.38) guarantee
the compatibility between a slitting line and the width of the strips in the coil. Con-
straints (4.39) and (4.40) guarantee that the weight of the set of strips obtained is
between the limits specified by the slitting line chosen. Constraints (4.41) and (4.42)
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ensure that the length of the strips is between the limits specified by the slitting line.

∑
m∈Mc

∑
s∈Sm

ρcms = λc ∀c ∈ C (4.35)

αck̂cms
+ ρcms ≤ 1 ∀c ∈ C, m ∈ Mc,s ∈ Sm (4.36)

yc ≥
∑

m∈Mc

∑
s∈Sm

ŵcmsρcms − Ŵ (1 − τc) ∀c ∈ C (4.37)

φoc + ρcms ≤ αc1 ∀c ∈ C, o ∈ Oc, m ∈ Mc, s ∈ Sm : ao < ŵcms (4.38)

δci + ρcms ≤ 1 ∀c ∈ C, m ∈ Mc, s ∈ Sm, p̂cm < i ≤ Ic (4.39)

∑
1≤i≤Ic

∑
o∈Oc

∑
1≤j≤Jc

uocji +
∑

1≤i≤Ic

zci ≤∑
m∈Mc

∑
s∈Sm

bmρcms + Bc(1 − λc) ∀c ∈ C (4.40)

∑
1≤i≤Ic

x̂ci ≤
∑

m∈Mc

∑
s∈Sm

lcmρcms + Lc(1 − λc) ∀c ∈ C (4.41)

∑
s∈Sm

lcmρcms ≤
∑

1≤i≤Ic

x̂ci ∀c ∈ C, m ∈ Mc (4.42)

7. Process time of slitting lines: The right-hand-side of constraints (4.43) computes
the time spent on cutting each coil, as the sum of the time needed to perform a
crosscut, the time to slit the coil and the time to rewind the coil if it is partially
used lengthwise. Constraints (4.44) assign this time to the slitting line on which the
coil is cut. Constraints (4.45) compute the makespan.

∑
m∈Mc

tcm =
∑

1≤i≤Ic

t(i − 1)δci + tγP
c +

∑
m∈Mc

∑
s∈Sm

t̂cmsρcms ∀c ∈ C (4.43)

tcm ≤ q̂cm

∑
s∈Sm

ρcms ∀c ∈ C, m ∈ Mc (4.44)

∑
c∈Cm

tcm ≤ Cmax ∀m ∈ M (4.45)

8. Accuracy: Constraints (4.46) compute the lack or excess weight served to each order.

∑
c∈C:o∈Oc

∑
1≤j≤Jc

(Dcwo)vocj − u+
o + u−

o = bo ∀o ∈ O (4.46)

9. Strips of leftovers: The width of the strip of leftovers can be divided into retails and
scrap (4.47). Analogously, the weight of the strip of leftovers can also be divided
into retails and scrap (4.48). Constraints (4.49)-(4.53) ensure that the width and
weight of retails are over the minimum established; otherwise, the strip of leftovers
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is considered as scrap.

yc = yr
c + ys

c ∀c ∈ C (4.47)

zci = zr
ci + zs

ci ∀c ∈ C, 1 ≤ i ≤ Ic (4.48)

aθc ≤ yr
c ≤ (Wc − 2r − wc)θc ∀c ∈ C (4.49)

bθc ≤
∑

1≤i≤Ic

zr
ci ∀c ∈ C (4.50)

∑
1≤i≤Ic

izr
ci ≤ Bcθc ∀c ∈ C (4.51)

ys
c ≤ sc(1 − θc) ∀c ∈ C (4.52)∑

1≤i≤Ic

izs
ci ≤ Bc(1 − θc) ∀c ∈ C (4.53)

Constant sc in constraints (4.52) is an upper bound of the width of the strip of left-
overs from coil c to be considered as scrap. It can be computed as the maximum be-
tween a and the width corresponding to the leftovers of weight b, sc = max

{
a, b

DcLc

}
10. Variables’ domain:

γT
c , γP

c , βT
c , βE

c , λc, τc, θc ∈ {0, 1} ∀c ∈ C (4.54)

αcj ∈ {0, 1} ∀c ∈ C, 1 ≤ j ≤ Jc (4.55)

δci ∈ {0, 1} ∀c ∈ C, 1 ≤ i ≤ Ic (4.56)

x̂ci ∈ R+
0 ∀c ∈ C, 1 ≤ i ≤ Ic (4.57)

ρcms ∈ {0, 1} ∀c ∈ C, m ∈ Mc, s ∈ Sc (4.58)

xc, yc, yr
c, ys

c, ec ∈ R+
0 ∀c ∈ C (4.59)

zci, zr
ci, zs

ci ∈ R+
0 ∀c ∈ C, 1 ≤ i ≤ Ic (4.60)

u+
o ∈ [0, uo] ∀o ∈ O (4.61)

u−
o ∈ [0, uo] ∀o ∈ O∗ (4.62)

u−
o ∈ R+

0 ∀o ∈ O \ O∗ (4.63)

φoc ∈ {0, 1} c ∈ C, o ∈ Oc (4.64)

µocj ∈ {0, 1} ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc (4.65)

vocj ∈ R+
0 ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc (4.66)

uocji ∈ R+
0 ∀c ∈ C, o ∈ Oc, 1 ≤ j ≤ Jc, 1 ≤ i ≤ Ic (4.67)

tcm ∈ R+
0 ∀c ∈ C, m ∈ Mc (4.68)

Cmax ∈ R+
0 (4.69)
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(a) (b)

Figure 4.3: Two equivalent patterns for a coil.

4.4.3 Symmetry breaking constraints

Although the above described formulation is valid, it can be reinforced by eliminating
symmetric solutions from the feasible region. The symmetry arises when assigning the
widths of the orders to the strips of the coil. Fig. 4.3 shows two equivalent patterns
that produce the same solution in terms of the operation. In pattern (a), the first strip is
assigned to order o1, the second to order o2, and the third strip to order o3, while in pattern
(b) the first, second and third strips are assigned to orders o2, o3, and o1, respectively.
Both patterns and all other possible permutations produce the same solution (for a better
performance, in practice, narrower strips are placed in the centre, and the wider strips
at the edges). To avoid this situation, O can be considered as an ordered set and the
following symmetry-breaking constraints can be added:

µocj +
∑

o′∈Oc:o≺o′

µo′cj′ ≤ 1 ∀c ∈ C, o ∈ Oc, j, j′ : 1 ≤ j′ ≤ j ≤ Jc (4.70)

These constraints ensure that if an order o is assigned to strip j, all subsequent orders
o′ : o ≺ o′ cannot be assigned to a strip j′ preceding j. The constraints improve the
performance of the Branch and Cut procedure, reducing the set of feasible solutions by
eliminating equivalent solutions.

4.5 Computational experience

In this section, we present the computational results of the experiments that have
been carried out to validate the proposed model: a multi-criteria analysis to study the
conflict among the different objectives, a performance analysis of the model in terms of
both, model efficiency and quality of the solution, and an extended study of the impact
of considering an integrated model for the cutting process and slitting line allocation.

The model has been implemented in AMPL (Fourer et al., 1990) and solved using the
MIP Gurobi v.9.5.0 optimiser (Gurobi Optimization, 2020) with default settings, except
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Min. Max.
Entry Coil width (mm) 8/10 – 1,000/1,500

Coil thickness (mm) 0.25/0.8 – 3/6
Coil weight (kg) – 10,000/25,000
Coil outside diameter (mm) 600/700 – 1,900/2,100

Output Strips weight (kg) – 10,000/16,000
Strips outside diameter (mm) 600/700 – 1,900/2,000

Table 4.1: Main characteristics of the slitting lines.

for the time limit, which is set to 30 minutes, unless otherwise stated. The experiments
have been carried out in a virtual machine managed by OpenStack with 8 CPUs, 32GB
RAM, Ubuntu 18.04 OS.

4.5.1 Data description

For the experiments, we have used real data provided by Cortichapa. The character-
istics of the coils in stock and the customers’ orders have been previously described in
Section 3.5.1, therefore we will describe below the characteristics of the last element in
our problem: the slitting lines.

The company owns four slitting lines with different technical characteristics and ca-
pabilities. In addition, each slitting line is able to work at two different speeds. Table
4.1 reports the valid range for the width, thickness, weight and external diameter of the
coils that each slitting line can handle (which are used to determine the compatibility
between the slitting line and the coil), and the maximum and minimum limits for the
external diameter and weight of the set of strips of each pass (which are used to determine
compatibility between the slitting line and the patterns).

The other two relevant characteristics of the slitting lines, which are needed to deter-
mine their compatibility with the coils and patterns, are the maximum number of knives
that can be set in the slitter and the minimum cutting width of the strips (including
the strip of leftovers). These parameters depend on the cutting speed, as well as, on the
thickness and hardness of the coil. The company classifies the coils into different types
according to their thickness and hardness. Note that, in contrast to the previous problem
presented in Chapter 3, where the number of knives would only depend on the thickness
of the coil, in this problem it also depends on the slitting machine, the cutting speed and
the hardness of the coil.

Table 4.2 illustrates how the limits in the number of knives and cutting width vary
among the different slitting lines and speeds for three selected types of coils. For instance,

84



4.5. COMPUTATIONAL EXPERIENCE

Slitting lines
Coil 1 2 3 4
Type Slow Fast Slow Fast Slow Fast Slow Fast

I Max. number knives 15 10 20 15 18 - 20 20
Min. cutting width 19 25 19 25 9 - 30 30

II Max. number knives 15 10 30 25 19 19 30 30
Min. cutting width 19 25 19 25 9 9 30 30

III Max. number knives - - - - 4 - 5 -
Min. cutting width - - - - 40 - 60 -

Table 4.2: Variability of the maximum number of knives and minimum cutting width.

for a Type I coil, up to 15 knives can be used if the coil is cut on Slitting line 1 at slow
speed, whereas only up to 10 knives can be used if it is cut at fast speed. For the same
type of coil, up to 18 knives can be used if the coil is cut on Slitting line 3 at slow speed
(more than in the previous line) but it is not possible to cut it at fast speed. The same
behaviour can be observed in the minimum cutting width. For a Type II coil, the width
of strips has to be greater than 9 mm in the best scenario (Slitting line 3 at both speeds),
but the width must be greater than 30 mm in the worst-case scenario (Slitting line 4).
Finally, it can be observed that Slitting lines 3 and 4 are able to cut all three types of
coils (Type III coil only at slow speed), whereas coils of Types I and II can only be cut on
Slitting lines 1 and 2.

4.5.2 Impact of the symmetry breaking constraints

In order to study the impact of the symmetry breaking contraints, the model has
been tested with the contraints and without them in a representative set of instances that
will be introduced later in Section 4.5.4. Table 4.3 presents the results obtained. For
the instances tested are shown: the characteristics of the instance (number of orders and
coils), the model dimensions (number of constraints and variables) for the model without
considering the symmetry breaking constraints, the computing time for the model with
the symmetry breaking constraints (✓ SBC), without the symmetry breaking constraints
(✗ SBC), its variation (Var.), the objective value for the model without the symmetry
breaking constraints (ZIP ), and the optimality gap for both models.

The results obtained present a reduction of more than 25% on average in the comput-
ing time for instances solved up to optimality (see Var. column); an order of magnitude
reduction in the optimality gap for instances where the optimiser cannot guarantee opti-
mality after 1200 seconds; and, a good feasible solution is obtained for an instance where
the optimiser cannot provide a feasible solution without these constraints. Taking into
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Table 4.3: Results obtained considering or not the symmetry breaking constraints.
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I1 I2
Objective f1 f2 f3 f1 f2 f3

f1 145,750 1462 2352 339,798 1424 9250
f2 370,080 772 3171 359,546 1412 7103
f3 915,162 1493 109 1,120,400 2151 16

Table 4.4: Payoff matrix for selected instances.

account these results the symmetry breaking constraints are considered in the model.

4.5.3 Multi-criteria analysis

The first step of our analysis is to investigate the confrontation among the three dif-
ferent goals considered: the reduction of leftovers (measured in f1), productivity maximi-
sation (f2) and customer satisfaction (f3). We start by obtaining the payoff matrix: the
optimal solution for each objective is obtained and evaluated for the other two. Taking
into account the company’s preferences, we have set the following values to the parameters
in the different objectives. For the first objective we consider the following weights for the
different types of leftovers: s1 = 1 for strips that are for retails, s2 = 4 for strips that are
for scrap and s3 = 10 for rolled leftovers. The second objective is penalised with s4 = 1
for the total processing time and s5 = 10 for the makespan.

Table 4.4 reports the resulting payoff matrix for two illustrative instances (with 10
orders and 50 coils). Each row represents the value of the three objectives in the solution
obtained by solving the problem for f1, f2 and f3 independently. The ideal value, under-
lined in the table, is a solution - most likely unfeasible - that attains the best possible
outcome for each of the objectives. These instances reflect the two situations we have
encountered. On the one hand, for instance I1 there is a major conflict among the three
objectives, since the optimal solution for each objective provides very poor values for the
other two. On the other hand, for instance I2, there is no great conflict between f1 and
f2, since the optimal solution for each objective provides good values for both objectives
(f1 varies from 339, 798 to 359, 546 and f2 varies from 1412 to 1424). However, these
two objectives, related to process performance, are in conflict with f3, which is customer
satisfaction (note that the value of the objective for the optimal solution of f1 is nowhere
near its value for the optimal solution of the other two objectives).

Once the payoff matrix is obtained, we can approximate the Pareto region by using the
augmented ε-constraint method presented in Mavrotas and Florios (2013). The Pareto
region provides a broader picture of the confrontation among the different objectives. This
allows the decision-maker to select a suitable solution, depending on their preferences, and
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based on the degree of conflict. Fig. 4.4 shows a graphical representation of the Pareto
region for the two illustrative instances. The conflict between f1 and f2 can be observed
in the graph on the left. In instance I1 there is no relationship between the two objectives,
while in instance I2 there is a linear dependence. In the other two graphs, we can observe
that the conflict between f3 and the other two objectives is similar. The Pareto front
can also help by selecting the multi-criteria method to be implemented, such as Goal
Programming (firstly introduced by Charnes et al. (1955)), Compromise Programming
(introduced by Cochrane and Zeleny (1973)) or another. Note that computing the Pareto
front is often very time consuming, even for small instances. Therefore, in our approach,
we have selected the set of weights (ω1, ω2, ω3) = (30, 10, 1) for the different objectives
according to the decision maker’s preferences.

Fig. 4.5 illustrates the weight of the coils used (consumption), the distribution of the
coils among the slitting lines (time), and the satisfaction of customers’ orders (accuracy)
when each objective is optimised independently and when the proposed weighted sum is
considered. When objective f1 (reduction of leftovers) is optimised, in both instances
the use of tons of coils is kept to a minimum and, above all, the rolled leftovers are
reduced. However, the makespan and production time are large in instance I1, where
the confrontation between these two objectives is higher. In instance I2, where the two
objectives are not in high confrontation, the makespan and production time are similar
to the ideal value. When objective f2 (makespan and production time) is optimised, it
can be observed that the coils are better distributed among the slitting lines, reducing the
makespan and production time (which is greatly reduced in instance I1, where the conflict
concerning the reduction of leftovers is higher). However, the cutting plan uses more tons
of coils in instance I1 and produces a greater amount of rolled leftovers. Observe that,
in instance I2, where the conflict between the reduction of leftovers and the makespan
and production time minimisation are lower, the behaviour of both objectives is similar.
When objective f3 is optimised, the boxplot shows that almost all the orders are served
with accuracy 1. However, this is achieved by increasing the number of tons used and
the leftovers, especially rolled leftovers. This results in an increase in the makespan and
in production time, due to the processing time needed to perform the crosscuts. Finally,
when using a weighted sum of the three objectives, we obtain a solution whereby the used
tons and leftovers are optimised, resulting in higher accuracy and shorter production times
and makespan. Observe that in instance I2, the makespan is shorter than that obtained
when optimising objective f2, however, the production time is increased.
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Figure 4.4: Representation of the Pareto region (projections) in the objectives space.
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Figure 4.5: Main key performance indicators for the solutions in the payoff matrix.
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4.5.4 Computational results

Using the aforementioned data provided by the company, three representative sets of
instances have been created to test the model. The set of slitting lines and operational
parameters are common for all instances, while orders and stock are different:

• Current Operation (CO): 10 instances that correspond to the operations of the com-
pany on ten different working days in 2019, for the orders that were planned as well
as for the full compatible stock. The company has provided the cutting patterns
used for these instances hence a comparison of the model performance can be es-
tablished. Note that these instances might differ from the ones presented in the
previous chapter since the information of the slitting lines has been added and the
coils-slitting lines compatibility has been taking into account.

• Random generation of orders assuming All compatible Stock (AS): orders are ran-
domly selected from a pool of around 300 historical orders, and then, all compatible
coils in the current stock (that includes around 3000 coils) are considered. These
instances reproduce a realistic situation.

• Random generation of orders and Partial Stock (PS): As in the previous instances,
orders are randomly selected from a pool of around 300 historical orders, while the
set of coils is merely a (random and representative) subset of compatible coils from
the current stock.

For the second and third sets of instances, the number of orders is set to 25, 50, and
75, and for each size, four different instances are randomly generated. Then, each set
includes 12 instances and, together with the CO instances, 34 instances have been tested
in total. Instances with 100 orders have also been tested, nevertheless, no results have
been obtained in less than 30 minutes.

Table 4.5 reports a number of statistics on the computational performance of the model
for each instance: description (number of orders and coils in stock), model dimensions
(number of constraints, variables, and binary variables), performance (computing time in
secs., the value of the objective function for the best solution found, and the optimality
gap for this solution). The key performance indicators of the solution proposed by the
model are reported in Table 4.6: the number of coils used in the solution and their total
weight in kg are indicated, together with the weight served, the weight of retails and the
weight of the scrap. In addition, the percentage that each weight represents over the total
weight used is also indicated. The following three columns report the minimum, average
and maximum values of the order accuracy. We define the order accuracy as the ratio
between the required weight and the served weight. In this way, the order accuracy values
under 1 indicate that the required weight is more than the served weight. The Slit and
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Instance Model dimensions Performance
type |O| |C| cons. vars. 0-1 vars. time ZIP gap (%)

CO01 7 67 9,200 4,057 1,755 6 209757.3 0.00
CO02* 7 191 105,807 26,992 10,630 1800 58265.3 98.61
CO03 7 65 13,156 5,078 2,193 76 1974759.4 0.00
CO04 8 65 28,672 9,927 3,476 377 225002.4 0.00
CO05 9 138 40,581 13,170 5,763 367 124947.4 0.00
CO06 11 213 33,836 14,503 6,250 91 1381237.8 0.00
CO07 12 152 26,390 11,012 4,474 19 1846562.7 0.00
CO08 14 179 63,993 28,345 7,660 558 2326635.2 0.00
CO09 14 160 26,824 10,895 4,632 15 1078144.1 0.00
CO10 15 328 97,185 33,332 13,223 679 419654.8 0.00

AS01* 25 1032 670,971 162,354 61,053 1801 705443.3 13.01
AS02* 25 935 526,441 127,063 48,415 1801 1867384.7 0.09
AS03* 25 990 490,510 140,174 50,382 1801 955705.6 18.71
AS04* 25 798 433,551 120,868 45,749 1801 886606.9 41.53
AS05 50 1339 1,421,795 321,067 105,778 1801 − −
AS07 50 1416 1,161,237 351,836 90,913 1801 − −
AS06 50 1136 1,112,607 331,288 82,446 1801 − −
AS08* 50 1579 889,651 227,370 81,118 1801 1412703.3 13.54
AS09 75 1523 2,005,134 443,430 134,438 1802 − −
AS10 75 1724 2,234,881 572,637 142,991 1802 − −
AS11 75 1690 1,247,056 330,168 98,853 1801 − −
AS12 75 1783 1,553,106 387,274 114,482 1802 − −

PS01 25 114 56,656 15,078 5,638 56 791637.5 0.00
PS02 25 117 43,664 12,099 5,000 51 1219565.1 0.00
PS03* 25 119 35,811 11,787 4,770 1800 1283426.6 1.61
PS04 25 129 44,667 13,454 5,145 77 981700.2 0.00
PS05* 50 165 233,475 52,371 14,390 1800 1953730.8 0.38
PS06* 50 175 114,901 33,660 11,373 1800 1584025.0 20.34
PS07* 50 189 138,676 37,339 11,018 1800 1723786.0 3.88
PS08* 50 196 225,528 74,158 14,983 1800 1870333.9 6.80
PS09* 75 209 261,427 61,536 17,433 1800 2789277.7 3.29
PS10 75 223 354,414 96,628 22,060 1801 − −
PS11 75 214 358,676 82,544 21,680 1801 − −
PS12* 75 222 140,582 39,362 12,644 1800 2346239.4 1.79

* Optimality has not been proved.

Table 4.5: Model dimensions and computational performance indicators.
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Table 4.6: Solution performance indicators.
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Cross columns provide the number of slits performed on average per coil, and the total
number of guillotine crosscuts made in the solution. The Rewound column provides the
number of coils that are rewound and the percentage of weight it represents over the weight
of the retails. Finally, the last two columns report the total processing time of the coils
used in the solution (T ) and the makespan (Cmax) of the slitting lines.

We observe that the utilisation of the coils is similar in all sets of instances, around
70%, including those instances where optimality has not been proved (marked with *).
These values are similar to the values obtained in the model presented in Chapter 3, and
outperformed the current solution implemented by the company, where the utilisation of
the coils is around 50%.

Regarding the sets of instances AS and PS, we observe that as the size of the set of
orders increases, it becomes more difficult to obtain a feasible solution within 30 minutes.
For the same number of orders, it becomes more difficult when there are more coils in
stock (only one instance with 50 orders is solved and none with 75 orders in set AS,
whereas all instances with 50 orders and two with 75 orders are solved in set PS). These
results suggest that, for larger problems, the model will need more time to obtain a feasible
solution. Moreover, other strategies would have to be investigated in order to obtain good
feasible solutions in a reasonable time.

4.5.5 Planning in two independent stages vs the integrated model

Currently, the company carries out the planning of the slitting process in two sequential
stages. In the first stage, the company solves a 1.5D-CSP to select the coil and designs
the cutting patterns, and then, in the second stage, each coil is assigned to a compatible
slitting line.

In order to solve the problem at the first stage, several parameters must be set, such as
the maximum number of knives. Although there are several criteria to choose this value,
the company sets a maximum number of knives equal to the maximum value allowed
by the slitting line, that allows the maximum value. For example, if we observe Table
4.2 which reports the slitting line restrictions, for Type I coils, the maximum number of
knives is set at 20, which is what slitting line 2 allows. In practice, this criterion is the
most logical since it provides more flexibility: if the company has to serve orders with
a minimum width of 19 mm and the cutting line allows minimum widths of 19 mm, no
additional restrictions appear to be imposed. However, as we will observe later, problems
may arise, since this 19 mm limit must also be imposed on the leftovers which may lead
to unfeasible situations.

The combined approach of both decisions regarding the design of the cutting patterns
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and cutting line allocations, allows overcoming these drawbacks. Consequently, it provides
greater flexibility in the construction of the patterns, and achieves a better distribution of
the workload among the different cutting lines.

We have tested the two strategies with part of the previous instances (instances with
25 and 50 orders, where a feasible solution was obtained within the time limit), by setting
the time limit to one hour for all cases. Table 4.7 reports the main performance indicators
for the solution obtained with the integrated model for each tested instance. The last
row reports the average of these indicators. For each indicator, a column Dev. (%) has
been added, showing the deviation of the integrated model from the two-stage model,
except for order accuracy, since it is very similar for both strategies. Positive deviations
indicate higher values for the integrated model than for the two-stage model. Indicators
that improve when using the proposed model, are reported in bold. In general, it can
be observed that the integrated model provides better values than the two-stage model,
although the differences in the weight served, as well as in the weight of the retails and
scrap, are not relevant. However, if we look at the time used by the slitting lines and the
makespan, it can be observed that the integrated model provides much lower values, with
an average reduction of more than 15%. There is also a strong reduction in crosscuts,
which is one of the elements that most affects the processing time. Our proposal only
provides worse times for instance PS02, although in terms of weight served and leftovers
generated, it improves the two-stage model.

Note that instance AS07 is unfeasible with the two-stage strategy, while the integrated
model provides a solution. In order to illustrate what is happening, let us suppose that
the company holds a 500mm Type I coil and has orders of different widths compatible
with this coil. The patterns for the coil may have up to 19 strips (including the strip
of leftovers, if applicable) if the coils are cut on slitting line 2, but only up to 17 if they
are cut on slitting line 3, since these slitting lines allow a maximum of 20 and 18 knives,
respectively. In the two-stage model, patterns are designed without taking into account
the slitting line allocation and, therefore, the company must set a maximum number of
knives (20 in this case), forcing the minimum width of the leftovers to be set at 19 mm.
Let us assume that one of the orders is for 120 mm width strips, which must be fulfilled
with four strips; then, from the 500 mm width of the coil, 480 mm are dedicated to these
four strips and 5+5 mm to the edge trimming, resulting in a 10 mm leftover strip. This
pattern cannot be obtained as a possible solution in the first stage model, since a minimum
width of 19 mm was imposed for all the strips. Then, the first stage model discovers that
the instance is unfeasible. Nevertheless, this pattern could be cut on slitting line 3, since
its minimum cutting width is 9 mm.

Given that the different slitting lines are not considered in the first stage, it is not
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possible to make the lower limit of the width of the strip of the leftovers dependent on the
characteristics of the line. However, this is achieved with the integrated model presented
in this chapter.

4.6 Conclusions and future research

A mixed integer linear optimisation model has been presented to solve a complex
1.5-dimensional cutting stock problem in the steel industry. The model integrates both,
the coil selection and the definition of the cutting patterns, as well as the coil-slitting
line allocation. This integration allows the specific constraints for the slitting lines to be
assumed when selecting the coils from the stock and, when defining the cutting patterns.
The steel company owns a heterogeneous set of slitting lines, each of which has particular
specifications. Subsequently, unless integration is considered, the solution proposed could
overload the most versatile slitting line, or may even obtain cutting patterns that cannot
be processed in any of the slitting lines.

The computational results show how the integrated model improves the company’s
current operations, without reducing the service quality of the orders. Consequently, the
leftovers are reduced and the workload distribution for the slitting lines is improved: the
makespan and the total processing time are also reduced.

Furthermore, a multi-criteria analysis has been presented in order to study the existing
confrontation among the different objectives considered. It has been observed that there
exists a conflict between the accuracy of the order (deviation from the ordered weight) and
the process productivity (including both, the leftovers and the cutting times). However,
it has been studied how a selection of weights for the objectives is a useful approach in
order to find solutions with a good trade-off among these objectives.

As far as future research is concerned, two main lines are identified: on the one hand,
incorporating coil scheduling in the slitting lines, which will allow considering customer
deadlines and weekly planning. While, on the other hand, as the model is too complex (in
computational terms) and unable to solve large instances, metaheuristics or matheuristics
could help to solve the problem or, at least reduce the feasible solutions region.
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Chapter 5

Conclusions, original contributions
and future research
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The final conclusions of this PhD are presented in this chapter, together with the
original contributions and some future lines of research.

5.1 Conclusions

The main objective of this PhD, as stated in Section 1.2, was to develop decision sup-
port systems to help companies to tackle their complex business problems, and make opti-
mal decisions that maximize their operational efficiency. This has been achieved through
the development of three mathematical optimisation models to tackle the planning prob-
lems of two international companies, one in the retail sector and the other in the steel
industry.

In the first case, the model has allowed the company to gain a better knowledge of its
network of stores, while in the second case there has been a concrete transference of the
results through the implementation of the proposed models in the planning systems of the
company. The main conclusions are detailed below:
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• Facilities delocation in the retail sector: The problem of redesigning the net-
work of stores of a retail chain has been studied, considering possible closures or
changes in the management policy of the stores. In order to tackle this problem, a
mathematical optimisation model has been proposed to decide whether the stores
should change their management policy or should be delocated, with the aim of
improving the operation of the network. The type of decisions extracted from this
model do not apply directly to the structure of the network, since the network is
affected by other criteria (such as the company policy or the competition, among
others) that cannot always be taken into account. However, the model allows the
company to know what is the best structure in terms of profit maximisation, and to
make more informed decisions.

• The slitting problem in the steel industry: An integer linear optimisation
model has been developed to obtain a cutting plan for the slitting process in a
steel manufacturing company. With the aim to meet the demand, the cutting plan
defines which coils will be selected from the stock and the cutting patterns for each
of them. The model developed has provided the company with a planning solution
that improves its current operations by reducing the time invested in planning,
and by improving several operational aspects: the utilisation of the coils has been
significantly improved, from using 50% of the material to serve customer orders in the
current operation, to using 80% in the solutions proposed by the model. This means a
considerable reduction in the leftovers, both reusable and non-reusable. In addition,
the model proposes solutions where smaller coils are selected from the stock that
correspond to leftovers from previous cutting processes. This fact, together with the
reduction of leftovers, will lead to a reduction in the stock processed in the medium
term, with the consequent improvement in the stock management. Furthermore, the
model is able to better adjust the weight served to the weight ordered, improving
the company’s profit by reducing penalties or discounts due to these deviations.

• The slitting problem with slitting lines allocation: The model proposed con-
siders the integration of the coil selection, the cutting pattern design and the slitting
line allocation. Although it is not yet in production, this model allows a better
planning of the slitting process, since it improves the distribution of the workload
among the different slitting lines and solves some unfeasibility issues that appeared
in the previous model, without deteriorating the objectives previously considered.
Furthermore, it allows us to include orders that can be served in several days, forc-
ing only orders that are required to be completed within the current cutting plan,
and allowing to plan non required orders as long as the utilisation of the coils is
improved.
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5.2 Contributions

This section is devoted to present the main contributions obtained during the devel-
opment of this PhD. Two papers have been published in journals indexed in the Journal
Citation Report (JCR), an extended abstract has been published in the proceedings of a
conference, and another paper has been submitted to a journal indexed in the JCR. They
can be found in Section 5.2.1.

Additionally, the main results of this thesis have been presented in several national
and international conferences. They are listed in Section 5.2.2.

5.2.1 List of publications

Published papers

• Sierra-Paradinas, M., Alonso-Ayuso, A., Martín-Campo, F.J., Rodríguez-Calo,
F. & Lasso, E. (2020), ‘Facilities Delocation in the Retail Sector: A Mixed 0-1 Non-
linear Optimization Model and Its Linear Reformulation’, Mathematics 8(11):1986.
doi:10.3390/math8111986.

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. (2021), ‘An exact model for a slitting problem in the steel industry’,
European Journal of Operational Research 295(1), 336-347.
doi:10.1016/j.ejor.2021.02.048.

Extended abstract published in proceedings

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. (2021), ‘A mathematical methodology for planning the slitting process
in the steel industry.’, Galán, J. M., Díaz-de la Fuente, S., Alonso de Armiño Pérez,
C., Alcalde Delgado, R., Lavios Villahoz, J. J., Herrero Cosío, Á., Manzanedo del
Campo, M. Á., del Olmo Martínez, R. Proceedings of the 15th International Confer-
ence on Industrial Engineering and Industrial Management and XXV Congreso de
Ingeniería de Organización

Submitted paper

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. (submitted March 2022), ‘An exact model for the 1.5-dimensional
cutting stock problem in the steel industry with heterogeneous parallel slitting lines
allocation’, European Journal of Operational Research.
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5.2.2 Conferences

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. A mathematical methodology for planning the slitting process in
the steel industry. 15th International Conference on Industrial Engineering and
Industrial Management (ICIEIM), Burgos. 2021.

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. An exact model for a slitting problem in the steel industry. 34th
Conference of the European Chapter on Combinatorial Optimization, Madrid. 2021.

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. The slitting problem in the Steel industry: A case study. Mini sym-
posium Math-In: Success Stories between Academia and Industry. XXVI Congreso
de Ecuaciones Diferenciales y Aplicaciones XVI Congreso de Matemática Aplicada,
Gijón. 2021.

• Sierra-Paradinas, M., Soto-Sánchez, Ó., Alonso-Ayuso, A., Martín-Campo, F.J.,
& Gallego, M. A mathematical model for the slitting problem in a Spanish steel
manufacturing company. New Bridges between Mathematics and Data Science, Val-
ladolid. 2021.

5.3 Future work

This section is aimed to present some lines of future research for the problems tackled
in this PhD thesis.

• Facilities delocation in the retail sector: We are assuming that all the pa-
rameters are known, however, this is not always the case. The amount of goods
consumed that corresponds to the demand of the network may change over time. To
incorporate the uncertainty in the demand we could consider Stochastic Optimisa-
tion via Scenario Analysis. In this approach, the uncertainty in the parameters is
represented by their probability distributions. Then, a scenario tree is created from
a representative set of the possible values of the parameters. The models obtained
when using this approach are large and complex, but by properly exploiting the
structure of the formulations, it is possible to use decomposition methods to solve
problems with even millions of variables.

From the point of view of resolution, we have observed that when considering larger
networks, the complexity increases and it is not possible to solve large instances in a
reasonable computational time. For these cases, it is necessary to investigate other
optimisation techniques, such as metaheuristics or matheuristics. Although they are
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not exact methods, they provide good solutions in reasonable computing times.

• The slitting problem in the steel industry: As far as the future investigation
is concerned, the company is interested in carrying out the planning process over
a week including more orders with their corresponding deadlines and sequencing
the workload over different days, indicating which coils should be cut each day to
meet the due dates. During the past years, interest in the combination of cutting
stock problems and sequencing has grown. Recently Pitombeira-Neto and Prata
(2019) Pitombeira-Neto and de A. Prata (2019) presented a matheuristic for the 1D-
CSP combined with the scheduling process that appears in a multi-period problem.
Arbib and Marinelli (2014) Arbib and Marinelli (2014) proposed an exact integer
linear optimisation formulation that assigns patterns to periods and developed primal
heuristics for a cutting stock problem with due dates. Reinertsen and Vossen (2010)
Reinertsen and Vossen (2010) addressed the 1D-CSP when orders must be completed
before the due date and presented novel optimisation models that were solved with
column generation procedures. Set up costs due to the adjustments of the knives
will need to be considered to obtain the changing times between coils in the different
slitting lines.

This new model will be far more complex and it will require more computational
effort to solve full-size instances. Therefore, we need to consider more time-efficient
resolution techniques. To solve the problem presented in Chapter 3 we are working on
a metaheuristic that is composed of a constructive phase with a random component
and a variable local search. The results, although they are good and obtained in a
few minutes, they are yet not comparable to the solutions obtained with the model
presented in this work. For the problem presented in Chapter 4 we are working
on applying a matheuristic approach considering that the problem can be easily
separated into two phases: the definition of the cutting patterns and the allocation
of the slitting lines.
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