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Introduction to mathematical thinking

Linear algebra can be viewed as the mathematical apparatus needed to solve systems of lin-
ear equations, understand their underlying structure, and to applied what is learned in other
contexts. Unlike your first brush with the subject in high school, which probably emphasized
matrices and Euclidean spaces like the real plane R2, we will focus on abstract vector spaces and
linear transformations. These terms will be defined later, so do not worry if you are not familiar
with them. These notes start from the beginning of the subject, assuming no knowledge for
linear algebra. The key point is that you are about to immerse yourself in serious mathematics,
with an emphasis on your attaining a deep understanding of the definitions, theorems, and
proofs.

Upper-level mathematics has much in common with high school mathematics, and students
who have been accepted onto a Biomedical Engineering major already have an array of mathe-
matical skills that will serve them well. On the other hand, upper-level mathematics also differs
in some important respects. This means that most students need to extend and adapt their
existing skills in order to continue to do well. Making such extensions and adaptations can be
difficult for those who have never really reflected on the nature of their skills.

One thing you certainly have learned to do is to apply mathematical procedures to calculate
answers to standard questions, perhaps by matching key words in the statement of a question
with a memorized recipe of calculations from within a set of many recipes. This might have
been useful to achieve a good grade in the standardized entry exam to university, which is a
controlled and predictable environment. Moreover, some people enjoy this type of work. They
like the satisfaction of arriving at a page of correct answers, and they like the security of knowing
that if they do everything right then their answers will, indeed, be correct. Sometimes they
compare mathematics favorably with other subjects in which things seem to be more a matter
of opinion and “there are no right answers.”

Other people dislike this aspect of mathematics. They find it dull to do lots of repetitious
exercises, and they get more satisfaction from learning about why the various procedures work
and how they fit together. However, note that knowing how to apply procedures is extremely
important because, without fluency in calculations, it is hard to focus your attention on higher-
level concepts.

When you start taking upper-level courses, professors will expect you to be fluent in using the
procedures you have already learned. They will expect you to be able to accurately manipulate
algebraic expressions, to solve equations, and so on. They will expect you to be able to do
theses things without having to stop each time to look up a rule, and they might not be
patient with students who are not able to do so. This is not because they are impatient with
students in general – most professors will be happy to spend a long time talking with you about
new mathematics, or responding to students who say, “I know how to do this, but I’ve never
understood why we do it this way.” But they will not expect to re-teach things you have already
studied. So you should brush up your knowledge prior to beginning a course, especially if, say,
you’ve done no mathematics all summer.
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Once you do begin, you’ll find that some upper-level mathematics involves learning new
procedures. These procedures, unsurprisingly, will be longer and more complicated than those
you met in earlier work. We are not worried about your ability to apply long and complicated
procedures, however, because to have got this far you must be able to do that kind of thing.
Here, we want to focus on more substantive changes in the ways in which you have to interact
with the procedures.

The first substantive difference is that you will have more responsibility for deciding which
procedure to apply. Of course, you have learned to do this to some extent already. For instance,
you have learned how to multiply out brackets and write things like:

(x + 2)(x − 5) = x2 − 3x − 10.

But hopefully you have also learned that it is not sensible to multiply out when trying to
simplify a fraction like this:

x2(x + 2)(x − 5)
x2 + 2x

.

For the fraction, simplification is easier if you keep the factors “visible.” Nonetheless, many
students automatically multiply out, probably because multiplying out was one of the first
things they learned to do when studying algebra. They would, however, be more successful
in mathematics courses like calculus and linear algebra if they learned to stop and think first
about what would allow them to make the most progress. If this doesn’t apply to you for this
particular type of problem, does it apply in others? Have you ever done a long calculation and
then realized that you didn’t need to? Could you have avoided it if you’d stopped to think
first? Part of deciding which procedures to apply is giving yourself a moment to think about it
before you leap in and do the first thing that comes to mind.

This might not sound like a big deal, but think for a moment about how often you don’t have
to make a choice about what procedure to apply. Often, questions in books or on tests tell you
exactly what to do. They say things like, “Use Cramer’s rule to solve this system of equations.”
Even when a question doesn’t tell you outright, it is sometimes obvious from the context. In
high school, if your teacher spent a lesson showing you how to apply the Rouché-Frobenius
theorem, then gave you a set of questions to do, it was probably safe for you to assume that
these would involve automatically applying the Rouché-Frobenius theorem. This helped you
out, but it means that much of the time you didn’t have to decide what procedure to apply.
In the wider world, and in advanced mathematics, making decisions is more highly valued and
more often expected. This means that questions presented to you on problem sheets and exams
will usually just say “solve this problem” rather than “solve this problem using this procedure.”

Another part of deciding which procedures to apply is being able to distinguish between cases
that look similar but are best approached in different ways. For example, consider integration,
and more specifically integration by parts. You may know that this is used when we want to
integrate a product of two functions, one of which gets simpler when we differentiate it, and
the other of which does not get any more complicated when we integrate it. For instance, in∫

xexdx, x gets simpler if we differentiate it, and ex gets no more complicated if we integrate
it. You might also know, however, that sometimes mathematical situations look superficially
similar, but are best tackled using different procedures. In the integration case, integration
by substitution might sometimes be more appropriate. For instance, in

∫
xex2

dx, we would
probably want to use integration by substitution instead of by parts. Can you see why?
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Integration by substitution is a good case for another point we would like to make, this
time about making decisions within procedures. It might be that you read the end of the last
paragraph and thought, “But what substitution should I use?” Perhaps your teachers or books
always told you what to use, but we would argue that they shouldn’t necessarily have to. After
a while, you should notice that certain substitutions are useful in certain cases. If you pay
attention to the structures of these cases then, even if you wouldn’t be sure that you could pick
a good substitution for a new case, you should have an idea of some sensible things to try. If
you haven’t deliberately thought about this before, we suggest you do so now. Get out some
questions on integration by substitution and, without actually doing the problems, look at the
suggested substitutions. Can you anticipate why those substitutions will work? Can you then
anticipate what would work in similar cases?

So how can a student improve their ability to make decisions about and within procedures?
We have two suggestions. The first is to try doing exercises from a source where the procedure to
be applied is not obvious. A good place to look is in the books listed in the bibliography section
of the teaching guide. The second suggestion is to turn ordinary exercises into opportunities
for reflection. When you finish an exercise, instead of just moving on to the next one, stop and
think about these questions:

1. Why did that procedure work?

2. What could be changed in the question so that it would still work?

3. What could be changed in the question so that it would not work?

4. Could I modify the procedure so that it would work for some of these cases?

All of these questions should help you build flexibility in applying what you know.
We want to come back to the idea that knowing how to apply such procedures is only one

part of understanding mathematics. It is an important part, but most students can recognize
the difference between learning to apply a procedure mechanically, and understanding why
it works. Learning mechanically has some advantages: it is generally quick and relatively
straightforward. But it also has disadvantages: if you learn procedures mechanically, it is easier
to forget them, to misapply them, and to mix them up (and it will be harder for you to be as
successful in this course as you would like to be). Developing a proper understanding of why
things work is generally harder and more time-consuming, but the resulting knowledge is easier
to remember and more supportive of flexible and accurate reasoning (and will certainly help
you get a good grade in this course).

To summarize, before taking upper-level courses like calculus and algebra, you should brush
up you knowledge of standard procedures because your professors will expect you to be able to
use these fluently. As you progress, you will be expected to take more responsibility for deciding
which procedure to apply; it might be a good idea to practice this by working on exercises from
sources that do not tell you exactly what to do. You will also be expected to adapt procedures
in sensible ways, and to work out how theorems or definitions can be applied without necessarily
having seen many worked examples. You will not succeed in upper-level mathematics if you
always try to solve problems by finding something that looks similar and copying it. You have
to be more thoughtful than that. Mathematics is not just about procedures. Fluency with
procedures is important, but in many cases you should aim for a deeper understanding of why
procedures work.
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Definitions

We will encounter many definitions, theorems, and proofs throughout these notes.
A definition has nothing to do with something being true. It just tells us what a mathe-

matical word means. A definition might define a type of object, or it might define a property.
The definition about defines a property about linear equations.

You already know that a definition tells us what a word means because you’ve been using
dictionaries for a very long time. But there are two very, very important differences between
dictionary definitions and mathematical definitions. If you want to understand the material in
these notes, it is vital that you understand these differences.

The first difference is that when mathematicians (in particular, your algebra professor) state
a definition, they really mean it. They don’t mean that this is a good description of the majority
of cases, but that there might be exceptions out there somewhere. This is not how dictionary
definitions work. If you took two dictionaries and looked up an everyday concept, either a
concrete one (like “table”) or an abstract one (like “justice”), would you expect the definitions
to be identical? Probably not. Probably, in fact, you would expect to be able to find things in
the world that satisfy one definition but not the other. Or to find something that you would
want to call a “table” or “justice” but that didn’t really satisfy either definition∗. Or to find
something for which, even though there is a definition, people would disagree.

Now, compare this with what would happen if you took a mathematics book and looked up
a definition of “even number.” Would you expect to be able to find an even number that did
not satisfy the definition? Or an non-even number that did, nonetheless, satisfy the definition?
Absolutely not. Exceptions simply don’t exist. It’s not like you could find a number so big that
it could be even without being divisible by 2. If you took two textbooks, you might not expect
the two definitions to be phrased in exactly the same way, but you would expect them to be
logically equivalent. That is, you would expect that all and only the things that satisfy the
first definition would also satisfy the second. So, that’s one difference: mathematical definitions
mean exactly, exactly what they say. There are no exceptions, and different phrasings might
exist but these must be logically equivalent.

The other difference, which is partly a consequence of the first, is that mathematical defini-
tions are precise and operable in a way that dictionary definitions are not. This means that they
contain some information that we can actually manipulate in an algebraic or logical argument.
For instance, consider the following simple definition:

Definition: A number is even if it is divisible by 2.
“Well, yes,” you’ll be thinking, “obviously.” In fact, though, this is probably not how your
professor will write this definition. You’re more likely to see something like this:

Definition: A number n is even if and only if there is an integer k such that n = 2k.
You could be forgiven for thinking that this over-complicates things. But it has some advan-
tages. The first is precision. We can see this by comparing with the kind of thing that students
sometimes write when they try to define even. They tend to say things like “Even is when it’s
divisible by 2.” Clearly that captures the key idea, but it isn’t very precise. For a start, what
is “it”? Clearly “it” is supposed to be a number, but this number isn’t introduced properly. In
contrast, the better definition tells us explicitly that we are dealing with a number and gives it
a name, n. For another thing, the student definition contains the locution “is when.” This tends

∗For example, is a 10-meter tall “table” at an art exhibition a table? Sort of, but it wouldn’t satisfy functional
criteria such as being a flat surface you could rest things on – no-one would be able to reach, and anyway touching
the exhibit is probably not allowed.
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to sound clunky, in mathematics but also in other fields. In mathematics, if you find yourself
writing “it” or “is when,” you should probably consider rephrasing.

The second advantage is operability. We can operate with the mathematical definition to
prove things. The better definition gives us a way of capturing and manipulating even numbers
because it states what divisibility means in algebraic terms. We could, for instance, use it
to prove that any integer multiple of an even number must also be even, perhaps by writing
something like this:

Suppose that n is an even number. Then (by definition) there is an integer k such that
n = 2k. Now, let z be any integer and y = zn. Then y = z(2k). But we can rewrite this as
y = 2(zk). Now zk is an integer, so y is even because it can be written in the required form.

We could have the same ideas if we were working with the imprecise student definition. But
the better version gives us a leg-up for writing arguments like this by providing some notation.
Moreover, we expect the precise definition to exclude all the numbers that are not even (for
the number 3, there is no appropriate integer k). In this way, the definition of even number
captures the notion of evenness in a reasonable way.

A final point here is that we do not “prove” definitions. We can’t, because there’s nothing to
prove: definitions just capture conventions in which we all agree to use a word to mean exactly
the same thing. A professor might, at some point, explain to you how a definition captures an
intuitive idea, but this isn’t the same as proving it.

Theorems

Whereas a definition states what we mean by a word describing a mathematical object or
property, a theorem tells us about a relationship between two or more types of objects and
properties; it assumes that we already know what those objects and properties are. Of course,
if you don’t know the meanings of all the words and symbols in the statement of a theorem
you will probably feel that you don’t understand the theorem. Notice, however, that even if
you don’t understand a theorem, you should be able to recognize that it has a theorem-like
structure of the form:

If this thing is true, then this other thing is true as well.

The bit that goes with the if is called the premise or the assumption or the hypothesis. The bit
that goes with the then is called the conclusion. It’s actually not quite this simple in real life,
because there are a few ways of phrasing theorems that don’t make the “if. . . then. . . ” structure
so obvious.

Theorems tell us true things about relationships between concepts. Nevertheless, we need
to go to the trouble of proving them. Sometimes we do this because theorems are far from
obvious. Sometimes, though, theorems are pretty obviously true, and we do it for the more
subtle reason that proving them allows us to see how they all fit together to form a coherent
theory.

Once definitions are settled, theorems follow by logical necessity. For instance, once we
have decided to define even numbers as numbers divisible by 2, we must conclude that any
integer multiple of an even number is also even. We don’t have any choice about that kind of
consequence.
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We should say that although we’ve only used the term theorem, there are several words that
sometimes get used instead. Some of these are proposition, lemma, claim, corollary, and the
apparently all-encompassing result. Lemma is usually used for a small theorem that will then be
used to prove a bigger, more important one. Corollary is used for a result that follows as a fairly
immediate consequence of a big theorem. The other terms are more or less interchangeable (in
our opinion).

Thinking about objects can allow us to link new statements to our existing knowledge.
However, we can also work towards understanding statements by thinking about their logical
structures. To do so, we need to pay attention to mathematical uses of logical language. We
will start by looking more carefully at ways in which the word if is used in mathematics.

First, consider a statement “If A then B.” This is sometimes written as “A =⇒ B,” which
is read out loud as “A implies B.” The use of an arrow makes it clearer that we can think of
this statement as having a direction, which is important because we might have a situation in
which A =⇒ B is a true statement but B =⇒ A is not. Sometimes both implications do
hold, as in the case:

x is even =⇒ x2 is even (true)
x2 is even =⇒ x is even (true)

However, sometimes one is true but the other is not, as in the case:

x < 2 =⇒ x < 5 (true)
x < 5 =⇒ x < 2 (false)

These statements are actually somewhat imprecise, because we have not specified what type of
object x is. You probably assumed that it must be an integer in the squaring case and a real
number in the inequalities case, since that would make sense. But, to be clearer, we could write
things like:

For every x ∈ R, x < 5 =⇒ x < 2.

Doing so makes it easier to see why this particular statement is false: there are some real
numbers that are less than 5 but not less than 2. But mathematicians sometimes omit such
phrases when writing in note form or when the intended interpretation is obvious.

When they want to discuss both implications at once, mathematicians use a double-headed
arrow meaning “is equivalent to,” or write “if and only if” or its abbreviation “iff.” So these are
different ways of writing the same (true) statement about integers:

x is even ⇐⇒ x2 is even.
x is even if and only if x2 is even.
x is even iff x2 is even.

We have seen the phrase “if and only if” before, in our definitions. Here it is again:
Definition: A number n is even if and only if there is an integer k such that n = 2k.
To think about the phrase, it might be illuminating to split up this definition and write

each implication separately:

A number n is even if there exists an integer k such that n = 2k.
A number n is even only if there exists an integer k such that n = 2k.
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Can you see how this definition “catches” the numbers that are even, and excludes those that
are not?

One final thing to note about a statement of the form “A if and only if B” is that, if we
want to prove it, we can take one of two approaches. We can either construct a proof in which
all the lines are equivalent to each other, or prove the two statements A =⇒ B and B =⇒ A
separately.

The uses of “if” and “ =⇒ ” sound straightforward when we are considering simple math-
ematical statements. But we would like to draw your attention to two potential sources of
confusion.

First, some thought is necessary to sort out which of the “if” and the “only if” corresponds
to which implication. You should think about this, perhaps by thinking about which one could
replace the “implies” arrow in these two versions of the same (true) statement:

x < 2 =⇒ x < 5 x < 5 ⇐= x < 2.

Second, it turns out that students do not always interpret “if” in a mathematical way in
everyday life. In everyday conversation, we tend to speak rather imprecisely, relying on the
context to help our listener make the interpretation we intend. For instance, imagine someone
says to you,

If you clean the car then you can go out on Friday night.

You could reasonably infer from this that if you don’t clean the car then you can’t go out Friday
night. Clearly that is what the speaker intends. And someone else could infer that if you were
allowed out on Friday, they you must have cleaned the car. But, in fact, neither of these is
logically equivalent to the original statement. Perhaps the easiest way to see this is to look at
the logic in parallel with our simple statements about inequalities:

clean car =⇒ out Friday x < 2 =⇒ x < 5
not clean car =⇒ not out Friday x ≥ 2 =⇒ x ≥ 5
clean car ⇐= out Friday x < 2 ⇐= x < 5.

The second and third statements in each case are not logically the same as the first. Alterna-
tively, you could think about the everyday situation, and see that the original statement says
nothing at all about what happens if you don’t clean the car, so there would be no contradiction
if you didn’t clean it but you were still allowed out. Technically, the person bargaining with
you should really say:

You can go out on Friday night if and only if you clean the car.

Of course, no one talks like that. Which means that you might have less practice than you
think accurately interpreting logical statements. Using logical language in a mathematically
correct sense is not too hard, thought, because there are cases in which the intended natural
language interpretation is the same as the mathematical one. Consider the statement:

If Juan is from Sevilla then Juan is from Andalućıa.

No one hearing this would dream of inferring either of these:

If Juan is not from Sevilla then Juan is not from Andalućıa.
If Juan is from Andalućıa then Juan is from Sevilla.
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But these inferences are analogous to those we looked at for the statement about cleaning the
car. Make sure you can see how.

In the Sevilla case, the natural interpretation of the statement is the same as the mathemat-
ical one. We can also use it to illustrate a general point about logical equivalence of different
implications. For any statement of the form A =⇒ B we can consider three related statements
called its converse, inverse, and contrapositive. This is what each one means, using the Sevilla
example for illustration.

original A =⇒ B from Sevilla =⇒ from Andalućıa
converse B =⇒ A from Andalućıa =⇒ from Sevilla
inverse not A =⇒ not B not from Sevilla =⇒ not from Andalućıa
contrapositive not B =⇒ not A not from Andalućıa =⇒ not from Sevilla.

This is what each one means using one of our simple mathematical example instead:

original A =⇒ B x < 2 =⇒ x < 5
converse B =⇒ A x < 5 =⇒ x < 2
inverse not A =⇒ not B x ≥ 2 =⇒ x ≥ 5
contrapositive not B =⇒ not A x ≥ 5 =⇒ x ≥ 2.

This should help you remember that if A =⇒ B is a true statement, then its contrapositive
will also be true (in fact, they are logically equivalent), but its inverse and its converse might
not be.

Finally, I should point out that your professor will be careful about uses of “if” and “if and
only if” in theorems and proofs, but perhaps not so careful in definitions. In a definition, they
might just write “if” instead of “if and only if.” This works for the same reason that everyday
communication works: everyone knows that, in a definition, this is what is intended.

Next we want to discuss the phrases “for all” and “there exists.” These are called quantifiers,
because they tell us how many of something we’re talking about. They are so common in
mathematics that we have symbols for them: we use “∀” (the universal quantifier) to mean “for
all” and “∃” (the existential quantifier) to mean “there exists.”

In simple statements, quantifiers are easy to think about. Here is a simple quantifier state-
ment:

∀x ∈ Z, x2 ≥ 0.

In this statement, we write ∀x ∈ Z to specify exactly which objects we are talking about.
We could just write ∀x, and sometimes people do when it is obvious what kind of numbers
(or other objects) a statement is about. But doing so could be ambiguous. In this case, the
statement could just as well be about real or complex numbers, which raises issues of the truth
or otherwise of the statement: “∀x ∈ Z, x2 ≥ 0” is true, “∀x ∈ C, x2 ≥ 0” is not. So it is good
practice to be specific.

More complicated quantified statements can be harder to think about. Here is a definition
written in words and in an abbreviated form using the new symbol (which might be more nat-
urally read as “for every” in this case):

Definition: A function f : R → R is increasing if and only if for every x1, x2 ∈ R such that
x1 < x2, we have f(x1) ≤ f(x2).
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Definition (abbreviated): f : R → R is increasing if and only if ∀x1, x2 ∈ R such that
x1 < x2, f(x1) ≤ f(x2).

Here is a simple quantified statement involving the existential quantifier:

∃x ∈ Z such that x2 = 25.

This is a true statement, because when mathematicians say “there exist,” they mean “there
exists at least one.” Here, there are two different integers x that satisfy the statement. In other
cases, there might be hundreds. Students sometimes find it strange that we say “there exists”
without specifying how many because, if we know exactly how many there are, it seems rude
not to say so. However, advanced mathematics is at least partly about general relationships
between concepts, rather than about finding “answers” as such. We can see other reasons why
it makes sense to use “there exists” without extra specification if we look at another definition
(again shown both in words and in an abbreviated form):

Definition: A number n is even if and only if there exists an integer k such that n = 2k.

Definition (abbreviated): n ∈ Z is even if and only if ∃k ∈ Z such that n = 2k.

This definition gives us an agreed way of deciding whether a number is even or not. To make
that decision, we do not care what the particular k is, we just care whether or not there is one.
It also allows us to make general arguments about all even numbers. We might start by saying
“Suppose n is even, so ∃k ∈ Z such that n = 2k.” In this case, we don’t want to specify what
the k is because we want the ensuing argument to be general in the sense that it applies to any
number that satisfies to the condition.

Some mathematical statements have more than one quantifier. The following definition
(again with an abbreviated version) might be described as doubly quantified or as having two
nested quantifiers:

Definition: A set x ⊆ R is open if and only if for every x ∈ X there exists d > 0 such that
(x − d, x + d) ⊆ X.

Definition (abbreviated): X ⊆ R is open if and only if ∀x ∈ X ∃d > 0 such that
(x − d, x + d) ⊆ X.

When a statement has more than one quantifier, the order in which they appear is really im-
portant. In this case, the definition says, “for every x, there exists a d.” We should imagine
taking a particular x value and finding an appropriate d (maybe depending on x). If we take
a different x, we might need a different d (perhaps a smaller one, as in the right-had diagram
below).

x

d d

x

d d

If the definition instead said “there exists a d for every x,” mathematicians would read that as
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meaning that we could select a single d (independent of x) that works for every x. That is not
the same thing at all.

To check your understanding of this, consider the following two statements. One is true,
and the other is false. Which is which?

∃y > 0 such that ∀x > 0, y < x.

∀x > 0 ∃y > 0 such that y < x.

It is normal to find this difficult, because everyday life would probably not distinguish between
these two statements. Without even realizing it, we would make the interpretation that seems
most realistic, disregarding logical correctness. Most students therefore have to concentrate for
a while before they get the hang of reading what is literally there and making the mathematical
correct interpretation.

Although we have written the theorems in the form “If. . . then . . . ,” you might also see
different phrasings. Here are some common ones:

Theorem: If f is an even function, then df

dx
is an odd function.

Theorem: Suppose that f is an even function. Then df

dx
is an odd function.

Theorem: Every even function has an odd derivative.

These would all be interpreted to mean the same thing: the premise in each case is that the
function is even, and the conclusion is that its derivative is odd. It might seem strange that
we don’t just pick one form and stick to it but, sometimes, one version or another sounds more
natural, so mathematicians like to have this flexibility.

You will also see theorems of different types. There are, for instance, existence theorems
like this one:

Theorem: There exists a number x such that x3 = x.

One way to prove a theorem like this is just to produce an object that satisfies it: the number
1 would do, in this case. It’s not always that easy, but it’s important to recognize that it might
be, because sometimes students tie themselves in knots doing complicated things when a simple
answer would do.

There are also theorems about non-existence, like this one:

Theorem: There does not exist a largest prime number.

In fact, a bit of thought, non-existence theorems can be restated in our standard form. This
one, for instance, could be written with a universal quantifier:

Theorem: For every prime number n there exists a prime number p such that p > n.

Then it could be rephrased into our initial form:

10



Theorem: If n is a prime number then there exists another prime number p such that p > n.

These rephrasing possibilities can be very useful when we want to start proving something:
sometimes rewriting in a different way can give us different ideas about sensible things to try.
However, the fact that we can often rephrase does not mean that you can be sloppy about
your mathematical writing. Sloppy paraphrasing can easily change the logical meaning of a
statement. Once you become fluent in using logical language in a mathematical way, you will
find that you can switch forms without doing violence to the meaning. Until that point you
should think carefully about logical precision.

One great thing about having precise meanings for logical terms is that it buys us a lot of
mechanistic reasoning power. For instance, if we know that A =⇒ B and that B =⇒ C,
then we can deduce that A =⇒ C. We can do this even if A, B, and C are about really
complicated objects that we’ve never met before and we don’t understand. Similarly, if we
would like to prove a statement of the form A =⇒ B, be we are not making much progress, we
can remember that the contrapositive (not B =⇒ no A) is always equivalent to the original,
and try proving that instead.

This is what we mean when we say that we can develop valuable understanding by looking
at the logical structure of a statement. If we pay attention to constructions involving “if” or
quantifier, we can make use of such regularities in our reasoning. This is (at least partly) what
people mean when they talk about formal work: we can concentrate on the logical form of a
sentence and temporarily ignore its meaningful content. We don’t have to ignore the meaning,
of course, and for most of the above discussion you were probably thinking about meanings as
well. But attending to logical form is vital for proper understanding. Some students are lax
about this; when reading mathematics, they look mostly at the symbols, ignoring or glossing
over the words. This can make their understanding faulty and their writing inacurate, because
they mix up important quantifiers or implications. For instance, consider the following theorem:

Rolle’s Theorem: Suppose that f : [a, b] → R is continuous on [a, b] and differentiable on
(a, b) and that f(a) = f(b). Then ∃c ∈ (a, b) such that f ′(c) = 0.

It is quite common to see students make errors, writing things like this:

Rolle’s Theorem: Suppose that f : [a, b] → R is continuous on [a, b] and differentiable on
(a, b). Then f(a) = f(b) and ∃c ∈ (a, b) such that f ′(c) = 0.

We can see that these are different by looking at their logical forms: one of the premises in
the correct version appears instead as part of the conclusion in the second (look carefully to
make sure that you can see this). Clearly that must make a very important difference, so the
incorrect version cannot possibly be logically equivalent to the correct version. Nonetheless, it
might still be a valid theorem. In this case, however, it isn’t, which we can see by thinking in
terms of examples. In the incorrect version, the premises introduce a function f that is defined
on an interval and is continuous and differentiable on this interval. The conclusion claims that
the function values are equal at the endpoints of the interval, but this cannot possibly follow
in a valid way from the premises, because there are many functions and intervals that satisfy
the premises but do not have this property. For example, f(x) = x2 is continuous on [0, 2]
and differentiable on (0, 2), but certainly isn’t the case that f(0) = f(2). We can see how a
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student might write the incorrect version in the first place, but someone who is thinking about
the meaning of their writing should recognize such errors when rereading.

This brings us back to the idea that both logical form and example objects can contribute to
mathematical understanding, though focusing on each has different advantages and disadvan-
tages. If you look mainly at examples, you might feel that you understand, but you might fail
to appreciate the full generality of a statement of find it difficult to see the logical structure of a
whole course. If you look mainly at formal arguments, you might be able to see how everything
fits together logically, but you might find yourself complaining that it is very abstract and that
you don’t really understand what is going on. Your experience of these issues will probably vary
from course to course, because some professor give lots of examples and draw lots of diagrams,
whereas others give a much more formal presentation. If a professor’s approach does not match
you preferred way of developing understanding, you might find it useful to strengthen your
understanding of the links between the example objects and the formal work.

Proofs

You have constructing mathematical proofs for many years. For instance, to do the calculations
needed to prove that the solutions to the equation x2−20x+10 = 0 are 10+3

√
10 and 10−3

√
10,

you would write something like this:

x = 20 ±
√

400 − 40
2 = 20 ±

√
360

2 = 20 ± 6
√

10
2 = 10 ± 3

√
10.

This calculation uses methods that everyone agrees are valid, so it captures everything we need
for a proof that the solutions really are as claimed. To make it look more like and upper-level
proof, we could rewrite it like this:

claim: If x2 − 20x + 10 = 0 then x = 10 + 3
√

10 or x = 10 − 3
√

10.

Proof: Suppose that x2 − 20x + 10 = 0. Then, using the quadratic formula,

x = 20 ±
√

400 − 40
2 = 10 ± 3

√
10.

This version explicitly states the claim, begins with the premise (“Suppose that x2−20x+2 =
0”), and contains few words to justify those steps that are more sophisticated or less obvious.

My point is that there is nothing inherently mysterious about proofs. It is certainly true
that most high school mathematics is not presented in this way, but it’s also true that most
of it could be. We say this because, in upper-level courses, lots of the mathematics you meet
will be presented in this form; these lecture notes will be full of theorems and proofs. This
might seem rather an abrupt change, and some students get the idea that proof writing is a
mysterious dark art to which only the very privileged have access. It isn’t. In cases like the one
above, all it really involves is writing in a more mathematically professional way – writing less
like a student and more like a textbook, if you like.

This is not to belittle the genuine difficulties that undergraduate students face when handling
proofs. Obviously the example above is simple one, and the proofs you are asked to understand
and construct in upper-level courses will often (though not always) be much harder. It might
take you a while to get used to digesting mathematics presented in this way, and to writing
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your own mathematics more professionally. But there is no reason to think you won’t manage
it, and this section discusses some things you could pay attention to in order to get used to it
quickly.

One thing you’ll often asked to do is to prove that a mathematical object satisfies a definition.
The question won’t be phrased like that, though. It will just say something like, “Prove that
the set (2, 5) is open.” You will have to interpret this to mean “Prove that the set (2, 5) satisfies
the definition of open set,” and review the definition of open set to make sure you are clear
about what this involves. That sounds simple, but We have often seen students who, faced
with an instruction like “Prove that the set (2, 5) is open,” don’t know what to do. If you don’t
know how to start on any proof problem, your first thought should often be, what does the
definition say?

We have seen the relevant definition, which says:

Definition: A set X ⊆ R is open if and only if ∀x ∈ X, ∃d > 0 such that (x−d, x+d) ⊆ X.

How should we write a proof that (2, 5) is an open set? Often the best advice is to follow the
structure of the definition itself. We want to prove that (2, 5) is open, so we want to show that
for every x ∈ (2, 5) there exists d > 0 such that (x − d, x + d) ⊆ (2, 5). When we want to show
something is true for every x in some set, we usually start our proof by introducing one, like this:

Claim: (2, 5) is an open set.
Proof: Let x ∈ (2, 5) be arbitrary.

Here, arbitrary means that we are taking any old x, not some specific one or one with special
properties. It is not necessary to write this – lots of people would just write “Let x ∈ (2, 5)” –
but it does emphasize that the ensuing argument will work for any x in the set.

Now we need to show the existence of an appropriate d. The simplest way to show the
existence of something is to produce one. In this case, we need to produce a d that will work
for our x. This d will depend on x, and one way to do it is to pick d to be the minimum of the
two distances 5−x and x−2 (think about why). So we might write the rest of our proof like this:

Claim: (2, 5) is an open set.
Proof: Let x ∈ (2, 5) be arbitrary. Let d be the minimum of 5 − x and x − 2. Then

(x − d, x + d) ⊆ (2, 5). So ∀x ∈ (2, 5), ∃d > 0 such that (x − d, x + d) ⊆ (2, 5). So (2, 5) is an
open set.

Notice that this proof reflect the order and structure of the definition. We are showing something
for all x, so we start with an arbitrary one. We are showing that for this x, an appropriate
d exists, so we produce one. Because of this, the structure of the proof will be obvious to a
mathematician, so you don’t really need to write the line “So ∀x ∈ (2, 5) . . . , but you might
find it helpful for your own thinking.

Some people tend to include diagrams along with proofs like this, and some don’t. That’s
because diagrams can be illuminating, but they are not necessary, and they are not a substitute
for writing a proof out properly (diagrams are not proofs); mathematicians (in particular you
algebra and calculus professors) want to see a written argument that is clearly linked to the
appropriate definition.
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Another standard proof type is known as direct proof. In a direct proof we start by assuming
that the premise(s) hold and move, via a sequence of valid manipulations or logical deductions,
to the desired conclusion. Here are some theorems for which we’ve already studied a direct proof:

Theorem: If n is an even number, then any integer multiple of n is even.

Theorem: If x2 − 20x + 10 = 0 then x = 10 + 3
√

10 or x = 10 − 3
√

10.

Theorem: (2, 5) is an open set.

Stop and think for a moment here. Can you write out proofs of these statements without
looking? If you can’t do it immediately, can you remember the gist of how we proceed in each
case and reconstruct the rest? If you give yourself a minute for each one, we bet you can
remember more than you would initially have thought. Students often have too little faith in
their own ability to recall mathematical ideas and reconstitute arguments around them.

One important thing to note is that direct describes the eventual proof we write, it does not
necessarily describe the process of constructing the proof. You might be able to write down
the premises and just follow you nose to a proof, but is more likely that you’ll have to try out
some of the things like: write everything in terms of definitions, think about some examples,
maybe draw a diagram, and so on. You should then, however, work out how to write your final
proof in a way that makes its logical structure clear for a reader. It is probably a good idea
to treat this writing as a separate task, one that is worthy of your attention over and above
simply getting to an answer or a proof.

A second thing to note is that direct proofs can have somewhat more complicated structures
within them. The most obvious such structure occurs in a proof by cases, which means what it
sounds like it means: we divide up the cases we’re dealing with into sensible groups and work
with each one separately within the main proof. Consider the following theorem:

Theorem: For every x, y ∈ R, max{x, y} = x + y + |x − y|
2 .

Of course, we need to define the symbols that appear in the statement.

Definition: For every x, y ∈ R,

max{x, y} =
ß

x, if x ≥ y,
y, if y < x.

Definition: For every x ∈ R,

|x| =
ß

x, if x ≥ 0,
−x, if x < 0.

The first definition gives the meaning to max{x, y} as “choose the largest number between x
and y”, and the second definition is just the usual absolute value function. The theorem states
that max can be expressed in terms of the absolute value function. In order to prove the theo-
rem, you need to reinterpret it as follows:

14



Theorem: For every x, y ∈ R, the expression x + y + |x − y|
2 satisfies the definition of

max{x, y}.

Notice that the definition of max{x, y} is given in a piece-wise format, where two cases are
obvious: x ≥ y and y > x. The absolute value function is defined in a piece-wise format as well
(and probably it is the first time you see it written formally in this way). This should hint you
into considering a proof by cases. Before reading the proof below, you should try to come up
with one by yourself.

Proof: Case 1: Suppose that x ≥ y. Then x − y ≥ 0 and, thus, by the definition of the
absolute value function, |x − y| = x − y. So,

x + y + |x − y|
2 = x + y + x − y

2 = 2x

2 = x.

Case 2: Suppose that x < y. Then x − y < 0 and, thus, by the definition of the absolute
value function, |x − y| = −(x − y) = y − x. So,

x + y + |x − y|
2 = x + y + y − x

2 = 2y

2 = y.

Putting both cases together, we have that for all x, y ∈ R,

x + y + |x − y|
2 =

ß
x, if x ≥ y,
y, if y < x.

Therefore, x + y + |x − y|
2 satisfies the definition of max{x, y}.

So when should you consider a proof by cases? Sometimes you will find that you have to.
In this illustration, for instance, we don’t have much choice; the max{x, y} values are different
depending on whether x ≥ y or x < y, so we have to handle theses cases separately. In other
situations, it might not be necessary to use a proof by cases, but it might be convenient anyway
because there is some sort of natural split, perhaps between positive and negative numbers (like
in the definition of the absolute value function), or between odd and even ones. Finally, it might
be worth starting a proof by cases if you think that you can construct an argument for some
of the objects to which the theorem applies but not for others. A start is better than nothing
and, once you’ve got an argument written down for one case, you might find that reflecting on
it gives you ideas about how to continue.

One final tip is that, if you have produced a proof by cases, or if you’re looking at one
produced by someone else, it might be a good idea to ask whether the number of cases could
be reduced. You don’t have to do this, of course – if your proof is valid as it is, that’s fine. But
remember that mathematicians also value elegance, and brevity contributes to elegance so it’s
a worthwhile aim.

The next type of proof we want to talk about is proof by contradiction. This is a type of
indirect proof, so called because we do not proceed directly from the premises to the conclusion.
Instead, we make a temporary assumption that our desired conclusion (or some part of it) is
false, and we show that this leads us to a contradiction. From this we can deduce that the
temporary assumption must have been wrong, and thus that the desired conclusion is true. This
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sounds rather convoluted, but you’re accustomed to making this kind of argument informally
in everyday life. Here’s a simple case:

Your friend: Daniel was at home in Vicálvaro all weekend.
You: No he wasn’t, I saw him in Alcorcón on Saturday afternoon.

Here you are implicitly using a proof by contradiction. The temporary assumption is that
Daniel was in Vicálvaro. Your argument says that if we make that assumption, then we can
deduce that he wasn’t in Alcorcón (if you like, this uses the “theorem” that people can’t be in
two places at the same time). But this is contradicted by the fact that you saw him in Alcorcón.
So the assumption that he was in Vicálvaro must have been wrong.

Next, we will look at a mathematical example, which involves the definition of rational num-
ber. The notation Q denotes the set of all rational numbers and Z denotes the set of integers.
We introduce this definition here:

Definition: x ∈ Q if and only if ∃p, q ∈ Z (with q ̸= 0) such that x = p/q.

The theorem and proof below use the symbol ̸∈ to mean “is not an element of,” and in this case
y ̸∈ Q means that y is an irrational number. The theorem and proof both implicitly assumes
that all the numbers we are working with are real (this is common in early work with rational
and irrational numbers). As with any theorem and proof, you should read everything carefully,
checking that you understand what is going on in each step.

Theorem: If x ∈ Q and y ̸∈ Q then x + y ̸∈ Q.
Proof: Let x ∈ Q, so ∃p, q ∈ Z (with q ̸= 0) such that x = p/q. Let y ̸∈ Q. Suppose for

contradiction that x + y ∈ Q. This means that ∃r, s ∈ Z (with s ̸= 0) such that x + y = r

s
. But

then
y = r

s
− x = r

s
− p

q
= rq − ps

sq
.

Now rq − ps ∈ Z and sq ∈ Z because p, q, r, s ∈ Z. Also sq ̸= 0 because q ̸= 0 and s ̸= 0. So
y ∈ Q. But this contradicts the theorem premise. So it must be the case that x + y ̸∈ Q.

In this proof, the temporary assumption is this one:

Suppose for contradiction that x + y ∈ Q.

Making that temporary assumption leads us, by some sensible use of definitions and algebra,
to this line:

So y ∈ Q.

This (as stated) contradicts the theorem premise, so it allows us to conclude that our temporary
assumption must have been wrong, like this:

So it must be the case that x + y ̸∈ Q.

It should be clear that in order to properly understand a proof like this, you have to do more than
you might have had to do in earlier mathematics. In high school, most of your mathematical
reading will have involved checking some algebra. Here, you have to be more sophisticated.
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You certainly should check to make sure that you can see how the algebra works and that
there are no mistakes. But that’s not really where the action is in a proof like this. To fully
understand it, you need to understand its global structure. You need to be able to identify
what assumptions are made where, identify where the contradiction arises and what exactly is
being contradicted, and understand how it all fits together to prove that the theorem is true.

The final standard proof type we want to discuss is proof by induction. Depending on your
previous experience, you may have met this already. If so, you’ll have used it to prove things
like this:

n∑
i=1

i2 = n (n + 1) (2n + 1)
6 .

If not, you might not have seen this notation so here is a quick explanation. Thy symbol ∑
is called “sigma” and is a Greek upper case letter S, used here to denote a sum from i = 1 to
i = n. Written out, the left-hand side of the above means

n∑
i=1

i2 = 12 + 22 + 32 + · · · + n2.

What we’ve done here is substitute i = 1, then i = 2, then i = 3, and so on, up to i = n, where
we stop.

So our original expression actually captures infinitely many propositions:

P (1) 12 = 1 (1 + 1) (2 + 1)
6

P (2) 12 + 22 = 2 (2 + 1) (4 + 1)
6

P (3) 12 + 22 + 32 = 3 (3 + 1) (6 + 1)
6

P (4) 12 + 22 + 32 + 42 = 4 (4 + 1) (8 + 1)
6 , and so on.

Having a theorem that captures infinitely many cases isn’t unusual– many of the other theorems
we’ve looked at do the same. The difference here is that the form of the statement allows us to
put the propositions in an ordered list P (1), P (2), P (3), P (4), . . .

Proof by induction works as follows. First we prove P (1). This is often easy. Then we do
something clever. We don’t try to prove any of the other propositions directly. Instead, we take
a general number k and prove that if P (k) is true, then P (k + 1) must be true too. This gives
us P (1) =⇒ P (2) and, since we’ve already proved P (1), we can conclude that P (2) is true as
well. It also gives us P (2) =⇒ P (3), so we can conclude that P (3) is true as well. You get the
idea. We have made an infinite chain of propositions, which are all true because the first one
is true and the implications are all true:

P (1) =⇒ P (2) =⇒ P (3) =⇒ P (4) =⇒ · · · .

Proof by induction is one of those ideas that students usually find intuitive straightforward when
it is explained in the abstract. However, they often find it difficult to use in any particular case,
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so we will look closely at the example we started with. In that example, it is easy to prof that
P (1) is true:

12 = 1 and 1 = 1 (1 + 1) (2 + 1)
6 .

Proving that the implication P (k) =⇒ P (k + 1) is a bit harder. We would like to assume that
P (k) is true and use this to prove P (k + 1) is true. We would start doing some rough work at
this point, writing something like this:

Will assume P (k), which means
k∑

i=1
i2 = k (k + 1) (2k + 1)

6 .

Want to prove P (k + 1), which means

k+1∑
i=1

i2 = (k + 1) ([k + 1] + 1) (2[k + 1] + 1)
6 ,

which, by rewriting the left-hand side, means we want(
k∑

i=1
i2

)
+ (k + 1)2 = (k + 1) ([k + 1] + 1) (2[k + 1] + 1)

6 ,

which, by the assumption about P (k), means we want

k (k + 1) (2k + 1)
6 + (k + 1)2 = (k + 1) ([k + 1] + 1) (2[k + 1] + 1)

6 .

Then I’ve just got some algebra to do to show that the last two things are, in fact, equal (you
might like to try it).

This, however, is definitely a situation in which the way you think about constructing a
proof is not necessarily the same as the way you should write it out. The thinking above is
completely logical, but presenting it like that wouldn’t work very well because it doesn’t match
the structure of what we are trying to prove. When we write out a proof that P (k) =⇒ P (k+1),
we really want out proof to start with a clear assumption of P (k) and proceed through some
nice, tidy deduction to P (k + 1).

For proofs by induction, we favor a layout that makes that structure very clear. We would
write something like this:

Theorem: ∀n ∈ N,
n∑

i=1
i2 = n (n + 1) (2n + 1)

6 .

Proof (by induction): Let P (n) be the statement
n∑

i=1
i2 = n (n + 1) (2n + 1)

6 .

Note that 12 = 1 = 1 (1 + 1) (2 + 1)
6 so P (1) is true.

Now let k ∈ N be arbitrary and assume that P (k) is true, that is, that

k∑
i=1

i2 = k (k + 1) (2k + 1)
6 .

18



Then
k+1∑
i=1

i2 =
(

k∑
i=1

i2

)
+ (k + 1)2

= k (k + 1) (2k + 1)
6 + (k + 1)2 by the assumption

= k (k + 1) (2k + 1) + 6(k + 1)2

6

= (k + 1)(2k2 + 7k + 6
6

= (k + 1) (k + 2) (2k + 3)
6

= (k + 1) ([k + 1] + 1) (2[k + 1] + 1)
6 .

So ∀k ∈ N, P (k) =⇒ P (k + 1). Hence, by mathematical induction, P (n) is true ∀n ∈ N.
There are a couple of things to notice about this. First, the proof contains only a few

words, but these help to make the structure clear. Second, all the algebra is in a single chain
of equalities that starts with the left-hand side of the statement of P (k + 1) and ends with the
right-hand side. You might like to think about why it makes sense to do the manipulations in
this order, given that we know what we’re going for. You might also like to think about why
the last expression in the chain is not necessary but might be useful for a reader who wants to
link the proof back to the theorem.

Confusion does tend to arise with proof by induction because there are lots of things to think
about. We find that students are confused most often by the point which we write, “Assume
that P (k) is true.” Students often read this and think, “But that’s what we want to prove, how
come we’re allowed to assume it?” In fact, at that stage of the proof, we are not proving that
P (k) is true, we are proving that P (k) =⇒ P (k + 1). Make sure you can see the difference.
Also, students sometimes confuse themselves, usually because they have allowed ambiguities
to creep into their writing by using the word “it” in phrases like “so it is true for n.” There
are many possible candidates for the meaning of “it” in a typical proof by induction, so you
should be more specific. Writing “So P (n) is true” is one way to do that. (Notice that the
proof above does not include the word “it” – we are very specific about what we have deduced
at each stage.)

So when should you use proof by induction? In some cases this will be obvious, because you
are likely to have a section about it in at least one course. Also you will come across cases in
which you want to prove that something is true for all n ∈ N, which is a giveaway that induction
is worth a try. Be aware, however, that problems for which induction is useful can vary quite a
bit. First, there is no particular reason for a proof by induction to start at n = 1. You might
be asked to prove that something is true for every n ∈ N such that n > 4, for instance. In that
case, you can just make P (5) your base case and proceed as before, except that at some point,
perhaps in the induction step (the point in the proof when you apply the assumption that P (k)
is true, referred to as the induction hypothesis), you will find that you need n > 4 to justify
some manipulation you want to make. Second, while some of the first problems you meet will
involve working with a sum, proof by induction is useful for many other types of problem. All
we really need is a situation in which we have infinitely many statements that can be listed in
the order of the natural numbers, which can happen in all sorts of ways. For instance, consider
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these tasks:
Prove that for every natural number n > 10, 2n > n3.

Prove that for every n ∈ N, 53n + 2n+1 is divisible by 3.

For the first task, we would write

Let P (n) be the statement that 2n > n3.

Then we would prove directly that P (11) is true, that is, that 211 > 113. Then we would work
out how to prove that if k > 10 and 2k > k3, then 2k+1 > (k + 1)3.

For the second task, we would write

Let P (n) be the statement that 53n + 2n+1 is divisible by 3.

Then we would prove directly that P (1) is true, that is, that 53 + 22 is divisible by 3. Then
we would work out how to prove that if 53k + 2k+1 is divisible by 3, then 53(k+1) + 2(k+1)+1 is
divisible by 3. Notice, in this case, that the statement P (k) is not just “53k + 2k+1.” In fact,
53k + 2k+1 isn’t a statement at all – we couldn’t prove it because it’s just an expression (for
any particular k it is a number; you can’t “prove” a number, and it makes no sense to say that
one number implies another). The statement is “53k + 2k+1 is divisible by 3.”

In our experience, starting out with a clear statement of P (n) often makes the difference
between success and failure in constructing a proof by induction, especially when dealing with
a new type of problem. This isn’t that surprising, of course – before you start any problem, you
should always make sure that you are clear about what you are trying to do. In any case, you
won’t always be told what method to use, so you should be on the lookout for less familiar cases
like these, and you should train yourself to notice when proof by induction might be useful.

Some advice

Earlier we said that a student should never sit in from of a problem and think “I don’t know
what to do.” There are always things to try and, to be a good student, you must be willing
to try them. In fact, you must be willing to try things that turn out not to work. In our
experience, students are sometimes unwilling to do this, for three main reasons.

First, some students dislike the insecurity of not knowing exactly what to do. It makes
them nervous. They want to know in advance what is going to work, and sometimes they ask
for a teacher’s assurance about this (“Is this the right way to do it”). The problem with seeking
such assurance all the time is that you never find out what you could have done if you’d had
a go, which means that you never get any more confident, which means that you end up in a
vicious circle, having to ask for support all the time.

Second, some students do not want to waste time. We understand this – obviously no one
wants to spend ages on one thing, especially when there are so many interesting things to do
at university. But it is a big mistake to think that trying something that turns out not to work
is a waste of time. Time spent learning is never wasted. If you try a method that doesn’t work
then, provided you are thoughtful about it, you learn why it doesn’t work, which means you
know something new about the applicability of the method. And you might gain some insight
about the problem so that you have a better idea about what to try next. Of course, it is a
mistake to keep plugging away at a method that clearly isn’t working – research shows that
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good problem solvers stop frequently to re-evaluate whether their current approach seems to
be getting them anywhere. But it’s an even bigger mistake not to start.

Third, some students do not want to mess up their paper. They want to know that once
they begin writing, they will be able to carry on writing and arrive at a nice, neat, correct
solution. If this applies to you, then we’re afraid you’ll have to get over it. Real mathematical
thinking is not tidy. It is full of false starts and partial attempts and realizations that what
does not seem to be working just here would, in fact, form a useful part of a solution if put
together with something that failed then minutes ago, or yesterday, or last week. It is very
important to embrace this if you want to keep improving as a mathematical problem solver.
You need to get partial solution attempts on paper for the simple, practical reason that your
brain cannot handle many things at once. You have an enormous amount of knowledge stored
in what is known as you long-term memory, but your working memory, where you actually
do the new thinking, has a seriously limited capacity. It will not be big enough to hold all
the information about a complicated mathematical problem while simultaneously working out
how to solve it. When you write down definitions or theorems or calculations that might help
you solve a problem or construct a proof, you are using the paper to supplement your cognitive
powers by, in effect, extending the capacity of your working memory. So don’t be worried about
writing things that are wrong or that turn out not to be useful. You can always write up a
neat version of your solution or proof later.

Your professors will explain proofs that are long and logically complicated. They will also
explain proofs that rely on some really clever insight. Sometimes they will explain proofs that
are long and logically complicated and that rely on some really clever insight. This tends
to worry students. They think, “Well, okay, I can see how that works, but I would never
have thought of it.” This makes them wonder whether they’re good enough at mathematics.
But you shouldn’t worry, because you’re not supposed to be able to reinvent the whole of
modern mathematics by having all the original ideas yourself. Even a mathematics PhD student
wouldn’t be expected to have many totally original insights. As an undergraduate, when faced
with a poof like this, your job is to appreciate the clever insight, to understand why it works,
to think about how modifications of it might work in slightly different circumstances, and to
relate it to ideas used elsewhere in the course or in your major. Te reassure you further, here
is a list of things the you will be expected to do.

First, you will be expected to do routine mathematical calculations much like those you
have seen in lower-level mathematics. As we said at the beginning of this introduction, you
should be prepared for these calculations to be longer and more involved that those you have
experienced before, and you should be prepared to have to adapt the calculation procedure if
a step in it not valid for a new case.

Second, you will be expected to adapt proofs that you have seen to closely related cases.
For instance:

• Having seen the proof that (2, 5) is an open set, you might be expected to prove that any
interval of the form (a, b) is an open set.

• Having seen the proof that max{x, y} = x + y + |x − y|
2 , you might be expected to find

a formula, using the absolute value, to express the function

ϕ(x) =
ß

x, if x ≥ 0,
0, if x < 0.

21



In such cases, you will often be able to treat the proof you have seen like a template, and change
some numbers appropriately. However, to reiterate one of the main points of this introduction,
you shouldn’t do this thoughtlessly – you should make sure that each step in the proof really
does work for the new cases, and be ready to make minor adjustments if it doesn’t. It is
important to be careful in cases where some number might be zero, for instance, or when
dividing both sides of an inequality by a number that might be negative.

Third, you will be expected to adapt proofs you have seen to cases that are related, but not
so closely. For instance:

• Having seen the proof that for all n ∈ N,
n∑

i=1
i2 = n (n + 1) (2n + 1)

6 , you might be

expected to prove that an − bn = (a − b)
n∑

i=1
an−ibi−1.

• Having seen the proof that (2, 5) is an open set, you might be expected to prove that
A = {x ∈ R : x2 − 1 < 0} is open.

In cases like these, the proof you have seen will certainly be helpful, but you will not be able
to treat like a template. You might be able to construct a proof that is very similar in its basic
structure, but you will have to think fuqrther to work out exactly what needs changing.

Fourth, you will be expected to show that definitions are satisfied. You will sometimes be
expected to do this with definitions you have not seen before, if your professor thinks that they
are sufficiently straightforward.

Fifth, you will be expected to construct proofs of theorems for which you haven’t seen a
closely related model, or to solve problems for which you haven’t seen your professor solve in
class. As we’ve said, the biggest mistake you could make here would be to sit around thinking
“We haven’t been shown how to do this.” No one will ask you to do things that are completely
beyond you.

Sixth and finally, on an exam you might be asked to solve some challenging problems.
Sometimes a question might lead you through a solution in steps, or might offer a fairly big hit
to help you with a key idea or useful trick. Sometimes it might just ask outright, which means
you’ll have to be able to remember the key ideas or useful tricks yourself and come up with
the rest. To do so you will need to have effectively read and understood the material in your
lecture notes.
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1 Systems of linear equations

The theory of linear equations plays an important and motivating role in the subject of this
course. In fact, many problems in linear algebra are equivalent to studying a system of linear
equations. Thus the techniques introduced in this chapter will be applicable to the more abstract
treatment given later. On the other hand, some of the results of the abstract treatment will
give us new insights into the structure of “concrete” systems of linear equations.

This chapter investigates systems of linear equations and describes in detail the Gaussian
elimination algorithm which is used to find their solution. Matrices, together with certain
operations on them, are also introduced here, since they are closely related to systems of linear
equations and their solutions.

All our equaitons will involve specific numbers called constants or scalars. For simplicity,
we will assume in this chapter that all our scalars are real numbers. The set of real numbers
will be denoted, as usual, by R. The solutions of our equations will also involve n-tupes

u =


u1
u2
...

un


of real numbers called column vectors. The set of all such n-tuples is denoted by Rn. We note
that the results in this chapter also hold for equations over the complex numbers C.

1.1 Linear equations and their solutions

By linear equations in the unknowns or variables x1, x2, . . . , xn we mean an equation that can
be written in the following standard form:

a1 x1 + a2 x2 + · · · + an xn = b, (1.1)

where a1, a2, . . . , an, b are scalars. The scalar ak is called the coefficient of xk and b is called
the independent term of the equation.

A solution of the linear equation (1.1) is a list of scalars (s1, s2, . . . , sn) with the property
that the following statement (obtained by substituting each si for xi in the equation) is true:

a1 s1 + a2 s2 + · · · + an sn = b.

This set of values is then said to satisfy the equation.
The set of all such solutions is called solution set or general solution, or, simply, the solution

of the equation.
The above notions implicitly assume that there is an ordering of the variables. If the number

of variables is small, then, in order to avoid subscripts, we will usually use the variables x, y,
as ordered to denote two unknowns, x, y, z, as ordered, to denote three unknowns, x, y, z, t, as
ordered, to denote four unknowns, and x, y, z, s, t, as ordered, to denote five unknowns.
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Example 1.1

The equations

4 x1 − 5 x2 + 2 = x1 and x2 = 2
Ä√

6 − x1
ä

+ x3

are both linear because they can be rearranged algebraically as in (1.1):

3 x1 − 5 x2 = −2 and 2 x1 + x2 − x3 = 2
√

6.

The equations
4 x1 − 5 x2 = x1 x2 and x3 = 2 √

x1 − 6

are not linear because of the presence of x1 x2 in the first equation and √
x1 in the second.

Example 1.2

The equation x + 2y − 4z + t = 3 is linear in the four unknowns x, y, z, t. The list of
scalars (3, 2, 1, 0) is a solution of the equation since

3 + 2(2) − 4(1) + 0 = 3

is a true statement. However the list (1, 2, 4, 5) is not a solution of the equation since

1 + 2(2) − 4(4) + 5 = 3

is not a true statement.

At this point, your algebra professor expects you to have carefully and thoroughly read the
introduction section of these notes.

Definition 1.1

A linear equation is said to be degenerate if it has the form

0 x1 + 0 x2 + · · · + 0 xn = b,

that is, if every coefficient is equal to zero.

The solutions of degenerate equations are described in the following theorem.

Theorem 1.1

Consider the degenerate linear equation 0 x1 + 0 x2 + · · · + 0 xn = b.

1. If the constant b ̸= 0, then the equation has no solution.

2. If the constant b = 0, then every list of scalars (s1, s2, . . . , sn) is a solution.

Proof. We begin by proving the first statement. Let (s1, s2, . . . , sn) be any list of scalars.
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Suppose that b ̸= 0. Substituting xi = si in the equation we obtain:

0 s1 + 0 s2 + · · · + 0 sn = b or 0 + 0 + · · · + 0 = b or 0 = b.

This is not a true statement since b ̸= 0. Hence no list of scalars is a solution.
Now we prove the second statement. Suppose b = 0. Substituting (s1, s2, . . . , sn) in the

equation we obtain:

0 s1 + 0 s2 + · · · + 0 sn = 0 or 0 + 0 + · · · + 0 = 0 or 0 = 0,

which is a true statement. Thus every list of scalars is a solution, as claimed.
■

1.2 Systems of linear equations and elementary operations

We now consider a system of m linear equations, say, L1, L2, . . . , Lm, in the n unknowns
x1, x2, . . . , xn which can be put in the standard form:

L1 : a11 x1 + a12 x2 + · · · + a1n xn = b1,

L2 : a21 x1 + a22 x2 + · · · + a2n xn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lm : am1 x1 + am2 x2 + · · · + amn xn = bm,

(1.2)

where the aij , bi are constants.

A solution (or particular solution) of the above system is a list of scalars (s1, s2, . . . , sn)
which is simultaneously a solution of all the equations of the system. The set of all such
solutions is called the solution set or the general solution of the system.

Example 1.3

Consider the system of equations:

L1 : x + 2y − 4z + t = 3,

L2 : 2x + y + 5z − 4t = 13.

We can verify that (3, 2, 1, 0) is a solution by substituting x = 3, y = 2, z = 1, and t = 0
in the equations of the system. Similarly, we can verify that (3, 2, 1, −3) is not a solution.

Systems of linear equations in the same unknowns are said to be equivalent if the systems
have the same solution set. One way of producing a system which is equivalent to a given
system, with linear equations L1, L2, . . . , Lm, is by applying a sequence of the following three
basic operations called elementary operations:
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Definition 1.2: Elementary operations

(E1) Interchange the ith equation and the jth equation: Li ↔ Lj .

(E2) Multiply the ith equation by a non zero scalar k: kLi → Li, k ̸= 0.

(E3) Replace the ith equation by itself plus k times the jth equation: (kLj + Li) → Li.

Remark 1.1

It is important that you understand that if one system of equations is obtained from
another by applying elementary operations, then the two systems will be equivalent.
This means that they will have the same solution set. The reason for this is that each
elementary operation is reversible. The basic application of this fact is that we can replace
one system with an equivalent system that is easier to solve.

Roughly speaking, the simplest equivalent version of a system is obtained using the elemen-
tary operations as follows. Use the x1 term in the first equation of a system to eliminate the x1
terms in the other equations. Then use the x2 term in the second equation to eliminate the x2
terms in the other equations, and so on, until you finally obtain the least amount of variables
in common among the equations. The following example illustrates this strategy. Make sure to
understand that we replace x1, x2, x3 with x, y, z.

Example 1.4

The solution of the system

L1 : x + 2y − 4z = −4,

L2 : 5x + 11y − 21y = −22
L3 : 3x − 2y + 3z = 11

is obtained as follows:
Use x in the first equation to eliminate it from the other equations. First we replace L2
with −5L1 + L2:

L1 : x + 2y − 4z = −4
L2 : 5x + 11y − 21z = −22
L3 : 3x − 2y + 3z = 11

Operations:
(−5L1 + L2) → L2

L1 : x + 2y − 4z = −4
new L2 : y − z = −2

L3 : 3x − 2y + 3z = 11
Next we keep the new L2 and replace L3 with −3L1 + L3:

L1 : x + 2y − 4z = −4
L2 : y − z = −2
L3 : 3x − 2y + 3z = 11

Operations:
(−3L1 + L3) → L3

L1 : x + 2y − 4z = −4
L2 : y − z = −2

new L3 : −8y + 15z = 23
Use y in the second equation to eliminate it from the other equations. We replace L1
with −2L2 + L1 and replace L3 with 8L2 + L3. We show both replacements at once:

L1 : x + 2y − 4z = −4
L2 : y − z = −2
L3 : −8y + 15z = 23

Operations:
(−2L2 + L1) → L1
(8L2 + L3) → L3

new L1 : x − 2z = 0
L2 : y − z = −2

new L3 : 7z = 7
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At this point, it is evident that z = 1 and that you can use this to solve for the other
two variables. Nevertheless, our philosophy of using elementary operations to reach a
system of equations with the least amount of variables in common among them will be
the keystone to developing all the theory in the rest of the course. So, even if it seems
somewhat unnecessary right row, we will continue to solve the system with elementary
operations for illustrative purposes.
To simplify calculations, we can replace L3 with 1

7L3:

L1 : x − 2z = 0
L2 : y − z = −2
L3 : 7z = 7

Operations:
1
7L3 → L3

L1 : x − 2z = 0
L2 : y − z = −2

new L3 : z = 1

Use z in the third equation and use it eliminate from the other equations. We replace L1
with 2L3 + L1 and replace L2 with L3 + L2:

L1 : x − 2z = 0
L2 : y − z = −2
L3 : z = 1

Operations:
(2L3 + L1) → L1
(L3 + L2) → L2

new L1 : x = 2
new L2 : y = −1

L3 : z = 1

We have clearly arrived at the simplest equivalent system of equations. Notice that the
three equations have no variables in common. This is the ideal scenario since we can
readily deduce that the solution of the system is x = 2, y = −1, z = 1.

Suppose that you start with the system of equation (1.2) and use elementary operations to
obtain a simpler equivalent version such that the equations have the least amount of variables
in common. Then the first variable with non zero coefficient in each equation is called leading
variable and the variables that are not leading variables are called free variables.

Recall from the beginning of this chapter that we have implicitly assumed that there is an
ordering of the variables. Moreover, there may be more than one simpler system equivalent to
(1.2). For this reason, we impose some additional requirements for writing a simpler equivalent
version of (1.2). First, we will require that the equations should be rearranged so that the
leading variables are order not only horizontally from left to right but also vertically from
top to bottom. This can be accomplished by interchanging the necessary equations (recall that
interchanging equations is an elementary operation). Second, we will require that the coefficient
of each leading variable is 1†. This is possible by rescaling the necessary equations. These two
additional conditions ensure that the resulting simpler equivalent system is the simplest one,
independently of the sequence of elementary operations that you use to arrive at it.

This notion of simplest equivalent system will be, in our opinion, the most useful tool at
your disposal to develop and understand the material in this course. We will illustrate how to
obtain such simplest equivalent system in the following examples.

†This format of writing the simplest version is called the row reduced echelon form, but we are reserving this
name for matrices.

27



Example 1.5

Consider the following system of equations:

L1 : y − 4z = 8,
L2 : 2x − 3y + 2z = 1
L3 : 5x − 8y + 7z = 1

1. Find the simplest system of equations that is equivalent to the given one.

2. Indicate the leading variables and the free variables.

3. Find the solution of the given system of equation.
1. First, you need to remember that the variables need to be in the correct order
horizontally and vertically, and that the coefficients of the leading variables should be
equal to 1. This means that the variable x should appear as the leading variable of
the first equation. This is not the case for the given system. One way to fix this is to
interchange L1 with either L2 or L3. Either option is good.

L1 : y − 4z = 8
L2 : 2x − 3y + 2z = 1
L3 : 5x − 8y + 7z = 1

Operations:
L1 ↔ L2

new L1 : 2x − 3y + 2z = 1
new L2 : y − 4z = 8

L3 : 5x − 8y + 7z = 1
The coefficient of x in L1 should be 1, so we rescale as follows:

L1 : 2x − 3y + 2z = 1
L2 : y − 4z = 8
L3 : 5x − 8y + 7z = 1

Operations:
1
2L1 ↔ L1

new L1 : x − 3
2y + z = 1

2
L2 : y − 4z = 8
L3 : 5x − 8y + 7z = 1

Use x in the first equation to eliminate it from the other equations.

L1 : x − 3
2y + z = 1

2
L2 : y − 4z = 8
L3 : 5x − 8y + 7z = 1

Operations:
(−5L1 + L3) → L3

L1 : x − 3
2y + z = 1

2
L2 : y − 4z = 8

new L3 : −1
2y + 2z = −3

2

Use y in the second equation and use it eliminate from the other equations.

L1 : x − 3
2y + z = 1

2
L2 : y − 4z = 8
L3 : −1

2y + 2z = −3
2

Operations:
(3

2L2 + L1) → L1

(1
2L2 + L3) → L3

new L1 : x − 5z = 25
2

L2 : y − 4z = 8
new L3 : 0 = −5

2

We have ran out of non-degenerate equations, there is the least amount of variables in
common among the equation, the variables are in the correct order, and the coefficients
of the leading variables are 1. Therefore we have found the simplest equivalent system.

2. The leading variables are x and y because they are the first variables in each non-
degenerate equation with non zero coefficient. The remainder variable, z, is a free vari-
able.

3. It turns out that L3 : 0 = −5
2 is a degenerate equation with no solution which means

that there is no values for x, y, z that will simultaneously satisfy all equations. Therefore,
the given system of equations has no solution.
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Before continuing on to the next example, we need to discuss free variables further. Suppose
that after reducing (1.2) to its simplest equivalent version, you find that all of its degenerate
equations (if any) are of the form 0 x1 + 0 x2 + · · · + 0 xn = 0, and that at least one of its
variables is a free variable. Then the system has infinite number of solutions since each of the
free variables may be assigned any real number. The general solution of the system is obtained
as follows. Once the system has been reduced to its simplest form, arbitrary values, called
parameters, are assigned to the free variables, and the non free variables can be solved in terms
of these parameters.

Example 1.6

Find the general solution of the system

L1 : x + 4y − 3z + 2t = 5
L2 : −2x − 8y + 7z − 8t = −8

If the solution of the system is not obvious, then our best option to find it is to reduce
the system to its simplest form. This is done as follows: First, we eliminate x from the
second equation.

L1 : x + 4y − 3z + 2t = 5
L2 : −2x − 8y + 7z − 8t = −8

Operations:
(2L1 + L2) → L2

L1 : x + 4y − 3z + 2t = 5
L2 : z − 4t = 2

It is not possible to eliminate y from L1 since the leading variable of L2 is z, which means
that our next task is to eliminate z from L1.

L1 : x + 4y − 3z + 2t = 5
L2 : z − 4t = 2

Operations:
(3L2 + L1) → L1

L1 : x + 4y − 10t = 11
L2 : z − 4t = 2

The last system is the simplest equivalent version of the original one. Make sure to
understand why this is so. The first variables with nonzero coefficients in each equation
are x and z which means that these are the leading variables and that y and t are free
variables. From the discussion above, we deduce that the system has infinite number
solutions and the general solution is obtained as follows. We assign arbitrary values to
the free variables y and t, say,

y = λ and t = µ, where λ, µ ∈ R.

Then we solve for x and z in terms of λ and µ. We write the general solution:

x = 11 − 4λ + 10µ,

y = λ,

z = 2 + 4µ,

t = µ.

It is always a good idea to check that your final result is indeed the correct answer. In
this case, you should verify that these expressions for x, y, z, t satisfy both equations of
the original system. If you obtain two true statements then your answer is correct.
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We finish this section by answering two fundamental questions about systems of linear
equations:

1. Does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

The answer to these questions are stated as a theorem.

Theorem 1.2

Any system of linear equations has either: (i) a unique solution, (ii) no solution, or (iii)
an infinite number of solutions.

Proof. Given any system of linear equations, we apply elementary operations to reduce it to its
simplest equivalent form. After this is done, we may get one of the following cases:

I. There is at least one degenerate equation of the form 0 x1 + 0 x2 + · · · + 0 xn = b with
b ̸= 0. This degenerate equation has no solution and, consequently, the system has no
solution.

II. There is no degenerate equation of the form 0 x1 + 0 x2 + · · · + 0 xn = b with b ̸= 0. We
have two subcases.

a. There is at least one free variable. This means that the system has an infinite number
of solutions.

b. There are no free variables. This means that all the variables are leading variables.
This is only possible if the simplest equivalent version is of the form

x1 = s1

x2 = s2
...

xn = sn,

where s1, s2, . . . , sn are real numbers. Then each variable has a unique value which
means that the solution of the system is unique.

No other cases are possible, which proves the theorem. ■

Remark 1.2

Case II in the previous proof does not say that all the equations are non-degenerate. It
only says that there are no degenerate equations that have no solution. In fact, this case
may include degenerate equations of the form 0 x1 + 0 x2 + · · · + 0 xn = 0. In the future,
make sure you understand what a definition, theorem or proof says and does not say.

In light of Theorem 1.2, systems of linear equations can be classified according to the
existence of solutions. A system is said to be consistent if it has at least one solution, and is
said to be inconsistent if it has no solution.
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System of linear equations

Inconsistent

No solution

Consistent

Unique Solution Infinite number
of solutions

1.3 Matrices and matrix operations

A matrix is a rectangular array of numbers:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn

 .

Such matrix may be denoted by A = (aij). Note that the element aij , called the (i, j)-entry,
appears in the i-th row and the j-th column. A matrix with m rows and n columns is called
and m × n matrix.

The first non zero entry of a row is called its leading entry. A row whose all of its entries
consists of zeros has no leading entries.

Definition 1.3

A matrix is in echelon form (or row echelon form) if it has the following properties:

1. All zero rows, if any, are at the bottom of the matrix.

2. Each leading entry of a row is in a column to the right of the leading entry of the
row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in
reduced echelon form (or row reduced echelon form):

4. The leading entry in each non zero row is 1.

5. Each leading 1 is the only non zero entry in its column.
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Example 1.7

The following matrices are in echelon form. The leading entries (represented with ■)
may have any non zero value; the non leading entries (represented with ∗) may have any
values (including zero). 

0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ■ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ■ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ■ ∗



■ ∗ ∗ ∗
0 ■ ∗ ∗
0 0 0 0
0 0 0 0



The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1, that is, each leading 1 is the only non
zero entry in its column. 

0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗




1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0



Just like with systems of equations, we can operate with the rows of a matrix by applying
the following three basic operations.

Definition 1.4: Elementary row operations

(E1) Interchange the ith row and the jth row: Ri ↔ Rj .

(E2) Multiply the ith row by a non zero scalar k: k Ri → Ri, k ̸= 0.

(E3) Replace the ith row by itself plus k times the jth row: (k Rj + Ri) → Ri.

A matrix A is said to be row equivalent to a matrix B, written A ∼ B, if B can be obtained
from A by applying a finite sequence of elementary row operations.

Any non zero matrix is row equivalent to more than one matrix in echelon form that can
be obtained by using different sequences of row operations. However, the reduced echelon form
one obtains from a matrix is unique, independently of the row operations used to obtain it. We
state this as a theorem without proof.

Theorem 1.3

Each matrix is row equivalent to one and only one reduced echelon matrix.

When row operations on a matrix produce an echelon form, further row operations to obtain
the reduced echelon form do not change the positions of the leading entries. Since the reduced
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echelon form is unique, the leading entries are always in the same positions in any echelon form
obtained from a given matrix. These leading entries correspond to leading 1’s in the reduced
echelon form.

Definition 1.5

A pivot position in a matrix A is a location in A that corresponds to the leading 1 in the
row reduced echelon form of A. A pivot column is a column of A that contains a pivot
position.

Heuristically, pivot positions are non zero entries of a matrix that are used to create zeros
as needed via elementary row operations to obtain a row reduced echelon form.

Example 1.8

Consider the matrix

A =

1 2 −3 0
2 4 −2 2
3 6 −4 3

 .

1. Find an echelon form of A.

2. Find the row reduced echelon form of A.

3. Indicate the pivot positions of A.

1. There are more than one possible echelon form; each one is obtained depending on
the sequence of elementary row operations used. We compute one of them. First, we
start by using a11 = 1 as pivot to create 0’s below a11, that is, apply −2R1 + R2 → R2
and −3R1 + R3 → R3 to obtain 1 2 −3 0

0 0 4 2
0 0 5 3

 .

Now use the new (2, 3)-entry as a pivot to create 0’s below it, that is, apply −5
4R2 +R3 →

R3 to obtain 1 2 −3 0
0 0 4 2
0 0 0 1

2

 .

The matrix is now in echelon form.

2. We apply further elementary row operations to the echelon form above to obtain
the unique row reduced echelon form. Each pivot position should be 1, so we apply
1
4R2 → R2 and 2R3 → R3 to obtain1 2 −3 0

0 0 1 1
2

0 0 0 1

 .
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At this point, the fastest way to obtain the row reduced echelon form is to apply 1
2R3 +

R2 → R2 to obtain 1 2 −3 0
0 0 1 0
0 0 0 1

 ,

followed by applying 3R2 + R1 → R1 to obtain1 2 0 0
0 0 1 0
0 0 0 1

 .

The matrix is now in row reduced echelon form.

3. The locations in A that correspond to the leading 1’s in the row reduced echelon form
are a11 = 1, a23 = −2, and a34 = 3. These are the pivot positions of A.

Matrices will usually be denoted by capital letters A, B, . . . Two matrices A and B are equal,
written A = B, if they have the same size, that is, the same number of rows and columns, and
if the corresponding elements are equal. Thus the equality of two m × n matrices is equivalent
to a system of mn equalities, one for each pair of elements. For instance, the statementï

x + y 2z + 2
x − y z − 2

ò
=
ï
3 5
1 4

ò
is equivalent to the following system of equations:

x + y = 3
x − y = 1

2z + w = 5
z − 2 = 4.

The solution of the system is x = 2, y = 1, z = 3, w = −1. (Do not just accept that these are
the answers. Try to solve the system by yourself.)

A matrix with one row is also referred to as a row matrix, and with one column as a column
vector. In particular, a scalar can be viewed as a 1 × 1 matrix.

Let A = (aij) and B = (bij) be two matrices with the same size, say, m × n matrices. The
sum of A and B, written A + B, is obtained by adding the corresponding entries:

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n

. . . . . . . . . . . .
am1 + bm1 a2m + b2m . . . amn + bmn

 ,

or, more compactly, A + B = (aij + bij).
The product of a matrix A = (aij) by a scalar k, written kA, is the matrix obtained by

multiplying each entry of A by k: kA = (k aij). We also define −A = (−1) A and A − B =
A + (−B).
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The m × n matrix whose entries are all zeros is called the zero matrix. We usually write
the zero matrix as 0 and its size is usually understood from context. The zero matrix is similar
to the scalar 0. For any matrix A, A + 0 = 0 + A = A.

Basic properties of matrices under the operations of matrix addition and scalar multiplica-
tion follow.

Theorem 1.4

For any m × n matrices A, B, C and scalars α, β,

(A + B) + C = A + (B + C)a) A + 0 = Ab)
A + (−A) = 0c) A + B = B + Ad)
α (A + B) = α A + α Be) (α + β) A = α A + β Af)
(α β) A = α (β A)g) 1 A = Ah)

Proof. We only prove the first property here. The rest are left as an exercise for the reader.
Let A = (aij), B = (bij), and C = (cij) be matrices of the same size. Then

(A + B) + C =
(
(aij + bij) + cij

)
=
(
aij + (bij + cij)

)
= A + (B + C).

■

There are several ways to define matrix-vector multiplication. You have probably seen one
way in high school. Nevertheless, we choose the following definition because it is the most
convenient for developing the theoretical ideas throughout the course. It should not be difficult
for you verify that the definition you learned in high school is equivalent to the one we present
here.

Definition 1.6

If A is an m × n matrix, with columns a1, . . . , an, and if x is a column vector in Rn, then
the product of A and x, denoted by Ax, is defined as follows,

Ax = [a1 a2 . . . an]

x1
...

xn

 = x1 a1 + x2 a2 + · · · + xn an.

In words, the product of a matrix A and a column vector x is the column vector that is
equal to the weighted sum of the columns of A using the entries x as weights. Note that Ax is
defined only if the number of columns of A equals the number of entries in x.

We take this opportunity to give this type of weighted sum a special name. Given vectors
v1, v2, . . . , vp in Rn and given scalars c1, c2, . . . , cp, the vector y ∈ Rn defined by

y = c1 v1 + c2 v2 + · · · + cp vp

is called a linear combination of v1, v2, . . . , vp with weights c1, c2, . . . , cp.
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Example 1.9

We compute 3 1 0
2 2 5
1 0 4

2
1
3

 .

By the definition of matrix-vector multiplication, we must compute the linear combina-
tion of the columns of the matrix using the entries of the vector as weights. Therefore,3 1 0

2 2 5
1 0 4

2
1
3

 = 2

3
2
1

+ 1

1
2
0

+ 3

0
5
4

 =

 7
21
14

 .

Remark 1.3

A common error that we see repeatedly is students treating vectors and matrices like
fractions. For instance, some students will notice that the entries of the vector in the
final result of the previous example share a common factor of 7; then they will proceed to
“cancel” this common factor out like they would do with the numerator and denominator
of a fraction and write the following as a final answer:3 1 0

2 2 5
1 0 4

2
1
3

 =

1
3
2

 .

This is, of course, absolutely wrong. If you write this, your algebra professor will realize
that life is too short, immediately resign from teaching, and join a traveling circus. But
not before changing your grade in the course to a zero.

Example 1.10

The product of a row matrix and a column vector is

[
u1 u2 . . . un

]


v1
v2
...

vn

 = u1 v1 + u2 v2 + · · · + un vn.

Make sure you understand how the definition was used to find this product.

The properties of the matrix-vector multiplication in the next theorem are important and
will be used throughout the course.
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Theorem 1.5

For an m × n matrix A, vectors u and v in Rn, and scalar c,

a. A(u + v) = A u + A v

b. A (c u) = c (A u)

Proof. Let ui and vi be the i-th entries of u and v, respectively. To prove the first statement,
use the definition of matrix-vector multiplication to compute A(u + v):

A(u + v) = [a1 a2 . . . an]


u1 + v1
u2 + v2

...
un + vn


= (u1 + v1) a1 + (u2 + v2) a2 + · · · + (un + vn) an

= (u1 a1 + u2 a2 + · · · + un an) + (v1 a1 + v2 a2 + · · · + vn an)
= A u + A v.

The proof of the second statement is left as an exercise for the reader. ■

You have certainly seen how to multiply matrices in high school. Nevertheless, such a
definition is not very useful for theoretical purposes. We now give an equivalent abstract
definition of matrix multiplication.

Definition 1.7

Let A be an m×p matrix, and let B be a p×n matrix. The product of A and B, denoted
by AB, is the unique m×n matrix such that, for every vector x ∈ Rn, (AB) x = A (B x).

It is possible to find a (less abstract) representation of AB in terms of matrix-vector multi-
plication. We provide this representation in the following theorem.

Theorem 1.6

Let A be an m × p matrix, and let B be a p × n matrix with columns b1, b2, . . . , bn,
then the product AB is the unique m×n matrix whose columns are A b1, A b2, . . . , A bn.
That is,

AB =
[
A b1 A b2 . . . A bn

]
.

Proof. Following the definition of AB, let x be an arbitrary vector in Rn. Let

y = B x =
[
b1 b2 . . . bn

]


x1
x2
...

xn

 = x1 b1 + x2 b2 + · · · + xn bn.
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Then,

AB x = A (B x) = A y
= A (x1 b1 + x2 b2 + · · · + xn bn)
= x1 A b1 + x2 A b2 + · · · + xn A bn

=
[
A b1 A b2 . . . A bn

]
x.

This is true for every choice of x and each product A bi is uniquely determined. This proves
the theorem. ■

Example 1.11

Compute AB, where

A =
ï
2 3
1 −5

ò
and B =

ï
4 3 6
1 −2 3

ò
.

Write B = [b1 b2 b3], and compute

A b1 =
ï
2 3
1 −5

ò ï
4
1

ò
,

=
ï

11
−1

ò A b2 =
ï
2 3
1 −5

ò ï
3

−2

ò
,

=
ï

0
13

ò A b3 =
ï
2 3
1 −5

ò ï
6
3

ò
.

=
ï

21
−9

ò
Then,

AB =
[
A b1 A b2 A b3

]
=
ï

11 0 21
−1 13 −9

ò
.

The following theorem lists the standard properties of matrix multiplication. We note that
Im denotes the unique m × m, called the identity matrix, such that Im x = x for all x in Rn.
The identity matrix has the following representation:

Im =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .

0 0 0 · · · 1

 .

Theorem 1.7

Let A be an m × n matrix, and let B and C have
sizes for which the indicated sums and products are defined.
a. A(BC) = (AB)C (associative law of multiplication)
b. A(B + C) = AB + AC (left distributive law)
c. (B + C)A = BA + CA (right distributive law)
d. r(AB) = (rA)B = A(rB) for any scalar r
e. ImA = A = AIm (identity for matrix multiplication)
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Proof. Let C = [c1 . . . cp]. By Theorem 1.6,

BC =
[
B c1 . . . B cp

]
,

A(BC) =
[
A (B c1) . . . A (B cp)

]
,

By the definition of matrix multiplication, A (B x) = (A B) x for all x, so

A(BC) =
[
(AB) c1 . . . (AB) cp

]
= (AB)C.

The rest of the properties are left for the reader to prove. ■

The left-to-right order in matrix products is critical because AB and BA are usually not
the same. On one hand, the sizes of A and B are such that AB is well defined but BA may
not be even possible to compute. For instance, if A is a 3 × 5 matrix and B is a 5 × 1 matrix,
then we can compute AB because the number of columns of A is equal to the number of rows
of B, but it is not possible to compute BA because the number of columns of B is not equal
to the number of rows of A. on the other hand, the columns of AB are linear combinations
of the columns of A, whereas the columns of BA are constructed from the columns of B. If
AB = BA, we say that A and B commute with one another.

Remark 1.4

We have already discussed that, in general, matrix products do not commute, that is,
AB ̸= BA. There two more important differences between matrix algebra and ordinary
algebra that you need to keep in mind.

1. The cancellation laws do not hold for matrix multiplication. That is, if AB = AC,
then it is not true, in general, that B = C. For instance, let

A =
ï

2 −3
−4 6

ò
, B =

ï
8 4
5 5

ò
, C =

ï
5 −2
3 1

ò
.

Verify that AB = AC and yet B ̸= C.

2. If a product AB is the zero matrix, you cannot conclude, in general, that either
A = 0 or B = 0. For instance, let

A =
ï

3 −6
−1 2

ò
B =

ï
2 6
1 3

ò
.

Verify that AB = 0 and yet A ̸= 0 and B ̸= 0.

Every now and then we need to compute a particular entry of the product AB without com-
puting the whole matrix product. In this case, we do so by recalling the matrix multiplication
rule you learned in high school (which can be deduced from Theorem 1.6).
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Theorem 1.8

Let A = (aij) be an m × p matrix and let B = (bij) be a p × n matrix. If (AB)ij denotes
the (i, j)-entry in AB, then

(AB)ij =
[
ai1 ai2 . . . aip

]


b1j

b2j

...
bpj

 = ai1 b1j + ai2 b2j + · · · + aip bpj .

Given an m × n matrix A = (aij), the transpose of A, denoted by A⊤, is the n × m matrix
A⊤ = (a⊤

ij), where a⊤
ij = aji. That is, A⊤ is obtained by changing the columns of A into columns,

or, equivalently, by changing the rows of A into columns. So, if we write A = [a1 . . . an], then

A⊤ =

a⊤
1
...

a⊤
n

 .

Theorem 1.9

Let A and B denote matrices whose sizes are appropriate for the following sums and
products.

a. (A⊤)⊤ = A

b. (A + B)⊤ = A⊤ + B⊤

c. For any scalar r, (rA)⊤ = rA⊤

d. (AB)⊤ = B⊤A⊤

Proof. We only prove the last statement. The rest are left for the reader as exercises. First,
observe thatî

(AB)⊤
ó

ij
= (AB)ji = aj1 b1i + aj2 b2i + · · · + ajp bpi =

[
b1i b2i . . . bpi

]


aj1
aj2
...

ajp

 .

On the other hand,î
B⊤A⊤

ó
ij

=
[
b⊤

i1 b⊤
i2 . . . b⊤

ip

]


a⊤
1j

a⊤
2j
...

a⊤
pj

 =
[
b1i b2i . . . bpi

]


aj1
aj2
...

ajp

 ,

which shows that the (i, j)-entry of (AB)⊤ is equal to the corresponding entry of B⊤A⊤.
Therefore, (AB)⊤ = B⊤A⊤.

■
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1.4 Systems of linear equations and matrices

Consider again a system of m linear equations and n unknowns:

L1 : a11 x1 + a12 x2 + · · · + a1n xn = b1,

L2 : a21 x1 + a22 x2 + · · · + a2n xn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lm : am1 x1 + am2 x2 + · · · + amn xn = bm.

(1.3)

We can interpret (1.3) the equations resulting from considering two equal column vectors:
a11 x1 + a12 x2 + · · · + a1n xn

a21 x1 + a22 x2 + · · · + a2n xn

...
am1 x1 + am2 x2 + · · · + amn xn

 =


b1
b2
...

bn

 .

Then, Li is obtained by setting the i-th entry of the vector on the left side equal to the i-th
entry of the vector on the right side. We can also operate on the left-hand side vector as follows:

a11 x1 + a12 x2 + · · · + a1n xn

a21 x1 + a22 x2 + · · · + a2n xn

...
am1 x1 + am2 x2 + · · · + amn xn

 =


a11 x1
a21 x1

...
am1 x1

+


a12 x2
a22 x2

...
am2 x2

+ · · · +


a1n xn

a2n xn

...
amn xn



= x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · · + xn


a1n

a2n

...
amn



=


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn




x1
x2
...

xn

 .

So, if we let

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bn

 ,

we can write (1.3) more compactly as the vector equation

A x = b. (1.4)

The matrix A is called the matrix coefficient, x is the unknown vector, and b is the independent
term. We make the following key observation:

41



Observation 1.1

Every solution of the system (1.3) is solution of the vector equation (1.4), and vice versa.

The augmented matrix of (1.3) is the following matrix:

[
A b

]
=


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
. . . . . . . . . . . . . . .
am1 am2 . . . amn bn

 .

That is, the augmented matrix of the system (1.3) is the matrix which consists of the matrix
A concatenated by the vector b. Observe that the system (1.3) is completely determined by
the vector equation (1.4) which, in turn, is completely determined by its augmented matrix. In
light of this, we have the following theorem.

Theorem 1.10

If A is an m × n matrix, with columns a1, . . . , an, and if b is in Rm, the matrix equation

A x = b

has the same solution set as the vector equation

x1 a1 + x2 a2 + · · · + xn an = b

which, in turn, has the same solution set as the system of linear equations whose aug-
mented matrix is [

a1 a2 . . . an b
]

.

From now on, we will use the language and theory of matrices to study systems of linear
equations. We reframe the question of existence of solutions in terms of matrices. Given a
particular vector b, it is easy to deduce from Theorem 1.10 that the equation Ax = b has a
solution if and only if b is a linear combination of the columns of A.

Example 1.12

Consider the following system of equations

x1 + 2x2 + 7x3 = b1
−2x1 + 5x2 + 4x3 = b2,

where b1 and b2 are arbitrary real numbers. Let

A =
ï

1 2 7
−2 5 4

ò
, x =

x1
x2
x2

 , and b =
ï
b1
b2

ò
.

Then the system can be written more compactly as the vector equation Ax = b. Notice
that b is a generic vector. Keeping this vector arbitrary will allow us to deduce general
results about the system of equations since these results will not depend on a particular

42



choice of b. Here, we will study the existence of solutions by solving the system with a
generic vector b. To do so, we row reduce the augmented [A b] as follows:ï

1 2 7 b1
−2 5 4 b2

ò
∼
ï
1 2 7 b1
0 9 18 2b1 + b2

ò
∼

1 2 7 b1

0 1 2 2b1+b2
9

 ∼

1 0 3 5b1−2b2
9

0 1 2 2b1+b2
9


The last matrix is the row reduced echelon form which, in turn, corresponds to an
augmented matrix of a simpler equivalent system of equations. In fact, it corresponds to
the simplest equivalent system. Indeed, if we write down the system that is determined
by the row reduced echelon form:

x1 + 3x3 = 5b1−2b2
9

x2 + 2x3 = 2b1+b2
9 ,

it becomes clear that the equations have the least amount of variables in common, the
variables are in the correct order, and the coefficients of the leading variables are 1’s.
The presence of the free variable x3 indicates that this system has an infinite number of
solutions, which are as follows:

x1 = 5b1 − 2b2
9 − 3λ,

x2 = 2b1 + b2
9 − 2λ,

x3 = λ, λ ∈ R.

Observe that it is possible to find a solution without putting any restriction on the vector
b, which allows us to conclude that for each b in R2, the equation A x = b has a solution.
Moreover, by the definition of the product A x, we can writeï

b1
b2

ò
=
Å5b1 − 2b2

9 − 3λ

ãï
1

−2

ò
+
Å2b1 + b2

9 − 2λ

ãï
2
5

ò
+ λ

ï
7
4

ò
, λ ∈ R.

The most useful interpretation of the equation above is that each b in R2 can be written
as a linear combination of the columns of A. In this case, there is an infinite number
of ways to write each b as a linear combination of the columns of A since there is an
infinite number of options for the choice of values for the parameter λ.

You should always be on the look out for important observations when studying the material.
In the previous example, observe that the pivot positions in the row reduced echelon form
correspond to leading variables and that non pivot positions correspond to free variables. A
moment’s thought should convince you that this is true in general. This is such an important
observation that we must highlight it.
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Observation 1.2

The pivot columns of coefficient matrix of a system correspond to the leading variables of
the system, and the non pivot columns correspond to free variables. Therefore, a system
has an infinite number of solutions if its coefficient matrix has at least one non pivot
column. Conversely, if every column of the coefficient matrix is a pivot column, then
every variable is a leading variable and, thus, the system has a unique solution.

Warning: The last sentence of the observation above is about the columns of the coefficient
matrix not about the augmented matrix nor about the rows of the coefficient matrix. On one
hand, if every column of the augmented matrix is a pivot column, then it has a row of the form[

0 0 . . . 0 1
]

which corresponds to a degenerate equation of the form 0 = 1, which clearly has no solution.
On the other hand, the uniqueness of the solution cannot be deduced if the coefficient matrix
has a pivot in every row. The system in Example 1.12 has an augmented matrix with a pivot
in every row and yet it has an infinite number of solutions.

Example 1.13

Let

A =

 1 3 4
−4 2 −6
−3 −2 −7

 and b =

b1
b2
b3

 .

Is the equation A x = b consistent for all possible b?
Row reduce the augment matrix of A x = b: 1 3 4 b1

−4 2 −6 b2
−3 −2 −7 b3

 ∼

1 3 4 b1

0 14 10 4b1 + b2

0 7 5 3b1 + b3

 ∼

1 3 4 b1

0 14 10 4b1 + b2

0 0 0 b1 − 1
2b2 + b3


The third row in the last matrix corresponds to a degenerate equation of the form

0 = b1 − 1
2b2 + b3.

If we proceed further applying elementary operations, this row will not change. Therefore,
the system is consistent only if the entries of b satisfy the equation 0 = b1 − 1

2b2 + b3.
Clearly, not every b satisfies this condition (an easy example is b = [1 0 0]⊤). If A had
a pivot in all three rows, we would not care about the calculations in the augmented
column because in this case an echelon form of the augmented matrix could not have a
row such as [0 0 0 1] corresponding to a degenerate equation with no solutions.

1.5 Solution sets of linear systems

The system of linear equations (1.3) is said to be homogeneous if all the independent terms are
equal to zero, that is, if it can be written in the form A x = 0, where A is its m × n coefficient
matrix and 0 is the zero vector in Rm. The homogeneous equation A x = 0 always has a
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solution, namely x = 0, the zero vector in Rn, called the trivial solution. Any other solution,
if it exists, is called a non trivial solution.

For a given equation A x = 0, the important question is whether there is a non trivial
solution. A non trivial solution exists if and only if the trivial solution is not a unique solution.
The proof of Theorem 1.2 leads immediately to the following fact:

Remark 1.5

The homogeneous equation A x = 0 has a non trivial solution if and only if the equation
has at least one free variable.

Example 1.14

Determine if the following homogeneous system has a non trivial solution. Then describe
the solution set.

x + 2y − 3z + w = 0,
x − 3y + z − 2w = 0,

2x + y − 3z + 5w = 0.

Row reduce the augmented matrix to row reduced echelon form:1 2 −3 1 0
1 −3 1 −2 0
2 1 −3 5 0

 ∼

1 2 −3 1 0
0 −5 4 −3 0
0 −3 3 3 0

 ∼

1 2 −3 1 0
0 −5 4 −3 0
0 1 −1 −1 0


∼

1 2 −3 1 0
0 1 −1 −1 0
0 −5 4 −3 0

 ∼

1 0 −1 3 0
0 1 −1 −1 0
0 0 −1 −8 0

 ∼

1 0 −1 3 0
0 1 −1 −1 0
0 0 1 8 0


∼

1 0 0 11 0
0 1 0 7 0
0 0 1 8 0


The last matrix is the row reduced echelon form which, in turn, is the augmented matrix
of the simplest equivalent system:

x + 11w = 0,
y + 7w = 0,
z + 8w = 0.

Notice that w is a free variable. It is possible to deduce this in advanced from the row
reduced echelon form since the fourth column is not a pivot column (which means that
w is not a leading variable; thus, w is free). By the previous remark, the system has a
non trivial solution. After solving the simplified system, we deduce that the solution set
consists of

x = −11λ,

y = −7λ,

z = −8λ,

w = λ ∈ R,
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or, equivalently, the solution of the equation Ax = 0 where A is the coefficient matrix of
the system, consists of all vector in R4 of the form

x =


−11λ
−7λ
−8λ

λ

 = λ


−11
−7
−8

1

 , λ ∈ R.

That is, the solution of Ax = 0 consists of all the scalar multiples of the vector
−11
−7
−8

1

 .

Example 1.15

A single linear equation can be treated as a system with one equation. Describe the
solution set of the homogeneous system

10x1 − 3x2 − 2x3 = 0.

Obviously, there is no need to write its augmented matrix or to apply elementary row
operations. We can directly solve for x1 (respecting the implicit ordering of the variables).
In other words, x1 is the leading variable and the rest of variables are free:

x1 = 3
10λ + 1

5µ, λ, µ ∈ R,

x2 = λ,

x3 = µ.

As a vector equation A x = 0 (here 0 = 0 ∈ R), where

A =
[
10 −3 −2

]
the general solution is

x =

 3
10λ + 1

5µ
λ
µ

 = λ

 3
10
1
0

+ µ

1
5
0
1

 .

In words, the general solution consists of all possible linear combinations of two vectors: 3
10
1
0

 ,

1
5
0
1

 .
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When a non homogeneous system has more than one solution, two distinct solutions satisfy
a simple but important relation between them, and the set of solutions of the homogeneous
system characterizes this relation. We make this precise in the following theorem.

Theorem 1.11

Suppose that the equation A x = b is consistent for some given non zero b, and let u
and v be two distinct solutions. Then there is some h satisfying A h = 0, such that
u = v + h.

Proof. Let u and v be two distinct solutions of the equation A x = b. Then
A(u − v) = b − b = 0.

This means that h = u − v is a solution of the homogeneous equation A x = 0. This proves
the theorem. ■

Another way to sate the previous theorem is as follows.

Theorem 1.12

Suppose that the equation A x = b is consistent for some given non zero b, and let v be
a particular solution. Then the solution set of A x = b consists of the set of all vectors
of the form u = v + h, where h is any solution of the homogeneous equation A x = 0.

Warning: The previous theorem applies only when A x = b. If the equation has no
solution, then the solution set is empty.

Example 1.16

Recall the system in Example 1.12:

x1 + 2x2 + 7x3 = b1
−2x1 + 5x2 + 4x3 = b2,

which is consistent for each b1, b2 ∈ R. Its matrix coefficient is

A =
ï

1 2 7
−2 5 4

ò
,

and, in vector form, its general solution is

x =


5b1−2b2

9
2b1+b2

9
0

+ λ

−3
−2
1

 , λ ∈ R.

We now verify that this general solution is of the form u + h, where u satisfies A u = b
and h satisfies A h = 0. Let

u =


5b1−2b2

9
2b1+b2

9
0

 and h = λ

−3
−2
1

 .
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Then

A u =
ï

1 2 7
−2 5 4

ò5b1−2b2
9

2b1+b2
9
0

 =
Å5b1 − 2b2

9

ãï
1

−2

ò
+
Å2b1 + b2

9

ãï
2
5

ò
+ 0
ï
7
4

ò
=
ï
b1
b2

ò
,

and

A h =
ï

1 2 7
−2 5 4

ò−3λ
−2λ

λ

 = −3λ

ï
1

−2

ò
− 2λ

ï
2
5

ò
+ λ

ï
7
4

ò
=
ï
0
0

ò
.

1.6 Invertible matrices

An n × n matrix A is said to be invertible if there is an n × n matrix C such that

CA = I and AC = I

where I = In is the identity matrix. In this case, C is an inverse of A.

Theorem 1.13

The inverse of an n × n matrix A is unique.

Proof. Suppose that C and B are both inverses of A. Then,

B = BI = B(AC) = (BA)C = IC = C.

Therefore, B = C which means that the inverse is uniquely determined by A. ■

Since the inverse of a matrix A is uniquely determined by A, we can assign it a special
notation. This unique inverse is denoted by A−1, so that

A−1A = I and AA−1 = I.

A matrix that is not invertible is sometimes called a singular matrix, and an invertible matrix
is called a non singular matrix.

Invertible matrices are indispensable in linear algebra – mainly for algebraic calculations and
formula derivation. In particular, they play an important role in solving systems of equations.

Theorem 1.14

If A is an invertible n × n matrix, then for each b ∈ Rn, the equation A x = b has the
unique solution x = A−1b.

Proof. For any b ∈ Rn, x = A−1b is solution since:

A x = A(A−1b) = (AA−1) b = I b = b.

If u is another solution, then
A(u − A−1b) = b − b = 0.
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Therefore,
u − A−1b = I(u − A−1b) = A−1A (u − A−1b) = A−10 = 0.

This implies u = A−1b, which means that the solution x = A−1b is unique. ■

The following theorem provides three useful properties of invertible matrices.

Theorem 1.15

a. If A is an invertible matrix, then A−1 is invertible and

(A−1)−1 = A.

b. If A and B are n × n invertible matrices, then AB is invertible and

(AB)−1 = B−1A−1.

c. If A is invertible, then A⊤ is invertible and

(A⊤)−1 = (A−1)⊤.

Proof. a. We already know that A satisfies

A A−1 = I and A−1A = I.

Therefore, the inverse of A−1 is A, that is, (A−1)−1 = A.

b. On one hand,

(B−1A−1)AB = B−1(A−1A)B = B−1IB = B−1B = I.

On the other hand,

AB(B−1A−1) = A(B−1B)A−1 = AIA−1 = AA−1 = I.

Therefore, (AB)−1 = B−1A−1.

c. We compute
(A−1)⊤A⊤ = (AA−1)⊤ = I⊤ = I.

Similarly,
A⊤(A−1)⊤ = (A−1A)⊤ = I⊤ = I.

Therefore, (A⊤)−1 = (A−1)⊤.
■

We have treated inverses abstractly. Now we describe a procedure for computing them.
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Theorem 1.16

If A is an invertible matrix, then [
A I

]
∼
[
I A−1] .

Consequently, A is invertible if and only if it is row equivalent to the identity matrix I.

Proof. Write I = [e1 e2 . . . en]. Recall that A is invertible if and only if there is a unique
matrix C such that

AC = I and CA = I.

Write C = [c1 c2 . . . cn]. Since

AC =
[
Ac1 Ac2 . . . Acn

]
,

then AC = I if and only if all the equations

A ci = ei for i = 1, 2, . . . , n.

have unique solutions. Each equation has an augmented matrix [A ei]. We can apply the same
sequence of row elementary operations to reduce all the augmented matrix to a row reduced
echelon form. But instead of applying these same sequences of row operations n times, we could
just apply them once to the augmented matrix[

A e1 e2 . . . en

]
=
[
A I

]
.

Recall that each A ci = ei has a unique solution if and only if all the columns of A are pivot
columns implying that A ∼ I and[

A I
]

∼
[
I c1 c2 . . . cn

]
=
[
A C

]
.

This proves the theorem because C = A−1. ■

We use this procedure to recover the well-known formula for the inverse of a 2 × 2 matrix.

Example 1.17

Let
A =

ï
a b
c d

ò
.

Suppose that ad − bc ̸= 0. We compute[
A I2

]
=
ï
a b 1 0
c d 0 1

ò
∼
ï
ac bc c 0
ac ad 0 a

ò
∼
ï
ac bc c 0
0 ad − bc −c a

ò
∼
ï
ac bc c 0
0 1 −c

ad−bc
a

ad−bc

ò
∼
ñ
ac 0 c + bc2

ad−bc
−abc
ad−bc

0 1 −c
ad−bc

a
ad−bc

ô
=
ñ
ac 0 acd

ad−bc
−abc
ad−bc

0 1 −c
ad−bc

a
ad−bc

ô
∼
ñ
1 0 d

ad−bc
−b

ad−bc

0 1 −c
ad−bc

a
ad−bc

ô
.
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Hence,

A−1 =
ñ

d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

ô
.

We must admit that we cheated. In the last reduction step, we divided by ac without
knowing if ac ̸= 0. Nevertheless, it is possible to deduce the same formula for A−1

when ac = 0. We leave it to the reader to treat this case. (Hint: consider two cases:
a ̸= 0, c = 0 and a = 0, c ̸= 0. The case a = c = 0 is excluded because this implies
ad − bc = 0.)

1.7 Determinants

Each n × n matrix A is assigned a special scalar called the determinant of A, denoted by det A
or |A|. We give a recursive definition of a determinant.

Definition 1.8

The determinant of a 1 × 1 matrix A = [a] is defined as |A| = a. For n ≥ 2, the
determinant of an n × n matrix A = (aij) is defined as

det A =
n∑

j=1
(−1)1+ja1j det A1j ,

where Aij is the (n − 1) × (n − 1) matrix obtained from A by deleting the i-th row and
the j-th column.

Example 1.18

Let us recover the well-known expression for the determinant of a 2 × 2 matrix. Let

A =
ï
a b
c d

ò
.

Then A11 = d and A12 = c. Using the definition of det A, we get

det A = a det A11 − b det A12 = a d − b c.

Example 1.19

Let us show another well-known result. Let

A =
ï
a11 a12
a21 a22

ò
, x =

ï
x1
x2

ò
, and b =

ï
b1
b2

ò
.

If det A = a11a22 − a12a21 ̸= 0, then it is possible to express the solution of A x = b
in terms of determinants. This result is known as Cramer’s rule. Here we show how to
obtain x1. The remaining variable is left for the reader to compute.
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Write I2 = [e1 e2]. Notice that if x satisfies A x = b, we have

A
[
x e2

]
=
[
A x A e2

]
=
ï
b1 a12
b2 a22

ò
,

were we have used the definition of matrix multiplication. On the other hand, we also
have

A
[
x e2

]
=
[
A x A e2

]
=
ï
a11x1 + a12x2 a12
a21x1 + a22x2 a22

ò
Then,

det
ï
a11x1 + a12x2 a12
a21x1 + a22x2 a22

ò
= det

ï
b1 a12
b2 a22

ò
.

We use the definition of determinant to compute the left hand side of the equation:

det
ï
a11x1 + a12x2 a12
a21x1 + a22x2 a22

ò
=a22(a11x1 + a12x2) − a12(a21x1 + a22x2)

=(a11a22 − a12a21) x1 + (a12a22 − a12a22) x2

=x1 det A.

Therefore,

x1 det A = det
ï
b1 a12
b2 a22

ò
which gives us the expression for x1:

x1 =
det
ï
b1 a12
b2 a22

ò
det A

.

Observe that the definition of determinant of a matrix A involves the first row of A. It
turns out that it is possible to use any row or any column of A to compute its determinant.
To state the next theorem, we introduce the following notation. The (i, j)-cofactor of A is the
number Cij given by

Cij = (−1)i+j det Aij .

We omit the proof of the following fundamental theorem to avoid a lenthy digression.

Theorem 1.17

The determinant of an n × n matrix A = (aij) can be computed by a cofactor expansion
across any row or down any column. The expansion across the i-th row is

det A = ai1 Ci1 + ai2 Ci2 + · · · + ain Cin.

The cofactor expansion down the j-th column is

det A = a1j C1j + a2j C2j + · · · + anj Cnj .
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Example 1.20

Use a cofactor expansion to compute det A, where

A =

 1 0 5
2 4 −1

−2 0 2

 .

It is always desirable to minimize computational effort. If we choose to expand the
determinant down the second column, then the cofactor expansion involves only one
term because a12 = a32 = 0:

det A = 4 C22 = 4 · (−1)2+2 det
ï

1 5
−2 2

ò
= 4(12) = 48.

Let A = (aij) be an m × n matrix. We say that aii are elements in the main diagonal. A
matrix is said to be lower triangular if aij = 0 when i > j, that is, when all the elements above
the main diagonal are all zero. A matrix is said to be upper triangular if aij = 0 when i < j,
that is, when all the elements below the main diagonal are all zero. Some examples of lower
triangular matrices are

1 0 0
3 2 0
4 6 1

 ,

ï
2 0 0
3 1 0

ò
,

1 0 0
0 1 0
0 0 1

 ,


0 0 0
1 0 0
0 1 0
1 0 0

 .

Some examples of upper triangular matrices are

1 3 4
0 2 6
0 0 1

 ,

ï
2 3 5
0 1 4

ò
,

1 0 0
0 1 0
0 0 1

 ,


0 0 0
0 1 0
0 0 2
0 0 0

 .

Matrices in echelon form are upper triangular matrices.

Theorem 1.18

If A is an n × n triangular matrix, then det A is the product of the entries on the main
diagonal of A.

Proof. We present the proof only for upper triangular matrices. The proof for lower triangular
matrix is similar.

We prove this by induction on the size of the matrix. We start by verifying the first non
trivial case. Then, for a 2 × 2 upper triangular matrix, we have

det
ï
a11 a12
0 a22

ò
= a11a12 − 0 · a22 = a11a12.
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Suppose that the theorem has been established for (k − 1) × (k − 1) upper triangular matrices.
For a k × k upper triangular matrix, expand its determinant across its last row:

det


a11 a12 a13 . . . a1k

0 a22 a23 . . . a2k

0 0 a33 . . . a3k

...
...

...
. . .

...
0 0 0 . . . akk

 = akk Ckk = akk (−1)2k det


a11 a12 a13 . . . a1(k−1)
0 a22 a23 . . . a2(k−1)
0 0 a33 . . . a3k

...
...

...
. . .

...
0 0 0 . . . a(k−1)(k−1)

 .

The last matrix is a (k − 1) × (k − 1) upper triangular matrix. So by the induction hypothesis,
we obtain

det


a11 a12 a13 . . . a1k

0 a22 a23 . . . a2k

0 0 a33 . . . a3k

...
...

...
. . .

...
0 0 0 . . . akk

 = akk a11 a22 · · · a(k−1)(k−1) = a11 a22 · · · akk.

Then, by mathematical induction, the theorem is proved for all n×n upper triangular matrices.
■

One of the most important properties of determinants is they “behave well” under the
applications of elementary row operations.

Theorem 1.19

Let A be a square matrix.

a. If the matrix B is obtained from A by interchanging two rows, then det A = − det B.

b. If the matrix B is obtained from A by multiplying one row by a scalar k, then
det A = 1

k det B.

c. If the matrix B is obtained from A by adding a multiple of a row to another row,
then det A = det B.

A common strategy in hand calculations is to reduce A to echelon form and then to use
the fact that the determinant of a triangular matrix is the product of the entries in its main
diagonal.

Example 1.21

Compute det A, where

A =


2 −8 6 8
3 −9 5 10

−3 0 1 −2
1 −4 0 6

 .
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First, we interchange the first and the last row, which changes the sign of the determinant:

det A = − det


1 −4 0 6
3 −9 5 10

−3 0 1 −2
2 −8 6 8

 .

Next, we replace rows in order to produce 0’ under the pivot in the first column. These
replacements do not change the determinant:

det A = − det


1 −4 0 6
0 3 5 −8
0 −12 1 16
0 0 6 −4

 .

We continue to replace rows to produce 0’s under a22 = 3. This does not change the
determinant:

det A = − det


1 −4 0 6
0 3 5 −8
0 0 21 −16
0 0 6 −4

 .

If we rescale the last row by a factor of 1
2 , the determinant changes as follows:

det A = −2 det


1 −4 0 6
0 3 5 −8
0 0 21 −16
0 0 3 −2

 .

The third row can be replaced by itself plus −7 times the last row, which does not change
the determinant:

det A = −2 det


1 −4 0 6
0 3 5 −8
0 0 0 −2
0 0 3 −2

 .

Finally, we obtain a triangular matrix if we interchange the last two rows, which changes
the sign of the determinant:

det A = 2 det


1 −4 0 6
0 3 5 −8
0 0 3 −2
0 0 0 −2

 .

Therefore,
det A = 2(1)(3)(3)(−2) = −36.

We are ready to state the main theorem of this section.
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Theorem 1.20

A square matrix A is invertible if and only if det A ̸= 0.

Proof. Suppose that A has been reduced to an echelon form U by row replacements and row
interchanges (no rescaling). Clearly, this is always possible. Each row interchange produces a
change of sign; so if there are r row interchanges, by Theorem 1.19, we have

det A = (−1)r det U.

Since U is in echelon form, it is an upper triangular matrix, and so det U is the product of its
diagonal entries u11, u22, . . . , unn.

If A is invertible, then all the entries uii are pivots because A ∼ I, which means that uii ̸= 0
for all i = 1, 2, . . . , n. Therefore,

det A = (−1)ru11 u22 . . . unn ̸= 0.

If A is not invertible, the at least one entry, say ukk, is not a pivot, which means that ukk = 0.
Consequently, det A = 0. ■

We conclude this section by stating two more properties of the determinant.

Theorem 1.21

If A and B are n × n matrices, then

a. det A⊤ = det A

b. det AB = (det A) (det B)
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2 Vector spaces

This chapter introduces the underlying algebraic structure of linear algebra – that of a finite
dimensional vector space. The definition of a vector space involves an arbitrary field whose
elements are called scalars. The following notation will be used (unless otherwise stated or
implied):

K the field of scalars
a, b, c, . . . the elements of K

V the given vector space
u, v, w the elements of V

Nothing essential is lost if the reader assumes that K is the real field R or the complex field C.

2.1 Vector spaces and subspaces

The following defines the notion of vector space or linear space.

Definition 2.1

Let K be a given field (R or C) and let V be a non empty set with rules of addition, and
scalar multiplication which assigns to any u, v ∈ V a sum u + v ∈ V and to any u ∈ V
and scalar k ∈ K a product ku ∈ V . Then V is called a vector space over K (and the
elements of V are called vectors) if the following axioms hold:

(A1) For any vectors u, v, w ∈ V , (u + v) + w = u + (v + w).

(A2) There is a vector in V , denoted by 0 and called the zero vector, for which u+0 = u
for any vector u ∈ V .

(A3) For each vector u ∈ V there is a vector in V , denoted by −u, for which u+(−u) = 0.

(A4) For any vectors u, v ∈ V , u + v = v + u.

(M1) For any scalar k ∈ K and any vectors u, v ∈ V , k (u + v) = k u + k v.

(M2) For any scalars a, b ∈ K and any vector u ∈ V , (a + b) u = a u + b u.

(M3) For any scalars a, b ∈ K and any vector u ∈ V , (ab) u = a (b u).

(M4) For the unit scalar 1 ∈ K, 1 u = u for any vector u ∈ V .

The above axioms naturally split into two sets. The first four are only concerned with the
additive structure of V . From these four axioms it follows that any sum of vectors of the form

v1 + v2 + · · · + vm

requires no parentheses and does not depend upon the order of the summands.
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Theorem 2.1

For any vector space V,

a. The zero vector 0 ∈ V is unique.

b. For any vector u ∈ V , the additive inverse −u ∈ V is unique.

c. For any vectors u, v, w ∈ V , if u + w = v + w then u = v.

Proof. a. Suppose that 0̂ ∈ V is a vector for which u + 0̂ = u for any vector u ∈ V . Then,

0̂ = 0̂ + 0 (by A2)
= 0 (by the definition of 0̂).

Since 0̂ = 0, the zero vector is unique.

b. Given a vector u ∈ V , let w ∈ V be a vector for which u + w = 0. Then,

w = w + 0 (by A2)
= w + [u + (−u)] (by A3)
= [w + u] + (−u) (by A1)
= 0 + (−u) (by the definition of w)
= −u (by A2).

Since w = −u, the negative of u is unique.

c. For any vectors u, v, w ∈ V , such that u + w = v + w then

u = u + 0 (by A2)
= u + [w + (−w)] (by A3)
= [u + w] + (−w) (by A1)
= [v + w] + (−w) (by u + w = v + w)
= v + [w + (−w)] (by A1)
= v + 0 (by A3)
= v (by A2).

Therefore, u + w = v + w implies u = v.
■

Also, subtraction is defined by

u − v = u + (−v).

On the other hand, the remaining four axioms are concerned with the “action” of the field
K on V . Observe that the labelling of the axioms reflects this splitting. Using these additional
axioms we prove the following simple properties of a vector space.
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Theorem 2.2

Let V be a vector space over a field K.

a. For any scalar k ∈ K and 0 ∈ V , k 0 = 0.

b. For 0 ∈ K and any vector u ∈ V , then 0 u = 0.

c. For any k ∈ K and any u ∈ V , (−k) u = k (−u) = −(k u).

Proof. a. We compute:
k 0 + 0 = k 0 = k (0 + 0) = k 0 + k0.

But k 0 + 0 = k 0 + k0 implies k 0 = 0 (Theorem 2.1 part c).

b. Similarly, for any vector u ∈ V ,

0 u + 0 = 0 u = (0 + 0) u = 0 u + 0 u,

which implies 0 u = 0.

c. On one hand, for any k ∈ K and any u ∈ V ,

(−k) u = (−k) u + ku − (k u) = (−k + k) u − (k u) = 0 u − (k u) = −(k u).

Therefore, (−k) u = −(k u). On the other hand,

k (−u) = k (−u) + ku − (k u) = k (u − u) − (k u) = k 0 − (k u) = −(k u).

Therefore, k (−u) = −(k u).
■

Observe that when k = 1 in part c of the previous theorem, we have −u = (−1) u for each
u ∈ V . That is, multiplying u by −1 produces its additive inverse.

Now we list a number of important examples of vector spaces which will be used throughout
this course.

Example 2.1

Let K be an arbitrary field. The notation Kn is frequently used to denote the set of all
column matrices with n rows and entries which are elements in K. Here Kn is viewed as
a vector space over K where vector addition and scalar multiplication defined by

a1
a2
...

an

+


b1
b2
...

bn

 =


a1 + b1
a2 + b2

...
an + bn



59



and

k


a1
a2
...

an

 =


k a1
k a2

...
k an

 .

The zero vector in Kn is

0 =


0
0
...
0


and the inverse of a vector is defined by

−


a1
a2
...

an

 =


−a1
−a2

...
−an

 .

The proof that Kn is a vector space is left to the reader, so we now regard as stating
that Rn with the usual operations is a vector space over R.

Example 2.2

The notation Mm,n, or simply M, will be used to denote the set of all m × n matrices
over an arbitrary field K. Then Mm,n is a vector space over K with respect to the usual
operations of matrix addition and scalar multiplication.

Example 2.3

Let P denote the set of all polynomials

a0 + a1 t + a2 t2 + · · · + an tn, n = 0, 1, 2, 3, . . . ,

with coefficients ai is some field K. Then P is a vector space over K with respect to
the usual operations of addition of polynomials and multiplication of polynomials by
constants.

Example 2.4

Let X be any non empty set and let K be an arbitrary field K. Consider the set F(X)
of all functions from X into K. The sum of two functions f, g ∈ F(X) is the function
f + g ∈ F(X) defined by

(f + g)(x) = f(x) + g(x), ∀x ∈ X,

and the product of a scalar k ∈ K and a function f ∈ F(X) is the function k f ∈ F(X)
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defined by
(kf)(x) = k f(x), ∀x ∈ X.

Then F(X) with the above operations is a vector space over K.
The zero vector in F(X) is the zero function 0 which maps each x ∈ X into 0 ∈ K, that
is,

0(x) = 0, ∀x ∈ X.

Also, for any function f ∈ F(X), the function −f defined by

(−f)(x) = −f(x), ∀x ∈ X,

is the additive inverse of the function f .

Let W be a subset of a vector space V over a field K. Then W is called a subspace of V if
W is itself a vector space over K with respect to the operations of vector addition and scalar
multiplication on V . Simple criteria for identifying subspaces follow.

Theorem 2.3

Suppose that W is a subset of a vector space V . Then W is a subspace of V if and only
if the following hold:

a. 0 ∈ W

b. W is closed under vector addition, that is:

For every u, v ∈ W , the sum u + v ∈ W .

c. W is closed under scalar multiplication, that is:

For every u ∈ W , k ∈ K, the product k u ∈ W .

Conditions b and c may be combined into one condition.

Corollary 2.1

W is a subspace if and only if

a. 0 ∈ W

b. W is closed under linear combinations, that is:

a u + b v ∈ W for every u, v ∈ W and a, b ∈ K.

Example 2.5

Let V be any vector space. Then the set {0} consisting of the zero vector alone, and
also the entire space V are subspaces of V .
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Example 2.6

Let W be the set of vectors in R3 consisting of those vectors whose third component is
0; or, in other words

W =


a

b
0

 : a, b, ∈ R

 .

Notice that 0 ∈ W . Further, for any vectorsa
b
0

 ,

c
d
0

 ∈ W,

and scalars r, s ∈ R, we have

r

a
b
0

+ s

c
d
0

 =

ra + sc
rb + sd

0

 ∈ W.

Thus W is a subspace of R3.

Example 2.7

Let V = Mn,n, the space of n × n matrices. Then the subset W1 of (upper) triangular
matrices and the subset W2 of matrices satisfying A⊤ = A, called the set of symmetric
matrices, are subspaces of V since they are non empty and closed under linear combina-
tions.

Example 2.8

Recall that P denotes the vector space of polynomials. Let Pn denote the subset of P
that consists of all polynomials of degree ≤ n, for a fixed n. Then Pn is a subspace of P.

Recall that any solution of a homogeneous system Ax = 0 is an element of Rn. Thus, the
solution set of Ax = 0 is a subset of Rn.

Theorem 2.4

The solution set W of a homogeneous system Ax = 0 in n unknowns is a subset of Rn.

Proof. First, 0 ∈ W because 0 is always a solution of a homogeneous system: A 0 = 0.
Next we show that W is closed under linear combinations. So let u, v ∈ W and a, b ∈ R.

Since u and v are solutions of the homogeneous system, we have A u = 0 and A v = 0.
Moreover,

A(a u + b v) = a A u + b A v = a 0 + b 0 = 0.

Consequently, a u + b v is a solution of the homogeneous solution and, thus, a u + b v ∈ W . ■
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2.2 Linear combinations and spans

Let V be a vector space over a field K and let v1, . . . , vm ∈ V . Any vector in V of the form

a1 v1 + a2 v2 + · · · + am vm

where ai ∈ K, is called a linear combination of v1, . . . , vm. The set of all such linear combina-
tions, denoted by

Span{v1, . . . , vm},

is called the span of v1, . . . , vm.
Generally, for any subset S of V , Span S = {0} when S is empty and Span S consists of all

the linear combinations of vectors in S.

Theorem 2.5

If v1, . . . , vm ∈ V then Span{v1, . . . , vm} is a subspace of V .

Proof. Since 0 ∈ V can be written as a linear combination of v1, . . . , vm:

0 = 0 v1 + · · · + 0 vn,

then 0 ∈ Span{v1, . . . , vm}. To show that Span{v1, . . . , vm} is closed under linear combina-
tions, choose any two vectors u, v ∈ Span{v1, . . . , vm}. Therefore,

u = a1 v1 + a2 v2 + · · · + am vm,

v = b1 v1 + b2 v2 + · · · + bm vm,

for some scalars ai, bi ∈ K. Then, for any r, s ∈ K,

r u + s v = r (a1 v1 + a2 v2 + · · · + am vm) + s (= b1 v1 + b2 v2 + · · · + bm vm)
= (r a1 + s b1) v1 + (r a2 + s b2) v2 + · · · + (r am + s bm) vm.

Then r u + s v is a linear combination of the vectors v1, . . . , vm, and, consequently, r u + s v ∈
Span{v1, . . . , vm}. ■

On the other hand, given a vector space V , the vectors u1, u2, . . . , ur are said to span or
generate or to form a generating set of V if

V = Span{u1, u2, . . . , ur}.

In other words, u1, u2, . . . , ur span V if, for every v ∈ V , there are scalars a1, a2, . . . , ar such
that

v = a1 u1 + a2 u2 + · · · + ar ur,

that is, if v is a linear combination of u1, u2, . . . , ur.
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Example 2.9

Let

H =




a − 3b
b − a

a
b

 : a, b ∈ R

 .

Show that H is a subspace of R4.
In light of Theorem 2.5, if we can write H as the span of a set of vectors, then we can
conclude that H is a subspace of R4. Hence, write a generic element of H as a linear
combination of vectors:

a − 3b
b − a

a
b

 = a


1

−1
1
0

+ b


−3

1
0
1

 , a, b ∈ R.

This means that a generic element of H can always be expressed as a linear combination
of the two vectors on the right. Therefore,

H = Span




1
−1

1
0

 ,


−3

1
0
1


 .

So H is a subspace by Theorem 2.5.

Example 2.10

For what value(s) of h will the polynomial q(t) be in the subspace of P2 spanned by
p1(t), p2(t), p3(t), if

p1(t) = 1 − t − 2t2, p2(t) = 5 − 4t − 7t2, p3(t) = −3 + t, q(t) = −4 + 3t + ht2.

The polynomial q(t) is in the subspace spanned by p1(t), p2(t), p3(t) if and only if there
are scalars a1, a2, a3 ∈ R such that

q(t) = a1 p1(t) + a2 p2(t) + a2 p3(t).

The above equality holds if and only if the coefficients multiplying 1, t, and t2, respec-
tively, on the left side of the equation are equal to the corresponding coefficients on the
right side. Therefore, comparing the corresponding coefficients we get,

1 : −4 = a1 + 5 a2 − 3 a3,
t : 3 = −a1 − 4 a2 + a3,

t2 : h = −2 a1 − 7 a2 + 0 a3,
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or, in vector form,  1 5 −3
−1 −4 1
−2 −7 0

a1
a2
a3

 =

−4
3
h

 .

We study the solution set of this equation by reducing the augmented matrix to its row
reduced echelon form: 1 5 −3 −4

−1 −4 1 3
−2 −7 0 h

 ∼

1 5 −3 −4
0 1 −2 −1
0 3 −6 h − 8

 ∼

1 0 7 1
0 1 −2 −1
0 0 0 h − 5

 .

Observe that the third row in the last matrix corresponds to the degenerate equation 0 =
h−5, which has a solution if and only if h = 5. Therefore, q(t) ∈ Span{p1(t), p2(t), p3(t)}
if and only if h = 5.

2.3 Null space and column space of a matrix

There are two important subspaces associated with any m × n matrix A. In this section, we
introduce both of these subspaces and study some of their properties.

Definition 2.2

The null space of an m × n matrix A, written as NulA, is the set of all solutions of the
homogeneous equation A x = 0. In set notation,

NulA = {x ∈ Rn : A x = 0}.

A more dynamic description of NulA is the set of all x ∈ Rn that are annihilated by A in
the sense that each x ∈ NulA is “transformed” into the zero vector.

The term space in null space is appropriate because the null space of an m × n matrix is a
vector subspace of Rn. This is a direct consequence of Theorem 2.4.

Example 2.11

Let H be the set of all vectors in R4 whose coordinates a, b, c, d satisfy the equations

a − 2b + 5c − d = 0,

−a − b + c = 0.

In other words, each element x of H satisfies the homogeneous equationï
1 −2 5 −1

−1 −b 1 0

ò
x = 0.

So by the definition of the null space of a matrix, we have the following expression of H:

H = Nul
ï

1 −2 5 −1
−1 −b 1 0

ò
.
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Example 2.12

Find a generating set for the null space of the matrix

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

The first step is to find the general solution of the homogeneous equation A x = 0. So
we reduce the augmented matrix to its row reduced echelon form:

[
A 0

]
∼

1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0

 .

Then, the solution set of A x = 0 is the same as the solution set of the simpler system

x1 − 2x2 − x4 + 3x5 = 0,
x3 + 2x4 − 2x5 = 0,

0 = 0,

with free variables x2, x4, x5. If we write the leading variables in terms of the free vari-
ables, then we can express the general solution of A x = 0 as:

x1
x2
x3
x4
x5

 =


2a + b − 3c

a
−2b + 2c

b
c

 = a


2
1
0
0
0

+ b


1
0

−2
1
0

+ c


−3

0
2
0
1

 .

This means that every solution of the homogeneous equation can be expressed as a linear
combination of the three vectors on the right. Then, the generating set of NulA is


2
1
0
0
0

 ,


1
0

−2
1
0

 ,


−3

0
2
0
1


 .

Using the notation of this and the previous section, we may write

NulA = Span




2
1
0
0
0

 ,


1
0

−2
1
0

 ,


−3

0
2
0
1


 .
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Observation 2.1

The thoughtful reader would observe that the number of non zero vectors in the gener-
ating set of NulA equals the number of free variables in the system A x = 0.

Another important subspace associated with a matrix is its column space. Unlike the null
space, the column space is defined explicitly via linear combinations.

Definition 2.3

The column space of an m × n matrix A, written as ColA, is the set of all linear combi-
nations of the columns of A. If A = [a1 . . . an], then

ColA = Span{a1, . . . , an}.

The fact that ColA is a subspace of Rm follows from Theorem 2.5. Note that by the
definition of matrix multiplication, a typical vector in ColA can be written as A x for some
x ∈ Rn. That is,

ColA = {b ∈ Rm : b = A x for some x ∈ Rn}.

Example 2.13

Find a matrix A such that W = ColA, where

W =


6a − b

a + b
−7a

 : a, b ∈ R

 .

We first find a generating set of W and use the vectors in the generating set as columns
of the matrix A.

W =

a

 6
1

−7

+ b

−1
1
0

 : a, b ∈ R

 = Span


 6

1
−7

 ,

−1
1
0

 .

The matrix A whose columns are the vectors in the generating set of W is

A =

6 −1
1 1
0 −7

 .

Then W = ColA.

The following example is meant to emphasize the differences between the null space and the
column space of a matrix.
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Example 2.14

Let A =

 2 4 −2 1
−2 −5 7 3

3 7 −8 6

.

a. If the column space of A is a subspace of Rk, what is k?

b. If the null space of A is a subspace of Rk, what is k?

c. Find a non zero vector of ColA and a non zero vector of NulA?

d. Is there a vector in ColA that also belongs to NulA?

The answers to these questions are:
a. Since the columns of A belong to R3, then they must generate a subspace of R3.

So k = 3.

b. The matrix A has four columns, which means that the product A x is defined if
and only if x ∈ R4. Therefore, the general solution of the homogeneous equation
A x = 0 belongs to R4. Hence, k = 4.

c. Finding a non zero element of ColA is easy. Clearly, any column of A belongs to

ColA. Then it is sufficient to choose any column, say, the first one:

 2
−2

3

 .

Finding a non zero element of NulA is harder. For this, we need to solve the
homogeneous equation A x = 0. Reduce the augmented matrix to row reduced
echelon form:  2 4 −2 1 0

−2 −5 7 3 0
3 7 −8 6 0

 ∼

1 0 9 0 0
0 1 −5 0 0
0 0 0 1 0


which corresponds to the system of equations

x1 + 9x3 = 0,
x2 − 5x3 = 0,

x4 = 0,

with x3 free. The general solution of the homogeneous equation is
x1
x2
x3
x4

 =


−9 λ

5 λ
λ
0

 = λ


−9

5
1
0

 .

Then, a no zero element of the null space of A is


−9

5
1
0

.

d. Each element of ColA is a vector in R3 and each element of NulA is a vector in R4.
Thus, with only three entries, the elements of ColA could not possible be in NulA.
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NulA ColA
1. NulA is a subspace of Rn. 1. ColA is a subspace of Rm.

2. NulA is defined implicitly 2. ColA is defined explicitly
via the condition (A x = 0) via how to construct its elements.
that its elements must satisfy.

3. A typical vector v is NulA 3. A typical vector v is ColA
has that property that A v = 0. has the property that A x = v

is consistent.

4. Given a specific vector v, it is 4. Given a specific vector v, it takes
to tell if v is in NulA. time to tell if v is in ColA.
Just compute A v. The solutions of A x = v must be studied.

5. NulA = {0} if and only if the 5. ColA = Rm if and only if the equation
equation A x = 0 has a unique solution. A x = b has a solution for every b ∈ Rm.

Table 1: Contrast between NulA an ColA of an m × n matrix A.

2.4 Linear independence

We now define the notion of linear independence. This concept plays an essential role in the
theory of linear algebra and in mathematics in general.

Definition 2.4

Let V be a vector space over a field K. The vectors u1, . . . , um ∈ V are said to be linearly
independent if the vector equation

c1 u1 + c2 u2 + · · · + cm um = 0 (2.1)

has a unique solution: c1 = c2 = · · · = cm = 0. The vectors u1, . . . , um ∈ V are said to
be linearly dependent if (2.1) has a non trivial solution.

If 0 is one of the vectors in (2.1), say u1, then the vectors must be linearly dependent; for

1 u1 + 0 u2 + · · · + 0 um = 1 0 + 0 + · · · + 0 = 0,

which means that(2.1) has the non trivial solution c1 = 1, c2 = · · · = cm = 0.
Any non zero vector u is, by itself, linearly independent; for the equation c u = 0 has the

unique solution c = 0.
If two of the vectors in (2.1) are equal or one is a scalar multiple of the other, say u1 = k u2,

then the vectors are linearly dependent. For, in this case,

u1 − k u1 + 0 u3 + · · · + 0 um = 0,

which means that (2.1) has the non trivial solution c1 = 1, c2 = −k, c3 = · · · = cm = 0. In
particular, two vectors are linearly dependent if and only if one is a multiple of the other.
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Clearly, if the vectors u1, . . . , um ∈ V are linearly independent, then any rearrangement of
these vectors is also linearly independent.

If the vectors u1, . . . , um ∈ V are linearly independent, then any subset of these vectors,
say u1, . . . , ur (r < m), is linearly independent. Indeed, consider the equation

d1 u1 + d2 u2 + · · · + dr ur = 0.

But we can also write

d1 u1 + d2 u2 + · · · + dr ur + 0 ur+1 + · · · + 0 um = 0.

Since u1, . . . , um ∈ V are linearly independent, this equation has only the trivial solution, which
means that d1 = · · · = dr = 0 and, thus, u1, . . . , ur are linearly independent. By contrapositive
(see the Introduction), if some subset of u1, . . . , um ∈ V , say u1, . . . , ur (r < m), is linearly
dependent, then u1, . . . , um is linearly dependent.

The following theorem will often be useful. It states that a linearly dependent list of vectors,
with the first vector not 0, one of the vectors is in the span of the previous ones.

Theorem 2.6

An indexed set {u1, . . . , um} of two or more vectors, with u1 ̸= 0, is linearly dependent if
and only if some uj (j > 1) is a linear combination of the preceding vectors u1, . . . , uj−1.

Proof. Suppose that, for some j > 1, uj is a linear combination of u1, . . . , uj−1. Then there
are scalars d1, . . . , dj−1, such that

uj = d1 u1 + d2 u2 + · · · + dj−1 uj−1,

or, equivalently,

−d1 u1 − · · · − dj−1 uj−1 + uj + 0 uj+1 + · · · + 0 um = 0.

Therefore, (2.1) has the non trivial solution c1 = −d1, . . . , cj−1 = −dj−1, cj = 1, cj+1 = · · · =
cm = 0, which means that u1, . . . , um are linearly dependent.

On the other hand, suppose that u1, . . . , um are linearly dependent. Then there are scalars
a1, a2, . . . , am, not all equal to 0, such that

a1 u1 + a2 u2 + · · · + am um = 0.

Not all a2, a3, . . . , am can be equal to 0. Otherwise, we would have a1 u1 = 0; but u1 ̸= 0
which means that a1 = 0. Then, in this case, a1 = · · · = am = 0 making the vectors linearly
independent which contradicts our assumption. Let j be the largest element of {2, . . . , m} such
that aj ̸= 0. Then,

uj = −a1
aj

u1 − · · · − aj−1
aj

uj−1.

That is, there is some uj that is a linear combination of the preceding vectors u1, . . . , uj−1. ■

Now we come to a key result. It says that, if in a set of vectors one can be written as a
linear combination of the remaining ones, then we can throw out that vector without changing
the span of the original list.
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Theorem 2.7

Let S = {u1, . . . , um} be a set in a vector space V , and let H = Span S. If one of the
vectors – say uk – is a linear combination of the remaining vectors in S, then the set
formed from S by removing uk still spans H.

Proof. By rearranging the list of vectors in S, if necessary, we may suppose that um is a linear
combination of u1, . . . , um−1– say

um = a1 u1 + a2 u2 + · · · + am−1 um−1.

Given any w ∈ H, we may write

w = c1 u1 + c2 u2 + · · · + cm um

for suitable scalars c1, c2, . . . , cm. Substituting the expression for um we obtain

w = (c1 + cm a1) u1 + (c2 + cm a2) u2 + · · · + (cm−1 + cm am−1) um−1.

Thus, w is a linear combination of u1, . . . , um−1. This means that {u1, . . . , um−1} spans H
because w was an arbitrary element of H. ■

Consider a set of vectors S = {u1, . . . , um} in a vector space V . We now know that for any
vector w ∈ V , the equation

w = x1 u1 + x2 u2 + · · · + xm um, (2.2)

has a solution if and only if x ∈ Span S. So the notion of generating set deals with the existence
of solutions of vector equations such as (2.2). So, what about uniqueness? It turns out that
vector equations such as (2.2) with unique solutions can be characterized in terms of the notion
of linear independence.

Theorem 2.8

Let S = {u1, . . . , um} be a set in a vector space V . Then each w ∈ Span S has a unique
expression

w = c1 u1 + c2 u2 + · · · + cm um,

for suitable scalars c1, . . . , cm if and only if S is a linearly independent set.

Proof. Suppose that each w ∈ Span S has a unique expression as a linear combination of the
vectors in S. In particular, 0 ∈ Span S so

c1 u1 + c2 u2 + · · · + cm um = 0,

which clearly is satisfied with c1 = c2 = . . . = cm = 0. But this expression is unique which
means that S is a linearly independent set of vectors.

Now suppose that S is a linearly independent set. If a vector w ∈ Span S can be expressed
as

w = c1 u1 + c2 u2 + · · · + cm um,
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and
w = d1 u1 + d2 u2 + · · · + dm um,

then subtracting the expressions we get

0 = (c1 − d1) u1 + (c2 − d2) u2 + · · · + (cm − dm) um.

But S is a linearly independent set, so the last homogeneous equations has the unique solution
c1 − d1 = c2 − d2 = . . . = cm − dm = 0. Clearly, this means that c1 = d1, c2 = d2, . . . , cm =
dm. ■

Example 2.15

Consider the three vectors in R3:

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Clearly, the homogeneous equation0
0
0

 = x1 e1 + x2 e2 + x3 e3 =

1 0 0
0 1 0
0 0 1

x1
x2
x3

 =

x1
x2
x3

 ,

has only the trivial solution x1 = x2 = x3 = 0. Therefore, e1, e2, e3 are independent
vectors. In fact, since it is obvious that R3 = Span{e1, e2, e3}, we conclude that each
vector in R3 has a unique expression as linear combination of e1, e2, e3.

Example 2.16

Suppose that the scalars c0, c1, . . . , cn satisfy

c0 + c1 t + c2 t2 + · · · + cn tn = 0

This equality means that the polynomial on the left has the same values as the zero
polynomial on the right. It is well known that a polynomial of degree n with more
than n roots is the zero polynomial. Therefore, c0 = c1 = · · · = cn = 0. This proves
that the set {1, t, t2, . . . , tn} is a linearly independent set in Pn. It is obvious that
Pn = Span{1, t, t2, . . . , tn}. Then each polynomial of degree at most n has a unique
expression as a linear combination of 1, t, t2, . . . , tn.

Recall that any linear dependence relationship among the columns of a matrix A can be
expressed in the form A x = 0, where x is a column of weights. When A is row reduced to a
matrix B, the columns of B are often totally different from the columns of A. However, the
equations A x = 0 and B x = 0 have exactly the same set of solutions. That is, the columns of
A have exactly the same linear dependence relationships as the columns of B. So we have the
following important observation:
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Observation 2.2

Elementary row operations on a matrix preserve the linear dependence relations among
the columns of the matrix.

The previous observation provides a useful shortcut for reducing a matrix to its row reduced
echelon form when the linear dependence relations among the columns of a matrix are easy to
detect.

Example 2.17

Consider the matrix

A =
[
a1 a2 a3 a4 a5

]
=


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

 .

a. Find the smallest generating set for ColA.

b. Use the linear dependence relations among the columns of A for compute its row
reduced echelon form.

These are the solutions:

a. Recall that ColA = Span{a1, a2, a3, a4, a5}. By Theorem 2.7, the set of columns
formed by removing those columns that are linear combinations of the remaining
ones still spans ColA. Then, since

a2 = 4 a1 and a4 = 2 a1 − a3,

we can remove a2 and a4 from the spanning set. Therefore, ColA =
Span{a1, a3, a5}. Since a1, a3, a5 are linearly independent (you should show this),
no more columns should be removed. This means that {a1, a3, a5} is the smallest
generating set of ColA.

b. The columns of the row reduced echelon form B = [b1 b2 b3 b4 b5] should have
the same linear dependence relations as the columns of A. Therefore,

b2 = 4 b1, b4 = 2 b1 − b3,

and b1, b3, b5 are linearly independent. The pivot columns of a matrix in row
reduced echelon form are linearly independent columns since they are the columns
of the identity matrix. Moreover, all the rows of zeros should be at the bottom of
the row reduced echelon matrix. From these two facts we deduce that b1, b3, b5 are
pivots and correspond to the first three columns of the identity matrix, respectively.
Putting everything together, we obtain

A ∼


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

 .
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2.5 Bases and dimension

In a vector space V , sets that guarantee that each vector in V con be expressed uniquely in
terms of these sets are one of the most important objects in linear algebra.

Definition 2.5

An ordered set B = {u1, . . . , un} of vectors is a basis of V if the following two conditions
hold:

1. B is a linearly independent set.

2. V = Span B.

The following characterization of a basis is a direct consequence of Theorem 2.8.

Theorem 2.9

An ordered set B = {u1, . . . , un} of vectors is a basis of V if and only if every vector
v ∈ V can be written uniquely as a linear combination of the basis vectors.

We have already seen an example of a basis of R3 in Example 2.15. Such basis consisting
of the columns of the identity matrix is called the canonical basis of R3.

Example 2.16 presents a basis of Pn. Such basis consisting of consecutive powers of the
variable t is called the standard basis of Pn.

Let us consider less obvious examples of bases.

Example 2.18

Let

v1 =

 3
0

−6

 , v2 =

−4
1
7

 , v3 =

−2
1
5

 .

Determine if {v1, v2, v3} is a basis of R3.

We must show that these vector are linearly independent and generate R3. Both of these
conditions hold if and only if the equation [v1 v2 v3] x = b has a unique solution for each
b ∈ R3. This equation has a solution for each b if each row of the matrix A = [v1 v2 v3]
has a pivot and the solution is unique if each column of A is a pivot column. In other
words, the equation A x = b has a unique solution for each b if A ∼ I. So we row reduce
A to its row reduced echelon form:

A ∼

3 −4 −2
0 1 1
0 −1 1

 ∼

3 0 2
0 1 1
0 0 2

 ∼

3 0 0
0 1 0
0 0 2

 ∼

1 0 0
0 1 0
0 0 1

 .

Therefore {v1, v2, v3} is a basis of R3.
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Example 2.19

Let
p0(t) = (1 − t)3, p1(t) = 3t (1 − t)2, p2(t) = 3t2 (1 − t), p3(t) = t3.

Determine if {p0(t), p1(t), p2(t), p3(t)} is a basis for P3.

We need to determine if each polynomial in P3 can be expressed uniquely as a linear
combination of p0(t), p1(t), p2(t), p3(t). Let q(t) = a0 + a1 t + a2 t2 + a3 t3 and suppose
that the scalars c0, c1, c2, c3 satisfy

q(t) = c0 p0(t) + c1 p1(t) + c2 p2(t) + c3 p3(t).

Comparing the coefficients multiplying each power of t on both sides of the equality, we
obtain

c0 = a0,
−3 c0 + 3 c1 = a1,

3 c0 − 6 c1 + 3 c2 = a2,
−c0 + 3 c1 − 3 c2 + c3 = a3,

or in matrix form,

A c =


1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1




c0
c1
c2
c3

 =


a0
a1
a2
a3

 .

It is not difficult to see that the matrix A has a pivot in every row and every column, which
means that the equation above has a unique solution for each choice of the polynomial
q(t). Therefore, {p0(t), p1(t), p2(t), p3(t)} is a basis for P3.

The following theorem characterizes an important basis of the column space of a matrix.

Theorem 2.10

The pivot columns of a matrix A form a basis for ColA.

Proof. Let B be the reduced echelon form of A. The set of pivot columns of B is linearly
independent, for no vector in the set is a linear combination of the vectors that precede it. Since
A is row equivalent to B, the pivot columns of A are linearly independent as well, because any
linear dependence relation among the columns of A corresponds to a linear dependence relation
among the columns of B. For this same reason, every non pivot column of A is a linear
combination of the pivot columns of A. Thus the non pivot columns of A may be discarded
from the spanning set for ColA. This leaves the pivot columns of A as a basis for ColA. ■

Warning: Be careful to use pivot columns of A itself for the basis of ColA. Row operations
can change the column space of a matrix. We illustrate this in the following example.
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Example 2.20

Consider again the matrix given in Example 2.17:

A =
[
a1 a2 a3 a4 a5

]
=


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8

 .

We showed that

A ∼


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0

 .

It can be seen from the row reduced echelon form that the first, third, and last columns
are pivot columns, which means that {a1, a3, a5} is a basis for ColA. However, the
columns of the row reduced echelon form all have zeros in their last entries, so they
cannot span the column space of A.

Every generating set in a vector space can be reduced to a basis of the vector space. Indeed,
removing vectors that are linear combinations of the remaining vectors will not change the
span of the original set. The deletion of vectors from the generating set must stop when the
set becomes linearly independent. If additional vectors are deleted, it will not be a linear
combination of the remaining vectors, and hence the smaller set will no longer span V . Thus a
basis is a generating set that is as small as possible.

Also, every linearly independent list of vectors can be extended to a basis of the vector
space. This is done by adjoining a vector that is not in the span of the original list. The
extended list of vectors is still linearly independent because the new vector cannot be written
as a linear combination of the preceding ones. This step is repeated until a generating set of V
is obtained. The addition of vectors must stop as soon as a generating set for V is obtained.
For if one more vector is added, then the new set cannot be linearly independent because the
old set spans V , and the new vector is therefore a linear combination of the vectors preceding
it. Thus, a basis is a linearly independent set that is as large as possible.

Remark 2.1

Let B = {u1, . . . , un} be a basis of a vector space V . Then every generating set of V has
at least n elements, and every linearly independent set in V has at most n elements.

We say that a vector space V is finite-dimensional if it has a basis with a finite number of
elements.

The notion of basis would be useless if different basis of the same vector space V had different
numbers of elements. Fortunately, that turns out not to be the case.

Theorem 2.11

Any two bases of a finite-dimensional vector space have the same number of elements.
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Proof. Suppose that V is a finite-dimensional vector space. Let B1 and B2 be two bases of V .
Then B1 and B2 are linearly independent in V , so the number of vectors in B1 is at most the
number of elements in B2. Moreover, B1 and B2 span V , then the number of vectors in B1
is at least the number of elements in B2. Thus the number of vectors in B1 and B2 must be
equal. ■

Now we know that the number of vectors in a basis of a finite-dimensional vector space is
an inherent property of V (that is, it does not depend on the choice of basis). Therefore we
give the following definition.

Definition 2.6

The dimension of a finite-dimensional vector space, denoted by dim V , is the number
of vectors in any basis of V . In other words, if B = {u1, . . . , un} is a basis of V , then
dim V = n.

If V is a finite-dimensional vector space, then every generating set of vectors of V with
n = dim V elements is a basis of V . For suppose that v1, . . . , vn span V . However, every basis
of V has n elements, so in this case the reduction must be the trivial one, meaning that no
elements are deleted from v1, . . . , vn. In other words, v1, . . . , vn is a basis of V , as desired.

Moreover, every linearly independent set of vectors in V with n elements is a basis of V .
For suppose that {v1, . . . , vn} is a linearly independent set. Then this set can be extended to a
basis of V . However, every basis of V has n elements, so in this case the extension must be the
trivial one, meaning that no vectors are adjoined to {v1, . . . , vn}. In other words, {v1, . . . , vn}
is a basis of V .

Example 2.21

The canonical basis for Rn contains n vectors, so dimRn = n. The standard polynomial
basis {1, t, t2, . . . , tn} shows that dim Pn = n + 1.

Example 2.22

Find the dimension of the subspace

H =




a − 3b + 6c
5a + 4d

b − 2c − d
5d

 : a, b, c, d ∈ R

 .

The strategy is to produce a basis for H by finding a generating set and then reduce it
to a linearly independent generating set. The number of elements in the final set is equal
to dim H.
First, we find a generating set for H. A generic vector in H can be written as

a − 3b + 6c
5a + 4d

b − 2c − d
5d

 = a


1
5
0
0

+ b


−3

0
1
0

+ c


6
0

−2
0

+ d


0
4

−1
5

 , a, b, c, d ∈ R.
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Then

H = Span




1
5
0
0

 ,


−3

0
1
0

 ,


6
0

−2
0

 ,


0
4

−1
5


 .

This is not a basis, however. Notice that the third vector is a multiple of the second
vector, so it can be removed from the set. The remaining vectors are linearly independent.
Thus, we have found a basis for H; namely,


1
5
0
0

 ,


−3

0
1
0

 ,


0
4

−1
5


 .

Since it has three vectors, we conclude that dim H = 3.

Example 2.23

Find the dimensions of the null space and the column space of the matrix

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

The pivot columns of A form a basis of ColA, so the dimension of the column space is
the number of pivot columns. Row reduce the matrix to row reduced echelon form:

A ∼ B =

1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 .

Therefore, dim ColA = 2.
Now we find a basis for NulA. If we row reduce the augmented matrix [A 0] we obtain
[B 0]. The corresponding system of linear equations is:

x1 − 2x2 − x4 + 3x5 = 0,
x3 + 2x4 − 2x5 = 0,

0 = 0,

with x2, x4, x5 free. Its general solution is
x1
x2
x3
x4
x5

 =


2 a + b − 3 c

a
−2 b + 2 c

b
c

 = a


2
1
0
0
0

+ b


1
0

−2
1
0

+ c


−3

0
2
0
1

 , a, b, c ∈ R.

We already know that the number of generating vectors produced with this method is
equal to the number of free variables. Furthermore, this method produces automatically
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a set of linearly independent vectors because the free variables are the weights on the
spanning vectors. For instance, look at the second, fourth, and fifth entries of the three
vectors above, and note that 0 is a linear combination of these vectors if and only if
a = b = c = 0. Therefore, these vectors form a basis for NulA and dim NulA = 3.

2.6 Coordinates

The purpose of bases in vector spaces is to provide a method of computation, and we are going
to learn to use them in this section. We will consider two topics: how to express a vector in
terms of a given basis, and how to relate two different bases of the same vector space.

Let V be a vector space with dim V = n over a field K, and suppose that

B = {u1, u2, . . . , un}

is a basis of V . Then any vector v ∈ V can be expressed uniquely as a linear combination of
the basis vectors in B, say

v = a1 u1 + a2 u2 + · · · + an un.

The n scalars a1, a2, . . . , an are called the coordinates of v relative to B: and they form the
vector

[v]B =


a1
a2
...

an

 ,

called the coordinate vector of v relative to B.

Example 2.24

Let E3 = {e1, e2, e3} be the canonical basis for R3. That is,

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

For any vector x ∈ R3, it is obvious that [x]E3 = x.

Example 2.25

Let Sn = {1, t, t2, . . . , tn} be the standard basis of Pn. For any polynomial q(t) =
a0 + a1 t + a2 t2 + · · · + an tn, we have

[q(t)]Sn =


a0
a1
...

an

 .
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Example 2.26

Let
v =
ï
1
4

ò
, u1 =

ï
1
2

ò
, u2 =

ï
3
5

ò
.

Find the coordinates of v relative to the basis B = {u1, u2}.

We must find scalars a1, a2 such that v = a1 u1 + a2 u2, or, in matrix formï
1 3
2 5

ò ï
a1
a2

ò
=
ï
1
4

ò
.

Row reduce the augmented matrix:ï
1 3 1
2 5 4

ò
∼
ï
1 0 7
0 1 −2

ò
.

Therefore,

[v]B =
ï

7
−2

ò
.

We want to emphasize the v ̸= [v]B. The correct relation between v and its coordinates
[v]B is v = 7 u1 − 2 u2.

The following example is to remind you that the material in this course is applicable to
every vector space, not just to the well-known ones like Rn and Pn.

Example 2.27

Let us consider the vector space V generated by the set of linearly independent functions
B = {e−i π t, e−i π

2 t, 1, ei π
2 t, ei π t}. Observe that B is a basis for V and dim V = 5. Some

examples of vector in V are

cos
(π n

2 t
)

, sin
(π n

2 t
)

, n = −2, −1, 0, 1, 2.

We will use Euler’s formula

eiθ = cos θ + i sin θ, θ ∈ R, i =
√

−1,

to find the coordinates of some of these vectors relative to B.

By Euler’s identity

cos(π t) = ei π t + e−i π t

2 and sin
(π

2 t
)

= ei π
2 t − e−i π

2 t

2i
.
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Therefore,

[cos(π t)]B =


1/2
0
0
0

1/2

 and
[
sin
(π

2 t
)]

B
=


0

− 1
2i
0
1
2i
0

 .

Another example is

[
1 + 2 cos(π t) − 2i sin

(π

2 t
)]

B
=


1
1
1

−1
1

 .

The coordinates relative to any basis have the property that they preserve the main structure
of vector spaces: linear combinations.

Theorem 2.12

Let B = {u1, . . . , un} be a basis for a vector space V . For any v, w ∈ V and scalar r:

1. [v + w]B = [v]B + [w]B

2. [r v]B = r [v]B

Proof. Take two typical vectors in V , say

v = c1 u1 + c2 u2 + · · · + cn un,

w = d1 u1 + d2 u2 + · · · + dn un.

Then, using vector operations,

v + w = (c1 + d1) u1 + (c2 + d2) u2 + · · · + (cn + dn) un.

It follows that

[v + w]B =


c1 + d1
c2 + d2

...
cn + dn

 =


c1
c2
...

cn

+


d1
d2
...

dn

 = [v]B + [w]B.

If r is any scalar, then

r v = (r c1) u1 + (r c2) u2 + · · · + (r cn) un.

So

[r v]B =


r c1
r c2

...
r cn

 = r


c1
c2
...

cn

 = r [v]B.

■
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We now come to a very important computational method: change of basis. Identifying
vectors in V with column vectors in Kn is useful when a natural basis is presented to us, but
not when the given basis is poorly suited to the problem at hand. In that case, we will want to
change basis. So let us suppose that we are given two bases for the same vector space V , say
B = {b1, . . . , bn} and C = {c1, . . . , cn}. We will think of B as the old basis, and C as a new
basis. There are two computations which we wish to clarify. We ask first: How are the two
bases related? Secondly, a vector v ∈ V will have coordinates relative to each of these bases,
but of course they will be different. So we ask: How are the two coordinate vectors related?
These are the computations called change of basis.

We begin by noting that since the new basis spans V , every vector in the old basis B is
a linear combination of the new basis C. So we can write the coordinates of each vector in B
relative to C:

[b1]C , [b2]C , · · · [bn]C .

Now let

[v]B =


v1
v2
...

vn


be the coordinate vector of v relative to the old basis B. That is,

v = v1 b1 + v2 b2 + · · · + vn bn.

Using Theorem 2.12, we compute the coordinate vector of v relative to the new basis C:

[v]C = [v1 b1 + v2 b2 + · · · + vn bn]C = v1 [b1]C + v2 [b2]C + · · · + vn [bn]C .

If we define the matrix
P B

C =
[
[b1]C [b2]C · · · [bn]C

]
,

then we can write
[v]C = P B

C [v]B.

Following the same argument as above but interchanging the roles of the bases B and C, we
obtain

[v]B = P C
B [v]C ,

where
P C

B =
[
[c1]B [c2]B · · · [cn]B

]
.

Then we make the following observation: P B
C is an invertible matrix and (P B

C )−1 = P C
B .

Recapitulating, we have an invertible matrix P B
C , called the matrix of change of basis from

B to C, whose columns are the coordinate vectors of each element of the old basis B relative
to the new basis C, which transforms [v]B into [v]C . Moreover, the columns of (P B

C )−1 are the
coordinate vectors of each element of the new basis C relative to the old basis B.

An important consequence of the computations described above is that, given any basis B
of V , it is possible to obtain a new basis C = {c1, . . . , cn} by choosing any invertible n × n
matrix P = [a1 a2 . . . an] and letting its columns be the coordinate vectors of the vectors in
the new basis relative to the old one. That is,

[c1]B = a1, [c2]B = a2, · · · , [cn]B = an.

In this case, P = P C
B .
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Example 2.28

Let E3 = {e1, e2, e3} be the canonical basis for R3. That is,

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Recall that for any vector x ∈ R3, it is obvious that [x]E3 = x. Furthermore, consider
another basis for B = {b1, b2, b3}, where

b1 =

1
2
0

 , b2 =

 5
4

−2

 , b3 =

 0
−1

0

 .

The change of basis matrix from B to E3 is

P B
E3 =

[
[b1]E3 [b2]E3 [b3]E3

]
=

1 5 0
2 4 −1
0 −2 0

 .

We can also compute P E3
B = (P B

E3)−1:

P E3
B =

[
[e1]B [e2]B [e3]B

]
=

1 0 5
2

0 0 −1
2

2 −1 3

 .

It is interesting to verify that the columns of P E3
B are, indeed, the coordinate vectors of

the elements of the canonical basis relative to B:

e1 = b1 + 2b3, e2 = −b3, e3 = 5
2b1 − 1

2b2 + 3b3.

Example 2.29

Let
b1 =

ï
−9

1

ò
, b2 =

ï
−5
−1

ò
, c1 =

ï
1

−4

ò
, c2 =

ï
3

−5

ò
,

and consider the bases for R2 given by B = {b1, b2} and C = {c1, c2}. Find the change
of basis matrices P B

C and P C
B .

First, the matrix P B
C involves the coordinate vectors of b1 and b2 relative to C. Let

[b1]C =
ï
x1
x2

ò
and [b2]C =

ï
y1
y2

ò
. Then, by defintion

[
c1 c2

] ïx1
x2

ò
= b1 and

[
c1 c2

] ïy1
y2

ò
= b2.
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To solve both systems simultaneously, augment the coefficient matrix with b1 and b2,
and row reduce:[

c1 c2 b1 b2
]

=
ï

1 3 −9 −5
−4 −5 1 −1

ò
∼
ï
1 0 6 4
0 1 −5 −3

ò
.

Thus,

[b1]C =
ï

6
−5

ò
and [b2]C =

ï
4

−3

ò
.

The matrix P B
C is therefore

P B
C =

[
[b1]C [b2]C

]
=
ï

6 4
−5 −3

ò
.

We can also compute P C
B = (P B

C )−1:

P C
B =

[
[c1]B [c2]B

]
=
ñ
−3

2 −2
5
2 3

ô
.

Example 2.30

Let
p0(t) = (1 − t)3, p1(t) = 3t (1 − t)2, p2(t) = 3t2 (1 − t), p3(t) = t3.

and consider the bases for P3 given by B = {p0(t), p1(t), p2(t), p3(t)} and
S3 = {1, t, t2, t3}. Use a change of basis matrix to write the polynomial q(t) = t2 + 1 as
a linear combination of the basis B.

Observe that the polynomial q(t) is written as a linear combination of the basis S3. So
we need to compute the change of basis matrix P S3

B . We will use this matrix to compute
[q(t)]B = P S3

B [q(t)]S3 since we know that [q(t)]S3 =
[
1 0 1 0

]⊤.

We will compute P S3
B in two steps. We first compute P B

S3 :

P B
S3 =

[
[p0(t)]S3 [p1(t)]S3 [p2(t)]S3 [p3(t)]S3

]
=


1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1


Now, we compute P S3

B = (P B
S3)−1:

P S3
B =


1 0 0 0
1 1/3 0 0
1 2/3 1/3 0
1 1 1 1

 .

Since [q(t)]B = P S3
B [q(t)]S3 =

[
1 1 4

3 2
]⊤, we have q(t) = p0(t)+p1(t)+ 4

3p2(t)+2p3(t).
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3 Linear mappings and diagonalization

In this chapter, we first consider functions that transform elements from one vector space into
another one. These functions comply with the fundamental properties of linearity, already
considered above, and are therefore called linear mappings. In many instances, we are able to
formulate matrices to represent linear mappings. Afterwards, we consider a concept that has
many applications in the sciences and engineering: the eigenvector . Such a vector is invariant
under a linear mapping (except for a constant factor called eigenvalue) and for certain linear
mappings (and associated matrices) it will be possible to find a basis of the vector space such
that the associated matrix is diagonal, known as the diagonalization of the matrix.

3.1 Linear mappings and matrices

3.1.1 Introduction and basic properties

Example 3.1

Let us start with an example: Let p = [x1, y1, z1] be a point in the vector space R3 (for
simplicity, we use row vectors here). Then, there exists a unique projection to the vector
space R2 spanned by x and y: such a point is simply q = [x1, y1] (in a three-dimensional
Cartesian coordinate system, q lies in the plane [x, y, 0]). We regard [x1, y1, z1] → [x1, y1]
as a mapping T from R3 to R2 and write

T : R3 → R2 T (p) = q.

This mapping conserves linearity:x1
y1
z1

+

x2
y2
z2

 =

x1 + x2
y1 + y2
z1 + z2

 −→
ï
x1 + x2
y1 + y2

ò
=
ï
x1
y1

ò
+
ï
x2
y2

ò
α

x1
y1
z1

 =

αx2
αy2
αz2

 −→
ï
αx1
αy1

ò
= α

ï
x1
y1

ò
, α ∈ R

We see that linear mappings are functions defined on vector spaces that preserve linear
combinations. Other names (mostly used synonymously, but strongly depending on the
context) are linear transformations, linear operators, or linear maps.

Definition 3.1

Given two vector spaces V and W , we say that T : V → W is a linear mapping if
∀u, v ∈ V and ∀α ∈ R it verifies:

(a) T (u + v) = T (u) + T (v) (additivity).

(b) T (αu) = αT (u) (homogeneity).
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These two properties can be combined in a single statement:

T (αu + βv) = αT (u) + βT (v) ∀u, v ∈ V and ∀α, β ∈ R.

Example 3.2

The mapping D : P → P defined by D(p(x)) = p′(x) is linear.

Proof. We show that the differentiation of polynomials is a linear mapping. Let f and
g represent polynomials, written in the canonical basis of polynomials P. Then, we use
knowledge of calculus: D(f + g) = D(f) + D(g) and D(αf) = αD(f) and differentiation
of polynomials (as actually of any differentiable function) is linear. Note that we need
to have a well-defined vector space. ■

Example 3.3

The mapping T : R2 → R2 defined by

T

Åï
x
y

òã
=
ï
y
x

ò
is linear.

Proof. For all vectors
ï
x
y

ò
∈ R2 and all α ∈ R, we have:

T

Åï
x1
y1

ò
+
ï
x2
y2

òã
= T

Åï
x1 + x2
y1 + y2

òã
=
ï

y1 + y2
x1 + x2

ò
=
ï
y1
x1

ò
+
ï
y2
x2

ò
= T

Åï
x1
y1

òã
+ T

Åï
x2
y2

òã
and

T

Å
α

ï
x1
y1

òã
= T

Åï
αx1
αy1

òã
=
ï
αy1
αx1

ò
= α

ï
y1
x1

ò
= αT

Åï
x1
y1

òã
■

This simple example allows us to draw a link to the first chapter. The linear mapping of
this example is interchanging x and y components of a vector. This can also be achieved
by multiplying a matrix to the vector:

T

Åï
x
y

òã
=
ï
y
x

ò
=
ï
0 1
1 0

ò ï
x
y

ò
.

Hence, a linear mapping can be represented (for some relevant cases) by

T (u) = Au,

where A is a suitable matrix. We will come back to the matrix associated to a linear
mapping below.
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Example 3.4

The mapping T : R2 → R2 defined by

T

Åï
x
y

òã
=
ï

y
x2

ò
is not linear.

Proof. It is sufficient to show that the additivity property is not fulfilled:

T

Åï
x1
y1

ò
+
ï
x2
y2

òã
= T

Åï
x1 + x2
y1 + y2

òã
=
ï

y1 + y2
(x1 + x2)2

ò
,

while
T

Åï
x1
y1

òã
+ T

Åï
x2
y2

òã
=
ï
y1
x2

1

ò
+
ï
y2
x2

2

ò
=
ï

y1 + y2
x2

1 + x2
2

ò
■

Theorem 3.1

Let T : V → W be a linear mapping. Then:

(a) T (0) = 0.

(b) T (−u) = −T (u).

(c) T (a1u1 + a2u2 + · · · + anun) = a1T (u1) + a2T (u2) + · · · + anT (un).

Observe that in part (a), the nullvector on the left hand side is the nullvector from V , on
the left hand side there is the nullvector from W . In particular, part (a) means that for a linear
mapping, the nullvector maps to the nullvector. In part (c), the number of vectors n is not
specified.

Example 3.5

The mapping T : R2 → R2 defined by

T

Åï
x
y

òã
=
ï
x + 1

y

ò
is not linear since

T

Åï
0
0

òã
=
ï
1
0

ò
̸=
ï
0
0

ò
.
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3.1.2 Kernel and image of a linear mapping

Definition 3.2

Let T : V → W be a linear mapping. We define the kernel and image of T , respectively,
as follows:

Ker T = {x ∈ V : T (x) = 0},

Im T = {T (x) ∈ W : x ∈ V }.

Observe that KerT is a subspace of V and ImT is a subspace of W . Once we establish the
associated matrix for a linear mapping, we will see how the kernel is analogous to the nullspace
and the image to the column space of the matrix.

Theorem 3.2

Let T : V → W be a linear mapping and let {u1, u2, . . . , un} be a system of generators
of V . Then, {T (u1), T (u2), . . . , T (un)} is a system of generators of ImT .

Example 3.6

Find the kernel and image of the linear mapping T : R3 → R3 defined by

T

Ñx
y
z

é =

 x + z
y

x + 2y + z

 .

For the vector space of this example, we know a very convenient system of generators:
the canonical basis of R3: 

1
0
0

 ,

0
1
0

 ,

0
0
1

 .

We apply the linear mapping to these vectors and obtain three vectorsT

Ñ1
0
0

é , T

Ñ0
1
0

é , T

Ñ0
0
1

é =


1

0
1

 ,

0
1
2

 ,

1
0
1

 .

Two of these vectors are linearly dependent, and hence we conclude

ImT = Span


1

0
1

 ,

0
1
2


The kernel is formed by the vectors that map to the nullvector.

x + z = 0,

y = 0,

x + 2y + z = 0.

88



From that set of equations we obtain

x = −z,

y = 0,

with z being arbitrary, and therefore

Ker T = Span


 1

0
−1


Before we proceed, we have to review some general classification of functions:

Definition 3.3

Let f : A → B be a function. Then,

(a) f is injective if and only if x ̸= y implies f(x) ̸= f(y) ∀x, y ∈ A.

(b) f is surjective if and only if ∀b ∈ B, ∃a ∈ A such that f(a) = b.

(c) f is bijective if and only if f is injective and f is surjective.

With this classification it is now possible to confirm the following properties for injective
and surjective (and hence, bijective) linear mappings:

Theorem 3.3

Let T : V → W be a linear mapping. Then:

(a) T is injective if and only if KerT = {0}.

(b) T is surjective if and only if ImT = W .

(c) T is bijective if and only if KerT = {0} and ImT = W .

There are alternative characterizations for injective, surjective and bijective linear mappings,
provided by the following theorem:

Theorem 3.4

Let T : V → W be a linear mapping. Then:

(a) T is injective if and only if for each independent set {u1, u2, . . . , un}, the set
{T (u1), T (u2), . . . , T (un)} is linearly independent.

(b) T is surjective if and only for each system of generators of V , {u1, u2, . . . , un}, the
set {T (u1), T (u2), . . . , T (un)} is a system of generators of W .

(c) T is bijective if and only if for each basis of V , {u1, u2, . . . , un}, the set
{T (u1), T (u2), . . . , T (un)} is a basis for W .
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Notice that n for the three cases is not necessarily the same number, as the number of
independent vectors can be smaller than the dimension, and the number of generatoring vectors
can be larger than the dimension, respectively.

Let us now move on to generate linear mappings from basic operations.

Definition 3.4

Let f, g : V → W be two linear mappings and λ ∈ R. Then, we can define the following
operations:

(a) f + g : V → W, (f + g)(x) = f(x) + g(x)

(b) λf : V → W, (λf)(x) = λf(x)

Theorem 3.5

With the operations of linear mappings, the set of linear mappings between two vector
spaces V and W is itself a vector space.

As for general functions, we can also define the composition of linear mappings and find
that its result is also a linear mapping, by the next theorem.

Theorem 3.6

Let f : V → W and g : W → U be two linear mappings. Then, their composition
g ◦ f : V → U , defined by (g ◦ f)(x) = g(f(x)) is also a linear mapping.

We also would like to define an inverse linear mapping and, for that, we use the general
result that if a function is bijective, it has a unique inverse function. In particular, if f : V → W
is a bijective linear mapping, then there is a unique function f−1 : W → V such that:

f−1(f(v)) = v for all v ∈ V,

f(f−1(w)) = w for all w ∈ W.

It turns out that the inverse of a linear mapping is also a linear mapping.

Theorem 3.7

For each bijective linear mapping Let f : V → W , its inverse mapping f−1 : W → V is
also a linear mapping, i.e.,

f−1(αx + βy) = αf−1(x) + βf−1(y) ∀x, y ∈ W and ∀α, β ∈ R.

3.1.3 Associated matrices

Here, we will see that linear mappings between finite-dimensional vector spaces have a matrix
representation. In fact, given a linear mapping T : V → W , this matrix representation or
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associated matrix, denoted by MB
C (T ) (or just MB

C for the sake of simplicity) has the useful
property that

[T (x)]C = MB
C [x]B, (3.1)

where B and C are bases for V and W , respectively. In other words, for each x ∈ V , the matrix
MB

C should transform the coordinates of x into the coordinates of its image under T . In this
way, the effect that MB

C has on [x]B is analogous to the effect that T has on x.
An important observation is that MB

C depends on the bases that are chosen for the vector
spaces and, of course, the mapping itself. We now discuss how to construct the associated
matrix of a linear mapping relative to the bases B and C.

Construction of the matrix associated to a linear mapping
Let B = {b1, b2, . . . , bn} be a basis for V . Then, for each x ∈ V , we can write

x = x1b1 + x2b2 + · · · + xnbn,

which means that its vector of coordinates relative to B is

[x]B =


x1
x2
...

xn

 .

If we apply the linear mapping T to both sides of x = x1b1 +x2b2 + · · ·+xnbn, then we obtain

T (x) = T (x1b1 + x2b2 + · · · + xnbn),

and, due to the linearity of T , we have

T (x) = x1 T (b1) + x2 T (b2) + · · · + xn T (bn).

Since taking coordinates preserves linear combinations, we deduce that the coordinates of T (x)
relative to the basis C are given by

[T (x)]C = [x1T (b1) + x2T (b2) + · · · + xnT (bn)]C

= x1 [T (b1)]C + x2 [T (b2)]C + · · · + x2 [T (bn)]C ,

or, in matrix notation,

[T (x)]C =
ï
[T (b1)]C [T (b2)]C . . . [T (bn)]C

ò
[x]B, (3.2)

where each [T (bi)]C is an m × 1 (column) vector.
Comparing (3.1) and (3.2), we see that the m × n matrix

MB
C =

ï
[T (b1)]C [T (b2)]C . . . [T (bn)]C

ò
, (3.3)

is precisely the associated matrix for T that we were looking for.
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Example 3.7

Let T : R2 → R3 be a linear mapping such that

T

Åï
1
0

òã
=

1
2
3

 , T

Åï
0
1

òã
=

2
1
0

 ,

and let E2 and E3 be the canonical bases for R2 and R3, respectively. Find ME2
E3

(T ) ≡ ME2
E3

.
Then, compute T (x) for

x =
ï
1
1

ò
.

According (3.3), the columns of ME2
E3

areï
T

Åï
1
0

òãò
E3

=

1
2
3

 , and
ï
T

Åï
0
1

òãò
E3

=

2
1
0

 .

Therefore,

ME2
E3

=
ñï

T

Åï
1
0

òãò
E3

ï
T

Åï
0
1

òãò
E3

ô
=

1 2
2 1
3 0


In this case, T (x) can be computed directly (even if a definition for T is not explicitly
given) using ME2

E3
, because T (x) = [T (x)]E3 and x = [x]E2 . Therefore,

[T (x)]E3 = ME2
E3

[x]E2 ,

becomes

T

Åï
1
1

òã
=

1 2
2 1
3 0

 ï1
1

ò
=

3
3
3

 .

Example 3.8

Let D : P3 → P3 be the linear mapping defined as

D(p(x)) = p′(x).

Find MS3
S3

(D) ≡ MS3
S3

, where S3 = {1, x, x2, x3} is the standard basis for P3.
Note that, in this example, D is a mapping from P3 to itself. Moreover, we are asked to
use the same basis to represent the elements in P3 as well as their images under D.
By (3.3), we have

MS3
S3

=
[
[D(1)]S3 [D(x)]S3 [D(x2)]S3 [D(x3)]S3

]
=
[
[0]S3 [1]S3 [2x]S3 [3x2]S3

]
.

The explicit expression of MS3
S3

is obtained by writing out the derivatives in the last
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equality as linear combinations of S3:

0 = 0 · 1 + 0 · x + 0 · x2 + 0 · x3,

1 = 1 · 1 + 0 · x + 0 · x2 + 0 · x3,

2x = 0 · 1 + 2 · x + 0 · x2 + 0 · x3,

3x2 = 0 · 1 + 0 · x + 3 · x2 + 0 · x3.

Therefore,

MS3
S3

=


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Let us mention an interesting property of this linear mapping. Observe that the first col-
umn of MS3

S3
consists entirely of zeros and, obviously, it is not a pivot column. Therefore,

the equation
MS3

S3
x = 0,

has a non trivial solution (the first column corresponds to a free variable). This means
that there is at least one non zero polynomial p(x) such that D(p(x)) = 0. In other
words, KerD ̸= {0}. It follows from Theorem 3.3 that D is not injective. Indeed, it is
well known that for any constant k, D(k) = 0. Consequently, any polynomial of the form
f(x) = p(x) + k, k ∈ R, satisfies the equation

D(f(x)) = p′(x).

Example 3.9

Let T : P3 → P4 be the linear mapping defined as
T (p(x)) = x p(x).

Let us compute MB
S4(T ) ≡ MB

S4 where B = {1, 1 + x, x + x2, x2 + x3} and
S4 = {1, x, x2, x3, x4}.

Since we are using the standard basis for P4, it is easy to write the explicit expression
for MB

S4 . By (3.3),we have

MB
S4 =

î
[T (1)]S4

[T (1 + x)]S4

[
T (x + x2)

]
S4

[
T (x2 + x3)

]
S4

ó
=
î
[x]S4

[
x + x2]

S4

[
x2 + x3]

S4

[
x3 + x4]

S4

ó
=


0 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .
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The matrices of injective, surjective, and bijective linear mappings

It is possible to characterize the injective and surjective character of a linear mapping
T : V → W in terms of the pivots of its associated matrix independently of the bases we choose
for the vector spaces involved.

In the discussion below, B = {b1, b2, . . . , bn} will denote a basis for V and C will denote a
basis for W .

Injectivity. By Theorem 3.4, we know that T is an injective linear mapping if and only if
{T (b1), T (b2), . . . , T (bn)} is a linearly independent set of vectors. Moreover recall that their
coordinate vectors relative to any basis constitute a linearly independent set of column vectors.
Hence,

{[T (b1)]C , [T (b2)]C , . . . , [T (bn)]C}
is a linearly independet set of vectors in Rm with m = dim W . These vectors are the columns of
the associated matrix MB

C . Therefore, the injectivity of T passes down to its associated matrix
MB

C as follows: T is injective if and only if all the columns of MB
C are linearly independent, or,

equivalently, all the columns of MB
C are pivot columns. Consequently, the equation

[y]C = MB
C [x]B, y ∈ Im T,

has a unique solution. If we compute the rank of MB
C associated with an injective linear mapping

T , then we find that

rank MB
C = #pivots of MB

C = #columns of MB
C = dim V.

This has the following important consequence:

If there is an injective linear mapping T : V → W , then

• n = dim V ≤ m because any linearly independent set in W has at most m elements.

• #columns of MB
C ≤ #rows of MB

C .

Surjectivity. Again, by Theorem 3.4, we know that T is surjective if and only if the set
{T (b1), T (b2), . . . , T (bn)} is a generating system of W . Since taking coordinates preserve
linear relations, this means that the set

{[T (b1)]C , [T (b2)]C , . . . , [T (bn)]C}

is a generating system for Rm with m = dim W . These vectors are the columns of the associated
matrix MB

C , and therefore surjectivity translates into the statement that all rows of MB
C have a

pivot (in order to avoid degenerate rows), which is the same as confirming that the equation

[y]C = MB
C [x]B, y ∈ Im T

has a solution for all b ∈ W . Therefore, computing the rank of MB
C , we obtain

rank MB
C = #pivots of MB

C = #rows of MB
C = dim W.

This has the following important consequence:

If there is a surjective linear mapping T : V → W , then
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• n = dim V ⩾ m because any generatig set for W has at least m elements.

• #columns of MB
C ≥ #rows of MB

C .

Bijectivity. From the previous discussion, we deduce that T is bijective (T is both injective
and surjective) if and only if the set of vectors {T (b1), T (b2), . . . , T (bn)} forms a basis for W .
Putting what we know about injectivity and surjectivity together

rank MB
C = #pivots of MB

C = #columns of MB
C = #rows of MB

C .

This has the following significant implication:
If there is a bijective linear mapping T : V → W , then

• dim V = dim W .

• MB
C is an invertible square matrix.

Let us consider a few examples.

Example 3.10

Let T : R2 → R3 be a linear mapping such that

T

Åï
1
0

òã
=

1
2
3

 , T

Åï
0
1

òã
=

2
1
0

 .

We already found the associated matrix with respect to the canonical bases:

ME2
E3

=

1 2
2 1
3 0

 .

Its row reduced echelon form is given by

ME2
E3

∼

1 0
0 1
0 0

 .

We see that all columns of ME2
E3

are pivot columns and therefore T is injective. We
can also see that dimR2 < dimR3, and hence T cannot be surjective (and, thus, not
bijective).

Example 3.11

Let D : P3 → P3 a linear mapping defined by D(p(x)) = p′(x). We already know the

95



associated matrix relative to the standar basis S3 = {1, x, x2, x3}:

MS3
S3

=


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

This matrix has less pivot columns than columns (hence, D is not injective) and less
pivot rows than rows (hence, D not surjective).

Example 3.12

Let T : P3 → P4 a linear mapping defined by T (p(x)) = xp(x). We already know the
associated matrix relative to the basis B = {1, 1 + x, x + x2, x2 + x3} for P3, and the
standard basis S4 = {1, x, x2, x3, x4}:

MB
S4 =


0 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 .

After computing its row reduced echelon form:

MB
S4 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

we find that all its columns are pivot columns, which means that T is injective. However,
dim P3 < dim P4, so T cannot be surjective.

3.1.4 Associated matrices and the change of basis

Whenever we compute a matrix associated with a linear mapping T : V → W , we explicitly
use a fixed basis for each vector space V and W . This means that the explicit expression
of the associated matrix depends on the specific choice of these bases. Nevertheless, since
the underlying mapping T is independent of the choice of bases, we should expect to find
a relationship between associated matrices relative to two different choices of bases. In this
section, we will investigate this in detail and describe how an associated matrix varies under a
change of bases. Let us start with an illustrative example.
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Example 3.13

Let T : R3 → R2 be a linear mapping defined by

T

Ñx
y
z

é =
ï
x + y
y − z

ò
Let B = {b1, b2, b3} and C = {c1, c2} be bases for R3 and R2, respectively. We will
consider two cases for illustration: when B and C are the canonical bases and when they
are not, and give the associated matrices for both cases.

Case 1: B and C are the canonical bases E3 and E2, respectively. The presentation may
appear unnecessarily detailed here, but it is illustrative to see the differences with the
more complicated case 2 below. We have

b1 =

1
0
0

 , b2 =

0
1
0

 , b3 =

0
0
1

 .

We calculate, by prescription, T (bi), for i = 1, 2, 3:

T

Ñ1
0
0

é =
ï
1
0

ò
, T

Ñ0
1
0

é =
ï
1
1

ò
, T

Ñ0
0
1

é =
ï

0
−1

ò
.

Actually, the resulting vectors are already written in terms the canonical basis E2, as one
can readily confirm:ïï

1
0

òò
E2

=
ï
1
0

ò
,

ïï
1
1

òò
E2

=
ï
1
1

ò
,

ïï
0

−1

òò
E2

=
ï

0
−1

ò
.

Therefore, we have

ME3
E2

=
ï
1 1 0
0 1 −1

ò
.

Case 2: B and C are now given by

b1 =

1
0
1

 , b2 =

0
1
1

 , b3 =

1
1
1

 .

c1 =
ï
1
2

ò
, c2 =

ï
−1

1

ò
.

We calculate, by prescription, T (bi), for i = 1, 2, 3:

T

Ñ1
0
1

é =
ï

1
−1

ò
, T

Ñ0
1
1

é =
ï
1
0

ò
, T

Ñ1
1
1

é =
ï
2
0

ò
.
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Now, we need to compute [T (b1)]C , [T (b2)]C , and [T (b3)]C . For this, we must solve the
three systems of equations whose augmented matrices are:

[c1 c2 T (b1)], [c1 c2 T (b2)], [c1 c2 T (b3)].

All three systems can be solved simultaneously by setting up the augmented matrix[
c1 c2 T (b1) T (b2) T (b3)

]
,

and reducing it to its row reduced echelon form:ï
1 −1 1 1 2
2 1 −1 0 0

ò
∼

[
1 0 0 1

3
2
3

0 1 −1 −2
3 −4

3

]
.

Therefore,

MB
C =

[
0 1

3
2
3

−1 −2
3 −4

3

]
.

As seen in the previous example, while a linear mapping T : V → W may be independent
of the choice of bases for V and W , the explicit expression for its associated matrix will change
under different choices of bases.

Our goal here is to start with the associated matrix MB
C relative to the old bases B (for V )

and C (for W ), and use it to produce the associated matrix relative to new bases B̂ (for V ) and
Ĉ (for W ). Let us start by recalling the fundamental property of the associated matrix relative
to the old bases B and C:

[T (v)]C = MB
C [v]B, for all v ∈ V.

Moreover, we can use matrices of change of bases to write the coordinates of the vectors v ∈ V
and T (v) ∈ W relative to the new bases:

[v]B = P B̂
B [v]B̂, and [T (v)]C = P Ĉ

C [T (v)]Ĉ .

If we insert these two identities in the previous equation, then we obtain

P Ĉ
C [T (v)]Ĉ = MB

C P B̂
B [v]B̂.

Multiplying both sides of the equation on the left by
Ä
P Ĉ

C

ä−1
= P C

Ĉ , we get

[T (v)]Ĉ =
[
P C

Ĉ MB
C P B̂

B

]
[v]B̂.

Comparing this equation with the fundamental property satisfied by M B̂
Ĉ :

[T (v)]Ĉ = M B̂
Ĉ [v]B̂, for all v ∈ V,

we can finally conclude that
M B̂

Ĉ = P C
Ĉ MB

C P B̂
B .
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Hence, we can obtain the associated matrix for T relative to the new bases B̂ and Ĉ through
a matrix product of three matrices. Note that, on one hand, MB

C and M B̂
Ĉ are both m × n

matrices, where n = dim V and m = dim W . On the other hand, the matrix P C
Ĉ is m × m and

the matrix P B̂
B is n × n.

We state the above important result as a theorem.

Theorem 3.8

Let T : V → W be a linear mapping and let MB
C be its associated matrix relative to the

basis B for V and the basis C for W . If B̂ and Ĉ are new bases for V and W , respectively,
then the associate matrix for T relative to the new bases is given by

M B̂
Ĉ = P C

Ĉ MB
C P B̂

B ,

where P B̂
B and P C

Ĉ are matrices of change of basis.

Example 3.14

We review the example from above. Let T : R2 → R3 be a linear mapping such that

T

Åï
1
0

òã
=

1
2
3

 , T

Åï
0
1

òã
=

2
1
0

 .

Its associated matrix relative to the canonical bases is

ME2
E3

=

1 2
2 1
3 0

 .

We wish to determine MB
C relative to the new bases given by

B =
ßï

1
0

ò
,

ï
1
1

ò™
and C =


1

0
0

 ,

1
1
0

 ,

0
1
1

 .

By Theorem 3.8, we can obtain MB
C as follows:

MB
C = P E3

C ME2
E3

P B
E2 .

Writing the matrix of change of basis from B and C to the corresponding canonical bases
is straightforward since their columns consist of the basis vectors themselves:

P B
E2 =

ï
1 1
0 1

ò
, P C

E3 =

1 1 0
0 1 1
0 0 1

 .
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However, we need to find P E3
C =

(
P C

E3

)−1:1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

 ∼

1 1 0 1 0 0
0 1 0 0 1 −1
0 0 1 0 0 1

 ∼

1 0 0 1 −1 1
0 1 0 0 1 −1
0 0 1 0 0 1

 .

Therefore,

P E3
C =

1 −1 1
0 1 −1
0 0 1

 .

We can finally compute MB
C :

MB
C = P E3

C ME2
E3

P B
E2 =

1 −1 1
0 1 −1
0 0 1

1 2
2 1
3 0

 ï1 1
0 1

ò
=

 2 3
−1 0

3 3

 .

Example 3.15

Let T : R3 → R2 be the linear mapping defined by

T

Ñx
y
z

é =
ï
x + y
y − z

ò
.

Its associated matrix relative to the canonical bases is

ME3
E2

=
ï
1 1 0
0 1 −1

ò
.

If we wish to determine its associated matrix relative to the bases B and C given by

B =


1

0
1

 ,

0
1
1

 ,

1
1
1

 and C =
ßï

1
2

ò
,

ï
−1
1

ò™
,

then we need to compute the matrices of change of bases P B
E3 and P E2

C . We can write
down directly the matrices

P C
E2 =

ï
1 −1
2 1

ò
, P B

E3 =

1 0 1
0 1 1
1 1 1

 .

We only need to compute P E2
C =

(
P C

E2

)−1:

P E2
C =

Ä
P C

E2

ä−1
=
[ 1

3
1
3

−2
3

1
3

]
.
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By Theorem 3.8, we can obtain MB
C as follows:

MB
C = P E2

C ME3
E2

P B
E3 =

[ 1
3

1
3

−2
3

1
3

] ï
1 1 0
0 1 −1

ò1 0 1
0 1 1
1 1 1

 =
[

0 1
3

2
3

−1 −2
3 −4

3

]
.

3.2 Eigenvalues, eigenvectors, and diagonalization

In this section, we consider a topic that has a wide range of applications in applied mathematics
and by extension in the sciences and engineering: the eigenvectors and eigenvalues of a linear
mapping. In the presence of some favourable conditions (namely, when the mapping is diago-
nalizable), they offer a way to understand the structure of a linear mapping that map a vector
space to itself and, in turn, understand the structure of the involved vector space. Moreover,
the study of diagonalizable linear mappings opens the avenue to more advanced methods (e.g.,
orthogonal or Fourier decomposition of vectors) that we discuss in the next chapter.

3.2.1 Introduction

For a finite-dimensional vector space V with dim V = n, let T : V → V be a linear mapping,
and let B = {b1, b2, . . . , bn} be a basis for V . Since maps V into itself then, for each x in V ,
the vector T (x) can also be written in the same basis B. The matrix associated with T relative
to B is given by

MB
B =

[
[T (b1)]B [T (b2)]B · · · [T (bn)]B

]
.

For the sake of simplicity, the associated matrix MB
B can simply be denoted as MB. We must

mention that any linear mapping that maps a vector space to itself is usually called a linear
operator. So, from now on, MB can be understood as the associated matrix of a linear operator
relative to a basis B.

In the previous section, we discussed the behavior of the associated matrices of a linear
mapping T : V → W under a change of bases. In the particular case when T is a linear
operator (that is, W = V ), we can consider the change of basis from B to some other basis C.
In this case, by Theorem 3.8, we have

MC = P B
C MB P C

B ,

where P C
B is the matrix of change of basis from C to B and P B

C =
(
P C

B
)−1.

The fundamental goal is to find a basis C (when possible) such that MC is a diagonal matrix

MC =


λ1

λ2
. . .

λn

 ,

where the empty spaces are understood to be filled with 0’s. If such a basis C = {c1, c2, . . . , cn}
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exists, then the explicit expression

MC =
[
[T (c1)]C [T (c2)]C · · · [T (cn)]C

]
=


λ1

λ2
. . .

λn

 ,

shows that
T (ci) = λi ci, for i = 1, 2, . . . , n.

This means that if the linear mapping is applied to a vector of this particular basis, then we
obtain a multiple of the same basis vector! This is quite extraordinary since, in general, the
application of a linear mapping to an input vector does not produce an output vector that is
proportional to the input vector. When a non zero vector is mapped by T to a scalar multiple of
itself, such a vector is called an eigenvector , which comes from German “eigen,” meaning “self.”
The scalar constant that multiplies and eigenvector is called an eigenvalue. Each eigenvector is
associated with an eigenvalue. We elaborate on this in the next section.

3.2.2 Eigenvalues and eigenvectors

Definition 3.5

Let T : V → V be a linear mapping. Any non zero vector x ∈ V such that

T (x) = λx,

for some scalar λ is called an eigenvector of T . The scalar λ is called the eigenvalue
associated with x. Eigenvalues are allowed to be zero.

Observation 3.1

The zero vector is excluded as eigenvector, because it would satisfy the equation for any
value of λ. From the above introductory comments, we would expect that there are
exactly n = dim V eigenvectors and eigenvalues. While sometimes this can be indeed the
case, however, this topic will be treated with care and detail below.

Example 3.16

Let T : C2 → C2 be the linear mapping defined by

T

Åï
x
y

òã
=
ï
−y

x

ò
.

Recall that C2 =
¶[

x y
]⊤ : x, y ∈ C

©
. Verify that λ1 = i and λ2 = −i are eigenvalues

of T . If possible, find a basis for C2 such that its elements are eigenvectors of T and
write its associated matrix relative to such basis.
We consider first λ1 = i. If λi is an eigenvalue of T , then there is some vector [x y]⊤ ∈ C2
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such that
T

Åï
x
y

òã
= i

ï
x
y

ò
.

However, by the definition of T , the same vector must satisfy

T

Åï
x
y

òã
=
ï
−y

x

ò
.

This implies that

ix = −y,

iy = x.

Solving this system of equations, we obtainï
x
y

ò
= α

ï
i
1

ò
, α ∈ R.

This means that all non zero scalar multiples of
ï

i
1

ò
are eigenvectors of T associated

with λ1.
Now, we consider λ2 = −i. Then, the following two equations must hold for some
[x y]⊤ ∈ C2:

T

Åï
x
y

òã
= −i

ï
x
y

ò
, and T

Åï
x
y

òã
=
ï
−y
x

ò
.

This implies that

−ix = −y,

−iy = x.

The solution of this system of equation is given byï
x
y

ò
= β

ï
−i

1

ò
, β ∈ R.

This means that all non zero scalar multiples of
ï
−i
1

ò
are eigenvectors of T associated

with λ2. We observe that the set

C =
ßï

i
1

ò
,

ï
−i

1

ò™
,

formed by one eigenvector associated with λ1 and one eigenvector associated with λ2, is
a linearly independent set. Moreover, since dimC2 = 2, we conclude that C is a basis for
C2.
It is not hard to verify that the associated matrix of T relative to C is

MC =
ï

i 0
0 −i

ò
.
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Note that the order that you choose for the elements of the basis is important. In fact,
if we change the order of the elements of C, then we obtain a new basis

Ĉ =
ßï

−i
1

ò
,

ï
i
1

ò™
,

and the associate matrix of T relative to Ĉ is

M Ĉ =
ï
−i 0

0 i

ò
̸= MC .

Observation 3.2

The attentive reader would have noticed that in the previous example, the eigenvectors
associated with each eigenvalues are not unique: any non zero scalar multiple of the set
C is also an eigevector of T . This means that it is possible to normalize eigenvectors
depending on the context, e.g., to obtain an eigenvector of unit length. It also implies
that it is allowed to multiply an eigenvector by −1, i.e., changing the sign of all coordinate
values at once, if convenient. In fact, we have the following general result.

Theorem 3.9

Let T : V → V be a linear operator. If v1, v2, . . . , vr ∈ V are eigenvectors associated with
an eigenvalue λ, then any non zero vector v ∈ Span{v1, v2, . . . , vr} is also an eigenvector
associated with λ.

Proof. Choose any non zero vector v ∈ Span{v1, v2, . . . , vr}. Then, v can be written as a linear
combination of the eigenvectors v1, v2, . . . , vr. So, for some scalars a1, a2, . . . , ar, we can write

v = a1 v1 + a2 v2 + · · · + ar vr.

By the linearity of T and the fact that v1, v2, . . . , vr, are eigenvectors associated with the
egienvalue λ, we have that

T (v) = T (a1 v1 + a2 v2 + · · · + ar vr)
= a1 T (v1) + a2 T (v2) + · · · + ar T (vr)
= a1 λ v1 + a2 λ v2 + · · · + ar λ vr

= λ(a1 v1 + a2 v2 + · · · + ar vr)
= λ v.

Hence, T (v) = λ v, which proves that v is an eigenvector of T associated with λ. ■

The following important theorem will be needed later.

Theorem 3.10

Let T : V → V be a linear operator and let x1, x2, . . . , xm be eigenvectors associated
with distinct eigenvalues λ1, λ2, . . . , λm, i.e., λi ̸= λj for i ̸= j. Then, {x1, x2, . . . , xm} is
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a linearly independent set.

Proof. We prove this theorem by contradiction. Suppose that {x1, x2, . . . , xm} is a linearly
dependent set. Therefore, since x1 ̸= 0, we know that one of the vectors in the set is a linear
combination of the preceeding vectors (see Theorem 2.6). Let p be the least index such that
xp+1 is a linear combination of the preceeding (linearly independent) vectors. Then there exist
scalars c1, · · · , cp such that

c1 x1 + · · · + cp v0 = vp+1.

On one hand, applying T to both sides of this equation and using the fact that T (xk) = λk xk

for each k, we obtain
λ1 c1 x1 + · · · + λp cp xp = λp+1 vp+1.

On the other hand, if we multiply both sides by λp+1, we get

λp+1 c1 x1 + · · · + λp+1 cp xp = λp+1 vp+1.

Subtracting the previous two equations, we obtain

(λ1 − λp+1) c1 x1 + · · · + (λp − λp+1) cp xp = 0.

Since {x1, x2, . . . , xp} is linearly independent, the weights in the equation above are all zero.
But none of the factors λi −λp+1 are zero, because the eigenvalues are distinct. Hence ci = 0 for
i = 1, . . . , p, which means that vp+1 = 0, which is impossible. Hence, {x1, x2, . . . , xm} cannot
be linearly dependent and therefore it must be linearly independent. ■

We note that the reciprocal of the previous theorem is not true in general. That is, it is
quite possible for a linear operator to have several linearly independent eigenvectors associated
with one eigenvalue. What the previous theorem is saying is that an eigenvector of a linear
operator can not be associated with two distinct eigenvalues.

The following definition is motivated by Theorem 3.9.

Definition 3.6

Let T : V → V be a linear operator. For each eigenvalue λ of T , we define the set

Eλ = Span{x : T (x) = λx}.

It can easily be deduced from Theorem 3.9 that the set Eλ for each eigenvalue λ of T is a
vector subspace of V . So we will call Eλ the eigenspace associated with λ. Observe that Eλ

is composed of all the (non zero) linear combinations of the eigenvectors associated with λ,
together with 0 ∈ V (otherwise, Eλ is not a vector subspace), which is not an eigenvector. By
Theorem 3.10 we know that any eigenvector of T cannot belong to two different eigenspaces.
Therefore we have that Eλi

∩ Eλj
= {0} whenever λi ̸= λj .

We are now paving the way for a central theorem for eigenvectors and eigenvalues. Let
T : V → V be a linear operator. Our goal will be to characterize the eigenspaces of T . In order
to do this, we search for solutions of the equation

T (x) = λx,
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where λ is a scalar and x is a non zero vector in V . This equation can also be written as

(T − λId)(x) = 0,

where Id denotes the identity operator on V defined by Id(v) = v for all v ∈ V . This means
that λ is an eigenvalue of T with associated eigenvector x if and only if the above equation has
a non trivial solution. Consequently, we have the following characterization of the eigenspaces
of T .

Theorem 3.11

Let T : V → V be a linear operator. Then, for each eigenvalue λ of T

Eλ = Ker(T − λ Id).

Now, let us fix a basis B of V and let MB be the associated matrix of T relative to B.
Then the associated matrix of the operator T − λ Id relative to B is given by MB − λ In, where
Inis the identity matrix and n = dim V . In this way, we can translante the above discussion
about eigenspaces to associated matrices and coordinate vectors: the vector x ∈ V satisfies
(T − λId)(x) = 0 if and only if Ä

MB − λIn

ä
[x]B = 0 ∈ Rn.

We immediately have the following result.

Theorem 3.12

Let T : V → V be a linear operator. Let B be a basis for V and let MB be the associated
matrix of T relative to B. Then, for each eigenvalue λ of T :

(a) x ∈ Eλ if and only if [x]B ∈ Nul(MB − λIn), with n = dim V .

(b) dim Eλ = dim Nul(MB − λIn).

So far, we have described the eigenspaces of a linear operator assuming that we already
know the eigenvalues. However, we still need to describe how to find the eigenvalues, so we
make the following observation. The homogeneous equation

(
MB − λIn

)
[x]B = 0 has a non

trivial solution if and only if the value of λ is chosen so that the matrix MB − λIn is not
invertible. Equivalently, the values of λ must be choses so that

det(MB − λIn) = 0.

It turns out that det(MB − λIn) is a polynomial of degree at most n and, therefore, if λ is an
eigenvalue of T then it is a root of this polynomial. This means that a linear operator has at
most n distinct eigenvalues.

This polynomial is important enough to deserve a special name.
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Definition 3.7

Let T : V → V be a linear operator and let MB be its associated matrix relative to a
basis B.

(a) The polynomial p(λ) = det(MB − λIn) of degree n = dim V is called the charac-
teristic polynomial of T .

(b) p(λ) = det(MB − λIn) = 0 is called the characteristic equation of T .

We must remark that important fact that the characteristic polynomial of a linear operator
is independent of the basis that we choose to compute the associated matrix. To show this,
suppose that P is a matrix of change of basis from B to some new basis, and let M = P −1MBP
is the associated matrix relative to the new basis. Then,

det(M − λ In) = det
[
P −1MBP − λ P −1 In P

]
= det

[
P −1(MB − λ In) P

]
.

By the multiplicative property of determinants (det AB = (det A)(det B)), we have

det(M − λ In) = (det P −1)
[

det(MB − λIn)
]
(det P )) = det(MB − λIn),

where we have used the fact that (det P −1)(det P ) = 1. This means that the characteristic
polynomial (and its roots) does not change regardless of its matrix representation.

Theorem 3.13

Let T : V → V be a linear operator and n = dim V . Then T has at most n linear
independent eigenvectors.

Proof. Since the characteristic polynomial has degree n, then T has at most n distinct eigenval-
ues. It follows from Theorem 3.10 that T has at most n linearly independent eigenvectors. ■

Example 3.17

Find the eigenvalues and eigenvectors of T : R2 → R2 defined by

T (x) = Ax with A =
ï
2 3
3 −6

ò
.

(Although it is not explicitly mentioned, the expressions for x ∈ R2 and T are given in
terms of the canonical basis.)
We may proceed as follows.

(1) First, we find the eigenvalues. Recall that the eigenvalues of T are the roots of its
characteristic polynomial given by

p(λ) = det(A − λI2) = det
ï
2 − λ 3

3 −6 − λ

ò
= λ2 + 4λ − 21 = (λ + 7)(λ − 3).

Therefore, the eigenvalues of T are

λ1 = −7, λ2 = 3.
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(2) Now, we obtain the eigenvectors associated with each eigenvalue.

(a) Let us start with λ1 = −7. The eigenvectors associated with this eigenvalue
are vectors in the eigenspace Eλ1 = Ker(T + 7 Id). Since we have (implicitly)
fixed the canonical basis, we have that x = [x]E2 and ME2 = A. Moreover, by
Theorem 3.12 we have that x ∈ Eλ1 if and oly if x ∈ Nul(A + 7 I2); that is,

(A + 7 I2) x = 0.

Noticing that

A + 7 I2 =
ï
9 3
3 1

ò
∼
ï
1 1

3
0 0

ò
,

we deduce that
Nul(A + 7 I2) = Span

ßï
−1

3
1

ò™
.

Therefore, dim Eλ1 = 1 and every eigenvector associated with λ1 is of the form

x = µ

ï
−1

3
1

ò
µ ̸= 0,

(eigenvectors must be non zero vectors).
(b) Similarly, for λ1 = 3, we have

Nul(A − 3 I2) = Span
ßï

3
1

ò™
.

Therefore, dim Eλ2 = 1 and every eigenvector associated with λ2 is of the form

x = η

ï
3
1

ò
η ̸= 0.

We would like to remark that the two eigenvalues are distinct (λ1 ̸= λ2). Then, by
Theorem 3.10, the set B = {v1, v2} with

v1 =
ï
−1

3
1

ò
, v2 =

ï
3
1

ò
,

is linearly independent since v1 and v2 are eigenvectors associated with λ1 and λ2,
respectively. Furthermore, dimR2 = 2, so these two linearly independent eigenvec-
tors form a basis of R2! It turns out that if we write the matrix representation of
T relative to B, we obtain

MB =
ï
−7 0
0 3

ò
,

which, conveniently, is a diagonal matrix whose non zero element are precisely the
eigenvalues of T .
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Example 3.18

Here, we revisit Example 3.16 with the emphasis on showing the systematic procedure
of calculating eigenvalues and eigenvectors starting from a linear operator.
Let T : C2 → C2 be a linear operator defined by

T (x) = Ax, with A =
ï

0 1
−1 0

ò
.

We have implicitly fixed the canonical basis for C2 to represent the operator as a matrix.
Find the eigenvalues and eigenvectors of T .

(1) First, let us find the eigenvalues of T . The characteristic polynomial is given by

p(λ) = det(A − λ I2) = det
ï
−λ 1
−1 −λ

ò
= λ2 + 1.

The eigenvalues of T are the roots of the characteristic polynomial. In this case,
we have two distinct eigenvalues given by λ1 = i and λ2 = −i. Notice that these
eigenvalues are complex numbers.

(2) Next, we describe the eigenvectors associated with each of the eigenvalues.

(a) For λ1 = i, Eλ1 = Ker(T − i Id). As in Example 3.17, we have fixed the
canonical basis and, therefore, Eλ1 coincides with Nul(A − i I2). Hence, we
compute

A − i I2 =
ï

−i 1
−1 −i

ò
∼
ï
1 i
0 0

ò
,

and therefore Eλ1 = Span
ßï

−i
1

ò™
.

(b) Similarly, for λ2 = −i, we have Eλ2 = Nul(A + i I2). Since,

A + i I2 =
ï

i 1
−1 i

ò
∼
ï
1 −i
0 0

ò
,

we obtain Eλ2 = Span
ßï

i
1

ò™
.

Now, consider the set

B =
ßï

−i
1

ò
,

ï
i
1

ò™
,

composed of one eigenvector associated with each eigenvalue. Since the eigenvalues are
distinct, B is a linearly independent set in C2 with dimC2 = 2. Therefore, B is a basis
for C2. It is straightforward to verify that the matrix representation of T in this new
basis is

MB =
ï

i 0
0 −i

ò
.
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3.2.3 Multiplicity of eigenvalues

So far, we have encountered examples of linear operators whose eigenvalues are all distinct
and, consequently, it was possible to construct a basis for the involved vector space consisting
entirely of eigenvectors of the linear operators. However, if we take into account the multiplicity
of the linear factors of the characteristic polynomial, then it is not the case that the eigenvalues
of every linear operator are all distinct as we show in the following example.

Example 3.19

Let T : R3 → R3 be a linear operator defined by

T (x) = A x with A =

4 −1 6
2 1 6
2 −1 8

 .

As usual, we have fixed the canonical basis of R3 and, thus, A is the matrix associated
with T relative to the canonical basis.
Let us compute the characteristic polynomial of T :

p(λ) = det(A − λI3) = det

4 − λ −1 6
2 1 − λ 6
2 −1 8 − λ

 = −(λ − 2)2(λ − 9).

Notice that p(λ) has two distinct real roots λ1 = 2 and λ2 = 9. However, if we take
into account the multiplicity of each linear factor, then p(λ) has three roots: one double
root λ1 = 2 and a single root λ2 = 9. Hence, T does not have three distinct eigenvalues
and, unfortunately, this means that the existence of a basis for R3 consisting entirely
of eigenvectors of T is not guaranteed. At this point, we know that we can choose
two linearly independent eigenvectors: one from Eλ1 and another one from Eλ2 because
λ1 ̸= λ2. But it is not clear if a third appropriate eigenvector exists or, even worse, where
to find it.
However, if we are lucky enough, one of the eigenspaces could have dimension 2 and,
therefore, we could obtain the missing third eigenvector from such eigenspace. In fact,
this is precisely what happens in this example. You can verify that

Eλ1 = Span


1/2

1
0

 ,

−3
0
1

 and Eλ2 = Span


1

1
1

 .

Fortunately, dim Eλ1 = 2 and, therefore, we can choose two linearly independent eigen-
vectors associated with λ1; for instance

B =


1/2

1
0

 ,

−3
0
1

 .

Moreover, the set obtained from B by adding any eigenvector associated with λ2 will
be linearly independent (because λ1 ̸= λ2). In total, we have three linearly independent
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eigenvectors that can be used to construct a basis for R3. For example, This means that
the set

B =


1/2

1
0

 ,

−3
0
1

 ,

1
1
1

 ,

is a basis for R3 consisting entirely of eigenvectors of T .

The following example shows that not every linear operator T : V → V admits enough
linearly independent eigenvectors to constitute a basis for V .

Example 3.20

Fix the canonical basis of R3, and let T : R3 → R3 be a linear operator defined by

T (x) = A x with A =

2 2 3
0 2 2
0 0 2

 .

Let us examine the eigenvalues and eigenvectors of T .

(1) First, we find the eigenvalues. The characteristic polynomial of T is

p(λ) = det(A − λI3) = det

2 − λ 2 3
0 2 − λ 2
0 0 2 − λ

 = (2 − λ)3.

Therefore, λ = 2 is a triple root of p(λ) which, in turn, is the only eigenvalue of T .

(2) The corresponding eigenspace for λ = 2 is E2 = Nul(A − 2 I3). We have

E2 = Nul(A − 2 I3) = Nul

0 2 3
0 0 2
0 0 0

 = Nul

0 1 0
0 0 1
0 0 0

 = Span


1

0
0

 .

In this case, T only admits one linearly independent eigenvector since dim E2 = 1.
Therefore, it is not possible to produce a basis for R3 consisting entirely of eigevenctors
of T .

There are two quantities that play an important role in the general analysis of the eigenspaces
of a linear operator: the multiplicity of each eigenvalue as a root of the characteristic polyno-
mial and the dimension of the corresponding eigenspaces. These quantities deserve their own
terminology.
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Definition 3.8

Let T : V → V be a linear operator and let p(x) be its characteristic polynomial. For
each distinct eigenvalue λ of T , we have

p(x) = (x − λ)mλ q(λ),

where q(x) is a non zero polynomial such that q(λ) ̸= 0, and mλ is a positive integer.

(a) We say that mλ is the algebraic multiplicity of λ.

(b) We say that dim Eλ is the geometric multiplicity of λ.

The following theorem states the relationship between the algebraic and geometric multi-
plicities of the eigenvalues of a linear operator.

Theorem 3.14

Let T : V → V be a linear operator. Then, for each distinct eigenvalue λ,

1 ≤ dim Eλ ≤ mλ.

3.2.4 Diagonalization of linear operators

Now, we return to the original motivation of this chapter: given a linear operator T : V → V ,
find a basis of V such that the matrix associated with T is a diagonal matrix. Let us introduce
the following definition.

Definition 3.9

A linear operator T : V → V is said to be diagonalizable if there is a basis C =
{c1, c2, . . . , cn} of V made up entirely of eigenvectors of T .

If a linear operator is diagonalizable, then its associated matrix relative to the basis of
eigenvector C is of the form

MC =


λ1

λ2
. . .

λn

 ,

where T (ci) = λi ci, for i = 1, 2, . . . , n (see the introductory comments of this section). As we
saw before, not every linear operator is diagonalizable.

An immediate consequence of the above definition is the following theorem.

Theorem 3.15

Let T : V → V be a linear operator and n = dim V . Then T is diagonalizable if and
only if it admits n linear independent eigenvectors.

The previous theorem, together with Theorem 3.10, yields the following result.
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Corollary 3.1

Let T : V → V be a linear operator and n = dim V . If T has n distinct eigenvalues, then
T is diagonalizable.

Observe that from Definition 3.8, we have that T has n distinct eigenvalues if and only if
mλ = 1; that is, each eigenvalue of T has algebraic multiplicity equal to 1. Furthermore, by
Theorem 3.14, this means that dim Eλ = 1 for each eigenvalue λ.

In general, however, a linear operator may admit eigenvalues with algebraic multiplicity
greater than 1. In this general setting, a linear operator is diagonalizable if and only if, for
each eigenvalue λ with algebraic multiplicity mλ, there are mλ linear independent eigenvectors
associated with λ. We formalize this fact in the following theorem.

Theorem 3.16

For a linear operator T : V → V , let λ1, λ2, . . . , λk, be all the distinct eigenvalues of T .
Then T is diagonalizable if and only if

dim Eλ1 + dim Eλ2 + · · · + dim Eλk
= dim V.

Equivalently, T is diagonalizable if and only if

dim Eλj
= mλj

, for j = 1, 2, . . . , k.

Now, we turn our attention the the associated matrix of a diagonalizable linear operator.

Theorem 3.17

Let T : V → V be a diagonalizable linear operator, n = dim V . Then there is a basis for
V , C = {c1, . . . , cn}, formed by eigenvectors of T ; that is, T (ci) = λi ci for i = 1, 2, . . . , n.
Moreover, the matrix associated with T relative to C is a diagonal matrix given by

MC =


λ1

λ2
. . .

λn

 .

Some remarks are in order. In Theorem 3.17, the associated matrix MC is a diagonal matrix
with the eigenvalues of T in its main diagonal. If B is a different basis for V , then

MB = P C
B MC

Ä
P C

B
ä−1

,

where the change of basis matrix is given by

P C
B =
ï
[c1]B . . . [cn]B

ò
.

Notice that the columns of this change of basis matrix are the coordinates of the eigenvectors
of T relative to B. Moreover, the eigenvalues of T appear in the main diagonal of MC in the
same order as the corresponding eigenvectors in the basis C.
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Most textbooks present the topic of diagonalization of linear operators as a method for
factorizing matrices (referring to the associated matrix MB) into a product P D P −1, where
P is an invertible matrix and D is a diagonal matrix. However, these notes are intended to
approach diagonalization from an operator point of view.

Finally, observe that we have total freedom in choosing the order of the eigenvectors in the
basis C. This means that the diagonal associated matrix for T is only uniquely determined up
to the order in which the eigenvectors of T appear in C.

Example 3.21

Fix the standard basis of R3. Let T : R3 → R3 be a linear operator defined by T (x) = Ax,
with

A =

 1 3 3
−3 −5 −3

3 3 1

 .

If possible, diagonalize the linear operator T .

(1) First, we find the eigenvalues. The characteristic equation is

p(λ) = det(A − λI3) = det

1 − λ 3 3
−3 −5 − λ −3
3 3 1 − λ

 = −(λ − 1)(λ + 2)2.

Therefore, the eigenvalues of T are λ1 = 1 and λ2 = −2 with algebraic multiplicities
mλ1 = 1 and mλ2 = 2, respectively.

(2) Now we find the eigenvectors.

(a) For λ1 = 1, we have mλ1 = 1, so we expect know that dim Eλ1 = 1. Indeed,

Eλ1 = Nul(A − I3) = Nul

 0 3 3
−3 −6 −3

3 3 0

 = Span


 1

−1
1

 .

(b) For λ2 = −2 with mλ2 = 2, we have 1 ≤ dim Eλ2 ≤ 2. Let us compute

Eλ2 = Nul(A + 2 I3) = Nul

 3 3 3
−3 −3 −3

3 3 3

 = Span


−1

1
0

 ,

−1
0
1

 .

Therefore, dim Eλ2 = 2.

Since dim Eλ1 + dim Eλ2 = dimR3, by Theorem 3.16, T is diagonalizable.

(3) Let us compute a diagonal associated matrix for T . For this, we must construct a
basis for R3 consisting entirely of eigenvectors. We are free to choose the order of
the eigenvectors, but we need to be consistent. Let

C =


 1

−1
1

 ,

−1
1
0

 ,

−1
0
1


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be the basis of eigenvectors. Then, A = P D P −1 with

D =

1 0 0
0 −2 0
0 0 −2

 , P =

 1 −1 −1
−1 1 0

1 0 1

 .

Here, D ≡ MC and P ≡ P C
E3 (E3 denotes the canonical basis).

Example 3.22

Fix the canonical basis of R3. Let T : R3 → R3 defined by T (x) = Ax, with

A =

 2 4 3
−4 −6 −3

3 3 1

 .

If possible, diagonalize the linear operator T .

(1) First, we find the eigenvalues. The characteristic equation is

p(λ) = det(A − λI3) = det

2 − λ 4 3
−4 −6 − λ −3
3 3 1 − λ

 = −(λ − 1)(λ + 2)2.

Therefore, the eigenvalues of T are λ1 = 1 and λ2 = −2 with algebraic multiplicities
mλ1 = 1 and mλ2 = 2, respectively. Note that the characteristic polynomial is
identical to the one of the previous example, and therefore the eigenvalues are the
same as well.

(2) Now we find the eigenvectors. Let us start examining the eigenvectors associated
with λ2 = −2 with mλ2 = 2, since there resides the only possiblility for the matrix
not being diagonalizable if dim Eλ2 ̸= mλ2 . We compute

Eλ2 = Nul(A + 2 I3) = Nul

 4 4 3
−4 −4 −3

3 3 3

 = Nul

1 1 0
0 0 1
0 0 0

 = Span


−1

1
0

 .

Since dim Eλ2 ̸= mλ2 , it is not possible to find a basis for R3 consisting entirely of
eigenvectors of T and, therefore, T is not diagonalizable.
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4 Inner products and orthogonality

In making the definition of a vector space, we generalized the linear structure (addition and
scalar multiplication) of R2 an R3. We ignored other important features, such as the notions of
length and angle. These ideas are embedded in the concept we now investigate, inner products.

4.1 Inner product spaces

We begin with a definition.

Definition 4.1

Let V be a real (or complex) vector space. Suppose that to each pair of vectors u, v ∈ V
there is assigned a real number denoted by ⟨u, v⟩. This function is called an inner product
on V if it satisfies the following axioms:

(I1) (Linearity in the first entry) ⟨a u1 + b u2, v⟩ = a⟨u1, v⟩ + b⟨u2, v⟩.

(I2) (Symmetry) ⟨u, v⟩ = ⟨v, u⟩.

(I3) (Positive definiteness) ⟨u, u⟩ ≥ 0; and ⟨u, u⟩ = 0 if and only if u = 0.

The vector space V with an inner product is called an inner product space.

Using the linearity axiom (I1) and the symmetry axiom (I2), we obtain

⟨u, a v1 + b v2⟩ = ⟨a v1 + b v2, u⟩ = a⟨v1, u⟩ + b⟨v2, u⟩ = a⟨u, v1⟩ + b⟨u, v2⟩.

That is, the inner product function is also linear in its second entry. By induction, we obtain

⟨a1 u1 + a2 u2 + · · · + ar ur, v⟩ = a1⟨u1, v⟩ + a2⟨u2, v⟩ + · · · + ar⟨ur, v⟩

and
⟨u, b1 v1 + b2 v2 + · · · + bs vs⟩ = b1⟨u, v1⟩ + b2⟨u, v2⟩ + · · · + bs⟨u, vs⟩.

Combining these two properties yields the following general formula:〈
r∑

i=1
ai ui,

s∑
j=1

bj vj

〉
=

r∑
i=1

s∑
j=1

ai bj ⟨ui, vj⟩

=
[
a1 a2 . . . ar

] 
⟨u1, v1⟩ ⟨u1, v2⟩ . . . ⟨u1, vs⟩
⟨u2, v1⟩ ⟨u2, v2⟩ . . . ⟨u2, vs⟩

. . . . . . . . . . . .
⟨ur, v1⟩ ⟨ur, v2⟩ . . . ⟨ur, vs⟩




b1
b2
...
bs

 .

(4.1)

By axiom (I3), ⟨u, u⟩ is a non negative number and hence its positive real square root exists.
We use the notation

∥u∥ =
»

⟨u, u⟩.

This non negative real number ∥u∥ is called the norm of u. The relation ∥u∥2 = ⟨u, u⟩ will be
used frequently.
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Example 4.1

Consider the vector space Rn. The function

⟨u, v⟩ = u⊤v

defines an inner product on Rn. Notice that this is the usual dot product u ·v. The norm
∥u∥ of a vector in this space is as follows:

∥u∥ =
√

u⊤v.

Although there are many ways to define an inner product on Rn, we will often use the
inner product in Rn defined by the dot product, unless otherwise stated or implied; we
will call it the usual inner product on Rn.

Example 4.2

Let V be the vector space of real continuous functions on the interval a ≤ t ≤ b. Then
the following is an inner product on V :

⟨f, g⟩ =
∫ b

a
f(t) g(t) dt,

where f(t) and g(t) are any continuous functions on [a, b].

Another inner product on V is:

⟨f, g⟩ =
∫ b

a
f(t) g(t) w(t) dt,

where w(t) is a given continuous function which is positive on the interval a ≤ t ≤ b. In
this case w(t) is called a weight function for the inner product.

Example 4.3

Let V denote the vector space of m × n matrices over R. The following is an inner
product on V :

⟨A, B⟩ = Tr(B⊤A)
where Tr stands form the trace, the sum of the diagonal elements. If A = (aij) and
B = (bij), then

⟨A, B⟩ = Tr(B⊤A) =
m∑

i=1

n∑
j=1

aij bij

the sum of the products of the corresponding entries. In particular,

∥A∥2 = ⟨A, A⟩ =
m∑

i=1

n∑
j=1

a2
ij

the sum of the squares of all the elements of A.
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4.2 Gram matrices of an inner product

Let V be an inner product space and let B = {b1, b2, . . . , bn} be a basis for V . Since any
vectors u, v ∈ V can be written as a linear combination of the basis using their coordinates as
weights, we can write the inner product using (4.1) as follows

⟨u, v⟩ = [u]⊤B


⟨b1, b1⟩ ⟨b1, b2⟩ . . . ⟨b1, bn⟩
⟨b2, b1⟩ ⟨b2, b2⟩ . . . ⟨b2, bn⟩

. . . . . . . . . . . .
⟨bn, b1⟩ ⟨bn, b2⟩ . . . ⟨bn, bn⟩

 [v]B.

The n × n matrix

GB =


⟨b1, b1⟩ ⟨b1, b2⟩ . . . ⟨b1, bn⟩
⟨b2, b1⟩ ⟨b2, b2⟩ . . . ⟨b2, bn⟩

. . . . . . . . . . . .
⟨bn, b1⟩ ⟨bn, b2⟩ . . . ⟨bn, bn⟩


is called the Gram matrix if the inner product relative to the basis B. Notice that by axioms
(I2) and (I3), the Gram matrix must satisfy

(GB)⊤ = GB and 0 ≤ x⊤GBx, for all x ∈ Rn.

Example 4.4

Recall that if En is the canonical basis in Rn, then for every vector u ∈ Rn, we have
[u]En = u. Moreover, the usual inner product is given by ⟨u, v⟩ = u⊤v, which can be
written as

⟨u, v⟩ = [u]⊤En
In[v]En .

So we conclude that the Gram matrix of the usual inner product with respect to the
canonical basis is the identity matrix In, that is, GEn = In. This is easy to verify using
the definition and is left to the reader as a straightforward exercise.

Example 4.5

Consider the usual inner product in R3 and the basis B = {b1, b2, b3}, where

b1 =

1
0
0

 , b2 =

1
1
0

 , b3 =

1
1
1

 .

Then,
⟨b1, b1⟩ = 1, ⟨b1, b2⟩ = 1, ⟨b1, b3⟩ = 1,
⟨b2, b2⟩ = 2, ⟨b2, b3⟩ = 2, ⟨b3, b3⟩ = 2.

So the Gram matrix of the usual inner product relative to B is

GB =

1 1 1
1 2 2
1 2 3

 .
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Notice that the Gram matrix of the usual inner product in R3 relative to the canonical
basis is I3. In fact, the Gram matrix of an inner product is, in general, different for each
choice of basis, that is, the Gram matrix of an inner product depends on the basis. This
is true for any inner product space.

Example 4.6

Consider the vector space P2 endowed with the inner product defined by

⟨f, g⟩ =
∫ 1

0
f(t) g(t) dt.

For the standard basis S2 = {1, t, t2}, we have

⟨1, 1⟩ =
∫ 1

0
dt = 1, ⟨1, t⟩ =

∫ 1

0
t dt = 1

2 , ⟨1, t2⟩ =
∫ 1

0
t2 dt = 1

3 ,

⟨t, t⟩ =
∫ 1

0
t2 dt = 1

3 , ⟨t, t2⟩ =
∫ 1

0
t3 dt = 1

4 , ⟨t2, t2⟩ =
∫ 1

0
t4 dt = 1

5 .

Then the Gram matrix of the inner product relative to the standard basis is

GS2 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

We can use the Gram matrix to compute the inner product between to elements of P2.
If p(t) = 1 − t and q(t) = 1 − t + t2, then

⟨p(t), q(t)⟩ = [p(t)]⊤S2 GS2 [q(t)]S2 =
[
1 −1 0

]  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 1
−1

1

 = 5
12

The definition of an inner product is independent of the choice of basis. Nevertheless, the
Gram matrices of an inner product relative to an old basis B and a new basis C are, in general,
not equal; that is, GB ̸= GC . So it is sensible to conclude that the two Gram matrices are
related in some way. We explore this relation here.

First, using the Gram matrix GB, we can write

⟨u, v⟩ = [u]⊤B GB [v]B.

Recall that for any vector x ∈ V , the coordinate vector [x]B is related to the coordinate vector
[x]C by means of the change of basis matrix P C

B :

[x]B = P C
B [x]C .

Therefore, we can use the change of basis matrix to change the coordinate vectors relative to
the old basis to coordinate vectors relative to the new basis:

⟨u, v⟩ = (P C
B [u]C)⊤ GB (P C

B [v]C) = [u]⊤C
Å

(P C
B )⊤ GB P C

B

ã
[v]C .
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Comparing the last equation with

⟨u, v⟩ = [u]⊤C GC [v]C ,

we conclude that
GC = (P C

B )⊤ GB P C
B .

Example 4.7

Consider the usual inner product in R3. Its Gram matrices relative to two different
bases were computed in Example 4.4 and Example 4.5. The Gram matrix relative to the
canonical basis is GE3 = I3, where as the Gram matrix relative to the basis B given in
Example 4.5 is

GB =

1 1 1
1 2 2
1 2 3

 .

The matrix GB can be obtained from GE3 = I3 by means of the change of basis matrix

P B
E3 =

1 1 1
0 1 1
0 0 1

 .

Indeed, we compute

(P B
E3)⊤ GE3 P B

E3 =

1 0 0
1 1 0
1 1 1

 1 1 1
0 1 1
0 0 1

 =

1 1 1
1 2 2
1 2 3

 = GB.

4.3 Cauchy-Schwarz inequality

The following inequality is called the Cauchy-Schwarz inequality; it is used in many branches
of mathematics.

Theorem 4.1

For any vectors u, v ∈ V ,
|⟨u, v⟩| ≤ ∥u∥ ∥v∥.

This inequality is an equality if and only if one of u, v is a scalar multiple of the other.

Proof. Let u, v ∈ V . If v = 0, then both sides of the inequality are equal to 0 and the desired
result holds. Thus we can assume that v ̸= 0.

By axiom (I3), for all λ ∈ R, we get:

⟨u − λ v, u − λ v⟩ ≥ 0.

Consequently,
∥u∥2 − 2λ ⟨u, v⟩ + λ2∥v∥2 ≥ 0.
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Taking λ = ⟨u, v⟩
∥v∥2 , we obtain

∥u∥2 − 2⟨u, v⟩2

∥v∥2 + ⟨u, v⟩2

∥v∥2 ≥ 0.

That is,

∥u∥2 − ⟨u, v⟩2

∥v∥2 ≥ 0.

Multiplying both sides by ∥v∥2,

∥u∥2∥v∥2 − ⟨u, v⟩2 ≥ 0,

which implies
⟨u, v⟩2 ≤ ∥u∥2∥v∥2.

Taking the positive square root of both sides, we finally get

|⟨u, v⟩| ≤ ∥u∥ ∥v∥.

Observe that if u = λ v, then
⟨u − λ v, u − λ v⟩ = 0.

In this case, each step of the proof is valid with ≤ and ≥ replaced with equality signs. Moreover,
each step (with equality replacing inequalities) is reversible. Therefore, the Cauchy-Schwarz
inequality is an equality if and only if u or v is a scalar multiple of the other. ■

Example 4.8

Consider any real numbers a1, . . . , an, b1, . . . , bn. Then the Cauchy-Schwarz inequality
applied to the usual inner product in Rn implies

(a1 b1 + a2 b2 + · · · + an bn)2 ≤ (a2
1 + a2

2 + · · · + a2
n) (b2

1 + b2
2 + · · · + b2

n).

Example 4.9

Let f and g be any real continuous functions defined on the interval a ≤ t ≤ b. Then,
applying the Cauchy-Schwarz inequality to the first inner product introduced in Example
4.2, we obtain Å∫ b

a
f(t) g(t) dt

ã2
≤
Å∫ b

a
f(t)2 dt

ãÅ∫ b

a
g(t)2 dt

ã
.

The next theorem gives basic properties of the norm; the proof of the third property requires
the Cauchy-Schwarz inequality.
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Theorem 4.2

Let V be an inner product space. Then the norm in V satisfies the following properties:

(N1) ∥v∥ ≥ 0; and ∥v∥ = 0 if and only if v = 0.

(N2) ∥k v∥ = |k| ∥v∥.

(N3) (Triangle inequality) ∥u+v∥ ≤ ∥u∥+∥v∥; this inequality is an equality if and only
if one of u, v is a non negative multiple of the other.

Proof. Property (N1) is a direct consequence of axiom (I3). Property (N2) is a direct conse-
quence of the definition of norm and the linearity of the inner product in both entries:

∥k v∥ =
»

⟨k v, k v⟩ =
»

k2⟨v, v⟩ = |k| ∥v∥.

Most of our effort is in proving property (N3). For u, v ∈ V ,

∥u + v∥2 = ⟨u + v, u + v⟩
= ∥u∥2 + 2⟨u, v⟩ + ∥v∥2

≤ ∥u∥2 + 2|⟨u, v⟩| + ∥v∥2

≤ ∥u∥2 + 2∥u∥ ∥v∥ + ∥v∥2 (by Cauchy-Schwartz)
= (∥u∥ + ∥v∥)2.

Taking square roots of both sides of the inequality above gives the triangle inequality. The
proof above shows that the triangle inequality is an equality if and only if ⟨u, v⟩ = ∥u∥ ∥v∥.
If one u, v is a non negative multiple of the other, then the above equality holds. Conversely,
if the above equality holds, then the condition for the Cauchy-Schwarz inequality implies that
one of u, v must be a scalar multiple of the other. If u = λ v, then bye (N2), ⟨u, v⟩ = ∥u∥ ∥v∥
implies λ = |λ|, which forces the scalar in question to be non negative, as desired. ■

If ∥u∥ = 1, or, equivalently, if ⟨u, u⟩ = 1, then u is called a unit vector and is said to be
normalized. Every non zero vector v ∈ V can be multiplied by the reciprocal of its norm to
obtain a unit vector

v̂ = v
∥v∥

which is a positive multiple of v. This process is called normalizing v.
The non negative real number

d(u, v) = ∥u − v∥

is called the distance between u and v. For any non zero vectors u, v ∈ V , the angle between
u and v is defined to be the angle θ such that 0 ≤ θ ≤ π and

cos θ = ⟨u, v⟩
∥u∥ ∥v∥

.

By the Cauchy-Schwartz inequality, −1 ≤ cos θ ≤ 1 and so the angle always exists and is
unique.
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4.4 Orthogonality

Let V be an inner product space. The vectors u, v ∈ V are said to be orthogonal and u is said
to be orthogonal to v if

⟨u, v⟩ = 0.

The relation is clearly symmetric; that is, if u is orthogonal to v, then ⟨v, u⟩ = 0 and so v is
orthogonal to u. We note that 0 ∈ V is orthogonal to every vector v ∈ V for

⟨0, v⟩ = ⟨0 v, v⟩ = 0⟨v, v⟩ = 0.

Conversely, if u is orthogonal to every v ∈ V , then ⟨u, u⟩ = 0 and hence u = 0 by axiom (I3).
Observe that u and v are orthogonal if and only if cos θ = 0 where θ is the angle between u
and v, and this is true if and only if θ = π/2.

Example 4.10

Consider an arbitrary vector u = [a1 a2 . . . an]⊤ in Rn. Then a vector v =
[x1 x2 . . . xn]⊤ is orthogonal to u if

⟨u, v⟩ = a1 x1 + a2 x2 + · · · + an xn = 0.

In other words, v is orthogonal to u if v satisfies a homogeneous equation whose coeffi-
cients are the entries of u.

Example 4.11

Suppose that we want a non zero vector which is orthogonal to v1 = [1 3 5]⊤ and
v2 = [0 1 4]⊤ in R3. Let w = [x y z]⊤. We want

0 = ⟨v1, w⟩ = x + 3y + 5z and 0 = ⟨v2, w⟩ = y + 4z.

Thus we obtain the homogeneous system

x + 3y + 5z = 0,
y + 4z = 0.

with general solution

w =

x
y
z

 = λ

 7
−4

1

 , λ ∈ R.

Then, w with λ ̸= 0 is orthogonal to v1 and v2.

Let S be a subset of an inner product space V . The orthogonal complement of S, denoted by
S⊥ (read “S perp”) consists of those vectors in V which are orthogonal to every vector u ∈ S:

S⊥ = {v ∈ V : ⟨v, u⟩ = 0 for every u ∈ S}.
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We show that S⊥ is a subspace of V . Clearly 0 ∈ S⊥ since 0 is orthogonal to every vector
in V . Now suppose that u, w ∈ S⊥. Then, for any scalars a and b and any vector u ∈ S, we
have

⟨a v + b w, u⟩ = a ⟨v, u⟩ + b ⟨w, u⟩ = a 0 + b 0 = 0.

Thus a v + b w ∈ S⊥ and therefore S⊥ is a subspace of V .

Example 4.12

Suppose we want to find a basis for the subspace S = Span{u} in R3 where u = [1 3 −4]⊤.
Note that S⊥ consists of all vectors w = [x y z]⊤ such that

⟨w, u⟩ = x + 3y − 4z = 0.

The general solution of this homogeneous equation is

w =

x
y
z

 = λ

−3
1
0

+ µ

4
0
1

 , λ, µ ∈ R.

Therefore, a basis for S⊥ is 
−3

1
0

 ,

4
0
1

 .

The next theorem is a basic result in linear algebra.

Theorem 4.3

Let S = Span{v} where v ∈ V and v ̸= 0. Then for every x ∈ V there is a unique u ∈ S
and a unique w ∈ S⊥ such that

x = u + w.

Proof. Let λ be a scalar. Then
x = λ v + (x − λ v).

Notice that λ ∈ S. Thus we need to choose λ so that v is orthogonal to (x − λ v). In other
words, we want

0 = ⟨x − λ v, v⟩ = ⟨x, v⟩ − λ ∥v∥2.

The equation above shows that we should choose λ to ⟨x, v⟩/∥v∥2. Making this choice of λ, we
can write

x = ⟨x, v⟩
∥v∥2 v +

Å
x − ⟨x, v⟩

∥v∥2 v
ã

.

■
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Example 4.13

Consider the vectors x = [0 1]⊤ and v = [1 1]⊤ in R2 with the usual inner product. Then
⟨x, v⟩ = 1, ∥v∥2 = 2, and

w = x − ⟨x, v⟩
∥v∥2 v =

ï
0
1

ò
− 1

2

ï
1
1

ò
=
ñ
−1

2
1
2

ô
.

Then x can be written uniquely as

x = 1
2v + w,

where ⟨v, w⟩ = 0.

Example 4.14

Consider the vector space P2 endowed with the inner product defined by

⟨f, g⟩ =
∫ 1

0
f(t) g(t) dt.

Relative to the standard basis S2 = {1, t, t2}, we have the Gram matrix

GS2 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

If p(t) = 1 − t and q(t) = 1 − t + t2, then

⟨p(t), q(t)⟩ =
[
1 −1 0

]  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 1
−1

1

 = 5
12

and

⟨q(t), q(t)⟩ =
[
1 −1 1

]  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 1
−1

1

 = 7
10

Then
p(t) = 25

42q(t) +
Å

p(t) − 25
42q(t)

ã
= 25

42q(t) +
Å17

42 − 17
42 t − 25

42 t2
ã

where ≠
q(t), 17

42 − 17
42 t − 25

42 t2
∑

=
[17

42 −17
42 −25

42
]  1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

 1
−1

1

 = 0.
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4.5 Orthogonal sets and bases

A set S of vectors in V is called orthogonal if each pair of vectors in S are orthogonal, and S
is called orthonormal if S is orthogonal and each vector in S has unit norm. In other words,
S = {u1, u2, . . . , ur} is orthogonal if

⟨ui, uj⟩ = 0 for i ̸= j

and is orthonormal if
⟨ui, uj⟩ = δi,j =

ß
0, if i ̸= j,
1, if i = j.

Normalizing an orthogonal set S refers to the process of multiplying each vector in S by the
reciprocal of its norm in order to transform S into an orthonormal set of vectors. The following
theorems apply.

Theorem 4.4

Suppose that S is an orthogonal set of non zero vectors. Then S is linearly independent.

Proof. Let S = {u1, u2, . . . , ur} be an orthogonal set. Suppose that the scalars a1, a2, . . . , ar

satisfy
a1 u1 + a2 u2 + · · · + ar ur = 0.

Computing the inner product of both sides of the above equation with ui for i = 1, 2, . . . , r, by
the orthogonality of S we obtain

0 =⟨ui, 0⟩ = ⟨ui, a1 u1 + a2 u2 + · · · + ar ur⟩
= a1 ⟨ui, u1⟩ + · · · + ai ⟨ui, ui⟩ + · · · + ar ⟨ui, ur⟩ = ai ∥ui∥2, for i = 1, 2, . . . , r.

This implies that ai = 0 for i = 1, 2, . . . , r is the unique solution of the homogeneous equation.
Therefore S is a linearly independent set. ■

Theorem 4.5: Pythagoras

Suppose that S = {u, v} is an orthogonal set of two vectors. Then

∥u + v∥2 = ∥u∥2 + ∥v∥2.

Proof. Suppose that ⟨u, v⟩ = 0. Then

∥u + v∥2 = ⟨u + v, u + v⟩ = ⟨u, u⟩ + 2 ⟨u, v⟩ + ⟨v, v⟩ = ⟨u, u⟩ + ⟨v, v⟩ = ∥u∥2 + ∥v∥2

which gives the desired result. ■
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Example 4.15

Consider the canonical basis E3 = {e1, e2, e3} in R3 with the usual inner product. It is
clear that

⟨e1, e2⟩ = ⟨e1, e2⟩ = ⟨e2, e3⟩ = 0 and ⟨e1, e1⟩ = ⟨e2, e2⟩ = ⟨e3, e3⟩ = 1.

Thus E3 is an orthonormal basis of R3. More generally, the canonical basis in Rn with
the usual inner product is orthonormal for every n.

Example 4.16

Consider the vector space P2 endowed with the inner product defined by

⟨f, g⟩ =
∫ 1

0
f(t) g(t) dt.

Relative to the standard basis S2 = {1, t, t2}, we have the Gram matrix

GS2 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 .

Let S = {1, 1 − 2 t, 2 − 12t + 12t2} is an orthogonal set since

⟨1, 1 − 2 t⟩ =
[
1 0 0

]  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 1
−2

0

 = 0

⟨1, 2 − 12t + 12t2⟩ =
[
1 0 0

]  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 2
−12

12

 = 0

⟨1 − 2t, 2 − 12t + 12t2⟩ =
[
1 −2 0

]  1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 2
−12

12

 = 0

The most useful property of orthogonal bases is that the coordinates of any vector relative
to an orthogonal basis can be computed directly one by one, without the need to solve a system
of linear equations.

Theorem 4.6

Suppose that {u1, . . . , un} is an orthogonal basis for V . Then, for any v ∈ V ,

v = ⟨v, u1⟩
⟨u1, u1⟩

u1 + ⟨v, u2⟩
⟨u2, u2⟩

u2 + · · · + ⟨v, un⟩
⟨un, un⟩

un.
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Proof. Since {u1, . . . , un} is a basis for V , any vector v ∈ V can be written as a linear combi-
nation of the basis; that is,

v = a1 u1 + a2 u2 + · · · + an un

for suitable scalars a1, a2, . . . , an. Using the orthogonality of the basis, we compute

⟨v, ui⟩ = ⟨a1 u1 + a2 u2 + · · · + an un, ui⟩
= a1 ⟨u1, ui⟩ + · · · + ai ⟨ui, ui⟩ + · · · + an ⟨un, ui⟩ = ai ⟨ui, ui⟩, for i = 1, 2, . . . , n.

This implies that ai = ⟨v, ui⟩/⟨ui, ui⟩ for i = 1, 2, . . . , n, which is the desired result. ■

The above scalars

ai = ⟨v, ui⟩
⟨ui, ui⟩

= ⟨v, ui⟩
∥ui∥2 , for i = 1, 2, . . . , n,

are called the Fourier coefficients of v with respect to {u1, . . . , un}.
Consider a non zero vector w in an inner product space V . For any v ∈ V , we have showed

that
λ = ⟨v, w⟩

⟨w, w⟩
= ⟨v, w⟩

∥w∥2

is the unique scalar such that v̂ = v − λ w is orthogonal to w. The projection of v along w,
denoted by projwv, is defined as

projwv = ⟨v, w⟩
⟨w, w⟩

w = ⟨v, w⟩
∥w∥2 w.

The above notion is generalized as follows.

Theorem 4.7

Suppose that u1, u2, . . . , ur form an orthogonal set of non zero vectors in V . Let v be
any vector in V . Define

v̂ = v − (c1 u1 + c2 u2 + · · · + cr ur)

where
c1 = ⟨v, u1⟩

⟨u1, u1⟩
, c2 = ⟨v, u2⟩

⟨u2, u2⟩
, . . . , cr = ⟨v, ur⟩

⟨ur, ur⟩
.

Then v̂ is orthogonal to u1, u2, . . . , ur.

Proof. We verify that v̂ is orthogonal to u1, u2, . . . , ur. For i = 1, 2, . . . , r, compute using the
orthogonality of u1, u2, . . . , ur,

⟨v̂, ui⟩ = ⟨v − (c1 u1 + c2 u2 + · · · + cr ur), ui⟩
= ⟨v, ui⟩ − c1 ⟨u1, ui⟩ − c2 ⟨u2, ui⟩ − · · · − ci ⟨ui, ui⟩ − · · · − cr ⟨ur, ui⟩
= ⟨v, ui⟩ − ci ⟨ui, ui⟩

= ⟨v, ui⟩ − ⟨v, ui⟩
⟨ui, ui⟩

⟨ui, ui⟩ = ⟨v, ui⟩ − ⟨v, ui⟩ = 0.

Therefore v̂ is orthogonal to u1, u2, . . . , ur. ■
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Notice that each ci in the theorem above is the Fourier coefficient of v along the correspond-
ing vector ui.

The notion of the projection of a vector v ∈ V along a subspace W of V is defined as follows.
If W = Span{w1, w2, . . . , wr} where the wi form an orthogonal set, then the projection of v
along W , denoted by projW v, is defined as

projW v = ⟨v, w1⟩
⟨w1, w1⟩

w1 + ⟨v, w2⟩
⟨w2, w2⟩

w2 + · · · + ⟨v, wr⟩
⟨wr, wr⟩

wr.

4.6 Gram-Schmidt orthogonalization

Suppose that {v1, v2, . . . , vn} is a basis of an inner product space V . One can use this to
construct an orthogonal basis {w1, w2, . . . , wn} of V as follows. Set

w1 = v1,

w2 = v2 − projw1v2,

w3 = v3 − projw1v3 − projw2v3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wn = vn − projw1vn − projw2vn − · · · − projwn−1vn.

In other words, for k = 2, 3, . . . , n, we define

wk = vk − projWk−1vk, where Wk−1 = Span{w1, w2, . . . , wk−1}.

By Theorem 4.7, each wk is orthogonal to the preceding w’s. Thus, {w1, w2, . . . , wn} forms an
orthogonal basis for V as claimed. Normalizing will then yield an orthonormal basis for V .

The above construction is known as the Gram-Schmidt orthogonalization process. Each
vector wk is a linear combination of vk and the preceding w’s. Hence, it can easily be shown,
by induction, that each wk is a linear combination of v1, v2, . . . , vk. Because taking multiples
of vectors does not affect orthogonality, it may be simpler in hand calculations to clear fractions
in any new wk, by multiplying wk by an appropriate scalar, before obtaining the next wk+1.

Suppose u1, u2, . . . , ur are linearly independent, and so they form a basis for

U = Span{u1, u2, . . . , ur}.

Applying Gram-Schmidt orthogonalization to the u’s yields an orthogonal basis for U . The
following theorems use the above algorithm and remarks.

Theorem 4.8

Suppose that S = {w1, w2, . . . , wr} is an orthogonal basis for a subspace W of a vector
space V . Then one may extend S to an orthogonal basis for V ; that is, one may find
vectors wr+1, . . . , wn such that {w1, w2, . . . , wn} is an orthogonal basis for V .

Proof. Since S is a linearly independent set in V , we can extend S to a basis of V . That
is, we can find vectors ur+1, . . . , un such that {w1, . . . , wr, ur+1, . . . un} is a basis for V . For
k = r + 1, . . . , n, we define

wk = uk − projWk−1uk, where Wk−1 = Span{w1, w2, . . . , wk−1}.
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This is just the Gram-Schmidt orthogonalization process applied to {w1, . . . , wr, ur+1, . . . un},
which yields an orthogonal basis for V . ■

Theorem 4.9

Let W be a subspace of an inner product space V . Then each vector v ∈ V can be
expressed uniquely in the form

v = w + “w, w ∈ W, “w ∈ W ⊥.

Proof. Let {u1, . . . , ur} be a basis for W . Applying the Gram-Schmidt orthogonalization pro-
cess, we obtain an orthogonal basis for W : S = {w1, . . . , wr}. Using S, for every v ∈ V , we
can write

v = projW v + (v − projW v).

Clearly, projW v ∈ W . By Theorem 4.7, (v − projW v) is orthogonal to every vector in S and,
thus, to every vector in W . Therefore, (v − projW v) ∈ W ⊥.

Suppose that we can write

v = w + “w, w ∈ W, “w ∈ W ⊥.

Then subtracting the above expression from v = projW v + (v − projW v), we get

0 = (projW v − w) + (v − projW v − “w).

Observe that (projW v − w) ∈ W and (v − projW v − “w) ∈ W ⊥. Therefore,

0 = ⟨0, projW v − w⟩ = ⟨(projW v − w) + (v − projW v − “w), projW v − w⟩
= ⟨projW v − w, projW v − w⟩.

This implies that projW v − w = 0 or, equivalently, w = projW v. Similarly,

0 = ⟨0, v − projW v − “w⟩ = ⟨(projW v − w) + (v − projW v − “w), v − projW v − “w⟩
= ⟨v − projW v − “w, v − projW v − “w⟩.

Therefore, v − projW v −“w = 0 or, equivalently, “w = v − projW v. This proves that each v ∈ V
is expressed uniquely as v = projW v + (v − projW v). ■

Example 4.17

Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis for the
subspace U of R4 spanned by

v1 =


1
1
1
1

 , v2 =


1
2
4
5

 , v3 =


1

−3
−4
−2

 .
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Therefore, we first set w1 = v1. Then we set

w2 = v2 − projw1v2 = v2 − 12
4 w1 =


−2
−1

1
2

 .

Finally, compute

v3 − projw1v3 − projw2v3 = v3 − (−8)
4 w1 − (−7)

10 w2 =


8
5

−17
10

−13
10
7
5

 .

Multiplying the last vector by 10 to clear fractions, we set

w3 =


16

−17
−13

14

 .

Thus, w1, w2, w3 form an orthogonal basis for U .

Example 4.18

Let V be the vector space of polynomials with inner product

⟨f, g⟩ =
∫ 1

−1
f(t) g(t) dt.

Apply the Gram-Schmidt orthogonalization process to {1, t, t2, t3} to find an orthogonal
basis for P3.
Here we use the fact that, for r + s = n,

⟨tr, ts⟩ =
∫ 1

−1
tn dt = tn+1

n + 1

∣∣∣∣1
−1

=
ß

2/(n + 1), when n is even,
0, when n is odd.

We compute

f0(t) = 1,

f1(t) = t − projf0t = t − 0 = t,

f2(t) = t2 − projf0t2 − projf1t2 = t2 − 1
3 ,

f3(t) = t3 − projf0t3 − projf1t3 − projf2t3 = t3 − 3
5 t.

Thus, {1, t, t2 − 1
3 , t3 − 3

5 t} is the required orthogonal basis.
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4.7 Orthogonal projections and minimization

Suppose that U is a subspace of an inner product space V . Then each vector v ∈ V can be
written uniquely in the form

v = u + w,

where u ∈ U and w ∈ U⊥. We use this decomposition to define a linear mapping on V , denoted
by projU , called the orthogonal projection of V along U . For v ∈ V , we define projU v to be the
vector u in the decomposition above.

The orthogonal projection along a subspace satisfies the following properties.

Theorem 4.10

Let U is a subspace of an inner product space V . Then,

1. range projU = U

2. ker projU = U⊥

3. v − projU v ∈ U⊥ for every v ∈ V .

4. proj2U = projU

5. ∥projU v∥ ⩽ ∥v∥ for every v ∈ V .

Proof. 1. If u ∈ U , then u = projU u. Therefore, u ∈ range projU . Conversely, if u ∈
range projU , then by definition, u ∈ U . Altogether, we have U ⊆ range projU and
range projU ⊆ U , which implies range projU = U .

2. If u ∈ U⊥, then it is expressed uniquely as u = 0+u since it has no component in U other
than the zero vector. Then projU u = 0 which means that u ∈ ker projU . Conversely, if
u ∈ ker projU then projU u = 0. But u is expressed uniquely as u = 0+w where w ∈ U⊥.
It follows that u ∈ U⊥. Altogether, we have U⊥ ⊆ ker projU and ker projU ⊆ U⊥, which
implies ker projU = U⊥.

3. Since v can be expressed as v = u + w where w ∈ U⊥ and, by definition, u = projU v. It
follows that w = v − projU v and, thus, v − projU v ∈ U⊥.

4. Consider any vector v ∈ V . Then, by the first and second statements above, it can be
written as v = projU v + w where w ∈ ker projU . Therefore, applying the orthogonal
projection to both sides of this equation, we get

projU v = proj2U v + projU w = proj2U v.

But this is true for any v ∈ V . Then, proj2U = projU .

5. For every v ∈ V , by Pythagoras,

∥projU v∥2 ⩽ ∥projU v∥2 + ∥v − projU v∥2 = ∥v∥2.

Taking the positive square root of both sides, we get ∥projU v∥ ⩽ ∥v∥.
■
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By the definition of orthogonal projection, if U = Span{u1, u2, . . . , ur} where the ui form
an orthogonal basis, then

projU v = ⟨v, u1⟩
⟨u1, u1⟩

u1 + ⟨v, u2⟩
⟨u2, u2⟩

u2 + · · · + ⟨v, ur⟩
⟨ur, ur⟩

ur.

The following problem often arises: given a subspace U of V and a vector v ∈ V , find a
vector u ∈ U such that ∥v − u∥ is as small as possible. The next theorem shows that this
minimization problem is solved by taking u = projU v.

Theorem 4.11

Suppose that U is a subspace of V and v ∈ V . Then

∥v − projU v∥ ≤ ∥v − u∥

for every u ∈ U . Furthermore, if u ∈ U and the inequality above is an equality, then
u = projv.

Proof. Suppose that u ∈ U . Then

∥v − projU v∥2 ≤ ∥v − projU v∥2 + ∥projU v − u∥2

= ∥(v − projU v) + (projU v − u)∥2

= ∥v − u∥2,

where the first equality comes from Pythagoras, which applies because (v − projU v) ∈ U⊥ and
(projU v − u) ∈ U . Taking the square roots gives the desired inequality, which is an equality if
and only if

∥v − projU v∥2 = ∥v − projU v∥2 + ∥projU v − u∥2.

This happens if and only if ∥projU v − u∥ = 0, which happens if and only if u = projv. ■

Example 4.19

Let V be the vector space of polynomials with inner product

⟨f, g⟩ =
∫ 1

−1
f(t) g(t) dt.

Then, {1, t} is an orthogonal basis of P1. The polynomial q(t) ∈ P1 such that ∥t2k −q(t)∥
is as small as possible is

q(t) = projP1t2k = 1
2k + 1 ,

and the polynomial r(t) ∈ P1 such that ∥t2k+1 − r(t)∥ is as small as possible is

r(t) = projP1t2k+1 = 3 t

2k + 3 .
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4.8 Least-squares problems

Inconsistent systems of equations A x = b arise often in applications. When a solution is
demanded and none exists, the best one can do is to find an x that makes A x as close as
possible to b. Think of A x as an approximation to b. The smaller the distance between b and
A x, given by ∥b − A x∥, the better the approximation. The general least-squares problem is to
find an x that makes ∥b − A x∥ as small as possible.

Definition 4.2

If A is m × n and b is in Rm, a least-squares solution of A x = b is an x̂ in Rn such that

∥b − A x̂∥ ≤ ∥b − A x∥

for all x in Rn.

The most important aspect of the least-squares problem is that no matter what x we select,
the vector A x will necessarily be in the column space, Col A. So we seek an x that makes A x
the closest point in Col A to b. Of course, if b happens to be in Col A, then b is A x for some
x, and such an x is a “least-squares solution.”

Given A and b as above, let
b̂ = projCol Ab

where the orthogonal projection of b along Col A is defined with respect to a given inner
product. Because b̂ is in the column space of A, the equation A x = b̂ is consistent, and there
is an x̂ in Rn such that

A x̂ = b̂.

Since b̂ is the closest point in Col A to b, a vector x̂ is a least-squares solution of A x = b if and
only if x̂ satisfies A x̂ = b̂, which may have many solutions if the equation has free variables.

Suppose that x̂ satisfies A x̂ = b̂. The projection b̂ has the property that b−b̂ is orthogonal
to Col A, so b − A x̂ is orthogonal to each column of A. If aj is any column of A, then
⟨aj , b−A x̂⟩ = 0, and a⊤

j G (b−A x̂) = 0, where G is the Gram matrix relative to an appropriate
basis. Since a⊤

j is a row of A⊤,
A⊤ G (b − A x̂) = 0.

These calculations show that each least-squares solution of A x = b satisfies the equation

A⊤ G A x̂ = A⊤ G b.

This matrix equation represents a system of equations called the normal equations for A x = b.

Theorem 4.12

The set of least-squares solutions of A x = b coincides with the non empty set of solutions
of the normal equations A⊤ G A x̂ = A⊤ G b.

Proof. As shown above, the set of least-squares solutions is non empty and each least-squares
solution x̂ satisfies the normal equations. Conversely, suppose that x̂ satisfies A⊤ G A x̂ =
A⊤ G b. Then x̂ satisfies A⊤ G (b − A x̂) = 0, which shows that b − A x̂ is orthogonal to the
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rows of A⊤ and hence is orthogonal to the columns of A. Since the columns of A span Col A,
the vector b − A x̂ is orthogonal to all of Col A. Hence the equation

b = A x̂ + (b − A x̂)

is the decomposition of b into the sum of a vector in Col A and a vector in (Col A)⊥. By the
uniqueness of the orthogonal decomposition, A x̂ must be the orthogonal projection of b along
Col A. That is, A x̂ = b̂ and x̂ is a least-squares solution. ■

Example 4.20

Find the least-squares solution with respect to the usual inner product in R2 of the
inconsistent system A x = b for

A =

4 0
0 2
1 1

 , b =

 2
0
11

 .

In this case, we may assume that everything is expressed relative to the canonical basis,
thus the Gram matrix is the identity matrix I2, so the normal equations read A⊤A x =
A⊤b. To use the normal equations, we compute:

A⊤A =
ï
4 0 1
0 2 1

ò4 0
0 2
1 1

 =
ï
17 1
1 5

ò
A⊤b =

ï
4 0 1
0 2 1

ò 2
0
11

 =
ï
19
11

ò
.

The equation A⊤A x = A⊤b becomesï
17 1
1 5

ò ï
x1
x2

ò
=
ï
19
11

ò
.

Row operations can be used to solve this system, but since A⊤A is invertible and 2 × 2,
it is probably faster to compute

(A⊤A)−1 = 1
84

ï
5 −1

−1 17

ò
and then to solve A⊤A x = A⊤b as

x̂ = (A⊤A)−1A⊤b =
ï
1
2

ò
.

In many calculations A⊤A is invertible, but this is not always the case as in the following
example.
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Example 4.21

Find a least-squares solution relative to the usual inner product of A x = b for

A =


1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 , b =


−3
−1

0
2
5
1

 .

As in the previous example, the Gram matrix of the inner product relative to the standard
basis is the identity matrix. Compute

A⊤A =


1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

 =


6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2



A⊤b =


1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




−3
−1

0
2
5
1

 =


4

−4
2
6

 .

The augmented matrix for A⊤A x = A⊤b is
6 2 2 2 4
2 2 0 0 −4
2 0 2 0 2
2 0 0 2 6

 ∼


1 0 0 1 3
0 1 0 −1 −5
0 0 1 −1 −2
0 0 0 0 0

 .

So the general least-squares solution of x = b has the form

x̂ =


3

−5
−2

0

+ λ


−1

1
1
1

 .

136



4.9 Orthogonal diagonalization

Let V be an inner product space. A symmetric linear mapping T : V → V relative to an inner
product is a linear mapping such that ⟨T (u), v⟩ = ⟨u, T (v)⟩ for all u, v ∈ V .

Theorem 4.13

Suppose that T : V → V is a symmetric linear mapping. If B = {b1, . . . , bn} is an
orthonormal basis for V and M = (mj,k) is the matrix representation of T relative to B,
then M⊤ = M .

Proof. Recall that we obtain the k-th column of M by writing T (bk) as a linear combination
of the basis B; the scalars used in this linear combination then become the k-th column of M .
Since B is orthonormal, we know how to write T (bk) as a linear combination of B:

T (bk) = ⟨T (bk), b1⟩ b1 + · · · + ⟨T (bk), bn⟩ bn.

Thus mj,k = ⟨T (bk), bj⟩. Using the symmetry of T and the symmetry of the inner product, we
get

mj,k = ⟨T (bk), bj⟩ = ⟨bk, T (bj)⟩ = ⟨T (bj), bk⟩ = mk,j .

Therefore, M = (mj,k) = (mk,j) = M⊤. ■

One of the most important properties of symmetric linear mappings is stated in the following
theorem.

Theorem 4.14

If T : V → V is a symmetric linear mapping, then any two eigenvectors from different
eigenspaces are orthogonal.

Proof. Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say, λ1 and λ2.
To show that ⟨v1, v2⟩ = 0, compute

λ1 ⟨v1, v2⟩ = ⟨λ1 v1, v2⟩ = ⟨T (v1), v2⟩ = ⟨v1, T (v2)⟩ = ⟨v1, λ2 v2⟩ = λ2 ⟨v1, v2⟩.

Hence (λ1 − λ2) ⟨v1, v2⟩ = 0. But λ1 − λ2 ̸= 0 so ⟨v1, v2⟩ = 0. ■

A linear mapping T : V → V is said to be orthogonally diagonalizable if V has an orthonor-
mal basis consisting of eigenvectors of T . The proof of the following theorem is quite involved
and is ommitted.

Theorem 4.15

Let V be an inner product space. A linear mapping T : V → V is orthogonally diago-
nalizable if and only if T is symmetric relative to the inner product.

This theorem is rather amazing, because the work in the previous chapter would suggest
that it is usually impossible to tell when a linear mapping is diagonalizable. But this is not the
case for symmetric matrices.

The next example treats a linear mapping whose eigenvalues are not all distinct.
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Example 4.22

Orthogonally diagonalize the linear mapping T : R3 → R3 defined relative to the canon-
ical basis by

T (x) =

 3 −2 4
−2 6 2

4 2 3

x.

The usual calculations produce the characteristic equation

0 = −λ3 + 12λ2 − 21λ − 98 = −(λ − 7)2(λ + 2).

A basis for the eigenspace associated with λ1 = 7 isv1 =

1
0
1

 , v2 =

−1/2
1
0


and a basis for λ2 = −2 is v3 =

 −1
−1/2

1

 .

Although v1 and v2 are linearly independent, they are not orthogonal. Applying the
Gram-Schmidt orthogonalization process and normalization, we obtain the following or-
thonormal basis for the eigenspace associated with λ1:u1 =

1/
√

2
0

1/
√

2

 , u2 =

−1/
√

18
4/

√
18

1/
√

18

 .

An orthonormal basis for the eigenspace associated with λ2:u3 =

−2/3
−1/3
2/3

 .

Hence, C = {u1, u2, u3} is an orthonormal basis for R3 and the matrix representation of
T relative to C is 7 0 0

0 7 0
0 0 −2

 .

An interesting observation is that if P = [u1 . . . un] is a square matrix whose columns satisfy
u⊤

i uj = 0 for i ̸= j and u⊤
j uj = 1 (as in the example above), then P ⊤P = In. This implies that

P −1 = P ⊤. Moreover, it is not difficult to verify that P −1 = P ⊤ if and only if the columns of
P satisfy u⊤

i uj = 0 for i ̸= j and u⊤
j uj = 1.
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