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Dynamic pricing is at the core of hotel revenue management (RM). Big data technologies have facilitated in-
formation processing and enriched dynamic pricing techniques. One of the challenges in the sector relates to
price personalization, i.e., how prices can be adjusted at the customer level. Using a qualitative approach, the
study analyzes how dynamic pricing is currently implemented in hotel RM. By doing so, this research shows
empirical evidence of the use of recent concepts in the industry like “open pricing” and identifies the oppor-
tunities and challenges of a customer-centric approach to pricing. From a theoretical perspective, the study may

guide future research on pricing in hotel RM. Finally, this work also presents actionable insights for practitioners.

1. Introduction

The emergence of big data has reshaped information processing
systems across industries. One of the most affected is certainly the
hospitality industry (Talon-Ballestero, Gonzalez-Serrano, Soguero-Ruiz,
Munoz-Romero and Rojo—Alvarez, 2018). Data is one of the most valu-
able assets in this industry. Big data technologies have transformed hotel
information processing systems and offer great opportunities for reve-
nue management (RM) (Erdem and Jiang, 2016). Pricing is a key stra-
tegic pillar of RM. In hotel RM, pricing allows practitioners to cater to
different customer segments that may vary in the benefits they look for
(e.g. tourists vs business travelers), their information search involve-
ment (Lee, Bai and Murphy, 2012), and even their willingness to pay
(Dolnicar, 2002). Big data technologies can therefore facilitate price
discrimination at the customer level by integrating customer knowledge
into pricing techniques through automation (Mariani et al., 2018).

The use of data to inform pricing has transformed revenue man-
agement systems (RMS), thus attracting the attention of both scholars
and practitioners (e.g., Abrate and Viglia, 2016). More available data,
coupled with information processing technologies, allows more dynamic
pricing techniques, opening up new avenues for price optimization that
point towards a more customer-oriented pricing (Noone, Enz and
Glassmire, 2017; Vives, Jacob and Payeras, 2018). Reflecting this
landscape, new approaches and terminology have emerged in the hos-
pitality industry that academics have not adopted yet. For instance, the
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term “open pricing” (OP) has become commonly accepted among in-
dustry practitioners (e.g., "Open Pricing, Hotel Revenue Strategy,
Duetto, 2020) while it still lacks an academic definition. One-to-one or
customised pricing are two additional examples (Gonzalez-Serrano and
Talén-Ballestero, 2020).

These terms reflect a shift in the industry towards price personali-
zation. Price personalization can lead to better demand adjustments
based on customers’ willingness to pay (value-based pricing approach).
Literature on hotel RM suggests that pricing will be more effective when
applied at customer level (e.g., Denizci Guillet and Shi, 2019). These
works build up on the lifetime-value (LTV) approach to pricing, in which
the rate customer pays matches his or her lifetime value to the firm
(Noone et al., 2003). In light of these arguments, price personalization
should be driven by both customers’ willingness to pay (value-based
pricing) and the value of the customer or LTV. In this sense, recent works
have shown the benefits of the joint adoption of customer relationship
management and RM for price personalization (e.g., Peco-Torres,
Polo-Pena, Frias-Jamilena, 2021). Despite its clear benefits, the appli-
cation of personalized pricing in the industry is still scant. Given this
mismatch between theoretical developments and practical application,
we can see an emerging need for a comprehensive study that brings
together practitioners’ views and academic theory (Vives et al., 2018).

This study therefore responds to recent calls for further research on
dynamic pricing (e.g. Altin, Schwartz, and Uysal, 2017). Vives et al.
(2018) provide insights on the topic, with a specific focus on the main
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price optimization and customer segmentation techniques. However,
the study consists of a critical literature review, thus overlooking the
practitioners’ views. Gaining insights from the industry is crucial to
develop an up-to-date understanding of the recent developments of
dynamic pricing. In light of these arguments, the objective of this article
is twofold. First, the article reviews the main literature on dynamic
pricing and aims to provide a clear and straightforward understanding of
the evolution of these techniques in the hotel industry. Second, the
article examines how these techniques are currently implemented by
industry practitioners.

To this end, we present a review of the literature that follows a four-
phase chronological structure. We also summarize this review visually in
a conceptual model. By conducting a focus group analysis, the work then
reveals the views of both international hotel chain managers and RMS
suppliers. The findings provide a comprehensive understanding of
recent conceptualizations used in the industry and shed light on the
contemporary issues in hotel pricing.

2. Theoretical background

According to the organizational information processing theory (Daft
and Lengel, 1986), information is one of the most important organiza-
tional resources. This theory assumes that organizations can reduce
context-specific uncertainty through information processing. Informa-
tion processing mechanism designs are effective, and associated with
high performance levels, if they are capable of handling the amount and
type of information that is required in a given problem context (Daft and
Lengel, 1986, Huber 1990). The emergence of big data has challenged
the way information is processed in organizations. Organizations now
use information processing technologies that can reduce uncertainty by
exploiting big data (Chen, Chiang and Storey, 2012). Big data tools are
characterized, among other things, by the volume, variety and velocity
of data that they can handle (Chen et al., 2012).

Organizations in the hospitality industry have witnessed an increase
of information processing needs over time. The internal information
typically handled by RMSs has become not sufficient to inform pricing
decisions (Buhalis and Leung, 2018). The availability of context-specific
information like competitors’ prices, contextual and reputational factors
(Abrate and Viglia, 2016; Masiero, Pan and Heo, 2016; Noone, 2016)
has resulted in organizations currently managing a large and varied
amount of data in real time (Wang, Heo, Schwartz, Legohérel and
Specklin, 2015). The optimal use of big data for dynamic pricing pur-
poses ultimately leads to enhanced RM performance (Buhalis and Leung,
2018). The next section presents the evolution of dynamic pricing in
hotel RM.

2.1. Evolution of dynamic pricing in hotel RM

While there is not a well-accepted definition, scholars agree that
dynamic pricing refers to the continuous adjustment of prices, according
to demand, being the differences in price not related to the company’s
costs (McGuire, 2015). This practice allows companies to extract a
greater customer surplus than the one resulting from the application of
linear or single prices (Talon, Gonzdlez and Segovia, 2011). The avail-
ability of data has transformed dynamic pricing techniques, which have
evolved from the narrow view of capacity control-based yield manage-
ment with short-term approach, to the more encompassing and
customer-centric view and a long-term approach (Altin et al., 2017;
Vives et al., 2018).

The present study proposes a synthesis of the evolution of dynamic
pricing that revolves around four dimensions. These dimensions are
necessary to build a RMS from zero. Data, and optimization methods are
the two dimensions that represent RM inputs (Baker, Eziz, and Har-
rington, 2019; Vives et al., 2018). The proposed model includes infor-
mation processing systems as another dimension since the sophistication
of the RMS also depends on the rigor of the information analysis (Xu,
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Zhang, Baker, Harrington, and Marlowe, 2019). Finally, we include key
performance indicators (KPIs) as the fourth dimension since these are
the RM outputs that capture system performance (Baker et al., 2019).
The synthesis comprises four historical phases. All the phases share a
tactical nature based on capacity and price, except for the last one which
has a more strategic nature based on customer value. These phases may
not coincide in time across countries and/or businesses in the industry.

2.2. First phase of dynamic pricing in hospitality RM

In the early stages of hotel pricing, the information available for
practitioners is limited to the internal property management system and
the central reservation systems (Anderson and Xie, 2010). Prices are set
according to historical demand, current demand and basic environ-
mental aspects (e.g. hotel location). Spreadsheets and traditional RMS
are the main information processing tool. In this phase, different tariff
levels are set to accommodate demand from different customer segments
(Talluri and van Ryzin, 2004). Physical (room type or room location)
and non-physical (advance purchase, non- refundable) rate fences were
set to avoid cannibalizing demand, i.e. customers who are willing to pay
more are not tempted by low tariffs (Hanks, Cross and Noland, 1992).
These traditional RM systems optimize availability capacity and length
of stay inventory controls based on the assumption of independent de-
mand (Noone, 2016). The bid price approach to inventory allocation is
the most frequently used (IDeaS, 2005). This approach takes the value of
the marginal unit of capacity to determine the lowest acceptable price
(bid price) for the next booking. Only if the proposed price equals or
exceeds the bid price, the booking is accepted (Noone, 2016). In this
stage, the main KPI used is the revenue per available room (RevPAR).
Other metrics, like the total revenue per available room (TrevPAR) and
the gross operating profit per available room (GOPPAR), also become
popular. Unlike RevPAR, that focuses on guestroom revenue, these
metrics consider all sources of revenue within the hotel (TrevPAR) and
the operative profit (GOPPAR). However, they are not commonly used
by managers due to their complex calculation (Schwartz et al., 2017).

2.3. Second phase of dynamic pricing in hospitality RM

In this phase, rate shopping automates the collection of competitor
price data from multiple distribution channels and its real time inte-
gration into RMSs (Noone, Canina and Enz, 2013), which results in a
more effective dynamic pricing (Cross, Higbie and Cross, 2009). The rise
of online travel agents (OTAs) brings a high volatility rate, that is
mitigated with the introduction of parity policies (Demirciftci et al.,
2010). Among these, the application of the best available rate (BAR)
becomes the norm in the hotel market. Rates and discounts are estab-
lished in advance, with a predetermined number of BARs for the year
ahead that vary with demand. Later on, hotels start using the so-called
“floating BAR” that consists of applying different BARs during the cus-
tomer’s length of stay (Talon et al., 2011). The sector clearly moves from
inventory allocation to more dynamic price optimization methods that
account for price elasticity of demand and competitors’ price to deter-
mine the optimal tariff (Cross et al., 2009; Noone, 2016). It is also
possible to analyze the hotel performance versus its competitive set
through benchmarking tools such as STR reports (Haynes, 2016;
Gonzalez-Serrano and Talon-Ballestero, 2020). The main KPIs facilitated
by STR and used in this stage are the market penetration index (MPI),
that shows the behavior of the hotel with respect to the occupation
within its competitive set; the average rate index (ARI), that indicates
the performance with respect to average daily rate (ADR) by comparing
it with the average prices of the competitors; and the revenue generation
index (RGI), that is the combination of both indexes (MPI x ARI) and
shows the performance of the hotel with respect to its competitive set
(Talén-Ballestero and Gonzalez-Serrano, 2011).
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2.4. Third phase of dynamic pricing in hotel RM

2.4.1. “open pricing”

A greater volume of information enriches demand forecasting and
pricing in this stage (e.g., online reputation, macro-economic data, in-
dustry data, customer data). Powerful cloud-based RMS are developed
using big data technologies, which facilitates real-time decision-making
(Applegate et al., 2015). Online reviews become more relevant for hotel
choice (Anderson, 2012; Nieto-Garcia, Munoz-Gallego and
Gonzalez-Benito, 2017; Noone and McGuire, 2014). Therefore, online
reputation insights (e.g. Reviewpro) now enrich RMS, contributing to its
sophistication (Xu et al., 2019).

At this stage, the use of cross-elasticity price optimization results in
each customer segment paying the highest price they are willing to pay
(Duetto, 2019; Xu et al., 2019). Inventory allocation methods and price
optimization methods are combined together into a single optimization
method that is based on customer choice (Xu et al., 2019). The resulting
optimization method (i.e. customer value-based optimization) takes
customer perceived value of the service as the base price. New KPIs are
considered to optimize performance. For instance, the net revenue per
available room (NetREVPPAR), which accounts for the distribution costs
and is easier to calculate than GOPPAR. Concerning online reputation,
the quality penetration index (QPI) allows hotels to gain knowledge
about their competitive positioning (Global Review Index my property /
Average Global Index Total Market). In addition, pricing becomes more
flexible by suppressing traditional price ranges. The industry starts
referring to this approach as “agile pricing” or “open pricing”. RM is still
price centric; however, customization of offerings and discounts re-
places conventional pricing. According to Baker et al. (2019), this stage
represents a first step towards personalized pricing or “one to one

pricing”.
2.5. Fourth phase of dynamic pricing in hotel RM

2.5.1. “one to one pricing”

Academics agree that the future development of dynamic pricing will
become more strategic than in previous phases (Viglia and Abrate,
2019). Customer value and customer life cycle will gain greater rele-
vance (Noone et al., 2017). The synthesis of RM and customer rela-
tionship management will be synergistic and focus more on long-term
customer value than on one-off benefits (Denizci Guillet and Shi, 2019;
Peco-Torres et.al, 2021; Noone, Kimes and Renaghan, 2003; Wang and
Bowie, 2009). This integration will facilitate personalized offers (attri-
bute based pricing) (Vinod, 2019; IDeaS, 2020) or personalized prices
(one to one pricing) through the identification of customers
(Gonzalez-Serrano and Talén-Ballestero, 2020).

Smart data technologies and artificial intelligence will help pro-
cessing all available customer information such as customer repurchase
rate, reference prices and patronage behavior. This phase requires a
deeper understanding of the customers’ booking behavior (Cross, 2016),
reference price (Choi and Mattila, 2017), and service perceptions
(Cheng and Monroe, 2013). More importantly, price customization will
require knowing the value of the customer to the firm and adapting
prices accordingly (customer value-based and lifetime value (LTV)).
New customer centric KPIs will be increasingly used, like the Total Hotel
RM (THRM) that considers the management of all sources of customer
revenue in a hotel, such as hotel restaurant, bar, spa, etc. Other KPIs, like
the revenue per available customer (RevPAC) and the gross operating
profit per available customer (GopPAC) will consider, in addition to
demand, the customer lifetime value (Shoemaker, 2003). By integrating
customer lifetime value into pricing, businesses will have an encom-
passing measure of the value of the expected customer future trans-
actions. This enriched approach entails a move towards perfect price
discrimination (Wang et al., 2015).

Due to the recent developments of strategic dynamic pricing in the
hotel industry, the academic field is witnessing a scarcity of works on the
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latest concepts. While some studies have investigated the use of big data
for RM purposes (e.g. Buhalis and Leung, 2018), the topics of price
optimization and, specifically, “open pricing” have received scant atten-
tion. More importantly, price optimization has been approached from a
theoretical standpoint (Vives et al., 2018), thus overlooking the practi-
tioners’ view. Therefore, the present work aims to extend our under-
standing of “open pricing” and explore the applicability of “one to one
pricing”. The study methodology and subsequent analysis allow gaining
empirical evidence to back up these concepts. Fig. 1 presents an inte-
grated visual summary of the four phases explained above.

3. Methodology

The study adopts a qualitative approach. Since the study aims to
gather professionals’ perceptions, qualitative methods are suitable to
elicit a more in-depth and honest response. The study follows Baker
(2006) recommendations for carrying out a qualitative study in the
sense of transparency, systematization and rigor of the process, member
checking and careful consideration to ethical issues, confidentiality,
superficial analysis and interpretation of results. Specifically, the study
is designed to understand how RMS users (international hotel chain
managers) interact with the system and their views on the recent de-
velopments of “open pricing”. To enrich users’ perceptions, the study also
includes the point of view of RMS providers.

3.1. Data collection

Data is collected through focus group interviews. Focus group is a
well know approach in tourism related literature, especially in those
studies addressed to experts (e.g., Garcia-Muina, Fuentes-Moraleda,
Vacas-Guerrero and Rienda-Gomez, 2019; Segovia-Pérez,
Figueroa-Domecq, Fuentes-Moraleda and Munoz-Mazén, 2019). The
focus group includes twelve experts involved in RM implementation in
the hospitality industry. This number fits with the ideal focus group size
(between four and twelve) suggested by Krueger and Casey (2000). The
focus group follows a structured way with one of the researchers acting
as the moderator and leading the topics under discussion and the group
dynamic (Morgan, 1996). The empirical context for data collection is the
international hospitality industry represented by international hotel
chains and RMS providers. Data is collected in Spanish and translated to
English by a professional service. Next, back translation of each of the
captions and themes in the study is conducted in order to confirm the
equivalence of the translated items (Brislin, Lonner and Berry, 1986).

To ensure heterogeneity and diversity among participants, the study
uses deliberate sampling. Deliberate sampling consists of selecting par-
ticipants based upon a relevant characteristic (Patton, 1990). In this
study, participants must have in-depth expertise and extensive profes-
sional experience in RM. The sample includes three managers of leading
international RM system providers, eight senior RM directors working
for dominant international hotel chains, and the country manager of a
leading hospitality data provider. We present the detailed profile of
participants in Table 1.

3.2. Thematic analysis

The empirical analysis relies on thematic analysis (Braun and Clarke,
2006; Morgan, 1996). Thematic analysis allows researchers to identify,
organize, analyze and propose patterns of the relationship between
themes (Braun and Clarke, 2006; DeSantis, Ugarriza, 2000). We adopt a
semantic approach, therefore, the themes are identified within the
explicit meanings of the data, and the researcher strictly focuses on what
a participant has said or what has been written. The analytic process
progresses from description, showing patterns in semantic content, to
interpretation (Patton, 1990). The researchers analyzed the interview
transcripts in order to identify emerging themes and sub-themes (Prayag
and Ryan, 2011). The analysis was conducted manually, which enables
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Fig. 1. Conceptual model of pricing in hotel RM.

an in-depth understanding of the phenomenon (Cheng and Wong,
2015). The coding scheme was unrestricted and was not content-specific
(Miles, Huberman, Huberman and Huberman, 1994). Table 2 provides
illustrative examples of how the coding was conducted. To ensure the
reliability and validity of the findings, the study relies on continuous
analysis to confirm that the themes did originate from the research data
(Guba and Lincoln, 1989). Table 3.

4. Results

By following the six phases of thematic analysis proposed by Braun
and Clarke (2006), the researchers identified six themes. Fig. 2 illus-
trates these themes that are discussed further in the following
subsections.

4.1. Open pricingconcept

Participants stress the relevance of OP and their insights contribute
to the development of the following conceptualization. OP consists of “a
sophisticated discrimination technique in which there are no rate ranges
and price recommendations are offered in real time”. The optimization is
only based on price and occurs individually per night. This has made it

possible not to close rates with restrictions on OTAs and has improved
hotel positioning on them. In addition, there are no minimum stay re-
strictions, since OP optimizes the days individually, so there is always
availability and demand is controlled just with the price. Discounts are
flexible depending on occupancy.

Compared to other optimization approaches, OP allows prices to
match the last room value (LRV), that is the maximum price associated
with the last available room. Instead, the bid price approach considers a
predetermined BAR that exceeds the LVR.

Despite some studies portraying that OP adopts a customer-centric
perspective (Baker et al., 2019), our results point out that practi-
tioners still indicate that optimization is mainly linked to revenues.
However, OP entails a tighter adaptation to demand since there are
infinite price options and it allows managers to change the application of
supplements between room types without closing any availability.

Finally, OP can be successfully applied to business clients via dy-
namic discounts. The specific products or services subject to OP will
depend on the company’s marketing strategy.

4.2. Open Pricing impact

The experts agree on the positive impact of OP on revenue, especially
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that Smart Data. [...]"

"[.] One to One pricing not only implies
knowing the customer’s willingness to pay in

real time but also knowing the value that the

customer has for the company [.]"

Customer value

One to one

pricing

on RevPAR. One possible explanation is the removal of price ranges,

which results in a higher number of customers who can find the price

that they are willing to pay. Many authors have already shown the
significant role of dynamic pricing strategy in increasing hotels profit

and customer value (e.g., Abrate, Nicolau and Viglia, 2019; Anderson
and Xie, 2016). The experts also point out that the application of dy-

namic pricing to corporate accounts benefits both clients and hotels.

‘sisA[eue 1deduo) Sumniid uadQ
€ 9qelL

4.3. Open Pricing data

The most recent RMSs rely on big data technology which aids in the
integration of a high volume of structured and unstructured information
in real time for the purpose of demand forecasting (Haynes, 2016;
Mariani, Baggio, Fuchs and Hoepken, 2018). This information includes
historical and current reservation data, competitors’ real time rates

(from rate shopping) and historical rates (STR), and online reputation

data. Some RMS also include flight information, aggregated future de-

mand, group rates, weather information, and web shopping regrets and
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Fig. 2. Key themes.

denials (Cetin et al., 2016). According to the experts, this second set of
data is often available to the revenue manager for decision making
rather than integrated into the pricing algorithm (i.e. the revenue
manager asks the RMS to enter the following rule into the system: if
flight occupancy is 80%, the price increases by 2%). There can be two
reasons for this lack of integration: one is that it is costlier for RMS and
the other is that there is certain information, that due to different
changes in demand and company strategy, hotels prefer to handle
directly.

4.4. KPIs

The experts state that the most common KPIs for practitioners mainly
relate to revenue instead of customer value. They agree that THRM is
becoming more popular in the industry but there are doubts as to the
degree of actual application. The same can be said of the gross operating
profit per available room (GOPPAR). This is often related to (1) the
constraints of technology or (2) the perceptions that it is not relevant for
the hotel strategy.

4.5. Open Pricing future

Although OP is still in its early stages, the experts predict a fast
development linked to the advance of technology (e.g., artificial intel-
ligence). The full integration of available data into pricing algorithms is
essential to optimize the OP performance. RMS have to be able to pro-
vide actionable data and thus avoid the accumulation of unmanaged
information, which is one of the biggest problems nowadays. RMS will
benefit from task automation, allowing revenue managers to focus on
strategic decision making and “managing by exception” (Duetto, 2019).

4.6. One to one pricing

The development of OP is moving towards the concept of one to one
pricing. Conceptually, one to one pricing integrates each individual

customer’s buying pattern and preferences into pricing. By doing so,
hotels can offer a personalized price based on how valuable the customer
is for the business. Therefore, one to one pricing involves a more stra-
tegic and customer-centric view than OP. From the customer perspec-
tive, prices resulting from one to one pricing are closer to their
individual willingness to pay (customer value-based). From the business
perspective, one to one pricing accounts for the customer lifetime value,
which promotes long-lasting relationships with the customer. Opti-
mizing RM according to the customer lifetime value instead of revenue
triggers a more strategic and long-run approach to pricing that can boost
customer loyalty.

Technology issues like data constraints and lack of integration,
coupled with the unfair perceptions held by customers are the key fac-
tors preventing the full application of personalized pricing. Unfair per-
ceptions could be mitigated by the application of personalized pricing
via loyalty programs. This way, prices would not be disclosed publicly
but each customer would get their personalized price. Another viable
alternative could be the personalization of offers, that is, a personalized
experience (e.g., choosing the amenities in the room), instead of prices
what has come to be known by the industry as attribute based pricing ABP
(Vinod, 2019; IDea$, 2020).

5. Discussion

Our findings reveal an ongoing transformation of traditional dy-
namic pricing that is aid by the availability of big data and sophisticated
information processing tools. Industry practitioners agree that these
tools (i.e. RMSs) allow a more customer-centric dynamic pricing or
“open pricing”. Building up on practitioners’ views, this study delineates
the concept of OP: open pricing can be defined as a “dynamic pricing
approach that consists of a sophisticated discrimination of prices based
on the demand fluctuation, supported by big data-led RMSs, which oc-
curs in real-time without pre-set price ranges and fences”. In addition,
our findings identify the main benefits of OP. These benefits relate to the
application of dynamic, demand-based discounts and supplements that
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eliminate the use of fixed percentages over/under the BAR. To the best
of our knowledge, this is the first study that reveals the specific features
of open pricing, thus addressing a key research avenue identified in
previous studies on dynamic pricing (e.g., Baker, 2019).

According to the experts, implementing an OP strategy does boost
revenues. This finding reflects that effective information processing is
associated with high performance levels as the information processing
theory suggests (Daft and Lengel, 1986). This idea is also in line with
empirical evidence gathered in previous works (Abrate et al., 2019). OP
is certainly more dynamic compared to other pricing approaches, which
explains its greater efficiency for revenue maximization. Compared to
traditional RMS, OP-based RMS excel at data gathering and integration.
It is important to note that despite being available to revenue managers
for decision-making, some of these data do not feed pricing algorithms
yet. Instead, revenue managers adopt this information to set ad-hoc
pricing rules. While big data-driven RMS have the technical capability
of setting prices autonomously, the reality is that managers still super-
vise every stage of the pricing process (Egan and Haynes, 2019). This is
partly due to a lack of trust in big data-driven RMSs, resulting in man-
agers putting their personal insights upfront in the decision-making
process. Therefore, our findings suggest that customer-centric pricing
strategies are still scant in the industry. Table 4, Table 5.

Finally, this study unveils that one to one pricing has a clear focus on
customer knowledge. As a customer-centric approach, it entails both
tactic and strategic advantages. First, from a tactical perspective, it of-
fers a better adjustment of prices to the individual customer’s willing-
ness to pay (customer value-based). Second, it accounts for the customer
lifetime value from the business perspective (strategic). Despite these
advantages, its implementation is still at its infancy in the hotel industry.
Practitioners indicate several factors that explain this. On the one hand,
many agree on the technological barriers (e.g., customer identification
at booking). On the other hand, industry practitioners report customers’
fairness concerns. Specifically, they state that customers may hold unfair
perceptions related to price differences. When these differences benefit
the business, fairness issues arise (Choi and Mattila, 2009; Xia, Monroe
and Cox, 2004). To tackle this, hotel managers use personalization of
offerings or attribute based pricing (e.g. favorite amenities, personalized
experience) instead of price personalization. Loyalty programs may
become an effective vehicle for the implementation of one to one pricing
(Koo, Yu and Han, 2020). Table 6, Table 7, Table 8.

6. Conclusion
6.1. Theoretical contributions

The use of big data technologies has been shown to improve infor-
mation processing in the hotel industry. In line with the information
processing theory (Daft and Lengel, 1986), the findings suggest that
more efficient information processing leads to enhanced revenue man-
agement performance. RM systems supported by big data have facili-
tated the application of “open pricing”. The present work provides the
first academic definition of this concept. The paper defines open pricing
as a “dynamic pricing approach that enables a sophisticated discrimi-
nation of prices, supported by big data-led RMS, which occurs in

Table 4
Open Pricing impact analysis.
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real-time without pre-set price ranges and fences”. The main advantage
of OP is a greater adaptation of prices to both demand and last room
value. Compared to traditional price discrimination, we observe five
major differences:

(1) Real time price setting, that is, rate ranges are not set in advance
but determined dynamically without fences.

(2) Prices are closer to the last room value and more aligned to
customer’s willingness to pay (value-based pricing) since OP in-
tegrates customer information.

(3) Optimization takes place individually per day and room type
without fences. Restrictions to OTAs are released and hotel
positioning on OTAs improves.

(4) Increased dynamism (i.e., infinite price points) that does not only
refer to price but also to discounts, supplements and fees.

(5) Dynamic pricing across tariffs (e.g., BAR, business rates, loyalty
programs) and distribution channels.

In addition, building up on information processing theory and
literature on dynamic pricing, the study offers a summary of RM-related
terms that nurture the academic field. By integrating the four key ele-
ments of dynamic pricing (KPIs, forecast insights, IT systems and opti-
mization methods) into a single conceptual model, this work sets the
basis for future theoretical developments. Specifically, this model fa-
cilitates a synthetic visual representation of the evolution of dynamic
pricing. The study clearly reveals a tendency towards one to one pricing,
thus delineating the forthcoming stage of dynamic pricing in the hotel
industry.

Finally, despite numerous studies on hotel RM, academics have
recently highlighted the need for further empirical research investi-
gating how RMS users interact with these systems (e.g., Baker, 2019).
Our study addresses this issue by bridging the gap between practi-
tioners’ views and the development of dynamic pricing models in the
literature. More specifically, our findings provide a deeper under-
standing of the features that RMS users most value as well as those that
they feel are still missing. Therefore, this work represents a first step
towards the collaboration of the hotel sector and RMS developers with
academics in order to understand the requirements and needs of the
sector.

6.2. Practical implications

From a practical perspective, the study facilitates the understanding
of new trends in pricing and identifies key challenges for revenue
managers and industry operators. RMS providers are leading the era of
OP (e.g., Duetto, 2019). Our findings will benefit those interested in
either implementing or improving OP techniques in their businesses, an
investment that will boost revenues. Some challenges remain open for
practitioners. Data access, integration, automation in price decision
processes and customer culture are some of them. RMS providers should
refine their solutions in order to provide actionable data and avoid the
accumulation of unmanaged information. In line with this, integrating
new technologies like artificial intelligence into RMS will be crucial.

More automated RMSs will allow revenue managers to focus on

oP Positive impact on RevPAR and
IMPACT other figures
[..]
Positive impact on corporate
clients

"[.] we have also found that hotels that move from a fixed rate structure to an OP generate more RevPAR than before [.]"
“[...] after three years using OP, the company had an increase of 8.5% in (RevPAR), a 4.9% in (ADR) and a 3.4% growth in occupancy

“[...] applying OP to corporate clients in our chain was one of the greatest successes in our marketing strategy [...]"
“[...] usually, the corporate segment has fixed negotiated rates attached to it which are not yieldable, and which generally have a fixed

discount on the BAR (Best Avaible Rate). The systems that offer open dynamic prices give the possibility of introducing a discount range
in the corporate rates, which in the case of ..., for example, for a fixed discount of 10%, the range with OP can currently fluctuate from
8-25% depending on demand. In other words, the OP enables price dynamism in corporate rates. Companies also benefit from these
agreements. In fact, all corporate accounts in this chain have introduced dynamic pricing are very satisfied with the outcome/...]"”
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Table 5
Open Pricing data.
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opP Different data sources available to the revenue
DATA  manager for decision making

“[...] our RMS integrates property management data (historical and forecasted), competitors’ prices, online reputation
and market demand in the algorithm. There is a lot of confusion in the industry because lots of data sources feed the RMS.

However, the reality proves this is wrong. RMS provides a tool to visualize all these data but the algorithm does not
necessarily include all of them [...]"

Not always integrated into the pricing algorithm

“[...] the RMS we use for demand forecasting incorporates hotel data from historic records and “on the books” data.

Hotel web traffic data is only considered to a limited degree. Other information like incoming flights is considered just for

reporting purposes [...]”

Table 6
KPIs.

KPIs THRM and GOPPAR
becoming more popular

“[.JTHRM is becoming more popular in the
industry. We can see a clear tendency towards
the use of GOPPAR given that food and
beverages’ revenues come with a different
margin compared to rooms. TREVPAR
presents some limitations. For example, the
homogenization of ratios in restaurants and
those related to spa, golf and other facilities.
[..]”

“[.] The most frequently used KPIs are ADR,
OCC, REVPAR, Room nights, GOPPAR,
NETRevPAR, TREVPAR (total revenue per
avaible room) or THRM [...]. In restaurants,
we also have Revpash (revenue per available
Seat Hour). For conferences, Revm2 or
REVPAM (revenue Per Available Square
Meter). Regarding the competitive set, we have
MPI, ARI, RGI and BQI"” [...]"

“[.] we are working on the technology
surrounding our RMS with the purpose of
optimizing prices according to the total profit
across segments, we see that is the way to go.
The main constraints are the technology and
corresponding integrations to make the system
works [...]"

Mainly related to revenue
instead of customer value

Technology and
integration constraints

strategic decision making and “managing by exception”, while ensuring
that the right data are powering the right system (Millauer and Velle-
koop, 2019). As the industry slowly recovers from the impact of
COVID19, the automation of RMS based on artificial intelligence will be
more important in order to better respond to uncertain and volatile
environments (Gonzalez-Serrano, Talon-Ballestero, Munoz-Romero,
Soguero-Ruiz, Rojo-Alvarez, 2021). An effective alignment of prices to
customers’ valuations will be key for the future performance and sus-
tainability of the sector.

6.3. Limitations and future research

The study is not without limitations. First, it is important to note that
the proposed stages of dynamic pricing may not coincide in time across
countries and/or business in the industry. Therefore, the findings should
be regarded with caution when extrapolating any conclusion to different
geographical areas or different industries (e.g. airlines, peer-based ser-
vices). Second, the findings come from a single focus group study. Focus
groups are an efficient way of gaining rich insights on a certain topic but
might lead to biased responses (Maxwell, 1992). Future research might

Table 7
Open Pricing future.

complement these results by running in-depth interviews with key
informants.

Another future research avenue regards to testing the implementa-
tion of OP quantitatively. An investigation of the impact of OP on rev-
enues would enrich these results. Another avenue for further research
relates to the advance of optimization models that account for customers
perceptions of the value of the service. Similarly, future developments of
one to one pricing could explore the operationalization of customer
lifetime value pricing, as well as the integration of this approach into a
long-term dynamic pricing strategy. Finally, since the data collection for
the study took place in 2019, right before the COVID pandemic, it would
be interesting to extend the present study by retrieving more recent data
to explore the effectiveness of RMSs when demand is constrained by
external factors.
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Appendix

Focus Group Questions

1. How is RM changing with Big Data technology?

2. What does Open Pricing really consist of? what impact does it
have on RM if a company implements it? how can the OP be
implemented in a company? what requirements are necessary?
what limitations does it have? is this technology accessible to all
hotels?

. Is it true that Open Pricing does not close channels for sale?

. What is the difference between bid price and open price?

. What performance KPIS do hotels manage?

. Why is Total Revenue Management not yet used in the hotel in-
dustry, and do you see it being used in the future?

7. With regard to data, what data do these systems handle, apart

from the historical data on occupation and real demand, pick-up,

Ul AW

OP Fast development and price
FUTURE automation

[...] so where I think we are going is towards that world where there has to be an integration of the data by the pricing decision making
processes. Technology is fundamental to be that facilitator since it is not sensible to use an Excel spreadsheet when there are so many

sources of information that can be explored in an efficient way. And this will take us to a new era of price automation where some hotel
chains, hotels or systems are already doing it with less or more success [...]"”

Need of actionable data

“[...] not all data is actionable, it has to be segmented, it has to be polished and the revenue managers are at that point where they will be

able to have that actionable data, that Smart Data. [...]”

Revenue managers managing by
exception

"[.] technology will help revenue managers to automate complicated and repetitive tasks to focus on managing by exception, or focusing
less on pulling pricing levers and more on building strategies to capitalize on their most compressed days [.]"
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Table 8
One to One Pricing.

ONE TO ONE
PRICING

Personalized price
based on customer value

"[.] one to one pricing is not only about
knowing consumers’ willingness to pay,
but also about understanding the
lifetime value of that specific customer
to the firm [.]"

"[.] The customization we are talking
about today is impossible to achieve.
Now, what are the big chains doing?
You are already seeing what
Intercontinental is doing, it is not talking
about custom pricing, but it is taking a
look at it and what it is offering is room
attributes, that is, you choose your
custom product and, therefore, you
choose this, you choose that... In the
end, personalizing your product is equal
to customizing pricing [.]"

“[...] To implement price
personalization, a great advantage for
hotel chains is that they have access to
loyalty programme databases, which
are loyalty programmes [.]"

"[.] price customization is complex from
two points of view. From the point of
view of customer perception. and the
second from what technological
capacity you have to be able to
customize the price and which
databases you are able to reach [.]”
“[...] To me, one of the great challenges
of the coming years is the integration of
systems.

“[...] Price differences may cause
unfair perceptions to those customers
that pay a higher price [...]”

“[...] to start with the first part, we are
not talking internally about price
personalization, instead we are talking
about personalized offers [.]”

Strategic and customer-
centric view

Loyalty boosting

Technology and
integration constraints

Unfair perceptions from
customers

Personalization of offers

ROH, competition, online reputation? Do they all track the OTAS
websites and the hotel’s website?
e BEONPRICE (e.g.: meteorological.
e DUETTO (flight occupancy:.
e IDEAS (
8. What is the difference between these three systems?
9. What is One to One for you and what are the implications?

10. What do you think are the reasons that make it difficult to
implement this strategy in the hotel sector? (technological or
customer perception) what consequences do you think this pric-
ing strategy could have? how could these consequences be miti-
gated? how do you think it could be implemented without
customers feeling unfairly treated when they pay higher prices
than others?

11. Are there problems with integrating information into the chains?
does the revenue manager currently have many technological
tools for daily decision making, however, sometimes this infor-
mation is not integrated and therefore unmanageable? can an
excess of information and a lack of integration lead to erroneous
decision making?
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