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A B S T R A C T   

In the last years, a lot of effort was placed into approximated or relaxed models and heuristic and metaheuristic 
algorithms to solve complex problems, mainly with non-linear and non-convex natures, in a reasonable time. On 
one hand, approximated/relaxed mathematical models often provide convergence guarantees and allow the 
problem to be solved to global optimality. On the other hand, there is no guarantee that the optimal solution of 
the modified problem is even feasible in the original one. In contrast with that, the metaheuristic algorithms lack 
mathematical proof for optimality, but as the obtained solutions can be tested against the original problem, the 
feasibility can be ensured. In this sense, this work brings a new method combining exact solutions from a Mixed- 
Integer-Linear-Problem (MILP) Transmission Expansion Planning (TEP) model and stochastic solutions from 
metaheuristic algorithms to solve the non-linear and non-convex TEP problem. We identify the issues that came 
up with the linear approximations and metaheuristics procedures and we introduce a MILP-Based Heuristic 
(MBH) algorithm to overcome these issues. We demonstrate our method on a single-stage TEP with the RTS 24 
nodes and on a multi-stage TEP with the IEEE 118 nodes test system. The AC TEP solution was obtained using 
Evolutionary Computation, while the DC TEP solution was obtained using a commercial solver. From the sim
ulations results, the novel MBH method was able to reduce in 42% and in 85% the investment cost from an 
evolutionary computation solution for the single-stage and multi-stage TEP, respectively.   

Introduction 

a. Motivation and background 

The transmission grid is an essential part of power systems, it allows 
not only the physical connection between generators and load centers 
but also the interconnection between areas, enabling the portfolio effect 
in which generators with different characteristics can be integrated. 
Even with the unbundling and liberalization of the electric sector in 
which the generation and retail sectors were exposed to market mech
anisms, the transmission network is considered a natural monopoly, and 
the studies regarding their evolution over time are frequently conducted 
in a way that the security of supply and the investment in new assets are 
both optimized. Therefore, the Transmission Expansion Planning (TEP) 
aims at identifying a set of assets, as overhead lines, submarine cables, 
and transformers, to be installed on the grid considering a long-term 

planning horizon. 
The mathematical model representing the TEP problem considers the 

investment cost in new pieces of equipment and their impact on the 
system’s future operation. For the operation conditions prediction, an 
AC Optimal Power Flow (AC-OPF) is the model that represents more 
precisely the intrinsic characteristics of the grid infrastructure, thus, TEP 
model has non-linear and non-convex natures which make the problem 
intractable on the commercial solvers. Due to the mentioned importance 
of the transmission grids for power systems, and the fact that TEP is a 
capital-intensive exercise (billions of dollars per year), academy and 
power industry often work with the weld spread DC-OPF model, which 
approximates the equations from the AC-OPF model, and, for that 
reason, it has linear and convex natures and can be solved by optimality 
in a reasonable time, however it cannot be assumed any level of accu
racy, Ref [1, 2]. 

In the last years, optimization problems have begun to be handled by 
“modern heuristic” algorithms (heuristic, constructive heuristics, 
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metaheuristics, hyperheuristics) in which a candidate solution is tested 
against a constrained model, often in its full version. Even though the 
best solutions provided by that search mechanisms could be considered 
feasible, no proof regarding optimality can be drawn. On the other hand, 
approximated mathematical models that can be solved by optimality do 
not ensure the optimality in the original model, or worse, they do not 
ensure even feasibility in the original problem, and as a matter of truth, 
they are often infeasible [3]. 

In this sense, this work is motivated by combining solutions coming 
from modern heuristic algorithms with solutions coming from exact 
methods. On one hand, a suboptimal solution with ensured feasibility in 
the AC TEP model is taken from a metaheuristic algorithm and it is 
considered as an upper target regarding investments. On the other hand, 
an optimal solution from the DC TEP model is taken from a linear pro
gramming solver and it is considered as a lower target regarding in
vestment. Our hypothesis relies on the fact that both solutions can be 
improved by an intelligent search mechanism that tries to reduce the gap 
between the lower and upper targets. Therefore, new reliable solutions 
with better quality can be obtained.  

b Related work 

To approach the related work, consider a generic non-linear and non- 
convex AC-TEP model which is represented by Problem 1 in Eq. (1) to 
Eq. (4), in which Eq. (1) is the objective function to be optimized (in
vestment costs, operation costs, transmission losses, etc) Eq. (2). is 
related to equality constraints in the AC model, as the power balance 
equation, Eq. (3) is related to inequality constraints, as the apparent 
power in a branch and voltage variation in a bus, and Eq. (4) is related to 
the lower and upper limits of the decision variable, as output generators 
and investment in new assets. 

Problem 1: Generic TEP Model 

min
x

f (x) (1) 

Subject to: 

g(x) = 0 (2)  

h(x) ≤ 0 (3)  

x ∈ X (4) 

As this problem often cannot be solved by optimality in a reasonable 
time due to the curse of dimensionality, there are generally two ways to 
deal with the problem:  

i Approximate/relax the model until it is possible to obtain an exact 
solution in a reasonable time.  

ii Use the exact model and approximate the solution. 

In the first case, the approximated model is represented by Problem 2 
described below by Eq. (5) to Eq. (8) which has equations with the same 
meanings of Problem 1, but now without the non-linearities and non- 
convexities, which means that an optimal solution can now be ob
tained by Problem 2 (it is often claimed that the solution of Problem 2 also 
represents a solution in Problem 1). 

Problem 2: Generic approximated TEP Model 

min
x

f ′(x) (5) 

Subject to: 

g′(x) = 0 (6)  

h′(x) ≤ 0 (7)  

x ∈ X (8) 

Regarding the previously described approach i, TEP has been 
handled mainly by the approximated DC model in which the trans
mission losses, the reactive power, and the voltage bus variation are 
ignored in the model. The vast majority of TEP studies published in 
prestigious scientific journals use this model, as in Refs [4.–9]. In fact, 
almost all Transmission System Operators (TSOs) worldwide use this 
model in their analysis. However, in the last years, some works tried to 
find out how reliable this approximated model is when applied to a 
long-term analysis as TEP, as in Refs [10, 11]. Turns out the approxi
mated DC model can deliver plans with severe infeasibilities in the real 

Nomenclature 

Decision variables 
α Load flexibility in the AC-OPF model 
v, θ Voltage magnitude and angle vectors 
x Investment state for transmission assets (binary) 
p, q Real and reactive generation vectors 
fp, fq Real and reactive power flow 

Parameters: 
ρif , ρfi Probability indexes used in the EBH algorithm 
c Nominal equipment investment cost 
countMAX Stop criterion used in the EBH algorithm 
r Discount rate 
Dp, Dq Real and reactive demand 
β Penalization factor for PNS 
P,P Bounds for real power 
Q,Q Bounds for reactive power 
V,V Voltage magnitude limit 
θ, θ Voltage angle limit 
Nstop Stop criterion 
np Population size in EPSO algorithm 
G, B Conductance and susceptance 
t Index for stage 

S Apparent power limit 
i, j Index for buses 
PNS Power not supplied 
v Velocity of a solution in the search space (EPSO) 
x, x Lower and upper bounds for investment decisions 
X Set of solutions (EPSO) 
Z* TEP Objective function 
τ Replication parameter (EPSO) 

sets 
F F&I boundary region 
ϑ1

x Neighborhood 1 region 
ϑ1

x Lower neighborhood region 
T Set of stages in the planning horizon 
L Set of pairs of buses defining new projects 
B Set of all buses in the system 
B i Set of all buses connected to bus i 
B Set of binary vectors with the dimension of the investment 

decisions 
Ωf Region in the search space containing all feasible solutions 

(no-load shedding) 
ΩI Region in the search space containing all infeasible 

solutions  
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operation of power systems, mainly because in the real operation the 
transmission losses, reactive power, and voltage bus variation are quite 
sizeable. 

Regarding now the second approach ii, which uses the original 
Problem 1 – the AC TEP – and an approximated solution. This full model 
is considered an NP-hard problem, which means that the computational 
time required to solve the problem does not grow polynomially within 
the problem dimension, or in other words, the solution approach is not 
scalable. However, it is still possible to check how a given solution x 
performs under Problem 1. That is the main idea behind any modern 
heuristic algorithm, i.e; evaluate solutions x and change them following 
different mechanisms to improve their performance in Problem 1. 

In the last years, some interesting works deal with TEP problems by 
using metaheuristic algorithms achieving good quality plans with a 
reasonable and justified computational cost, as in Ref [12–15]. How
ever, and as mentioned before, these procedures lack mathematical 
proofs for optimality. Besides, the performance of the generated solu
tions can be very different when executing several runs of the optimi
zation algorithm. 

It is worth mentioning that nowadays some studies have been pro
posing tractable mathematical models for the AC-OPF problem using 
linearization, as in Ref. [16.–18], and convex relaxations based on 
semidefinite programming, as in Ref.[19]. These works truly represent a 
huge contribution to the scientific community regarding more precise 
models of the bulk systems, but as in the case of DC-OPF, these new 
approximated AC-OPF formulations also cannot ensure the feasibility in 
the original model. Finally, the main motivation in choosing the DC 
formulations as a lower target is the experience and dissemination of this 
model by the academy and power industry over the last twenty years.  

c Contributions 

Differently from previous work, in this paper, a combined approach 
is proposed where a global optimal solution from the DC TEP model and 
an approximated solution from the AC TEP model are used as input in a 
new MILP-Based Heuristic algorithm (MBH) that is responsible to 
deliver the final solution plan. The contributions of this work are 
threefold:  

i. A thorough analysis of the performances of exact solutions from 
approximated TEP models and approximated solutions from full 
TEP models. The performances of these two approaches are 
related to the computational burden, investment costs, and in
feasibilities regarding Power Not Supplied (PNS).  

ii. A novel MILP-Based Heuristic algorithm that solves TEP problems 
using the optimal solution from the DC model and the approxi
mated solution from the AC model. In this new algorithm, a 
movement function is proposed to reduce the gap between the 
lower target (exact DC solution) and the upper target (approxi
mated AC solution). 

iii. A mathematical proof of local optimality in the boundary be
tween the feasible and infeasible region of the search space. This 
proof allows better exploitation in the search procedure, as well 
as an algorithmic gain in identifying more reliable solutions.  

d. Structure of the paper, open science, and research integrity 

This paper is organized as follows: Section 2 presents the mathe
matical formulation of the AC TEP full model and the approximated DC 
TEP model, Section 3 presents the proposed methodology with the 
feasible/infeasible boundary (called F&I boundary) characteristics. Sec
tion 4 brings a small tutorial system in which the solutions are analyzed, 
and the boundary is identified. The experimental experience is detailed 
in Section 5 in which two different instances are used to prove the 
effectiveness and robustness of the proposed method under both single- 
stage and multi-stage TEP approaches. Lastly, Section 6 brings the main 
conclusions about this work. 

Finally, this work takes into account research integrity and open 
science practices for education and citizen in general. In this way, all 
codes produced in this paper, as well as the entire process through 
methodologies and results are available in the repositories in Ref [20, 
21]. 

Mathematical formulation of the TEP problem  

a Full AC TEP model 

TEP is generally conducted considering the optimization of both 
investment and the security of supply. In this sense, the present work 
considers as an objective function the minimization of investment in 
new transmission assets over a planning horizon, besides the demand is 
considered inelastic, and penalization for Power Not Supplied (PNS) is 
also contemplated in the objective function. The AC TEP model is pre
sented below by Eq. (9) to Eq. (20). 

Z* = min
{x,θ,v,f p , f q , p,q,α }

∑

t∈T

[
∑

(i,j)∈L

x(i,j),t .c(i,j)
(1 + r)t +

∑

i∈B

β.
(
1 − αi,t

)
.Dp

i,t

]

(9) 

Subject to: 

pi,t +
∑

j∈B i

f p
(i,j),t − αi,tDp

i,t = 0, ∀t ∈ T , ∀i ∈ B (10)  

qi,t +
∑

j∈B i

f q
(i,j),t − αi,tDq

i,t = 0, ∀t ∈ T , ∀i ∈ B (11)  

f p
(i,j),t = x(i,j),t

[
v2

i,tG(i,j) − vi,tvj,t
(
G(i,j)cosθ(i,j),t +B(i,j)sinθ(i,j),t

)]
, ∀t ∈ T , ∀(i, j)

∈ L

(12)  

f q
(i,j),t = x(i,j),t

[
− v2

i,tB(i,j) + vi,tvj,t
(
B(i,j)cosθ(i,j),t − G(i,j)sinθ(i,j),t

)]
, ∀t

∈ T ,∀(i, j) ∈ L (13)  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

f p
(i,j),t

)2
+
(

f q
(i,j),t

)2
√

≤ S2
(i,j),t =, ∀t ∈ T , ∀(i, j) ∈ L (14)  

0 ≤ αi,t ≤ 1, ∀t ∈ T , ∀i ∈ B (15)  

Pi,t ≤ pi,t ≤ Pi,t, ∀t ∈ T , ∀i ∈ B (16)  

Qi,t ≤ qi,t ≤ Qi,t, ∀t ∈ T , ∀i ∈ B (17)  

Vi,t ≤ vi,t ≤ Vi,t, ∀t ∈ T , ∀i ∈ B (18)  

θi,t ≤ θi,t ≤ θi,t, ∀t ∈ T , ∀i ∈ B (19)  

x(i,j),t ∈ {0, 1}, ∀t ∈ T , ∀(i, j) ∈ L (20) 

As mentioned before, the objective function in Eq. (9) is the mini
mization of the total system costs comprising investment and PNS costs, 
the decision variables are the investment state in new transmission as
sets x, the angle and magnitude voltages in the system nodes θ, v, the 
power output of generators p, q and the level of load shedding α in each 
node. The former provides flexibility enough to the AC-OPF to reduce 
the demand in node i at stage t (Di,t) if this is required to maintain 
feasibility. The first Kirchhoff’s law for active and reactive power bal
ance in all system nodes is given by Eq. (10) and Eq. (11). The power 
flow represented by Eq. (12) and Eq. (13) is modelled as the product of 
binary variables x and the AC power flow equations, thus, for existing 
circuits x is fixed to 1, ensuring the power flow in that branch. However, 
for candidate circuits, x is binary which means that if a circuit is not 
selected to be installed on the grid, the power flow is forced to be zero. 
The thermal operation limits of the overhead transmission lines are 
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considered in Eq. (14) while the AC flexibility variable limits are 
considered in Eq. (15). The lower and upper bounds for active and 
reactive generation, voltage magnitudes, and angles are considered in 
Eq. (16) to Eq. (19), respectively. For the sake of conciseness, in the 
above model, we use θ(i,j),t to represent θi,t − θj,t . Therefore, the model 
should be read under this assumption. Finally, Eq. (20) presents the 
binary nature of investment decisions.  

b The approximated DC TEP model 

The DC TEP model is often based on the following approximations: 
branch resistances are negligible regarding the corresponding re
actances (Gij ≈ 0 ), bus voltage magnitudes are near to the nominal 
value (vi = vj = 1pu) and voltage angle differences between nodes are 
small (θij ≈ 0 →cosθij = 1, sinθij = θij). For the sake of clarity, the 
resulting DC TEP model is presented by Eq. (21) to Eq. (29). 

In this model, Eq. (22) represents the active power injection from bus 
i to j, Eq. (23) brings the active power injection, as this equation still 
contains a non-linear term the Big-M method is applied to avoid the 
presence of this term. Thus, if a candidate asset is selected, that is x(i,j),t =

1, Eq. (24) gets forced to be an equality constraint. On the contrary, case 
x(i,j),t = 0, the positive value of M ensures that Eq. (24) is not an active 
constraint. The active flows in the branches are limited at Eq. (25), while 
Eq. (26), Eq. (27), Eq. (28), and Eq. (29) have the same meaning of the 
corresponding equations in the AC-TEP model. 

Z* = min
{x,θ,v,f p , p,α }

∑

t∈T

[
∑

(i,j)∈L

x(i,j),t .c(i,j)
(1 + r)t +

∑

i∈B

β.
(
1 − αi,t

)
.PDi,t

]

(21) 

Subject to: 

pi,t +
∑

j∈B i

f p
(i,j),t + αi,tDp

i,t = 0, ∀t ∈ T , ∀i ∈ B (22)  

f p
(i,j),t = − x(i,j),tB(i,j)θ(i,j),t, ∀t ∈ T ,∀(i, j) ∈ L (23)  

− M
(
1 − x(i,j),t

)
≤ f p

(i,j),t − x(i,j),tB(i,j),tθ(i,j),t ≤ M
(
1 − x(i,j),t

)
, ∀t ∈ T , ∀(i, j)

∈ L

(24)  

− F(i,j),tx(i,j),t ≤ f p
(i,j),t ≤ F(i,j),tx(i,j),t, ∀t ∈ T ,∀(i, j) ∈ L (25)  

0 ≤ αi,t ≤ 1, ∀t ∈ T , ∀i ∈ B (26)  

Pi,t ≤ pi,t ≤ Pi,t, ∀t ∈ T , ∀i ∈ B (27)  

θi,t ≤ θi,t ≤ θi,t, ∀t ∈ T , ∀i ∈ B (28)  

x(i,j),t ∈ {0, 1}, ∀t ∈ T ,∀(i, j) ∈ L (29)  

Proposed model 

In the present methodology, two solutions are considered as input:  

i An approximated solution s1 obtained from the AC TEP model from 
Eq. (9) to Eq. (20), a Mixed Integer Non-Linear Problem (MINLP). In 
this case, solved by employing a metaheuristic Algorithm.  

ii An optimal exact solution s2 obtained from the DC TEP model from 
Eq. (21) to Eq. (29), a Mixed Integer Linear Problem (MILP). In this 
case, employing the Gurobi solver 9.1.1 is used. 

On the one hand, the approximate solution from the AC TEP model 
(s1) does not have optimality proofs, although the feasibility is always 
ensured by the metaheuristic Algorithm, as will be observed in Section 3. 
d. On the other hand, the optimal solution from the DC TEP model (s2) 
needs to be verified in the AC TEP model, some studies show that this 

solution may present several violations in the AC model, as in Ref [22, 
23]. Thus, solution s1 needs to be tested regarding the minimization of 
investments (while ensuring feasibility) and solution s2 needs to be 
tested regarding the minimization of operation violations. 

In the proposed model, the approximate AC TEP solution s1 is 
considered an upper target, since it makes no sense to look for more 
expensive investment solutions than this feasible solution obtained by 
metaheuristic algorithm (with convergence guarantees). Conversely, the 
optimal DC solution s2 is considered a lower target. 

It is important to highlight that the upper and lower targets are not 
upper and lower bounds in the proposed methodology. In fact, it is 
impossible to assume any level of accuracy in the DC TEP model because 
it is an approximation of the AC TEP model. In this sense a relaxed TEP 
model (by convexification, for instance) could ensure this bound state
ment, however, the DC TEP model is, by far, the most widespread model 
by research academy and TSO worldwide, and for that reason, it was 
chosen in the proposed model. 

Besides, the engineering knowledge obtained over several years in 
this field shows that the DC model undervalues transmission in
vestments when compared to the AC model, Ref [22, 23]. Nevertheless, 
as will be present in section 3.b, the mentioned lower target statement 
does not compromise the methodology even when the AC TEP optimal 
solution is smaller than the DC TEP optimal solution.  

a Moving solutions in the search space 

The proposed MBH algorithm uses a movement function f that iter
atively directs s1 ∈ Ωf through the lower target s2 ∈ ΩI (feasible to 
infeasible direction), and the s2 ∈ ΩI through the upper target s1 ∈ Ωf 

(infeasible to feasible direction). In the feasible to infeasible direction, 
an investment decision from s2 ∈ ΩI is randomly chosen and copied into 
s1 ∈ Ωf . In this draw, the decision binary variables with zero value have 
a higher probability (ρfi) of being chosen since the objective is to reduce 
the investments in s1 ∈ Ωf . In contrast, in the infeasible to feasible di
rection, an investment decision from s1 ∈ Ωf is randomly chosen and 
copied into s2 ∈ ΩI. In this draw, the decision binary variables with a 
value of one have a higher probability (ρif ) of being chosen since the 
objective is to reduce violations in s2 ∈ ΩI by considering new trans
mission assets. 

At each iteration, the new solutions s1 and s2 are verified against the 
objective function presented in Eq. (9), if they have improved the targets 
are updated, that is when the new solution s1 is less than the upper target 
and still feasible, then the upper target is updated by the new s1. When 
the new solution s2 presents fewer violations (PNS) than the lower 
target, then the lower target is updated by the new s2. The process ends 
when none of the solutions are improved by a predefined number of 
iterations.  

b. When solutions cross the feasibility boundary 

During the iterations, the solution s1 ∈ Ωf is movement in the search 
space by coping the investment decisions of s2 ∈ ΩI with a higher 
probability to copy the binary investment decision variables equals zero. 
However, in this movement s1 may become infeasible, which is not the 
goal as detailed before at the beginning of the section. In this case, the 
movement function f is applied in s1 in direction to the upper target 
(always feasible), as in the infeasible to feasible direction detailed in 
Section 3.a. Nevertheless, before going back to the feasible region s1 is 
compared with the lower target and, if it has fewer PNS, then the lower 
target is updated with s1. 

Similarly, as the solution s2 ∈ ΩI is movement in the search space by 
coping the investment decisions of s1 ∈ Ωf with a higher probability to 
copy the binary investment decision variables equals to one, s2 may 
become feasible. 

In this case, the movement function f is applied in s2 in direction to 
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the lower target (always infeasible), as in the feasible to infeasible di
rection detailed in Section 3.a. However, before going back to the 
infeasible region s2 is compared with the upper target and, if it has less 
investment cost, then the upper target is updated with s2. The EBH 
pseudocode is presented by Algorithm 1 below. 

In the first line, the inputs are the parameter of the solution s1 ∈ Ωf , 
that is, the solution, the penalization, and the investment cost (s1, p1,i1), 
the parameter of solution s2 ∈ ΩI, which are the solution, the penaliza
tion, and the investment cost (s2, p2, i2), and the stopping criterion 
countMAX. 

Thus, in the second line, the upper and lower targets are initialized 
with the parameter of s1 ∈ Ωf and s2 ∈ ΩI, respectively, and the counters 
count1 and count2 are initialized with zero, the EBH algorithm works 
trying to improve the solutions while at least one of these two counters 
are below countMAX, as described in the third line. From lines 4 to 8, the 
movement function f is applied in s1 as described in Section 3.a. 

In the same way, this movement function is applied in s2 from lines 9 
to 13. Then, the new solution s1 is compared against the upper target (in 
case s1 is feasible) from line 14 to 19, and against the lower target (in 
case s1 is infeasible) from lines 20 to 23. 

The new solution s2 is also compared against the lower target (in case 
s2 is infeasible) from line 24 to 29, and against the upper target (in case 
s2 is feasible) from lines 30 to 34. The new upper and lower targets are 
given in the last line, after EBH convergence. The behavior of the upper 
and lower target during the EBH procedure is presented in Fig. 1, while 

the overview diagram of the proposed approach is presented in Fig. 2. 
The AC and DC TEP solutions are input in the model, when feasible s1 

changes iteratively in direction to slt, otherwise, it changes iteratively 
towards sut. On the other hand, when infeasible s2 changes iteratively in 
direction to sut , if not it changes iteratively towards slt. Therefore, as slt is 
updated at each iteration to reduce the PNS levels (increasing the in
vestment costs) and sut is updated at each iteration in order to reduce the 
investment costs (keeping null the PNS), the gap between these two 
solutions is reduced during this procedure. Finally, to complement the 
information of Algorithm 1, Fig. 2 presents an overview diagram of the 
proposed approach.  

c. F&I boundary characteristics 

The next paragraphs present the main characteristics of the F&I 
boundary, as well as its mathematical definition. Thus, for the sake of 
clarity, in the following definitions consider a solution only the binary 
decision vector representing the investment in new assets. 

Definition 1. Neighborhood 1 (ϑ1
x) 

Neighborhood 1 is the region close to solution x (binary vector 
representing investment decisions) in which the difference between any 
other solution y belonging to this region and x is related to only one asset 
status. This definition is expressed by Eq. (30) below, in this formulation 
B stands for the set of all binary vectors with dimension equal to the 
number of investment decisions. 

ϑ1
x = {y ∈ B | ‖ y − x‖1= 1} (30) 

Definition 2. Lower Neighborhood (ϑ̂1
x ) 

The Lower Neighborhood of x is the subset of ϑ1
x with fewer in

vestments Eq. (31). represents this set. 

ϑ̂1
x =

{
y ∈ ϑ1

x |‖ y ‖1 < ‖ x ‖1
}

(31) 

Definition 3. F&I boundary (F) 

The F&I boundary is the set of feasible solutions whose Lower 
Neighborhoods are all infeasible points. So, if Ωf is the set of all feasible 
solutions of L , F can be defined as follows: 

F =
{

x ∈ B |ϑ̂1
x ∩ Ωf =∅

}
(32) 

Definition 4. Local optimality 

A solution x* ∈ Ωf is local optimal if ∄y ∈ (ϑ1
x* ∩ Ωf ) such that 

Z(y) < Z(x*). 

Theorem 1. All local optimal solutions, and consequently the global 
optimal solution, belong to the F&I boundary. 

Proof: If ϑ1
x* ∩ Ωf = ∅, x* is local optimal by definition. If not, sup

pose x* ∕∈ F . Then, according to Definition 3, there must exist at least 

one y ∈ (
̂ϑ1
x* ∩ Ωf ). And, according to Definition 2, y should be equal to 

x except by one element equal to one in x that should value zero in y As 
all assets have a positive investment cost, Z(y) < Z(x*), contradicting the 
initial supposition that x* is local optimal.  

d. Further Comments on the new method 

In short, the proposed methodology starts with a search procedure 
considering two good quality solutions: one approximated and feasible 
from the AC TEP with metaheuristic Algorithm, and another infeasible 
(hypothetically) from the DC TEP with a MILP solver. The MILP-based 
Heuristic algorithm is applied on both solutions and their movement 
naturally explores the F&I boundary, which is a promising region to be 
explored Fig. 3. represents these mentioned concepts in a two-dimension 

Algorithm 1 
. Pseudocode of the EBH  

1 Input: {s1, p1, i1 , s2, p2, i2, ρif , ρfi,countMAX}

2 Initialization: {sut , put , iut}←{s1, p1, i1}, {slt , plt , ilt}←{s2, p2, i2},
count1 = count2 = 0 

3 while count1 < countMAX or count2 < countMAX  

4 if p1 = 0 
5 {s1, p1 , i1} = f(s1, slt , ρfi)

6 else 
7 {s1, p1, i1} = f(s1, sut , ρif )

8 end 

9 if p2 ∕= 0  

10 {s2, p2, i2} = f(s2, sut , ρif )

11 else 
12 {s2, p2, i2} = f(s2, slt , ρfi)

13 end  

14 if (i1 < iut) and p1 = 0 
15 {sut , put , iut}←{s1, p1, i1}
16 count1 = 0 
17 else 
18 count1 + +

19 end 

20 
21 

if (p1 < plt) and p1 ∕= 0  

21 {slt , plt , ilt}←{s1, p1, i1}

22 count1 = 0 
23 end  

24 if (p2 < plt) and p2 ∕= 0 
25 {slt , plt , ilt}←{s2 , p2, i2}
26 count2 = 0 
27 else 
28 count2 + +

29 end 

30 if (i2 < iut) and p2 = 0 
31 {sut , put , iut}←{s2, p2, i2}
32 count2 = 0 
33 end 
34 end 
35 Output: {sut , put , iut},{slt , plt , ilt}
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graph, just for the sake of didactics. 
In this figure, the MBH algorithm receives the solutions s1 and s2, 

then it moves the solution s1 towards the solution s2, and solution s2 
towards the solution s1. Both solutions are updated in the iterative 
process, exploring the boundary between the feasible and infeasible 
region, the F&I boundary. A hypothetical global optimal solution (red 
dot) is located at the F&I Boundary, a region in which the MBH algo
rithm naturally explores. 

As can be noted, s1 and s2 oscillate between the feasible and the 
infeasible region of the AC TEP search space, the region that contains the 

optimal solution. As in the proposed model s1 and s2 are updated iter
atively, the search is not restricted only to the path between the DC and 
AC TEP solution but to the entire F&I boundary. This is the justification 
for considering the approximated DC TEP model as a lower target. 
Notice that in Fig. 3, the optimal AC TEP solution is smaller than the 
optimal solution DC, considered as a lower target, but as s1 and s2 
oscillate between the feasible and the infeasible region, the upper and 
lower targets will also be updated iteratively. In the next Section, a 
tutorial system will investigate the main definitions and ideas in this 
work. 

Fig. 1. Behavior of solutions during the process.  

Fig. 2. Diagram overview of the proposed approach.  
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e. Metaheuristic algorithm for the AC TEP model 

In this work, the Evolutionary Particle Swarm Optimization (EPSO) 
is used to assess the AC TEP solution. It is important to highlight that any 
other metaheuristic algorithm could be utilized in the proposed 
approach. In our case, we have used EPSO in other past works and the 
algorithm often presents a better behavior than Genetic Algorithm and 
Particle Swarm Optimization, as in [10]. The main EPSO operators are 
described below, while its pseudocode is presented in Algorithm 2. The 
algorithm code, in Matlab language, is available in Ref [20]. 

First of all, EPSO inputs are the replication parameter (τ), the number 
of solutions (np), called as “individuals”, in the set of solutions (X), 
called as “population”, and the lower (x) and upper (x) bounds for in
vestment decisions. Then, the population is randomly initialized, which 
is represented by the binary decision variables representing an invest
ment in new assets in the AC TEP presented in Section 2.a. Then this 
population is evaluated using Eq. (9) and the interior point solver (for 
the AC dispatch considering the new pieces-of-equipment) available in 
Ref [15]. 

Following, the replication operator takes place by copying the pop
ulation τ times, then the mutation operator changes the weights of 
movement rules for each of the cloned populations. In this way, new 
offsprings are created in each cloned population following the move
ment rule. Next, all individuals of each population are evaluated, and 
the selection block builds the new population, with np individuals, of the 
next generation until a pre-defined stopping criterion is reached. 

Tutorial system 

In this Section, a tutorial system is studied to clarify the EBH algo
rithm and the F&I Boundary characteristics. The 3-bus tutorial system is 
presented in Fig. 4 and it has 2 generators with capacities P1 = 100MW 
and P2 = 50MW, real power demand of Dp

3 = 120MW, and the 
following branches limits: F(1,2) = 20MW, F(1,3) = ∞MW, and F(2,3) =

∞MW. The list of assets available to be installed on the grid is x1, x2 and 
x3. 

As this system is small and there is not a large list of possible solu
tions, for the sake of didactics and clarity all solutions are drawn as 
presented in Fig. 5. In this figure, the solution is a vector as [x1, x2, x3]

′

. 
Thus, in this tutorial system, the list of all solutions is L = {A, B, C,

D, E, F, G, H} in which solution A represents no investment in new 
assets and solution H represents an investment in all assets of the list, the 
remaining intermediate solutions imply intermediates investments. 

Figure 3. MBH algorithm: s1 and s2 exploring the F&I boundary.  

Figure 4. 3-bus tutorial system.  

Algorithm 2 
: Pseudocode of the EPSO  

1 Input: τ, np, x,x   

2 Initialization: W = rand(np,τ)v = rand(|x|,
τ)X = round(rand(np, |x|))Z(X), using Eq. 
(9) 

3 Replication: Xk = X, ∀k ∈ {1,…, τ}

4 Mutation: W = 0.5+ rand −
1

eW 

5 Reproduction: Xk = round( Xk + v* W(k,1)* 
rand+ W(k,2)*rand*(x′′

k − Xk)+

W(k,3)*rand*(x′

k − Xk)

6 Evaluation: Z( Xk), using Eq. (9) 

7 Selection: X = min(Z( Xk))

8 Stopping criterion: Nstop1 is a pre-defined 
number of iterations and Nstop2 a pre- 
defined number of iterations without any 
improvement. 
if Nstop1 or Nstop2 is True 
return  
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Comparing the solutions from Fig. 5 with the topology of the system 
presents in Fig. 4, solution A does not allow the two generators to meet 
the power demand, and therefore a PNS of 120 MW is necessary. Solu
tion B represents the investment in the equipment x1, which connects 
generator 1 to load 3. As the capacity of generator 1 is 100MW and the 
load in bus 3 is 120 M, a PNS of 20MW is obtained. Solution C indicates 
investment in the assets x1 and x2 connecting generators 1 and 2 to load 
3 and, therefore, meeting the entire demand with no PNS. Solution D 
represents an investment in the asset x2 which does not allow to meet the 
entire demand, this solution presents a PNS of 70 MW. Solution E 
symbolizes investment in x2 and x3, but again the solution is not enough 
to meet the entire demand and a PNS of 50 MW is taken. Solution F 
indicates that the only equipment to invest in is x3, and therefore a PNS 
of 120 MW is defined in this solution. On the other hand, Solution G add 

the equipment x1 and x3 on the grid and, therefore, it can meet the 
demand with no PNS. Finally, solution H represents the investment in all 
of the three equipment, and it can meet the load with no PNS. 

With the mentioned PNS per solution, the feasible set is Ωf =

{C, G, H} and the infeasible set is ΩI = {A, B, D, E, F}. An interesting 
fact about these solutions is that any modification related to a reduction 
in the investment in solutions G and C will result in an infeasible solu
tion, or in other words, the Lower Neighborhood of G and C 

arêϑ1
G = {B, F} and ̂ϑ1

C = {B,D}, respectively, and they are infeasible. As 
the solutions G and C are feasible, they represent exactly the definition 
of F&I boundary in Eq. (32), that is, they are feasible solutions in which 
their Lower Neighborhoods are infeasible, therefore F = {C,G} Fig. 6. 
presents the set of solutions of the 3-bus tutorial system classified as 
infeasible and feasible ones. 

Numerical simulations  

a. Outline of the tests 

In this section, two different experiments are presented: In the first 
one, a single-stage TEP model is conducted using the RTS-24 bus test 
system, and in the second experiment, a 10-years multi-stage TEP model 
is performed using the IEEE 118 bus test system. The RTS-24 bus test 
system’s data is taken from Ref [24]., and the IEEE 118 bus test system’s 
data is taken from Ref [25]. 

Regarding the AC TEP calculations, the interior point solver avail
able in Ref [26]. is used to evaluate the solutions on the EPSO algorithm. 
We adapt the functions in this solver to consider the investment in new 
assets. Additionally, the objective function is also modified by consid
ering a flexibility term to allow obtaining solutions in which the system 
is incapable of supplying all the demand, that is, in which nonzero 
Power not Supplied (PNS), or load-shedding, is required to regain 
feasibility. All MATLAB codes and results from the single-stage and 
multi-stage TEP are available in Ref [20]. and Ref [21]., respectively, as 
a way to ensure research integrity and open science practices for edu
cation and citizen in general Table 1. presents the parameters used in the 
EPSO algorithm and Table 2 presents simulation parameters used in 
both experiments, single-stage TEP and multi-stage TEP. These values 

Figure 5. Complete list of solutions for the 3-bus tutorial system.  

Figure 6. Classification of the list of solutions for the 3-bus tutorial system.  
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were obtained after some preliminary experimentation (often called 
tunning), and it’s intended to allow the replication of the proposed 
method.  

b. Single-stage TEP 

In this experiment, a single-stage TEP approach is conducted using 
the RTS 24 bus test system from Ref [24]. In this system, the generation 
capacity and the peak demand of the system are set at 10215 MW and 
8550 MW. This test system has 24 buses distributed by two different 
voltage levels, one at 138 kV and another at 230 kV. This system has 33 
generators, 38 branches connecting the nodes, and 41 pieces of equip
ment in the list of candidate equipment to be installed on the grid. The 
topology of the system is presented in Fig. 7. 

First of all, AC TEP is conducted using the metaheuristic EPSO. As 
this solver can present different behaviors in solving the problem, the 
experiment is repeated 10 times, in this way, a thorough statistical 
analysis can be conducted to evaluate the performance of the proposed 
methodology Fig. 8. presents the behavior of the best solution per 

iteration over the 10 trials when using the EPSO algorithm to solve the 
TEP problem. As can be noticed, the stochastic behavior of the EPSO 
algorithm originates different solution plans for the RTS 24 bus. 

Regarding the exact and optimal DC TEP solution, obtained using 
Gurobi Solver, it has an investment cost of 148 M$ and the list of 
equipment is presented in Table 3 below. Even though the DC TEP model 
is the most used mathematical model in TEP literature, the obtained 
solution in this experiment cannot ensure the proper attendance to the 
future load when tested against the full AC mathematical model, and for 
that reason, it presents a load shedding of 384.36 MW (4.5%). 

Following, the MBH algorithm is applied using the final solution plan 
from EPSO (AC TEP model) and using the exact and optimal solution 
plan from the Gurobi solver (DC TEP model). In each of the 10 trials, 
MBH uses the final AC solution (no-load shedding) to improve the DC 
solution by reducing the degree of PNS by considering the investment 
costs of the AC solution (AC solution is considered as an upper target). 
Furthermore, MBH also uses the DC solution to improve the AC solution 
by reducing investment costs keeping no load shedding (DC solution is a 
lower target). The procedure updates both solutions iteratively, 
exploring naturally the F&I boundaries and reducing the investment gap 
between both solutions. The best feasible solution (lower investment 
with no load shedding) obtained in each trial by the MBH algorithm is 
presented in Fig. 9, while the best infeasible solution (lower PNS with a 
cost smaller than the current upper target) over the trials are presented 
in Fig. 10. 

As stated before, the exploration of the F&I boundary allows the 
improvement of the upper target based on the lower target, and vice- 
versa. This iterative improvement culminates in a reduction in the in
vestment gap between both solutions, as presented in Fig. 11 in which 
the initial gap between the DC and AC solution in each trial are 
compared against the gap of upper and lower targets after the MBH 
algorithm. 

Nevertheless, the final solution plan that must be considered is the 
one without load shedding, once in the present mathematical formula
tion, the demand is considered as inelastic. Therefore, the MBH algo
rithm reduces the investment costs from the EPSO algorithm, even after 
the convergence of this metaheuristic, as can be seen in Fig. 12. 

In this way, MBH allows an improvement in the final solution plan 

Table 1 
Parameters used by the EPSO algorithm.  

EPSO Parameters Variable Value 
Max Iterations Nstop1 100 
Max Iterations without any improvement Nstop2 30 
Number of solutions np 50 
Replication parameter r 3  

Table 2 
Parameters used in TEP simulations.  

TEP Parameters Variable Value 
Penalization factor for PNS β 105 

Discount rate (multi-stage TEP) r 5% 
Lower and upper voltage limit VMIN

i,p , VMAX
i,p 0.95, 1.05 p. u 

Probability parameter used in EBH ρif , ρfi 10 and 5 
Value of Lost Load VOLL 5000$ 
Max additions per rights-of-way nmax 3  

Figure 7. One-line diagram of RTS 24 bus (Single-Stage TEP).  
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from the EPSO algorithm as can be noticed in Fig. 13 below. The average 
improvement obtained by using the MBH algorithm was about 42 %. 

It is important to highlight that the EPSO algorithm calculates 150 
(np x r) AC-OPFs at each generation, while MBH calculates 2 AC-OPFs 
(lower and upper targets) per iteration. Therefore, when analyzing the 
algorithm performances, it is not fair to compare the generations from 
EPSO in Fig. 8 against the iterations from MBH in Fig. 9. Instead, the 
behavior of the best solution (lower investment cost without PNS) 
against the number of AC-OPFs calculated should be chosen. Thus, 
Fig. 14 presents the behavior of EPSO and MBH for each trial over the 
AC-OPFs calculations. 

Finally, and a last remark regarding the single-stage TEP simulations, 

MBH was able to improve the solution for the RTS 24 bus presented in 
Ref [24]. with an investment cost of 515 M$ Table 4. presents the details 
of each piece of equipment selected for the final plan, which has an 
investment cost of 419 M$. 

Figure 8. EPSO – Best solution per iteration over the 10 trials (Single- 
Stage TEP). 

Table 3 
Optimal solution plan using DC TEP formulation (Single-Stage TEP).  

# equipment Equipment description Cost (M$) 
1 Transformer connecting buses 3 to 24 50 
2 138 kV line connecting buses 6 to 10 16 
3 138 kV line connecting buses 7 to 8 16 
4 138 kV line connecting buses 7 to 8 16 
5 Transformer connecting buses 10 to 12 50  

Figure 9. MBH – Best feasible solution per iteration over the 10 trials (Single- 
Stage TEP). 

Figure 10. MBH – Best infeasible solution per iteration over the 10 trials 
(Single-Stage TEP). 

Figure 11. Gap between AC and DC solutions before and after MBH in each 
trial (Single-Stage TEP). 

Figure 12. EPSO solutions against MBH solutions (Single-Stage TEP).  
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c. Multi-stage TEP 

In this experiment, a 10-years multi-stage TEP approach is conducted 
using the IEEE 118 bus test system from Ref [25]. In this system, the 
generation capacity and the peak demand of the system for the last year 
of the planning horizon are 8270 MW and 6260 MW, respectively. This 
test system has 118 buses distributed by two different voltage levels, one 
at 138 kV and another at 345 kV. This system has 54 generators, 186 
branches connecting the nodes, and 17 pieces of equipment in the list of 
candidate equipment to be installed on the grid. The topology of the 
system is presented in Fig. 15. 

The demand is specified to grow at a rate of 3% per year, from the 
base year (4658MW) to the 10th year (6260 MW), the installation of new 
transmission assets is conducted yearly. As done in the single-stage 
experiment, AC TEP is conducted using the metaheuristic EPSO. The 
experiment is repeated 10 times, in this way, a better statistical analysis 

can be conducted to evaluate the performance of the proposed meth
odology Fig. 16. presents the behavior of the best solution per iteration 
over the 10 trials when using the EPSO algorithm to solve the TEP 
problem. As can be noticed, the stochastic behavior of the EPSO algo
rithm originates different solution plans for the IEEE 118 bus. 

Regarding the exact and optimal DC TEP solution for the Multi-Stage 
TEP, obtained using Gurobi Solver, it has an investment cost of 17.4000 
M$ and the list of equipment is presented in Table 5 below. This solution 
presents no load shedding when tested against the full AC TEP equa
tions, however, it cannot be stated that this is the optimal AC solution, 
because the DC model is an approximated model and, for this reason, 
may not contain all the non-convex AC feasible region (see Fig. 3). This 
is the main reason why DC solutions cannot be considered lower bound 
in AC formulations. 

In the proposed model the DC solution is handled as a lower target, as 
a way to push the AC solutions in its direction. Thus, the MBH algorithm 
is applied using the final solution plan from EPSO (AC TEP model) and 
using the exact and optimal solution plan from the Gurobi solver (DC 
TEP model). In this specific case, as the lower target has not any degree 
of infeasibility, MBH has used the DC solution to improve the AC solu
tion by reducing investment costs keeping no load shedding (exploring 
naturally the F&I boundaries). 

The best feasible solution (lower investment with no load shedding) 
obtained by the MBH algorithm was the same in all 10 trials and cor
responds to postponing the equipment 1 presented in Table 6, to be 
installed in the 10th year, this solution has an investment cost of 15.8819 
M$ Fig. 17. presents the initial gap between DC and AC solutions, 
against the final gap between lower and upper targets after MBH 
application. As can be noticed, the final gap is much less than the initial 

Figure 13. Improvements obtained by using the MBH algorithm in the Single- 
Stage TEP (each concentric circle represents a trial). 

Figure 14. EPSO and MBH performances against the number of AC-OPFs calculated (Single-Stage TEP).  

Table 4 
Best AC solution plan obtained by MBH algorithm for the RTS 24 bus (Single- 
Stage TEP).  

# equipment Equipment description Cost (M$) 
1 138 kV line connecting buses 2 to 4 33 
2 Transformer connecting buses 3 to 24 50 
3 Transformer connecting buses 3 to 24 50 
4 138 kV line connecting buses 6 to 10 16 
5 138 kV line connecting buses 7 to 8 16 
6 138 kV line connecting buses 7 to 8 16 
7 Transformer connecting buses 9 to 11 50 
8 Transformer connecting buses 10 to 11 50 
9 230 kV line connecting buses 11 to 13 66 
10 230 kV line connecting buses 15 to 24 72  
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gap, this is because the MBH procedure can improve EPSO solution even 
when this metaheuristic presents a good behavior in finding the final 
solution, as shown in Fig. 18 in which the comparison of EPSO against 
MBH solutions is presented. Finally, the MBH improvement in the final 

solution plan from the EPSO algorithm is presented in Fig. 19 below. The 
average improvement obtained by using the MBH algorithm was about 
85%. 

In the same way, done in the Single-Stage TEP experiment, EPSO and 
MBH methods are compared using the best solution against the number 
of AC-OPFs calculated, which is presented in Fig. 20. 

Figure 15. One-line diagram of IEEE 118 bus (Multi-stage TEP).  

Figure 16. EPSO – Best solution per iteration over the 10 trials (Multi- 
stage TEP). 

Table 5 
Optimal solution plan using DC TEP formulation (Multi-Stage TEP).  

# equipment Equipment description Installation (year) Present Cost (M$) 
1 138 kV line connecting buses 77 to 78 5 7.0282 
2 138 kV line connecting buses 3 to 5 10 5.3595 
3 138 kV line connecting buses 8 to 5 10 5.0157  

Figure 17. Gap between AC and DC solutions before and after MBH in each 
trial (Multi-Stage TEP). 
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Discussions 

Regarding the experiments conducted with single-stage TEP and 
multi-stage TEP models, the results show that:  

i Fig. 8 and Fig. 16 show that EPSO Algorithm presents a diverse 
behavior when solving the same problem under the same cir
cumstances and premises. These figures corroborate to the 
existing skepticism in the application of several metaheuristics: 
On the one hand, the behavior is considerably unpredictable, and 
on the other hand, the solution obtained presents no aspect 
regarding its quality or proximity to optimality.  

ii According to Table 3, the DC TEP solution can present a high level 
of infeasibility when it is applied in the AC TEP equations, even 

though the computational effort of the DC model (with a MILP 
solver) is much smaller than the AC model (with a modern heu
ristic). Therefore, this model is not a reliable approach to conduct 
any long-term analysis in a capital-intensive task.  

iii According to the results presented in Fig. 11 and Fig. 17, solutions 
from non-convex and non-linear TEP models handled by meta
heuristics and solutions from approximated and linearized TEP 
models handled by commercial MILP solvers can improve each 
other under a method, as proposed in this study, that allows 
accessing their position and the exploitation of interesting re
gions in the search space, as the F&I Boundary. 

iv According to Table 6, the DC Multi-Stage TEP solution has pre
sented no load shedding, similar to the AC Multi-Stage TEP so
lution. However, the former solution has presented a lower 
investment cost, which corroborates the initial hypothesis that 
the DC solution cannot be considered a lower bound in the AC 
formulation.  

v According to Fig. 13 and Fig. 19, the proposed MBH has presented 
a remarkable performance by improving the final solution from a 
powerful metaheuristic. The proposed approach uses a smart 
procedure to explore a specific region in the search space, called 
F&I boundary, and the solution from the approximated DC 
model.  

vi Regarding the Single-Stage TEP experiment, the proposed MBH 
algorithm was able to improve the solution for the RTS 24 bus 
(using the same planning conditions), presented in Ref [24]. with 
an investment cost of 515 M$. The MBH solution has an invest
ment cost of 419 M$.  

vii Regarding the Multi-Stage TEP experiment, the proposed MBH 
algorithm was able to improve the solution for the IEEE 118 bus 
(using the same planning conditions), presented in Ref [27]. 
(scenario D2) with an investment cost of 45.1 M$. The MBH plan 
counts with equipment totalizing 25.87 M$.  

viii Based on the results presented in the last section, it can be 
concluded that the EPSO algorithm had an excellent performance 
in solving the Single-Stage TEP, but this statement should not be 
extended to the Multi-Stage TEP. Perhaps, for this case, EPSO 
should be associated with a local search to be greedier and exploit 
the search space in a more efficient way. However, the proposed 
MBH algorithm is independent of the metaheuristic choice. In 
fact, and according to the results presented in this work, even 
when the metaheuristic presents an excellent performance, MBH 
was able to improve the final solution, as in the Single-Stage TEP 
approach.  

ix Finally, it can also be stated that the proposed MBH algorithm 
provides better or equal TEP solutions when it is applied using a 
DC solution (lower target) and an AC solution (upper target). In 
the case in which MBH cannot improve the final solution from 
metaheuristic, it can be stated that this solution is, at least, a sub- 
optimal solution for the problem, once the F&I boundary close to 
this sub-optimal solution doesn’t present any other better plan. 

Conclusions 

In this paper, an Exact-Based Heuristic (EBH) algorithm is proposed 
to handle the Transmission Expansion Planning (TEP) problem in its two 
main formulations, the single-stage, and the multi-stage TEP models. In 
these formulations two types of solutions are admitted as input: an exact 
global optimal solution that is obtained using the approximated and 
widespread DC TEP model, and an approximated solution that is ob
tained using a Genetic Algorithm (GA) under an AC TEP model. 

In the proposed method both solutions are improved based on their 
own position, that is, the AC solution is driven towards the DC solution 
and vice-versa. The EBH algorithm uses a movement function to perform 
the search in the F&I boundary. The output of the proposed method is 
two solutions, one feasible and the other with a small level of 

Figure 18. EPSO solutions against MBH solutions (Multi-Stage TEP).  

Figure 19. Improvements obtained by using the MBH algorithm in the Multi- 
Stage TEP (each concentric circle represents a trial). 
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infeasibilities regarding Power Not Supplied (PNS). The output solutions 
converge separately for the same region in the search space, reducing 
the GAP between their investment costs. 

The efficacy and robustness of the proposed EBH algorithm were 
accessed considering two different test systems, the RTS 24-bus and the 
IEEE 118 bus. In this way, the proposed method was able to drastically 
improve the quality of the solutions coming from metaheuristics and 
MILP solvers. The remarkable results suggest that modern heuristics 
algorithms for full TEP models and exact-based solutions for approxi
mated TEP models can be more reliable if they are compared and 
improved against each other, as in the proposed method. 
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