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Shape-from-Template (SfT) solves 3D vision from a single image and a deformable 3Dobjectmodel, called a tem-
plate. Concretely, SfT computes registration (the correspondence between the template and the image) and re-
construction (the depth in camera frame). It constrains the object deformation to quasi-isometry. Real-time and
automatic SfT represents an open problem for complex objects and imaging conditions. We present four contri-
butions to address core unmet challenges to realise SfT with a Deep Neural Network (DNN). First, we propose a
novel DNN called DeepSfT, which encodes the template in its weights and hence copeswith highly complex tem-
plates. Second,we propose a semi-supervised training procedure to exploit real data. This is a practical solution to
overcome the render gap that occurs when training only with simulated data. Third, we propose a geometry ad-
aptation module to deal with different cameras at training and inference. Fourth, we combine statistical learning
with physics-based reasoning. DeepSfT runs automatically and in real-time and we showwith numerous exper-
iments and an ablation study that it consistently achieves a lower 3D error than previous work. It outperforms in
generalisation and achieves great performance in terms of reconstruction and registration error with wide-
baseline, occlusions, illumination changes, weak texture and blur.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Context and the SfT problem

The tasks of image registration (i.e., the computation of correspon-
dences) and image-based reconstruction (i.e., the computation of
depth) are fundamental in computer vision1. Solving both tasks is re-
quired in applications such as 3D object tracking and augmented reality.
To date, there exist mature techniques for rigid objects, such as
Structure-from-Motion (SfM) [1]. The case of deformable objects is how-
ever largely unresolved. The existingwork has considered twomain sce-
narios. In Non-Rigid SfM (NRSfM) [2–5], the inputs are a set of images
and the problem is to find correspondences across images (registration)
and depth (reconstruction). In Shape-from-Template (SfT) [6–10], the
inputs are a single image, a 3D object model (template) is known, and
z).

gular camera.

.V. This is an open access article und
the problem is to find correspondences between the model and the
image (registration) and depth (reconstruction). Obviously, as the object
is deformable, the image is not a photo of the model under some un-
knownpose: rather, it is a photo of themodel taken after some unknown
deformation. The most common type of deformation prior used in
NRSfM and SfT is the widely applicable quasi-isometry, which prevents
significant stretching or shrinking of the object. An illustration of SfT is
shown in Fig. 1. A very important concept in SfT is the template, which
is the known textured 3D object model. Concretely, the template is a
3D shape (e.g., a triangulated 3D mesh) and a texture map (e.g. an
image giving colours for themesh’s facets),which is acquired straightfor-
wardly using a 3D scanner, an RGB-D sensor or SfM.

SfT is a difficult and unresolved problem. The core challenges are re-
lated to the object (typically, a rich texture and a flat template shape are
easier to deal with), to the imaging conditions (typically, a sharp and
well-lit image with strong visibility are easier to deal with) and to the
availability of an initial solution guess. The latter is generally available
when the input image is extracted from a continuous video, where the
solution to the past frame forms a guess for the current frame, and
forms the so-called short-baseline case. In contrast, the wide-baseline
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. The principle of SfT and its application to augmented reality. Results obtained with DeepSfT proposal over a 2D manifold dinosaur template.
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case occurswhen the input image is processed individually,without hav-
ing a solution guess. The short-baseline condition (that a solution guess
is available) is obviously a strong weakness, as it assumes that camera
motion and object deformation are small between frames, and fails if,
for instance, the object goes outside the field of view. The wide-
baseline case, despite its increased difficulty, is thus very important to
achieve highly robust deformable object registration and reconstruction.

SfT has been widely investigated with non-DNN approaches for
almost two decades and only recently within the DNN framework.
Non-DNN SfT methods fall into two broad categories. Methods in the
first category compute registration before reconstruction with existing
keypoint-based or dense matching methods [11–13]. They thus deal
with the wide-baseline case but are tremendously limited by the
2

catastrophic failure of registration, for many of the challenging object
or imaging conditions (e.g., blur will typically defeat the extraction of
keypoints). Methods in the second category compute registration and
reconstruction simultaneously [8,14,15]. Theyproceedby numerical op-
timisation from an initial guess and hence only work in the short-
baseline case. Theymay catastrophically fail formany of the challenging
object or imaging conditions. Using the DNN framework to solve SfT is
an attractive idea. The general concept is to learn a function that maps
the input image to 3D deformation parameters [16–18]. This solves reg-
istration and reconstruction jointly, without iterative optimisation at
run-time, and copes with the wide-baseline case. The attempts to de-
velop DNN SfT methods are promising but also bear three important
limitations. First, they are very restrictive with the object template,
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requiring regular rectangular meshes with a relatively small number of
vertices (namely, 73� 73 in [17,18] and 10� 10 in [16]). Second, they
require labelled registration and reconstruction data for training. This
relegates their training to only use synthetic data, affecting their accu-
racy in real conditions. Third, they require that training and inference
are done with images coming from the same camera, which is a strong
practical limitation. In spite of the progress brought by these works,
there does not currently exist an SfT method capable of handling the
wide-baseline case robustly for the challenging object and imaging con-
ditions, densely and in real-time.

1.2. Related vision problems

SfT is closely related to some other vision problems, namely optical
flow, scene flow, monocular depth reconstruction, pose estimation
and Shape-from-Shading. However, SfT is unique in its own right as it
has specific inputs-outputs and challenges. As a consequence, existing
methods to these related problems either do not apply or cannot com-
pete with specific SfT solutions.

Optical flow. Optical flow [14,19–22] solves registration between
two consecutive images in a video. It differs from SfT in terms of its in-
puts (which are two images) and because it is only solved in the
short-baseline configuration. Additionally, SfT involves reconstruction,
while optical flow does not. Applications in AR, for instance, cannot be
realised from optical flow only.

Scene flow. Scene flow solves registration between consecutive
depth maps in an RGB-D video, obtained from an active sensor [23,24]
or stereo [25,26]. It differs from SfT in terms of its inputs and because
it is only solved in the short-baseline configuration. In SfT, the sensor
at run-time is a regular camera, whose image cannot be fed to scene
flow because of the missing depth channel. Additionally, DNN-based
scene-flow methods [27–29] have shown limited success using piece-
wise rigid motion and self-supervised approaches, with very similar
limitations to optical flow methods.

Monocular depth reconstruction. Monocular depth reconstruc-
tion [30–34] infers depth from a single image for a scene category,
such as rooms and road scenes. It is a hard problem with ambiguities
due to the wide variability of objects, textures and shapes inside the
scene. It is a reconstruction method, not involving registration, in
contrast with SfT which involves both. Applications in augmented
reality, for instance, cannot be realised frommonocular depth recon-
struction only.

Pose estimation. Pose estimation [35–37] computes the articulated
pose of a person, typically defined by a 3D skeletonmodel, from a single
image. In this sense it computes both registration and reconstruction, as
the skeletonmodel is recovered in 3D. In away, the skeletonmodel rep-
resents a category-level template. SfT differs from human pose estima-
tion because its template is object-specific and deformation is of a
much broader dimensionality. Specifically, a skeleton model typically
has about 16 vertices, while an SfT template typically has several thou-
sand vertices (e.g., 36256 vertices for the dinosaur template shown in
Fig. 1).

Shape-from-Shading. Shape-from-Shading (SfS) is a reconstruction
method which estimates depth and normal maps from an image of a
textureless object. SfS does not generally consider a 3D object model
and does not solve registration. The recent DNN methods [38,39] have
however solved SfS for object categories, such as pieces of cloth or
paper.While [39] does not use an explicit objectmodel, [38] fits a31� 3
1 regular rectangular mesh to guide reconstruction. It uses a depth sen-
sor for labelling real training data. The experimental setup ensures that
the object is easily segmented froma dark backgroundand the illumina-
tion is controlledwith at least three light sources. Both approaches stick
to the classical SfS setting where the object must be mainly textureless,
the scene illuminationmust produce significant shading, and the object
must be segmented from the background. They are thus not applicable
in the general AR context.
3

1.3. Summary of contributions

We present four contributions to advance the state-of-the-art in SfT
within the DNN framework.

First, we propose DeepSfT, a novel DNN specifically tailored to SfT.
Technically, DeepSfT is fully-convolutional and based on residual
encoder-decoder structures with refining blocks. DeepSfT has an origi-
nal architecture compared to previous DNN SfT methods [16–18].
First, in terms of its inputs: DeepSfT only takes the image as input, but
not the template. This means that DeepSfT is object-specific, as the tem-
plate is encoded in its weights at training time.

Second, in terms of its outputs: while previous methods output 3D
vertices, DeepSfT produces a dense optical flow to represent registration
and a dense depth map to represent reconstruction. If required, the full
object shape is then obtained from a physics-based model a posteriori.
These choices have important practical consequences. First, DeepSfT is
an efficient network with real-time inference capability. Second, it is in-
dependent of the 3D object model representation, hence capable to ex-
ploit models with fine geometric details, complex topology and
advanced material and illumination parameters. The computational
cost of inference is independent of the number of parameters used to
represent the object, such as the number of vertices with a mesh
model. It thus solves the problemof limited template complexity of pre-
vious DNN SfT approaches [16–18].

Second, we propose a semi-supervised end-to-end training proce-
dure, capable of training from synthetic and real data. Training from
synthetic data is simple, by synthesising images from random quasi-
isometric deformations of the template, whose registration and recon-
struction parameters are readily available. Training from real data is
however a difficult issue in SfT, yet is required to achieve good general-
isation and to overcome the so-called render gap. Indeed, while the
depth label can be obtained by acquiring data with a standard RGB-D
sensor, the registration label cannot be obtained. Our procedure first
trains DeepSfT from synthetic data with a combination of supervised
loss functions that measures the error of the predicted registration
and depth in different points of the network, forcing it to a coarse initial
output. The refining blocks of the network are then trained from real
data, with a combination of a supervised reconstruction loss function
and a self-supervised registration loss function, based on image colour
photo-consistency. Importantly, the quasi-isometric deformation of
the object is learnt by DeepSfT because the training data, whether syn-
thetic or real, exhibit quasi-isometric deformations of the object. Our
training procedure thus strongly reduces the requirement for fully-
labelled data of previous DNN SfT approaches [16–18].

Third, we propose a solution to cope with multiple imaging geome-
tries (caused by changing the intrinsics of the physical camera, typically
by zooming in or out, or by using a different camera), at training and in-
ference. A natural idea is to train the network with a variety of imaging
geometries and possibly to also have it to output the calibration param-
eters. This is risky in at least two respects. First, quasi-isometric SfT has
been shown to have a unique and well-posed solution in the general
case for a calibrated camera, but not for an uncalibrated camera. Second,
this will increase the size of the network and decrease its
generalisability. Our proposal simply exploits the known camera geom-
etry (intrinsics and distorsion parameters) to warp the input image to a
standard configuration. With this standardisation, DeepSfT can be
trained to a single imaging geometry, and yet, handles any camera in
any configuration. Our solution thus resolves the need of using the
same camera to acquire or simulate training data and at inference
time of previous DNN SfT approaches [16–18].

Fourth, we propose to combine DeepSfT with a physically inspired
estimation procedure. This combination is intrinsically related to the
choice of outputs we made for DeepSfT which, recall, is the optic flow
field (registration) and the depth map (reconstruction). These outputs
only solve SfT on the part of the object visible in the input image. For a
2D manifold object such as a shoe, there are always occluded parts,
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which, for some applications, may be important to register and recon-
struct too. We propose to use the result of SfT for the visible part to
solve for the occluded part based with the so-called As-Rigid-As-
Possible (ARAP) prior. ARAP is a discrete approximation of the strain
and bending energy of an isotropic elastic material that does not tear.
It is therefore a physically inspired model for quasi-isometric deforma-
tions, which is widely used in graphics. We show how DeepSfT can be
directly connected to this solution to recover the full object solution.
Importantly, some applications such as AR do not require one to resolve
the occluded object part, inwhich case this last step can be left aside and
computation time saved. Our solution guarantees that the recovered oc-
cluded part of the object fulfills the physics-based constraints pertaining
to the real world. In contrast, in previous DNN SfT approaches [16–18],
these constraints are learnt by the network and thus only hold approx-
imately on the solution.

Table 1 summarises the comparison between DeepSfT, other SfT
methods, and related vision methods. We present quantitative and
qualitative experimental results showing that DeepSfT outperforms
the state-of-the-art in accuracy, robustness and computation time.
These results include the wide-baseline case and severe imaging condi-
tions, with strong occlusions, illumination changes, weak texture and
blur. We release the data created by the authors trough the following
Kaggle dataset [40].

2. Previous work

Wefirst review thenon-DNNSfTmethods,whichwe call classical SfT
methods, forming the vast majority of existing work. We start with the
decoupled methods, which solve registration and reconstruction as inde-
pendent problems, and then we discuss the integrated methods that
solve registration and reconstruction jointly. We finally review the
DNN SfT methods. We have categorised state-of-the-art methods,
their properties, and problems related to SfT in Table 1.

2.1. Classical SfT decoupled methods

Decoupled methods first compute registration and then reconstruc-
tion as two independent and sequential stages [42–44]. Their main ad-
vantages are simplicity, problem decomposition, and to leverage
existingmature registration approaches. However, they tend to produce
sub-optimal solutions because they do not consider all physical con-
straints that connect reconstruction and registration. Decoupled
methods typically solve wide-baseline registration with an existing
able 1
haracteristics of existing SfT methods and other related problems with state-of-the-art soluti
ethods.

4

method that is not specific to SfT, using feature-based matching with
keypoints such as SIFT [45], with filtering to reduce the mismatches
[11,46]. These approaches inherit the advantages of wide-baseline reg-
istration: they can deal with individual images and strong deformation
without requiring temporal consistency. However, they are fundamen-
tally limited by feature-based registration, which fails when the object
has a weak or repetitive texture, or when the imaging conditions are
challenging (low image resolution, blur or strong viewpoint distortion).
Furthermore, accurate results demand an expensive optimisation pro-
cess at run-time. Because of these limitations, the existing real-time
wide-baseline decoupled methods require simple objects with simple
deformations, such as bending sheets of paper.

Various reconstruction methods have been considered in decoupled
methods, and they can be classified according to the deformation
model. The most popular deformation model is isometry, which ap-
proximately preserves geodesic distances. These methods follow one
of three main strategies: i) using a convex relaxation of isometry called
inextensibility [42,6,43,44], ii) using local differential geometry [7,9]
and iii) minimising a global non-convex cost [44,47]. Methods in iii)
are the most accurate but also the most computationally expensive.
They require an initial solution found using a method from i) or ii).
There also exist methods that relax isometry in an attempt to handle
elastic deformations. These include the angle-preserving conformal
model [7], or simple mechanical models with linear [48,49] or non-
linear elasticity [50–53]. These models all require boundary conditions
in the form of known 3D points, which is a fundamental limitation.
The well-posedness of non-isometric methods remains an open re-
search question.
2.2. Classical SfT integrated methods

Integrated methods compute both registration and reconstruction
jointly. All existing methods are short-baseline, restricted to video
data, and may work in real time [8,14,19]. They are based on the itera-
tive minimisation of a non-convex cost that deforms the template in
3D so that its projection agrees with the image data. Some methods
use keypoint correspondences that can be re-estimated during optimi-
sation [8], and others use pixel-level information [14,19] and a data
cost based on template/image photo-consistency. These latter methods
support dense solutions and resolve complex, high-frequency deforma-
tions. Their main limitations are twofold. First, they break down with
fast deformation or camera motion. Second, at run-time, they must
solve an optimisation process that is highly non-convex and
ons provided by DNNs. Existing SfT methods are divided into classical (non-DNN) and DNN



D. Fuentes-Jimenez, D. Pizarro, D. Casillas-Pérez et al. Image and Vision Computing 127 (2022) 104531
computationally demanding, requiring careful hand-crafted design and
a correct balance of data and deformation constraints.

2.3. DNN SfT methods

Several DNN-based methods have been recently proposed [16–18].
These methods assume a flat template, described with a regular mesh.
We refer to this special type of template as a rectangular template.
They all use encoder-decoder neural architectures, and differ in the
way the mesh vertex coordinates are parameterised and the learning
strategy. [16] first solves registration by regressing many 2D belief
maps (three per vertex), giving their likely 2D coordinates in the
image. A depth estimation network is then used to reconstruct vertex
depth coordinates. This strategy does not scale well to many vertices,
limiting its applicability, as shown by the reported experiments with 10
�10 vertices or fewer. [17,18] use three-channel 2D outputs to
parameterise the 3D coordinates of the mesh vertices. This strategy al-
lows [17,18] to use a rectangular templatewith a greater number of ver-
tices than [16], showing results with 73� 73 vertices in both cases. [17]
use supervised learning that minimises the mean squared error be-
tween the network outputs and reconstruction labels with a synthetic
training data base. [18] uses an adversarial learning approach, introduc-
ing a discriminator network. The methods of [16–18] share four impor-
tant common weaknesses. First, they only work with rectangular
templates, limiting their application to e.g. paper sheets or rectangular
cloth sections. They cannot be used with non-rectangular templates,
such as 2D manifold templates or objects with complex geometries
like the shoe of Fig. 2. Second, they do not scale well for larger meshes,
as it increases the network size. Third, the camera used for training and
run-timemust be the same. Fourth, they are fully-supervisedmethods, re-
quiring fully labeled data. Due to the difficulty of obtaining labelswith real
data, they rely on simulated data. This strategy limits prediction accuracy
in real images due to the render gap between simulated and real data
Fig. 2.Geometric model of Shape from Template, showing the case of a shoe template. Thismod
Input image used. What we want to find using an SfT aproximation is the registration function
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[54]. For instance, [17,18] use Blender [55] to create synthetic images of
a deforming paper sheet or clothing. In all reported experiments the sim-
ulated images have controlled background and lighting conditions. In all
these previous DNN methods, the experimental results with real data
are mostly qualitative and with a controlled environment, to mitigate
the render gap between the synthetic and real data.

In summary, the previousDNNSfTmethods have shown that SfT can
be learnt by aDNN. However, they have not been shown towork in real-
world challenging conditions, and suffer fourmain limitations discussed
above. Our proposed approach DeepSfT does not have these limitations,
signifying a considerable step forward in SfT research and real-world
application.
3. Methodology

3.1. Scene geometry

Template. Fig. 2 shows the geometric model of SfT, including the
camera image and template deformation. The template is known and
represented by a 3D surface T ⊂R3 jointly with an appearance model,
described as a texture map AT ¼ A;Að Þ. The texture map consist of an
R2 domain A⊂R2 and a function A : A→ r; g; bð Þ which maps it to the
RGB space. The texture map domain A is represented as a collection of
flattened texture charts U i whose union covers the appearance of the
whole template [56]. We use normalised texture coordinates for A,
drawn from the unit square. In our approach the template is not re-
stricted to a specific topology, and can be thin-shell or 2Dmanifold, with-
out requiring modification to our DNN architecture. Our approach is
also not restricted to a specific surface representation. In our experi-
ments section we use mesh representations because of their generality,
but this is not a requirement of the DNN. The bijective map between A
and T is known and denoted by Δ : A→T .
el show that initially we know the 3D template T , the TexturemapA of the object and the
η and the reconstruction of the visible part X vis .
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Deformation. We assume that T is deformed with an unknown
quasi-isometric mapΨ : T →S, where S⊂R3 denotes the unknown de-
formed surface. Quasi-isometric maps permit mild extension and com-
pression, common with many real world deformable objects.

Camera projection. The input image is modeled as a 3-channel col-
our intensity function I : R2→ r; g; bð Þ, which is discretised into a regular
grid of pixels. We model the camera with perspective projection:

x; y; zð Þ↦ x
z
;
y
z

� �
¼ u; vð Þ: ð1Þ

We assume that the camera is intrinsically calibrated: radial distortion,
focal length and aspect ratio are all known parameters. This is a very
common assumption in SfT. Hence, u; vð Þ are retinal coordinates that,
without loss of generality, can be readily obtained from the image
coordinates.

Visible surface region and registration map. The surface region
that is visible in the camera image (unobstructed by self or external oc-
clusion) is unknown and denoted by Svis ⊂S. This region projects onto
the image plane to define an unknown 2D region I ⊂R2 . We relate
Svis and I with a perspective embedding function Xvis : I→Svis with Xvis

u; vð Þ ¼ ρ u; vð Þðu; v;1Þ and where the unknown depth function ρ : I→
Svis gives the depth of Svis in camera coordinates at each pixel in I . In
the absence of self-occlusions, Svis ¼ S. 2D manifold templates always
induce self-occlusions. The unknown registrationmap,η : I→A is an in-
jective map that relates each point of I to its corresponding point in A.

3.2. Object-specific approach

Our proposed DNN SfT solution DeepSfT estimatesρ u; vð Þ; η u; vð Þ and
I directly from the input image I. DeepSfT is object-specific, as the tem-
plate information is encoded from the training data into the network
weights, as [16]. In other words, the trained network’s weights ‘memo-
rise’ the object shape. This reduces the difficulty of the learning problem,
requiring a considerably lower amount of training data, and allows us to
propose a compact architecture that runs in real time. The downside of
an object-specific approach such as the one proposed here is that it can-
not be directly ported to other templates, but needs to be retrained with
them. Although this factor limits its usability in certain real cases that do
have this requirement, there are other real use cases such as the 3D
Fig. 3.DeepSfT architecture. The proposed network architecture is composed of three principal
Each block is an encoder-decoder designed for SfT. TheMainBlock receives anRGB input image I
Refinement Blocks improve the initial estimates, taking as input I and the Main Block outputs,
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reconstruction of organs or industrial parts in predictive mechanics, in
which this system would work correctly without the need for any re-
training, since the template does not change. DeepSfT is much more ac-
curate than object-generic methods [17,18,33,34], which are not mature
enough to solve SfT in challenging conditions, as we show in the exper-
iments section. Importantly, we also provide a semi-supervised method
to train DeepSfT without the need of manual labelling, which is a main
limitation of the state-of-the-art. It combines synthetic data generated
with Blender, with real data captured with a low-cost commercial
RGB-D sensor. Generating data for a new template is thus done easily
and can be implemented as a highly automatized process.

3.3. DNN architecture

We encode DeepSfT outputs as DNN functions taking I as input,
which is resized to a canonical resolution of 270� 480 px:

ρ̂; η̂Þ ¼ D I; θWð Þ;
�

ð2Þ

whereθW are the networkweights.We encodeI in the network outputs
ρ ̂ and η̂ as follows:

ρ ̂ u; vð Þ ≈ ρ u; vð Þ u; vð Þ∈ I
�1 otherwise

�
ð3Þ

η ̂ u; vð Þ ≈ η u; vð Þ u; vð Þ∈ I
�1;�1ð Þ otherwise:

�

Fig. 3 shows the proposed network architecture. It uses a cascaded
structure divided into three principal blocks shown in Fig. 4. The Main
Block is denoted as DM:

ρ
�
; η
�� �

¼ DM I; θMð Þ; ð4Þ

where ρ ̃ and η̃ are estimates of the depth and registration maps and θM
contains the Main Block network weights. The Depth Refinement Block
DD inputs I;ρ ̃ and η̃ and outputs a refined depth map ρ̂:

ρ ̂ ¼ DD I;ρ ̃;η ̃; θDÞ;
�

ð5Þ
blocks: theMain Block, the Depth Refinement Block and the Registration Refinement Block.
and outputs afirst estimate of the registration and depthmaps. TheDepth and Registration
and producing the final depth and registration maps.



Fig. 4. Identity, convolutional and deconvolutional residual blocks, similar to the ones used
in residual architectures like [59].
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where θD are the Depth Refinement Block network weights. The Regis-
tration Refinement BlockDR inputs I; ρ̃ and η ̃ and outputs a refined reg-
istration map η̂:

η̂ ¼ DR I;ρ ̃;η ̃; θRÞ;
�

ð6Þ

where θR are the Registration Refinement Block network weights.
Theweights of the three blocks define the network’s total weights θW ¼
θM; θD; θRð Þ.

The refinement blocks play an important role to adapt the network
to real data, as described in §4. The three blocks use identity,
convolutional and deconvolutional residual feed-forwarding structures
based on ResNet50 [57]. They use encoder-decoder architectures, very
similar to those used in semantic segmentation [58]. Each block is
Table 2
Main Block architecture showing from left to right columns, the number of each layer used, th
rameters of each layer.

Layer num Type

1 Input
2 Convolution 2D
3 Batch Normalisation
4 Activation
5 Max Pooling 2D
6 Encoding Convolutional Block
7–8 Encoding identity Block x 2
9 Encoding Convolutional Block
10–12 Encoding identity Block x 3
13 Encoding Convolutional Block
14–16 Encoding identity Block x 3
17–20 Encoding identity Block x 3
21 Decoding Convolutional Block
22 Cropping 2D
23–25 Encoding identity Block x 3
26 Decoding Convolutional Block
27 Zero Padding
28–29 Encoding identity Block x 2
30 Upsampling
31 Cropping 2D
32 Convolution 2D
33 Batch Normalisation
34 Activation
35 Upsampling
36 Cropping 2D
37 Convolution 2D
38 Activation

Number of parameters

7

composed of two unbalanced parallel branches with convolutional
layers that propagate information to deeper layers, preserving high spa-
tial frequencies.

Table 2 shows the layered decomposition of the Main Block. It first
receives I and performs a first spatial reduction using a 2D convolutional
layer with ReLu activation and Max Pooling. Then, a sequence of three
convolutional and identity blocks is used to encode texture and depth
information as deep features (Fig. 4). Image information from I is re-
duced to a compressed feature vector in a representation space of dimen-
sion 12� 20� 1024. Decoding is performedwith decoding blocks. These
require upsampling layers to increase the dimensions of the input fea-
tures before passing through the convolution layers, as shown in Fig. 4. Fi-
nally, the last layers have convolutional and cropping layers that adapt the
output of the decoding block to the size of the outputmaps (270� 480�
3). The first output channel provides the depth estimate ρ̃ , and the last
two output channels provide the registration estimate η ̃.

The Depth Refinement and Registration Refinement Blocks share the
same structure, shown in Table 3,which is a reduced version of theMain
Block using only the first two encoder and decoder blocks. The Depth
Refinement Block takes as input the concatenation of I;ρ ̃, and η̃ (6 chan-
nels) and it outputs ρ ̂. The Registration Refinement Block takes as input
the concatenation of I;ρ ̃ , and η̃ (6 channels). Its output is added as an
offset to η̃ (last two channels) to produce η̂.
3.4. Recovering occluded surface regions

Our DeepSfT network registers and reconstructs Svis by its outputs ρ ̂

andη ̂. Due to self or external occlusions, always occurringwith 2Dman-
ifold templates, the hidden surface partSh ¼ S⧹Svis can be large and im-
portant. However, learning to infer Sh from a single image is a very ill-
posed problem due to ambiguities, and can be very difficult to train
with real data. We propose a post-processing step to recover Sh based
on minimising the As-Rigid-As-Possible (ARAP) cost, widely used in
graphics and mesh processing [60]. ARAP is also the most natural prior
e type of layer used, the output size of the tensor that inference the layer and the own pa-

Output size Kernels/Activation

(270,480,3) –
(135,240,64) (7,7)
(135,240,64) –
(135,240,64) Relu
(45,80,64) (3,3)
(45,80,[64, 64, 256]) (3,3)
(45,80,[64, 64, 256]) (3,3)
(23,40,[128, 128, 512]) (3,3)
(23,40,[128, 128, 512]) (3,3)
(12,20,[256, 256, 1024]) (3,3)
(12,20,[256, 256, 1024]) (3,3)
(12,20,[1024, 1024, 256]) (3,3)
(24,40,[512, 512, 128]) (3,3)
(23,39,128) (1,1)
(23,39,[512, 512, 128]) (3,3)
(46,78,[256, 256, 64]) (3,3)
(46,80,64) (0,1)
(46,80,[256, 256, 64]) (3,3)
(138,240,64) (3,3)
(136,240,64) (2,0)
(136,240,64) (7,7)
(135,240,64) –
(136,240,64) Relu
(272,480,64) (3,3)
(270,480,64) (2,0)
(272,480,3) (3,3)
(270,480,1) Linear

81 664 765



Table 3
Depth andRegistration Refinement Block architectures showing from left to right columns, thenumber of each layer used, the type of layer used, the output size of the tensor that inference
the layer and the own parameters of each layer.

Layer num Type Output size Kernels/Activation

1 Input (270,480,6) –
2 Convolution 2D (135,240,64) (7,7)
3 Batch Normalisation (135,240,64) –
4 Activation (135,240,64) Relu
5 Max Pooling 2D (45,80,64) (3,3)
6 Encoding Convolutional Block (45,80,[64, 64, 256]) (3,3)
7–8 Encoding identity Block x 2 (45,80,[64, 64, 256]) (3,3)
9 Encoding Convolutional Block (23,40,[128, 128, 512]) (3,3)
10–13 Encoding identity Block x 4 (23,40,[128, 128, 512]) (3,3)
14 Decoding Convolutional Block (46,80,[512, 512, 128]) (3,3)
15–16 Encoding identity Block x 2 (46,80,[512, 512, 128]) (3,3)
17 Upsampling (92,160,128) (2,2)
18 Cropping 2D (92,160,128) (2,0)
19 Convolution 2D (90,160,64) (3,3)
20 Batch Normalisation (90,160,64) –
21 Activation (90,160,64) Relu
22 Upsampling (270, 480, 64) (3,3)
23 Convolution 2D (270, 480, 32) (3,3)
24 Activation (270, 480, 32) Relu
25 Convolution 2D (272,480,1) (3,3)
26 Activation (270,480,1) Linear

Number of parameters 13 618 689
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for quasi-isometric templates [61,62] and it does not require additional
learning.

Unlike the DNN,which is independent of surface representation, the
shape completion process requires the template to be represented as a
triangular mesh. We use MS and MT to represent the deformed
and rest template meshes respectively. These have 3D vertices VS ¼
p1;…;pN and VT ¼ q1;…;qN respectively. The objective of ARAP
shape completion is to recover VS (and hence S) from Svis and VT by
solving the following optimisation problem:

VS ¼ arg min
VS

E VSð Þ; ð7Þ

where:

E ¼ Ed VS ;Svisð Þ þ λaEa VS ;VTð Þ þ λsEs VS ;VTð Þ: ð8Þ

Ed is the data term. It uses the Euclidean norm between the set of visible
vertices in VS and their corresponding 3D coordinates in Svis, as pro-
duced by DeepSfT. Ea is the ARAP prior [62], that encourages
the deformed mesh to be isometric with respect to the rest mesh.
Finally, Es is a smoothing term that penalizes large deviations in the
local curvature of S with respect to the template. The hyperparameters
λa ¼ 20 and λs ¼ 0:005 control the influence of the ARAP and smooth-
ing terms.We set them to a fixed value selected experimentally.We im-
plement Ea and Es following [62] and optimise E with Gauss–Newton,
which typically converges in fewer than 10 iterations. This can be
implemented easily on a GPU enabled device for real-time shape
completion.

4. DNN training

4.1. Training process overview

For a given template, we create a quasi-photorealistic synthetic
dataset using rendering software. This process is described in detail in
§5.1.1 and it is used to train DeepSfT with supervised learning. We
also record a much smaller dataset with a real RGB-D camera capturing
some representative deformations and poses of the object. We empha-
size that the RGB-D camera provides only depth labels and not registra-
tion labels, so it cannot be used for supervised learning of the
registration.
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Using both simulated and real data, we train DeepSfT in three steps.
In the first step we use the synthetic data to train the Main, Depth
Refinement and Registration Refinement Blocks end-to-end. In the sec-
ond stepwe refine theDepth Refinement Blockweights using real train-
ing data. In the third step we refine the Registration Refinement Block
weights using real training data with unsupervised learning, by
minimising a loss function that enforces the registered template to be
photometrically consistent with the input images.

DeepSfT has been implemented in Keras/Tensorflow [63]. We
have observed that Stochastic Gradient Descent (SGD) achieves bet-
ter generalisation results when fine tuning the network with real
data while Adaptive Moment Estimation (ADAM) [64] performs bet-
ter when training from scratch. We thus use ADAM in the first step
and SGD in the second and third steps. Mixing ADAM and SGD is
common practice [65,66].

4.2. Training step 1: initial global training

TheMain, Depth Refinement and Registration Refinement Blocks are
trained end-to-end with the following supervised loss function:

L1 θWð Þ ¼ 1
2

XM
i¼1

‖η ̂ i � ηi‖
2
F þ

XM
i¼1

‖ρ ̂
i � ρi‖

2
F þ

1
2

XM
i¼1

‖η̃i � ηi‖
2
F þ

XM
i¼1

‖ρ ̃
i � ρi‖

2
F ; ð9Þ

where ρ ̂
i and η ̂i are the estimated depth and registration maps, and ρ ̃

i

and η̃ i are the outputs from the Main Block. The terms ρi and ηi
are the labelmaps, andM is the number of synthetic images. The symbol
‖:‖ F is the Frobenius norm. We use ADAM optimisation with a learning

rate of10�3 andparametersβ1 ¼ β2 ¼ 0:9. Training isfixed to40 epochs
with a batch size of 7, taking approximately 12 h in a single GPU work-
station (Nvidia GTX1080). Theweights are initialised with random uni-
form sampling [67].

4.3. Training step 2: Depth Refinement Block fine tuning

We fine-tune the Depth Refinement Block weights using real
data while freezing the weights θM of the Main Block. This step is
crucial to adapt the network to handle the render gap and to cope
with real illumination conditions, camera response and color bal-
ance. In this step a different loss functionL2 is used, which combines



Table 4
Train and test split for each image sequence. ‘S’ stands for synthetic generated with
Blender and ‘R’ stands for for real generated with Kinect V2.

Sequence Samples Train Test

DS1S 60000 47000 5000
DS2S 60000 47000 5000
DS3S 60000 47000 5000
DS4S 60000 47000 5000
DS1R 2116 1884 232
DS2R 3100 2728 373
DS3R 4800 3500 1300
DS4R 4200 3650 550
DS5R 193 143 50
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a supervised loss for the Depth Refinement Block and a spatial
regulariser:

L2 θDð Þ ¼
XM0

i¼1

‖ρ ̂
i � ρi‖

2
F þ λ

XM0

i¼1

‖∇ρ̂i‖
2
1; ð10Þ

whereM0 is the number of real training images. We include total varia-
tion regularisation [68] tomitigate the effect of noise in the depth labels
while preserving edges and details [69]. The hyperparameter λ is set to
10�9 in all experiments and chosen empirically. We train with SGD and
a small and fixed learning rate of 10�5. We train for 10 epochs with a
batch size of 7. Having both a low learning rate and a reduced number
of epochs allows us to adapt our network to real data while avoiding
overfitting.

4.4. Training step 3: Registration Refinement Block fine tuning

In this step we use a property of SfT, which is that the input image
can be synthesised from the registration solution, by warping the tem-
plate texture map. We propose a self-supervised fine tuning algorithm
for the Registration Refinement Block, based on minimising a photo-
consistency loss that computes the error between the synthesised
image and the input image. For each input image Ii, the corresponding
synthesised image I0i is computed as follows:

I0i u, vð Þ ¼ A η
^

i u, vð Þ
� �

0

8<
: u, vð Þ ∈ I

^

otherwise,
ð11Þ

where I ̂ u; vð Þ ≜ ρ ̂ u; vð Þ > �1 is the object segmentation obtained from
the Depth Refinement Block. The computation of Eq. (11) is first-order
differentiable in the Registration Refinement Block network weights
θR, as described in Appendix A.

The unsupervised loss function Lu forces the network to produce
synthesised images that are photometrically similar to the input images.
The loss involves the registration map η ̂i computed by the Registration
Refinement Block, each input image Ii and their corresponding synthe-
sised image I0i, and is defined as follows:

Lu θRð Þ ¼
XM0

i¼1

X
u;vð Þ∈I

χ I0i u; vð Þ � Ii u; vð Þ
� �2� �

þ

μ
XM0

i¼1

X
u;vð Þ∈I

χ I0↓i u; vð Þ � I↓i u; vð Þ
� �2� �

þ λ
XM0

i¼1

‖∇η̂ i‖
2
1:

ð12Þ

whereM0 is the number of training images,χ xð Þ is an M-estimator, and
images I0↓i and I↓i are downsized versions of I0i and Ii respectively by a
factor 2. These are used to include losses at two spatial scales, which im-
proves convergence similarly to image pyramids used in unsupervised
optical flow [70]. The loss is controlled by a hyperparameter weight μ ,
fixed to 0:5 in all our experiments. To handle illumination changes
and shading effects that violate photo-consistency, we use the Cauchy
M-estimator:

χ xð Þ ¼ c2

2
log 1þ x=cð Þ2

� �
; ð13Þ

with c ¼ 4 as default. We also include a total variation regularisation
term in the loss that imposes smoothness in the registration output
while preserving discontinuities. This term is usually included in optical
flowmethods [70] to improve convergence. The hyperparameterλ is set
empirically to 10�9 in all experiments. We optimise Lu using SGD with
momentum. We found that optimisers with an adaptive step, such as
ADAM, or large learning rates cause convergence problems when
minimising Lu . We use an initial learning rate of 10�5 and a decay of
10�9. The Registration Refinement Block is trained for 10 epochs with
a batch size of 6.
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4.5. Handling different camera intrinsics

We train DeepSfT with images generated by a camera with fixed
intrinsics (called the training camera), which may potentially have dif-
ferent intrinsics to the test camera. Once the network is trained, we can-
not immediately input images from the test camera into the network
because itsweights are trained specifically for the intrinsics of the train-
ing camera. A possible solution to this problem is to train DeepSfT to
handle varying intrinsics. However, this is very challenging and a poten-
tial source of ambiguities between intrinsics and image deformations.
We have been able to generalise DeepSfT to work with a different cam-
era at test time without any need to retrain the network weights. This
has not been achievedwith other DNN-based SfT methods and it signif-
icantly broadens our applicability for real-world use. We propose to
handle this by adapting the test camera’s effective intrinsics to match
the training camera. Because the object’s depth within the training set
varies (and so do the perspective effects), we can emulate testing on
the training camera by applying a known affine transform to images

from the test camera. The affine transform is the matrix A ¼ KtrainK
�1
test ,

where Ktrain and Ktest are the intrinsic matrices of the training and test
cameras respectively. The transformed test image is then clipped
about its principal point and zero padded, if necessary, to obtain the ca-
nonical resolution of 270� 480 (the input image size of DeepSfT). It is
important to highlight that the DeepSfT output maps correspond with
the standardized intrinsics (i.e. the intrinsics used for training). For ex-
ample, in the case of the depth map, the 3D surface is then estimated
from this depth-map using the standardized intrinsics. If desired, the
depth-map can be converted to an equivalent depth-map associated
to the test intrinsics by the 2D affine transform A�1.
5. Experimental results

5.1. Datasets

5.1.1. Templates
We have tested DeepSfT with 5 objects represented by 3 thin-shell

and 2 2D manifold templates shown in Table 5. We refer to these as
DS1 to DS5. DS1 models an A4 paper sheet with very poor texture.
DS2 models an A4 paper sheet with a richer texture and DS5 models
an A4 paper sheet from a well-known public dataset [71]. DS3 is a 2D
manifold model of a soft toy and DS4 is a 2D manifold model of an
adult sneaker. DS1, DS2 and DS5 can be modelled with a rectangular
template, however DS3 andDS4 cannot. Theywere built with triangular
meshes using dense SfM (Agisoft Photoscan [72]). We emphasize that
no previous DNN-basedwork has been able to solve SfT for 2Dmanifold
templates like DS3 and DS4 in the wide-baseline setting.

5.1.2. Synthetic datasets
For each template a synthetic dataset was constructed by deforming

the template with random quasi-isometric deformations and rendering
the deformed template with fixed camera intrinsics and random



Table 5
Visualization of templates and input images. Rows 1 and 2 show thefive templates DS1, DS2, DS3, DS4 andDS5. Rows 3 and 4 show example renderswith simulated deformations. Rows 5
and 6 show real deformations of the physical objects.
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viewpoints. We used Blender [55], which includes a physics-based simu-
lation engine to simulate deformations with different degrees of stiffness
using position-based dynamics. For DS1, DS2 and DS5 (rectangular tem-
plates) we simulated continuous videos with a high stiffness term and
randomly located 3D anchor points. We applied tensile and compressive
forces in randomised 3D directions. The simulation parameters are given
in the Supplementarymaterial. For DS3 andDS4 (2Dmanifold templates)
we used rig-based deformationswith hand-crafted rigs.We generated in-
dependent deformations for each image using random joint angles.

For each deformation we rendered an image with a random
camera pose (random rotation around the camera’s optical axes
10
with angle variations in the interval ½� π
4 ;

π
4� radians and random

translations in the intervals tx ∈ ½�150;150� mm, ty ∈ ½�150;150�
mm and tz ∈ ½100;600�mm). A distant light model was used with illu-
mination angles parameterised by spherical coordinates that was
drawn randomly in the interval ½� π

18 ;
π
18� radians around the camera’s

optical axis. The diffuse surface reflectance component wasmodelled
as Lambertian and the specular component was modelled with
Blender’s Cook-Torrence model. We generated brightness variations
by a random gain in the range ½0:9;1:1�. We randomly changed the
image background with images from [73]. To simulate occlusions,
we randomly introduced a maximum of 4 synthetically generated



Table 6
Camera intrinsics of the different real cameras used in our experiments. We use Kinect V2 for training and all three cameras for testing.

Camera Resolution f u f v cu cv

Kinect V2 1920� 1080 1057:8 1064:0 947:6 530:4
Intel Realsense D435 1270� 720 915:5 915:5 645:5 366:3
Gopro Hero V3 1920� 1080 1686:8 1694:2 952:8 563:5
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circles of constant random color in each image with variable diame-
ter in the range ½1;10� px at random locations. In total, each dataset
consists of 60000 RGB images with labelled depth and registration
maps. These were standardised to a canonical resolution of 270� 48
0 px.

5.1.3. Real datasets
Real datasets of each object were recorded with Microsoft Kinect v2

with deformations caused by hand manipulation, as shown in Table 5.
Videos for DS1, DS2, DS3 and DS4 were recorded by us and the video
for DS5 was provided in the public dataset (192 frames). The recorded
depth maps were aligned with the RGB images using the extrinsic pa-
rameters and downsized to270� 480px. Note that these RGB-D videos
do not provide labelled registration data.

5.1.4. Training/testing data splits
We evaluate DeepSfT in terms of reconstruction and registration er-

rors with synthetic and real test data. Synthetic test data were gener-
ated using the same process as the synthetic training data (§5.1.2),
using random configurations not present in the training data. Real test
data were generated using the same process as the real training data,
using new videos, consisting of new viewpoints and object manipula-
tions not present in the training data. We also generated test data
using two new real cameras: an Intel Realsense D435 [74] (an RGB-D
camera for quantitative reconstruction evaluation) and a Gopro Hero
V3 [75] (an RGB camera for qualitative evaluation). Table 6 shows
their respective camera intrinsics.

Table 4 shows the train and test split for all real datasets.When test-
ing DeepSfT with synthetic data, results from the Main Block are evalu-
ated. When testing with real data, results from the Depth Refinement
Block and Registration Refinement Block are evaluated.

5.2. Compared methods and evaluation metrics

We compare DeepSfT with two classical state-of-the-art SfT
methods. The first is an isometric SfT method [9] with public code, re-
ferred to as CH17. We provide this method with two types of registra-
tion: CH17 + GTR uses Ground-truth Registration (indicating its best
possible performance independent of the registration method) and
CH17 + DOF uses a state-of-the-art Dense Optical Flow registration
method [22]. In the latter case we generate registration only for image
sequences using frame-to-frame tracking. We also add to these two
methods a final refinement step based on minimising a statistically op-
timal non-convex cost function with Levenberg–Marquardt [7]. We
refer to the refined solutions as CH17R + GTR and CH17R + DOF. The
second classical SfT method we test is [76] with public code, referred
to as NGO15. In addition to this, we do not compare with [60] because
Table 7
Quantitative evaluation on synthetic and real test data with rectangular templates (DS1S, DS2

Registration RMSE (px)

Sequence Samples DOF R50F DeepSfT CH17 + GTR CH17 + DOF CH17

DS1S 5000 4.63 6.69 1.87 6.89 15.60 8.27
DS2S 5000 5.91 6.13 1.34 6.89 28.26 8.27
DS1R 232 – 5.02 2.32 – 38.12 –
DS2R 373 – 4.13 1.53 – 27.31 –
DS5R 50 – 6.33 2.74 – 22.57 –
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its performance in terms of surface reconstruction error registration
and surface is similar to [9] with which we compare our proposal. [60]
is a classic 2D manifold SfT method that estimates volume deformation
and has some strong limitations, like not achieving real-time, being
feature-based and requiring densely textured surfaceswith distinct tex-
ture features.

We compare DeepSfT with three DNN-based methods. The first is a
naïve application of thepopular ResNet architecture [57] to solve SfT, re-
ferred to as R50F. The reason to include the ResNet model was to com-
pare our fully convolutional encoder-decoder architecture against a
combination of an encoder and a fully connected model. This compari-
son demonstrates that the proposed architecture outperforms the clas-
sic encoder-fully connected architectures such as ResNet. We adapt
ResNet by removing the final two layers and introduce a dense layer
with 200 neurons and a final dense layer with a 3-channel output (for
depth and registration maps) of the same size as the input image. We
trained R50F with exactly the same training data as DeepSfT and with
real-data fine tuning. Fine-tuning was implemented by optimising the
depth loss, using the same optimiser and learning rate as we used for
DeepSfT. The second DNN method is [17], which we refer to as HDM-
net. This is tested only with rectangular templates (DS1 and DS2) be-
cause it only handles textureless or weakly textured rectangular tem-
plates. We carefully re-implemented [17], requiring an adaptation of
the image input size and the mesh size so that it matched the size of
the template meshes. The third DNN method is [18] using the authors’
code, which we refer to as IsMo-GAN, that is also applied only to DS1
and DS2 as it requires a rectangular template.

We evaluate reconstruction error using the Root Mean Square Error
(RMSE) in millimeters. We also use RMSE to evaluate the registration
accuracy in pixels. The evaluation of registration accuracy is notoriously
difficult with real data because there is no way to obtain reliable
ground-truth. We propose to use as a proxy for the ground-truth the
output from a state-of-the-art dense trajectory optical flow method
DOF [22]. We only make this quantitative evaluation for videos, for
which DOF can reliably compute registration.Wemanually selected se-
quences where DOF produces stable tracks. The use of DOF or any other
optical flowmethod as a registration baseline can introduce bias. How-
ever, obtaining registration resultswith awide-baselinemethod such as
DeepSfT that are comparablewithDOF is considered a very strong result
for a wide-baseline method.

5.3. Evaluation with rectangular templates

We show in Tables 7, 11 and 12 quantitative and qualitative results
obtained with rectangular templates and synthetic test datasets, de-
noted by DS1S and DS2S, and real test datasets, denoted by DS1R,
DS2R and DS5R. In terms of reconstruction error, DeepSfT is
S, DS1R, DS2R and DS5R).

Reconstruction RMSE (mm)

R + GTR CH17R + DOF NGO15 HDM-net IsMo-GAN R50F DeepSfT

15.41 18.77 10.80 7.32 7.99 1.68
28.04 21.32 9.92 6.94 7.75 1.63
34.24 – – – 17.53 9.51
25.24 – – – 14.45 7.37
19.42 32.3 – – 16.30 6.97



Table 8
Representative results and comparison of DeepSfTwith othermonocular depth reconstruc-
tionmethods. The estimated depthmaps and corresponding RMSE error inmm are shown
for eachmethodwith one example input image from 4 templates (arranged in 4 columns).

Table 10
Quantitative evaluation on real test data and 2D manifold templates (DS1R, DS2R, DS3R,
DS4R and DS5R).

Reconstruction RMSE
(mm)

Registration (photometric
error Epr)

Sequence Samples DeepSfT DeepSfT + TV DeepSfT DeepSfT + PR

DS1R 5000 9.51 4.12 0.266 0.211
DS2R 5000 7.37 3.39 0.094 0.015
DS3R 1300 8.12 7.40 0.141 0.109
DS4R 550 6.86 5.80 0.196 0.184
DS5R 50 6.97 6.89 0.388 0.203

Table 11
Visual comparison of results computed from DeepSfT and other classical and DNN SfT
methods with two test objects. The reconstructions are colored according to RMSE with
heatmaps (middle column). The registration results are visualised with an overlay of the
predicted template shape projected onto the input image. Registration errors are
visualised with heatmaps (right column). n.u. stands for normalised texture map units.
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considerably better than the other methods, both in synthetic test data,
where the RMSE remains below 2mm, and for real test data, where the
RMSE is below10mm. Kinect V2 has anuncertainty of about 10mmat a
distance of one meter, which partially explains the higher error for real
data. The second and third best methods are IsMo-GAN and R50F re-
spectively, also DNN-based. However, their errors are far worse com-
pared to DeepSfT. CH17 obtains reasonable results when it is provided
with ground-truth registration (CH17-GTR and CH17R-GTR). However,
the performance is considerably worse when real registration is pro-
vided by DOF (CH17-DOF and CH17R-DOF). NGO15 obtains the worst
result onDS1 and the secondworst result onDS2. Thiswas expected be-
causewe evaluate this algorithm in awide-baseline setting and, asmen-
tioned by the authors, this method was designed to work only for small
deformations (small-baseline).
Table 9
Quantitative evaluation on synthetic and real data with 2D manifold templates (DS3S,
DS4S, DS3R and DS4R).

Registration
RMSE (px)

Reconstruction RMSE (mm)

Sequence Samples R50F DeepSFT CH17 +
GTR

CH17R +
GTR

R50F DeepSfT

DS3S 5000 7.14 1.05 45.21 43.67 6.34 1.16
DS4S 5000 8.93 3.60 73.80 70.70 12.62 1.57
DS3R 1300 – – – – 12.43 8.12
DS4R 550 – – – – 27.31 6.86

12
In terms of registration error, DeepSfT also has the best results both
for synthetic test data, where ground-truth registration is available, and
real test data, where DOF is used as the ground-truth proxy. In all cases
DeepSfT has a mean registration RMSE of approximately 2 px. The per-
formance of R50F is competitive with DOF, with registration RMSE of
approximately 5 px.

5.4. Evaluation with 2D manifold templates

The quantitative and qualitative results of the experiments for the
2D manifold templates DS3 and DS4 are provided in Tables 9, 11 and



Table 12
Example outputs for the five objects used to test DeepSfT. n.u. stands for normalised units
in the template texture map.

Table 13
Examples of DeepSfT results before and after ARAP 3D shape completion as described in §3.4 us
image to use, the groundtruth of the surface reconstructed, the comparison of the reconstruction
completion.
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13
12, with both synthetic test data, denoted by DS3S and DS4S, and real
test data, denoted by DS4R and DS4R. Recall that the test datasets con-
sist of unorganised images, unlike DS1, DS2 and DS5, and it is thus im-
possible to estimate registration reliably with DOF. Therefore we only
compute registration error with synthetic data (DS3S and DS4S). CH17
+ GTR and CH17R + GTR are tested only on DS3S and DS4S, because
these are the only datasets they can handle.

The results show a similar trend as with the rectangular template
datasets: DeepSfT outperforms the other methods in terms of recon-
struction error, with an RMSE of the order of millimeters, and in regis-
tration with an RMSE close to 2 px. The second best method is R50F,
although its results are significantly worse than DeepSfT is. The results
of CH17 and its variants are very poor. This may be because CH17 is
not well adapted for 2D manifold objects with stronger non-isometric
deformation.

We show in Table 13 qualitative reconstruction results obtained
withDS1R, DS3R andDS4Rwith real images.Weobserve that shapes re-
covered with DeepSfT are similar to ground-truth obtained with the
RGB-D camera and have no ‘outliers’ in their boundaries, in contrast to
the RGB-D camera ground-truth. We observe that the error is larger
near self-occlusion boundaries.

5.5. Evaluation of ARAP shape completion

We show in Table 13 example results before and after ARAP shape
completion using DS1, DS3 and DS4 arranged in three rows. The table
ing real data. From left to right columwe show, the dataset of the template used, the input
and the groundtruth overlayed, the textured reconstruction, and the result of ARAP shape



Table 14
Experimental results with different cameramodels. n.u. stands for normalised units in the template texturemap.We show two sample cases for each camera used and we recall that give
that GoproHero V3 is only an RGB camera, we can’t calculate the RMSE in these cases.
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shows from left to right a representative input image, ground-truth pro-
vided by Kinect V2, registration and reconstruction outputs from
DeepSfT as point clouds, outputs as coloured point clouds, and lastly
the 3D shape completion results. The reconstruction errors are evalu-
ated across the visible surface regions before and after shape completion
and denoted by DNN RMSE and ARAP RMSE respectively. We can see
that these errors are very similar, which implies that the benefit of
shape completion is only to recover the occluded regions. It does not im-
prove significantly the reconstruction of the visible regions compared to
the DNN output. Quantitatively the completed 3D shapes look compel-
ling and representative of the true object deformations.
5.6. Evaluation of test camera generalisation

Using the technique described in §4.5, we test performance with
three different real test cameras (Microsoft Kinect V2: same as for
Table 15
Representative occlusion resistance, light change resistance and failure cases.

14
training, Intel Realsense D435 and Gopro Hero V3). Table 14 gives re-
construction errors with the Kinect and Realsense cameras. For the
Gopro Hero V3 (an RGB camera) we show qualitative results. Quantita-
tively, the reconstruction errors with the Kinect and Realsense cameras
are quite similar. This is an important point and clearly demonstrates
the ability of DeepSfT to generalisewell to images takenwith a different
test camera. Furthermore, DeepSfT copes with images from another
camera even if the focal lengths are significantly different, as indicated
qualitatively with the GoPro camera. We emphasize that this is the
first time SfT has been solved with different train/test cameras with a
DNN. This has a big practical benefit, because we are not limited to
using the same camera at test time.

5.7. Evaluation of light and occlusion resistance

We show that DeepSfT is resistant to light changes and significant
occlusions in Table 15. The first two rows of the table show representa-
tive examples of scenes with external and self occlusions. DeepSfT is
able to cope with them, accurately detecting the occlusion boundaries.
The third and fourth rows show examples of scenes with illumination
that produce significant shading variations. DeepSfT shows good resis-
tance to these variations.

5.8. Failure modes

There are some instances where DeepSfT fails, shown in the final
two rows of Table 15. There are general failure modes of SfT (very
strong occlusions and illumination changes), for which all methods
will fail at some point. There are also failure modes specific to
learning-based approaches (excessive deformations that are not
Table 16
Results and comparison from left to right, of DeepSfT with andwithout Depth Refinement
Block. All the errors are expressed in mm.

Sequence DeepSfT (Main Block only) RMSE DeepSfT RMSE

DS3R 70.55 8.12
DS4R 85.58 6.86
DS2R 14.43 1.53
DS1R 17.20 2.32
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Table 18
Average framerate of the evaluated methods.

DeepSfT R50F CH17 CH17R DOF NGO15 HDM-net IsMo-GAN

Time
(fps)

20.40 37.00 0.75 0.19 8.84 0.03 25.12 10.47

Fig. 5. Visualization of registration accuracy using image blending and presenting important reference cases.
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represented in the training set). However, recall that wide-baseline
methods like DeepSft can recover easily from failures with video inputs
because they process each image independently, unlike short-baseline
methods. Therefore failure for some frames in a video does not prevent
successful reconstruction and registration in the later frames.

5.9. Ablation studies

5.9.1. The benefit of Total Variation regularisation
We included total variation smoothness during fine tunning of the

Depth Refinement Block and the Registration Refinement Block. In the
Depth Refinement Block, the main objective of this term is to alleviate
the effect of noise and outliers in depth data used as ground-truth in
Eq. (10). In the Registration Refinement Block, it is used to improve con-
vergence of the self-supervised algorithm, based on minimising the
photometric error in Eq. (12). We investigate the effect of this term in
both depth and registration accuracy, when testing with real data. We
show in Table 10 the quantitative results obtained with all the tem-
plates DS1, DS2, DS3, DS4 and DS5. As can be seen, the Total Variation
regularisation improves the reconstruction and registration errors in
all the cases, especially for the DS2 template.

5.9.2. The benefit of depth refinement
We evaluate the influence of the Depth Refinement Block and its re-

sults in terms of depth RMSE. We show these errors in Table 16 where
the RMSE obtained using only the Main Block of DeepSfT is compared
to the RMSE obtained by the Depth Refinement Block. Recall that the
Main Block has been trained exclusively using synthetic data whereas
the Depth Refinement Block has been fine-tuned with real data. It can
be clearly seen that the Depth Refinement Block RMSE is much lower
compared to the Main Block RMSE. Recall that the Main Block provides
a first approximation of the depth map but, due to the render gap be-
tween synthetic and real data, this approximation is not highly accurate.
The Refinement Block refines this approximation. This agrees with the
widely held view that refining a networkwith real data can significantly
reduce the render gap, and improve generalisation [77].

It is important to highlight that the results indicate an error increase
according to the template complexity. For the rectangular templates,
like DS1 and DS2, there is less of an error gap with and without the
Depth Refinement Block. This is likely because these objects are the
less difficult to represent and easier for the network to generalise, be-
cause their intrinsic deformation space is smaller compared with the
16
2D manifold objects that deform in more complex ways. The RMSE
gap for the 2D manifold templates is large, and the benefit of the
Depth Refinement Block is very evident in these cases.

5.9.3. The benefit of registration refinement
We evaluate the impact of the Registration Refinement Block in

terms of registration accuracy. Given that we lack registration ground-
truth with real data we use photometric error as a proxy, computed as
follows. We compute the Mean Square Error between the rendered im-
ages I0i and the input image Ii in the visible region I i:

Epr ¼
1
jI ij

X
u;vð Þ∈I i

I0i u; vð Þ � Ii u; vð Þ
� �2

0
@

1
A

1
2

: ð14Þ

Weshow in Table 17 the photometric error and qualitative resultswhen
using the output of the Main Block, and when using the Registration
Refinement Block. In terms of photometric error, the Registration
Refinement Block output has less error than the Main Block output,
which we recall was trained using only synthetic data. The templates
with more texture features like DS5, DS2, and DS3 show qualitatively
more improvement than DS1 and DS4, which have less texture.
Tables 17 and 10 show quantitative and qualitative results before and
after registration refinement.

We also give a qualitative visualization of the registration error,
computed by blending the input image I and the rendered image I0, com-
puted from the DeepSfT registration:

Iavg ¼ I0i þ Ii
2

: ð15Þ

A sharper Iavg indicates a better registration.We show this visualization
in Fig. 5, where the greater the photometric error, the worse the accu-
racy of the registration, and the more blurred the average image. In
Table 17 we show the registration error visualization zoomed in the re-
gion of interest to provide a better visualization. We can clearly see a



Table 19
Reconstruction, results comparison of [33,34], with and without fine tuning and DeepSfT. All the errors are in mm.

Sequence DenseDepth RMSE DenseDepth + FT4 RMSE DenseDepth + FT1 RMSE BTS RMSE BTS + FT4 RMSE BTS + FT1 RMSE DeepSft RMSE

DS3 184.52 32.53 17.64 122.06 23.45 12.67 5.52
DS4 221.84 18.96 13.92 96.80 17.83 9.44 4.76
DS5 395.53 22.47 9.76 84.45 12.34 7.43 6.47
DS1 93.87 51.25 10.33 89.22 14.76 8.12 2.33
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strong registration improvementwith DS5, DS2 and DS4, with a smaller
improvement for DS1 and no clear improvement with DS3.

5.10. Timing experiments

Table 18 shows the average frame rate of the compared methods,
benchmarked on a conventional Linux desktop PC with a single
NVIDIA GTX-1080 GPU. The DNN methods are considerably faster
than the other methods, with frame rates close to real time for DeepSfT.
Solutions based on CH17 are far from real-time.

5.11. Monocular depth estimation comparison

We have compared object-generic monocular reconstruction
method with DeepSfT. We use DenseDepth [33] and BTS [34], two
state-of-the-art DNN monocular reconstruction methods. The former
is based on DenseNet [78]. We evaluated their ability to recover the ob-
ject’s depth with two experiments. 1) We test DenseDepth and BTS
depth accuracy on the real datasets when they are pre-trained with
the NYUDepth dataset [73], which contains RGB-D images from indoor
scenes with different types of common objects. To make a fair compar-
ison we have adapted our images to match the intrinsics of the
NYUDepth dataset. We compute depth error only in the visible region
of each image.We see that DenseDepth and BTS depth RMSE are several
orders of magnitude higher compared to DeepSfT. 2) We fine tune
DenseDepth and BTS with all training examples from DS1R, DS3R,
DS4R and DS5R datasets at the same time and separately with each
one of the templates. This restricts DenseDepth and BTS to detect four
different objects in the first case, and to each one of the objects in the
second case. The results are shown in Tables 19 and 8 where
DenseDepth and BTS fine tuned versions are named as DenseDepth +
FT4 and BTS+ FT4 and DenseDepth + FT1 and BTS + FT1 respectively.
In this case the errors have considerably reduced specially in the one ob-
ject fine tune case, but they are still larger than the error achieved by
DeepSfT. With this experiment we show that instance-level monocular
reconstruction solutions such asDeepSfT are able to achievemuchmore
accurate reconstruction results compared to object-generic methods
such as [33,34]. DenseDepth and BTS obtain an approximately correct
average shape, the latter being best. However, they are not able to
achieve comparable results to DeepSfT, even when training them with
only a reduced set of objects.

6. Conclusions

We have presented DeepSfT, the first dense, real-time solution for
wide-baseline SfT with general templates. This has been an open com-
puter vision problem for over a decade. No previousDNN-basedmethod
is able to accurately solve SfT for weakly-textured, non-flat object tem-
plates, such as the dinosaur or shoe examples. DeepSfTwill enablemany
real-world applications that require dense registration and 3D recon-
struction of deformable objects, in particular augmented reality with
deforming objects. In future work we aim to generalise DeepSfT tomul-
tiple templates, using themas explicit inputs to our network, or by using
object detectors to select an object-specific SfT network.We alsowill in-
vestigate how to train DeepSfT with self-supervised learning ap-
proaches, which may require incorporating other priors, such as
17
temporal and spatial smoothness, and other deformation models. An-
other future way to investigate is the use of test cameras, whose intrin-
sics are unknown [79]. Our DeepSfT architecture and results may also
contribute to develop future DNN NRSfM solutions. In particular, the
use of dense maps as the network output followed by post-processing
steps for mesh completion significantly reduces the complexity of the
learning process, as opposed to inferring the entire surface or volume.
Semi-supervised learning approaches, similar to the one implemented
in DeepSfT, can also boost the goal.
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Appendix A. Warping with bilinear interpolation

We describe the process to create the image I0 u; vð Þ from the reg-
istration η ̂ u; vð Þ ¼ η̂U u; vð Þ; η̂V u; vð ÞÞ

�
and the texture map A U;Vð Þ. We

recall that U;V are normalised coordinates drawn from the unit

square. We define the texture map image A
�

U
�
, V

�� �
of size H �W

with U
�
, V

�� �
∈ 1,W� � 1,H�½½ being pixel coordinates, obtained by

de-normalising U;Vð Þ with W and H. Image coordinates u; vð Þ∈ ½1;w�
�½1;h� are already in pixels and I0 u; vð Þ is of size h�w pixels. In addi-

tion, we assume that both A
�
and I0 are single channel images. The gen-

eralisation to 3-channel images is straightforward. We have that
η ̂ u; vð Þ is a differentiable function of the Photometric Refinement

Block weights θR and ∂η̂U u;vð Þ
∂θR

and ∂η̂V u;vð Þ
∂θR

are the first derivatives of

the registration with respect to θR. We recall that I is a subset of co-
ordinates u; vð Þ where the object is visible, and thus I0 u; vð Þ is set to a
constant value outside I. By using billinear interpolation we obtain I0

as follows:

I0 u, vð Þ ¼ ∑4
i¼1wi A

�
U
�
i,V

�
i

� �
u, vð Þ ∈ I

0 otherwise

8<
: ðA:1Þ

where:

U
�
1 ¼ U

�
2 ¼ ζU ⌊η

^

U u, vð Þ
�

⌋
�

U
�
3 ¼ U

�
4 ¼ ζU ⌈η

^

U u, v
��
⌉
��

ðA:2Þ

V
�
1 ¼ V

�
3 ¼ ζV ⌊η

^

V u, vð Þ
�

⌋
�

V
�
2 ¼ V

�
4 ¼ ζV ⌈η

^

V u, vð Þ
�

⌉
�
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and

w1 ¼ 1þ U
�
1 � η

^

U u, vð Þ
� �

1þ V
�
1 � η

^

V u, vð Þ
� �

w2 ¼ 1þ U
�
1 � η

^

U u, vð Þ
� �

1� V
�
2 þ η

^

V u, vð Þ
� �

w3 ¼ 1� U
�
3 þ η

^

U u, vð Þ
� �

1þ V
�
3 � η

^

V u, vð Þ
� �

w4 ¼ 1� U
�
4 þ η

^

U u, vð Þ
� �

1� V
�
4 þ η

^

V u, vð Þ
� �

ðA:3Þ

with ⌊:⌋ and ⌈:⌉ being the ‘floor’ and ‘ceil’ operators respectively. We as-
sume that their derivatives with respect to θR are zero. Also, ζU xð Þ ¼
max min x;Wð Þ;1ð Þ and ζV xð Þ ¼ max min x;Hð Þ;1ð Þ are functions ensur-

ing that coordinates remain inside the domain of A
�
. Therefore, all terms

in Eq. (A.3) are bilinear in η u; vð Þ with:

∂I0 u, vð Þ
∂θR

¼ ∑4
i¼1

∂wi

∂θR
A
�

U
�
i,V

�
i

� �
u, vð Þ ∈ I

0 otherwise:

8<
: ðA:4Þ

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.imavis.2022.104531.
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