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A B S T R A C T

Although certain genetic alterations have been defined as predictive and prognostic biomarkers in the context
of ovarian cancer (OC), data science methods represent alternative approaches to identify novel correlations
and define relevant markers in these gynecological tumors. Considering this potential, our work focused both
on clinical and genomic data information collected from patients with OC to identify relationships between
clinical and genetic factors and disease progression-related variables. For this aim, we proposed two analyses:
(1) a nonlinear exploration of an OC dataset using autoencoders, a type of neural network that can be used as
a feature extraction tool to represent a dataset in 3-dimensional latent space, so that we could assess whether
there are intrinsic or natural nonlinear separability patterns between disease progression groups (in our case,
platinum-sensitive and platinum-resistant groups); and (2) the identification of relevant variable relationships
by means of an adaptation of the informative variable identifier (IVI), a feature selection method that labels
each input feature as informative or noisy with respect to the task at hand, identifies the relationships among
features, and builds a ranking of features, allowing us to study which input features and relationships may be
most informative for the OC disease progression classification to define new biomarkers involved in disease
progression. Our interest has been in clinical and genetic factors and in the combination of clinical features
and genetic profile. Results with autoencoders suggest a pattern of separability between disease progression
groups in the clinical part and for the combination of genes and clinical features of the OC dataset, that is
increased via supervised fine tuning. In the genetic part, this pattern of separability is not observed, but it is
more defined when a supervised fine tuning is performed. Results of the IVI-mediated feature selection method
show significance for relevant clinical variables (such as type of surgery and neoadjuvant chemotherapy), some
mutation genes, and low-risk genetic features. These results highlight the efficacy of the considered approaches
to better understand the clinical course of OC.
1. Introduction

Ovarian cancer (OC) constitutes one of the most serious health
problems in our society, being the second most common gynecological
neoplasm with an estimated annual incidence of 225 000 women
worldwide (Moschetta, George, Kaye, & Banerjee, 2016). Furthermore,
OC is the fifth leading cause of cancer-associated mortality and is the
gynecological tumor with the worst prognosis (140 000 deaths per
year), with a 5-year overall survival close to 15% (Stewart, Ralyea, &
Lockwood, 2019). Various basic and clinical studies have confirmed the
role of inactivating mutations in the BRCA1 and BRCA2 genes, homol-
ogous recombination (HR) pathway deficiencies, and certain alteration
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profiles (HR-related mutational signature 3 or specific copy number
signatures) as prognostic and predictive markers of ovarian carcinomas.
However, a certain percentage of patients not showing such alterations
still obtain clinical benefit from OC standard therapies (Macintyre et al.,
2018).

Data science methods are currently widely applied in the con-
text of OC. Methods such as machine learning and, more specifically,
deep learning, are being applied to the clinical research of diagnostic
imaging procedures, either histological, ultrasound, or computed to-
mography images, to better define the anatomopathological diagnosis
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or to infer the treatment response and the malignant properties of OC
tumors under study (Zhu, Xie, Han, & Guo, 2020). However, there are
limited works regarding the machine-learning-mediated integration of
clinical information and molecular data obtained from -omic platforms,
which have mostly focused on transcriptomics and proteomics profil-
ing. For instance, one recent work used neural networks to identify
a subset of immune-related proteins and catabolic pathways correlat-
ing with diagnosis-related clinical variables (tumor grade) (Yu et al.,
2020). Another work has also shown potential for efficient diagnosis
of epithelial ovarian carcinomas using a neural network and serum
microRNA (Elias et al., 2017).

Feature selection methods are another group of Data Science tech-
niques that have been used in the context of OC, and they aim to
highlight which are the input features that have the strongest rela-
tionship with the target features, thus providing an indication of the
importance of each of them. Depending on the degree of interpretability
of the feature selection methods (Muñoz-Romero, Gorostiaga, Soguero-
Ruiz, Mora-Jiménez, & Rojo-Álvarez, 2020), some of them can also
identify relationships among features that could be especially informa-
tive for medical researchers, in a way that these methods can indicate
which features are relevant to a particular disease and how those
features interact with each other. Typically, feature selection methods
are classified into filter, embedded, and wrapper methods, depending
on their relationship with the learning method. Filter methods do not
depend on any learning method and require less computational time,
while wrapper and embedded methods both require a learning method
to perform feature selection (Saeys, Inza, & Larrañaga, 2007). Nowa-
days, some of the most widely used feature selection methods are still
classical algorithms such as the Relief method (Kira & Rendell, 1992;
Kononenko, 1994) or those algorithms and criteria based on mutual
information, including conditional mutual information (CMI) (Brown,
Pocock, Zhao, & Luján, 2012), mutual information feature selection
(MIFS) (Battiti, 1994), joint mutual information (JMI) (Yang & Moody,
1999), minimum redundancy maximum relevance (MRMR) (Ding &
Peng, 2005; Peng, Long, & Ding, 2005), mutual information maxi-
mization (MIM) (Lewis, 1992), conditional mutual information maxi-
mization (CMIM) (Fleuret, 2004), interaction capping (ICAP) (Jakulin,
2005), double input symmetrical relevance (DISR) (Meyer & Bontempi,
2006), conditional infomax feature extraction (CIFE) (Lin & Tang,
2006), or conditional redundancy (CondRed) (Brown et al., 2012).
However, these classic feature selection methods, algorithms, and cri-
teria have been rediscovered countless times and many versions of
each have been implemented. For example, the Relief method has
even generated a family of filter-style feature selection algorithms
called Relief-based algorithms (RBAs) (Urbanowicz, Meeker, La Cava,
Olson, & Moore, 2018). For algorithms and criteria based on mu-
tual information, the literature is vast (Vergara & Estévez, 2014).
For example, we can highlight new variants of MRMR, such as the
Fast-MRMR algorithm (Ramírez-Gallego et al., 2017) or the temporal
minimum redundancy maximum relevance (TMRMR) feature selection
approach (Radovic, Ghalwash, Filipovic, & Obradovic, 2017). For CMI,
we can point out a variation called conditional mutual information
based feature selection considering Interaction (CMIFSI) (Liang, Hou,
Luan, & Huang, 2019). And for JMI, we also can mention joint mutual
information maximisation (JMIM) and normalised joint mutual infor-
mation maximization (NJMIM) algorithms (Bennasar, Hicks, & Setchi,
2015). Furthermore, in the last years, feature selection methods have
been widely applied in medicine, for example, in medical imaging,
biomedical signal processing, or genomic data. A comprehensive review
of feature selection methods in medical applications can be found
in Remeseiro and Bolon-Canedo (2019), and more specifically on ge-
netic data, a review of feature selection can be found in Tadist, Najah,
Nikolov, Mrabti, and Zahi (2019). Also, feature selection methods have
been applied, for example, to the discovery of new biomarkers of
diseases. Several works on this topic have been applied to OC, but
2

they are mostly focused on proteomics (Alipoor, Khani Parashkoh, &
Haddadnia, 2010) and serum biomarkers (Song et al., 2018), rather
than on the integration of clinical and molecular data.

Taking this scenario into account, our research group developed two
previous analysis of OC data mixing clinical and genetic features (Bote-
Curiel et al., 2021a, 2021b). In these preceding works, we developed
a bootstrap framework for two different types of analysis. In the first
one, we performed an initial univariate analysis of features of different
types that provides useful knowledge about the quality of an OC
dataset, and a first set of variables was identified as potentially relevant
for OC disease progression classification (Bote-Curiel et al., 2021a).
In the second one, we conducted non-supervised linear multivariate
analysis that represents a useful feature extraction tool for variables
with different nature (namely numerical, categorical, and text) and
provided information about intrinsic patterns in the OC dataset under
study (Bote-Curiel et al., 2021b). However, in these two works we had
not explored the heterogeneous OC data either in terms of supervised
nonlinear multivariate data models, or by using convenient feature se-
lection methods including relations among said heterogeneous features.
These two approaches represent two relevant and subsequent stages in
systems for machine learning analysis and they are crucial for the final
performance and interpretability of data-driven model predictions, and
they deserve their own entity and attention. It is for these reasons that
we are specifically addressing them in the present work.

Therefore, we focus here on both extensive clinical information
collected from patients diagnosed with OC and genomic data ob-
tained through whole exome or targeted sequencing, with the aim
of identifying relationships between clinical and genetic factors and
OC disease progression-related variables. For this purpose, we propose
two analyses. The first analysis is a nonlinear exploration of an OC
dataset through autoencoders. An autoencoder is a type of neural
network that can be used as a feature extraction tool for distilling
relevant information from data (Martínez-Ramón, Gupta, Rojo-Álvarez,
& Christodoulou, 2020). Specifically, we use autoencoders to compress
the data into a 3-dimensional latent space so that we could assess
whether the dataset has intrinsic or natural separability patterns be-
tween disease progression groups (platinum-based therapy sensitive vs.
resistant groups). The second analysis consists of using an adaptation
of the informative variable identifier (IVI) algorithm (Muñoz-Romero
et al., 2020), a feature selection tool that labels each input feature
as informative or noisy with respect to the task at hand, identifies
the relationships among features, and builds a ranking of features.
In our case, this approach enables us to study which input features
and relationships may be most informative for OC disease progression
classification, hence being able to discover new biomarkers of the
disease.

This paper is organized as follows. In Section 2, we describe the
OC dataset. In Section 3, we present the data analysis methods. Then,
the results of applying these analysis methods to the OC dataset are
provided in Section 4. Discussion and conclusions are established in
Section 5. Finally, in Appendix, we present simple examples of the use
of the described analysis methods applied to synthetic data that can be
useful to the interested reader.

2. Dataset description

The OC dataset that we used in this work is part of the BRCAness
initiative from the Innovation Oncology Laboratory of the Gyneco-
logical, Genitourinary, and Skin Cancer Department, at Clara Campal
Comprehensive Cancer Center (Madrid, Spain). This department has
conducted a multicenter observational study focused on the identifi-
cation of biomarkers with potential impact in clinical practice. In this
observational study, which is supported by 12 national health care
institutions, approximately 300 patients with OC have been included
thus far. Inclusion criteria include both age (>18 years old) and disease
status (Stage IC or superior). Among these patients, 54 were molecularly

characterized by means of next generation sequencing (NGS), either
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Table 1
Variables in the genetic part of the OC dataset.

Name Description

HGNC_Symbol Gene code regarding the Human Genome
Nomenclature Committee.

Chr Chromosome name.
Genetic_Change Genetic change in the variant allele with respect

to the reference allele.
Genotype Genotype name.
VarDepth Number of times that the variant allele has been

read in a specific region.
Conservation_Score Score of the conservation in an evolutionary sense.
Grantham_Distance Distance between the variant amino acid and the

reference amino acid in an evolutionary sense.
Condel_Prediction Condel tool prediction of pathogenicity.
Condel_Prediction_Score Score of the Condel tool degree of pathogenicity.
Sift_Prediction Sift tool prediction of pathogenicity.
Sift_Prediction_Score Score of the Sift tool degree of pathogenicity.
PolyPhen_Prediction PolyPhen tool prediction of pathogenicity.
PolyPhen_Prediction_Score Score of the PolyPhen tool degree of pathogenicity.
Impact Prediction of pathogenicity.
Amino_Acids Variant amino acid.
PFI Platinum-free interval, which represents the time

from the last cycle of chemotherapy treatment to
the evidence of disease progression.

with whole-exome sequencing (WES) or with predesigned targeted gene
panels (Onco80).

WES profiling (SureSelect Human All Exon V6) was performed in 20
patients. Sequencing was performed using genomic DNA extracted from
either formalin-fixed paraffin embedded tumoral tissue or peripheral
blood to ultimately define somatic and germinal variants. Subsequently,
34 patients showing intermediate degree of response to platinum agents
were screened using an Onco80 predesigned mutational panel that
enables identification of genetic alterations in 80 loci widely associated
with cancer development. Therefore, the genetic part of the dataset
consists of 7 077 observations corresponding to genetic alterations
for the studied patients. The most relevant genetic variables included
genetically altered loci, aminoacid substitution, pathogenicity scores
(Grantham’s distance, conservation scores according to several in silico
programs), and the resultant genetic changes. The names and de-
scriptions of the genetic variables used in this work are presented in
Table 1.

The clinical information of each patient was also collected including
age at diagnosis, personal or familial antecedents, BRCA and TP53
status, histological subtype, grade and stage of the disease at diagnosis,
anatomical location, presence of perineural or vascular invasion, CA-
125 biomarker evaluation, surgical procedures, information related to
the different treatment lines prescribed for each patient (number of
cycles, doses, associated toxicities, grade of response and relapses),
and date of the last clinical follow up or exitus. Other important
clinical features, such as overall survival (OS), progression-free survival
(PFS), and platinum-free interval (PFI), were also included. In total, the
clinical part of the dataset consists of 54 entries (one for each patient)
and 106 clinical variables. In Table 2, we present the names of the
clinical variables and their descriptions.

3. Data analysis

As previously commented, in one of the earlier works, we used
linear feature extraction methods to create new and smaller sets of
variables that captured most of the useful information in an OC dataset
(Bote-Curiel et al., 2021b). In this way, by compressing the OC dataset
into a 3-dimensional latent space, we could assess whether the dataset
3

Table 2
Variables in the clinical part of the OC dataset.

Name Description

Oncological_History Whether or not the patient has had any type of
cancer.

Gynecological_Family_History Whether or not the patient’s family has had a
member with gynecological cancer.

Status_BRCA Whether or not there is a mutation in the BRCA1
and BRCA2 genes.

Age_at_Diagnosis Patient’s age at cancer diagnosis.
Anatomical_Location Anatomical location of the patient’s tumor.
Histology_1st_Component Type of ovarian cancer the patient has.
Grade Grade of the ovarian tumor the patient has.
Perineural_Vascular_Invasion Existence or not of vascular or perineural

invasion in the patient’s tumor.
Stage Stage of the ovarian tumor the patient has.
Surgery Type of surgery performed on the patient:

primary or interval.
HIPEC_in_Surgery Whether or not the hyperthermic intraperitoneal

chemotherapy treatment has been applied to the
patient.

Type_of_Primary_Surgery Type of primary surgery performed on the
patient (if applicable): complete resection of the
tumor or not.

Neoadjuvance Whether or not the chemotherapy treatment
prior to primary surgery has been applied to the
patient.

Response_of_Neoadjuvance How the patient has responded to neoadjuvant
chemotherapy (if applicable).

Attitude_of_Interval_Surgery Whether or not an interval surgery is performed
on the patient after neoadjuvant chemotherapy
(if applicable).

Type_of_Interval_Surgery Type of interval surgery performed on the
patient (if applicable): complete resection of the
tumor or not.

Adjuvance Whether or not the chemotherapy treatment after
the primary surgery has been applied to the
patient.

Response_of_Adjuvance How the patient has responded to adjuvant
chemotherapy (if applicable).

PFS Progression-free survival, which represents the
time from the first date of chemotherapy
treatment to the evidence of disease progression.

PFI Platinum-free interval, which represents the time
from the last date of chemotherapy treatment to
the evidence of disease progression.

OS Overall survival, which represents the duration
of patient survival.

Bevacizumab_Maintenance Whether or not the antiangiogenic treatment has
been applied to the patient.

had intrinsic or natural separability patterns between disease progres-
sion groups. However, these methods were based on linear assumptions
of the data relationships, which could be invalid. Therefore, in this
work, we extend the exploration of the OC dataset using autoencoders,
a nonlinear feature extraction neural network that enables us to assess
the intrinsic separability patterns between disease progression groups
without making any prior assumption of the data. In addition to this
type of information provided by feature extraction methods, we are
also interested in identifying which features of the OC dataset are most
relevant for disease progression group prediction so that they can be
used as possible biomarkers. For this task, we used a feature selection
method that extracts the most informative features in a dataset and
identifies the relationships among them according to a target variable

in a supervised machine learning scheme.



Expert Systems With Applications 206 (2022) 117865L. Bote-Curiel et al.

w
s
𝐱

i

𝐨

w
s
o
𝑔
c
o
t

t
i
t
v
a
h
w
b
o
a
p
p
s
m
2

a
w
t

n
r
a
v
2

3

d
t
c
t
i
f
R
m
t
I
i
d
r
m

𝐱
o
i
b
b
a
t
i

b
a
w
e
t
v

o
r
t
t
e
𝑓

T
𝑓
t
t
H
i
t
b

r

𝜌

w
r
r
c
𝜌
t
r
f
o
f
i

3.1. Autoencoders

An autoencoder is a flexible nonlinear feature extraction method
that is able to create a low-dimensional set of variables that represents
most of the useful information in a dataset. An autoencoder consists of
a simple neural network whose goal is to transform inputs into outputs
that contain the same information as the inputs with the least possible
distortion. Therefore, an autoencoder is a neural network that is trained
to replicate its input to its output (Hinton & Salakhutdinov, 2006).

Various kinds of autoencoders exist; our first interest is in the
undercomplete autoencoders, which by design reduce data dimensions
utilizing a bottleneck architecture that first turns a high-dimensional
input into a latent low-dimensional code and then perform a reconstruc-
tion of the input using this latent code (Martínez-Ramón et al., 2020).
If the latent code is 3-dimensional, we can visually and quantitatively
assess whether the dataset has intrinsic or natural separability patterns.

The bottleneck architecture of an autoencoder consists of two sub-
structures, namely, an encoder and a decoder. Though both substruc-
tures can have several layers, we focus on the single-layer case (shallow
autoencoder). Such an encoder maps a high-dimensional input to latent
low-dimensional code as

𝐡𝑖 = 𝑓 (𝐱𝑖) = 𝜙(𝐖𝑒𝐱𝑖 + 𝐛𝑒), (1)

here 𝑓 (⋅) is the transformation from the input space to the latent
pace, 𝐡𝑖 ∈ R𝑑 is the code in the latent space corresponding to input
𝑖 ∈ R𝐷, and 𝜙(⋅) denotes a nonlinear activation function.

The decoder again transforms the code in the latent space to the
nput space as

𝑖 = 𝑔(𝐡𝑖) = 𝜑(𝐖𝑑𝐡𝑖 + 𝐛𝑑 ), (2)

here 𝑔(⋅) is the transformation from the latent space to the input
pace, 𝜑(⋅) is a nonlinear activation function, and 𝐨𝑖 is the estimated
utput. The problem is essentially to estimate the functions 𝑓 (⋅) and
(⋅) that make 𝐨𝑖 as similar as possible to 𝐱𝑖. This goal is achieved by
alculating weights and biases 𝐖𝑒, 𝐖𝑑 , 𝐛𝑒, and 𝐛𝑑 through an iterative
ptimization process with an appropriate loss function. This is called
he training process.

The use of nonlinear activation functions allows the neural network
o model output features that vary non-linearly with respect to its
nputs features. Although there are many types of activation functions,
he most commonly used are the rectified linear (ReLU) or one of its
ariations (leaky ReLU or parametric ReLU), which are the default
ctivation functions recommended for using with most neural networks
idden units. Previously, the default activation function in hidden units
as the hyperbolic tangent activation function, but it has been replaced
y ReLU because, in general, the performance is better in a variety
f practical applications. In binary classification problems, the sigmoid
ctivation function is used in the output units since the output is inter-
reted as a binomial probability distribution. In multiclass classification
roblems, the sigmoid activation function is being replaced by the
oftmax activation function, because the output is then interpreted as a
ultinomial probability distribution (Goodfellow, Bengio, & Courville,
016).

Autoencoders have traditionally been used as nonlinear dimension-
lity reduction tools in feature extraction or for dataset visualization
hen the code has 2 or 3 dimensions. To illustrate the functioning of

his method, we present a simple example with a synthetic dataset in
Appendix.

In addition to undercomplete autoencoders, other types exist. De-
oising autoencoders aim to reconstruct a partially corrupted input
ather than simply copying the input; sparse autoencoders are simply
utoencoders whose training loss function involves a sparsity penalty;
ariational autoencoders are generative methods (Goodfellow et al.,
4

016). a
.2. Informative variable identifier

We are interested here in finding the most relevant features of our
ataset for prediction and for interpretability purposes. For the latter,
he relationships among these features are specially important for the
linicians. Feature selection methods perform the task of extracting
he most informative features in a dataset, but only some of the exist-
ng methods provide us with explicitly identified relationships among
eatures. Our group has recently presented the IVI algorithm (Muñoz-
omero et al., 2020), a computationally competitive feature selection
ethod for both selecting features and identifying relationships among

hem. Specifically, given a classification task and input features, the
VI algorithm: (1) categorizes each input feature as informative or non-
nformative with respect to the classification task under study; (2)
etects the relationships among informative input features; and (3)
anks informative input features by importance. An explanation of this
ethod is presented next.

IVI starts with an input data matrix, 𝐗 ∈ R𝐿×𝑁 , with 𝐿 observations,
𝑙, each with 𝑁 features. The focus is on classification with a binary
utput variable, 𝐲 ∈ R𝐿, with 𝑦𝑙 ∈ {−1,+1} for 𝑙 = 1,… , 𝐿. The method
s designed based on the hypothesis that weights, 𝐰, that are generated
y a linear classifier, 𝑦𝑙 = 𝐰 ⋅ 𝐱𝑙 + 𝑏, are able to explain the relationship
etween each input feature and the output, as well as the relationships
mong the input features. Furthermore, IVI uses the statistical proper-
ies of the weights to obtain information about which input features are
nformative or not, and it also detects redundancies.

The statistical properties of the weights are based on their proba-
ility density function (pdf ), denoted as 𝑓𝐰(𝐰), which is a multivari-
te function that provides complete statistical knowledge about the
eights. Therefore, the initial step involves calculating 𝑓𝐰(𝐰). How-

ver, this pdf is often difficult to calculate, so IVI instead works with
he marginal pdf of the weights, denoted as 𝑓𝑤𝑛

(𝑤𝑛) for the 𝑛th input
ariable.

Bootstrap resampling, which can estimate the empirical distribution
f any statistics that can be calculated computationally (Efron & Tibshi-
ani, 1986), is used to estimate 𝑓𝑤𝑛

(𝑤𝑛) for each 𝑛th input variable. In
his case, IVI uses the input data matrix, 𝐗, and the output variable, 𝐲,
o generate the 𝑏th resample 𝐗∗

(𝑏) and 𝐲∗(𝑏). These results are then used to
stimate the weights, 𝐰∗

(𝑏). The estimated marginal pdf of each weight,
∗
𝑤𝑛

(𝑤𝑛), is then calculated by repeating this process 𝐵 times.
By means of the above steps, IVI identifies the informative variables.

o detect these informative variables, the confidence interval (CI) of
∗
𝑤𝑛

(𝑤𝑛) for each weight is analyzed, where it is assumed that informa-
ive features exhibit non-zero overlapping CIs. Therefore, features with
his criterion are informative variables and are called relevant variables.
owever, it is likely that not all the informative variables are included

n the set of relevant variables because of feature redundancy. Thus,
here is interest in identifying the redundant variables that could also
e informative.

To detect redundancy, the Pearson correlation of weights across
eplicates is used as follows,
∗
𝑚,𝑛 = 𝑐𝑜𝑟𝑟(𝐰∗

𝑚,𝐰
∗
𝑛), (3)

here 𝐰∗
𝑚 and 𝐰∗

𝑛 are the vectors of the estimated weights 𝑚 and 𝑛,
espectively, and 𝑐𝑜𝑟𝑟 denotes the correlation coefficient. IVI catego-
izes 𝑚 and 𝑛 features as redundant when the absolute value of their
orrelation coefficient, |𝜌∗𝑚,𝑛|, exceeds a 𝜌𝑡ℎ threshold (that is, |𝜌∗𝑚,𝑛| >
𝑡ℎ). Redundant features can be clustered to create disjoint subsets such
hat a feature is assigned to a disjoint subset if it is redundant with
espect to one o more features within the subset. With this, informative
eatures can be identified by selecting the disjoint subsets with at least
ne feature identified as relevant. Thus, subsets without any relevant
eature are discarded, and all their features can be considered as non-
nformative, while features in subsets with at least one relevant variable

re considered as informative.
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𝐼

The above process yields a list of informative variables and also
indicates redundancy relationships. However, users may also be inter-
ested in a subset of the informative variables. Therefore, IVI includes
a ranking of variables. For each informative variable, 𝑛, an importance
score is calculated as the absolute value of the mean across 𝐰∗

𝑛 divided
y the square of the range of the 95% CI of 𝐰∗

𝑛, that is,

𝑚𝑝𝑛 =
|𝑚𝑒𝑎𝑛(𝐰∗

𝑛)|
(𝑤ℎ∗

𝑛 −𝑤𝑙∗
𝑛 )2

. (4)

Then, each informative feature is ordered by descending importance
score to create the ranking.

Although IVI was designed to use linear classifier weights, it can
be implemented with any machine learning classifier that computes
feature weights. For example, the approach proposed in Muñoz-Romero
et al. (2020) for this purpose was the covariance multiplication estima-
tor (CME), which is a method that produces a nonlinear transformation
of the input feature space into a weight space intended to be compu-
tationally competitive with the linear algorithms. A simple explanation
of the CME is as follows. Given 𝐗 and 𝐲, sample covariance matrices
𝐂𝐗𝐗 and 𝐂𝐗𝐲 are calculated. Given these matrices, the feature weights,
𝐰, are defined as follows:

𝐰 = (𝑠𝑖𝑔𝑛(𝐂𝐗𝐗)(𝑔−1) ⊙ (𝐂𝐗𝐗)(𝑔))𝐂𝐗𝐲 , (5)

where ⊙ is the Hadamard product (element-wise product) and 𝑔 de-
notes the integer exponent of the element-wise power, which represents
a trade-off between 𝐂𝐗𝐗 or 𝐂𝐗𝐲.

3.3. Adaptation of IVI

IVI is suitable to find the most informative features and the rela-
tionships among features in a dataset and can be used as a feature
selection method and as an interpretability technique. However, in this
work, we propose several modifications to improve both IVI and CME
to make them more stable. For CME, this method works better when
it handles metric features, but when there is a set of mixed metric and
binary features, it can fail to detect relationships between metric and
binary features and among binary features. Therefore, given 𝐗 and 𝐲,
we propose to use the sample correlation matrices, 𝐑𝐗𝐗 and 𝐑𝐗𝐲, to
calculate the feature weights, 𝐰, as follows:

𝐰 = 𝐑𝐗𝐗𝐑𝐗𝐲 . (6)

With this simple and effective adaptation, CME can detect the rela-
tionships among metric features, among binary features, and between
metric and binary features.

Other than this, IVI performs properly with large datasets but it can
be unstable with small datasets, since in different runs the algorithm
returns different solutions. To solve this, we propose to use IVI in a
probabilistic manner; that is, instead of calculating the IVI once, we run
and calculate the IVI 𝑀 times. Thus, we obtain 𝑀 sets of informative
features with their respective relationships, so we can filter the features
according to the number of times they appear in those 𝑀 repetitions.
Specifically, given the 𝑀 sets of relevant informative variables, an oper-
ative threshold can consists of keeping the features that appear 90% of
the time, consistent with a high-demand criterion such as that proposed
by IVI. Additionally, given a relationship between two features, we
have a measure of that relationship using the correlation between them.
Thus, given the 𝑀 sets of relationships, we can calculate a global
measure of each relationship as the sum of the correlation in the 𝑀
sets. In this way, we can filter redundant informative variables using
the maximum of the derivative of the cumulative sum of the global
measures in descending order, in the same way that it is calculated
in IVI. A synthetic example of IVI with the CME method with these
5

modifications is presented in Appendix.
4. Experiments and results

In this section, we apply the methods presented in the previous
section to analyze the OC dataset. We first transform each observation
of the OC dataset to a 3-dimensional latent space using autoencoders
to find visual patterns in the data. Then, we use an adaptation of IVI
to study the most relevant features in the OC dataset for OC disease
progression classification and to assess the relationships among these
features.

4.1. Autoencoders in the OC dataset

To understand the relations of clinical and genetic data with OC
progression, we explore the OC dataset presented in Section 2 with au-
toencoders, which are described in Section 3. In this case, autoencoders
can be used as a feature extraction tool to reduce the dimensionality
of the observations to a 3-dimensional latent space. Specifically, we
transform observations in the OC dataset to a 3-dimensional latent
space so that we can visually assess the intrinsic or natural separa-
bility patterns between OC disease progression groups. In particular,
these groups are based on an indicator of disease progression called
PFI, which is defined as the time (in months) between the last cycle
of platinum and evidence of disease progression (Pujade-Lauraine &
Combe, 2016). In this setting, depending on the length of platinum
drug sensitivity, patients were categorized into the platinum-resistant
group (< 6months) or platinum-sensitive group (> 6months). Therefore,
if each observation in the OC dataset has a group category associated
with it, it is possible to check how the patterns are distributed in the
latent space with respect to these categories.

In the clinical part of the OC dataset, we focus on a set of relevant
features that expert clinicians consider the most relevant. The name
and a description of each relevant feature are presented in Table 2. We
use a one-hot encoding scheme for categorical variables to construct an
autoencoder with input and output layers of size 70. The hidden layer
has a size of 3 to allow us to visualize the observations in the latent
space, using the hyperbolic tangent function as activation function.
The learning process minimizes the mean square error loss function.
In Panel (a) of Fig. 1, we show the latent space of the autoencoder
with observations of the clinical part of the OC dataset. We split the OC
dataset into a training set (points) and a test set (crosses). Observations
in blue belong to the platinum-sensitive group, and those in red belong
to the platinum-resistant group. A portion of the platinum-sensitive
group is separated into a distinct region, but the rest of the observations
are mixed between the two groups.

Additionally, we can check the autoencoder latent space repre-
sentation for classification between platinum-sensitive and platinum-
resistant groups if we attach a logistic regression layer (Bishop, 2006) to
the encoder substructure of the trained autoencoder. We train this new
architecture with the encoder weights and biases frozen and update
only those belonging to the logistic regression layer. We can subse-
quently improve the classification capacity of this new architecture by
retraining it with the encoder weights and biases unfrozen, a process
called fine tuning (Goodfellow et al., 2016). The latent space of the fine-
tuned encoder substructure with the observation of the clinical part of
the OC dataset is shown in Panel (b) of Fig. 1. In this case, after the
supervised task, the platinum-sensitive and platinum-resistant groups
are more defined.

We repeat the same process for the genetic part of the OC dataset
using a set of relevant features that expert clinicians considered the
most relevant (Table 1). In this part, we have an autoencoder with
input and output layers of size 329 after coding categorical variables
with a one-hot encoding scheme. Additionally, the hidden layer with
hyperbolic tangent activation functions has a size of 3 to enable us to
visualize the observations in the latent space, and the learning process
minimizes the mean square error loss function. We show the latent

space of the autoencoder with the observations of the genetic part of
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Fig. 1. 3-D latent space of an autoencoder for the clinical part of the OC dataset (a) and for the clinical part of the OC dataset after being fine tuned (b). 3-D latent space of an
autoencoder for the genetic part of the OC dataset (c) and for the genetic part of the OC dataset after being fine tuned (d). 3-D latent space of an autoencoder for the combination
of genes and clinical features of the OC dataset (e) and for the combination of genes and clinical features of the OC dataset after being fine tuned (f).
the OC dataset in Panel (c) of Fig. 1. We separate the OC dataset into
a training set (points) and a test set (crosses), with observations in
blue belonging to the platinum-sensitive group and observations in red
belonging to the platinum-resistant group. In this case, observations
in both groups are very mixed. As in the clinical part, we can check
the autoencoder latent space representation for classification between
platinum-sensitive and platinum-resistant groups, namely, we attach
a logistic regression layer to the encoder substructure of the trained
autoencoder and train it with the encoder weights and biases frozen
while updating those belonging to the logistic regression layer. We
can increase the classification capacity of this new architecture by fine
tuning. The latent space of the fine-tuned encoder substructure with the
observations of the genetic part of the OC dataset is shown in Panel (d)
of Fig. 1. As in the clinical part, after the supervised task, the platinum-
sensitive and platinum-resistant groups are more defined, but they are
still very mixed.

Finally, we repeat the above process for joining the clinical and
genetic part of the OC dataset. In this case, for each patient, we have
combined the clinical variables and the genetic profile, indicating genes
with mutations for that patient, coding these variables with a one-hot
encoding scheme. We show the latent space of the autoencoder with
6

the observations of the combination of genes and clinical features of
the OC dataset in Panel (e) of Fig. 1. Also, in Panel (f) of Fig. 1, we can
observe the latent space of the fine-tuned encoder substructure with the
observations of the combination of genes and clinical features of the OC
dataset. In the first one, observations in platinum-sensitive group (blue)
and platinum-resistant (red) are mixed. However, in the second one,
after the supervised task, the platinum-sensitive and platinum-resistant
groups are almost completely separated.

4.2. Adaptation of IVI in the OC dataset

In addition to the analyzes of the OC dataset with autoencoders,
with the aim of understanding the clinical and genetic dataset in
relation to OC progression, we are also interested in studying which
features are most important for disease progression classification and
the relationships between these features. For this purpose, we used
the adaptation of the IVI method presented in Section 3.3. As we did
with the autoencoders, we analyzed the set of relevant clinical and
genetic features that expert clinicians considered the most relevant
(Tables 1 and 2), with categorical features coded with the one-hot
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Fig. 2. Graph of informative features and their relationships for the clinical part (a),
for the genetic part (b), and for combination of genes and clinical features (c) of the
OC dataset as a result of using the adaptation of the IVI.

encoding scheme. Furthermore, as we have previously seen, each ob-
servation of the clinical and genetic parts of the OC dataset is labeled as
platinum-resistant or platinum-sensitive, according to the PFI feature.

In Panel (a) of Fig. 2 we can see the graph of the informative
features and their relationships for the clinical part of OC dataset as
result of using the adaptation of the IVI. In this graph, red nodes corre-
spond to negative weights, that is, features that are influential for the
platinum-resistant class, and blue nodes correspond to positive weights,
indicating features that are influential for the platinum-sensitive class.
Similarly, magenta links have negative weights and cyan links have
positive weights.

There is a large group of 7 features that are each linked to all
he others. These features are the type of surgery (Surgery) with Pri-

mary (38) category; chemotherapy treatment prior to primary surgery
(Neoadjuvance) with both No (44) and Yes (45) categories; observed re-
sponse to neoadjuvant chemotherapy (Response_of_Neoadjuvance) with
Not_Applied (46) and RP (49) categories, which indicate that neoadju-
vant treatment has not been applied and that after neoadjuvant treat-
ment, there is a presence of detectable cancer, respectively; decision af-
ter neoadjuvant treatment (Attitude_of_Interval_Surgery) with Not_Applied
(52) category; and type of interval surgery (Type_of_Interval_Surgery),
7

also the Not_Applied (55) category. Features Neoadjuvance: Yes (45)
and Response_of_Neoadjuvance: RP (49) are red, so they have negative
weights; therefore, they are influential for the platinum-resistant class.
All the other features in the group are blue and have positive weights,
so they are influential for the platinum-sensitive class.

Furthermore, there are 2 groups of 2 features. The first group
onsists of information about the presence of gynecological cancer
n the family medical history (Gynecological_Family_History), with both
o (3) and Yes (4) categories. The first feature is influential for the
latinum-resistant class (red), while the second feature is influential
or the platinum-sensitive class (blue). The second group is formed
y the type of surgery (Surgery) with Interval (36) category and the

decision after neoadjuvant treatment (Attitude_of_Interval_Surgery) with
Yes (53) category, which implies the logical continuation of the dis-
ease treatment in a two-step procedure (neoadjuvancy plus interval
surgery). Both features are red, indicating that they are influential for
the platinum-resistant class.

Finally, we have several independent features. Those influential for
the platinum-resistant class (red) are the existence of vascular or per-
ineural invasion (Perineural_Vascular_Invasion), Yes (26) category; type
of interval surgery (Type_of_Interval_Surgery), R0 (56) category, which
means a complete resection of the tumor during surgical procedures;
and the age at diagnosis (Age_at_Diagnosis) (67). The features that are
influential for the platinum-sensitive class (blue) are the observed re-
sponse to adjuvant chemotherapy (Response_of_Adjuvance), RC category
(63), meaning absence of all detectable cancer after treatment admin-
istration; progression-free survival (PFS) (68), which represents the
time from the first date of pharmacological treatment until radiological
or biochemical progression; the number of cycles of chemotherapy
received in adjuvant therapy (Cycles_of_Adjuvance) (69); and the overall
survival (OS) (70), which estimates the duration of patient survival from
the date of diagnosis or treatment initiation.

Panel (b) of Fig. 2 presents the graph for the informative features
and their relationships for the genetic part of the OC dataset as a result
of using the adaptation of the IVI. As in the previous graph, nodes
with negative weights are in red (they are influential for the platinum-
resistant class), and nodes with positive weights are in blue (they are
influential for the platinum-sensitive class). Moreover, magenta links
have negative weights, and cyan links have positive weights.

In this case, there is only one group of 2 features and 5 indepen-
dent features. The group is composed of the feature that represents
the genetic changes from the reference allele to the variant allele
(Genetic_Change), represented by the GTGGTGAAGAACATTCAGGCAA
>G (145) category, and the amino acid changes from the reference
allele to the variant allele (Amino_Acids), represented by the LPECSSP>-
(260) category. Both features are blue and have positive weights, so
they are influential for the platinum-sensitive class. Thus, the variant
allele (145) and the subsequent amino acid change (260) are predicted
to have a moderate impact on the functionality of BARD1, a nuclear
partner of BRCA1. This finding is in accordance with the fact that
alterations impairing the activity of the homologous recombination
(HR) pathway could behave as low/moderate risk factors in the context
of gynecological tumors.

Moreover, the independent features that are influential for the
platinum-sensitive class (blue) are amino acid changes from the ref-
erence allele to the variant allele (Amino_Acids), represented by the
D>G (206), I>T (242), R>I (288), and S>R (302) categories. All these
mino acid changes are associated with genes linked to DNA repair
athways TP53, RAD50, ATM, FANCM, FANCB, FANCL and SLX4.

Notably, our data science study focusing on text analytics also pin-
pointed a correlation of SLX4 alterations with the clinical course of
ovarian carcinomas (Bote-Curiel et al., 2021b). On the other hand, the
independent feature that is influential for the platinum-resistant class
(red) is the genotype Genotype, UNC_Homo category. The association of
such genetic features with chemotherapy resistance could potentially

be explained by the loss of wild-type alleles (loss of heterozygosity) or
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Table 3
Encoders and classifier with the number of features used in the clinical part of the OC dataset and the accuracy and AUC in the test set.

Classifier Number of variables Testing accuracy Testing AUC

3-D latent space of autoencoder + logistic regression 70 (all the variables) 85.19% 0.74
3-D latent space of fine-tuned autoencoder + logistic regression 70 (all the variables) 72.22% 0.66
3-D latent space of autoencoder + logistic regression 18 (a set of variables chosen by adapted IVI) 87.04% 0.75
3-D latent space of fine-tuned autoencoder + logistic regression 18 (a set of variables chosen by adapted IVI) 88.89% 0.76

10-D latent space of autoencoder + logistic regression 70 (all the variables) 79.63% 0.64
10-D latent space of fine-tuned autoencoder + logistic regression 70 (all the variables) 74.07% 0.60
10-D latent space of autoencoder + logistic regression 18 (a set of variables chosen by adapted IVI) 83.33% 0.72
10-D latent space of fine-tuned autoencoder + logistic regression 18 (a set of variables chosen by adapted IVI) 87.03% 0.78

20-D latent space of autoencoder + logistic regression 70 (all the variables) 75.93% 0.61
20-D latent space of fine-tuned autoencoder + logistic regression 70 (all the variables) 75.93% 0.61
20-D latent space of autoencoder + logistic regression 18 (a set of variables chosen by adapted IVI) 88.89% 0.79
20-D latent space of fine-tuned autoencoder + logistic regression 18 (a set of variables chosen by adapted IVI) 87.04% 0.75
Table 4
Encoders and classifier with the number of features used in the combination of genes and clinical features of the OC dataset and the accuracy and AUC in the test set.

Classifier Number of variables Testing accuracy Testing AUC

3-D latent space of autoencoder + logistic regression 395 (all the variables) 76.92% 0.62
3-D latent space of fine-tuned autoencoder + logistic regression 395 (all the variables) 84.62% 0.67
3-D latent space of autoencoder + logistic regression 36 (a set of variables chosen by adapted IVI) 88.46% 0.83
3-D latent space of fine-tuned autoencoder + logistic regression 36 (a set of variables chosen by adapted IVI) 86.54% 0.81

10-D latent space of autoencoder + logistic regression 395 (all the variables) 80.77% 0.65
10-D latent space of fine-tuned autoencoder + logistic regression 395 (all the variables) 80.77% 0.65
10-D latent space of autoencoder + logistic regression 36 (a set of variables chosen by adapted IVI) 84.62% 0.84
10-D latent space of fine-tuned autoencoder + logistic regression 36 (a set of variables chosen by adapted IVI) 82.69% 0.79

20-D latent space of autoencoder + logistic regression 395 (all the variables) 78.85% 0.56
20-D latent space of fine-tuned autoencoder + logistic regression 395 (all the variables) 82.69% 0.66
20-D latent space of autoencoder + logistic regression 36 (a set of variables chosen by adapted IVI) 76.92% 0.79
20-D latent space of fine-tuned autoencoder + logistic regression 36 (a set of variables chosen by adapted IVI) 76.92% 0.75
genetic variant gains/amplifications in the more advanced and poly-
treated tumors and, therefore, the classification of such variants as
homozygous in the sequencing studies we performed.

Finally, Panel (c) of Fig. 2 presents the graph for the informative
features and their relationships for the combination of genes and
clinical variables belonging to the OC dataset as a result of using the
adaptation of the IVI. In this case, there is a pattern similar to the
clinical part where some clinical variables are related to each other.
For example, we have relations among chemotherapy treatment prior
to primary surgery (Neoadjuvance) with both No (368) and Yes (369)
categories, the type of surgery (Surgery) with Primary (362) category,
he decision after neoadjuvant treatment (Attitude_of_Interval_Surgery)
376) category, the observed response to neoadjuvant chemotherapy
Response_of_Adjuvance) (370), and the type of interval surgery
Type_of_Interval_Surgery) (379). All of them except one are in blue, indi-
ating that they are influential for the platinum-sensitive class. As an in-
ependent variable, the variable Response_of_

Neoadjuvance: RP (373) is in red, so it has negative weight and it is
influential for the platinum-resistant class. The rest of independent
variables are in blue, so they are influential for the platinum-sensitive
class. For example, we have the gen APC with mutation A>G (1), the
gen ATM with mutation C>G (10), or the SLX with mutation A>C (263),
among others.

In addition to these results, we have used the subset of features
selected by the adaptation of the IVI algorithm with several classifiers
and architectures in the task of classifying the observations into the
platinum-sensitive and platinum-resistant groups for the clinical part
of the OC dataset and the combination of genes and clinical features.
In particular, in the clinical part of the OC dataset, we have used
the subset of features selected (18 features) with logistic regression,
with support-vector machine (SVM), with decision tree, and with k-
nearest neighbors (KNN) classifiers, and also with several encoder
structures, using said trained autoencoders with different bottleneck
sizes (3, 10, and 20) subsequently followed by a logistic regression
layer. These encoder structures were first trained by updating only
8

the logistic regression layer and later fine tuning the whole structure
Table 5
Results of AUC for a test set in the clinical part of the OC dataset for all the features
and some sets of feature selected for a several selection methods and classifiers, where
LR is for logistic regression, DT for decision tree, SVM for support-vector machine, and
KNN for k-nearest neighbors. Also, we show the number of total variables used for
each feature extraction method.

Num var. AUC LR AUC DT AUC SVM AUC KNN

All features 70 0.66 0.89 0.77 0.89
IVI 18 0.78 0.89 0.94 0.90
JMI 6 0.87 0.9 0.92 0.79
CMIM 7 0.87 0.9 0.9 0.93
MIM 3 0.84 0.87 0.82 0.86
MRMR 6 0.83 0.89 0.83 0.85
MIFS 6 0.9 0.86 0.9 0.91
DISR 4 0.79 0.87 0.84 0.84
CIFE 7 0.87 0.89 0.94 0.84
ICAP 6 0.77 0.9 0.89 0.81
CondRed 4 0.92 0.87 0.95 0.76
CMI 6 0.74 0.9 0.78 0.81
Relief 5 0.62 0.47 0.56 0.66

was performed. This process was also made using the complete set of
clinical features (70 features) as a reference. Table 3 presents some
encoders with the logistic regression classifier, the number of features
used (complete set or the adaptation of the IVI subset), and their
accuracy and the area under the curve (AUC) values in the test set.
Also, in Table 5, we have the AUC results for the logistic regression,
SVM, decision tree, and KNN classifiers. The free parameters of the SVM
and KNN classifiers, that is, the empirical cost parameter 𝐶 of the SVM
and the number of nearest neighbors (𝐾) of KNN, were both adjusted
by a cross validation (CV) process over a training dataset. Parameter
𝐶 was selected from the set of values {1, 10, 100, 1000} and 𝐾 from
the set of values {2, 3, 4,… , 18, 19, 20}. These results show that using
the adaptation of the IVI subset of features yields better performance
(test accuracy and AUC) than using the complete set of features in the
classifiers and in the encoders.

We repeated the above process for the genetic part of the OC dataset

and for the combination of genes and clinical features. In the first case,
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Table 6
Results of AUC for a test set for the combination of genes and clinical features of the OC dataset for all the
features and some sets of feature selected for a several selection methods and classifiers, where LR is for
logistic regression, DT for decision tree, SVM for support-vector machine, and KNN for k-nearest neighbors.
Also, we show the number of total variables and the number of genetic variables used for each feature
extraction method.

Num var. Num.
genetic var.

AUC LR AUC DT AUC SVM AUC KNN

All features 395 326 0.78 0.67 0.81 0.90
IVI 36 29 0.80 0.70 0.85 0.80
JMI 2 0 0.65 0.61 0.76 0.78
CMIM 2 0 0.61 0.61 0.76 0.78
MIM 2 0 0.61 0.61 0.76 0.78
MRMR 3 1 0.65 0.61 0.66 0.71
MIFS 3 1 0.65 0.61 0.66 0.71
DISR 2 1 0.61 0.63 0.76 0.71
CIFE 2 1 0.72 0.71 0.74 0.71
ICAP 2 1 0.70 0.67 0.79 0.71
CondRed 2 0 0.72 0.61 0.76 0.78
CMI 2 0 0.76 0.61 0.76 0.78
Relief 16 11 0.48 0.46 0.47 0.53
the complete set of features included 329 features, and the subset of
features selected by the adaptation of the IVI algorithm included 7
features. However, the AUC is around 0.5 in all the cases. This is due
to fact that the genetic part of the OC dataset is very unbalanced, and
the classifiers predict just the majority class for all the data points.
In the second case (Tables 4 and 6), we have that the complete set
of features are 395 features and the subset of features selected by the
adaptation of the IVI algorithm are 36 features. In this case, results
reveal that using the adaptation of the IVI subset of features results
in the most cases with better performance than using the complete set
of features in the classifiers and in the encoders. Moreover, the number
of features used is reduced from 395 to 36. Therefore, we can conclude
that the features selected in both the clinical and the combination of
genes and clinical features are informative enough for the classification
of platinum-sensitive and platinum-resistant groups.

As a final experiment, we compared the IVI algorithm with other
feature selection methods. To conduct this comparison, we used a series
of classifiers to evaluate the performance of the features selected by
each method. Specifically, we have Relief algorithm (Kononenko, 1994)
and a set of methods based on mutual information considerations,
namely, MRMR, MIFS, CMIM, ICAP, MIM, DISR, JMI, CIFE, CondRed,
and CMI (Brown et al., 2012). However, these methods only returns a
ranking of features by importance. To select the most important vari-
ables for each ranking, we used the Forward Selection Step with Mutual
Information technique (Brown et al., 2012). This technique provided us
with the number of variables that are most important in each ranking,
starting from the first one. We then evaluated the performance of the
features selected by each method with logistic regression, SVM, KNN,
and decision tree classifiers. In Table 5, we can examine the results
of the AUC for a test set for the clinical part of the OC dataset. We
can highlight that the performance of IVI is among the best in most
classifiers. In the same way, for the combination of genes and clinical
features of the OC dataset, we present in Table 6 the performance
with IVI and the rest of classifiers. In this case, the performance of
IVI is the best in all classifiers by a significant margin. This may be
due to the fact that the set of methods based on mutual information
does not work well with this type of complex dataset, where all the
genes are categorical variables and many of the clinical variables are
metric. This can be confirmed by observing in the Table 6 that IVI
selects 36 important variables, 29 of which are genetic variables, while
most of the other methods select far fewer variables, with almost no
consideration of genetic variables. In addition to these results, it should
be noted that IVI also provides us with interpretability because it gives
the relationships among features. In some application domains, and
specially in OC disease management, this can be even more important
than performance itself.
9

5. Discussion and conclusion

OC is the second most common gynecological neoplasm, the gyne-
cological tumor with worst prognosis, and the fifth leading cause of
cancer-associated mortality. This makes OC one of the most serious
health challenges worldwide, with one major reason being the lack of
robust predictive and prognostic molecular biomarkers underpinning a
priori knowledge of the evolution of the disease. Thus, in this work,
we have focused on both extensive clinical information collected from
patients diagnosed with OC and genomic data obtained through whole-
exome or targeted sequencing, with the aim of identifying relationships
between clinical and genetic factors and OC disease progression-related
variables. We conducted two analyses. First, we used autoencoders, a
nonlinear feature extraction method, to assess whether the OC dataset
had intrinsic or natural separability patterns between disease progres-
sion groups (platinum-resistant and platinum-sensitive groups). The
results for the clinical part of the OC dataset show that part of the
platinum-sensitive group is separated, but the rest of the observations
are mixed between the two groups. However, after fine tuning the
autoencoder in a supervised manner, the new latent space of the
autoencoder shows a more defined separation of the platinum-sensitive
and platinum-resistant groups. Regarding the genetic part of the OC
dataset, the observations in both groups are very mixed, exhibiting no
separability. Moreover, after supervised training, the new latent space
shows that the platinum-sensitive and platinum-resistant groups are
more defined, but they are still quite mixed. In the combination of
genes and clinical features of the OC dataset, observations are mixed
between platinum-sensitive and platinum-resistant groups, but after
fine tuning, the new latent space shows separation for both groups.

Then, we employed an adaptation of the IVI method to study which
features of the OC dataset are most important for the disease progres-
sion classification and to assess the relationships among these features.
The results confirm the predictive and prognostic role of certain vari-
ables related to the initial treatment of OC. In this setting, interval
surgery and the corresponding neoadjuvant treatment are frequent in
cases with a higher tumor burden at the time of diagnosis and which
consequently require initial chemotherapeutic treatment to reduce this
burden. The association that our study shows between variables related
to interval surgery and the appearance of therapeutic resistance is
consistent with other studies that confirm a longer overall survival in
these patients, possibly due to a limited response of certain patients to
neoadjuvant treatment.

In terms of genetic factors, many previous studies, both genomic and
clinical, have demonstrated a clear association between the presence
of alterations in genes related to DNA repair pathways (BRCA1/2,
RAD51C and other loci that act as low/moderate risk factors) and the
clinical course of the disease. Despite the limited series of patients that



Expert Systems With Applications 206 (2022) 117865L. Bote-Curiel et al.

h
I
f
a
0

a
g
n
l
t
e
v
c
c
r
t
f
l

have been sequenced in this study, the selection of extreme cases in
terms of response to chemotherapy (high responders vs. cases with
intrinsic resistance) and the application of useful data science strategies
have made it possible to define certain correlations with genes involved
in these molecular pathways. It is conceivable that by expanding the
series of OC cases, restricting the histopathologies included in the
sequencing, developing databases that interrelate multiple -omics data
from each patient and applying more refined analysis tools we will be
able to define, in the medium-term future, combinations of biomarkers
that more efficiently predict the response to therapies and the clinical
course of this disease.

On the one hand, the analysis of the available OC dataset with
autoencoders enables us to evaluate the implicit information contained
in the clinical and genetic data in such a way that we can scrutinize
how these data are distributed with respect to the disease progres-
sion groups. On the other hand, the analysis of the dataset with the
adaptation of the IVI has provided explicit information and knowledge
on which clinical and genetic features are most informative regarding
OC disease progression classification. These analyses complement the
two previous works that paid specific attention to the analysis of the
OC dataset with univariate and linear multivariate methods, respec-
tively (Bote-Curiel et al., 2021a, 2021b). All these analyses together
have enabled us to obtain very detailed information from the OC
dataset and together represent an approach to obtain as much infor-
mation as possible from clinical data from a principled and detailed
statistical and machine learning analysis.

As a limitation, we scrutinized the changes in performance between
the complete set of features and the subset of features selected by IVI
for the classifiers analyzed, and not statistically significant differences
could be consistently determined even when using several different
non-parametric tests. Analysis of surrogate data showed that this can
be due to the standard error being large due to the small size of
the clinical patient sample of the OC dataset. Nevertheless, the trends
were clear to IVI providing in general a reduction in the number of
features while maintaining the accuracy. In the future, more patients
and some other types of genetic or multiomic data may be included in
the studies. However, these data are often expensive to obtain and it is
necessary to have techniques capable of assembling and analyzing all
the heterogeneous data types together. Therefore, it is highly relevant
to have statistics-based machine learning tools that can provide as
much information as possible while being as interpretable as possible in
future multiomic scenarios. Also, in future works, we plan to extend the
functioning of IVI algorithm for the detection of nonlinear relationships
between features. To do this, we can use new correlation coefficients
that capture nonlinear dependency between features or use nonlinear
machine learning weights. However, to find out which linear and non-
linear methods work best in IVI, we should do an in-depth algorithmic
study.
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Appendix. Synthetic examples

A.1. Autoencoder synthetic example

To illustrate the functioning of autoencoders, we present a simple
example using a synthetic dataset. We first generate the synthetic
dataset composed of 1000 individuals and 6 mixed variables (categorical
and metric). There is one group of 2 dependent metric variables,
another group of 2 dependent categorical variables (each with 2 cat-
egories), and 2 completely independent variables, one metric and one
categorical (with 2 categories). One-hot encoding is used for the cat-
egorical variables; thus, the architecture of the autoencoder has an
input and output layer size of 9. The hidden layer has a size of 3 to
enable us to visualize the observations in the latent space. In this case,
the learning process minimizes the mean square error loss function. In
Panel (a) of Fig. A.3, we show the observations in the latent space,
where points represent the training set and crosses represent the test
set, with category 1 in red and category 0 in blue.

A.2. Adaptation of IVI synthetic example

We propose a simple example to illustrate how the adaptation of
the IVI method works. We generated a dataset similar to the one
used in the autoencoder examples, that is, a dataset composed of
1000 observations and 6 mixed variables. There is one group of 2
categorical variables (each with 2 categories), another group of 2
dependent metric variables, and 2 completely independent variables,
one categorical (with 2 categories) and one metric. After applying the
one-hot encoding scheme for the categorical variables, the dataset has
dimensions of 1000 by 9. Additionally, the variables in each group are
ighly correlated but are weakly correlated with out-group variables.
n addition, variables in first group, variables in second group, the
irst independent variable, and the second independent variable have
correlation with the response variable (binary variable) of 0.7, 0.1,

.5, and 0.1, respectively.
In Panel (b) of Fig. A.3, we show the graph resulting from the

pplication of the adaptation of the IVI to the synthetic dataset. In the
raph, red nodes have negative weights (influential for class 0) and blue
odes have positive weights (influential for class 1). Similarly, magenta
inks have negative weights and cyan links have positive weights. In
he figure, there is a group of four variables that are all connected to
ach other. This group corresponds to the first group of two categorical
ariables with two categories each. Variable 1 and variable 2 are
omplementary (two categories), and variable 3 and variable 4 are also
omplementary (two categories). This group of variables is highly cor-
elated with each other and also with the response variable; therefore,
hey are identified as relevant. The second group that we observe is the
irst independent categorical variable, which has 2 categories that are
inked and complementary.
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Fig. A.3. 3-D latent space of an autoencoder for an example using synthetic data (a). Graph of the informative features and their relationships for a simple example with synthetic
data as a result of using the adaptation of the IVI method (b).
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