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Abstract

We consider covariate selection and the ensuing model uncertainty aspects in the
context of Cox regression. The perspective we take is probabilistic, and we handle
it within a Bayesian framework. One of the critical elements in variable/model
selection is choosing a suitable prior for model parameters. Here, we derive the
so-called conventional prior approach and propose a comprehensive implemen-
tation that results in an automatic procedure. Our simulation studies and real
applications show improvements over existing literature. For the sake of repro-
ducibility but also for its intrinsic interest for practitioners, a web application
requiring minimum statistical knowledge implements the proposed approach.
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1 | INTRODUCTION

In survival analysis, inferences and predictions are sen-
sitive to the form assumed for the risk function (the
instantaneous possibility of the event). One possible strat-
egy for overcoming this issue is to treat the actual risk
function as unknown, resulting in more robustness to mis-
specifications. One such method is the Cox regression, a
semi-parametric approach widely used in many applied
disciplines such as epidemiology, and which will be the
focus of our work.

The Cox model assumes that the explanatory variables
are known. When this hypothesis is relaxed, we obtain
a more accurate representation of reality, called model
uncertainty, which we consider in this paper. The result-
ing procedures are closely connected to variable selection
and model averaging methods.

Bayesian variable selection, conventional prior, Fisher information, median model, survival

As an illustrative approximation to model uncertainty,
which we consider throughout the paper, we use the
primary biliary cholangitis (PBC) dataset, previously ana-
lyzed by several authors such as Hoeting et al. (1999a) and
more recently by Fleming and Harrington (2011). In this
study, time to death or liver transplant, Y, is observed in
a set of patients subject to possible censoring (e.g., peo-
ple who withdraw from the experiment), together with a
bunch of p = 15 variables including age and several other
potential prognostic indicators (described in Appendix F).
This survival study initially enrolled n = 312 patients, of
which n, = 125 were uncensored (59% censoring). The
main interest is to obtain an estimation of the survival
function for different patient profiles. This estimation is
a simple statistical exercise once the covariates enter the
model are specified. Ideally, we would like to use only
the true explanatory variables, but unfortunately, we do
not know which ones are. We could hinder this choice
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FIGURE 1 For the primary biliary cholangitis (PBC) dataset,

survival functions and 95% credible intervals for the different years
based on the model with all covariates (dashed line; light gray
interval); on the highest posterior probability model (points; dark
gray interval) and all models weighted by their posterior probability
(solid line; black interval). The result corresponds to an imaginary
patient with a bad prognosis (covariates age; bili; edema and
protime set at the 90% percentile; covariate albumin set at 10% and
the rest fixed at the median value).

and proceed as if all variables were truly affecting the
evolution of the disease, obtaining the dashed curve rep-
resented in Figure 1 with 95% credible intervals (obtained
for the consecutive years) colored in light gray. An alterna-
tive, two-step strategy would be to use a variable selection
method and then proceed with the estimation based on
these variables. In the PBC dataset, the model supported
with the highest posterior probability (to be defined later)
contains only four variables. Using these, we have rep-
resented the survival function in the same figure, as the
curve made of points and the intervals colored in dark
gray. The differences between the two estimated functions
are visible. The substantially lower precision when all the
variables are used is due to many more regression param-
eters participating in the survival function estimation. The
result corresponding to the two-step procedure could be
more accurate, given that the model used is expected to be
“close to the truth”. Unfortunately, the truth is unknown,
and problems with even moderate p are subject to con-
siderable model uncertainty that rarely dissipates with
data. Every single model, including the most promising
ones, receives a little support from the data and inferences
obtained based on a single model are questionable. The
PBC example illustrates this situation. We will see that the
best models have small probabilities, demonstrating the
need for methodologies that account for the uncertainty
concerning the selected model.

An approach based on model uncertainty would aver-
age the estimated survival curve provided by each pos-
sible model (each combination of potential covariates),
weighted by a certain measure of evidence in favor of the
possible models.

The obvious choice for such weighting measures within
the Bayesian paradigm is the posterior probabilities of
models, the primary tool in Bayesian model uncertainty
methods. In Figure 1, the resulting model uncertainty-
based survival curve has been plotted as a solid line with
credible intervals colored in black for the illustrative exam-
ple. We observe that point estimates compromise the two
procedures discussed and exhibit variability similar to that
obtained using all the variables. This result is a direct
consequence of the considerable uncertainty present in
this dataset (shown in our findings, but also suggested in
previous studies; see, e.g., Hoeting et al., 1999a).

The Bayesian construction of posterior probabilities of
models is based on Bayes factors and has its origins in the
significance tests introduced by Jeffreys (1961). The inter-
ested reader is referred to Etz and Wagenmakers (2017) for
a historical perspective on the development of Bayes fac-
tors and Robert et al. (2009) for a modern review of Jeffreys’
book. The resulting posterior probabilities can be used for-
mally within a purely probabilistic view or more casually
as appropriate weights to draw more realistic inferences
that account for model uncertainty.

Posterior probabilities are supported by many appeal-
ing properties summarized in Berger and Pericchi (2001).
Notably, the Bayesian approach is automatic Ockham’s
razor—hence favoring the simpler models for a similar
fit—and provides straightforward solutions to control for
multiplicity. This problem arises when considering an
extensive list of models.

The general guidelines for applying the Bayesian
approach to model uncertainty are established. These are
briefly introduced in Section 2. Nevertheless, the devil is in
the details and the implementation in particular problems
is plenty of difficulties that need meticulous considera-
tions. In this paper, all these challenges are tackled in
the context of Cox regression models, and the result is a
fully Bayesian procedure that is automatic (free of tuning
parameters). This procedure behaves very competitively
compared with existing procedures, as shown in an exten-
sive simulation study in Appendix D in the Supplementary
information. For reproducibility and accessibility, we pro-
vide accompanying software implemented in R functions
and a shiny application.

The main theoretical contribution in the paper is a novel
prior distribution specifically derived for Cox regression
models. Its development, detailed in Section 3, follows
the tradition of the so-called conventional (or g-priors)
introduced by Zellner and Siow (1980). These priors are
model-specific because they use the expected information
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matrix of the models to form the prior variance. By con-
struction, g-priors induce dependence among regression
parameters, a key feature as recently shown by Barbi-
eri et al. (2021). An essential part of this research is the
derivation of this matrix in Cox regression models and
the study of its properties in the context of model choice.
Surprisingly, this matrix has a manageable expression
and an appealing interpretation as a weighted covariance
matrix. Once the priors are defined, the questions related
to the numerical implementation emerge. In Section 4,
we provide instructions to approximate the integrals defin-
ing the Bayes factors with Laplace numerical quadrature.
This technique solves the numerical question within each
model, but the most challenging feature of model uncer-
tainty problems comes from the enormous cardinality, 2P,
of possible models. This problem has been called in the
literature “model search”, and we approach it using a sim-
ple Gibbs sampling scheme. This algorithm was originally
mentioned in the context of linear regression by George
and McCulloch (1997) and its properties are studied in
depth in Garcia-Donato and Martinez-Beneito (2013). In
contrast to the predominant procedures aimed at search-
ing for the best models, the proposed one samples models
according to (approximately) their posterior probability,
preserving the problem’s probabilistic structure. While the
benefits of sampling methods in selecting a single model
are perhaps debatable, their advantages in handling model
uncertainty problems are evident since they automatically
propagate the variability following the standards of proba-
bility laws. The procedure has been called Bayesian model
averaging, which we illustrate in the context of the survival
study underlying the PBC dataset in Section 5.

The problem we consider has recently been studied
by Nikooienejad et al. (2020) from a similar perspective.
However, the two procedures substantially differ in fun-
damental aspects concerning the implementation of the
Bayesian method. First, the prior in Nikooienejad et al.
(2020) is a product of the non-local priors introduced by
Johnson and Rossell (2010, 2012) without any connection
with the model at hand (in this case, the Cox model) and its
apparent particularities. Second, their proposal for “model
search” is based on optimization methods, specifically con-
ceived to discover the most promising models. Because
this is not a sampling procedure, the method must rely
on re-normalization to provide the collected models by
some probabilistic structure and produce estimations with
a model uncertainty flavor. Garcia-Donato and Martinez-
Beneito (2013) documented that re-normalization-based
methods produce unsatisfactory estimations in model
uncertainty procedures. These two main differences may
well explain why our proposal generally outperforms that
in Nikooienejad et al. (2020) as we show in the numerical
study in Appendix D in the Supplementary information.
In particular, it performs better in estimating unknown

parameters and producing fewer false positives. A cou-
ple of decades ago, Hoeting et al. (1999a) also proposed
model uncertainty methods within the Cox model. Their
methods are based on the Bayesian information criterion
(BIC) and not on an actual Bayes factor. When compared to
Hoeting et al. (1999a), both our method and Nikooienejad
et al. (2020) outperformed it. As we will show, the BIC-
based procedure produces more false positives and true
positives but with a considerable error in estimating the
model parameters.

2 | BASIC STATISTICAL METHODS

This part is devoted to the essential ingredients used
throughout the paper. Section 2.1 introduces the Cox
regression model when the set of explanatory variables is
known. Section 2.2 presents the general aspects of the prob-
lem of model uncertainty caused by the uncertainty about
which covariates are influential.

2.1 | Coxsemiparametric model

Suppose we have p explanatory variables {x,x,, ..., xp}
known to be relevant in explaining the time-to-terminal-
event response variable Y € R*. This outcome is subject
to right censoring, meaning that if Y exceeds a known cen-
soring time C € R, its real value is unobserved, leading to
a right censored observation. In survival analysis, Y could
be the time to death, illness relapse, disease progression,
or any other study or clinical trial endpoint. In practice,
these survival times are censored because, in studies or
clinical trials, all patients are not followed or may abandon
the study.

We use the standard notation in survival analysis by
denoting with y; the observed time-to-event for individual
i =1,...,n, which is only observed if y; < c¢;, where ¢; is
the censoring time. We denote §; as the observed binary
variable that records a one, §; = 1 if y; < ¢; (uncensored)
and 6; = 0 otherwise (censored). Once the experiment has
finished, we observe which individuals have or have not
been censored in the vector § = (61, ...,9,). For those
n, = 2?21 §; uncensored times, we observe their survival
times (yq, ..., ynu). In this notation, we assume, without
loss of generality, that uncensored observations corre-
spond to the first individuals {1, ..., n,;} of a sample of n >
n, individuals. Likewise, we denote the number of cen-
sored observations by n. = n — n,,. Although it is arguably
less clear, we find it useful, for the sake of simplicity in
the formulas, to denote y' = (31, ... s Yny> Cry+1s -+ » Cn)- FOT
each i, the p-dimensional vector x; contains the observed
values of the covariates. Finally, X is the n X p matrix
whose ith row is xiT.
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The initial hypothesis underlying Cox proportional
models assumes a common (to all models) baseline haz-
ard function for all individuals, hy(y) (i.e., the ratio of
the probability density function to the survival function,
and the complement of the cumulative distribution func-
tion). What makes the individual hazard, h;, different is the
multiplicative effect of the covariates in the form:

hi(yi) = ho(y;) exp(Bixy; + BaXoi + -+ + BpXpi)
= ho(y;) exp(x; B). ey

The cumulative risk function, Hy(y) = /Oy hy(t) dt, gov-
erns the probability of the terminal event being censored
since the larger the risk, the lower the probability of being
censored. Within the semi-parametric Cox model, h, is
treated non-parametrically, thus inducing the so-called
partial likelihood Cox (1972):

" «p |
qus):]'[lz xpl P ] @

T
i=1 JERY;) exp(xj 6)

where the subset R(t) = {i : y; > t} denotes the subjects
that are still present in the study at time t—censored or
uncensored, that is, subjects that are at risk of experienc-
ing the terminal event at time ¢. As discussed by Johansen
(1983), from a frequentist perspective, L,(B) is obtained by
maximizing the likelihood as a function of hy(t) only, with
the  parameters assumed fixed. From a Bayesian perspec-
tive, Equation (2) is the marginal likelihood obtained by
marginalizing h(t) over a Gamma process (see Kalbfleisch
1978 and also Bailey 1983; Murphy and Vaart 2000; Sinha
et al. 2003 for related arguments).

2.2 | Basic formulae in model
uncertainty

In the vast majority of applied studies, it is unknown
which, if any, of {xl,...,xp}, have a real impact on the
response. Therefore, the true model is unknown, leading to
asituation subject to model uncertainty. The list of possible
models can be expressed by introducing a binary param-
eter vector, ¥' = (1, ... ,¥p)> Where y; = 1 if the response
depends on x s and zero otherwise. For example, the model
that includes only x5 corresponds to ' = (0,0,1,0, ..., 0).

Each of the above competing models is labeled as M,
and the set that contains all of them is the model space M.
The cardinality of this set containing only main effects is
2P and, traditionally, the model that contains all covariates
is referred to as the “full model” with associated likeli-
hood (2). In the other extreme, the “null model” (M) does

Dlometries iy gy L

not contain any covariates and its likelihood is L,(M,) =
[T, (#R(y))™% (cf. Equation (2) with § =0, here #A
indicates the cardinality of set A).

The rest of the models can be expressed as:

Si
n exp (x| B
Lp(My’ﬁy)=H ( i y>

- )
=11 X jereyy XP (Xj,yﬁy>

where §, and x;, are the components of 8 and x; with a
one in ¥, so the dimension of both vectors is ky = Yy, the
number of regression coefficients under M,, also referred
to as the model size.

The posterior distribution assigns to each model M,, its
probability conditional on the available data:

m, (¥)p(M,)
2 em M MpM,)’

pM, | y)= 4)

where p(M, ) is the prior probability of M,, and m,(y) is the
corresponding prior predictive marginal density:

m @)= [ L,0.8)76)dE, )

where 7, (8 y) are the prior distributions for the model-
specific parameters in M, .

Alternatively, the posterior distribution can be expressed
using Bayes factors, which are the ratio of prior predictive
marginals for two different models. Therefore, if we divide
the numerator and the denominator in expression (4) by
the marginal of a fixed model (e.g., M,)), we obtain:

B,(»)p(M,)

B 6
2, B,(»)p(M,) (©)

p(My | y) =

where B, (y) is the Bayes factor of M, to M,, that is,
By(y) = my(y)/m()(y)

These posterior probabilities assign weights, based on
the evidence provided by the data, to each of the mod-
els and are the crucial tool for tackling model uncertainty
problems. There are popular summaries of this distri-
bution such as the highest posterior probability model
(HPM), that is, HPM := argmax, ¢ p(M, | ¥); the pos-
terior inclusion probabilities (which for the jth covariate
is p; = Zye Miyj=1 p(M, | y)) or the median probability
model (MPM), which is the model containing the covari-
ates with p; > 0.5 (Barbieri et al.,, 2021; Barbieri and
Berger, 2004). A more interesting usage for model uncer-
tainty purposes is that p(M, | y) can easily be used to
define inferences that account for model uncertainty. If
A is an unknown quantity whose estimation under M,
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isA,, then:

A=Y R&,pM,|y) (7)
yEM

is an estimation that weights the contribution of each
model estimation using its posterior probability. Many
authors have called the above approach to inference model
averaging (see Hoeting et al., 1999b; Raftery et al., 1997;
Steel, 2020, for key references on model averaging). In the
above expression, 3}, can be a probabilistic distribution
(e.g., a posterior or a predictive density) leading to A being
a discrete mixture of distributions.

Only quantities with a common meaning across the dif-
ferent models can obtain model uncertainty estimations.
In the context of survival analysis, the survival function
S(y) = P(Y > y) is one of such parameters that, recall,
we used in the introductory section to explain the impor-
tance of model uncertainty methods. In the Supporting
information (Web Appendix C), we provide the details
for estimating this curve, which differs substantially from
Nikooienejad et al. (2020). In addition, caution must be
placed in reporting model uncertainty estimates of regres-
sion parameters. Unavoidable, the posterior distribution
of B; is a mixture of continuous densities and a point
mass at zero (with probability 1 — pj, i.e., one minus its
posterior inclusion probability). In these circumstances,
conventional summaries (like the posterior mean) are
inappropriate, and one has to resort to alternative reports
that acknowledge this singularity of the posterior distri-
bution, as we detail in the context of an actual study in
Section 5.

3 | CONVENTIONAL PRIORS

The posterior distribution depends on the prior over the
model space, p(My), and the priors for the regression
parameters under each model ny(ﬁy). In this section, we
study the assignment of these from an objective perspec-
tive.

3.1 | Prior distribution over the model

space

The prior over the model space is an important issue.
The default objective choices for this distribution are the
uniform, p(M,) = 1/2P, or the hierarchical uniform prior
discussed by Scott and Berger (2010):

-1

O e

pM,) =
o p+1\k,

This prior assigns the same probability to models of the
same size ky. Our recommendation is the latter, as it
considers the multiplicity of comparisons, as has been
well argued by Scott and Berger (2010). Nevertheless, for
specific scenarios, other choices for p(M,) may be more
appealing by trying, for example, to force sparsity (Castillo
et al., 2015).

3.2 | Prior for regression parameters

In this section, we develop and rationalize the prior dis-
tributions 7, (B,) that we propose. As the priors on the
model’s parameters are assigned conditionally to model
M,,, we drop the sub-index y in all our expressions in this
section. Hence, f, is simply notated as g; X, as X; k, as k
and so on.

In model selection, objective approaches to the speci-
fication of 7(f) cannot rely on improper or vague proper
priors (i.e., those with an arbitrarily large variance/scale).
It is well-known that either of these would lead to inde-
terminate Bayes factors (Berger & Pericchi (2001); Cabras
et al. (2014, 2015)).

Our proposal follows the tradition of conventional priors
where 7(f) = Ni(0, gX), that is, a zero-mean normal dis-
tribution with variance gX. The hyper-parameter g can be
assigned a density, as done before by several authors (see,
e.g., Bayarri et al., 2012; Li & Clyde, 2018). Nevertheless,
in the simulated problems and real applications that we
have analyzed, we find that results are, to a great extent,
quite robust to this choice. In the context of large model
spaces, the need for a computationally feasible procedure
is necessary; thus, we recommend considering g = 1 fixed.
Nevertheless, results are highly dependent on the prior
variance, so a sensible objective assignment of the prior
should be based on a conscientious specification of X.

The route we follow to obtain ¥ mimics the main ideas in
the literature of conventional priors and is strongly guided
by the expected Fisher information matrix evaluated in the
null model. Details of the derivation are provided in the
Supporting information (Web Appendix A). Notably, and
despite the particular nature of the Cox model, we obtain a
weighted version of the precision matrix of the covariates,
a distinctive ingredient in the conventional priors in the
normal linear model. In particular, we propose

" -1
X= (Z} wi*(xi - xw)(xi _xw)T> > (9)

n

* * _ n
o WX, wr =w;/ Y, w;and

where X, = ), ;

w; = p(6; = 1| M)+ p(; = 0| My) Hy(c;)

=1—e M) 4 e~FoleDH (c)). (10)
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The cumulative risk, Hy(y), is unknown, and under the
null model, where g = 0, it can be estimated using the
Breslow estimator or other parametric estimators based on
the Weibull model. This strategy is also used and men-
tioned in Section 9 in Castellanos et al. (2021), where
common parameters are estimated for all models, under
the null model, to make calculations faster. Both strate-
gies for estimating the baseline hazard function under
the null model in a non-parametric model or under the
Weibull model have been analyzed in the examples and the
simulation studies, providing similar results.

Remarkable, a particular case of X is the precision
matrix:

-1

(2 (x; — %)(x; —x)T/rz) : (1)

i=1

which is the prior covariance matrix used unanimously in
the definition of g-priors in the normal linear model (see,
for instance, Zellner and Siow 1980; Liang et al. 2008 or
Bayarri et al. 2012). This particular case arises when all cen-
soring times are equal, and hence there is no possibility
of distinguishing (a priori) which observational units are
more or less informative.

When the ¢;s vary, ¥ may substantially differ from Equa-
tion (11). Matrix, X, underweights the covariate values of an
individual with a short censoring time (thus with a small
probability of being uncensored) and favors the covari-
ate values of individuals with large censoring times. The
trade-off between the two will affect how the values of the
covariates participate in the prior covariance matrix. This
convenient adaptive feature can be seen in the extreme sit-
uation formalized in the following result, whose proof is
contained in Web Appendix B.

Lemma 1. Polarized censoring times

Consider the situation where the sample units are highly
polarized, with some having minimal censoring times com-
pared to the rest. A canonical case of this is when ¢ =
(cys™ , ey, ce,e , c.). In this case, as ¢, decreases,

ny -1
z CC_—)>0 (; (x; — %,)(x; — xu)T /nu> > (12)

it converges to the (inverse of) the covariance matrix consid-
ering only the uncensored observations; here, x,, denotes the
mean of the variables over the uncensored observations.

Castellanos et al. (2021) have already argued in favor
of a prior covariance matrix with an “adaptive” behavior
to the amount of (a priori expected) information provided
for each subject. Their main argument was that sampling

TABLE 1 Inclusion probabilities of covariates in the primary
biliary cholangitis (PBC) dataset with non local-priors (BVSNLP)
and conventional priors (BVSCP)

BVSCP BVSNLP BIC
Age 0.948 0.915 1.00
Albumin 0.944 0.919 0.99
Alk.phos 0.072 0.000 0.04
Ascites 0.090 0.002 0.07
Ast 0.170 0.038 0.19
Bili 0.999 1.000 1.00
Chol 0.054 0.000 0.02
Copper 0.296 0.066 0.40
Edema 0.613 0.360 0.78
Hepato 0.099 0.005 0.06
Platelet 0.115 0.007 0.07
Protime 0.686 0.574 0.77
Spiders 0.062 0.000 0.02
Stage 0.470 0.222 0.49
Trig 0.133 0.004 0.15

units with short censoring times (hence with a negligi-
ble impact on the likelihood function) have the potential
to modify prior covariance matrices in such a way that
the results are highly distorted. In summary, this is an
undesirable consequence of a conflict between the like-
lihood of individuals contributing different amounts of
information (depending on whether or not they are cen-
sored) and a prior to which all individuals would equally
contribute through the design matrix. In the context of
the lognormal model for Y, Castellanos et al. (2021) illus-
trated this effect through a hypothetical situation using a
simulated dataset, where purposely censored and uncen-
sored subjects differ substantially in the values of their
corresponding covariates.

Surprisingly, this situation is not unusual in real
datasets. For instance, in the PBC dataset used in the
introduction, some of the explanatory variables exhibit
such differential variability, as Volinsky and Raftery (2000)
pointed out. Specifically, in covariate ascites the variance of
all subjects is twice that of uncensored observations and is
1.6 times larger in edema. There is a difference in the prior
variance if it results from underweights censored obser-
vations (as the likelihood function does) or if it results
from all subjects equally participating in constructing the
prior variance: Bayes factors and posterior probabilities
will be sensitive to this choice. In Table 1, we provide the
posterior inclusion probabilities of the main effects of the
explanatory variables with our approach, that is, 7(f) =
Ni(0, gX) with X given in Equation (9) (labeled BVSCP)
and g = 1. For comparative purposes, we also include
results with the method by Nikooienejad et al. (2020) as
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implemented by the authors in the R package BVSNLP
with the function bvs. The latter methodology, which we
label BVSNLP throughout the paper, uses all the values of
covariates to determine the prior variance without distinc-
tion between censored and uncensored observations. In
both cases, BVSCP and BVSNLP, the prior over the model
space adopted is Equation (8).

From Table 1, we can see that underweighting cen-
sored observations, as is done with BVSCP, promotes a
more complex model than BVSNLP. The inclusion prob-
abilities for most covariates are higher in BVSCP than
in BVSNLP. At the same time, the relative evidence
among the covariates is kept constant across the methods
BVSCP versus BVSNLP (see, for instance, the case of bili
covariate).

An intriguing case is that of edema, with a posterior
inclusion probability of 0.613 with BVSCP and barely
0.360 with BVSNLP. Recall, edema is one of the variables
for which its variability differs significantly between the
uncensored subjects and the whole sample. This result is
in line with the example highlighted in the motivating
dataset in Castellanos et al. (2021). Of course, it is unknown
if edema belongs to the “true” model, although previous
studies suggest it. Particularly, the methodology in Volin-
sky and Raftery (2000) implemented in the R package BMA
with the function bic.surv and that we label BIC gives
edema an inclusion probability of 0.78 (see Table 1). We will
return to this dataset in Section 5.

4 | NUMERICAL METHODS

In this section, we provide practical recommendations to
implement the proposed approach.

4.1 | Approximating the marginal

To compute the integral that defines m(y) in Equa-
tion (5) and to speed up the calculations at the cost of
using approximations, we massively employ the Laplace
approximation, as also done in Bové and Held (2011) and
Nikooienejad et al. (2020). It results in

m(y) = L,(M, pr(®)m)* 2| Hg| 72, (13)

where B\ is the maximum a posteriori estimation of § and
Hp is the Hessian of the negative of the log posterior, that
is, the Hessian of —log L, (M, E) — log ().

To compute Equation (13), we consider the minimiza-
tion algorithm implemented in the optim function in
R.

4.2 | Model search

When considering large values of p, in particular for p >
30, exhaustive enumeration is unfeasible. In this section,
we demonstrate the ability of a Gibbs sampling algo-
rithm (George & McCulloch, 1997) to perform the model
search adequately.

The Gibbs sampling algorithm is initialized in a model
Yo) = (Y1(0)» Y20)s = » ¥ p0))  With associated (Laplace)
approximated Bayes factor, B}’(o)’ then repeating, for
i=1,..,N + B, where B > 1 is the burn-in period:

o Step j : 1< j < p.Consider the candidate model y, =
(Y1(i=1)> > 1L = ¥ j(i=1)> -+ » ¥ p(i=1))- If this model has been
sampled before, use its already computed B, ; other-
wise, compute it and save it. Compute the selection
probability:

_ B, p(M,,) 14
" T B oM, ) +B, p0M, ) )
r. PWMy, )+ By, PMy_y)

and with probability min{r; ;, 1} re-define Y(i-1) =V

o Final step. Define and save Y@ = Yi-1) and
By, p(M},(l_)), a quantity that is proportional to the
posterior probability of this model.

Discarding the first B iterations, we end up with N sam-
ples (models) simulated (possibly with repetitions) from
the posterior distribution. To estimate the inclusion proba-
bility of variable x i, We use the Rao-Blackwellized estima-
tor proposed in Ghosh and Clyde (2011), and Gelfand and
Smith (1990). These estimates are constructed by replacing
the quantity of interest in the Monte Carlo estimator with
its expectation, given other components in the sampler. In
our case:

N
1

~RB _

NG =N ;(1 =Y +Vja-p@d —rij).  (15)

As we can see in Figure 2, Rao-Blackwellized estimates
of inclusion probabilities for the PBC data stabilize in a
small number of Gibbs iterations (N ~ 200-300).

5 | CASE STUDY: PRIMARY BILIARY
CHOLANGITIS DATA

The Mayo Clinic conducted a trial on the liver’s PBC
between 1974 and 1984. The dataset is distributed in the
survival package, and we consider the p = 15 covariates
described in the Web Appendix F. The Gibbs sampling
algorithm has approximated posterior model probabilities
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FIGURE 2 Rao-Blackwellized estimates of inclusion

probabilities along Gibbs iterations for the primary biliary
cholangitis (PBC) data

in N = 20, 000 iterations. A small number of steps allows
the inclusion probabilities to be estimated adequately, as
shown in Figure 2.

Table 2 shows the five most probable models, together
with their posterior probabilities, which only add up to
26%. The ten most probable models add up to 37% of the
posterior model probability—73% the top 100. This result
reflects the above-mentioned fact; that there is a lot of
model uncertainty in this dataset.

Figure 3 contains the approximated model-averaged
posterior distribution for the most important covariates
with higher inclusion probabilities. The dark gray bar rep-
resents the probability of no effect for each covariate in
each histogram. Given an effect, the rest of the histogram
area represents its posterior distribution. For example, bili
has a positive risk effect, increasing the risk of death, fol-
lowed by age and albumin, the former increasing the risk
and the latter decreasing it. The following variable with
some possible effect is protime with an approximated prob-
ability of being an explanatory factor of 0.68. edema also

has a higher probability of being a risk factor for death,
around 0.61 (0.39 probability of no effect). Finally, stage has
a higher probability of no effect, around 0.53.

To evaluate the underestimation of model uncertainty
made when using only the HPM, Figure 4 presents the
histograms for bili considering BMA versus the HPM.
The posterior distribution based on only one model is
more concentrated, as expected, and hides the uncertainty
about the models, which is reflected in the effect of the
bili covariate.

We finish this section by completing the comparison
among the competing procedures in the context of the PBC
dataset. Regarding model uncertainty estimations, a lead-
ing aspect that governs the summaries is the inclusion
probability (the dark bar in the histograms in Figure 3). We
already showed, in Table 1 that these probabilities differed,
particularly between BVSCP and BVSNLP, and the reason
is how the sampling information from the covariates is
incorporated into the priors. Nevertheless, apart from the
priors, BVSCP and BVSNLP disagree in other fundamen-
tal aspects of how model uncertainty is handled, and the
consequences are visible in the analysis of this dataset. In
Table 2, we have collected comparing information about
the most probable models in BVSCP. Remarkably, the five
best models accumulate a probability (as measured by
BVSCP) of barely 0.26 while, as obtained with BVSNLP, the
posterior probability of the best two already exceeds 0.50.
This result manifests the overestimation of probabilities
caused by summaries obtained from a heuristic search-
ing method (aimed at discovering good models that need
re-normalization). BIC prefers more complex models, a
tendency we already observed in the simulation study that
leaves an undesirable behavior with a more considerable
risk of promoting false positives.

6 | DISCUSSION

We have addressed the problem of model uncertainty
in the context of Cox regression, perhaps the most pop-
ular statistical procedure in survival analysis. Our pro-
posal builds on intertwined theoretical and numerical

TABLE 2 The table reports the order of the five most probable models with each method: BVSNLP, BVSCP, and BIC, jointly with the

posterior probability in each case

model: BVSCP

{age, bili, albumin} U Order pM, | y)
{protime} 1 0.082
{edema, protime} 2 0.062
{edema, stage} 3 0.048
{edema} 4 0.035
{edema, protime, stage} 5 0.032

BVSNLP BIC

Order pM, | y) Order pM, | y)
1 0.411 >5 < 0.04
>5 < 0.05 1 0.071

4 0.053 4 0.042

2 0.144 >5 < 0.04
>5 < 0.05 3 0.049
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FIGURE 3
Model-averaged posterior distributions of the regression coefficients

Primary biliary cholangitis (PBC) dataset.

for some potential covariates. The dark gray area represents the
probability of no effect, while the light gray area represents the
approximated probability distribution given an effect. The title
appears as the approximated probability of no effect (approximately
the complementary of the inclusion probability for each covariate).

procedures, which are novel to the problem under study
and which, when put together, result in a solid and prac-
tical methodological tool for practitioners. In particular,
we have derived a new prior distribution for the spe-
cific model parameters (based on the expected information
matrix, called conventional). Furthermore, we have argued
decisively in favor of an assignment that controls for mul-
tiplicity in terms of what the prior to each subset of
explanatory variables refers to. The resulting prior scheme
is objective and fully automatic, so there is no need to tune
any additional parameters.

The model space is vast, and even if p, the number
of regressors, were modest, exhaustive enumeration of all
models is unfeasible. This difficulty has previously been
addressed either with a severe pruning of the space (the
case of Hoeting et al., 1999a) or with optimization-based
procedures aimed at finding the best models (as pro-
posed by Nikooienejad et al., 2020). The first solution only
accounts for the uncertainty provided by a tiny portion
of the model space, compromising the essential pillar of
model uncertainty. The second possibility leads to biased
results, as documented by Garcia-Donato and Martinez-
Beneito (2013), simply because more probable models are

over-represented (and the contrary with less likely ones).
We propose implementing a Gibbs sampling algorithm
in combination with a Rao-Blackwellization estimation of
probabilities. A probabilistic sampling of the model space
ensures that the obtained estimations reflect the variability
present in the problem. In the simulations described in the
Supporting information, we have shown the ability of the
numerical method to obtain pretty accurate summaries of
the posterior probability, even using very few iterations.
We finally discuss three interesting complementary
questions raised in the reviewing process of this work
and for which we thank the referees. A first question is
whether the order used to sample the components in y
matters. Sampling theory states that, after the burning
period, we will be simulating from the posterior distribu-
tion no matter the order used in the Gibbs sampling. We
have checked this property numerically, running simula-
tions of our numerical study with random permutations
of the p =1,000 components of y, obtaining identical
results. A second observation is about the feasibility and
goodness of the method when handling problems with
higher p. In Web Appendix G of the Supporting informa-
tion, we have repeated the simulation study but with p =
10,000. We observe similar patterns as those highlighted
with p = 1,000, concluding that our method behaves sat-
isfactorily in high-dimensional settings. Of course, the
procedure’s feasibility in ultrahigh problems is still an open
problem. We are currently working on scalable implemen-
tations of the Gibbs algorithm that could, in principle,
handle these challenging situations. Another interesting
question was what would happen if the actual data gen-
erative model is not in the list of candidate models. For
instance, the hypothesis of proportional risks would not
hold. This context is called the M-open perspective in the
literature. The theory states that, asymptotically, the model
which is closest to the true one (in terms of Kullback-
Liebler discrepancy) will be given maximum posterior
probability (Berk, 1966; Dmochowski, 1996). Nevertheless,
although these results condition what we expect in a finite
sample size, their practical implications are difficult to
envisage (and are rarely examined). To contribute to this
discussion, in Web Appendix H, we have launched the
counterpart of Scenario 2 contained in the simulation
study in Web Appendix D, but where the actual model
does not satisfy the proportionality assumption. In par-
ticular, we have simulated accelerated failure times with
normal (Scenario 5), and Cauchy (Scenario 6) distributed
errors. The interpretation of results is far from being
straightforward, and the question of which Cox regres-
sion model is “closest” to the true data-generative model
emerges. More specific research is needed in this direction,
but the preliminary conclusions are undoubtedly posi-
tive. Cox models endorsed by larger probabilities seem to
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reasonably mimic the true covariate structure (which are
the true explanatory and which are not). The third point
relates to the advantages of model uncertainty methods,
like the ones here developed, in relation to produce results
with good frequentist coverages. In the simulation stud-
ies, we show that, when compared with credible intervals
using a single model (the HPM), methods that account
for model uncertainty have superior performance in terms
of coverage.
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SUPPORTING INFORMATION

Web Appendices referenced in Sections 1-3, 5 and 6 are
available with this paper at the Biometrics website on
Wiley Online Library. These include all technical details,
additional simulation results, data description and access
to R code implementing the methodology for the case study
in Section 5.
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