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Department of Business Administration, Rey Juan Carlos University, Paseo de los Artilleros s/n, 28032 Madrid, Spain   

A R T I C L E  I N F O   

JEL codes: 
G12 
G15 

Keywords: 
Ambiguity 
Macroeconomic volatility 
Vintage consumption data 
Dynamic asset pricing 
Economic turmoil 

A B S T R A C T   

Building on recent research that highlights the importance of macroeconomic volatility and 
ambiguity aversion in explaining the dynamics of stock returns, in this paper we propose a dy
namic asset pricing model that simultaneously accounts for stochastic macroeconomic volatility 
and ambiguity, assuming that investors deal with uncertainty about the mechanics of macro
economic fluctuations using first-release consumption and revisions to aggregate consumption on 
vintage data. Our results show that the proposed model captures a large fraction of the cross- 
sectional variation of excess returns for a wide range of market anomaly portfolios. Further
more, while the price of risk for ambiguity is positive and significant for the vast majority of assets 
under study, macroeconomic volatility yields ambiguous outcomes, although it significantly in
creases the explanatory power of the model for specific assets. Our results suggest that macro
economic volatility and ambiguity complement each other in explaining the cross-sectional 
behavior of stock returns.   

1. Introduction 

Understanding how financial markets work and how economic agents price assets are classic questions in finance that are still the 
subject of lively debate in economic research. In this context, although the consumption-based asset pricing model (hereinafter, C- 
CAPM) provides a solid theoretical framework that allows asset prices to be directly related to macroeconomics, in practice its 
empirical performance has been traditionally poor (Hansen & Singleton, 1982; Weil, 1989). Consequently, recent research on asset 
pricing has provided us with different approaches aimed at overcoming some well-recognized problems tied to the C-CAPM frame
work. Thus, while some research suggests new common risk factors and explanatory variables that allow the model to better reproduce 
investor behavior (Boguth & Kuehn, 2013; Fama & French, 1993, 2015; Rojo-Suárez et al., 2020), other research proposes more 
complex utility functions that allow the pricing function to account for different non-separabilities (Campbell & Cochrane, 1999; Yogo, 
2006; Zhang, 2020), long-run risks (Bansal & Yaron, 2004; Eraker, 2021; Kang et al., 2017; Liu & Matthies, 2022; Parker & Julliard, 
2005; Pohl et al., 2021), or recursive preferences (Epstein & Zin, 1989; Restoy & Weil, 2011; Weil, 1989), among other features. 
However, most of these models assume the existence of a representative investor who not only knows the most updated data on 
macroeconomic aggregates, but is also aware of the mechanics of the underlying model that drives the economy, even though re
searchers do not have a good understanding of them (Lettau & Ludvigson, 2010). 

In this paper we build on the theoretical basis proposed by Campbell et al. (2018) and Bansal et al. (2014), who study the 
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implications of the stochastic nature of macroeconomic volatility on asset prices, as well as the contributions of Borup and Schütte 
(2021), who account for the fact that investors are not aware of the correct distribution of asset payoffs in what the literature calls 
ambiguity, to propose a four-factor asset pricing model that simultaneously accounts for stochastic macroeconomic volatility and 
ambiguity. In this regard, Mankiw et al. (1984) and Mankiw and Shapiro (1986) show that consumption corrections provide infor
mation about economic uncertainty, allowing the magnitude of the first revisions to consumption series on vintage data to capture 
uncertainty about the immediate consumption growth. On this basis, Borup and Schütte (2021) show that the difference between 
consumption forecasts and adjusted consumption is greater in times of uncertainty as consumption data require more severe cor
rections in times of great economic volatility. This fact raises questions about the relationship between macroeconomic volatility and 
ambiguity and, more specifically, about their joint effects in explaining the cross-sectional behavior of stock returns. Accordingly, in 
this paper we exploit the informativeness of the revisions to the first release consumption series to propose a dynamic asset pricing 
model that helps reconcile recent findings on stochastic volatility and ambiguity. 

The contributions of this study are threefold. First, to the best of our knowledge, this is the first paper to explicitly combine the long- 
run risk model proposed by Bansal et al. (2014) (which the authors refer to as Macro-DCAPM-SV model) with the revised C-CAPM 
developed by Borup and Schütte (2021), to propose a multifactor asset pricing model that allows capturing the time-varying nature of 
the volatility of consumption growth, under the assumption that economic agents ignore the underlying model that drives the 
economy. Second, our study shows that both the volatility of consumption and ambiguity allow the model to capture a large fraction of 
the cross-sectional variation of stock returns, leading it to outperform the model proposed by Bansal et al. (2014), as well as other well- 
recognized asset pricing models. Third, the data series used to empirically evaluate the performance of the model comprise updated 
data that includes the period of economic turmoil due to the pandemic, characterized by a sharp drop in aggregate consumption and a 
significant increase in market volatility, thus contributing to enrich previous empirical research on macroeconomic volatility and 
ambiguity. 

Regarding the theoretical background of the model, on the one hand we rely on the model proposed by Bansal et al. (2014), which 
build on Bansal and Yaron (2004) and Segal et al. (2015) to propose an intertemporal capital asset pricing model (hereinafter, i-CAPM) 
that captures the effects of macroeconomic volatility in long-run risk models by establishing three different sources of risk, namely cash 
flow risk, discount rate risk and volatility risk. Importantly, the authors conclude that models that ignore volatility risk may misspecify 
the stochastic discount factor (SDF) and equilibrium consumption, leading to strong distortions in model results. Furthermore, the 
authors show that, in the data, high volatility is usually accompanied by a sharp drop in realized and expected consumption and an 
increase in the risk premium, which is consistent with the dynamics predicted by the Bansal et al. (2014) model. Similarly, Campbell 
et al. (2018) develop an i-CAPM-based model that includes the stochastic volatility of consumption growth as an explanatory variable. 
The authors show that, under certain conditions, stock risk not only depends on betas with unexpected market returns and news about 
future returns, but also on betas with news about future market volatility. 

On the other hand, we build on the findings of research on ambiguity, which argues that investors handle uncertainty about models 
differently from uncertainty about outcomes within a model. In this context, Borup and Schütte (2021) propose a revised C-CAPM that 
uses both consumption growth and ambiguity as model factors. In this regard, the authors conclude that while the initial releases on 
aggregate consumption are more suitable for asset pricing than the final revised releases, first revisions are strongly related to con
sumption growth ambiguity. Similarly, Lee et al. (2019) use the cross-sectional dispersion in real-time forecasts of real GDP growth as a 
measure for ambiguity to conclude that high ambiguity beta stocks provide lower future returns than low ambiguity beta stocks. 
Thimme and Völkert (2015) assume that investors behave according to the smooth ambiguity model of preference developed by 
Klibanoff et al. (2005, 2009) to evaluate the implications of ambiguity in the cross-section of expected returns. Remarkably, the 
authors find that ambiguity allows the model to price assets under plausible relative risk aversion coefficients, with risk aversion 
becoming negligible in explaining the cross-section of expected returns in the presence of ambiguity. Morimoto and Suzuki (2021) 
develop an asset pricing model for a multisector production economy, which includes ambiguity as a risk factor to explain the cross- 
sectional variation of stock returns. Likewise, Izhakian (2020) quantifies ambiguity using a Bayesian approach that allows the author 
to measure ambiguity by the volatility of probabilities. 

Importantly, although a part of the literature estimates ambiguity using different indicators, such as the VIX index (Koh, 2017), the 
political uncertainty index (EPU) (Baker et al., 2016), or the financial uncertainty index (Jurado et al., 2015), in this paper we follow 
Borup and Schütte (2021) to use different versions of the consumption data series reported by the US Bureau of Economic Analysis 
(BEA) in the tables of the National Income and Product Accounts (NIPA), and in particular the first release consumption series. In this 
regard, it is worth mentioning that the BEA revises consumption data in order to provide timely estimates and correct for long-term 
trends and cyclical components in consumption data. Remarkably, Kroencke (2017) shows that the first release consumption series 
allows capturing short-run dynamics that are missing in the final consumption series due to the subsequent statistical procedures 
applied to the data. These benefits are similar to those provided by other consumption measures, such as electricity consumption (Da 
et al., 2016). Therefore, by assuming that the information set available for the representative investor includes the first release 
consumption rather than the revised consumption, we avoid the effects of irregular corrections on consumption data series. 
Furthermore, given the aforementioned evidence that the magnitude of the first revisions to consumption captures uncertainty about 
the immediate consumption growth, following Borup and Schütte (2021) we estimate ambiguity as a function of the difference be
tween the first release consumption growth and the first revised consumption growth. 

In order to evaluate the performance of our model, we follow Lewellen et al. (2010), Ferson et al. (2013) and Campbell (2018), who 
emphasize the convenience of using portfolios other than those sorted by size and the book-to-market equity ratio (hereinafter, BE/ 
ME) in evaluating asset pricing models. Consequently, we use different anomaly portfolios comprising all stocks traded on the US 
equity market in the period from January 1980 to December 2021, namely, 25 size-operating profitability portfolios, 25 size- 
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momentum portfolios, and 30 industry portfolios. Additionally, we evaluate the model on a set of 24 portfolios that simultaneously 
combine five market anomalies, comprising 6 size-BE/ME portfolios, 6 size-momentum portfolios, 6 size-long-term reversal portfolios, 
and 6 size-short-term reversal portfolios. 

The remainder of the paper is organized as follows. Section 2 presents the theoretical model. Section 3 describes the data and 
provides the main summary statistics. Section 4 shows and discusses the results of the model. Section 5 concludes the paper. 

2. Methodology 

In this section we present the four-factor model proposed in the paper. For the sake of clarity, we first describe the main elements of 
the asset pricing model with stochastic volatility proposed by Bansal et al. (2014), to subsequently summarize the theoretical foun
dations of the revised C-CAPM with state-dependent ambiguity attitudes as defined by Borup and Schütte (2021). Finally, we derive the 
asset pricing model proposed in this paper, hereinafter referred to as the DCAPM-SVA model. 

2.1. Consumption-based asset pricing with stochastic volatility 

Assuming an endowment economy in which investor preferences follow a process of Kreps and Porteus (1978), Epstein and Zin 
(1989) define the following utility function: 

Ut =

⎡

⎢
⎣(1 − δ)C1− 1

Ψ
t + δ

(
EtU1− γ

t+1
)1− 1

Ψ
1− γ

⎤

⎥
⎦

1
1− 1

Ψ

(1)  

where δ is the subjective discount factor, Ct represents the aggregate consumption, Ψ is the elasticity of intertemporal substitution (EIS) 
coefficient, and γ is the relative risk aversion (RRA) coefficient. Following Epstein and Zin (1989), the SDF can be represented as 
follows, with lowercase letters denoting logs: 

mt+1 = θlogδ −
θ
Ψ

Δct+1 +(θ − 1)rc,t+1 (2)  

where θ = (1 − γ)/(1 − 1/Ψ), Δct+1 is the log consumption growth, and rc,t+1 is the logarithmic return on the wealth portfolio —i.e. the 
consumption asset— at time t + 1. Assuming that the SDF and the return on the wealth portfolio are jointly log-normal, we obtain the 
following Euler equation: 

EtΔct+1 = Ψlogδ+ΨEtrc,t+1 −
Ψ − 1
γ − 1

Vt (3)  

where Vt denotes the conditional variance of the SDF plus the return on the wealth portfolio, following: 

Vt =
1
2
σ2

t

(
mt+1 + rc,t+1

)
=

1
2
σ2

t (mt+1) + covt
(
mt+1, rc,t+1

)
+

1
2
σ2

t

(
rc,t+1

)
(4) 

As shown in Equation (3), when Vt is a constant or the EIS coefficient is equal to one, the volatility shocks are not reflected 
separately in the expected consumption growth. In this regard, although a part of the related research assumes constant volatility over 
time (Campbell, 1996; Campbell & Vuolteenaho, 2004; Lustig & Van Nieuwerburgh, 2008), we follow Bansal et al. (2014) to consider 
stochastic volatility. Thus, denoting Wt as the wealth at time t, the classic budget constraint follows: 

Wt+1 = (Wt − Ct)Rc,t+1 (5) 

Using logs to linearize Equation (5), the budget constraint can be rewritten as follows: 

rc,t+1 = τ0 +ωct+1 −
1
τ1

ωct +Δct+1 (6)  

where ωct = log(Wt/Ct), and τ0 and τ1 are parameters. Operating recursively forward, we can write the unexpected consumption as a 
function of the revisions in the future return on the wealth portfolio minus the revisions in the expected cash flow from the con
sumption asset: 

ct+1 − Etct+1 = (Et+1 − Et)
∑∞

j=0
τj

1rc,t+j+1 − (Et+1 − Et)
∑∞

j=1
τj

1Δct+j+1 (7) 

Using the notation Nx,t+1 to indicate revisions (i.e. news) to the expected value of x, Equation (7) can be rewritten as follows: 

NC,t+1 = NR,t+1 +NDR,t+1 +NCF,t+1 (8)  

where the term on the left-hand side of Equation (8) is the term on the left-hand side of Equation (7), and the last term on the right- 
hand side of Equation (8) is the last term on the right-hand side of Equation (7). The term NR,t+1 +NDR,t+1 in Equation (8) represents the 
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first term on the right-hand side of Equation (7), where: 

NR,t+1 ≡ rc,t+1 − Etrc,t+1  

NDR,t+1 ≡ (Et+1 − Et)
∑∞

j=1
τj

1rc,t+j+1 (9) 

Using Equation (3), we can express Equation (8) as follows: 

NC,t+1 = NR,t+1 +(1 − Ψ)NDR,t+1 +
Ψ − 1
γ − 1

NV,t+1 (10)  

where 

NV,t+1 ≡ (Et+1 − Et)
∑∞

j=1
τj

1Vt+j (11) 

Equations (2) and (10) allow us to write the innovation to the SDF as a function of innovations in Equations (9) and (11): 

mt+1 − Etmt+1 = − γNCF,t+1 +NDR,t+1 +NV,t+1 (12) 

Considering that the excess return of a stock —i.e. the return of a long position in a stock and a short position in the risk-free rate— 
can be written as the negative covariance between the asset’s return and the SDF, Equation (12) allows us to write the log excess return 
as follows: 

Etri,t+1 − rf ,t +
1
2
σ2

t ri,t+1 = γcovt
(
ri,t+1,NCF,t+1

)
− covt

(
ri,t+1,NDR,t+1

)
− covt

(
ri,t+1,NV,t+1

)
(13) 

Denoting the excess return of a stock i by re
i,t+1 and assuming unconditional expectations, variances and covariances, Equation (13) 

can be easily transformed into the following beta model: 

Ere
i,t+1 = λCFβCF

i + λDRβDR
i + λV βV

i (14)  

where lambda coefficients denote the prices of risk, specifically, cash flow risk (λCF), discount rate risk (λDR) and economic volatility 
risk (λV), and beta coefficients represent the risk exposures (i.e. the slope coefficients) that result from the time series regression of 
excess returns on model factors. 

2.2. Ambiguity 

Following Borup and Schütte (2021), the logarithmic growth rate of nondurable consumption for the period from t − 1 to t and 
released at time t+k —hereinafter denoted as Δct,t+k— can be written as a function of the growth rate of the first release consumption 
Δct,t and the subsequent revisions at,t+k: 

Δct,t+k = Δct,t + at,t+k (15) 

Using Equation (15), Borup and Schütte (2021) propose the following linear SDF, which assumes that attitudes towards ambiguity 
are state dependent: 

mt+1 = 1 − α0Δct+1,t+1 − α1Δct+1,t+1 ⋅
⃒
⃒at+1,t+1+k

⃒
⃒ (16)  

where α0 and α1 are parameters. At this point, it should be noted that, although previous experimental studies underline the complexity 
of developing a unique theoretical model that captures ambiguity preferences (Halevy, 2007; Abdellaoui et al., 2011), Borup and 
Schütte (2021) build on recent experimental research in economics that provide strong evidence that attitudes towards ambiguity are 
state dependent (Du and Budescu, 2005; Chakravarty and Roy, 2009; Brenner and Izhakian, 2018). In particular, while Halevy (2007) 
shows that different groups of subjects exhibiting a neutral, averse or ambiguity-seeking behavior require alternative theoretical 
models to account for attitudes to ambiguity, Abdellaoui et al. (2011) find that attitudes towards ambiguity depend not only on the 
subject but also on the source of uncertainty. In this regard, Du and Budescu (2005) find that investor decisions can be systematically 
influenced by the context of the task and the perceived gains or losses. Similarly, Chakravarty and Roy (2009) use a recursive expected 
utility model to show that subjects are ambiguity-neutral over gains and ambiguity-seeking over losses. Furthermore, in the specific 
field of asset pricing, Brenner and Izhakian (2018) show that the level of investors’ aversion or willingness to ambiguity depends on the 
expected probability of favorable returns. 

Therefore, as noted by Borup and Schütte (2021), these results are consistent with investors exhibiting ambiguity aversion for 
positive states (i.e. high probability of gains) and ambiguity seeking for negative states (high probability of losses). In this context, as 
shown in Equation (16), Borup and Schütte (2021) include an additional term in the classic consumption SDF to capture the state- 
dependent nature of attitudes towards ambiguity. Specifically, while the second term on the right-hand side of Equation (16) cap
tures the classic risk exposure to consumption growth (determined using the first release consumption), the third term measures the 
effects of revisions to consumption growth on the SDF when first release consumption growth is higher or lower, thus capturing state- 
dependent attitudes towards ambiguity under the Borup and Schütte (2021) setup. Thus, Equation (16) allows Borup and Schütte 
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(2021) to derive their revised C-CAPM: 

Etre
i,t+1 = λCF*

βCF*

i + λAβA
i (17)  

where βCF*

i and βA are the slope coefficients of the time series regression of excess returns on Δct+1,t+1 and Δct+1,t+1 ⋅
⃒
⃒at+1,t+1+k

⃒
⃒, 

respectively, and λCF* 
and λA are the prices of risk. Hence, the approach proposed by Borup and Schütte (2021) allows the model to 

directly relate the SDF —and consequently the pricing function— to macroeconomic data in a tractable way, which is a desirable 
property for the purpose of our study, shared with other methodologies developed in the area (see Brenner and Izhakian (2018) and 
Lee et al. (2019)). Other approaches such as those stemming from life-cycle consumption-based asset pricing (see Klibanoff et al. 
(2005, 2009) and Thimme and Völkert (2015)) can also be adjusted to account for stochastic macroeconomic volatility, but at the cost 
of significantly increasing the complexity of the model. 

2.3. The DCAPM-SVA model 

Based on the fact that the term NCF,t+1 in Equation (12) represents innovations in expected cash flows from the consumption asset, 
that is, innovations in consumption growth, we build on Equation (12) to assume that the information set available for investors 
includes the first release consumption instead of the revised consumption. Additionally, we assume state-dependent ambiguity atti
tudes, as captured by the third term on the right-hand side of Equation (16). These assumptions allow us to rewrite Equation (12) as 
follows: 

mt+1 − Etmt+1 = − γNCF* ,t+1 +NDR,t+1 +NV,t+1 +NA,t+1 (18)  

where NA,t+1 represents innovations in the expected revisions of consumption growth. Equation (18) allows us to write the excess 
return of a stock i as follows: 

Ere
i,t+1 = γcovt

(
ri,t+1,NCF* ,t+1

)
− covt

(
ri,t+1,NDR,t+1

)
− covt

(
ri,t+1,NV,t+1

)
+ α1covt

(
ri,t+1,NA,t+1

)
(19)  

or equivalently: 

Ere
i,t+1 = λCF*

βCF*

i + λDRβDR
i + λV βV

i + λAβA
i (20) 

Hence, ambiguity leads the pricing function derived by Bansal et al. (2014) to include a fourth risk factor, in what we call the 
DCAPM-SVA model. In the next section we study the extent to which the model allows explaining the cross-sectional behavior of stock 
returns. 

3. Data 

In order to evaluate the performance of the model, we compile monthly return data and macroeconomic data series from the 
Kenneth R. French website and the economic database of the Federal Reserve Bank of St. Louis (FRED), respectively. In this regard, it 
should be noted that the fact that the Archival Federal Reserve Economic Database (ALFRED) at the FRED reports monthly con
sumption revisions on vintage NIPA data from December 1979 constraints our sample size to the period from January 1980 to 
December 2021. Regarding market data, we use four sets of market anomaly portfolios that comprise all stocks traded on the US equity 
market in the period under study. Following Lewellen et al. (2010), the first set of portfolios combines a wide range of market 
anomalies into four double-sort portfolios, namely, 6 portfolios sorted by size and BE/ME, 6 portfolios sorted by size and momentum, 6 
portfolios sorted by size and long-term reversal, and 6 portfolios sorted by size and short-term reversal. Hereinafter, we refer to this set 
of portfolios as the set of ‘composite portfolios’. The other sets of anomaly portfolios comprise 25 portfolios sorted by size and 
operating profitability, 25 portfolios sorted by size and momentum, and 30 industry portfolios. 

As noted, we compile consumption data on non-nondurable goods from the ALFRED database. We use the growth rate of the first 
release consumption to proxy for consumption growth in the DCAPM-SVA model and to estimate the aggregate economic volatility. 
Although Bansal et al. (2014) use the sum of squares of monthly industrial production growth to estimate the aggregate economic 
volatility, we instead use the variance of the 12-month rolling window of the first release consumption growth, according to the 
following expression: 

V̂ t =
∑12

j=1

(
Δct+j− 12,t+j− 12 − Δct,t

)2

11
(21)  

where Δct,t represents the average annual first release consumption. In any case, it should be noted that Bansal et al. (2014) check that 
their results do not materially change by using annual consumption growth instead of industrial production growth. We use the same 
approach to estimate the aggregate economic volatility required by the Bansal et al. (2014) model, but replacing first release con
sumption growth with final consumption growth, consistent with the methodology used by the authors. On the other hand, following 
Borup and Schütte (2021), we use Equation (16) to estimate the ambiguity factor assuming k = 1, as follows: 
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f A
t = Δct,t ⋅

⃒
⃒at,t+1

⃒
⃒ (22) 

For comparative purposes, in the next section we study the results provided by the DCAPM-SVA model under these specifications, 
but also those delivered by the Bansal et al. (2014) model, the classic C-CAPM, the CAPM, and the Fama-French three- and five-factor 
models (Fama & French, 1993, 2015). We compile all data series for the required market factors from the Kenneth R. French website. 

Table 1 
Summary statistics.  

Panel A: 24 composite portfolios  

Low  2  High  Low  2  High  
Means  St. Dev. 

Small-BE/ME 0.32  0.76  0.78 Small-BE/ME 6.80  5.36  5.64 
Big-BE/ME 0.62  0.54  0.61 Big-BE/ME 4.63  4.45  5.22 
Small-Mom 0.12  0.71  0.94 Small-Mom 7.32  5.20  6.11 
Big-Mom 0.38  0.56  0.69 Big-Mom 6.15  4.30  4.73 
Small-LT rev 0.71  0.78  0.60 Small-LT rev 6.56  5.05  5.77 
Big-LT rev 0.65  0.62  0.59 Big-LT rev 5.11  4.15  4.83 
Small-ST rev 0.64  0.72  0.33 Small-ST rev 7.23  5.42  5.99 
Big-ST rev 0.61  0.67  0.42 Big-ST rev 5.85  4.34  4.63 

Panel B: 25 size-operating profitability portfolios 

Op. prof. Low 2 3 4 High Op. prof. Low 2 3 4 High  
Means  St. Dev. 

Small 0.17 0.73 0.72 0.67 0.53 Small 7.24 5.46 5.31 5.68 6.66 
2 0.26 0.57 0.74 0.77 0.78 2 7.13 5.65 5.26 5.60 6.31 
3 0.35 0.63 0.71 0.76 0.78 3 6.94 5.26 5.03 5.31 5.79 
4 0.49 0.65 0.69 0.76 0.75 4 6.37 5.21 4.82 5.02 5.21 
Big 0.29 0.53 0.49 0.61 0.66 Big 5.94 4.78 4.62 4.31 4.36 

Panel C: 25 size-momentum portfolios 

Momentum Low 2 3 4 High Momentum Low 2 3 4 High  
Means  St. Dev. 

Small − 0.25 0.48 0.72 0.88 1.02 Small 8.21 5.69 5.20 5.26 6.49 
2 0.01 0.60 0.75 0.88 0.95 2 8.18 5.96 5.29 5.31 6.72 
3 0.20 0.56 0.72 0.69 0.87 3 7.82 5.73 5.09 5.05 6.29 
4 0.07 0.62 0.74 0.73 0.81 4 8.12 5.70 4.88 4.64 5.78 
Big 0.22 0.59 0.51 0.60 0.68 Big 7.34 4.98 4.38 4.22 5.10 

Panel D: 30 industry portfolios 

Means St. Dev. 
Food Beer Smoke Games Books Hshld Food Beer Smoke Games Books Hshld 
0.77 0.87 0.86 0.70 0.39 0.61 4.16 4.87 6.54 7.04 5.90 4.41 
Clths Hlth Chems Txtls Cnstr Steel Clths Hlth Chems Txtls Cnstr Steel 
0.70 0.73 0.54 0.42 0.48 0.39 6.44 4.61 5.83 7.98 6.39 8.19 
FabPr ElcEq Autos Carry Mines Coal FabPr ElcEq Autos Carry Mines Coal 
0.46 0.71 0.58 0.60 0.05 − 0.38 6.63 6.53 7.86 6.52 8.16 11.46 
Oil Util Telcm Servs BusEq Paper Oil Util Telcm Servs BusEq Paper 
0.26 0.54 0.59 0.71 0.55 0.51 6.17 3.89 4.99 6.34 7.26 5.16 
Trans Whlsl Rtail Meals Fin Other Trans Whlsl Rtail Meals Fin Other 
0.56 0.48 0.84 0.72 0.60 0.20 5.58 5.21 5.37 5.23 5.60 5.72 

Panel E: Market factors and macroeconomic variables  

RMRF SMB HML RMW CMA  ΔCt,t ΔCt,t+k  V̂t Ambiguity 
Means 0.57 0.05 0.16 0.29 0.25 Means 0.31 0.35 Means 0.03 − 0.01 
St. Dev. 4.54 2.89 2.98 2.39 1.94 St. Dev. 1.72 1.19 St. Dev. 0.08 0.28 

Notes: The table shows the means and standard deviations of the excess returns provided by different sets of anomaly portfolios comprising all stocks 
traded on the US equity market, for the period from January 1980 to December 2021, specifically: (i) a first set that combines four different double- 
sort portfolios, namely, 6 size-BE/ME portfolios, 6 size-momentum portfolios, 6 size-long-term reversal portfolios, and 6 size-short-term reversal 
portfolios, in what we call the set of ‘composite portfolios’, (ii) 25 size-operating profitability portfolios, (iii) 25 size-momentum portfolios, and (iv) 30 
industry portfolios. Additionally, Panel E shows the mean returns and standards deviations of the market factors in the Fama-French five-factor 
model, namely, RMRF (the return of the value-weighted market portfolio minus the risk-free rate), SMB (the small minus big market value factor), 
HML (the high minus low book-to-market equity factor), RMW (the excess return of the most profitable stocks minus the least profitable), and CMA 
(the excess return of companies that invest conservatively minus aggressively). We compile all return data from the Kenneth R. French website. 
Consumption growth ΔCt,t in Panel E denotes the growth rate of the first release consumption, while ΔCt,t+k denotes the growth rate of the final 
consumption. The term V̂ t denotes the variance of the 12-month rolling window of the first release consumption growth, and ‘Ambiguity’ represents 
the ambiguity factor, determined following Borup and Schütte (2021). All results are determined on a monthly basis. Means and standard deviations 
are percentages.  
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Table 2 
Correlations.  

Panel A: 24 composite portfolios  

Low 2 High  Low 2 High  
Correlations with ΔCt,t  Correlations with ΔCt,t+k 

Small-BE/ME 18.31 19.41 22.13 Small-BE/ME 22.51 24.84 27.93 
Big-BE/ME 13.65 14.47 20.50 Big-BE/ME 19.15 22.67 28.15 
Small-Mom 15.52 20.04 20.79 Small-Mom 24.95 26.07 24.43 
Big-Mom 13.90 13.62 15.12 Big-Mom 26.70 20.79 20.15 
Small-LT rev 20.76 20.80 16.76 Small-LT rev 27.54 24.92 23.42 
Big-LT rev 16.91 14.22 14.57 Big-LT rev 22.29 20.20 21.41 
Small-ST rev 21.60 19.90 16.52 Small-ST rev 27.09 27.04 23.23 
Big-ST rev 21.20 15.98 10.87 Big-ST rev 28.52 22.84 18.71  

Correlations with V̂t  Correlations with ambiguity 
Small-BE/ME 11.89 10.14 12.38 Small-BE/ME − 0.07 0.59 1.46 
Big-BE/ME 10.82 9.55 8.45 Big-BE/ME − 1.94 − 3.33 − 1.95 
Small-Mom 16.00 10.89 9.63 Small-Mom − 5.55 0.24 2.11 
Big-Mom 9.29 11.53 10.95 Big-Mom − 6.84 − 3.17 − 0.55 
Small-LT rev 13.26 10.47 11.34 Small-LT rev − 0.29 1.95 − 1.89 
Big-LT rev 10.63 10.58 9.48 Big-LT rev − 0.54 − 2.16 − 2.77 
Small-ST rev 11.54 12.78 12.36 Small-ST rev 0.39 − 0.67 − 2.43 
Big-ST rev 8.95 10.14 12.42 Big-ST rev − 0.95 − 1.96 − 5.06  

Panel B: 25 size-operating profitability portfolios 

Op. prof. Low 2 3 4 High  Op. prof. Low 2 3 4 High  
Correlations with ΔCt,t    Correlations with ΔCt,t+k 

Small 17.40 19.29 18.71 21.32 23.41  Small 22.52 23.36 24.67 27.19 27.82 
2 16.01 19.24 19.04 19.80 24.44  2 21.88 24.62 23.38 25.89 29.90 
3 17.72 19.43 21.87 21.28 22.79  3 19.99 24.90 27.40 26.96 28.85 
4 18.78 21.70 19.74 18.23 17.52  4 23.94 27.21 28.79 24.86 23.44 
Big 12.79 17.85 15.22 11.65 12.87  Big 21.79 24.64 21.07 18.23 18.99  

Correlations with V̂t   Correlations with ambiguity 
Small 12.99 10.01 9.77 11.89 14.31  Small − 2.27 1.37 1.06 0.76 1.19 
2 10.92 9.08 9.57 11.59 11.55  2 − 1.38 0.74 2.45 1.31 1.22 
3 12.05 10.79 9.15 12.64 11.76  3 1.46 0.48 2.72 1.13 1.18 
4 13.44 9.52 9.82 12.99 12.18  4 − 1.44 1.25 − 1.18 − 0.35 − 0.78 
Big 8.94 12.02 10.54 9.26 10.22  Big − 6.60 − 1.62 − 2.12 − 3.52 − 2.38 

Panel C: 25 size-momentum portfolios 

Momentum Low 2 3 4 High  Momentum Low 2 3 4 High  
Correlations with ΔCt,t   Correlations with ΔCt,t+k 

Small 15.49 18.44 18.89 16.94 17.73  Small 25.75 26.38 25.71 24.54 24.16 
2 13.94 19.17 18.21 21.56 21.44  2 23.66 26.11 24.29 25.95 25.26 
3 13.29 19.35 20.36 21.01 20.46  3 22.55 28.14 26.08 26.26 24.30 
4 16.98 16.81 18.80 17.97 21.27  4 30.18 26.32 25.54 22.23 25.28 
Big 16.55 10.98 10.81 12.79 14.54  Big 30.18 21.86 19.12 18.49 18.92  

Correlations with V̂t   Correlations with ambiguity 
Small 17.53 13.64 10.57 10.73 10.65  Small − 7.53 − 3.37 − 2.17 − 3.32 − 2.28 
2 16.38 11.14 9.67 10.71 8.85  2 − 5.90 − 0.30 − 0.32 2.58 3.25 
3 15.01 12.80 11.17 10.59 8.99  3 − 6.10 − 2.75 0.75 2.33 2.83 
4 12.61 12.49 11.65 9.55 10.74  4 − 7.33 − 4.42 − 1.46 1.60 2.90 
Big 7.11 9.45 11.96 11.24 9.48  Big − 6.79 − 6.81 − 6.11 − 1.25 0.24  

Panel D: 30 industry portfolios 

Correlations with ΔCt,t Correlations with ΔCt,t+k 

Food Beer Smoke Games Books Hshld Food Beer Smoke Games Books Hshld 
8.39 3.79 2.02 14.99 19.42 6.89 11.83 11.96 11.34 20.85 23.99 9.66 
Clths Hlth Chems Txtls Cnstr Steel Clths Hlth Chems Txtls Cnstr Steel 
12.18 9.03 16.87 23.11 21.89 15.78 15.46 14.57 23.58 26.06 27.25 26.31 
FabPr ElcEq Autos Carry Mines Coal FabPr ElcEq Autos Carry Mines Coal 
16.46 19.40 20.24 17.49 10.67 17.07 22.80 21.61 24.52 23.46 23.13 32.60 
Oil Util Telcm Servs BusEq Paper Oil Util Telcm Servs BusEq Paper 
24.04 9.94 12.97 14.28 12.27 9.52 38.05 16.02 15.21 16.05 18.09 12.90 
Trans Whlsl Rtail Meals Fin Other Trans Whlsl Rtail Meals Fin Other 
10.85 17.43 11.17 13.89 12.07 7.58 12.73 23.38 6.85 21.55 19.20 11.03 
Correlations with V̂t Correlations with ambiguity 
Food Beer Smoke Games Books Hshld Food Beer Smoke Games Books Hshld 
6.28 5.88 3.41 12.48 11.54 10.08 − 2.85 − 6.54 − 5.33 − 1.83 2.16 − 2.62 
Clths Hlth Chems Txtls Cnstr Steel Clths Hlth Chems Txtls Cnstr Steel 
11.47 7.45 11.56 8.47 8.70 8.02 − 0.04 − 4.02 − 2.47 7.18 4.50 − 3.08 

(continued on next page) 
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Additionally, we use the excess return of the value-weighted market portfolio (hereinafter referred to as RMRF), as provided by 
Kenneth R. French, to proxy for the return on the wealth portfolio in both the DCAPM-SVA model and the Bansal et al. (2014) model. 

Table 1 shows the main summary statistics for test assets, market factors and macroeconomic variables, while Table 2 shows the 
correlations between macroeconomic variables and the excess returns provided by our four sets of anomaly portfolios. The results in 
Table 1, Panel E, show that, with a standard deviation of 1.72%, the first release consumption growth is more volatile than its revised 
counterpart, which delivers a standard deviation of 1.19%. In any case, Table 2 shows that, in general, the revised consumption growth 
is more correlated with excess returns than the first release consumption growth. Additionally, it is worth noting that while in most of 
cases consumption growth (both first released and revised) and macroeconomic volatility V̂ t are positively correlated with excess 
returns, the opposite is true for ambiguity. However, it is important to note that the correlations in Table 2 do not condition the 
performance of the models under study, but rather the correlation between the expected returns and the covariances between factors 

Table 2 (continued ) 

FabPr ElcEq Autos Carry Mines Coal FabPr ElcEq Autos Carry Mines Coal 
11.55 11.42 18.70 7.33 11.60 7.39 − 0.57 3.84 5.24 − 3.14 − 7.70 − 9.79 
Oil Util Telcm Servs BusEq Paper Oil Util Telcm Servs BusEq Paper 
3.28 4.59 8.37 8.28 10.02 11.17 − 3.37 − 3.18 0.80 − 0.08 0.39 − 1.17 
Trans Whlsl Rtail Meals Fin Other Trans Whlsl Rtail Meals Fin Other 
11.86 11.44 8.48 9.36 7.95 8.44 0.13 − 1.37 4.51 − 1.92 − 4.88 − 3.76 

Notes: The table shows the correlations between different macroeconomic variables and the excess returns provided by four sets of anomaly portfolios 
comprising all stocks traded on the US equity market, for the period from January 1980 to December 2021, specifically: (i) a first set that combines 
four different double-sort portfolios, namely, 6 size-BE/ME portfolios, 6 size-momentum portfolios, 6 size-long-term reversal portfolios, and 6 size- 
short-term reversal portfolios, in what we call the set of ‘composite portfolios’, (ii) 25 size-operating profitability portfolios, (iii) 25 size-momentum 
portfolios, and (iv) 30 industry portfolios. We compile all return data from the Kenneth R. French website. Consumption growth ΔCt,t denotes the 
growth rate of the first release consumption, while ΔCt,t+k denotes the growth rate of the final consumption. The term V̂ t denotes the variance of the 
12-month rolling window of the first release consumption growth, and ‘Ambiguity’ represents the ambiguity factor, determined following Borup and 
Schütte (2021). All results are determined using monthly data.  

Table 3 
Macro VAR estimates.  

Panel A: DCAPM-SVA model  

ΔCt,t RMRFt PDt V̂t fA
t R2 

ΔCt+1,t+1 − 0.22 0.01 0.00 1.35  0.67 0.03  
(-3.67) (0.85) (1.06) (1.48)  (2.01)  

RMRFt+1 − 0.13 0.07 0.00 4.98  0.35 0.02  
(-0.85) (1.45) (-1.11) (2.08)  (0.41)  

PDt+1 − 7.61 19.18 0.99 294.63  26.73 0.99  
(-1.42) (12.18) (241.30) (3.59)  (0.89)  

V̂t+1 0.00 0.00 0.00 0.93  0.01 0.87  
(-1.67) (0.46) (-0.90) (54.82)  (0.83)  

fA
t+1 0.00 − 0.01 0.00 0.03  − 0.02 0.01  

(-0.36) (-1.87) (0.03) (0.16)  (-0.40)  

Panel B: Bansal et al. (2014) model  

ΔCt,t+k RMRFt PDt V̂t  R2 

ΔCt+1,t+1+k − 0.30 0.05 0.00 5.73  0.13  
(-6.86) (3.91) (-0.41) (4.52)   

RMRFt+1 − 0.14 0.07 0.00 13.09  0.02  
(-0.83) (1.48) (-1.51) (2.69)   

PDt+1 − 9.34 19.42 0.99 649.97  0.99  
(-1.63) (12.38) (238.57) (3.90)   

V̂t+1 0.00 0.00 0.00 0.96  0.91  
(-4.34) (-0.77) (-0.01) (69.14)   

Notes: The table shows the coefficients estimates, t-statistics (in parentheses), and R2 statistics of the forecasting regressions within the Macro VAR 
specification used to estimate innovations in the DCAPM-SVA model (Panel A) and the Bansal et al. (2014) model (Panel B). For the DCAPM-SVA 
model, we define a vector of state variables that include the first release consumption growth (ΔCt,t), the return of the value-weighted market 
portfolio minus the risk-free rate (RMRFt), the market price-dividend ratio (PDt), the aggregate economic volatility estimated by the variance of the 
12-month rolling window of the first release consumption growth (V̂ t), and the ambiguity factor determined following the Borup and Schütte (2021) 
methodology (fA

t ). For the Bansal et al. (2014) model we use the same state variables, with the following differences: (i) we use final consumption 
growth (ΔCt,t+k) instead of first release consumption growth, (ii) the aggregate macroeconomic volatility is determined based on final consumption 
growth instead of first release consumption growth, and (iii) we ignore the ambiguity factor. We use OLS on monthly data series to estimate all 
regressions.  
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Table 4 
Regression results.     

Macroeconomic factors Fama-French factors    
Row Model Intercept λCF λV λA λRMRF λSMB λHML λRMW λCMA R2 MAE 

(%) 
J-test 

Panel A: 24 composite portfolios 

1 DCAPM- 
SVA  

0.011  0.014  0.000  0.003  -0.006      0.785  0.06  41.422    

(2.206)  (2.587)  (-1.148)  (2.169)  (-1.009)      0.352   (0.002) 
2 Bansal 

et al. 
(2014) 
model  

0.010  0.002  0.000   -0.004      0.312  0.12  78.325    

(2.680)  (0.596)  (-1.270)   (-0.959)      0.227   (0.000) 
3 C-CAPM  0.007  -0.001         0.013  0.13  101.911    

(3.367)  (-0.333)         0.004   (0.000) 
4 CAPM  0.010     -0.004      0.112  0.13  98.366    

(3.073)     (-0.992)      0.103   (0.000) 
5 Fama- 

French (3 
factors)  

0.014     -0.009  0.001  0.001    0.275  0.11  93.509    

(4.230)     (-2.177)  (0.549)  (0.994)    0.231   (0.000) 
6 Fama- 

French (5 
factors)  

0.000     0.005  0.001  0.001  0.009  0.002  0.514  0.09  61.367    

(0.049)     (0.806)  (0.881)  (0.563)  (3.642)  (1.401)  0.392   (0.000) 

Panel B: 25 size-operating profitability portfolios 

7 DCAPM- 
SVA  

0.015  0.010  0.000  0.002  -0.010      0.727  0.08  19.446    

(3.371)  (1.863)  (-0.937)  (2.003)  (-1.919)      0.644   (0.493) 
8 Bansal 

et al. 
(2014) 
model  

0.017  0.004  0.000   -0.011      0.649  0.08  31.012    

(4.394)  (1.536)  (0.742)   (-2.529)      0.481   (0.073) 
9 C-CAPM  0.007  -0.001         0.006  0.14  45.574    

(3.185)  (-0.287)         0.006   (0.003) 
10 CAPM  0.016     -0.009      0.404  0.10  39.168    

(4.440)     (2.131)      0.385   (0.019) 
11 Fama- 

French (3 
factors)  

0.010     -0.005  -0.001  0.005    0.603  0.09  38.756    

(3.560)     (1.267)  (-0.478)  (2.399)    0.441   (0.010) 
12 Fama- 

French (5 
factors)  

0.008     -0.002  -0.001  0.001  0.003  0.001  0.796  0.06  31.851    

(2.397)     (-0.506)  (-0.450)  (0.764)  (3.011)  (0.272)  0.761   (0.032) 

Panel C: 25 size-momentum portfolios 

13 DCAPM- 
SVA  

0.011  0.011  -0.001  0.002  -0.004      0.816  0.09  30.807    

(2.813)  (1.813)  (-1.677)  (2.074)  (-0.940)      0.612   (0.058) 
14 Bansal 

et al. 
(2014) 
model  

0.012  -0.004  0.000   -0.004      0.493  0.17  48.833    

(2.746)  (-1.165)  (-1.830)   (-0.880)      0.430   (0.001) 
15 C-CAPM  0.013  -0.005         0.358  0.19  72.559    

(5.480)  (-2.421)         0.197   (0.000) 
16 CAPM  0.018     -0.011      0.432  0.17  80.200    

(5.637)     (-2.829)      0.366   (0.000) 

(continued on next page) 
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and returns (i.e. the factor betas). 
In this regard, in order to estimate innovations in Equations (14) and (20), we follow Bansal et al. (2014) to use the residuals 

resulting from the VAR(1) specification of a vector of state variables comprising indicators that we assume investors use to shape their 
expectations. Specifically, to promote consistency with the models described in the previous section, our vector of state variables is 
composed of consumption growth (first release consumption growth for the DCAPM-SVA model and final consumption growth for the 
Bansal et al. (2014) model), the excess return on the market portfolio RMRFt, the market price-dividend ratio for the US equity market 
(DPt) determined using market data available on the Robert J. Shiller website, aggregate economic volatility V̂ t , and, in the case of the 
DCAPM-SVA model, the ambiguity factor fA

t . Following Bansal et al. (2014), below we refer to this VAR specification as Macro VAR. 
Table 3 shows the main ordinary least squares (OLS) estimates for our Macro VAR. 

As shown in Table 3, in general, our Macro VAR has small predictive power for most of the variables under consideration, with the 
exception of DPt and V̂ t, which are strongly persistent over time. At this point, it should be noted that, contrary to Bansal et al. (2014), 
our sample covers monthly rather than annual observations, which largely explains the different results provided by our Macro VAR in 
forecasting consumption growth and macroeconomic volatility. As noted, in the next section we use the residuals resulting from these 
Macro VAR specifications to estimate innovations in the DCAPM-SVA model and the Bansal et al. (2014) model. 

4. Results and discussion 

In this section we describe the results provided by the model presented in Section 2, as well as those delivered by the models used as 
benchmarks. For that purpose, we follow the common practice in asset pricing to evaluate beta models by the mean absolute error 
(MAE), as well as the R2 statistic and the J-test for overidentifying restrictions. However, as noted in recent research, the R2 statistic 

Table 4 (continued )    

Macroeconomic factors Fama-French factors    
Row Model Intercept λCF λV λA λRMRF λSMB λHML λRMW λCMA R2 MAE 

(%) 
J-test 

17 Fama- 
French (3 
factors)  

0.021     -0.013  0.000  -0.004    0.686  0.13  70.943    

(5.273)     (-3.202)  (0.303)  (-1.430)    0.549   (0.000) 
18 Fama- 

French (5 
factors)  

0.013     -0.007  0.002  -0.006  0.007  -0.003  0.771  0.11  61.314    

(3.312)     (-1.616)  (1.094)  (-1.825)  (2.693)  (-0.962)  0.717   (0.000) 

Panel D: 30 industry portfolios 

19 DCAPM- 
SVA  

0.009  0.000  0.000  0.001  -0.003      0.665  0.13  26.369    

(3.351)  (0.084)  (-0.497)  (1.243)  (-1.008)      0.343   (0.388) 
20 Bansal 

et al. 
(2014) 
model  

0.008  -0.004  0.000   -0.002      0.600  0.14  26.874    

(3.264)  (-2.233)  (0.425)   (-0.664)      0.284   (0.416) 
21 C-CAPM  0.009  -0.003         0.584  0.14  28.269    

(4.185)  (-2.308)         0.286   (0.450) 
22 CAPM  0.009     -0.004      0.123  0.18  31.320    

(3.741)     (-1.200)      0.029   (0.303) 
23 Fama- 

French (3 
factors)  

0.003     0.003  -0.008  -0.002    0.469  0.14  23.573    

(1.025)     (0.890)  (-2.493)  (0.961)    0.398   (0.600) 
24 Fama- 

French (5 
factors)  

0.002     0.004  -0.008  -0.004  0.007  -0.005  0.719  0.10  17.160    

(0.537)     (1.045)  (2.380)  (-1.843)  (2.466)  (-1.940)  0.658   (0.842) 

Notes: We evaluate the models under analysis on four sets of anomaly portfolios comprising all stocks traded on the US equity market, for the period 
from January 1980 to December 2021, specifically: (i) a first set that combines four different double-sort portfolios, namely, 6 size-BE/ME portfolios, 
6 size-momentum portfolios, 6 size-long-term reversal portfolios, and 6 size-short-term reversal portfolios, in what we call the set of ‘composite 
portfolios’, (ii) 25 size-operating profitability portfolios, (iii) 25 size-momentum portfolios, and (iv) 30 industry portfolios. We compile all return data 
from the Kenneth R. French website. To estimate the models, we map the two-pass cross-sectional regression procedure into GMM, assuming a 
spectral density matrix with zero leads and lags. We use the same spectral density matrix to run the J-test. The table displays two rows for each model, 
where the first row shows the coefficient estimates and the second row the t-statistics. For each model, the column labeled ‘R2’ shows the OLS and GLS 
R2 statistics, in that order, consistent with Lewellen et al. (2010). All p-values that result from the J-tests are in parentheses. All results are determined 
on a monthly basis.  
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determined by OLS can lead to spurious results when used to evaluate linear asset pricing models. In this context, according to 
Lewellen et al. (2010), the R2 statistic determined by generalized least squares (GLS) is more closely related to the mean–variance 
efficiency of the factor-mimicking portfolio than its OLS counterpart, which makes it a more challenging hurdle for evaluating linear 
asset pricing models. Accordingly, below we complement the R2 statistic determined by OLS with the GLS R2 statistic. 

We estimate all models by mapping the two-pass cross-sectional regression method into the generalized method of moments 
(GMM). This approach allows us to simultaneously estimate all betas and lambdas in the pricing function, as well as correct the 
standard errors for the cross-sectional autocorrelation and for the fact that betas are generated regressors. Hence, following Cochrane 
(2005) (pp. 241–243), we use the following moment restrictions: 

gT(b) =

⎧
⎪⎪⎨

⎪⎪⎩

E
(
Re

t − a − βXt
)

E
[(

Re
t − a − βXt

)
Xt

]

E
(
Re

t − βλ
)

⎫
⎪⎪⎬

⎪⎪⎭

(23)  

where Xt is the vector of factors (i.e. in the case of the DCAPM-SVA model and the Bansal et al. (2014) model, the innovations that 
result from Macro VAR), and a, β and λ are parameters. In order to allow GMM to reproduce the two-pass cross-sectional regression 
approach, we use the following matrix to weight the moments in Equation (23) (I denotes the identity matrix): 

aT =

(
I2N

β′

)

(24)  

so that: 

aTgT(b̂) = 03N (25) 

We determine the standard errors and establish the distribution of moments in Equation (23) using the standard GMM specification 
for linear asset pricing models (see Cochrane (2005) (pp. 203–204)), assuming a spectral density matrix S with zero leads and lags, as 
follows: 

S = E

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

Re
t − a − βXt(

Re
t − a − βXt

)
Xt

Re
t − βλ

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Re
t − a − βXt(

Re
t − a − βXt

)
Xt

Re
t − βλ

⎤

⎥
⎥
⎦

’ ⎫
⎪⎪⎬

⎪⎪⎭

(26) 

Table 4 summarizes the main results provided by the models under study. The table displays two rows for each model, where the 
first row shows the lambda estimates and the second row the t-statistics. For each model, the column labeled ‘R2’ shows the OLS and 
GLS R2 statistics, in that order, while the last column shows the results delivered by the J-test for overidentifying restrictions. On the 
other hand, Fig. 1 relates the average excess returns of the portfolios under study with the fitted values provided by the main models 
under study, where the closer the data points are to the 45-degree axis, the better the performance of the model, and vice versa. 

Overall, the results in Table 4 show that the DCAPM-SVA model does a good job explaining the cross-sectional behavior of most of 
the portfolios under analysis, providing significantly higher R2 statistics and a lower MAE than the Fama-French three-factor model. In 
fact, the DCAPM-SVA model outperforms the Fama-French five-factor model for the composite portfolios in Panel A and size- 
momentum portfolios in Panel C, while the Fama-French five-factor model delivers smaller pricing errors for size-operating profit
ability and industry portfolios. Furthermore, although the lambda coefficient for V̂ t in the DCAPM-SVA model and the Bansal et al. 
(2014) model is not statistically significant in any panel, the lambda coefficient for ambiguity λA in the DCAPM-SVA model is sta
tistically significant in all cases except for industry portfolios. In contrast, the classic C-CAPM and the CAPM exhibit poor performance 
in most cases, as expected. 

In more detail, Panel A shows the results provided by the models under study for the set of 24 composite portfolios, as defined in the 
previous section, where the DCAPM-SVA model is the best performing model, providing an OLS R2 statistic of 78.5% and a MAE of 
0.06%. With a significantly lower OLS R2 statistic (51.4%) and a MAE of 0.09%, the Fama-French five-factor model is the second-best 
performer, followed by the Bansal et al. (2014) model, which provides an OLS R2 statistic and a MAE of 31.2% and 0.12%, respectively. 
Nonetheless, despite the relatively poor performance of the Bansal et al. (2014) model, it should be noted that macroeconomic 
volatility allows the model to significantly outperform the classic C-CAPM. In fact, with an OLS R2 statistic of 1.3% and a MAE of 

Fig. 1. Real vs. fitted values. Notes: Plots in the first row depict a set of double-sort portfolios, namely, 6 size-BE/ME portfolios, 6 size-momentum 
portfolios, 6 size-long-term reversal portfolios, and 6 size-short-term reversal portfolios. We represent each portfolio using a code with a letter and 
two numbers. Letter ‘a’ corresponds to size-BE/ME portfolios, letter ‘b’ corresponds to size-momentum portfolios, letter ‘c’ are size-long-term 
reversal portfolios, and letter ‘d’ are size-short-term reversal portfolios. The first number is the size code, where 1 represents portfolios 
comprising small firms and 2 portfolios comprising large firms. The second number denotes the tercile for the second sorting variable (i.e. BE/ME, 
momentum, long-term reversal or short-term reversal), with 1 representing the first tercile and 3 the last tercile. For the portfolios in the second and 
third row, there are two numbers, where the first number is the size code (with 1 being the smallest and 5 the largest) and the second number is the 
code for the second sorting variable (with 1 representing the first quintile and 5 the last quintile). The last row depicts the industry portfolios 
under analysis. 
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0.13%, the C-CAPM is the worst performing model, followed by the classic CAPM. 
Importantly, ambiguity, as measured by fA

t in Equation (22), is the factor that implies a greater improvement in the results delivered 
by the consumption-based asset pricing models in Table 4, Panel A, allowing the DCAPM-SVA model to more than double the OLS R2 

statistic of the Bansal et al. (2014) model, and halve the MAE. In this regard, it is important to note that the price of risk for ambiguity 
amounts to a statistically significant value of 0.003, which means that those stocks that covary positively with fA

t provide a higher 
expected return. 

Nevertheless, despite the apparent superiority of the DCAPM-SVA model in pricing composite portfolios, its GLS R2 statistic 
(35.2%) drops sharply with respect to its OLS counterpart (78.5%), meaning that its factor-mimicking portfolio is far from mean- 
variance efficient. Moreover, the J-test for overidentifying restrictions rejects all models in Table 4, Panel A, under the specifica
tions described above. In this regard, the plots in the first row of Fig. 1 show that, while the pricing errors delivered by the DCAPM-SVA 
model exhibit a relative dispersion considering their small absolute value, both the Bansal et al. (2014) model and the Fama-French 
five-factor model provide scattered data points, which largely explains the results of the J-test for overidentifying restrictions. 

While these patterns largely persist for size-operating profitability portfolios in Table 4, Panel B, there are some differences that 
should be highlighted. First, the market factor models under study, that is, the CAPM and the Fama-French three- and five-factor 
models, perform significantly better in pricing size-operating portfolios in Panel B than composite portfolios in Panel A. Thus, the 
Fama-French five-factor model provides the highest OLS R2 statistic in Panel B (79.6%) of all the models under analysis, while the 
CAPM delivers an acceptable OLS R2 statistic of 40.4%, which is sensibly higher than its equivalent in Panel A (11.2%). Second, 
macroeconomic volatility allows the Bansal et al. (2014) model to provide an OLS R2 statistic of 64.9%, that is, more than 64% higher 
than the result delivered by the classic C-CAPM (0.6%). Hence, considering that the DCAPM-SVA model provides an OLS R2 statistic of 
72.7% in Panel B, macroeconomic volatility seems more explanatory than ambiguity to price size-operating profitability portfolios, 
which contrasts with the results in Panel A for composite portfolios. In any case, the DCAPM-SVA model is the second-best performing 
model in Panel B, following the Fama-French five-factor model. Moreover, although the GLS R2 statistics of the DCAPM-SVA model and 
the Bansal et al. (2014) model fall sharply with respect to their OLS counterparts, the J-test for overidentifying restrictions fails to reject 
these models, while it rejects the other models in Panel B. Furthermore, the lambda coefficient for ambiguity remains statistically 
significant, with a value (0.002) relatively close to that shown in Panel A (0.003). 

Although momentum portfolios have typically represented a challenging hurdle for most asset pricing models (see Fama and 
French (1993) and Roh et al. (2019)), the results in Table 4, Panel C, show that the DCAPM-SVA model does a good job in pricing size- 
momentum portfolios. In fact, with an OLS R2 statistic of 81.6% and a MAE of 0.09%, the DCAPM-SVA model is the best performing 
model in Panel C, followed by the Fama-French five-factor model with an OLS R2 statistic and a MAE of 77.1% and 0.11%, respectively. 
As in Panel A, ambiguity exhibits strong explanatory power in determining the expected returns of size-momentum portfolios, allowing 
the DCAPM-SVA model to increase its OLS R2 statistic by more than 30% with respect to the Bansal et al. (2014) model, which provides 
an OLS R2 statistic and a MAE of 49.3% and 0.17%, respectively. Furthermore, as in Panels A and B, the lambda coefficient for am
biguity remains statistically significant and equal to 0.002, which supports the robustness of the results. In contrast, macroeconomic 
volatility exhibits less explanatory power, allowing the Bansal et al. (2014) model to increase the OLS R2 statistic by 13.5% with 
respect to the classic C-CAPM. Remarkably, the J-test for overidentifying restrictions fails to reject the DCAPM-SVA model in Panel C, 
while it rejects the other models under study. 

Panel D in Table 4 shows that, in general, macroeconomic volatility and ambiguity imply small increases in the explanatory power 
of consumption models when estimating the expected returns of industry portfolios. In this case, the DCAPM-SVA model provides an 
OLS R2 statistic of 66.5% and a MAE of 0.13%, slightly outperforming the Bansal et al. (2014) model (with an OLS R2 statistic and a 
MAE of 60% and 0.14%, respectively) and the C-CAPM (with an OLS R2 statistic of 58.4% and a MAE of 0.14%). However, this lower 
performance is common to most of the other models under study, except for the Fama-French five-factor model, which provides an OLS 
R2 statistic and a MAE of 71.9% and 0.1%, respectively. Thus, while the Fama-French three-factor model provides an OLS R2 statistic of 
46.9% and a MAE of 0.14%, these statistics amount to 12.3% and 0.18% in the case of the CAPM. Nevertheless, the results in Panel D 
are consistent with those provided by a large part of the previous research on the area, which generally obtains poor results for industry 
portfolios due to imprecise estimates of risk premiums and risk loadings across industries, and the weak factor structure of industry 
portfolios (Fama & French, 1997; Lewellen et al., 2010). In fact, this is the only case among those considered in Table 4 where the 
lambda coefficient for ambiguity is not statistically significant. 

In any case, despite the poor performance of the models under analysis in pricing industry portfolios, it should be noted that the J- 
test for overidentifying restrictions fails to reject all models in Table 4, Panel D. However, these results should be taken with caution, as 
non-rejection is mainly due to the high variance of pricing errors rather than low absolute pricing errors, as shown in plots depicted in 
the last row of Fig. 1. 

In general, our results show that ambiguity, measured according to the Borup and Schütte (2021) model, contributes satisfactorily 
to complementing the theoretical framework developed by Bansal et al. (2014) to account for the effects of macroeconomic fluctu
ations on expected returns. Thus, the results of the model are significantly improved when we introduce ambiguity as an additional 
pricing factor, which allows the DCAPM-SVA model to outperform most models that are typically used for comparison purposes in the 
asset pricing literature. Furthermore, the lambda coefficient for ambiguity λA remains positive, statistically significant and nearly 
invariant for the vast majority of portfolios that constitute our test assets, meaning that those assets that covary positively with the 
ambiguity factor fA

t exhibit higher expected returns, and vice versa. 
Regarding macroeconomic volatility, the prices of risk in Table 4 are not statistically significant for any of the portfolios under 
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consideration, delivering positive or negative risk premiums depending on the model and the specific asset. In particular, although the 
lambda coefficient for macroeconomic volatility is always negative in the DCAPM-SVA model, it takes a positive value for size- 
operating profitability portfolios and industry portfolios in the Bansal et al. (2014) model. These results contrast with those ob
tained by Bansal et al. (2014), who find a positive risk premium for volatility risk exposure. However, it should be noted that, for the 
DCAPM-SVA model, we estimate macroeconomic volatility using the first release consumption in Equation (21) instead of final 
consumption, which can partially explain these disparities. Moreover, the size and periodicity of the time rolling window used to 
determine V̂ t , as well as the time period and the specific assets used to conduct the study, may also explain such divergences. 

Additionally, it is important to note that our data series include the period of economic turmoil due to the pandemic, which has 
been characterized by a sharp drop in consumption and an important increase in volatility. In this context, our results not only show 
that the Bansal et al. (2014) model and, especially, the DCAPM-SVA model allow to adequately capture the variation in expected 
returns across assets, but also that other prominent asset pricing models, such as the Fama-French three-factor model, appear to fit 
excess returns with higher pricing errors than in previous research. In this regard, our results are consistent with the findings of Wang 
(2022), who shows that ambiguity aversion can result in an amplification of financial crises, as well as with the results of Dlugosch and 
Wang (2022), who find that investors may decide to hold a greater or lesser proportion of risky assets in their portfolios depending on 
the level of ambiguity, which suggests that ambiguity works partially as a channel of information quality. 

5. Conclusion 

Recent research on asset pricing highlights the importance of macroeconomic volatility and ambiguity in explaining the dynamics 
of stock returns. Combining the model proposed by Bansal et al. (2014) with the measure of ambiguity suggested by Borup and Schütte 
(2021), we develop a four-factor asset pricing model that captures a large fraction of the cross-sectional variation of excess returns for a 
wide range of market anomaly portfolios, outperforming some prominent asset pricing models, such as the Fama-French three-factor 
model and, in some cases, the Fama-French five-factor model. 

Furthermore, our results show that the price of risk for ambiguity is positive and statistically significant for the vast majority of the 
portfolios that constitute our test assets, meaning that those assets that covary positively with the ambiguity factor provide higher 
expected returns to compensate investors for the higher uncertainty, and vice versa. Regarding macroeconomic volatility, although the 
price of risk for the variance of consumption growth is not statistically significant in any of the portfolio sorts considered in our study, 
its effect on the explanatory power of both the Bansal et al. (2014) model and the DCAPM-SVA model is greater than that of ambiguity 
for some specific assets, such as size-operating profitability portfolios. These results suggest that macroeconomic volatility and am
biguity complement each other to explain different sorts of market anomaly portfolios. Although the study of the asset characteristics 
that explain the different exposure of stocks to macroeconomic volatility and the ambiguity factor is beyond the scope of this paper, 
further research on this subject is mandatory. 

Our results are consistent with investors concerned about the credibility of their expectations on macroeconomic variables such as 
consumption growth. Thus, at times of economic turmoil, when the economic environment is less predictable, agents must learn more 
rapidly to include the available information into their estimates, which increases ambiguity, with the consequent effects on asset 
prices. Additionally, our results highlight the importance of vintage data on aggregate consumption for asset pricing, as they capture 
short-term dynamics that are lost in final consumption series, consistent with Borup and Schütte (2021). 
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