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A B S T R A C T   

After a period of stagnation that lasted until approximately 2018, Spain has established an ambitious investment 
program in photovoltaics, derived from the pledge to switch to a carbon-free energy system by 2050, the sus-
tained cost decreases of the technology, and the excellent irradiance values over its territory. This paper im-
plements an additional criterion for the spatial allocation of these investments based on minimising the energy 
variability generated because of weather intermittency. The analysis is based on hourly data for the years 
2005–2020 (inclusive), in various locations homogeneously spread throughout Spain. Subtracting the deter-
ministic daily and annual irradiance cycles to estimate the variability of the random component is discussed. 
Failing to do that yields significantly higher and distorted values for solar energy variability, resulting in low 
investment proportions when combined with other energies, like wind. 

The first results show that a straightforward, equally-weighted allocation of investments is suboptimal. It is 
also shown that investing in low-irradiance locations contributes to reducing overall variability. Secondly, the 
study analyses overall power variability minimisation conditional on a given wind investment weight. It is found 
that the impact is significant spatially, and that proportions of wind energy above 10% increase aggregated 
variability across all levels of aggregated power generated. Nevertheless, investment proportions in wind energy 
below 10% reduce the overall combined variability significantly due to the negative correlation between wind 
and solar irradiation. The third point addressed is the minimisation of the mismatches between renewable energy 
supply and aggregate electricity demand. The optimal proportion for solar and wind investments becomes close 
to 50% in this case. However, this proportion tilts towards solar investments if variability minimisation is also 
considered. Finally, the current spatial distribution of photovoltaic investments in Spain is analysed, and it is 
shown that there is room for improvement. It is also found that the current ratio between wind and photovoltaic 
energy may not be optimal, and that it would be advisable to increase proportionally more photovoltaic energy.   

1. Introduction 

Spain has privileged solar and wind Renewable Energy (RE) re-
sources within Europe. However, although wind energy was developed 
since 1990, photovoltaic (PV) energy hardly developed until 2018. Solar 
energy investments focused mainly on concentrated solar power plants 
(CSP) with important advances and installations that have not had 
continuity. Two explanations are that PV costs have only recently 
decreased significantly, and wind investments created some inertia 
preventing the PV take-off [1]. 

To assess this situation, it is interesting to compare it with the leading 
economy in the European Community (EC), i.e., Germany. According to 
[2], the installed wind capacity in Germany in 2018 was 58.7 GW, and 
its theoretical onshore power potential 4050 TWh [3]. In Spain in 2018, 

the installed wind capacity was 23.4 GW [2], and the theoretical po-
tential was 2780 TWh [3]. Therefore, the installed capacity to potential 
ratio was only slightly higher in Germany. Regarding PV, the installed 
capacity in Germany in 2018 was 46 GW [2] and the potential 52.92 
TWh daily [4]. In Spain, the installed capacity was 4.7 GW [2], and the 
potential, however, is 111.6 TWh [4], implying that the installed power 
to potential ratio was remarkably unfavourable in Spain. This situation 
changed in 2019, and Spain has adopted a plan involving a significant 
expansion of RE, particularly PV and wind [5]. 

One relevant issue with these energies is their weather dependency, 
preventing immediate matching of demand fluctuations [6]. It has been 
addressed by combining them with other dispatchable energies, 
particularly natural gas and hydraulics. A recent example addressing the 
supply of electricity and seawater desalination in a small isolated island 
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is [7]. They combined REs, wind and PV, with batteries, and optimised 
the system considering several criteria besides total life cycle cost, 
including human health, environmental impacts and reliability. How-
ever, given that the general objective of decarbonising the economy 
implies dispensing with fossil fuels altogether, alternative methods are 
being actively investigated. 

Given that electricity is challenging to store, a major proposal has 
been to manage this variability by combining various types of REs; see, 
e.g., [8]. Another objective has been reducing the combined variability 
of energy prices induced by the instability of international markets for 
fossil energies [9]. The decreasing impact on the variability of the spatial 
dispersion of investments has also been long recognised [10], although 
fewer studies have been carried out. Another methodological approach 
is diversifying an investment portfolio by implementing the mean-
–variance (MV) methodology to minimise variability given an expected 
return [11]. 

One early study [12] criticised the engineering valuation methods 
for new technologies, focused on finding the least costly alternative. This 
omits the eventual benefits that a new technology might add to an en-
ergy portfolio, e.g., cost and risk reductions. He recommended imple-
menting modern financial portfolio valuation methods. In a similar tack, 
[9] contended that adding greater shares of wind, nuclear and other RE 
to the European energy portfolio, would result in lower overall costs and 
price risks stemming from the variability and uncertainty of fossil energy 
prices in international markets, as well as enhanced security despite 
their higher costs. [13] decomposed variability into market, not diver-
sifiable, and specific to each energy, which can be reduced by diversi-
fying investments. Analogously, the decomposition of irradiance and 
wind speed volatility into cyclic and random, is crucial to obtain 
meaningful results. Although they considered fossil energies, it was 
remarked that the only way of reducing systematic risk was through 
incorporating RE and nuclear. [14] argued that adding nuclear and re-
newables would increase the reliability of the energy supply, and reduce 
the cut-off risks of coal-based electricity generation in China. Adding 
environmental and health benefits, they concluded that the overall cost 
and risk of the energy portfolio would be lower, even if economic costs 
were higher. 

This idea has also been applied in many directions. [15] consider the 
system’s Levelised Cost of Energy (LCOE), the objective being to mini-
mise its variability. They also underscore spatial distribution for 
reducing variability. [16] emphasise that the complementarity between 
different REs is frequently disregarded in practice, resulting in sub- 
optimal mixes. They also point out this approach’s usefulness in 
reducing the variability induced by the price of fossil fuels. Another 
point underlined is that there is a wide field of research to improve 
spatial distribution. The variability posed by solar and wind makes them 
unpredictable to a certain extent, which hampers dispatchability. The 
idea of diversification can also be applied in this context. Thus, 
combining various REs in suitable proportions could reduce the vari-
ability and, therefore, the non-predictability of their generation. [8], e. 
g., considered the impact on the variability of the electricity supply, 
including a set of wind farms. They used simulated data and imple-
mented the MV approach to derive optimal combinations of wind and 
hydropower. 

It was also noted early that spatial diversification could reduce 
supply variability. Most studies in this field refer to wind energy, 
probably because its costs were lower in the past than those of solar. 
[10], e.g., study aggregate hourly data in five European countries in 
2006 and 2007, and conclude that the optimisation is inapplicable 
because it implies high transmission costs. [17] use data every six hours 
over a long period in several European countries. They find that a 
random allocation is suboptimal, and that locations with low resources 
are relevant because they reduce overall variability. Like [10], they 
conclude that the cost of connecting networks makes this method un-
feasible. Regarding the feasibility of these studies, [18] developed a 
technique to increase the spatial resolution of reanalysis data that 

bypasses the need to rely on costly and frequently unavailable meteo-
rological data. 

Spatial solar distribution analyses have developed more slowly, 
partly due to the absence of proper irradiance databases. With the 
development of Geographical Information Systems (GIS), studies are 
being increasingly conducted. One early study was [19], who researched 
the solar resource in Oman, concluding that the availability was a sig-
nificant multiple of annual energy demand, and therefore was an 
optimal alternative to fossil fuels. [20], introduce additional criteria to 
estimate a map of solar resources in China relative to available land – 
geographical and political. [21] discuss recent methodologies to 
implement GIS for estimating and mapping solar resources at fine scales, 
concluding that Artificial Neural Networks are the most promising. 

Spatial studies in the past showed that spatial dispersion could 
reduce average variability. [22], e.g., break down the solar power 
variability by spectral methods and show that spatial diversification 
reduces it. Interestingly, they break down variability into the regular 
solar cycle and weather-related, noting that only this can be diversified. 
[23] claim that the ability of PV energy to reduce variability is limited, 
although, contrarily to [22], they do not consider the high variability of 
the predictable component. 

Studies that consider the spatial diversification of several energies 
are scarcer. An exception was [24], who analysed the energy expansion 
planning in Italy. [25] for China, analysed hourly data for fifteen years 
and applied the MV approach, showing that diversification between 
energies and space considerably reduces variability. Nevertheless, they 
did not remove the deterministic component and used simulated rather 
than actual data. A frequent hurdle is that direct observations often exist 
for solar energy but not so much for wind, because solar energy is 
measured directly by the irradiation incidence at ground level. In 
contrast, wind power requires the measurement of wind speeds at 
various heights, preferably between 80 and 100 m. Due to the high 
altitude of today’s turbine hubs, these measurements are rarely 
available. 

The ability to meet demand variations with REs, i.e., to combine REs 
so that their combined generation tracks demand variations, also de-
serves attention. This can be done by combining these energies with 
nuclear or fossil sources. It is also possible to minimise the variability of 
the final price, which would be another measure of discrepancies, as 
suggested, e.g., by [26]. 

One shortcoming of the MV approach may be the instability of the 
estimated correlations and variances [27], who found that inaccurate 
estimates resulted in quite different asset weights. This underlines the 
need for a sufficiently large and stable sample of observations to guar-
antee the stability of the estimates and the optimal combination of en-
ergies. Another problem is that it does not identify which risk-return 
combination is best. [28] propose combining cost and risk in a single 
function to be minimised, but the weighting of both criteria is relatively 
arbitrary. [29] suggest a utility function derived from economic theory 
to combine return and risk. It also depends on a somewhat arbitrary 
parameter, but theoretical information about its possible values exists. 
Both, [28] and [29], turn out to be similar. [30] select the best combi-
nation of wind and PV energies minimising the coefficient of variation 
(CV), or Sharpe’s inverse ratio [31], yielding a unique solution. 

The MV analysis relies on Gaussian distributions, an assumption that 
frequently breaks down for high-frequency data in the energy field. A 
criterion to solve this problem is the Conditional Value at Risk (CVaR) or 
Expected Shortfall (ES) [32]. Some studies in the energy field apply it 
[26], deriving the optimal solution by linear programming optimisation 
methods. For large samples, however, it becomes computationally 
intractable. 

Another relevant issue is splitting the RE supply into systematic and 
random components. The problem is less relevant for wind energy 
because it is more difficult to detect a systematic part. However, solar 
variability is much greater due to the daily cycle, and studies often find 
that the weight in a combined wind/solar portfolio is too small for solar 
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[33]. The solar cycle is, however, highly predictable, being crucial to 
split this part from the random weather-induced part. Thus, not sepa-
rating these two components implies a limited solar ability to reduce 
joint variability with wind power, or spatially [23]. Correcting this 
mistake, however, shows the strong solar capacity to reduce variability 
[22]. 

A related approach is complementarity, mainly applied to combining 
two energies, usually wind and solar, but sometimes wind and hydrau-
lic. At a basic level, it refers to the fact that the variability of the two 
energies considered is asynchronous, i.e., at least one will likely be 
available. This idea applies to a specific geographical area, so spatial 
diversification considerations do not apply. It is particularly interesting 
when trying to avoid high investment in electrical distribution networks. 
Thus, it is very relevant currently, given the trend towards distributed 
generation. This has a huge advantage since it reduces the cost of the 
networks and increases security. [34], e.g., studied the complementarity 
between wind and solar in north-western Brazil with hydraulic plants 
used as energy storage. In this case, they obtain a combination of 40% 
solar and 60% wind with daily data and a negative correlation of − 0.5. 
They also obtained that demand can be met without interruptions with 
only 6% of storage capacity. [35] analyse the complementarity on the 
Brazilian coast between wind and solar with hourly data from 1990 to 
2019. On time scales ranging from one hour to one month, and 
depending on the location, they find complementarity between 40 and 
60%. 

Complementarity can be studied on various temporal and spatial 
scales, and, ultimately, it is always a matter of stabilising the combined 
supply. If the time scale is long, it is implicitly assumed that the objective 
is to satisfy demand, whereas if it is short, the goal is to reduce vari-
ability. Complementarity studies can also be considered as a preliminary 
step to study the suitability of a global plan to reduce variability, or 
satisfy demand in a vast territory. [36] analyse hourly wind data in 
Europe from 1971 to 2010 and consider 33 countries with an advanced 
technique of wavelets and dynamic time warping, concluding that 
complementarity is very low except for countries far apart. Taking 
advantage of this complementarity would require massive network in-
vestments, making it uneconomical. [37] analyse data from 289 mete-
orological stations in China and classify the regions by their degree of 
complementarity. They use non-parametric estimates of the wind and 
solar irradiation distributions and find that complementarity is greater 
in spring and summer than in autumn and winter. A similar methodol-
ogy is implemented by [30] to map the complementarity of wind and PV 
with a highly detailed grid for China. They use a modern and improved 
database and select a cell of 15X15 squared km. The complementarity is 
estimated by minimising the CV, and find that variability decreases in 
larger areas, suggesting regional electrical grid cooperation. Since the 
PV daily and annual cycles are not subtracted, their results may be 
biased in favour of higher wind/PV ratios – they obtain values between 2 
and 0.7. This criterion can also be combined with others to find the 
optimal location of a combined wind and PV plant with marine hy-
draulic storage [38]. 

Due to its early development, Spanish studies have focused mainly 
on wind energy [1]. [39], e.g., studied the optimal spatial distribution in 
the peninsula’s south with daily data for two years. Alternatively, the 
studies focused on determining the optimal mix of fossil fuels [13]. 
underlining the need to eliminate non-diversifiable risk before applying 
the MV portfolio optimisation analysis – akin to subtracting the daily PV 
cycle. 

Therefore, in this context, and given the current Renewable Energy 
sources (REs) expansion plans in Spain, this study aims to develop 
additional criteria for the spatial allocation of investments intended to 
reduce the variability of the power generated. It must also be noted that 
the study makes sense, since energy policy is broadly decided at the 
country level in the EC [40]. The main issues addressed are:  

1) Explicit separation of the systematic and random components. This is 
especially relevant in the case of solar energy.  

2) Considering explicitly two energies, solar and wind, in a spatially 
diversified portfolio. In particular, the effect of adding wind energy 
on the spatial optimal solar portfolio weights is analysed.  

3) The adjustment to electricity demand, simultaneously reducing the 
random part through spatial diversification and between energies.  

4) An assessment of the current Spanish PV investment spatial 
allocations. 

2. Methods 

Since the research proposed intends to minimise the variability of the 
combined portfolio of investments, the first required step is to estimate 
and subtract the broadly non-random deterministic behaviour of the 
series. The second step is estimating the variance–covariance matrix of 
the random component over the selected locations. Finally, the variance 
of the selected portfolio of investments can be derived, and the optimal 
combinations of variability/generation, and variability /cost, can be 
determined through optimisation. 

Several optimisation settings are considered: first, just a portfolio of 
PV investments – hourly and daily observations; second, this portfolio 
conditional on existing wind investments; and finally, third, the 
matching of aggregate supply and demand – alone, and combined with 
variability minimisation. 

2.1. Portfolio variance 

The deterministic component has been estimated using a symmetric 
weighting scheme which is optimum in other contexts, and after 
assessing several alternatives [41]. This kernel intends to capture the 
deterministic non-random component of a time series of PV power 
generation at a given site, i, PVnr

t,i , as follows, 

PVnr
t,i =

∑+n

s=− n
ωs × PVt+s,i (1)  

where ωs is a set of symmetric weights fulfilling, ωs > 0,
∑+n

− nωs = 1.
Subtracting these estimates from the actual observations yields the 

random intermittent component, which allows estimating the variances 
and covariances at all selected locations, i.e., the variance–covariance 
matrix. Denoting this random component by, εt,i, it is given as, 

εt,i = PVt,i − PVnr
t,i (2)  

and meets the properties, E
(
εt,i
)
= 0, E

(
εt,i
)2

= σ2, E
(
εt,iεt,j

)
= σij, 

implying that the variance–covariance matrix does not depend on time. 
This matrix can be estimated as follows. Define first, ε′

t =
(
εt,1, εt,2,⋯,

εt,m
)
, where m is the number of sites considered - e.g., seven in the PV 

implementation of this study, and eight adding wind. The var-
iance–covariance matrix, Ω, is given by, E

(
εtε′

t
)
= Ω, and a straight-

forward optimum estimate is given by, 

Ω̂ =

(
∑T

1

(
εtε′

t

)
)/

T (3) 

T being the number of observations. 
The variance of a photovoltaic investment portfolio can be derived 

now as follows. First, the power generated by the portfolio at time t, Pt, is 
given by, 

Pt =
∑m

i=I

(
λi × PVt,i

)
(4)  

where the λi are the investment proportions allocated to each site ful-
filling, therefore, 

∑m
i λi = 1, λi ≥ 0, and PV′

t,is are the power generated 
over a year at location i – measured, e.g., in kWh. Note that assuming 
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values for the rate of interest, investments maturity, and Operations and 
Management costs (OM) - e.g., as a percentage of capital invested -, the 
implied LCOE value is immediate. The expected portfolio value, E(Pt),

and its variance, V(Pt), are immediately given by, 

E(Pt) =
∑m

i=I

(
λi × PVnr

t,i

)
(5)  

V(Pt) = E
(
ε′

tλ
)2

= λ′ × E
(
εtε′

t

)
× λ = λ′Ωλ (6)  

where λ′ = (λ1,⋯, λm). 

2.2. Portfolio optimisation 

Minimising the variance of the portfolio can now be conveniently 
framed in a classical minimisation set-up of a quadratic form under a set 
of linear equality and inequality restrictions, i.e., 

min.{λ′Ωλ}, s.t.,Rλ ≥ 0 (7)  

where R embodies a set of suitable constraints, plus those on λ given in 
(4) - see also Appendix B. The variance can be minimised for a given 
value of the portfolio P*, in which case a further constraint in R will be, 

P* =
∑m

i=1
(λi × PVi) (8)  

where PVi can be, e.g., the average over the sample period, i.e., PVi =
∑T

1PVti/T. In this way, the optimum combinations that yield the lowest 
possible variance for a given portfolio value, i.e., power generation, or 
the highest portfolio value for a given variance, can be derived by 
solving the optimisation problem (7). 

2.3. Optimisation conditional on wind investments 

The optimal investment set of PV weights, given a wind investment, 
is considered next. This may be useful if the weight assigned to wind 
investments is determined with other criteria beyond variability 
smoothing. Denoting the wind investment weight by, λe, the optimisa-
tion can be set up as follows. First, the variance of the portfolio can be 
conveniently decomposed as, 

Portf .Variance =
(
λ′

s, λe
)
×

[
Ωs Ωse

Ω′
se σ2

e

]

×

(
λs
λe

)

(9)  

where Ωs is the variance–covariance matrix of the PV investments, Ωse 

the covariance of the PV and wind investments, and σ2
e the wind vari-

ance. Since the term 
(
σ2

e λ2
e
)

is a constant independent of λs it can be 
omitted. Thus, minimising this variance leads to, 

min.
{

c′λs + λ′
sΩsλs

}
,w.r.t.λs (10)  

where c′ = 2λeΩ′
se. In this form, the minimisation can be performed as a 

standard minimisation of a quadratic form under a set of linear equality 
and inequality restrictions, as in section 2.2. 

2.4. Minimisation of the mismatch supply–demand power 

Matching aggregate electricity demand with supply is the third point 
analysed. It turns out that the problem can also be framed as the mini-
misation of a quadratic form on the investment weights under a set of 
linear restrictions. The objective can be set up as the minimisation of the 
squared daily non-random supply/demand mismatches aggregated over 
a year, and subject to the conditions that the aggregate mismatch is zero, 
i.e., 

min.
∑365

t=1
{ω′Xt − Dt}

2  

s.t.
∑365

t=1
{ω′Xt − Dt} = 0 (11)  

where Dt is the daily electricity demand, ω is the vector of capital 
amounts allocated to every site, and Xt is the vector of wind and PV 
power in all sites – the non-random component. This can be reframed as, 

min : {λ′Σ11λ+ 2λ′Σ21},w.r.t.λ (12)  

with λi ≥ 0,
∑m

i=1λi = 1, and where Σ is the sample variance–covariance 
matrix of wind and PV power supply and demand; see Appendix A. 
Again, the minimisation can be conducted by standard means, as noted 
in section 2.2. 

2.5. Combined minimisation: Variability and supply–demand mismatches 

Finally, both criteria, variability (7) and supply–demand matching 
(12), can be considered jointly, leading again to the minimisation of a 
quadratic form merging both, and given by, 

min : {λ′Ωλ+ δ(λ′Σ11λ + 2λ′Σ21) } (13)  

w.r.t. λ, and the conditions on λ as in (12). The weight assigned to the 
supply–demand mismatch is denoted by δ. A trivial rearrangement 
yields, 

min : {λ′Ψλ+ 2λ′Σ21} (14)  

where Ψ = (Ω+δΣ11), which can also be solved as the minimisation of a 
quadratic form under a set of linear constraints. 

A measure of the agreement, or lack thereof, between the optimal 
weights derived under the alternatives considered in sections 2.3, 2.4 
and 2.5 can be defined as follows. Denote, first, the optimal weights 
allocated to the sites considered by ωij, j = (1,⋯,m), for a given volume 
of energy generated Ei,i = (1,⋯,N), and investing the whole portfolio in 
PV. The set of all weights is the vector, ωi = (ωi1,ωi2,⋯,ωim). Second, 
consider allocating the portfolio proportions, (θ; (1 − θ) ), to wind and 
PV respectively, and optimising the PV allocations. Denoting the optimal 
weights obtained by wa

i , where the superscript refers to the proportion 
allocated to wind, the correlation between 

(
ωi,ωa

i
)

for all i’s can be 
calculated as a measure of agreement or discrepancy between the 
optimal PV weights under the two scenarios. The average, maximum 
and minimum of these correlations in the interval (1,⋯,N) can also be 
calculated. 

2.6. Alternative risk criteria 

A further relevant issue is whether the variance is an appropriate 
criterion for measuring variability, and other risk criteria have been 
suggested. They all are equivalent under Gaussianity, but for asym-
metric or/and thick-tailed distributions may yield significantly different 
values. The downside risk, particularly, is not adequately accounted for 
by the variance under asymmetry. Nevertheless, they are not easily 
applicable since analytical expressions for investment portfolios do not 
exist, preventing a standard optimisation treatment. One exception is 
the CVaR methodology of [32], applicable with a moderate number of 
vector data points. However, it becomes unmanageable for large data 
sets like the present case. 

3. Results and discussion 

The results for the several optimisation settings considered in section 
2, 2.2-2.5, are reported in what follows. The data and selected locations 
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are presented first. 

3.1. Data and locations 

The irradiance and power data have been taken from a highly reli-
able database - PVGIS-SARAH2 [42] -, funded by the European Union, 
which is also the reference for the World Bank in this field [43]. The 
database reports irradiance and PV power generated at hourly fre-
quencies for the period spanning the years (2005;2020) at any European 
location. Wind and electricity data aggregated and at daily frequencies 
are available from official sources at [44] for the dates spanning the 
period (2011–1-1;2020–31-12), but without location details. Seven lo-
cations scattered homogeneously over the territory have been selected 
to analyse the optimal combination. Therefore, the study is based on a 
large set of data points -nearly 1 million. 

Fig. 1 displays the location in the map of the sites selected for the 
analysis. It also displays visually accumulated annual irradiance values. 
Table 1 shows the locations specifying the latitude, longitude, and 
average yearly PV power potential. 

3.2. Photovoltaic portfolios (daily and hourly) 

Fig. 2 displays the hourly PV power generated in January 2020 at site 
I and the estimated cycle; see section 2.1. The Figure shows that the 
hourly daily cycle is very regular and well captured, increasing gradu-
ally over the month due to the annual cycle – see also Fig. B.2 in 

Appendix B. This allows splitting the observations between determin-
istic and intermittent random components, which in turn allows 
implementing the minimisation procedure to determine the best in-
vestment portfolio combinations of power generated and variability - 
similar results for daily observations are reported in Appendix B.1. 

Fig. 3 displays the outcome of implementing this technique, i.e., 
minimising aggregate portfolio variance by appropriately selecting the 
investment weights at every site for all possible LCOE values; see sec-
tions 2.1 and 2.2. The minimum LCOE is attained at 34.42 kWh/kW, and 
lower LCOEs – or higher total output power -can be achieved at the cost 
of increasing the variability of the aggregated power output. 

The equivalent minimisation of the investments portfolio variance 
with daily data yields similar results. Table 2 reports the optimum set of 
weights for both optimisation cases, i.e., hourly and daily frequency 
data, which underlines their similarity. 

The first conclusion from these results is that the optimum solution 
implies diversified investments, i.e., investing only in the most pro-
ductive places is not the best policy. This is due to the uncorrelated 
intermittent random components across different sites. Second, the 
portfolio yielding the minimum overall variability differs from the 
trivially equally weighted solution, implying that this procedure delivers 
valuable portfolio diversification insights. Finally, since the optimum 
weights for the frequencies analysed are close, this suggests that higher 
frequencies of a few minutes might yield similar results. This is useful 
when sufficiently disaggregated data is unavailable – as is the case here. 

Fig. 1. Irradiation and photovoltaic electricity potential: Spain. Horizontally mounted PV modules. . 
Source: [42] 

Table 1 
Selected locations: Latitude and longitude.   

I II III IV V VI VII 

latitude  36.868  37.245  39.721  40.084  40.252  41.440  42.793 
longitude  − 2.154  − 6.856  − 7.043  − 0.353  − 3.758  1.636  − 6.120 
kWh(1)  1765.2  1640.8  1542.7  1410.8  1628.5  1603.6  1386.7 

Notes: 
(1) kWh generated per 1 kW of nominal installed power over one year. 
(2) Source: PVGIS-SARAH2 [42]. 
(3) The database reports the ‘nominal’ power, i.e., the nameplate (rated) capacity measured under standard test conditions. 
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Fig. 2. Photovoltaic cycle and actual observations (Obs.).  

Fig. 3. Minimum variance and portfolio LCOE values.  
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3.3. Photovoltaic and wind portfolios 

This section considers adding wind energy to the portfolio. First, 
several percentages of wind energy are added, and taken as given in the 
optimisation of the PV portfolio – i.e., the portfolio is invested in the 
proportions (0.33;0.67), (0.5;0.5) and (0.66;0.34) in wind and PV en-
ergy respectively. This helps to understand the effect of including wind, 
and may be relevant if the wind proportion is determined outside this 
minimisation for other reasons. Second, optimising the whole portfolio, 
including wind, is analysed. 

Fig. 4 displays the daily wind power generated over the available 
sample and the estimated cycle – see section 2.1. The Figure shows a 
stable and well captured annual cycle that allows splitting the deter-
ministic from the intermittent random component – the standard devi-
ation of the observations, cycle and residuals, are respectively, 3.134, 
0.810 and 2.830. 

Then, the minimisation procedure to determine the best investment 
portfolio combinations of power generated and variability, including 

wind investments, can be implemented; see section 2.3. Table 3 dis-
cusses the impact on the PV weights under these conditions. The table 
reports the correlation values of the vector of optimal PV weights over 

Table 2 
Minimum variance portfolio: Hourly and daily.    

weights 

Loc. kWh hourly freq. daily freq. 

I  1765.2  0.317  0.384 
II  1640.8  0.144  0.150 
III  1542.7  0.085  0.050 
IV  1410.8  0.110  0.096 
V  1628.5  0.074  0.018 
VI  1603.6  0.153  0.155 
VII  1386.7  0.113  0.145 
Total portfolio (kWh)  1610.1  1617.6 

Note: annual kWh (1 kW nominal power). 

Fig. 4. Wind: Cycle and actual observations (kWh per 1 kW capacity).  

Table 3 
Weights Correlations (Minimum Variance Portfolios).  

Optimising PV vs. (PV + Wind) 

Weight wind Average minimum maximum 

0.33(1)  0.688  0.406  0.857 
0.5(1)  0.394  − 0.196  0.857 
0.66(1)  0.152  − 0.623  0.856 
0.091(2)  0.818  0.395  0.857 

Notes: (1) Optimisation of the PV allocations, conditional on a given proportion 
of wind; (2) Joint optimisation of the proportions allocated to wind and PV, and 
the PV allocation across all sites. See section 2.5. 

Table 4 
Minimum variance portfolio weights: PV and (PV + Wind).    

weights 

Loc. kWh PV (PV + Wind) 

I  1765.2  0.384  0.333 
II  1640.8  0.150  0.135 
III  1542.7  0.050  0.053 
IV  1410.8  0.096  0.066 
V  1628.5  0.018  0.028 
VI  1603.6  0.155  0.160 
VII  1386.7  0.145  0.132 
Wind weight     0.091 
Total portfolio (kWh)  1617.6  1594.3 
LCOE (USD/kWh)  34.3  34.8 

Notes: a) annual kWh (1 kW nominal power). b) daily freq. both cases. 
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the whole range of total power generation considered – see section 2.5. It 
is immediate that the impact is significant as the wind weight increases. 
Combined optimisation has a lower effect because the optimum wind 
proportion turns out to be low – see Table 3. 

Next, the results in Table 4 report the weights optimising the whole 
portfolio and compare them with the PV results. 

The optimal proportion for wind is moderately low, i.e., 9.1%, and 
the corresponding optimal portfolio power is only slightly lower – 1.5%. 

Fig. 5 compares the efficient variability-LCOE frontier under both 
cases, i.e., PV and PV plus wind investments. 

Adding wind to the portfolio decreases the implied variability for all 
possible portfolios and, significantly, yields a lower variance for the 
minimum PV portfolio - i.e., at 34.42 kWh. These results are derived 
from the negative and significant correlation between wind and 

irradiance at all sites considered. It should be noticed, too, that adding 
even a reduced proportion of wind decreases variability significantly. 

3.4. Minimising the supply–demand mismatch 

Minimising just the variability of the random component may yield 
an unfavourable, i.e., low, wind power weight. An alternative approach 
minimises the supply–demand mismatch errors; see section 2.4 and 
Appendix A. Yet, a further option is to combine both approaches and 
jointly minimise the random variability and the mismatch; section 2.5. 
Table 5 reports some results for both cases. 

First, considering just the mismatches, total unmet demand is low – 
column 1, 3.9%. Note, however, that this provides a slightly distorted 
view, the inside-the-year daily profile giving a more nuanced interpre-
tation – Fig. 6a. The maximum daily excess demand is 13% for a few 
days, although the power supply is in significant excess on several oc-
casions, notably around the second quarter – max. 31%. This is due to 
the increased wind supply and lower demand in that period – see Figs. 4 
and B.3 in Appendix B. 

Fig. 6b displays values for the first days of the year, showing that the 
leading cause for mismatches is the weekly cycle, specifically, the 
weekends. It is also worth noting that the combined supply tracks the 
annual demand cycle to a significant degree. Columns 2 and 3 report 
results from the combined minimisation. Assigning a moderately large 
value to the mismatches relative to the variability decreases the LCOE 
significantly, with just a slight unmet demand increase – column 3. 
Nevertheless, the daily behaviour during the year worsens again; see 
Fig. B.4 in Appendix B.2. It is worth noting that the excess supply is 
highest in the second quarter of the year, because wind is stronger – see 
Fig. 4 -, and demand is lower – see Fig. B.3 in Appendix B. 

Fig. 7, finally, displays the efficient frontiers for the pair LCOE/ 

Fig. 5. Minimum variance and portfolio LCOE values. PV and (PV + Wind).  

Table 5 
Minimisation of the supply–demand mismatch.   

(1) (2) (3) 

kWh(1) 1398 1621 1580 
LCOE (USD / kWh) 39.7 34.2 35.2 
Unmet Demand 3.9% 6.6% 5.4% 
Capacity: (PV, Wind) (56.5% −

43.5%) 
(88.7% −
11.3%) 

(85.4% −
14.6%) 

Generation: (PV, 
Wind) 

(50.6% −
49.4%) 

(85.8% −
14.2%) 

(74.3% −
15.7%) 

Notes. 
(a) annual kWh generated by 1 kW installed power. 
(b) (1): min. errors (Demand – Supply); section 2.4, Appendix A. 
(2): min. (1) + Variability Supply; section 2.5. 
(3): min. (1) X 4 + Variability Supply; section 2.5. 
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value-of-the-quadratic form (QF) related to the results in columns 1 and 
3 in Table 5. Contrary to previous results in sections 3.2 and 3.3, there is 
no uniform best solution for all possible combinations, and, as noted in 
Table 5, reducing the LCOE increases the mismatch between electricity 
demand and supply, highlighting the implied trade-off. 

3.5. Policy implications 

The previous results can help assess Spain’s current PV and wind 
energy investments. As of 2022, they amounted to 47 GW (wind) and 
24.8 GW (PV), implying proportions of 0.656 and 0.344, respectively. 
However, the more favourable case to wind yields approximately a 0.5 

Fig. 6. Minimisation unmatched Supply-Demand.  
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wt, decreasing to 0.1 in some cases. This may be partly because the PV 
costs were too high until recently. 

Table 6 gathers results useful to assess the PV weights corresponding 
to the locations analysed. The first three columns report optimal weights 
under different criteria, and the last the actual values. It is immediate 
that there is room for improvement under all criteria considered: e.g., 
the power generated is higher, and therefore the LCOE is lower in all 
three cases. 

These results suggest a reassignment of investments, both regarding 
the relative allocation between wind and PV energy, and the spatial PV 
weights. These objectives could be achieved without cost increases in an 
environment of increasing investments. Nevertheless, they are just 
another criteria to be assessed among several others – e.g., availability of 
proper space, social and political constraints, etc. -and should not be 
taken strictly. 

3.6. Discussion 

The size of the area to be considered is the first debatable point, and 
although in this study the entire territory of a country has been selected, 

other choices are possible. For example, in studies on wind energy, the 
whole of Europe has often been considered. [10], e.g., consider that 
restrictions on the availability of resources combined with each coun-
try’s demand, make the export of electricity unfeasible in many cases. 
[17] also conclude that the investment in grids required to take 
advantage of the variability-reducing effect would be too high. This 
would suggest considering smaller areas to study volatility reduction 
through spatial diversification. Another approach that suggests focusing 
on local areas is the complementarity analysis [35]. 

These last two types of analysis point towards focusing on local areas, 
smaller than Europe, the first, and specific regions within a country the 
second. It should be underlined that this is consistent with the drive of 
RE investments towards distributed generation in local environments, 
smaller than an entire country. Accordingly, requiring as an additional 
restriction that all areas of the country analysed have access to a mini-
mum percentage of investments, is another criterion to consider in 
future research. 

A second key point is splitting both energies into deterministic and 
random components. A smoothing kernel method has been applied in 
this study, but other choices are possible. [22], e.g., break down the 
solar power variability by spectral methods and show that spatial 
diversification reduces it. Interestingly, they consider the regular solar 
cycle and the weather-related component. They do not provide, how-
ever, the results of their decomposition. [45] consider the clear sky cycle 
as the deterministic component, the remaining being the random part. 
However, as in the kernel method, the weather-related component has a 
non-zero mean that should be subtracted. Future research could also 
implement other possible methods – Fourier inverse, wavelets, state- 
space, etc. 

Third, results on the optimal shares of wind and solar are another 
contribution of this study. Complementary studies also analyse this issue 
but usually omit local energy demand. Nor do they consider the sys-
tematic cyclical component of the RE analysed, primarily solar and 
wind. This especially penalises solar, since its daily cycle is very pre-
dictable and results in high weights for wind compared to solar - e.g. 
[34] obtain optimal proportions of 60% and 40% for wind and solar, 
respectively, and [30] give optimal values for the wind/solar ratio 

Fig. 7. Quadratic Form (QF) Minimisation Criteria and LCOE: QF2, Supply-Demand mismatch (S-D); QF1, (S-D) + Variability Supply.  

Table 6 
PV Weights Assessment.  

location kWh (1) (2) (3) (4) 

I  1765.2  0.384  0.366 0.355  0.184 
II  1640.8  0.150  0.148 0.179  0.105 
III  1542.7  0.05  0.058 0  0.265 
IV  1410.8  0.096  0.073 0  0.171 
V  1628.5  0.018  0.031 0.106  0.157 
VI  1603.6  0.155  0.176 0.359  0.065 
VII  1386.7  0.145  0.145 0  0.052 
Portfolio kWh  1617.6  1616.5  1670.4 1579.2 

Notes: 
a) minimum variance optimum portfolio (columns 1, 2, 3). 
b) (1): min. PV; c) (2): min. PV and wind. 
d) (3): min. II plus supply–demand mismatch (weight S/D, 4). 
e) actual weights (column (4)); f) (2), (3) scaled to unit sum. 
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Fig. B1. Probability density of the photovoltaic intermittent random component.  

Fig. B2. Photovoltaic annual cycle and actual observations.  
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Fig. B3. Minimisation unmatched Supply-Demand: Demand and Supply.  

Fig. B4. Minimisation unmatched Supply-Demand (I) + Variability Supply (II). (% Unmatching (Supply +, Demand -)).  
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between 2 and 0.7. If, on the contrary, this is considered, the proportions 
for wind energy are lower, in the range (10%; 50%) depending on the 
cases; see section 3. 

Fourth, considering energy demand explicitly, and minimising the 
deviations with some relevant criteria simultaneously to the supply 
variability, is another contribution of this research. There are only some 
studies in this field that address both issues simultaneously. An excep-
tion is [45], although their approach is partial and does not explicitly 
address the supply–demand mismatch. [26] also consider it for Chile, 
while additionally replacing the mean–variance method with the CVaR 
[32]. 

Fifth, regarding related results for Spain, [45] also consider opti-
mising the distribution of PV and wind investments. A relevant aspect of 
their work is subtracting the systematic part of the PV daily cycle, noting 
that this penalises PV in the usual optimisation studies. They use a 
sizeable hourly database and apply the MV approach, but introduce 
several corrections that may explain their counterintuitive results. They 
recommend concentrating PV investments towards areas with scarce 
solar resources, and wind investments towards the south and southwest, 
with fewer resources than the northwest. The explanation would be that 
the variability of solar energy is greater in places where the resource is 
high, and conversely – similarly for wind. However, this is not the case, 
since volatility in region I with greater resources is lower; see Fig. B.1. 
The results obtained in the present study are more in line with what 
might be expected. Another related work is that of [39], who analysed 
the distribution of wind energy in southern Spain with daily data for two 
years. They did not eliminate the annual wind cycle, but still showed the 
ability of spatial diversification to reduce risk as measured by the vari-
ability of power generation. [13] also analyse the optimal combination 
of different energies in the Spanish portfolio. Although they focus on 
fossil energies and do not analyse the issue of spatial distribution, their 
work is related to the extent that they consider the Capital Asset Pricing 
Model (CAPM) approach to study the optimal mix of energies. In this 
approach, removing the non-diversifiable variability part is essential, a 
suggestion akin to removing the daily solar cycle. 

Sixth, other criteria besides the MV implemented in this study are 
also possible and have been put forward, like the CV [31]. One of its 
advantages in this context is that it allows resolving the lack of a single 
solution in most risk-related approaches – including the MV and the 
CVaR. Other proposals for a unique solution have also been suggested in 
the literature, like merging mean and variance in a single function [28], 
and [29], who suggest a single utility function. Although both involve 
some degree of guessing concerning the values of some parameters, at 
least they are bounded. Another criterion is the CVaR [32], aiming to 
deal with the eventual asymmetry of climate series, which may be sig-
nificant as shown, e.g., in Fig. B.1. However, it does not yield a unique 
solution and would have to be combined with those suggested before. 

Finally, seventh, future research should also address other risks 
beyond variability, notably those derived from climate change. A pio-
neering study in this line was [46], who analysed the impact of climate 
risk through a series of simulations generated by Monte Carlo models 
and assessed their effects on the optimal combination of energies for 
Portugal. In this regard, the data available at the European Centre for 
weather forecasting [47] offer a sound basis for conducting research in 

this direction. 

4. Conclusions 

This study aimed to determine the optimal spatial combination of 
photovoltaic investments, currently developing rapidly in Spain. A 
second objective was to consider how accounting for investments in 
wind power might affect this optimal distribution. The optimisation 
criterion considered is the combination that reduces the variance of the 
random component of the variability in the generation of renewable 
energy, for each aggregate generated volume. First, the solar irradiation 
series have been studied, hourly and daily, regardless of wind. The main 
result is that combining investments in the most productive places with 
less productive places, can improve the risk-production pairing by 
reducing variability. The optimal weightings for hourly and daily fre-
quencies are similar for all selected generation levels, suggesting that 
optimal combinations might also be similar at higher frequencies. 

Next, the impact of wind energy has been considered – daily fre-
quency spatially aggregated. It is shown that it conditions significantly 
the optimal spatial distribution of photovoltaic investments, and that 
simultaneous optimisation of both investments yields a small proportion 
for wind - around 10%. Nevertheless, it considerably reduces the vari-
ability of the total generation. 

The third analysis considers minimising the supply–demand 
mismatch, and the contribution of wind energy increases significantly, 
approaching 50%. Nevertheless, joint minimisation with random vari-
ability, even with a high weighting for the supply–demand mismatch, 
yields a photovoltaic share above 80%. These results provide additional 
criteria to allocate spatial investments optimally in Spain, and for the 
optimal solar-wind energy mix under several settings. 
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Appendix A. . Minimisation of the mismatch supply–demand power 

It is convenient, first, to denote the vector of PV and wind power generation at time t by, 

X′
t =
(
PVt,1,⋯,PVt,m− 1,Et

)
(A1)  

where PVti are the PV generation at all seven sites, and Et is wind generation. The (m × T) matrix of all observations is defined by, 

X′ = (X1,X2,⋯,XT) (A2) 
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A possible matching condition implemented in this research is given by, 

∑365

t=1

∑m

i=1
(Xti × ωi) =

∑365

t=1
Dt (A3)  

i.e., it requires the equality of the aggregated annual supply and demand. The values of all variables considered are the deterministic component in 
every case, estimated through the kernel of section 2.1, and the ω′

is are the capital amounts allocated to every site. It is convenient to introduce a 
rescaling that will allow the joint optimisation with the variability criterion, i.e., 

∑365

t=1
Dt = D ,

∑365

t=1
Xti = Xi , xti = Xti ×

D
Xi

, λi = ωi ×
Xi

D
(A4) 

With this notation, the equality condition (A.3) becomes, 

∑365

t=1

∑m

i=1
(xti × λi) =

∑365

t=1
Dt (A5)  

and some straightforward algebra shows that the λi fulfil the conditions,
∑m

i=1λi = 1,λi ≥ 0.
The optimisation problem can be set up now as the minimisation of the sum of the daily squared mismatches, i.e., 

min :
∑365

t=1
{λ′xt − Dt}

2 (A6) 

where λ′ = (λ1, λ2,⋯, λm), x′
t = (xt1, xt2,⋯, xtm). 

A straightforward matrix algebra development shows that this condition can be conveniently rewritten as, 

min :
∑365

t=1
{(λ′xt) − Dt }

2
= λ′Σ11λ+Σ22 + 2λ′Σ21 (A7)  

where, z′
t =

(
x′

t , − Dt
)
, and, 

Z′ = (z1, z2,⋯, zT)

Σ = (Z′Z)/T (A8) 

Finally, minimising (A.7) is equivalent to, 

min : {λ′Σ11λ+ 2λ′Σ21},w.r.t.λ  

s.t.λi ≥ 0,
∑m

i=1
λi = 1 (A9) 

Note that, since X′
tω = x′

tλ, and the weights are constrained to match annual demand, aggregate unmet demand over the whole year is given by, 

0.5 ×
∑T

t=1

⃒
⃒
⃒

(
λ′

optxt

)
− Dt

⃒
⃒
⃒ (A10) 

where λopt is the solution to (A.9). It also equals aggregate excess supply. 

Appendix B. . Complementary results 

The research results have been obtained with purposefully written Fortran programs [48] and R scripts by the author. The optimisations have been 
conducted with the routine ’solve.QP’ {quadprog}, available in the R statistical software. It applies the dual method of Goldfarb and Idnani [49] – 
details are available in the Supplementary Material. The reliability of the routine has been tested with an ’ad-hoc Fortran program specifically written 
for that purpose that simulates randomly alternative solutions in a suitable neighbourhood of the optimal solution considered. 

All graphs have been implemented with the gnuplot software [50]. 

B.1. Photovoltaic portfolios (daily and hourly) 

Fig. B.1 depicts the probability density function (p.d.f.) of the random intermittent PV component for two locations, as given by the decomposition 
applying the kernel of section 2.1. Several values for the width of the kernel have been tested, the best solution being sixteen at both sides of the hour 
and date considered. 

The Figure shows acceptably smooth densities, though highly skewed to the left, and with thick tails. This can also be seen in the large low values 
shown in Fig. B.2 for daily observations. This might support the implementation of complementary risk criteria alluded to in section 2.6, notwith-
standing the obstacles. 

Fig. B.2 displays the estimated cycle component and the actual observations over the whole span of the available sample. The cycle is regular and 
stable, similar to the hourly data, showing the sample’s homogeneity. 

The LCOE has been calculated under a 2.5% long-run real interest rate, 25 years for investments maturity and a 10% over capital annual OM costs 
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[51]. This is a simplified calculation sufficient for the purposes of this research. The same method is implemented in all cases. 
B.2. Combined minimisation: Variability and Supply-Demand mismatches. 

Fig. B.3 shows a tight fit between overall supply and demand and highlights the leading cause of recurrent mismatches, i.e., the weekly weekend 
cycle. The seasonality of demand is captured to some extent, as well. 

Fig. B.4 displays the daily mismatch, single mismatch, and combined minimisation in both cases. The significantly increased daily mismatch in the 
combined minimisation approach is apparent. 

Appendix C. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.enconman.2023.117292. 
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